General Description

The ICS854104I is a low skew，high performance 1－to－4 Differential－to－LVDS Clock Fanout Buffer．Utilizing Low Voltage Differential Signaling（LVDS），the ICS854104I provides a low power， low noise，solution for distributing clock signals over controlled impedances of 100Ω ．The ICS854104I accepts a differential input level and translates it to LVDS output levels．
Guaranteed output and part－to－part skew characteristics make the ICS854104I ideal for those applications demanding well defined performance and repeatability．

Features

－Four differential LVDS output pairs
－One differential clock input pair
－CLK／nCLK can accept the following differential input levels： LVPECL，LVDS，LVHSTL，HCSL，SSTL
－Each output has an individual OE control
－Maximum output frequency： 700 MHz
－Translates differential input signals to LVDS levels
－Additive phase jitter，RMS：0．232ps（typical）
－Output skew：50ps（maximum）
－Part－to－part skew：350ps（maximum）
－Propagation delay：1．3ns（maximum）
－ 3.3 V operating supply
－$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature
－Lead－free（RoHS 6）packaging

Pin Assignment

OEO 1	16	Q0
OE1 ${ }^{2}$	15	口nQ0
OE2［3	14	］Q1
$\mathrm{V}_{\mathrm{DD}} \mathrm{C}_{4}$	13	日nQ1
GND ${ }^{5}$	12	口Q2
CLK ${ }^{6}$	11	口nQ2
nCLK ${ }^{7}$	10	已Q3
ОЕз ${ }^{\text {¢ }} 8$	9	口nQ3

ICS854104
16－Lead TSSOP
$4.4 \mathrm{~mm} \times 5.0 \mathrm{~mm} \times 0.925 \mathrm{~mm}$ package body G Package Top View

Pin Descriptions and Characteristics

Table 1. Pin Descriptions

Number	Name	Type		Description
1	OE0	Input	Pullup	Output enable pin for Q0, nQ0 outputs. See Table 3. LVCMOS/LVTTL interface levels.
2	OE1	Input	Pullup	Output enable pin for Q1, nQ1 outputs. See Table 3. LVCMOS/LVTTL interface levels.
3	OE2	Input	Pullup	Output enable pin for Q2, nQ2 outputs. See Table 3. LVCMOS/LVTTL interface levels.
4	V DD 2	Power		Positive supply pin.
5	GND	Power		Power supply ground.
6	CLK	Input	Pulldown	Non-inverting differential clock input.
7	nCLK	Input	Pullup/Pulldown	Inverting differential clock input. VDD/2 default when left floating.
8	OE3	Input	Pullup	Output enable pin for Q3, nQ3 outputs. See Table 3. LVCMOS/LVTTL interface levels.
9,10	nQ3, Q3	Output		Differential output pair. LVDS interface levels.
11,12	nQ2, Q2	Output		Differential output pair. LVDS interface levels.
13,14	nQ1, Q1	Output		Differential output pair. LVDS interface levels.
15,16	nQ0, Q0	Output		Differential output pair. LVDS interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum
C_{IN}	Input Capacitance			4	
$\mathrm{R}_{\text {PULLUP }}$	Input Pullup Resistor			51	pF
$\mathrm{R}_{\text {PULLDOWN }}$	Input Pulldown Resistor			51	$\mathrm{k} \Omega$

Function Table

Table 3. Output Enable Function Table

Inputs	Outputs
$\mathbf{O E [3 : 0]}$	$\mathbf{Q}[0: 3], \mathrm{nQ}[0: 3]$
0	High-Impedance
1	Active (default)

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of he product at these conditions or any conditions beyond those listed in the DC Characteristics or $A C$ Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6 V
Inputs, V_{I}	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Outputs, I_{O} (LVDS)	
Continuous Current	10 mA
Surge Current	15 mA
Package Thermal Impedance, θ_{JA}	$100.3^{\circ} \mathrm{C} / \mathrm{W}(0 \mathrm{mps})$
Storage Temperature, $\mathrm{T}_{\mathrm{STG}}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I_{DD}	Power Supply Current				75	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum
V_{IH}	Input High Voltage	2		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage		-0.3		0.8
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=3.465 \mathrm{~V}$		V	
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150		5

Table 4C. Differential DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I_{H}	Input High Current	CLK, nCLK	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
I_{IL}	Input Low Current	CLK	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
		nCLK	$\mathrm{V}_{\mathrm{DD}}=3.465 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
V_{PP}	Peak-to-Peak Voltage; NOTE 1			0.15		1.3	V
$\mathrm{V}_{\text {CMR }}$	Common Mode Input Voltage; NOTE 1, 2			GND + 0.5		$V_{D D}-0.85$	V

NOTE 1: $\mathrm{V}_{\text {IL }}$ should not be less than -0.3 V .
NOTE 2: Common mode input voltage is defined as V_{IH}.

Table 4D. LVDS DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OD}	Differential Output Voltage		250	350	450	mV
$\Delta \mathrm{V}_{\text {OD }}$	$\mathrm{V}_{\text {OD }}$ Magnitude Change				50	mV
V_{OS}	Offset Voltage		1.2	1.3	1.45	V
$\Delta \mathrm{~V}_{\text {OS }}$	$V_{\text {OS }}$ Magnitude Change				50	mV

Table 5. AC Characteristics, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {MAX }}$	Output Frequency				700	MHz
$\mathrm{t}_{\text {PD }}$	Propagation Delay; NOTE 1		0.9		1.3	ns
tijt	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: $12 \mathrm{kHz}-$ 20 MHz		0.232	0.245	ps
		100MHz, Integration Range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		0.235	0.250	ps
tsk(o)	Output Skew; NOTE 2, 4				50	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4				350	ps
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	20\% to 80\%	180		660	ps
odc	Output Duty Cycle		45		55	\%

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
NOTE: All parameters measured at $\mathrm{f}_{\text {MAX }}$ unless noted otherwise.
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crossing point of the input to the differential output crossing point.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the $\boldsymbol{d B c}$ Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1 Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio
of the power in the 1 Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a $d B c$ value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

The source generator is the Rhode \& Schwarz SMA 100A Signal Generator $9 \mathrm{kHz}-6 \mathrm{GHz}$. Phase noise is measured with the Agilent E5052A Signal source Analyzer.

Parameter Measurement Information

3.3V LVDS Output Load AC Test Circuit

Propagation Delay

Output Skew

Differential Input Level

Part-to-Part Skew

Output Duty Cycle/Pulse Width/Period

Parameter Measurement Information, continued

Output Rise/Fall Time

Differential Output Voltage Setup

Offset Voltage Setup

Applications Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}} / 2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the $\mathrm{V}_{\text {REF }}$ in the center of the input voltage swing. For example, if the input clock swing is 2.5 V and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, $R 1$ and $R 2$ value should be adjusted to set $V_{\text {REF }}$ at 1.25 V . The values below are for when both the single ended swing and $V_{D D}$ are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission
line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3 V and $\mathrm{V}_{I H}$ cannot be more than $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both signals must meet the V_{PP} and $\mathrm{V}_{\mathrm{CMR}}$ input requirements. Figures $2 A$ to $2 F$ show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the

2A. CLK/nCLK Input Driven by an IDT Open Emitter LVHSTL Driver

Figure 2C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2E. CLK/nCLK Input Driven by a 3.3V HCSL Driver
vendor of the driver component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 2B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 2D. CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 2F. CLK/nCLK Input Driven by a 2.5V SSTL Driver

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance $\left(Z_{T}\right)$ is between 90Ω and 132Ω. The actual value should be selected to match the differential impedance $\left(Z_{0}\right)$ of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The
standard termination schematic as shown in Figure $3 A$ can be used with either type of output structure. Figure 3B, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50 pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

LVDS Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS854104I.
Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS854104I is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+5 \%=3.465 \mathrm{~V}$, which gives worst case results.

- Power (core) MAX $=\mathrm{V}_{\text {DD_MAX }}{ }^{*} \mathrm{I}_{\mathrm{DD} _M A X}=3.465 \mathrm{~V} * 75 \mathrm{~mA}=\mathbf{2 5 9 . 8 7 5 m W}$

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, Tj, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for Tj is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}$ * $\mathrm{Pd} _$total $+\mathrm{T}_{\mathrm{A}}$
Tj = Junction Temperature
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{\text {JA }}$ must be used. Assuming no air flow and a multi-layer board, the appropriate value is $100.3^{\circ} \mathrm{C} / \mathrm{W}$ per Table 6 below.

Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:
$85^{\circ} \mathrm{C}+0.260 \mathrm{~W} * 100.3^{\circ} \mathrm{C} / \mathrm{W}=111.1^{\circ} \mathrm{C}$. This is well below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 16-Lead TSSOP, Forced Convection

θ_{JA} by Velocity			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$100.3^{\circ} \mathrm{C} / \mathrm{W}$	$96.0^{\circ} \mathrm{C} / \mathrm{W}$	$93.9^{\circ} \mathrm{C} / \mathrm{W}$

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16-Lead TSSOP

θ_{JA} by Velocity			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$100.3^{\circ} \mathrm{C} / \mathrm{W}$	$96.0^{\circ} \mathrm{C} / \mathrm{W}$	$93.9^{\circ} \mathrm{C} / \mathrm{W}$

Transistor Count

The transistor count for ICS854104I is: 286

Package Outline and Package Dimensions

Package Outline - G Suffix for 16-Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters		
Symbol	Minimum	Maximum
N	16	
A		1.20
A1	0.05	0.15
A2	0.80	1.05
b	0.19	0.30
c	0.09	0.20
D	4.90	5.10
E	6.40 Basic	
E1	4.30	4.50
e	0.65 Basic	
L	0.45	0.75
α	0°	8°
aaa		0.10

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
854104AGILF	$54104 A I L$	"Lead-Free" 16-Lead TSSOP	Tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
854104 AGILFT	$54104 A I L$	"Lead-Free" 16-Lead TSSOP	Tape \& Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	T5	4	AC Characteristics - deleted "Bank A" test conditions from part-to-part skew row.	$8 / 13 / 09$
	T5	4	AC Characteristics - Additive Phase Jitter, added maximum spec for 155.52 MHz and added 100MHz specs. B	
10	Updated Wiring the Differential Input to Accept Single-ended Levels. Updated LVDS Driver Termination.	$9 / 10 / 10$		
B	T4B	3	Corrected typo error; $I_{I H}=5 \mu A$ Max, $I_{I L}=-150 \mu \mathrm{~A}$ Min. Deleted quantity from Tape \& Reel	

Renesns

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

