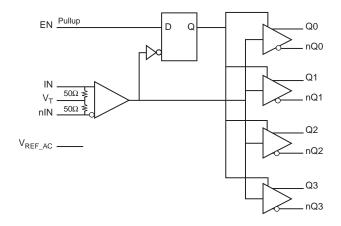
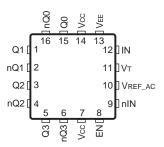
Description


The 8S89831I is a high speed 1-to-4 Differential- to-LVPECL/ECL Fanout Buffer. The 8S89831I is optimized for high speed and very low output skew, making it suitable for use in demanding applications such as SONET, 1 Gigabit and 10 Gigabit Ethernet, and Fiber Channel. The internally terminated differential input and VREF_AC pin allow other differential signal families such as LVDS, LVHSTL and CML to be easily interfaced to the input with minimal use of external components.

The device also has an output enable pin which may be useful for system test and debug purposes. The 8S89831I is packaged in a small 3mm x 3mm 16-pin VFQFN package which makes it ideal for use in space-constrained applications.


Features

- Four LVPECL/ECL outputs
- IN, nIN input can accept the following differential input levels: LVPECL, LVDS, CML, SSTL
- 50Ω internal input termination to V_T
- Output frequency: >2.1GHz
- Output skew: 30ps (maximum)
- Part-to-part skew: 185ps (maximum)
- Additive phase jitter, RMS: 0.31ps (typical)
- Propagation Delay: 570ps (maximum)
- LVPECL mode operating voltage supply range:
 V_{CC} = 2.5V±5%, 3.3V±5%, V_{FF} = 0V
- ECL mode operating voltage supply range:
 V_{CC} = 0V, V_{EE} = -3.3V±5%, -2.5V±5%
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package
- Supports ≤105°C board temperature operations

Block Diagram

Pin Assignment

8S89831I

16-Lead VFQFN 3mm x 3mm x 0.925mm package body K Package Top View

Table 1. Pin Descriptions

Number	Name	Ту	ре	Description
1, 2	Q1, nQ1	Output		Differential output pair. LVPECL/ECL interface levels.
3, 4	Q2, nQ2	Output		Differential output pair. LVPECL/ECL interface levels.
5, 6	Q3, nQ3	Output		Differential output pair. LVPECL/ECL interface levels.
7, 14	V _{cc}	Power		Power supply pins.
8	EN	Input	Pullup	Synchronizing clock enable. When LOW, Qx outputs will go LOW and nQx outputs will go HIGH on the next LOW transition at IN input. Input threshold is $V_{CC}/2$. Includes a 37k Ω pull-up resistor. Default state is HIGH when left floating. The internal latch is clocked on the falling edge of the input signal IN. LVTTL / LVCMOS interface levels.
9	nIN	Input		Inverting differential LVPECL clock input. RT = 50Ω termination to V _T .
10	V _{REF_AC}	Output		Reference voltage for AC-coupled applications.
11	V _T	Input		Termination input. I _{REF_AC} (max.) < ±2mA.
12	IN	Input		Non-inverting LVPECL differential clock input. RT = 50Ω termination to V _T .
13	V _{EE}	Power		Negative supply pin.
15, 16	Q0, nQ0	Output		Differential output pair. LVPECL/ECL interface levels.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
R _{PULLUP}	Input Pullup Resistor			37		kΩ

Function Tables

Table 3A. Control Input Function Table

Input	Outputs		
EN	Q0:Q3	nQ0:nQ3	
0	Disabled; LOW	Disabled; HIGH	
1	Enabled	Enabled	

NOTE: After EN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in *Figure 1*.

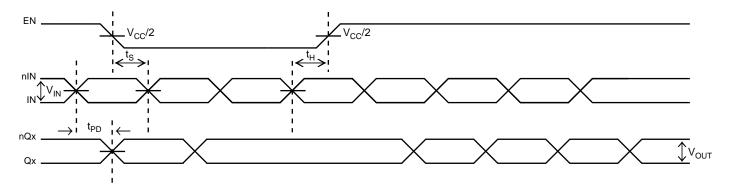


Figure 1. EN Timing Diagram

Table 3B. Truth Table

	Inputs		0	utputs
IN	nIN	EN	Q0:Q3	nQ0:nQ3
0	1	1	0	1
1	0	1	1	0
Х	Х	0	0 (NOTE 1)	1(NOTE 1)

NOTE 1: On the next negative transition of the input signal (IN).

Absolute Maximum Ratings

Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V (LVPECL mode, V _{EE} = 0V)
Negative Supply Voltage, V _{EE}	-4.6V (ECL mode, V _{CC} = 0V)
Inputs, V _I (LVPECL mode)	-0.5V to V _{CC} + 0.5V
Inputs, V _I (ECL mode)	0.5V to V _{EE} – 0.5V
Outputs, I _O Continuous Current Surge Current	50mA 100mA
Input Current, IN, nIN	±50mA
V _T Current, I _{VT}	±100mA
V _{REF_AC} Input Sink/Source Current, I _{REF_AC}	±2mA
Junction Temperature, T _j	125°C
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{CC} = 2.5V ± 5%, 3.3V ± 5%, T_A = -40°C to 85°C or T_B = -40°C to 105°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		2.375	3.3	3.465	V
I _{EE}	Power Supply Current				45	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, V_{CC} = 2.5V ± 5%, 3.3V ± 5%, T_A = -40°C to 85°C or T_B = -40°C to 105°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2.2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage		0		0.8	V
I _{IH}	Input High Current	V _{CC} = V _{IN} = 3.465V			10	μA
I _{IL}	Input Low Current	V _{CC} = 3.465V, V _{IN} = 0V	-150			μA

Table 4C. Differential DC Characteristics, V_{CC} = 2.5V ± 5%, 3.3V ± 5%, T_A = -40°C to 85°C or T_B = -40°C to 105°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
R _{IN}	Differential Input Resistance	(IN, nIN)	IN to VT, nIN to VT	40	50	60	Ω
V _{IH}	Input High Voltage	(IN, nIN)		1.2		V _{CC}	V
V _{IL}	Input Low Voltage	(IN, nIN)		0		V _{IH} – 0.15	V
V _{IN}	Input Voltage Swing			0.15		1.2	V
V _{DIFF_IN}	Differential Input Voltage Swir	ıg		0.3			V
I _{IN}	Input Current; NOTE 1	(IN, nIN)				35	mA
V _{REF_AC}	Bias Voltage			V _{CC} – 1.45	V _{CC} – 1.37	V _{CC} – 1.32	V

NOTE 1: Guaranteed by design.

Table 4D. LVPECL DC Characteristics, V_{CC} = 2.5V ± 5%, 3.3V ± 5%, T_A = -40°C to 85°C or T_B = -40°C to 105°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.175		V _{CC} – 0.85	V
V_{OL}	Output Low Voltage; NOTE 1		$V_{CC} - 2.0$		V _{CC} – 1.575	V
V _{OUT}	Output Voltage Swing		0.6		1.0	V
V _{DIFF_OUT}	Differential Output Voltage Swing		1.2		2.0	V

NOTE 1: Outputs terminated with 50Ω to $\mbox{V}_{\mbox{CC}}$ – 2V.

AC Electrical Characteristics

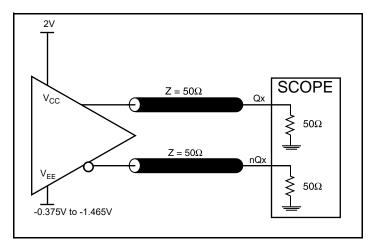
Table 5. AC Characteristics, V_{CC} = 0V; V_{EE} = -3.3V ± 5%, -2.5V ± 5% or V_{CC} = 2.5V ± 5%, 3.3V ± 5%, V_{EE} = 0V, V_{A} = -40°C to 85°C or V_{CC} = -40°C to 105°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequence	су	Output Swing ≥ 450mV	2.1			GHz
+	Propagation Dela	ay; (Differential);	Input Swing: 150mV	300		570	ps
t _{PD}	NOTE 1		Input Swing: 800mV	255		510	ps
tsk(o)	Output Skew; NOTE 2, 4					30	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 4					185	ps
<i>t</i> jit	Buffer Additive Jitter; RMS; refer to Additive Phase Jitter Section		155.52MHz, Integration Range: 12kHz – 20MHz		0.31		ps
t _S	Clock Enable Setup Time	EN to IN/nIN		300			ps
t _H	Clock Enable Hold Time	EN to IN/nIN		300			ps
t _R / t _F	Output Rise/Fall	Time	20% to 80%	100		250	ps

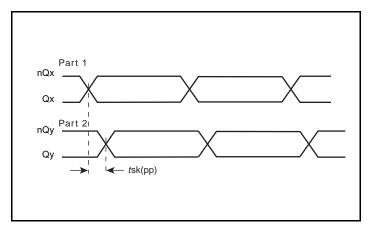
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

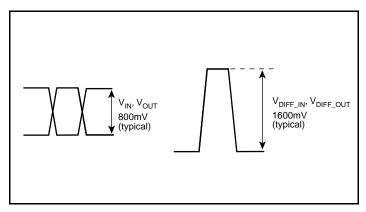
NOTE: All parameters characterized at \leq 1GHz unless otherwise noted.

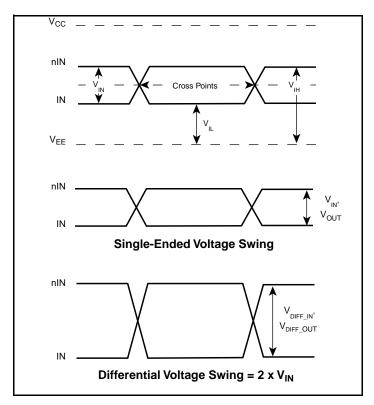
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

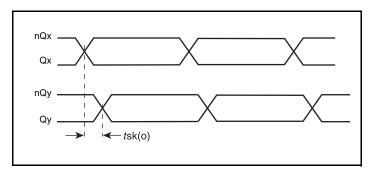

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.

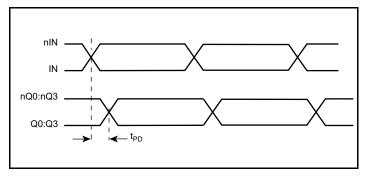
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.


NOTE 4: This parameter is defined in accordance with JEDEC Standard 65.

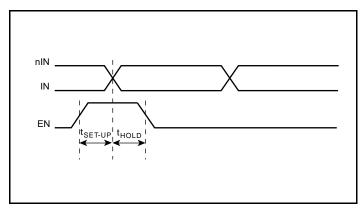

Parameter Measurement Information

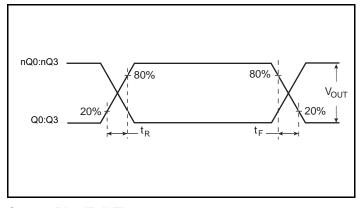

Output Load AC Test Circuit


Part-to-Part Skew


Single-ended & Differential Input Voltage Swing

Differential Input Level


Output Skew



Propagation Delay

Parameter Measurement Information, continued

Setup & Hold Time

Output Rise/Fall Time

Application Information

Recommendations for Unused Output Pins

Outputs

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

3.3V Differential Input with Built-In 50 Ω Termination Interface

The IN /nIN with built-in 50Ω terminations accept LVDS, LVPECL, LVHSTL, CML, SSTL and other differential signals. Both signals must meet the V_{IN} and V_{IH} input requirements. *Figures 2A to 2D* show interface examples for the IN/nIN input with built-in 50Ω terminations driven by the most common driver types. The input interfaces

suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

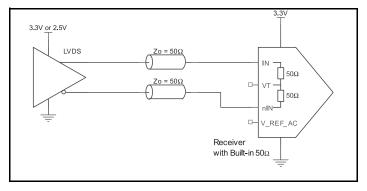


Figure 2A. IN/nIN Input with Built-In 50Ω Driven by an LVDS Driver

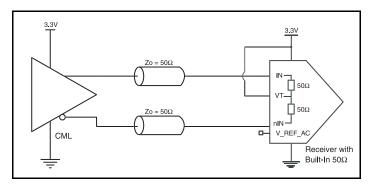


Figure 2C. IN/nIN Input with Built-In 50 Ω Driven by a CML Driver with Open Collector

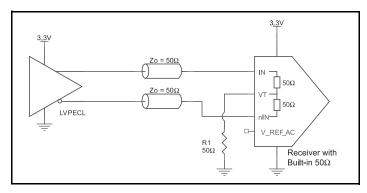


Figure 2B. IN/nIN Input with Built-In 50Ω Driven by an LVPECL Driver

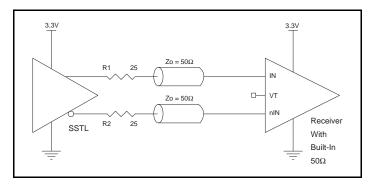


Figure 2D. IN/nIN Input with Built-In 50 Ω Driven by an SSTL Driver

2.5V LVPECL Input with Built-In 50 Ω Termination Interface

The IN /nIN with built-in 50Ω terminations accept LVDS, LVPECL, CML, SSTL and other differential signals. Both signals must meet the V_{IN} and V_{IH} input requirements. *Figures 3A to 3D* show interface examples for the IN/nIN with built-in 50Ω termination input driven by

the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

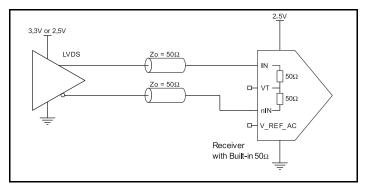


Figure 3A. IN/nIN Input with Built-In 50 Ω Driven by an LVDS Driver

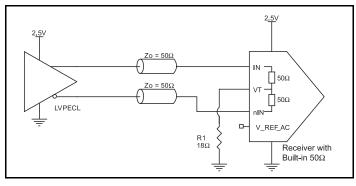


Figure 3B. IN/nIN Input with Built-In 50Ω Driven by an LVPECL Driver

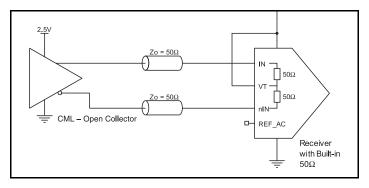


Figure 3C. IN/nIN Input with Built-In 50 Ω Driven by a CML Driver with Open Collector

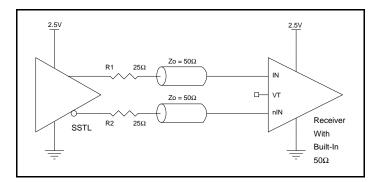


Figure 3D. IN/nIN Input with Built-In 50 Ω Driven by an SSTL Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

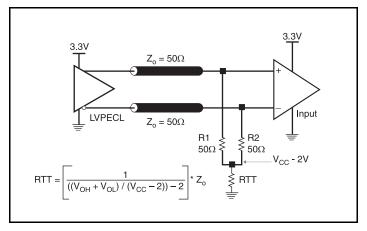


Figure 4A. 3.3V LVPECL Output Termination

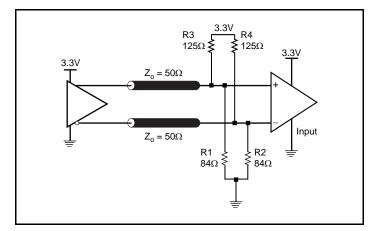


Figure 4B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 5A and Figure 5B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

level. The R3 in Figure 5B can be eliminated and the termination is shown in *Figure 5C*.

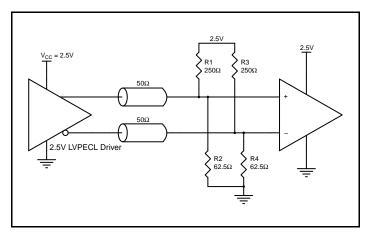


Figure 5A. 2.5V LVPECL Driver Termination Example

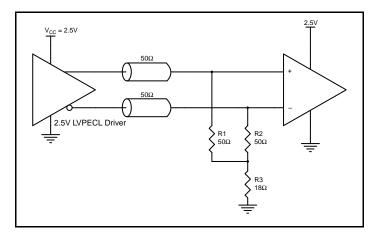


Figure 5B. 2.5V LVPECL Driver Termination Example

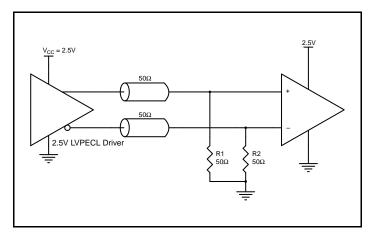


Figure 5C. 2.5V LVPECL Driver Termination Example

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 6*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific

and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

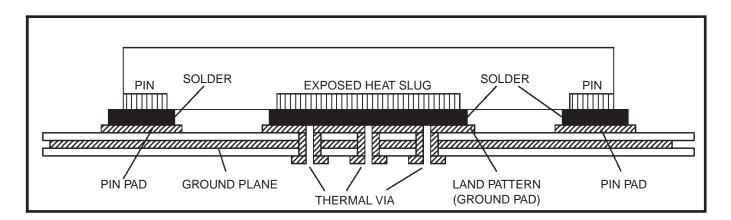


Figure 6. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

Schematic Example

Figure 7 shows a schematic example of the 8S89831I. This schematic provides examples of input and output handling. The 8S89831I input has built-in 50Ω termination resistors. The input can directly accept various types of differential signal without AC couple. For AC couple termination, the 8S89831I also provides the VREF_AC pin for proper offset level after the AC couple. This example shows the 8S89831I input driven by a 2.5V LVPECL driver

with AC couple. The 8S89831I outputs are LVPECL driver. In this example, we assume the traces are long transmission line and the receiver is high input impedance without built-in matched load. An example of 3.3V LVPECL termination is shown in this schematic. Additional termination approaches are shown in the LVPECL Termination Application Note.

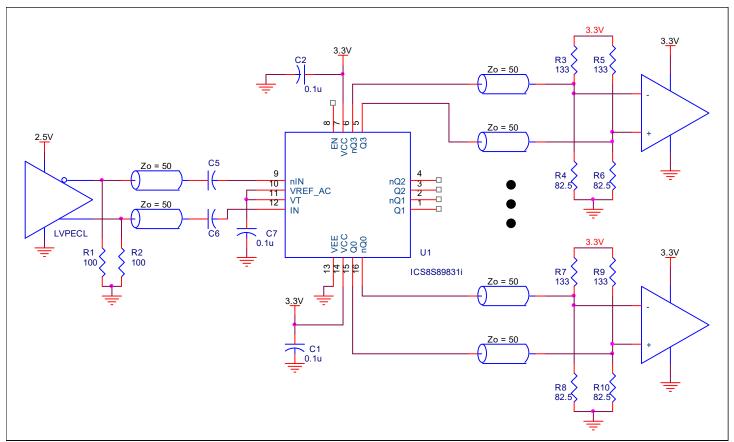


Figure 7. 8S89831I Application Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the 8S89831I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8S89831I is the sum of the core power plus the power dissipation in the load(s).

The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Note: Please refer to Section 3 for details on calculating power dissipation in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 45mA = 155.925mW
- Power (outputs)_{MAX} = 32.94mW/Loaded Output pair
 If all outputs are loaded, the total power is 4 * 32.94mW = 131.76mW
- Power Dissipation for internal termination R_T Power $(R_T)_{MAX} = (V_{IN\ MAX})^2/R_{T\ MIN} = (1.2V)^2/80\Omega = 18mW$

Total Power_MAX (3.3V, with all outputs switching) = 155.925mW + 131.76mW + 18mW = 305.685mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 74.7°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.306\text{W} * 74.7^{\circ}\text{C/W} = 107.9^{\circ}\text{C}$. This is well below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 16 Lead VFQFN, Forced Convection

Thermal Parameters by Velocity						
Meters per Second 0 1 2.5						
$\theta_{\sf JA}$	74.7°C/W	65.3°C/W	58.5°C/W			
θ_{JB}	5.7°C/W	-	-			
θ _{JC}	59.7°C/W	-	-			

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.

The LVPECL output driver circuit and termination are shown in Figure 8.



Figure 8. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.85V$ $(V_{CC_MAX} - V_{OH_MAX}) = 0.85V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.575V$ $(V_{CC_MAX} - V_{OL_MAX}) = 1.575V$

Pd_H is power dissipation when the output drives high.

Pd L is the power dissipation when the output drives low.

$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.85V)/50\Omega] * 0.85V = \textbf{19.55mW}$$

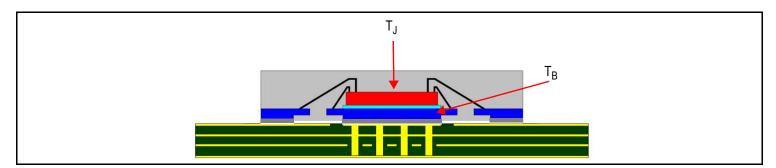
$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.575V)/50\Omega] * 1.575V = 13.39mW$$

Total Power Dissipation per output pair = Pd H + Pd L = 32.94mW

Transistor Count

The transistor count for 8S89831I is: 328

This device is pin and function compatible and a suggested replacement for 889831.


Case Temperature Considerations

This device supports applications in a natural convection environment that does not have any thermal conductivity through ambient air. The printed circuit board (PCB) is typically in a sealed enclosure without any natural or forced air flow and is kept at or below a specific temperature. The device package design incorporates an exposed pad (ePad) with enhanced thermal parameters, which is soldered to the PCB where most of the heat escapes from the bottom exposed pad. For this type of application, IDT recommends using the junction-to-board thermal characterization parameter Ψ_{JB} (Psi-JB) to calculate the junction temperature (T_{J}) and ensure it does not exceed the maximum allowed operating junction temperature in the Absolute Maximum Ratings.

The junction-to-board thermal characterization parameter, Ψ_{JB} is calculated using the following equation:

$$T_J = T_B + \Psi_{JB} \times P_{D_i}$$
 where:

- T_J = Junction temperature at steady state condition in (°C)
- T_B = Board or case temperature (Bottom) at steady state condition in (°C)
- Ψ_{JB} = Thermal characterization parameter to report the difference between junction temperature and the temperature of the board measured at the top surface of the board
- P_D = Power dissipation (W) in desired operating configuration

The ePad provides a low thermal resistance path for heat transfer to the PCB and represents the key pathway to transfer heat away from the IC to the PCB. It is critical that the connection of the exposed pad to the PCB is properly constructed to maintain the desired IC bottom case temperature (T_{CB}). A good connection ensures that temperature at the exposed pad (T_{CB}) and the board temperature (T_{CB}) are relatively the same. An improper connection can lead to increased junction temperature, increased power consumption, and decreased electrical performance. In addition, there could be long-term reliability issues and increased failure rate.

Example Calculation for Junction Temperature (T_J): T_J = T_B + Ψ _{JB} x P_D

Package type	16L-QFN
Body size (mm)	$3.0 \times 3.0 \times 1.0 \text{ mm}$
ePad size (mm)	1.7 × 1.7 mm
Thermal Via	2 × 2 Matrix
Ψ_{JB}	5.7°C/W
T _B	105°C
P _D	0.305W

For the variables above, the junction temperature is equal to 106.2°C. Since this operating junction temperature is below the maximum operating junction temperature of 125°C, there are no long term reliability concerns. In addition, since the junction temperature at which the device was characterized using forced convection is 107.9°C, this device can function without the degradation of the specified AC or DC parameters.

Package Outline Drawings

The package outline drawings are located at the end of this document. The package information is the most current data available and is subject to change without notice or revision of this document.

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8S89831AKILF	831A	"Lead-Free" 16 Lead VFQFN	Tube	-40°C to 85°C
8S89831AKILFT	831A	"Lead-Free" 16 Lead VFQFN	Tape & Reel	-40°C to 85°C

Revision History

Revision Date	Description of Change	
November 9, 2017	Replaced operating temperature with junction temperature in Absolute Maximum Ratings; also removed the package thermal information Changed the T _A and T _B temperature ranges to indicate "or" in all electrical table titles	
October 3, 2017	Added a new bullet to Features about board temperature Added "TB = -40°C to 105°C" to Tables 4A, 4B, 4C, 4D, and 5 Added Case Temperature Considerations	
September 22, 2017	Updated the package outline drawings; however, no mechanical changes Completed other minor improvements	
June 22, 2017	Updated the thermal characteristics in Table 6 Updated the package drawings - no technical changes	
January 27, 2016	Removed ICS from part numbers where needed. General Description - Deleted ICS chip. Ordering Information - Deleted quantity in tape in reel. Deleted LF note below table. Updated header and footer.	
April 22, 2010	Deleted <i>Differential Input with Built-in 50Ω Termination Unused Input Handling</i> application section. This section does not apply when there is only one input. Power Considerations - in Power Dissipation section, corrected Power (RT) calculation. Calculation = 18mW from 98mW. Total Power and Junction Temperature calculations have also been updated.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG
NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2