Description The 8Axxxx 72QFN EVK is designed to help customers evaluate IDT ClockMatrix devices. This document discusses the following about the EVK: - Introduces the board and its power supply and jumper settings - Describes the input and output connectors for normal operation - Explains how to bring up the board using the Timing Commander software GUI - Discusses how to configure and program the board to generate standard-compliant frequencies #### **Kit Contents** - 8A34xxx 72QFN Evaluation Board - USB Type A cable # Requirements - IDT Timing Commander Software Installed (available at www.idt.com/timingcommander) - ClockMatrix GUI (available at www.idt.com/clockmatrix) - USB 2.0 or USB 3.0 interface - Windows XP SP3 or later - Processor: Minimum 1GHz - Memory: Minimum 512MB; recommended 1GB - Available disk space: Minimum 600MB (1.5GB 64-bit); recommended 1GB (2GB 64-bit) - Network access during installation if the .NET framework is not currently installed on the system ## 8A3xxxx 72QFN EVK Board #### **Important Notes** #### Disclaimer Integrated Device Technology, Inc. and its affiliated companies (herein referred to as "IDT") shall not be liable for any damages arising out of defects resulting from - (i) delivered hardware or software - (ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or - (iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT. TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING. **Important Equipment Warning:** Ensure the correct connection of all cables. Supplying the board using the wrong polarity could result in damage to the board and/or the equipment. Check that all jumpers have been removed from the board before applying power. #### **Contents** | 1. | Usad | Usage Guide | | |----|---|--|----| | | 1.1 | ge Guide | 4 | | | | Board Power Supply | | | | | Voltage Selection Jumpers | | | | | GPIO Switches, LEDs, and Test Points | | | | | USB Jack | | | | 1.6 | I ² C between FTDI, CM Device, and Onboard EEPROM | 7 | | 2. | Working with Timing Commander™ for Programing/Configuration | | 8 | | | 2.1 | Default Operation | 8 | | | | Using Timing Commander to Control the Board | | | | 2.3 | Output Terminations and Rework to Take 1PPS Input | 15 | | 3. | How to Upload Firmware to the RAM | | 16 | | 4. | Schematics | | 18 | | 5. | Ordering Information1 | | 18 | | 6. | Revi | sion History | 18 | # **List of Figures** | Figure 1. | Overview of 72QFN ClockMatrix Evaluation Board | 4 | |------------|--|----| | Figure 2. | Example of Voltage Jumpers | 5 | | | GPIO Setting and Status Display Area | | | Figure 4. | Board Setting for Default Operation | 8 | | Figure 5. | Starting Up Timing Commander GUI | g | | Figure 6. | Selecting 8A34001 using Personality File v4.6 | 10 | | Figure 7. | Timing Commander GUI with a Settings File Opened | 11 | | Figure 8. | Setting I ² C for Connecting the Board with GUI | 12 | | Figure 9. | A Green Band appears when a Valid Connection is Made | 12 | | Figure 10. | . Firmware Version Mismatch Warning Message | 13 | | | . Reading Firmware Version | | | | . Read Firmware Version of ClockMatrix Chip | | | Figure 13. | . AC Coupling and Terminations for Input Clock | 15 | | | . Configuring CLK0 as CMOS to Receive a 1PPS Input | | | List o | of Tables | | | Table 1. | GPIO Settings | 6 | | Table 2 | FEPROM I ² C Connections | 7 | # 1. Usage Guide #### 1.1 Board Overview The following diagram identifies various components of the board: input and output SMA connectors, power supply jacks, and some jumper settings necessary for the board operations. Figure 1. Overview of 72QFN ClockMatrix Evaluation Board Detailed descriptions of the board are as follows: - Input SMA Connectors There are five differential inputs labeled CLK0/nCLK0–CLK4/nCLK4. Each input clock can be configured differentially (LVDS, PECL 2.5V, and PECL 3.3V) or in single-ended format (CMOS). - Output SMA Connectors There are 12 outputs labeled as Q0/nQ0–Q11/nQ11. Each output clock can be configured differentially (LVDS, LVPECL, or user-defined amplitude) or in single-ended format (LVCMOS in-phase or out-of-phase). - GPIO switch, LEDs, and test points There are seven GPIOs available. Each GPIO can be set a "low" or "high" level (if input) or displayed with an LED (if output). Some GPIOs are used to set the chip in a certain working condition on power-up. For more information, see GPIO Switches, LEDs, and Test Points. - USB connector A USB mini connector connects the evaluation board to a PC for GUI communications. No power is drawn from the USB connector other than to power the FTDI USB chip. - VDDQx voltage selection jumpers Each output voltage can be individually supplied with 1.8V, 2.5V, or 3.3V. These jumpers are used to select the voltage for the output voltages. - Reset button A small button is used to reset the board. - OSCI Input connector An SMA connector, J45, can optionally supply a clock signal to overdrive the crystal. - Optional OCXO/TCXO Reference An OCXO/TCXO footprint, is output at J82. It can be connected to J46 (below) as the reference for the System DPLL. - SysDPLL Input An SMA connector, J46, is provided to supply a local OCXO/TCXO reference as an optional reference for the System DPLL. - Crystal A crystal of various frequencies must be present for board operations. A 3225 footprint is provided for SMT crystals. For easy plug-in of a canned crystal, two through holes are also available. - EEPROM An SO-8 socket is provided to hold an EEPROM device of compatible package. An EEROM is used to store firmware and customer configuration data, if needed. #### 1.2 Board Power Supply The board uses a single +5V supply for its power supplies. When running the board, please set the bench power supply at 5V/2A. The red jack (J1) is positive; the black jack (J2) is the ground. Multiple LDOs are used to generate 3.3V, 2.5V, and 1.8V from the +5V supply. # 1.3 Voltage Selection Jumpers There are eight headers/jumpers to select different voltages for different functional blocks of the chip. Each header has pin 1 and 3 labeled in silkscreen – jumping pin 1 and pin 2 will select 3.3V; jumping pin 2 and pin 3 will select 2.5V; no jumper will have 1.8V. Please see the following example for JP4 and JP9 – JP4 will select 2.5V; JP9 will select 3.3V. Figure 2. Example of Voltage Jumpers The following list shows which head/jumper is used to select what voltage: - JP1 VDDD - JP2 VDDA - JP3 VCC GPIO DC - JP4 VDDO Q8 3 5 - JP5 VDDO_Q2_4_11 - JP6 VDDO_1_10_7 - JP7 VDD CLK0 - JP9 VDDO_Q0_9_6 Important Equipment Warning: VDD_FOD voltage is selected by resistors R908 and R909. In order to prevent damage to the device, both R908 and R909 should not be stuffed, in which case VDD_FOD = 1.8V. # 1.4 GPIO Switches, LEDs, and Test Points An 8-bit dip switch sets the logic levels for seven GPIOs (GPIO0-5 and GPIO9). The following table shows the GPIO levels for each setting and the corresponding LED state. Table 1. GPIO Settings | Dip Switch Position | GPIO Logic Level | LED | |---------------------|--|--| | Left | Low | On | | Center | High if GPIO is configured as Input | High if GPIO is configured as Input | | Center | High or Low according to the GPIO output setting | High or Low according to the GPIO output setting | | Right | High | Off | Please see the picture and labels in Figure 3. When the GPIOs are configured as outputs (such as User-Controlled or LOL indicator), the dip switch for the corresponding GPIO should be placed in the center position. The LED will indicate the state of the GPIO. Figure 3. GPIO Setting and Status Display Area #### 1.5 USB Jack The board has a USB mini-connector. The other end of the USB cable is a USB Type A connector going to a PC. # 1.6 I²C between FTDI, CM Device, and Onboard EEPROM One of the major differences between the 72QFN and 144BGA144 chips is that there is only one serial bus on the 72QFN chip. The I²C bus between the FTDI chip and CM chip is the same bus between the CM chip and the onboard EEPROM. The onboard EEPROM is used to store device firmware and/or customer's configuration data. JP12 and JP13 must be jumped between pin 1 and 2 to enable the I²C connections. Table 2. EEPROM I²C Connections | | JP12/JP13 | JP12/JP13 | |------------------------------|---|-------------| | Jumper Position | Pin 1 and 2 | Pin 2 and 3 | | EEPROM I ² C Path | FDTI and CM Chip;
CM Chip and EEPROM | N/A | # 2. Working with Timing Commander™ for Programing/Configuration The following sections are best cross-referenced with the ClockMatrix GUI Step-by-Step User Guide which is available on www.idt.com. # 2.1 Default Operation The board can operate off an EEPROM that has stored all information including firmware and a default configuration data. A default operation provides a sanity check on the board before running the board through the IDT Timing Commander. Please set the board in the following default conditions (see Figure 4 for jumper and switch positions). - Set all the GPIOs to the center position. This will ensure that GPIO9 is high and that the serial port is configured for I2C 1-byte addressing. - VDDA = 3.3V, VDD_ FOD = 1.8V, and VDDO_Qx = 3.3V - Crystal frequency = 50MHz - CLK0 = 25MHz - FTDI, CM device, and EEPROM share the same I²C bus by jumping Pin 1 and 2 of JP12 and JP13 With the above default conditions ready, connect the board to the PC using a USB type A to USB mini cable, and power up the board using a single +5V supply. On power-up, the ClockMatrix chip will read its firmware and configuration data from EEPROM and update all registers. When this process is completed, the following frequencies are available: - Q0 = 122.88MHz - Q1 = 122.88MHz #### Figure 4. Board Setting for Default Operation **Important Equipment Warning:** In order to set GPIO9 to "High", the switch for GPIO9 must be set either to the "+" (high) position or the center position. ## 2.2 Using Timing Commander to Control the Board Once the default operation is successful, complete the following steps to configure and program the ClockMatrix device per your specific application requirements using Timing Commander GUI tools: - 1. Power up the board and set the main serial port in I²C mode by GPIO9 = "high". Connect the board to the PC. - 2. Start the Timing Commander software. You will see options of "New Setting File" and "Open Setting file". For a new configuration, select "New Setting File". Figure 5. Starting Up Timing Commander GUI 3. After selecting "New Settings File", a device selection window will pop up. In the window, choose the intended device in the list (in this example, 8A34001 is selected). Click the button at the lower right corner of the window (red circle) to browse and select the correct personality file (in this example, personality v4.6 is selected). Click OK. Figure 6. Selecting 8A34001 using Personality File v4.6 4. The GUI window with the 8A34001 block diagram will open for configurations; or if "Open Settings File" is selected in Step 3, you will be prompted to browse and select an existing .tcs file and the personality file. When the configuration file is open, all configured values will be displayed (see Figure 7). Figure 7. Timing Commander GUI with a Settings File Opened 5. In order to connect the board with Timing Commander (PC), click the button (red circle) at the up-right corner of the GUI to set up the communication protocols (see Figure 7). After I²C and one-byte addressing are selected, click OK to close the window. Figure 8. Setting I²C for Connecting the Board with GUI 6. Click on the chip symbol at the upper-right corner to initiate the connection. The connection is valid when a green band appears at the upper-right corner of the window, as shown below. Figure 9. A Green Band appears when a Valid Connection is Made 7. If ClockMatrix chip's firmware, or firmware loaded from EEPROM, has a different version from that in the Personality file, a firmware version mismatch warning message will appear. Click "Close" button to close the message window and a connection is made. Figure 10. Firmware Version Mismatch Warning Message 8. Once the connection is made, the firmware version can be read within the GUI. Click the "Firmware Utility" button to bring up the Firmware Utility window, as shown below. Figure 11. Reading Firmware Version 9. Within the Firmware Utility window, click the "Get Firmware Version" button to read the firmware version. Figure 12. Read Firmware Version of ClockMatrix Chip 10. In the case where the firmware version mismatches each other, a firmware upgrade is necessary to update the chip's firmware. To do so, complete the steps in How to Upload Firmware (see Section 3) to update the chip's firmware. ## 2.3 Output Terminations and Rework to Take 1PPS Input All outputs are terminated with a 100Ω resistor across the output pair. This is the recommended termination regardless of the Voffset and Vswing settings. Since the outputs are DC-coupled, they will support a 1PPS output without any need for rework. Important Equipment Warning: When connecting the outputs to measurement equipment, use a DC-block to ensure that the output operates at its intended V_{offset}. Otherwise, the equipment may load the output down and cause degraded performance. The following rework must be implemented in order to support a 1PPS input clock. All input clocks for this board are ac-coupled and terminated as in the following figure. Figure 13. AC Coupling and Terminations for Input Clock For a 1PPS input, a single-ended input with DC-coupling is recommended. As such, the populated AC-coupling capacitor must be removed and the input must be configured as LVCMOS, not differential. In Figure 13, to make CLK0 supportive of 1PPS input, first configure CLK0 as LVCMOS in Timing Commander (see Figure 14). Figure 14. Configuring CLK0 as CMOS to Receive a 1PPS Input 2. Once in LVCMOS mode, CLK0_P and CLK0_N will be two separate LVCMOS inputs instead of a differential pair. To make CLK0_P receive a 1PPS input, replace C881 with a 0Ω resistor; and at the same time, remove R765 and R770. # 3. How to Upload Firmware to the RAM - 1. Connect to the EVK board. - 2. Power up the board with no EEPROM present. This ensures the firmware is 4.0.2.7017, as displayed in the figure. - 3. The GUI will indicate that the firmware on the chip does not match the GUI firmware. Press "Close". 4. Open the "Firmware Utility" window by clicking on the button as follows. Update the Firmware first. Press "Update RAM to Current FW Only". 6. In the next window, press "Yes" and wait around 3-4 minutes. 7. Once the firmware is updated, the following window will indicate a successful update. Click "Close". 8. Press "Get Firmware Version" to verify that the RAM was updated correctly, then click "Close". #### 4. Schematics Please see the schematics located at the end of this document. ## 5. Ordering Information | Orderable Part Number | Description | |-----------------------|------------------------------| | 8A34044-EVK | 8A3xxxx 72QFN Evaluation Kit | # 6. Revision History | Revision Date | Description of Change | |-------------------|-----------------------| | February 14, 2019 | Initial release. | ## **Corporate Headquarters** 6024 Silver Creek Valley Road San Jose, CA 95138 www.IDT.com #### Sales 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales #### **Tech Support** www.IDT.com/go/support DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as "IDT") reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device Technology, Inc. All rights reserved. # RENESAS © 2019 Renesas Electronics Corporation # RENESAS © 2019 Renesas Electronics Corporation # RENESAS 6 GPIO9 <> GPIO9 GPIO[2] © 2019 Renesas Electronics Corporation # RENESAS TERMINATIONS CLOSE TO U58 © 2019 Renesas Electronics Corporation PROJECT Indira3 DESIGN DB DRAWN DB #### IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) #### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for Clock & Timer Development Tools category: Click to view products by Renesas manufacturer: Other Similar products are found below: AD9517-0A/PCBZ AD9522-4/PCBZ AD9520-5PCBZ AD9530/PCBZ AD9553/PCBZ ADCLK914PCBZ LMH2180SDEVAL DSC400-0333Q0032KE1-EVB TDGL013 MAX2880EVKIT# MAX2750EVKIT MAX2752EVKIT ADCLK946PCBZ ADCLK946/PCBZ MAX2622EVKIT EKIT01-HMC1032LP6G Si5332-8IX-EVB Si5332-12IX-EVB RV-3029-C2-EVALUATION-BOARD-OPTION-B Si5332-6IX-EVB SKY72310-11-EVB EV1HMC8364LP6G RV-8263-C7-EVALUATION-BOARD EVK9FGV1002 EVK9FGV1008 EV1HMC6832ALP5L EVAL01-HMC830LP6GE EVAL01-HMC911LC4B EVAL01-HMC988LP3E TS3002DB 125605-HMC702LP6CE LMX2487E-EVM MIKROE-2481 2045 EKIT01-HMC835LP6G EKIT01-HMC834LP6GE TS3006DB DSC-TIMEFLASH2-KIT1 110227-HMC510LP5 110227-HMC513LP5 AD9515/PCBZ ADCLK948/PCBZ ADCLK954/PCBZ 112261-HMC739LP4 ADCLK925/PCBZ AD9522-0/PCBZ AD9520-4/PCBZ AC164147 DFR0469 LMK04133EVAL/NOPB