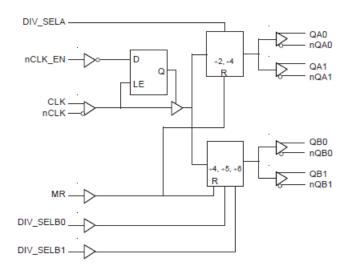


GENERAL DESCRIPTION


The 87339I-11 is a low skew, high performance Differential-to-3.3V LVPECL Clock Generator/Divider. The 87339I-11 has one differential clock input pair. The CLK, nCLK pair can accept most standard differential input levels. The clock enable isinternally synchronized to eliminate runt pulses on theoutputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the 87339I-11 ideal for clock distribution applications demanding well defined performance and repeatability.

FEATURES

- Dual ÷2, ÷4 differential 3.3V LVPECL outputs; Dual ÷4, ÷5, ÷6 differential 3.3V LVPECL outputs
- One differential CLK, nCLK input pair
- CLK, nCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum clock input frequency: 1GHz
- Translates any single ended input signal (LVCMOS, LVTTL, GTL) to LVPECL levels with resistor bias on nCLK input
- Output skew: 35ps (maximum)
- Part-to-part skew: 385ps (maximum)
- Bank skew: Bank A 20ps (maximum) Bank B - 20ps (maximum)
- Propagation delay: 2.1ns (maximum)
- LVPECL mode operating voltage supply range: $V_{cc} = 3V$ to 3.6V, $V_{EE} = 0V$
- Available in lead-free (RoHS 6) package

BLOCK DIAGRAM

PIN ASSIGNMENT

Vcc 🗆	1	20	Vcc
nCLK_EN	2	19	QA0
DIV_SELB0	3	18	nQA0
CLK	4	17	QA1
nCLK 🗆	5	16	nQA1
RESERVED	6	15	QB0
MR	7	14	nQB0
Vcc 🗌	8	13	QB1
DIV_SELB1	9	12	nQB1
DIV_SELA	10	11	VEE

87339I-11

20-Lead TSSOP 6.50mm x 4.40mm x 0.92 package body G Package Top View

20-Lead SOIC, 300MIL 7.5mm x 12.8mm x 2.25mm package body M Package Top View

TABLE	1. PIN	DESCRIPTIONS
-------	--------	--------------

Number	Name	Ту	ре	Description
1, 8, 20	V _{cc}	Power		Positive supply pins.
2	nCLK_EN	Input	Pulldown	Clock enable. LVCMOS / LVTTL interface levels. See Table 3.
3	DIV_SELB0	Input	Pulldown	Selects divide value for Bank B outputs as described in Table 3. LVCMOS / LVTTL interface levels.
4	CLK	Input	Pulldown	Non-inverting differential clock input.
5	nCLK	Input	Pullup	Inverting differential clock input.
6	RESERVED	Reserve		Reserve pin.
7	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.
9	DIV_SELB1	Input	Pulldown	Selects divide value for Bank B outputs as described in Table 3. LVCMOS / LVTTL interface levels.
10	DIV_SELA	Input	Pulldown	Selects divide value for Bank A outputs as described in Table 3. LVCMOS / LVTTL interface levels.
11	V _{EE}	Power		Negative supply pin.
12, 13	nQB1, QB1	Output		Differential output pair. LVPECL interface levels.
14, 15	nQB0, QB0	Output		Differential output pair. LVPECL interface levels.
16, 17	nQA1, QA1	Output		Differential output pair. LVPECL interface levels.
18, 19	nQA0, QA0	Output		Differential output pair. LVPECL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS


Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

RENESAS

Inputs						Out	puts	
MR	nCLK_EN	DIV_SELA	DIV_SELB0	DIV_SELB1	QA0, QA1	nQA0, nQA1	QB0, QB1	nQB0, nQB1
1	Х	Х	Х	Х	LOW	HIGH	LOW	HIGH
0	1	х	х	х	Not Switch- ing	Not Switching	Not Switch- ing	Not Switching
0	0	0	0	0	÷2	÷2	÷4	÷4
0	0	0	0	1	÷2	÷2	÷5	÷5
0	0	0	1	0	÷2	÷2	÷6	÷6
0	0	0	1	1	÷2	÷2	÷5	÷5
0	0	1	0	0	÷4	÷4	÷4	÷4
0	0	1	0	1	÷4	÷4	÷5	÷5
0	0	1	1	0	÷4	÷4	÷6	÷6
0	0	1	1	1	÷4	÷4	÷5	÷5

TABLE 3. CONTROL INPUT FUNCTION TABLE

NOTE: After nCLK_EN switches, the clock outputs stop switching following a rising and falling input clock edge.

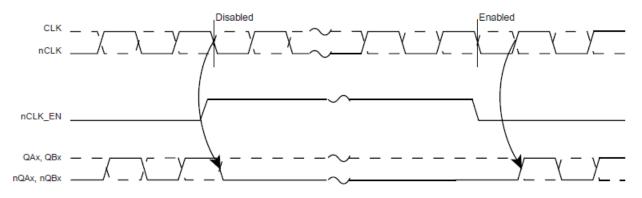


FIGURE 1B. NCLK_EN TIMING DIAGRAM

RENESAS

Supply Voltage, V _{cc}	4.6V
Inputs, V _I	-0.5V to V $_{\rm CC}$ + 0.5 V
Outputs, I _o Continuous Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA} 20 Lead TSSOP 20 Lead SOIC	73.2°C/W (0 lfpm) 46.2°C/W (0 lfpm)
Storage Temperature, T_{STG}	-65°C to 150°C

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, V_{cc} = $3.3V\pm0.3V,$ Ta = $-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{cc}	Positive Supply Voltage		3.0	3.3	3.6	V
I	Power Supply Current				105	mA

TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, $V_{cc} = 3.3V \pm 0.3V$, TA = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
VIH	Input High Voltage			2		V _{cc} + 0.3	V
V	Input Low Voltage			-0.3		0.8	V
I _{IH}	Input High Current	nCLK_EN, MR, DIV_SELA, DIV_SELBx	$V_{IN} = V_{CC} = 3.6V$			150	μA
I	Input Low Current	nCLK_EN, MR, DIV_SELA, DIV_SELBx	$V_{_{\rm IN}} = 0$ V, $V_{_{\rm CC}} = 3.6$ V	-5			μA

TABLE 4C. DIFFERENTIAL DC CHARACTERISTICS, $V_{CC} = 3.3V \pm 0.3V$, TA = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
1	Input High Current	nCLK	$V_{\rm IN} = V_{\rm CC} = 3.6 V$			5	μA
'н		CLK	$V_{IN} = V_{CC} = 3.6V$			150	μA
	Input Low Current	nCLK	$V_{_{\rm IN}} = 0V, V_{_{\rm CC}} = 3.6V$	-150			μA
'IL		CLK	$V_{IN} = 0V, V_{CC} = 3.6V$	-5			μA
V _{PP}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Inpu NOTE 1, 2	it Voltage;		V _{EE} + 0.5		V _{cc} - 0.85	V

NOTE 1: For single ended applications, the maximum input voltage for CLK, nCLK is V_{cc} + 0.3V. NOTE 2: Common mode voltage is defined as V_{μ}.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE1		V _{cc} - 1.4		V _{cc} - 0.9	V
V _{ol}	Output Low Voltage; NOTE 1		V _{cc} - 2.0		V _{cc} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

TABLE 4D. LVPECL DC CHARACTERISTICS, $V_{CC} = 3.3V \pm 0.3V$, TA = -40°C to 85°C

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{\rm CC}$ - 2V.

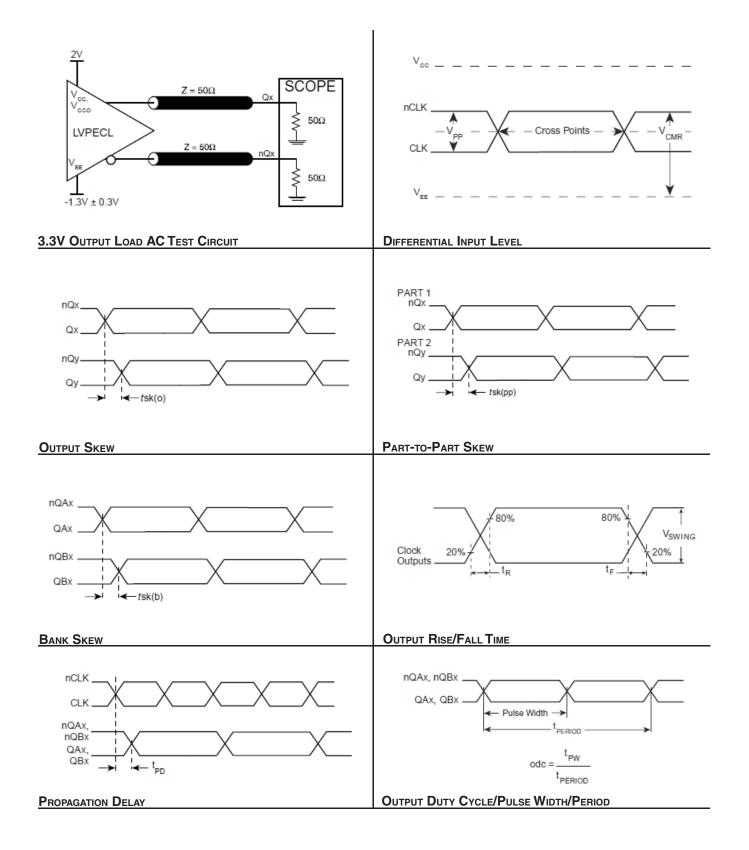
TABLE 5. AC CHARACTERISTICS, $V_{cc} = 3.3V \pm 0.3V$, TA = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{ськ}	Clock Input Frequency					1	GHz
t _{PD}	Propagation Delay; NO	TE 1	CLK to Q (Diff)	1.6		2.1	ns
<i>t</i> sk(o)	Output Skew; NOTE 2,	5			15	35	ps
	Bank Skew;	Bank A			10	20	ps
<i>t</i> sk(b)	NOTE 3, 5	Bank B			10	20	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOT	E 4, 5				385	ps
t _s	Setup Time	nCLK_EN to CLK		350			ps
t _H	Hold Time	CLK to nCLK_EN		100			ps
t _{RR}	Reset Recovery Time					400	ps
t _{PW}	Minimum Pulse Width	CLK		550			ps
t _R /t _F	Output Rise/Fall Time		20% to 80%	100		600	ps
odc	Output Duty Cycle			48		52	%

All data taken with outputs ÷4.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

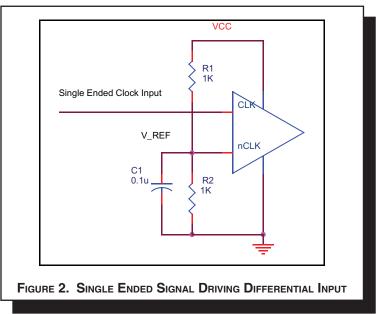

Measured at the output differential cross points

NOTE 3: Defined as skew within a bank of outputs and with equal load conditions.

NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages

and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.


PARAMETER MEASUREMENT INFORMATION

APPLICATION INFORMATION

WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 2 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{cc}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio

of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{cc} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609.

TERMINATION FOR LVPECL OUTPUTS

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50 Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

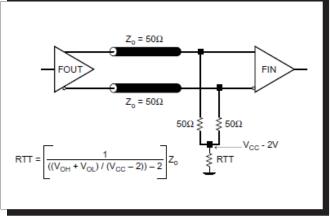


FIGURE 3A. LVPECL OUTPUT TERMINATION

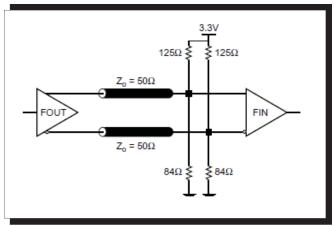


FIGURE 3B. LVPECL OUTPUT TERMINATION

DIFFERENTIAL CLOCK INPUT INTERFACE

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 4A to 4E show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 4A*, the input termination applies for LVH-STL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

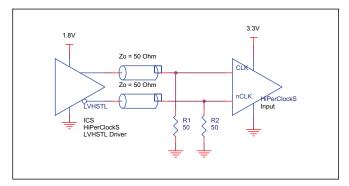


FIGURE 4A. CLK/NCLK INPUT DRIVEN BY LVHSTL DRIVER

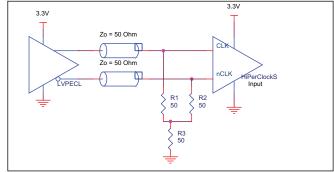


FIGURE 4B. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

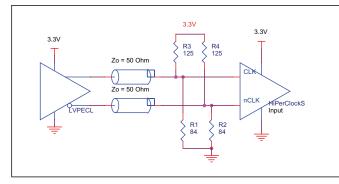


FIGURE 4C. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER

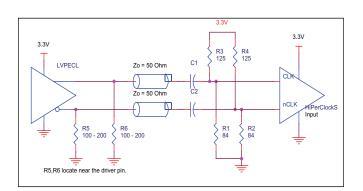


FIGURE 4E. CLK/NCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE

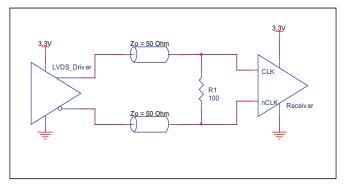


FIGURE 4D. CLK/NCLK INPUT DRIVEN BY 3.3V LVDS DRIVER

Power Considerations

This section provides information on power dissipation and junction temperature for the 87339I-11. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 87339I-11 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{cc} = 3.3V + 0.3V = 3.6V$, which gives worst case results. **NOTE:** Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{CC MAX} = 3.6V * 105mA = 378mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair
 If all outputs are loaded, the total power is 4 * 30mW = 120mW

Total Power MAX (3.6V, with all outputs switching) = 378mW + 120mW = 498mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for the devices is 125°C.

The equation for Tj is as follows: $Tj = \theta_{JA} * Pd_{total} + T_A$

Tj = Junction Temperature

 $\theta_{JA} =$ Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6A below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.498W * 66.6^{\circ}C/W = 118.1^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 6A. Thermal Resistance θ_{JA} for 20-pin TSSOP, Forced Convection

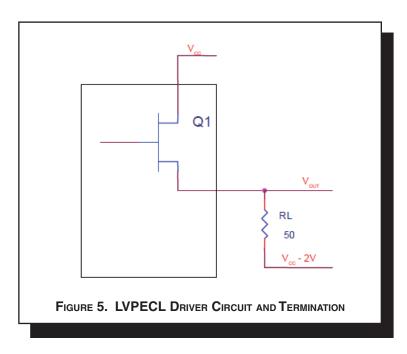

$ heta_{\sf JA}$ by Velocity (Linear Feet per Minute)								
	0	200	500					
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W					
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W					
NOTE: Most modern PCB designs use multi-layered	boards. The data in	the second row pe	ertains to most designs.					

Table 6B. Thermal Resistance θ_{JA} for 20-pin SOIC, Forced Convection

$ heta_{\sf JA}$ by Velocity (Linear Feet per Minute)				
	0	200	500	
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W	
Multi-Layer PCB, JEDEC Standard Test Boards	46.2°C/W	39.7°C/W	36.8°C/W	
NOTE: Most modern PCB designs use multi-layered b	ooards. The data in	the second row pe	ertains to most designs.	

3. Calculations and Equations.

LVPECL output driver circuit and termination are shown in Figure 5.

To calculate worst case power dissipation into the load, use the following equations which assume a 50 Ω load, and a termination voltage of V_{cc}- 2V.

• For logic high, $V_{OUT} = V_{OH_{MAX}} = V_{CC_{MAX}} - 0.9V$

 $(V_{CC_{MAX}} - V_{OH_{MAX}}) = 0.9V$

• For logic low, $V_{OUT} = V_{OL_{MAX}} = V_{CC_{MAX}} - 1.7V$

 $(V_{CC_MAX} - V_{OL_MAX}) = 1.7V$

Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low.

 $Pd_{H} = [(V_{OH_{MAX}} - (V_{CC_{MAX}} - 2V))/R_{L}] * (V_{CC_{MAX}} - V_{OH_{MAX}}) = [(2V - (V_{CC_{MAX}} - V_{OH_{MAX}}))/R_{L}] * (V_{CC_{MAX}} - V_{OH_{MAX}}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$

 $Pd_{L} = [(V_{OL_{MAX}} - (V_{CC_{MAX}} - 2V))/R_{L}] * (V_{CC_{MAX}} - V_{OL_{MAX}}) = [(2V - (V_{CC_{MAX}} - V_{OL_{MAX}}))/R_{L}] * (V_{CC_{MAX}} - V_{OL_{MAX}}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

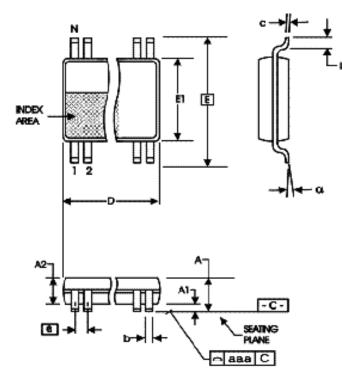
RELIABILITY INFORMATION

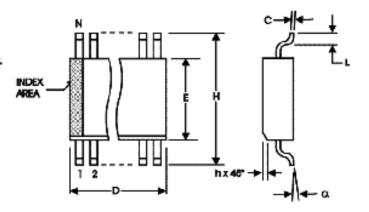
Table 7A. $\boldsymbol{\theta}_{\text{JA}} \text{vs.}$ Air Flow TSSOP Table

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W
Aulti-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W

TABLE 7B. $\boldsymbol{\theta}_{\text{JA}} \text{vs.}$ Air Flow SOIC Table

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	83.2°C/W	65.7°C/W	57.5°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	46.2°C/W	39.7°C/W	36.8°C/W


TRANSISTOR COUNT


The transistor count for 87339I-11 is: 1745

Compatible with MC10EP139, MC100EP139

PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP

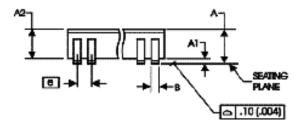


TABLE 8A. PACKAGE DIMENSIONS

SYMBOL	Millim	neters	
STMBOL	MIN	MAX	
N	2	0	
A		1.20	
A1	0.05	0.15	
A2	0.80	1.05	
b	0.19	0.30	
с	0.09	0.20	
D	6.40	6.60	
E	6.40 E	BASIC	
E1	4.30	4.50	
е	0.65 BASIC		
L	0.45	0.75	
α	0°	8°	
aaa		0.10	

Reference Document: JEDEC Publication 95, MO-153

TABLE 8B. PACKAGE DIMENSIONS

SYMBOL	Millim	neters	
STMBOL	Minimum	Maximum	
N	2	0	
А		2.65	
A1	0.10		
A2	2.05	2.55	
В	0.33	0.51	
С	0.18	0.32	
D	12.60	13.00	
E	7.40	7.60	
е	1.27 BASIC		
Н	10.00	10.65	
h	0.25	0.75	
L	0.40	1.27	
α	0°	8°	

Reference Document: JEDEC Publication 95, MS-013, MO-119

RENESAS

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
87339AGI-11LF	ICS7339AI11L	20 lead "Lead Free" TSSOP	Tube	-40°C to +85°C
87339AGI-11LFT	ICS7339AI11L	20 lead "Lead Free" TSSOP	Tape and Reel	-40°C to +85°C
87339AMI-11LF	ICS7339AI11L	20 lead "Lead Free" SOIC	Tube	-40°C to +85°C
87339AMI-11LFT	ICS7339AI11L	20 lead "Lead Free" SOIC	Tape and Reel	-40°C to +85°C

	REVISION HISTORY SHEET				
Rev	Table	Page	Description of Change	Date	
A	T1	1 2	Pin Assignment - changed pin 6, "nc" to "reserved". Pin Description table - corrected pin 6 to read reserved to coordinate with Pin Assignment.	3/10/05	
A	Т9	1 13	Features section - corrected Output skew and Part-to-Part skew bullets. Ordering Information table - added Lead-Free note.	4/12/05	
Α	Т9	13	Ordering Information table - added Lead-Free markings	12/19/07	
В	Т9	13 15	Updated datasheet's header/footer with IDT from ICS. Removed ICS prefix from Part/Order Number column. Added Contact Page.	8/2/10	
в	Т9	1 13	Remove ICS from part numbers where needed. Features section - removed reference to leaded package. Ordering Information - remove quantity from tape and reel. Deleted LF note below the table. Updated header and footer.	1/25/16	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2