Description

The 8SLVD2102 is a high-performance differential dual 1:2 LVDS fanout buffer. The device is designed for the fanout of high-frequency, very low additive phase-noise clock and data signals. The 8 SLVD2102 is characterized to operate from a 2.5 V power supply. Guaranteed output-to-output and part-to-part skew characteristics make the 8SLVD2102 ideal for those clock distribution applications demanding well-defined performance and repeatability.
Two independent buffers with two low skew outputs each are available. The integrated bias voltage generators enables easy interfacing of single-ended signals to the device inputs. The device is optimized for low power consumption and low additive phase noise.

Features

- Two 1:2, low skew, low additive jitter LVDS fanout buffers
- Two differential clock inputs
- Differential pairs can accept the following differential input levels: LVDS and LVPECL
- Maximum input clock frequency: 2 GHz
- Output bank skew: 15ps (maximum)
- Propagation delay: 300ps (maximum)
- Low additive phase jitter: 200fs, RMS (maximum); $f_{R E F}=156.25 \mathrm{MHz}, \mathrm{V}_{\mathrm{PP}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMR}}=1 \mathrm{~V}$, Integration Range $10 \mathrm{kHz}-20 \mathrm{MHz}$
- 2.5 V supply voltage
- Maximum device current consumption (l_{DD}): 90 mA
- Lead-free (RoHS 6) 16-Lead VFQFPN package
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature

Pin Assignment

16-pin, $3.0 \times 3.0 \mathrm{~mm}$ VFQFPN Package

Pin Description and Pin Characteristic Tables
Table 1. Pin Descriptions

Number	Name	Type		Description
1	GND	Power		Power supply ground.
2	EN	Input	Pullup/ Pulldown	Output enable pin.
3	PCLKB	Input	Pulldown	Non-inverting differential clock/data input.
4	nPCLKB	Input	Pullup/ Pulldown	Inverting differential clock/data input. VDD/2 default when left floating.
5	V $_{\text {DD }}$	Power		Power supply pin.
6	PCLKA	Input	Pulldown	Non-inverting differential clock/data input.
7	nPCLKA	Input	Pullup/ Pulldown	Inverting differential clock/data input. VDD/2 default when left floating.
9,10	QA0, nQA0	Output		Bias voltage reference for the PCLKx, nPCLKx inputs.
11,12	QA1, nQA1	Output		Differential output pair. LVDS interface levels.
13,14	QB0, nQB0	Output		Differential output pair. LVDS interface levels.
15,16	QB1, nQB1	Output		Differential output pair. LVDS interface levels.

NOTE: Pulldown and Pullup refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.
Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
$R_{\text {PULLDOWN }}$	Input Pulldown Resistor	PCLK inputs		51	$\mathrm{k} \Omega$	
$R_{\text {PULLUP }}$	Input Pullup Resistor	PCLK inputs		51	$\mathrm{k} \Omega$	
$R_{\text {PULLDOWN }}$	Input Pulldown Resistor	EN input		51	$\mathrm{k} \Omega$	
$R_{\text {PULLUP }}$	Input Pullup Resistor	EN input			51	$\mathrm{k} \Omega$

Table 3. EN Input Selection Function Table

Input	
EN	Operation
0 (Low)	Outputs are disabled and outputs are static at Qx = 0 (low level) and $\mathrm{nQx}=1$ (high level).
1 (High)	Bank A outputs are enabled and Bank B outputs are disabled at the following static levels: QBx $=0$ (low level) and nQBx $=1$ (high level).
Open	All outputs enabled.

NOTE: EN is an asynchronous control.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V_{DD}	4.6 V
Inputs, $\mathrm{V}_{\text {I }}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Outputs, $\mathrm{I}_{\text {O }}$ (LVDS) Continuous Current Surge Current	10 mA
Maximum Junction Temperature, $\mathrm{T}_{\mathrm{J}, \mathrm{MAX}}$	15 mA
Storage Temperature, TSTG	$125^{\circ} \mathrm{C}$
ESD - Human Body Model; NOTE 1	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ESD - Charged Device Model; NOTE 1	2000 V

NOTE 1: According to JEDEC/JESD JS-001-2012/22-C101E.

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{D D}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{DD}	Power Supply Voltage		2.375	2.5	2.625	V
IDD	Power Supply Current	All outputs terminated 100Ω between $\mathrm{nQx}, \mathrm{Qx}$		80	90	mA

Table 4B. Output Enable (EN) Input DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\mathrm{MID}}$	Input Voltage - Open Pin	Open		$\mathrm{V}_{\mathrm{DD}} / 2$		V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage		$0.8 * \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	-0.3		$0.2 * V_{\mathrm{DD}}$	V	
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{IN}}=2.625 \mathrm{~V}$			150	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150		$\mu \mathrm{~A}$	

Renesns

Table 4C. Differential Input Characteristics, $V_{D D}=2.5 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
${ }^{1} \mathrm{H}$	Input High Current	PCLKA, nPCLKA PCLKB, nPCLKB	$V_{\text {DD }}=\mathrm{V}_{\text {IN }}=2.625 \mathrm{~V}$			150	$\mu \mathrm{A}$
$I_{\text {IL }}$	Input Low Current	PCLKA, PCLKB	$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-10			$\mu \mathrm{A}$
		nPCLKA, nPCLKB	$\mathrm{V}_{\mathrm{DD}}=2.625 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF_AC }}$	Reference Voltage for Input Bias		$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{REF}}=+100 \mu \mathrm{~A}$	1.00		1.35	V
$V_{\text {PP }}$	Peak-to-Peak Voltage; NOTE 1		$\mathrm{f}_{\mathrm{REF}}<1.5 \mathrm{GHz}$	0.15		1.6	V
			$\mathrm{f}_{\text {REF }}>1.5 \mathrm{GHz}$	0.2		1.6	V
$V_{\text {CMR }}$	Common Mode Input Voltage; NOTE 1, 2			1		$V_{D D}-V_{P P} / 2$	V

NOTE 1: V_{IL} should not be less than -0.3 V . V_{IH} should be less than V_{DD}.
NOTE 2: Common mode input voltage is defined at the crosspoint.
Table 4D. LVDS Output DC Characteristics, $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}^{\circ}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum
V_{OD}	Differential Output Voltage	100Ω termination between $\mathrm{nQx}, \mathrm{Qx}$	247		454
$\Delta \mathrm{~V}_{\mathrm{OD}}$	V_{OD} Magnitude Change	100Ω termination between $\mathrm{nQx}, \mathrm{Qx}$		mV	
V_{OS}	Offset Voltage	100Ω termination between $\mathrm{nQx}, \mathrm{Qx}$	1.0		50
$\Delta \mathrm{~V}_{\mathrm{OS}}$	V_{OS} Magnitude Change	100Ω termination between $\mathrm{nQx}, \mathrm{Qx}$		mV	

Table 5. AC Electrical Characteristics, $V_{D D}=2.5 \mathrm{~V} \pm 5 \%, T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\text {REF }}$	Input Frequency				2	GHz
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Input Edge Rate		0.75			V/ns
$t_{\text {PD }}$	Propagation Delay; NOTE 1	PCLKA, nPCLKA to QA[0:1], nQA[0:1], PCLKB, nPCLKB to QB[0:1], nQB[0:1]	100	196	300	ps
	Channel Isolation			75		dB
$t \mathrm{sk}(\mathrm{o})$	Output Skew; NOTE 2, 3	QA[0:1], nQA[0:1], QB[0:1], nQB[0:1]		14	40	ps
$t \mathrm{sk}$ (b)	Output Bank Skew; NOTE 3	Between Outputs within Each Bank		7	15	ps
$t \mathrm{sk}$ (p)	Pulse Skew	50% Input Duty Cycle, $\mathrm{f}_{\text {REF }}=100 \mathrm{MHz}$	-50		50	ps
$t \mathrm{sk}(\mathrm{pp})$	Part-to-Part Skew; NOTE 3, 4				200	ps
$t_{\text {JIT }}$	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	$\mathrm{f}_{\mathrm{REF}}=1228.8 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMR}}=1 \mathrm{~V}$ Integration Range: $10 \mathrm{kHz}-20 \mathrm{MHz}$		20	50	fs
		$\mathrm{f}_{\mathrm{REF}}=156.25 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMR}}=1 \mathrm{~V}$ Integration Range: $10 \mathrm{kHz}-20 \mathrm{MHz}$		140	250	fs
		$\mathrm{f}_{\mathrm{REF}}=156.25 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{CMR}}=1 \mathrm{~V}$ Integration Range: $10 \mathrm{kHz}-20 \mathrm{MHz}$		80	200	fs
$t_{\text {JIT, SP }}$	Spurious Suppression, Coupling from QA1 to QB0	$\begin{gathered} \mathrm{f}_{\mathrm{QB} 0}=500 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}(\mathrm{PCLKB})}=0.15 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CMR}(\mathrm{PCLKB})}=1 \mathrm{~V} \text { and } \\ \mathrm{f}_{\mathrm{QA} 1}=62.5 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}(\mathrm{PCLKA})}=1 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CMR}(\mathrm{PCLKA})}=1 \mathrm{~V} \end{gathered}$		68		dB
		$\begin{aligned} \mathrm{f}_{\mathrm{QB} 0}= & 500 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}(\mathrm{PCLKB})}=0.15 \mathrm{~V}, \\ & V_{\mathrm{CMR}(\mathrm{PCLKB})}=1 \mathrm{~V} \text { and } \\ \mathrm{f}_{\mathrm{QA} 1}= & 15.625 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PP}(\text { PCLKA })}=1 \mathrm{~V}, \\ & V_{\mathrm{CMR}(\text { PCLKA })}=1 \mathrm{~V} \end{aligned}$		74		dB
t_{R} / t_{F}	Output Rise/ Fall Time	20\% to 80\%		120	200	ps

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.
Measured at the differential cross points.
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the $\boldsymbol{d B c}$ Phase Noise. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1 Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio
of the power in the 1 Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a $\boldsymbol{d B c}$ value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

Phase Noise $10.00 \mathrm{~dB} /$ Ref $-20.00 \mathrm{dBc} / \mathrm{Hz}$ [Smo]

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Measured using a Rohde \& Schwarz SMA100 as the input source.

Parameter Measurement Information

LVDS Output Load Test Circuit

Pulse Skew

Part-to-Part Skew

Differential Input Level

Output Skew

Output Rise/Fall Time

Parameter Measurement Information, continued

Bank Skew

Propagation Delay

Differential Output Voltage Setup

Channel Isolation

Offset Voltage Setup

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

PCLK/nPCLK Inputs

For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1 \mathrm{k} \Omega$ resistor can be tied from PCLK to ground.

Outputs:

LVDS Outputs
All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $\mathrm{V} 1=\mathrm{V}_{\mathrm{DD}} / 2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V 1 in the center of the input voltage swing. For example, if the input clock swing is 2.5 V and $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, R 1 and R 2 value should be adjusted to set V 1 at 1.25 V . The values below are for when both the single ended swing and $V_{D D}$ are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω.

The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3 V and $\mathrm{V}_{I H}$ cannot be more than $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$. Suggest edge rate faster than $1 \mathrm{~V} / \mathrm{ns}$. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Renesns

2.5V LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, and other differential signals. Both signals must meet the $\mathrm{V}_{P P}$ and $\mathrm{V}_{\mathrm{CMR}}$ input requirements. Figures 2A to 2C show interface examples for the PCLK/ nPCLK input driven by the most common driver types. The

Figure 2A. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver
input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2B. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver with AC Couple

Figure 2C. PCLK/nPCLK Input Driven by a 2.5V LVDS Driver

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance $\left(Z_{T}\right)$ is between 90Ω and 132Ω. The actual value should be selected to match the differential impedance $\left(Z_{0}\right)$ of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The
standard termination schematic as shown in Figure $3 A$ can be used with either type of output structure. Figure 3B, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50 pF . If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

LVDS Termination

VFQFPN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 4. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific
and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to $13 \mathrm{mils}(0.30$ to 0.33 mm) with $10 z$ copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)

Power Considerations

This section provides information on power dissipation and junction temperature for the 8SLVD2102. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the 8SLVD2102 is the sum of the core power plus the output power dissipation due to the load. The following is the power dissipation for $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}+5 \%=2.625 \mathrm{~V}$, which gives worst case results.

The maximum current at $85^{\circ} \mathrm{C}$ is as follows: I_{DD} MAX $=84 \mathrm{~mA}$

- Power $_{\text {(core) } M A X}=\mathrm{V}_{\text {DD_MAX }}{ }^{*} \mathrm{I}_{\mathrm{DD} _\mathrm{MAX}}=2.625 \mathrm{~V} * 84 \mathrm{~mA}=\mathbf{2 2 0 . 5 m W}$

Total Power_mAX $=\mathbf{2 2 0 . 5 m W}$

2. Junction Temperature.

Junction temperature, Tj , is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, Tj, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for Tj is as follows: $\mathrm{Tj}=\theta_{\mathrm{JA}}$ * Pd_total + TA
$\mathrm{Tj}=$ Junction Temperature
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is $74.7^{\circ} \mathrm{C} / \mathrm{W}$ per Table 6 below.

Therefore, Tj for an ambient temperature of $85^{\circ} \mathrm{C}$ with all outputs switching is:
$85^{\circ} \mathrm{C}+0.221 \mathrm{~W} * 74.7^{\circ} \mathrm{C} / \mathrm{W}=101.5^{\circ} \mathrm{C}$. This is below the limit of $125^{\circ} \mathrm{C}$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 16 Lead VFQFPN, Forced Convection

θ_{JA} at $\mathbf{0}$ Air Flow			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$74.7^{\circ} \mathrm{C} / \mathrm{W}$	$65.3^{\circ} \mathrm{C} / \mathrm{W}$	$58.5^{\circ} \mathrm{C} / \mathrm{W}$

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead VFQFPN

θ_{JA} at $\mathbf{0}$ Air Flow			
Meters per Second	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2 . 5}$
Multi-Layer PCB, JEDEC Standard Test Boards	$74.7^{\circ} \mathrm{C} / \mathrm{W}$	$65.3^{\circ} \mathrm{C} / \mathrm{W}$	$58.5^{\circ} \mathrm{C} / \mathrm{W}$

Transistor Count

The transistor count for the 8SLVD2102 is: 993

Package Outline Drawings

The package outline drawings are located at the end of this document. The package information is the most current data available and is subject to change without notice or revision of this document.

Ordering Information

Table 8. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8SLVD2102NLGI	2102 I	16 Lead VFQFPN, Lead-Free	Tube	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
8SLVD2102NLGI8	21021	16 Lead VFQFPN, Lead-Free	Tape \& Reel pin 1 orientation: EIA- $481-C$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
8SLVD2102NLGI/W	21021	16 Lead VFQFPN, Lead-Free	Tape \& Reel pin 1 orientation: EIA-481-D	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Table 9. Pin 1 Orientation in Tape and Reel Packaging

Part Number Suffix	Pin 1 Orientation	Illustration
8	Quadrant 1 (EIA-481-C)	
/W	Quadrant 2 (EIA-481-D)	

Revision History

Revision Date	Description of Change
January 21, 2018	- Updated the package outline drawings; however, no technical changes. - Replaced the package term VFQFN with VFQFPN.
November 11, 2015	Section, "Pin Assignment" - updated Pin Assignment format. Section, "Parameter Measurement Information, continued" - changed MUX Isolation to Channel Isolation. Throughout the datasheet, deleted "IDT" prefix and "I" suffix from the part number.

NOTES:

1. ALL DIMENSIONS ARE IN mm . ANGLES IN DEGREES

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

1. ALL DIMENSIONS ARE $\mathbb{N} \mathrm{mm}$. ANGLES IN DEGREES
2. TOP DOWN VIEW-AS VIEWED ON PCB
3. LAND PATTERN RECOMMENDATION IS PER IPC-7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN

Package Revision History		
Date Created	Rev No.	Description
Oct 25, 2017	Rev 04	Remove Bookmak at Pdf Format \& Update Thickness Tolerance
Jan 18, 2018	Rev 05	Change QFN to VFQFPN

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZREEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

