ICS8725B-01

DATA SHEET

General Description

RENESAS

The ICS8725B-01 is a highly versatile 1:5 Differentialto-HSTL clock generator and a member of the HiPerClockS[™] family of High Performance Clock Solutions from IDT. The ICS8725B-01 has a fully integrated PLL and can be configured as zero delay

Generator

buffer, multiplier or divider, and has an output frequency range of 31.25MHz to 700MHz. The reference divider, feedback divider and output divider are each programmable, thereby allowing for the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The external feedback allows the device to achieve "zero delay" between the input clock and the output clocks. The PLL_SEL pin can be used to bypass the PLL for system test and debug purposes. In bypass mode, the reference clock is routed around the PLL and into the internal output dividers.

Features

Differential-to-HSTL Zero Delay Clock

- Five differential HSTL output pairs
- · Selectable differential CLKx/nCLKx input pairs
- CLKx/nCLKx pairs can accept the following differential input levels: LVPECL, LVDS, HSTL, HCSL, SSTL
- Output frequency range: 31.25MHz to 700MHz
- Input frequency range: 31.25MHz to 700MHz
- VCO range: 250MHz to 700MHz
- ٠ External feedback for "zero delay" clock regeneration with configurable frequencies
- · Programmable dividers allow for the following output-to-input frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8
- Static phase offset: 15ps ± 135ps
- Cycle-to-cycle jitter: 25ps (maximum) ٠
- Output skew: 45ps (maximum)
- 3.3V core, 1.8V output operating supply
- 0°C to 70°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram PLL_SEL

ICS8725BY-01 REVISION A JULY 16, 2009

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 2, 12, 29	SEL0, SEL1, SEL2, SEL3	Input	Pulldown	Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.
3	CLK0	Input	Pulldown	Non-inverting differential clock input.
4	nCLK0	Input	Pullup	Inverting differential clock input.
5	CLK1	Input	Pulldown	Non-inverting differential clock input.
6	nCLK1	Input	Pullup	Inverting differential clock input.
7	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK1, nCLK1. When LOW, selects CLK0, nCLK0. LVCMOS/LVTTL interface levels.
8	MR	Input	Pulldown	Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
9, 32	V _{DD}	Power		Core supply pins.
10	nFB_IN	Input	Pullup	Inverting differential feedback input to phase detector for regenerating clocks with "Zero Delay."
11	FB_IN	Input	Pulldown	Non-inverted differential feedback input to phase detector for regenerating clocks with "Zero Delay."
13, 28	GND	Power		Power supply ground.
14, 15	nQ0, Q0	Output		Differential output pair. HSTL interface levels.
16, 17, 24, 25	V _{DDO}	Power		Output supply pins.
18, 19	nQ1, Q1	Output		Differential output pair. HSTL interface levels.
20, 21	nQ2, Q2	Output		Differential output pair. HSTL interface levels.
22, 23	nQ3, Q3	Output		Differential output pair. HSTL interface levels.
26, 27	nQ4, Q4	Output		Differential output pair. HSTL interface levels.
30	V _{DDA}	Power		Analog supply pin.
31	PLL_SEL	Input	Pullup	PLL select. Selects between the PLL and reference clock as the input to the dividers. When LOW, selects reference clock. When HIGH, selects PLL. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			2		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Tables

Table 3A. Control Input Function Table

	Inputs					
SEL3	SEL2	SEL1	SEL0	Reference Frequency Range (MHz)*	Q[0:4], nQ[0:4]	
0	0	0	0	250 - 700	÷1	
0	0	0	1	125 - 350	÷1	
0	0	1	0	62.5 - 175	÷1	
0	0	1	1	31.25 - 87.5	÷1	
0	1	0	0	250 - 700	÷2	
0	1	0	1	125 - 350	÷2	
0	1	1	0	62.5 - 175	÷2	
0	1	1	1	250 - 700	÷4	
1	0	0	0	125 - 350	÷4	
1	0	0	1	250 - 700	÷8	
1	0	1	0	125 - 350	x2	
1	0	1	1	62.5 - 175	x2	
1	1	0	0	31.25 - 87.5	x2	
1	1	0	1	62.5 - 175	x4	
1	1	1	0	31.25 - 87.5	x4	
1	1	1	1	31.25 - 87.5	x8	

*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.

RENESAS

Table 3B. PLL Bypass Function Table

	Inp	Outputs PLL_SEL = 0 PLL Bypass Mode		
SEL3	SEL2	SEL1	SEL0	Q[0:4], nQ[0:4]
0	0	0	0	÷4
0	0	0	1	÷4
0	0	1	0	÷4
0	0	1	1	÷8
0	1	0	0	÷8
0	1	0	1	÷8
0	1	1	0	÷16
0	1	1	1	÷16
1	0	0	0	÷32
1	0	0	1	÷64
1	0	1	0	÷2
1	0	1	1	÷2
1	1	0	0	÷4
1	1	0	1	÷1
1	1	1	0	÷2
1	1	1	1	÷1

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, V _O	-0.5V to V _{DDO} + 0.5V
Package Thermal Impedance, θ_{JA}	47.9°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ± 0.2V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		1.6	1.8	2.0	V
I _{DD}	Power Supply Current				135	mA
I _{DDA}	Analog Supply Current				16	mA
I _{DDO}	Output Supply Current			0		mA

Table 4B. LVCMOS/LVTTL DC Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ± 0.2V, T_A = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
IIH	Input High Current	CLK_SEL, SEL[0:3], MR	V _{DD} = V _{IN} = 3.465V			150	μA
		PLL_SEL	$V_{DD} = V_{IN} = 3.465V$			5	μA
IIL	Input Low Current	CLK_SEL, SEL[0:3], MR	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
		PLL_SEL	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
IIH	Input High Current	FB_IN, CLK0, CLK1	$V_{DD} = V_{IN} = 3.465V$			150	μA
	nFB_IN, nCLK0, nCLK1		$V_{DD} = V_{IN} = 3.465V$			5	μA
I _{IL}	Input Low Current	FB_IN, CLK0, CLK1	V _{DD} = 3.465V, V _{IN} = 0V	-5			μA
		nFB_IN, nCLK0, nCLK1	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V _{PP}	Peak-to-Peak Voltage; NOTE 1			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			0.5		V _{DD} – 0.85	V

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as VIH.

Table 4D. HSTL DC Characteristics, V_{DD} = 3.3V \pm 5%, V_{DDO} = 1.8V \pm 0.2V, T_A = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		1.0		1.4	V
V _{OL}	Output Low Voltage; NOTE 1		0		0.4	V
V _{OX}	Output Crossover Voltage; NOTE 2		40		60	%
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.1	V

NOTE 1: Outputs terminated with 50Ω to ground.

NOTE 2: Defined with respect to output voltage swing at a given condition.

Table 5. Input Frequency Characteristics, V_{DD} = 3.3V ± 5%, V_{DDO} = 1.8V ± 0.2V, T_A = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
F	Input Frequency	CLK0, nCLK0,	PLL_SEL = 1	31.25		700	MHz
ΓIN	input Frequency	CLK1, nCLK1	PLL_SEL = 0			700	MHz

AC Electrical Characteristics

Symbol	Paramotor	Test Conditions	Minimum	Typical	Maximum	Unite
Symbol	Farameter	Test conditions	wimmum	Typical	waximum	Units
f _{MAX}	Output Frequency				700	MHz
t _{PD}	Propagation Delay; NOTE 1	$\text{PLL_SEL} = \text{0V}, \text{f} \leq \text{700MHz}$	3.2		4.4	ns
<i>t</i> sk(Ø)	Static Phase Offset; NOTE 2, 5	PLL_SEL = 3.3V	-120	15	150	ps
<i>t</i> sk(o)	Output Skew; NOTE 3, 5	PLL_SEL = 0V			45	ps
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 5, 6				25	ps
<i>t</i> jit(θ)	Phase Jitter; NOTE 4, 5, 6				±50	ps
tL	PLL Lock Time				1	ms
t _R / t _F	Output Rise/Fall Time	20% to 80% @ 50MHz	300		700	ps
t _{PW}	Output Pulse Width		t _{PERIOD} /2 - 85	t _{PERIOD} /2	t _{PERIOD} /2 + 85	ps

Table 6. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal across all conditions, when the PLL is locked and the input reference frequency is stable.

NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

NOTE 4: Phase jitter is dependent on the input source used.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 6: Characterized at VCO frequency of 622MHz.

3.3V Core/1.8V Output Load AC Test Circuit

Phase Jitter and Static Phase Offset

Cycle-to-Cycle Jitter

Differential Input Level

Output Skew

Output Duty Cycle/Pulse Width/Period

RENESAS

Parameter Measurement Information, continued

Propagation Delay

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

To achieve optimum jitter performance, power supply isolation is required. To achieve optimum jitter performance, power supply isolation is required. The ICS8725B-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and 0.01μ F bypass capacitors should be used for each pin. *Figure 1* illustrates this for a generic V_{DD} pin and also shows that V_{DDA} requires that an additional 10Ω resistor along with a 10μ F bypass capacitor be connected to the V_{DDA} pin. The 10Ω resistor can also be replaced by a ferrite bead.

Figure 1. Power Supply Filtering

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A 1k Ω resistor can be used.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

Outputs:

HSTL OUTPUTS

All unused HSTL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Wiring the Differential Input to Accept Single Ended Levels

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

Figure 2. Single-Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 3A to 3F* show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

3.3\ 1<u>.8</u>V Zo = 50Ω CLK Zo = 50Ω nCLk HiPerClockS LVHSTL Input R1 R2 IDT 50 50 HiPerClockS LVHSTL Driver

Figure 3A. HiPerClockS CLK/nCLK Input Driven by an IDT Open Emitter HiPerClockS LVHSTL Driver

Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 3F. HiPerClockS CLK/nCLK Input Driven by a 2.5V SSTL Driver

Schematic Example

The schematic of the ICS8725B-01 layout example is shown in *Figure 4A*. The ICS8725B-01 recommended PCB board layout for this example is shown in *Figure 4B*. This layout example is used as a

general guideline. The layout in the actual system will depend on the selected component types, the density of the components, the density of the traces, and the stacking of the P.C. board.

Figure 4. ICS8725B-01 HSTL Zero Delay Buffer Schematic Example

The following component footprints are used in this layout example: All the resistors and capacitors are size 0603.

Power and Grounding

Place the decoupling capacitors C1, C6, C2, C4, C5, and C7 as close as possible to the power pins. If space allows, placement of the decoupling capacitor on the component side is preferred. This can reduce unwanted inductance between the decoupling capacitor and the power pin caused by the via.

Maximize the power and ground pad sizes and number of vias capacitors. This can reduce the inductance between the power and ground planes and the component power and ground pins.

The RC filter consisting of R7, C11, and C16 should be placed as close to the V_{DDA} pin as possible.

Clock Traces and Termination

Poor signal integrity can degrade the system performance or cause system failure. In synchronous high-speed digital systems, the clock signal is less tolerant to poor signal integrity than other signals. Any ringing on the rising or falling edge or excessive ring back can cause system failure. The shape of the trace and the trace delay might be restricted by the available space on the board and the component location. While routing the traces, the clock signal traces should be routed first and should be locked prior to routing other signal traces.

- The differential 50Ω output traces should have same length.
- Avoid sharp angles on the clock trace. Sharp angle turns cause the characteristic impedance to change on the transmission lines.
- Keep the clock traces on the same layer. Whenever possible, avoid placing vias on the clock traces. Placement of vias on the traces can affect the trace characteristic impedance and hence degrade signal integrity.
- To prevent cross talk, avoid routing other signal traces in parallel with the clock traces. If running parallel traces is unavoidable, allow a separation of at least three trace widths between the differential clock trace and the other signal trace.
- Make sure no other signal traces are routed between the clock trace pair.

The matching termination resistors should be located as close to the receiver input pins as possible.

Figure 4B. PCB Board Layout for ICS8725B-01

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8725B-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8725B-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{DD_MAX} * (I_{DD_MAX} + I_{DDA_MAX})= 3.465V * (135mA + 16mA) = 523.215mW
- Power (outputs)_{MAX} = 32.8mW/Loaded Output pair If all outputs are loaded, the total power is 5 * 32.8mW = 164mW

Total Power_MAX (3.465V, with all outputs switching) = 523.215mW + 164mW = 687.215mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 47.9°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}C + 0.687W * 47.9^{\circ}C/W = 102.9^{\circ}C$. This is well below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 32 Lead LQFP, Forced Convection

θ _{JA} vs. Air Flow								
Linear Feet per Minute	0	200	500					
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W					
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W					
NOTE: Most modern PCB designs use multi-layered bo	NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.							

RENESAS

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load. HSTL output driver circuit and termination are shown in *Figure 5*.

Figure 5. HSTL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load.

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

$$\begin{split} &\mathsf{Pd}_\mathsf{H} = (\mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}/\mathsf{R}_{\mathsf{L}}) * (\mathsf{V}_{\mathsf{DDO}_\mathsf{MAX}} \text{-} \mathsf{V}_{\mathsf{OH}_\mathsf{MAX}}) \\ &\mathsf{Pd}_\mathsf{L} = (\mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}/\mathsf{R}_{\mathsf{L}}) * (\mathsf{V}_{\mathsf{DDO}_\mathsf{MAX}} \text{-} \mathsf{V}_{\mathsf{OL}_\mathsf{MAX}}) \end{split}$$

 $Pd_H = (1.0V/50\Omega) * (2V - 1.0V) = 20mW$ $Pd_L = (0.4V/50\Omega) * (2V - 0.4V) = 12.8mW$

Total Power Dissipation per output pair = Pd_H + Pd_L = **32.8mW**

Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 32 Lead LQFP

θ _{JA} vs. Air Flow						
Linear Feet per Minute	0	200	500			
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W			
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W			
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.						

Transistor Count

The transistor count for ICS8725B-01 is: 2969

Package Outline and Dimensions

Package Outline - Y Suffix for 32 Lead LQFP

Table 9. Package Dimensions for 32 Lead LQFP

JEDEC Variation: BBA All Dimensions in Millimeters						
Symbol	Minimum	Nominal	Maximum			
N	32					
Α			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
С	0.09		0.20			
D&E	9.00 Basic					
D1 & E1	7.00 Basic					
D2 & E2	5.60 Ref.					
е	0.80 Basic					
L	0.45	0.60	0.75			
θ	0 °		7 °			
CCC			0.10			

Reference Document: JEDEC Publication 95, MS-026

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8725BY-01	ICS8725BY-01	32 Lead LQFP	Tray	0°C to 70°C
8725BY-01T	ICS8725BY-01	32 Lead LQFP	1000 Tape & Reel	0°C to 70°C
8725BY-01LF	ICS8725BY01L	"Lead-Free" 32 Lead LQFP	Tray	0°C to 70°C
8725BY-01LFT	ICS8725BY01L	"Lead-Free" 32 Lead LQFP	1000 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1