8V19N880

RF Sampling Clock Generator and Jitter Attenuator

The 8V19N880 is a fully integrated FemtoClock ${ }^{\circledR}$ RF Sampling Clock Generator and Jitter Attenuator. The device is designed as a high-performance clock solution for conditioning and frequency/phase management of wireless base station radio equipment boards. The 8V19N880 is optimized to deliver excellent phase noise performance as required in 4G, 5G, and including mmWave radio implementations. The device supports JESD204B (subclass 0 and 1) and JESD204C.

A two-stage PLL architecture supports both jitter attenuation and frequency multiplication. The first stage PLL is the jitter attenuator and uses an external VCXO for best possible phase noise characteristics. The second stage PLL locks on the first PLL output signal and synthesizes the target frequency. The second stage PLL can use the internal or an external high-frequency VCO.

The 8V19N880 generates the high-frequency clocks and the low-frequency synchronization signals (SYSREF) from the selected VCO. SYSREF signals are internally synchronized to the clock signals. The integrated signal delay blocks can be used to achieve phase alignment, controlled phase offsets between system reference and clock signals, and to align/delay individual output signals. The four redundant inputs are monitored for activity. Four selectable clock switching modes can handle clock input failure scenarios. Auto-lock, individually programmable output frequency dividers, and phase adjustment capabilities are added for flexibility.

The 8 V 19 N 880 is configured through a $3 / 4$-wire SPI interface and reports lock and signal loss status in internal registers and via the GPIO[1:0] outputs. Internal status bit changes can also be reported via a GPIO output.

Features

- High-performance clock RF sampling clock generator and clock jitter attenuator with support for JESD204B/C
- Low phase noise: -144.7dBc/Hz (800kHz offset; 491.52 MHz)
- Integrated phase noise of 74fs RMS (12k-20MHz, 491.52MHz)
- Dual-PLL architecture with internal and optional external VCO
- Eight output channels with a total of 18 outputs
- Configurable integer clock frequency dividers
- Clock output frequencies: up to 3932.16 MHz (Internal VCO) and $\leq 6 \mathrm{GHz}$ (optional external VCO)
- Differential, low noise I/O
- Deterministic phase delay and integrated phase delay circuits
- Redundant input clock architecture with four inputs and monitors, holdover, and input switching
- SPI 3/4 wire configuration interface
- Supply voltage: 1.8 V and 3.3 V
- Package: 100 CABGA (11 x $11 \mathrm{~mm}^{2}$)
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (board)

Applicable Standards

- JESD204B and C

Applications

- Wireless infrastructure applications: 4G, 5G, and mmWave
- Data acquisition: jitter-sensitive ADC and DAC circuits
- Radar, imaging, instrumentation, and medical

Figure 1. Simplified Block Diagram

Contents

1. Block Diagram 4
2. Features (Full List) 5
3. Pin Information 6
3.1 Pin Assignments 6
3.2 Pin Descriptions 7
4. Principles Of Operation 10
4.1 Overview 10
4.2 Phase-Locked Loop Operation 10
4.2.1 Frequency Generation 10
4.2.2 PLL Description 14
4.2.3 PLL-0 (VCXO-PLL) Lock Detect 16
4.2.4 PLL-1 Lock Detect 17
4.3 Output Channel and JESD204B/C Logic 17
4.3.1 Channel Description 17
4.3.2 Clock Delay Circuits 19
4.3.3 Differential Outputs 21
4.4 Redundant Clock Inputs 23
4.4.1 Monitoring and LOS of Input Signal 23
4.4.2 Input Re-Validation 23
4.4.3 Clock Selection 24
4.4.4 Holdover 24
4.4.5 Input Priorities 24
4.4.6 Hold-off Counter 24
4.5 Revertive Switching 25
4.6 Configuration for JESD204B Operation 25
4.6.1 SYSREF Generation 25
4.6.2 Clock to SYSREF Phase Alignment 28
4.7 General Purpose Input/Outputs (GPIO_[1:0]) 30
4.7.1 GPIO Pin Configuration 30
4.7.2 GPIO Pin Configuration at Startup 31
4.8 Status Conditions and Interrupts 31
4.9 Power-Down Features 33
4.10 Device Startup, Reset, and Synchronization 33
4.10.1 Recommended Configuration Sequence (In Order) 33
4.10.2 Changing Frequency Dividers and Phase Delay Values 34
4.11 SPI Interface 35
5. Register Descriptions 39
5.1 Register Map 39
5.2 Register Descriptions 41
5.2.1 Device Configuration Registers 41
5.2.2 Input, PLL-0 Frequency Divider and Control Registers 43
5.2.3 PLL-0 Charge Pump Control Registers 45
5.2.4 PLL-1 Input and Bypass Control Registers 46
5.2.5 PLL-1 Charge Pump Control Registers 47
5.2.6 PLL-1 Feedback Control Registers 48
5.2.7 Reference Switching Registers 49
5.2.8 SYSREF Control Registers 51
5.2.9 Output Channel Registers 53
5.2.10 Output Registers 56
5.2.11 GPIO and Status Registers 59
5.2.12 Synchronization Control Registers 62
5.2.13 Output Enable Registers 63
6. Electrical Characteristics 64
6.1 Absolute Maximum Ratings 64
6.2 Recommended Operating Conditions 64
6.3 Pin Characteristics 65
6.4 DC Characteristics 65
6.4.1 Supply Voltage and Power Consumption 65
6.4.2 LVCMOS I/O Characteristics 67
6.5 Differential I/O Characteristics 68
6.6 AC Characteristics 69
7. Clock Phase Noise Characteristics 78
8. Application Information 79
8.1 OSC_1 Input Termination (External VCO) 79
8.2 Termination for Differential Q_y LVPECL Outputs 80
8.3 Termination for Differential Q_y LVDS Outputs 82
9. Thermal Characteristics 84
9.1 Temperature Considerations 84
10. Package Outline Drawings 85
11. Ordering Information 85
12. Marking Diagram 85
13. Glossary 86
14. Revision History 86

1. Block Diagram

Figure 2. Block Diagram $\left(\mathrm{f}_{\mathrm{VcO}}=3932.16 \mathrm{MHz}\right)$

2. Features (Full List)

- High-performance clock RF-PLL with support for JESD204B/C
- Low phase noise: - $144.7 \mathrm{dBc} / \mathrm{Hz}(800 \mathrm{kHz}$ offset; 491.52 MHz$)$
- Integrated phase noise of 74 fs RMS (12k-20MHz, 491.52 MHz$)$
- Dual-PLL architecture with optional external VCO
- 1st-PLL stage with external VCXO for clock jitter attenuation
- 2nd-PLL with internal FemtoClockNG PLL: 3932.16MHz
- Optional external VCO frequency range: 700 MHz to 6 GHz
- Eight output channels with a total of 18 outputs, organized in:
- Two RF clock channels each consisting of two device clocks ($\leq 4 \mathrm{GHz}$)/SYSREF outputs; each output can buffer external VCO clocks up to 6GHz
- Six device clock/SYSREF channels (2 or 3 outputs, $\leq 4 \mathrm{GHz}$)
- One VCXO-PLL (PLL-0) output
- Configurable integer clock frequency dividers
- Supported clock output frequencies include:
- From internal VCO: 3932.16, 1966.08, 983.04, 491.52 and 245.76 MHz
- From external VCO: $\leq 6 \mathrm{GHz}$
- Low-power LVPECL/LVDS outputs support configurable signal amplitude, DC and AC coupling and LVPECL, LVDS line terminations techniques
- Phase delay circuits
- PLL feedback phase delay for output-to-input alignment
- Channel phase delay with 512 steps of 127 ps
- Individual SYSREF output phase delay with steps of 254 ps and 30 ps analog delay for output alignment
- Redundant input clock architecture with four inputs and the following:
- Input activity monitoring
- Manual and automatic, fault-triggered clock selection modes
- Priority controlled clock selection
- Digital holdover and smooth input clock switching
- Differential inputs accept LVDS and LVPECL signals
- SYSREF generation modes include internal and external trigger mode for JESD204B/C
- SPI 3/4 wire configuration interface
- Supply voltage: 1.8 V (core, outputs) and 3.3 V (oscillator interfaces, 6 GHz output supply)
- Supply voltage: 1.8 V (core), 3.3 V (oscillator interfaces, 6 GHz output supply), 1.8 V and 3.3 V (channel C, D output supplies)
- SPI and control I/O voltage: 1.8 V
- Package: 100 CABGA (11 x $11 \mathrm{~mm}^{2}$)
- Temperature range: $-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (board)

3. Pin Information

3.1 Pin Assignments

Figure 3. Pin Assignments for 11×11 mm $^{2} 100$ CABGA Package (Bottom View)

3.2 Pin Descriptions

Table 1. Pin Descriptions

Pin	Name			Description
Clock and SYSREF Signal Inputs				
F4	CLK_0	Input	PD	Device clock 0 non-inverting and inverting differential clock input. Inverting input is biased to $\sim 1.05 \mathrm{~V}$ by default when left floating. Compatible with LVPECL, LVDS, and LVCMOS signals.
G4	nCLK_0		PD/PU	
F5	CLK_1	Input	PD	Device clock 1 non-inverting and inverting differential clock input. Inverting input is biased to $\sim 1.05 \mathrm{~V}$ by default when left floating. Compatible with LVPECL, LVDS and LVCMOS signals.
G5	nCLK_1		PD/PU	
F6	CLK_2	Input	PD	Device clock 2 non-inverting and inverting differential clock input. Inverting input is biased to $\sim 1.05 \mathrm{~V}$ by default when left floating. Compatible with LVPECL, LVDS, and LVCMOS signals.
G6	nCLK_2		PD/PU	
F7	CLK_3	Input	PD	Device clock 3 non-inverting and inverting differential clock input. Inverting input is biased to $\sim 1.05 \mathrm{~V}$ by default when left floating. Compatible with LVPECL, LVDS, and LVCMOS signals.
G7	nCLK_3		PD/PU	
D5	EXT_SYS	Input	PD	External SYSREF pulse trigger input. 1.8V LVCMOS interface levels.
External Oscillator Interface Pins				
A7	ICP_0	Output		PLL-0 (VCXO-PLL) charge pump output. Connect to the frequency control input of the external VCXO and to the loop filter.
A6	OSC_0	Input	PD	VCXO non-inverting and inverting differential clock input. Inverting input is biased to $\sim 1.05 \mathrm{~V}$ by default when left floating. Compatible with LVPECL, LVDS, and LVCMOS signals.
B6	nOSC_0		PD/PU	
J5	ICP_1	Output		PLL-1 charge pump output. Connect to the frequency control input of the external VCO and the loop filter. Leave open if PLL-1 is not used (bypassed).
K8	OSC_1	Input	50Ω	External VCO non-inverting and inverting differential clock input. Compatible with LVPECL and LVDS signals, also accepts single-ended sinusoidal signals on the OSC_1 pin.
J8	nOSC_1		50Ω	
J7	VT_1	Termination 50Ω to OSC_1, nOSC_1		Input for termination. Both OSC_1 and nOSC_1 inputs are internally terminated 50Ω to this pin. For input termination information, see OSC_1 Input Termination (External VCO).
Clock and SYSREF Outputs				
$\begin{gathered} \text { A9, } \\ \text { B9 } \end{gathered}$	$\begin{aligned} & \text { Q_AO, } \\ & \text { nQ_AO } \end{aligned}$	Output		Differential clock/SYSREF output A0 (Channel A). Configurable LVPECL/LVDS style and amplitude.
$\begin{gathered} \text { A10, } \\ \text { B10 } \end{gathered}$	$\begin{aligned} & \hline \text { Q_A1, } \\ & \text { nQ A1 } \end{aligned}$	Output		Differential clock/SYSREF output A1 (Channel A). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { D7, } \\ & \text { D8 } \end{aligned}$	$\begin{gathered} \text { Q_BO, } \\ \text { nQ_BO } \end{gathered}$	Output		Differential clock/SYSREF output B0 (Channel B). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \hline \text { D9, } \\ & \text { D10 } \end{aligned}$	$\begin{aligned} & \text { Q_B1, } \\ & \text { QQ B1 } \end{aligned}$	Output		Differential clock/SYSREF output B1 (Channel B). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { F9, } \\ & \text { G9 } \end{aligned}$	$\begin{aligned} & \hline \text { Q_CO, } \\ & \text { nQ_CO } \end{aligned}$	Output		Differential clock/SYSREF output C0 (Channel C). LVPECL style and configurable amplitude.
$\begin{aligned} & \text { F10, } \\ & \text { G10 } \end{aligned}$	$\begin{aligned} & \hline \text { Q_C1, } \\ & \text { nQ_C1 } \end{aligned}$	Output		Differential clock/SYSREF output C1 (Channel C). LVPECL style and configurable amplitude.
$\begin{aligned} & \text { J10, } \\ & \text { K10 } \end{aligned}$	$\begin{gathered} \hline \text { Q_DO, } \\ \text { nQ_DO } \end{gathered}$	Output		Differential clock/SYSREF output D0 (Channel D). LVPECL style and configurable amplitude.

Table 1. Pin Descriptions (Cont.)

Pin	Name	Type ${ }^{[1]}$		Description
$\begin{aligned} & \text { J9, } \\ & \text { K9 } \end{aligned}$	$\begin{aligned} & \text { Q_D1, } \\ & \text { nQ_D1 } \end{aligned}$	Output		Differential clock/SYSREF output D1 (Channel D). LVPECL style and configurable amplitude.
$\begin{aligned} & \mathrm{J} 1, \\ & \mathrm{~K} 1 \end{aligned}$	Q_EO,	Output		Differential clock/SYSREF output E0 (Channel E). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { J2, } \\ & \text { K2 } \end{aligned}$	$\begin{aligned} & \text { Q_E1, } \\ & \text { nQ_E1 } \end{aligned}$	Output		Differential clock/SYSREF output E1 (Channel E). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { J3, } \\ & \text { K3 } \end{aligned}$	$\begin{aligned} & \text { Q_E2, } \\ & \text { nQ_E2 } \end{aligned}$	Output		Differential clock/SYSREF output E2 (Channel E). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { F2, } \\ & \text { G2 } \end{aligned}$	$\begin{aligned} & \text { Q_FO, } \\ & \text { nQ_F0 } \end{aligned}$	Output		Differential clock/SYSREF output FO (Channel F). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { F1, } \\ & \text { G1 } \end{aligned}$	$\begin{aligned} & \text { Q_F1, } \\ & \text { nQ_F1 } \end{aligned}$	Output		Differential clock/SYSREF output F1 (Channel F). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { D1, } \\ & \text { D2 } \end{aligned}$	$\begin{aligned} & \text { Q_GO, } \\ & \text { nQ_G0 } \end{aligned}$	Output		Differential clock/SYSREF output G0 (Channel G). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { D3, } \\ & \text { D4 } \end{aligned}$	$\begin{aligned} & \text { Q_G1, } \\ & \text { nQ_G1 } \end{aligned}$	Output		Differential clock/SYSREF output G1 (Channel G). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { A1, } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { Q_HO, } \\ & \text { nQ_HO } \end{aligned}$	Output		Differential clock/SYSREF output H0 (Channel H). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { A2, } \\ & \text { B2 } \end{aligned}$	$\begin{aligned} & \text { Q_H1, } \\ & \text { nQ_H1 } \end{aligned}$	Output		Differential clock/SYSREF output H1 (Channel H). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { A3, } \\ & \text { B3 } \end{aligned}$	$\begin{aligned} & \text { Q_H2, } \\ & \text { nQ_H2 } \end{aligned}$	Output		Differential clock/SYSREF output H2 (Channel H). Configurable LVPECL/LVDS style and amplitude.
$\begin{aligned} & \text { A5, } \\ & \text { B5 } \end{aligned}$	$\begin{aligned} & \text { Q_VCXO, } \\ & \text { nQ_VCXO } \end{aligned}$	Output		Differential PLL-0 (VCXO-PLL) clock outputs. Configurable LVPECL/LVDS style.
				Control I/O
F8	GPIO_0	Input/ Output	PD	Configurable control input/status output pin 0.1.8V LVCMOS interface levels.
G8	GPIO_1	Input/ Output	PD	Configurable control input/status output pin 1. 1.8V LVCMOS interface levels.
E6	SDAT	Input/ Output	PU	SPI serial configuration interface data pin. Input/Output in SPI 3-wire mode. Input in 4 -wire SPI mode. 1.8 V interface levels.
E7	SCLK	Input	PD	SPI serial configuration interface clock pin. 1.8 V interface levels.
E5	nCS	Input	PU	SPI serial configuration interface chip-select pin. 1.8 V interface levels.
E8	MISO	Output		SPI serial configuration interface data output (in SPI 4-wire mode). Not used in SPI 3-wire mode. 1.8 V interface levels.
			ver S	y, Ground (GND), and Bypass
C10	VDDO_QA	Power		Positive supply voltage (1.8V) for the Q_A $1: 0]$ outputs.
C9	VDDO_QB	Power		Positive supply voltage (1.8 V) for the Q_B[1:0] outputs.
E10	VDDO33_QC	Power		Positive supply voltage (3.3V) for the Q_C[1:0] outputs.
H10	VDDO33_QD	Power		Positive supply voltage (3.3V) for the Q_D[1:0] outputs.
H1	VDDO_QE	Power		Positive supply voltage (1.8V) for the Q_E[2:0] outputs.
E1	VDDO_QF	Power		Positive supply voltage (1.8V) for the Q_F[1:0] outputs.
C2	VDDO_QG	Power		Positive supply voltage (1.8V) for the Q_G[1:0] outputs.

Table 1. Pin Descriptions (Cont.)

Pin	Name	Type ${ }^{[1]}$		Description
C1	VDDO_QH	Power		Positive supply voltage (1.8V) for the Q_H[2:0] outputs.
B7	VDD33_CP0	Power		Positive supply voltage (3.3V) for the charge pump output of PLL-0.
K5	VDD33_CP1	Power		Positive supply voltage (3.3V) for the charge pump output of PLL-1.
C5	VDD_OSC0	Power		Positive supply voltage (1.8V) for the OSC_0 input and Q_VCXO outputs.
K7	VDD33_OSC1	Power		Positive supply voltage ($3.3 \mathrm{~V}, 1.8 \mathrm{~V}$) for the OSC_1 input. This pin can also be supplied by 1.8 V for setting the OSC_1 interface voltage to 1.8 V .
K6	VDD33_VCO	Power		Positive supply voltage (3.3V) for the internal VCO of PLL-1.
D6	VDD_SPI	Power		Positive supply voltage (1.8V) for the SPI interface.
E4	VDD_INPUT	Power		Positive supply voltage (1.8V) for the differential clock inputs CLK0-3.
K4	VDD_PLL1	Power		Positive supply voltage (1.8V) for PLL-1.
J6	VCO_CAP	Analog		Internal VCO regulator bypass capacitor. Use a $1.0 \mu \mathrm{~F}$ capacitor from this pin to GND.
$\begin{aligned} & \text { A4, A8, } \\ & \text { B4, B8, } \\ & \text { C3, C4, } \\ & \text { C6, C7, } \\ & \text { C8, E2, } \\ & \text { E3, E9, } \\ & \text { F3, G3, } \\ & \text { H2, H3, } \\ & \text { H4, H5, } \\ & \text { H6, H7, } \\ & \text { H8, H9, J4 } \end{aligned}$	GND	Power		Ground supply voltage (GND) and ground return path. Connect to board GND (0V).

1. PU (pull-up) and PD (pull-down) indicate internal input resistors (for values, see Table 57).

4. Principles Of Operation

4.1 Overview

The 8V19N880 generates low-phase noise, synchronized clock and SYSREF output signals locked to an input reference frequency. The device contains two PLLs with configurable frequency dividers. The first PLL (VCXOPLL or PLL-0) uses an external VCXO ($\mathrm{f}_{\mathrm{VCXO}}$) as the oscillator and provides jitter attenuation to the input signal. The external loop filter is used to set the VCXO-PLL bandwidth frequency in conjunction with internal parameters. A VCXO buffer output is available for cascading multiple devices or to drive other clock devices at the VCXO frequency.

The second, low-phase noise PLL (PLL-1) multiplies the PLL-0 frequency to a high frequency from which all output signals are generated. PLL-1 can use an external oscillator (VCO, $\mathrm{f}_{\mathrm{Vco}}$) in the range of 700 MHz to 6 GHz , or use the internal oscillator of 3932.16 MHz . The use of the internal oscillator is sufficient for most applications; only applications requiring extraordinary low phase noise or frequency plans can use an external oscillator for PLL-1. Each PLL can be bypassed. PLL-0 bypass is recommended for applications with clean input clock signals: PLL-1 will synthesize the output clock signals directly from the selected input. The PLL-0-bypass mode does not require an external VCXO component.

If the VCXO frequency is suitable as the highest application frequency, PLL-1 can be bypassed.
The output of PLL-1 (output of PLL-0 if PLL-1 is bypassed) provides a central timing reference point for all output signals. From this point, fully synchronous dividers generate the output frequencies and the internal timing references for JESD204B/C support.

The device supports the generation of SYSREF pulses synchronous to the clock signals. There are eight output channels, each can be configured as a clock or SYSREF channel. The clock outputs are configurable with support for LVPECL or LVDS formats and a variable output amplitude. Each channel and each output offer adjustable phase delay functionality. Individual outputs and channels and unused circuit blocks support powered-down states for operating at lower power consumption.
The synchronous design allows an operation mode with deterministic phase delay between the active input and any clock and SYSREF output and also allows zero-delay configurations. Desired input-to-output and output-tooutput phase relations can be configured by the programmable phase delay circuits. The deterministic delay capabilities support cascading multiple devices.

For redundancy purpose, there are four selectable reference frequency inputs and a configurable switch logic with priority-controlled auto-selection and holdover support.

The register map, which is accessible through the SPI interface with read-back capability, controls the main device settings and delivers device status information. Two configurable I/O pins can be used for general-purpose I/O, control, or status signaling functions.

4.2 Phase-Locked Loop Operation

4.2.1 Frequency Generation

The 8V19N880 generates output frequencies in one of three modes: dual PLL mode, frequency synthesizer mode, and PLL-0 mode. Frequency dividers must be set by the user to match input and oscillator frequencies to achieve frequency and phase lock on the used PLLs. The frequency of the external VCXO and external VCO (if used) is selected by the user; the internal VCO frequency of PLL-1 is set to 3932.16 MHz .

Table 2. PLL Modes

Mode	Description	Configuration
Dual PLL	Input jitter attenuation	BYP_0 $=0$, SRC $=00$ or 01
Frequency Synthesizer	Frequency generation without jitter attenuation	BYP_0 $=1$, SRC $=00$ or 01
VCXO-PLL	Input jitter attenuation, output frequency $\leq f_{\text {VCXO }}$	SRC $=10$
PLL Bypass	Fanout buffer/frequency divider	SRC $=11$, BYP_0 $=1$

4.2.1.1 Dual PLL Mode

Application for the dual PLL mode is input clock jitter attenuation and frequency generation. PLL-0 must use an external VCXO and PLL-1 uses the internal VCO or an external VCO for frequency generation. Set BYP_0 $=0$. The dividers for both PLLs must be configured to achieve frequency lock. Figure 4 displays a detailed circuit and Table 3 shows the available frequency dividers for this mode. For information on selecting the feedback path for this mode, see PLL Feedback Path. Input to output delay is deterministic when the device is configured in dual PLL mode and the PLL feedback path is set through both M_{0} and M_{1} feedback divider (FBSEL_PLL_0 = 1).

Figure 4. Dual PLL Mode
Table 3. Dual PLL Mode Settings and Divider Values

Divider	Range	Operation for $\mathrm{f}_{\mathrm{Vco}}=3932.16 \mathrm{MHz}^{[1]}$
Input Divider $\mathrm{R}^{2}{ }^{[2]}$	$\div 1, \div 2, \div 4, \div 8$	Input clock frequency (FBSEL_PLL_0 = 1):$f_{C L K}=R_{N} \times P_{0} \times \frac{f_{V C X O}}{P_{1}} \times \frac{M_{2}}{M_{0} \times M_{1}}$
PLL-0 Pre-Divider P_{0}	$\div 1 \ldots \div 32,767:(15$ bit)	
PLL-0 Feedback Divider M_{0}	$\div 1 \ldots \div 32,767$: (15 bit)	
PLL-0/1 Feedback Divider M1 ${ }^{[3]}$	$\div 1 . . \div 16,383:(14 \mathrm{bit})$	
PLL-1 Pre-Divider P_{1}	$\div 1 . . . \div 127:(7$ bit)	VCXO frequency: $f_{\text {Vcxo }}=f_{\text {Vco }} \times \frac{P_{1}}{M_{2}}$ P_{1} : Set P_{1} to 0.5 in above equation if the frequency doubler is engaged by setting FD_1 = 1 .
Frequency Doubler	FD_1 $=\times 1$ or $\times 2$	
PLL-1 Feedback Divider $\mathrm{M}_{2}{ }^{[4]}$	$\div 1 . . . \div 1,023:(10 \mathrm{bit})$	

Table 3. Dual PLL Mode Settings and Divider Values (Cont.)

Divider	Range	Operation for $\mathrm{f}_{\mathrm{VCO}}=\mathbf{3 9 3 2 . 1 6 M H z}{ }^{\text {[1] }}$
Clock Output Divider N_{x} ($x=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$)	$\begin{aligned} & \div 1 \ldots \div 20,480 \\ & \mathrm{~N}=\{1,2,3,4,5\} \times 2^{\mathrm{m}} \text { with } \mathrm{m}=0 \\ & \text { to } 12 \end{aligned}$	Output clock frequency: $\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{VCO}}}{\mathrm{~N}_{\mathrm{X}}}$
SYSREF Output Divider N_{x} ($x=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$)	$\begin{aligned} & \div 1 \ldots \div 83,886,080 \\ & \mathrm{~N}=\{1,2,3,4,5\} \times 2^{\mathrm{m}} \times 2^{\mathrm{p}} \text { with } \mathrm{m} \\ & =0 \text { to } 12 \text { and } \\ & \mathrm{p}=1 \text { to } 12 \end{aligned}$	Output SYSREF frequency: $\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{VCO}}}{\mathrm{~N}_{\mathrm{X}}}$

1. External VCO operation: use the frequency of the external VCO for $\mathrm{f}_{\mathrm{VCO}}$ in above equations. For external VCO frequencies greater than 4 GHz , set P2_SEL to select the $\div 2$ path to reduce the external VCO frequency and enter $\mathrm{f}_{\mathrm{Vco}} \div 2$ as VCO frequency in above equations.
2. Input divider R_{N} : Use R_{N} to limit the input frequency to the P_{0} divider to $\leq 250 \mathrm{MHz}$.
3. Maximum M_{1} input frequency is: 1 GHz for $\mathrm{M}_{1}=\div 1 \ldots \div 7$ and 4 GHz for $M_{1}>\div 7$
4. Maximum M_{2} input frequency is: 1 GHz for $\mathrm{M}_{2}=\div 1 \ldots \div 7$ and 4 GHz for $\mathrm{M}_{2}>\div 7$

4.2.1.2 Frequency Synthesizer Mode

The application for the frequency mode is frequency generation by PLL-1. PLL-0 is bypassed by setting BYP_0 $=1$. It is not required to fit an external VCXO in this mode. PLL-1 can use the internal VCO or an external VCO. The dividers of PLL-1 must be configured to achieve frequency lock to the selected clock input. Figure 5 displays a detailed circuit and Table 4 shows the available frequency dividers for this mode.

Figure 5. Frequency Synthesizer Mode

Table 4. Frequency Synthesizer Mode Settings and Divider Values

Divider	Range	Operation for $f_{\text {Vco }}=\mathbf{3 9 3 2 . 1 6 M H z}{ }^{[1]}$
Input Divider R_{N}	$\div 1, \div 2, \div 4, \div 8$	$f_{C L K}=f_{\text {VCO }} \times \frac{R_{N} \times P_{1}}{M_{2}}$

1. External VCO operation: use the frequency of the external VCO for $\mathrm{f}_{\mathrm{VCO}}$ in above equations. For external VCO frequencies greater than 4 GHz , set PS_SEL to select the $\div 2$ path to reduce the external VCO frequency and enter $\mathrm{f}_{\mathrm{Vco}} \div 2$ as VCO frequency in above equations.

4.2.1.3 VCXO-PLL Mode

Application for the VCXO-PLL mode is input clock jitter attenuation without the use of PLL-1 for additional frequency generation. Set SRC[1:0] = 10 to bypass PLL-1. PLL-0 must use an external VCXO. The frequency of the VCXO component determines the highest frequency that can be generated at the outputs. The PLL-0 dividers P_{0} and M_{0} must be configured to achieve frequency lock. For VCXO frequencies higher than 250 MHz , set P3_SEL $=1$ to select an additional divide-by-2 in the PLL-0 feedback path. Figure 6 displays a detailed circuit and Table 5 shows the available frequency dividers for this mode.

Figure 6. VCXO-PLL Mode
Table 5. VCXO-PLL (PLL-0) Mode Settings and Divider Values

Divider	Range	Operation (no VCO)
Input Divider R_{N}	$\div 1, \div 2, \div 4, \div 8$	Input clock frequency ($\mathrm{f}_{\mathrm{VCxO}} \leq 250 \mathrm{MHz}$): $f_{C L K}=R_{N} \times P_{0} \times \frac{f_{V C X O}}{M_{0}}$ P3_SEL: Set to 1 for VCXO frequencies higher than 250MHz: $f_{C L K}=R_{N} \times P_{0} \times \frac{f_{V C \times O}}{2 \times M_{0}}$
PLL-0 Pre-Divider P_{0}	$\div 1 \ldots \div 32,767:(15$ bit)	
PLL-0 Feedback Divider M_{0}	$\div 1 \ldots \div 32,767:(15$ bit $)$	
$\begin{aligned} & \text { Output Divider } N_{x} \\ & (x=A, B, C, D, E, F, G, H) \end{aligned}$	$\begin{aligned} & \div 1 \ldots \div 20,480 \\ & \mathrm{~N}=\{1,2,3,4,5\} \times 2^{\mathrm{m}} \text { with } \mathrm{m}=0 \\ & \text { to } 12 \end{aligned}$	Output frequency: $\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{VCXO}}}{\mathrm{~N}_{\mathrm{X}}}$

4.2.1.4 PLL Bypass (Fanout Buffer/Frequency Divider) Mode

Application for the buffer/divider mode is the fanout of the input signal with optional frequency division. PLL-0 and PLL-1 are not used in this mode, thus frequency multiplication, input jitter attenuation, automatic input switching, PLL lock and input loss detection are not available. Inputs must be selected manually by using the SEL[1:0] register bits. Set BYP_0 to 1, FD_1 = 0 and $S R C=11$. The dividers R_{N}, P_{1} and the output dividers frequency divide the input frequency, the three dividers can be set to a value of $\div 1$ to replicate the input frequency at the outputs.

The highest frequency that this mode supports is limited to the maximum input frequency (2 GHz). Figure 7 displays a detailed circuit and Table 7 shows the available frequency dividers for this mode. The output divider N_{x} can be used to divide the input frequency to lower output frequencies (it is recommended to use $R_{N}=\div 1$ and $P_{1}=$ $\div 1$). The delay circuits use a delay unit controlled by the clock signal frequency at the SRC multiplexer.

Figure 7. PLL Bypass Mode
Table 6. PLL Bypass (Fanout Buffer/Frequency Divider) Mode

Divider	Range	Operation (no VCO)
Input Divider R_{N}	$\div 1, \div 2, \div 4, \div 8$	Output frequency:
PLL-1 Pre-Divider P_{1}	$\div 1 \ldots \div 127:(7$ bit)	$\mathrm{f}_{\mathrm{OUT}}=\frac{\mathrm{f}_{\mathrm{CLK}}}{\mathrm{R}_{\mathrm{N}} \times \mathrm{P}_{1} \times \mathrm{N}_{\mathrm{x}}}$
Output Divider N_{x} $(x=\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H})$	$\div 1 \ldots \div 20,480$ $\mathrm{~N}=\{1,2,3,4,5\} \times 2^{\mathrm{m}}$ with $\mathrm{m}=0$ to 12	

4.2.2 PLL Description

4.2.2.1 VCXO-PLL (PLL-0)

The FBSEL_PLL_0 register bit controls the routing of the VCXO-PLL feedback path applicable in dual PLL mode. PLL feedback is routed through the M_{0} divider; alternatively, the feedback path is routed through the second PLL and both the M_{0} and M_{1} feedback divider. The recommended feedback path for achieving deterministic phase delay from the clock input to the outputs is the path through both the M_{0} and M_{1}, in combination with the divider setting $P_{1}=\div 1$. The pre-dividers R_{N} and P_{0}, and the feedback dividers M_{0} and M_{1}, require configuration to match the input frequency to the VCXO-frequency. M_{0} has a divider value range of 15 bits; M_{1} has 14 bits. Multiple divider settings are available to enable support for input frequencies of e.g. 245.76, 122.88, 61.44 and 30.72 MHz and the VCXO-frequencies of $122.88 \mathrm{MHz}, 61.44,38.4,30.72,245.76$ and 491.52 MHz . In addition, the range of available input and feedback dividers allows to adjust the phase detector frequency independent on the input and VCXO frequencies.
The PLL-0 charge pump is configurable via the I_CPO, I_CPO_SINK_EN, and I_ICP0_OFFSET registers. The charge pump current can be set in the range up to 3 mA in 100 or $200 \mu \mathrm{~A}$ steps. At startup, the VCXO control voltage at the ICP_0 pin is held at 50% of the VDD33_CP0 voltage level $(1.65 \mathrm{~V})$ to center the VCXO frequency (FCVO = 1). After startup, the user must set the FVC_0 control bit to 0 to enable VCXO-PLL lock. Input clock switching and holdover functions require the use of the VCXO-PLL in the active signal path.

Low input frequency configurations: If the input frequency after the divider R_{N} is lower than the output of the M_{1} divider, then the user must set the "BLOCK_LOR" register bit to 1 in order for PLL-0 to operate correctly. In this condition, the LOS (Loss of input signal) function is not valid, also preventing the automatic input switching function of the device.

In frequency synthesizer mode, PLL-0 is not used and holdover functions are not available.
Table 7. PLL-0 Example Configurations for $\mathrm{f}_{\mathrm{VCXO}}=\mathbf{1 2 2 . 8 8} \mathrm{MHz}^{[1]}$

Input Frequency(MHz)	PLL-0 Divider Settings			$\begin{gathered} \mathbf{f}_{\text {PFD }} \\ (\mathrm{MHz}) \end{gathered}$
	R_{N}	P_{0}	M_{0}	
245.76	1	2	1	122.88
	1	32	16	7.68
	1	256	128	0.96
	1	2048	1024	0.12
122.88	1	1	1	122.88
	1	16	16	7.68
	1	128	128	0.96
	1	1024	1024	0.12
1966.08	8	2	1	122.88

1. BYP_1=0

4.2.2.2 PLL Feedback Path

PLL-0 uses M_{0} or $M_{0} \times M_{1}$; PLL-1 uses M_{2} as the feedback divider. Configuring the feedback path through the M_{0} and M_{1} dividers enables deterministic delay from the input to the outputs (for more information, see Table 8).

Table 8. VCXO-PLL (PLL-0) Feedback Path Settings

FBSEL_PLL_0	Operation
0	Independent PLL feedback. PLL-0 feedback path through the M_{0} divider (and through an additional $\div 2$ if P3_SEL $=1$) PLL-1 feedback path uses the M_{2} divider.
1	Recommended feedback configuration for achieving deterministic delay from input to the outputs. PLL-0 feedback path through the $M_{1} \times M_{0}$ dividers. PLL-1 feedback path uses the M_{2} divider.

4.2.2.3 PLL-1

PLL-1 is a high-frequency synthesizer. This PLL locks to the output signal of PLL-0 in dual PLL mode or to the input frequency in frequency synthesis mode. PLL-1 uses the internal VCO $(3932.16 \mathrm{MHz})$ or an external VCO at any frequency from 700 MHz to 6 GHz . Achieving PLL lock requires the configuration of FD_1 (frequency doubler) or P_{1} (pre-divider), and the feedback divider M_{2} to match the input and feedback frequency at the phase detector. These settings may change depending on the actual VCO and input frequencies. If the external VCO frequency $f_{V C O}$ is greater than 4 GHz , set P2_SEL to 1 to select the path through the divider $\div 2$. The effective VCO frequency routed to the PLL-1 feedback divider, output divider, and SYSREF generator is then $f_{V c o} \div 2$. The P2_SEL setting also impacts the reference frequency for the delay circuits: the frequency at the SRC multiplexer output is the reference frequency for all digital delay circuits. The M_{2} feedback divider in PLL-1 is integer. The PLL-1 charge pump is configurable via the I_CP1, I_CP1_SINK_EN, and I_ICP1_OFFSET registers. The charge pump current can be set in the range up to 3 mA in 100 or $200 \mu \mathrm{~A}$ steps.

This PLL is internally configured to high-bandwidth. Best phase noise is typically achieved by engaging the internal frequency doubler (FD_1 = $1, \times 2$). If engaged, the input signal to PLL-1 is first doubled in frequency, increasing the phase detector frequency of PLL-1. Enabling the frequency doubler disables the frequency pre-divider P_{1}. If the frequency doubler is not used (FD_1 = 0), the P_{1} pre-divider has to be configured. Typically P_{1} is set to $\div 1$ to keep the phase detector frequency as high as possible. Set P_{1} to other divider values to achieve specific frequency ratios (1 to $19.2,1$ to 76.8 , etc.) between the first and second PLL.

Table 9. PLL-1 Mode

Description	RF_PLL Operation $^{[1]}$	M Registers
Integer frequency synthesis	$f_{\text {VCO }}=f_{\text {PFD_1 }} \times M 2$	$0 \times 2 \mathrm{C}-0 \times 2 \mathrm{D}$

1. $f_{P F D _1}$ is the phase detector frequency of PLL-1. In dual PLL mode, $f_{P F D_{1} 1}$ is the output frequency of PLL-0 divided by P_{1} or multiplied by 2 .

Table 10. Frequency Doubler

FD_1	Operation
0	Frequency doubler off $(\times 1) . \mathrm{P}_{1}$ divides the PLL-1 input signal
1	Frequency doubler on $(\times 2)$. The PLL-1 input signal is doubled in frequency. The P_{1} divider has no effect.

Table 11. Example PLL-1 Configuration

PLL-1 InputFrequency (MHz)	PLL-1			
	FD_1	P_{1}	M_{2}	$\begin{aligned} & \mathbf{f}_{\mathrm{Vco}} \\ & (\mathrm{MHz}) \end{aligned}$
122.88	$\times 2$	-	16	3932.16
245.76	$\times 2$	-	8	3932.16
245.76	$\times 1$	1	16	3932.16
491.52	$\times 1$	1	8	3932.16
491.52	$\times 1$	2	12	5898.24 (external)

4.2.3 PLL-0 (VCXO-PLL) Lock Detect

The PLL-0 lock detect circuit uses the signal phase difference at the phase detector as lock criteria; the phase detector is fed by the output signals of the M_{0} and P_{0} dividers. PLL lock is reported when the phase difference between both signals into the PLL-0 phase detector is lower than or equal to the phase difference set by LOCK_TH[14:0] for more than the number clock cycles (of the M_{0} divider output) set by LOCK_GOOD_COUNT[1:0]. PLL-0 lock state is reported through the ST_PLL0_LOCK (momentary) and LS_PLLO_LOCK (sticky, resettable) status bits (for status bit functions, see Table 25). PLL lock can be reported by a GPIO pin. Loss-of-lock can also be signaled as interrupt signal via a GPIO pin.
The PLL-0 lock detect function is available in dual PLL and VCXO-PLL (PLL-0 only) mode. The divider M_{0} is used as frequency divider for the comparison signal. The M_{0} divider must be set to a value equal to or greater than $\div 4$ for lock detect to work correctly.
A static clock input is detected as PLL loss of lock. PLL-0 lock detect is not available in PLL bypass (fanout buffer) mode or in configurations that do not feed a clock signal to the frequency divider M_{0}. The maximum input frequency to the M_{0} and P_{0} dividers is 250 MHz . For higher input frequencies than 250 MHz , use the R_{N} divider to divide the frequency down to $\leq 250 \mathrm{MHz}$. The lock detect circuits works for the input frequencies that achieve PLL0 lock. Setting the FVC_0 register bit will unlock PLL-0 and identifies this as a loss of lock condition. Entering holdover also reports a PLL-0 loss of lock.

4.2.4 PLL-1 Lock Detect

PLL-1 lock detect evaluates the calibration state machine status flag for completion and compares the PLL-1 loop filter voltage to a voltage range (window). PLL-1 lock is signaled through the ST_PLL1_LOCK (momentary) and LS_PLL1_LOCK (sticky, resettable) status bits (see Table 25). Lock status can be reported as a hardware signal through the GPIO_[1:0] pin interface.
A static clock input to PLL-1 is detected as loss of lock. The PLL-1 lock detect function is available in dual PLL and synthesizer mode (PLL-1). PLL-1 lock detect works up to the specified PLL-1 phase detector frequency (500 MHz) and over the entire frequency range PLL-1 lock range. PLL-1 lock detect is not supported in configurations that do not use PLL-1. Lock detect is also available in PLL synthesizer mode with an external VCO.

4.3 Output Channel and JESD204B/C Logic

4.3.1 Channel Description

The 8V19N880 has eight output channels with a total of 18 differential channels plus one VCXO output channel.Six channels (A, B, C, D, F, G) support two differential outputs and two channels (E, H) support three differential outputs. The outputs of channels C and D support output frequencies up to 6 GHz and require a 3.3 V output supply.Channels A, B, E, F, G, and H are supplied by 1.8 V and support output frequencies up to 4 GHz . Each channel can be configured as a clock channel or as a SYSREF channel by using the respective nC/S_SEL_x multiplexer register bit. The clock/SYSREF configuration applies to all outputs of a channel.

Table 12. Output Channel Description

Channel	Number of Outputs	Output Signals	Output Supply Voltage	Diagram
A, B, F, G	2	- Clock $\leq 4 \mathrm{GHz}($ from PLL-1) or - SYSREF	1.8 V	Figure 8
E, H	3	- Clock $\leq 4 \mathrm{GHz}($ from PLL-1) or - SYSREF	1.8 V	Figure 8
C, D	2	- Clock $\leq 6 \mathrm{GHz}($ directly from OSC_1 input) or - Clock $\leq 4 \mathrm{GHz}($ from PLL-1) or - SYSREF	3.3 V	Figure 9

4.3.1.1 Clock/SYSREF Channels A, B, E, F, G, H

The channels A, B, E, F, G, and H can operate as a device clock or as a SYSREF channel, controlled by the nC/S_SEL_x selector (for information, see Figure 8).

4.3.1.1.1 Clock Operation

A channel configured to clock operation ($n C / S _S E L _x=0$) contains a two-stage frequency divider N_{x} and one digital phase delay circuit $\Phi_{\text {WIDE_x }}$. Frequency and phase settings are applied to all outputs of a channel. The purpose of the N_{x} divider is frequency generation from the selected frequency source (SRC multiplexer). N_{x} can be set to a range of discrete values from $\div 1$ to $\div 20,480 . N_{x}$ is a composite divider consisting of two serial dividers N_x0 and N_x1: $N_{x}=N _x 0 \times N _x 1$. For example, setting N_x0 to $\div 2$ and N_x1 to $\div 8$ will result in a channel frequency divider of $N_{x}=\div 16$. This example divider value generates an output frequency of 245.76 MHz if the internal VCO is used. Clock channels with different clock frequencies are synchronized on the incident edge. The digital phase delay circuit $\Phi_{\text {WIDE_x }}$ is used to apply phase offsets in the channels.

4.3.1.1.2 SYSREF Operation

A channel configured to clock operation ($n C / S _S E L _x=1$) participates in the central SYSREF pulse/frequency generation. The clock divider N_{x} divides the selected source signal to the SYSREF frequency. Similar to clock
operation, the frequency is applied to all outputs of that channel. N_{x} can be set to a range of discrete values from $\div 1$ to $\div 83,886,080$. N_{x} consists of three serial dividers $N_{-} x 0, N _x 1$, and $N_{-} S$: $N_{x}=N _x 0 \times N _x 1 \times N _S$. For example, setting $N _x 0$ to $\div 2$, $N _x 1$ to $\div 8$, and $N _S$ to $\div 32$ will result in a SYSREF frequency divider of $N_{x}=\div 512$. This example divider value generates a SYSREF output frequency of 7.68 MHz if the internal VCO is used. A N_S divider physically exists in each channel, however, all N_S dividers share the same global setting (N_S in register $0 x 38)$. For phase delay, a SYSREF channel contains the circuits $\Phi_{\text {WIDE_x }}, \Phi_{\text {FINE_y }}$, and $\Phi_{\text {ANLG_y }}$. Similar to a clock channel, $\Phi_{\text {WIDE_x }}$ phase settings are applied to all channel outputs. Each output can use the additional delay circuits $\Phi_{\text {FINE_y }}$ and $\Phi_{\text {ANLG_y }}$ for output-to-output fine phase alignment. These output delay circuits are unavailable when the channel is configured to clock operation.

4.3.1.1.3 Synchronization of Clock and SYSREF Channels

The device can synchronize the phase of clock and SYSREF outputs across channels. For synchronization, rules apply for the selection of N_x0 and N_x1 dividers. In a SYSREF channel, the input frequency to the N_S divider block must be set to a common divisor of the frequencies of the clock channels. For example, channels A, B, and E are configured as clock channel with the output frequencies of 122.88 MHz (channel $\mathrm{A}, \mathrm{N}=32$), 245.76 MHz (channel $B, N=16$) and 983.04 MHz (channel $E, N=4$); channel F is configured to SYSREF at 7.68 MHz . A common divisor of the three clock frequencies in channels A, B, and E is 122.88 MHz . This divisor is calculated by dividing the VCO frequency by the lowest common multiple clock frequency divider: $3932.16 \mathrm{MHz} \div \mathrm{LCM}(32,16$, 4). In the SYSREF channel, the input to the N_S divider must now be configured to 122.88 MHz (by setting N_x0 \times N_x1 to $\div 32$: the VCO frequency of 3932.16 MHz is divided by 32). The SYSREF divider N_S is then configured to 16 to achieve 7.68 MHz at the channel F outputs. Failure to set the SYSREF channel divider to a common frequency of the clock channels may result in the SYSREF outputs not being synchronous to clock outputs.

Figure 8. Output Channels A, B, E, F, G, and H

4.3.1.2 6GHz RF Clock/SYSREF Channels C, D

The two RF clock channels C and D buffer the external oscillator signal (VCO_EXT) up to an output frequency of 6 GHz (see Figure 9). Alternatively, the channels C and D operate as device clock/SYSREF signal channel as described in Clock/SYSREF Channels A, B, E, F, G, H where the frequency source is PLL-0 or PLL-1 (internal VCO). In the alternative mode, the maximum output frequency is 4 GHz . For channels C and D, the output supply voltage is $V_{\text {DDO33_ }}=3.3 \mathrm{~V}$.

Figure 9. RF Output Channels C, D (Two Outputs)

4.3.2 Clock Delay Circuits

The purpose of the phase delay circuits is to establish a desired phase relationship between the selected input and any output, and across outputs (see Table 13). In JESD204B/C applications, the delay circuits establish phase offsets between SYSREF signals and their corresponding device clocks. The phase delay circuits Φ_{FB}, $\Phi_{\text {WIDE_x }}$, and $\Phi_{\text {FINE_y }}$ (for SYSREF) are a function of the source frequency at the output of the SRC multiplexer. If the internal VCO $(3932.16 \mathrm{MHz})$ is the channel signal source: the delay step size is selectable 127 ps (one-half VCO cycle, channel delay) or 254ps (one VCO cycle, SYSREF delay). If an external VCO or external VCXO is the signal source: the frequency at the SRC multiplexer determines the delay units. External VCO frequencies of greater than 4 GHz have to be divided by 2 (by using P2_SEL = 1). The $\Phi_{\text {ANLG_y }}$ circuits are implemented by gate delays and have a very small delay step size of approximately 30ps, independent of any internal or external VCO reference frequency.

The phase delay circuits $\Phi_{\text {WIDE_x }}$ have a wide range and can be used for coarse clock and SYSREF signal phase alignments. The delay circuits $\Phi_{\text {FINE_y }}$ and $\Phi_{\text {ANLG_y }} ; \Phi_{\text {FINE_y } 1}$ and $\Phi_{\text {ANLG_y }}$ are available in SYSREF channels and have a short range and finer resolution for use in board signal de-skewing and the exact placement of a SYSREF signal edge to the rising edge of a clock signal. Changing the setting of the delay circuit $\Phi_{\text {FINE_y0 }}$ and $\Phi_{\text {ANLG_y } 0} ; \Phi_{\text {FINE_y1 }}$ and $\Phi_{\text {ANLG_y1 }}$ will not result in output voltage transients, gaps, or runt pulses so that delay setting changes during device operation are supported.

Table 13. Delay Circuit Settings

Delay Circuit	Unit ${ }^{[1]}$	Steps	Range (ns)	Use for Alignment
PLL-0 Feedback Clock Φ_{FB}	$\frac{1}{\mathrm{f}_{\mathrm{VCO}}}=254 \mathrm{ps}$	4096 $(12 \mathrm{bit})$	$0-1,041.41$	Input to output (incident edge) alignment.
Channel Clock $\Phi_{\text {WIDE_x }}$	$\frac{1}{2 \times \mathrm{f}_{\mathrm{VCO}}}=127 \mathrm{ps}$	512 $(9$ bit $)$	$0-64.977$	Incident rising clock edges are aligned, independent on the divider N_{x} across channels

Table 13. Delay Circuit Settings (Cont.)

Delay Circuit	Unit ${ }^{[1]}$	Steps	Range (ns)	Use for Alignment
$\begin{aligned} & \text { Output SYSREF } \Phi_{\text {FINE_y0 }} \\ & \Phi_{\text {FINE_y1 }} \\ & \Phi_{\text {FINE_y2 }} \end{aligned}$	$\mathrm{f}_{\mathrm{VCO}} \geq 2 \mathrm{GHz}$ and internal VCO: $\begin{array}{r} \frac{1}{\mathrm{f}_{\mathrm{VCO}}}=254 \mathrm{ps} \\ \mathrm{f}_{\mathrm{VCO}}<2 \mathrm{GHz}^{[2]}: \\ \frac{1}{2 \times \mathrm{f}_{\mathrm{VCO}}} \end{array}$	$\begin{gathered} 4 \\ (2 \mathrm{bit}) \end{gathered}$	$0-0.763$ $0-3 \div\left(2 f_{\mathrm{vco}}\right)$	Output-to-output in channel and across channels, clock to SYSREF alignment. Can be powered down for lowest noise floor operation.
Output SYSREF $\Phi_{\text {ANLG_y }}$ $\Phi_{\text {ANLG_y } 1}$ $\Phi_{\text {ANLG_y2 }}$	30ps (analog)	$\begin{gathered} 8 \\ (3 \mathrm{bit}) \end{gathered}$	0-0.210	

1. Table is valid for using the internal VCO at a frequency of 3932.16 MHz . For an external VCO , replace $\mathrm{f}_{\mathrm{VCO}}$ by the actual VCO frequency or VCO frequency $\div 2$ if greater than 4 GHz . Examples: external VCO of 2949.12 MHz : $\Phi_{\text {WIDE_x }}$ is $169 \mathrm{ps}\left(\mathrm{P} 2 _S E L=0\right)$. External VCO of $5898.24 \mathrm{MHz}: \Phi_{\text {WIDE_x }}$ is also 169 ps ($\mathrm{P} 2 _$SEL $=1$, external VCO is pre-divided).
2. When using an external VCO at frequencies $<2 G H z$, the output SYSREF delay unit can be selected: $1 / f_{V C O}$ and $1 / 2 f_{V C o}$. See RETIME_DIV_x function.

4.3.3 Differential Outputs

Table 14. Output Features

Outputs	Description	Config.	Source	Supply Voltag	Style	Termination ${ }^{[1]}$	Ampl. ${ }^{[2]}$ ${ }^{[3]}(\mathrm{mV})$	$\begin{gathered} \text { Disabl } \\ e \end{gathered}$	Power Down
$\begin{aligned} & \hline \text { Q_C0-1, } \\ & \text { Q_D0-1 } \end{aligned}$	Clock \leq 6GHz	$\begin{aligned} & \text { EXT_VCO_SEL_ } \\ & y=1 \end{aligned}$	OSC_1	3.3 V	LVPECL	50Ω to $V_{T T}$	$\begin{aligned} & 300,400, \\ & 550,700 \end{aligned}$	Y	Y
	Clock \leq 4GHz	$\begin{aligned} & \text { EXT_VCO_SEL_ } \\ & \text { y }=0 \\ & \text { nC/S_SEL_x }=0 \end{aligned}$	PLL-0, PLL-1 or selected input	3.3 V	LVPECL	50Ω to $V_{T T}$	$\begin{aligned} & 300,400, \\ & 550,700 \end{aligned}$		
	SYSREF	$\begin{aligned} & \text { EXT_VCO_SEL_ } \\ & \text { y=0 } \\ & \text { nC/S_SEL_x }=1 \end{aligned}$	SYSREF Generato r	3.3 V	LVPECL	50Ω to $V_{T T}$	$\begin{aligned} & \hline 300,400, \\ & 550,700 \end{aligned}$	Y	Y
Q_A0-1, Q_B0-1, Q_E0-2, Q_F0-1, Q_G0-1, Q H0-2	Clock \leq 4 GHz	nC/S_SEL_x $=0$	PLL-0, PLL-1 or selected input	1.8 V	LVPECL	$\begin{gathered} \hline 50 \Omega \text { to } \mathrm{V}_{\mathrm{TT}} \\ \hline 100 \Omega \\ \text { differential } \end{gathered}$	$\begin{gathered} \hline 300,400, \\ 550,700 \\ \hline 350,500, \\ \hline \end{gathered}$	Y	Y
	SYSREF	nC/S_SEL_x $=1$	SYSREF Generato r	1.8 V	LVPECL	50Ω to $\mathrm{V}_{\text {TT }}$	$\begin{aligned} & 300,400 \\ & 550,700 \end{aligned}$	Y	Y
					LVDS	100Ω differential	$\begin{aligned} & 350,500, \\ & \text { line bias } \end{aligned}$	Y	Y
$\begin{array}{\|l} \hline \text { Q_VCX } \\ \text { O } \end{array}$	PLL-0 buffered output	-	PLL-0	1.8 V	LVPECL	50Ω to $\mathrm{V}_{\text {TT }}$	700	N	Y
					LVDS	100Ω differential	350		

1. AC coupling and DC coupling supported.
2. Amplitudes are measured single-endedly.
3. See Table 17 for LVPECL termination voltages $\left(\mathrm{V}_{\mathrm{TT}}\right)$.

Table 15. Q_y Output States in Clock Mode (nC/SEL = 0) ${ }^{[1]}$

PD	EN	Output Operation Description
0	0	Static low (Q = low, nQ = high) ${ }^{[2]}$
	1	Switching (Clock)
1	X	Powered down

1. Clock mode: Configuration bits nBIAS_r, PD_SYSREF, BIAS_TYPE, and INV_SYS have no effect on Q_y outputs.
2. Output disable operation of Q_C and Q_D outputs when outputs are used for an external VCO (EXT_VCO_SEL_y = 1): $Q=H i g h$ and $n Q=$ High .

Table 16. Q_y Output States in SYSREF Mode (nC/SEL = 1)

PD_y	EN	nBIAS	$\underset{\mathrm{F}}{\text { PD_SYSRE }}$	BIAS_TYPE	INV_SYS	Output Operation Description ${ }^{[1]}$
0	0	X	X	X	X	Static low level
	1	0	0	0	0	Switching (SYSREF)[2]
					1	Switching (SYSREF inverted) ${ }^{[2]}$
				1	0	Switching (SYSREF) / crosspoint level[2]
					1	Switching (SYSREF inverted) / crosspoint level[2]
			1	0	0	SYSREF power down Static high level
					1	
				1	0	
					1	
		1	0	0	0	SYSREF static low level[2]
					1	
				1	0	SYSREF static crosspoint level[2]
					1	
			1	0	0	SYSREF power down Static high level
					1	
				1	0	
					1	
1	X	X	X	X	X	Powered down

1. Level description: Static low: $Q=$ low, $n Q=$ high; Static high: $Q=$ high, $n Q=$ high; Crosspoint: Q and $n Q$ are both at the LVDS crosspoint voltage.
2. For more information, see Table 20.

Table 17. LVPECL Termination Voltage, V_{TT}

Output Supply Voltage	Amplitude (mV)	V_{TT}
$\mathrm{V}_{\mathrm{DDO}} \mathrm{V}=1.8 \mathrm{~V}$	300	$0.25 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.55 \mathrm{~V}\right)$
	400	$0.15 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.65 \mathrm{~V}\right)$
	550	GND
	700	GND
$\mathrm{V}_{\mathrm{DDO}} \mathrm{V}=3.3 \mathrm{~V}$	300	$1.75 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.55 \mathrm{~V}\right)$
	400	$1.65 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.65 \mathrm{~V}\right)$
	550	$1.5 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.8 \mathrm{~V}\right)$
	700	$1.35 \mathrm{~V}\left(\mathrm{~V}_{\text {DDO_V }}-1.95 \mathrm{~V}\right)$

4.4 Redundant Clock Inputs

The four inputs are compatible with LVDS and LVPECL signal formats, and also support single-ended signals.

4.4.1 Monitoring and LOS of Input Signal

The four inputs are individually and permanently monitored for activity. Inactivity is defined by a static input signal.
The clock input monitors compare the pre-divided device input frequency ($f_{C L K} \div R_{N}$) to the output frequency of the M_{1} divider regardless of the internal feedback path using or not using $M_{1}{ }^{[1]}$. A clock input is declared invalid with the corresponding LOS (Loss-of-input-signal) indicator bit set after three consecutive missing clock edges (at the output of the respective R_{N} divider). LOS is reported for each input CLKn individually through the ST_CLKn (momentary) and LS_CLKn (sticky, resettable) status bits, see Table 25. LOS can be reported by a GPIO output and can also be signaled as an interrupt signal via a GPIO pin. When reported through a GPIO output, the LOS signal represents the combination of the LOS status of enabled CLK_n inputs (GPIO = 0: LOS on any of the enabled inputs, GPIO = 1: all enabled inputs are active). Disable unused inputs by the control bits DIS_CLK n to prevent false LOS reporting.

Dual PLL and synthesizer mode: the M_{1} divider must be set so that the LOS detect reference frequency matches the pre-divided input frequency. For example, if the input frequency is 245.76 MHz and $R_{N}=\div 1, M_{1}$ should be set to $\div 16$: The VCO frequency of 3932.16 MHz divided by 16 equals the input frequency of 245.76 MHz . For an input frequency of 122.88 MHz , set M_{1} to $\div 32$ etc. Failure to set M_{1} to match the input frequency can result in a false LOS indication. The minimum frequency that the circuit can monitor is $f_{V c o} / M_{1}(M A X)=0.24 \mathrm{MHz}$.

VCXO-PLL (PLL-0 only) mode: The VCXO drives the SRC multiplexer output. Set the M_{1} divider to match: $\mathrm{f}_{\mathrm{VCXO}}$ $\div M_{1}=f_{C L K} \div R_{N}$
The LOS function is available in dual PLL, VCXO-PLL, and synthesizer mode (PLL-1 only). In each of the PLL modes, LOS uses the output of the M_{1} divider as a comparison signal and requires a configuration of the M_{1} divider as described above. With a valid M_{1} configuration for LOS, the LOS function is available across the entire input frequency range up to 250 MHz . For input frequencies higher than 250 MHz , use the R_{N} divider to divide the input frequency to 250 MHz or less.

4.4.2 Input Re-Validation

A clock input is declared valid and the corresponding LOS bit is reset after the clock input signal returned for userconfigurable number of consecutive input periods. This re-validation of the selected input clock is controlled by the CNTV setting (verification pulse counter).

[^0]
4.4.3 Clock Selection

The device supports multiple input selection modes: manual, short-term holdover, and two automatic switch modes.

Table 18. Clock Selection Settings

Mode	Description	Application
Manual $\mathrm{nM} / \mathrm{A}=00$	Input selection follows user-configuration of SEL[1:0]. Selection is never changed by the internal state machine. A failing reference clock will cause a LOS event and the PLL will unlock if the failing clock is selected. Re-validation of the selected input clock will result in the PLL to re-lock on that input clock. This mode is supported in each PLL and in PLL bypass (fanout buffer) mode.	Startup and external selection control
Automatic $\mathrm{nM} / \mathrm{A}=01$	Input selection follows LOS status by user preset input switch priorities. A failing input clock will cause a LOS event for that clock input. If the selected clock has a LOS event, the device will immediately initiate a clock failover switch. The switch target is determined by pre-set input priorities. No valid clock scenario: If no valid input clocks exist, the device will not attempt to switch and will not enter the holdover state. The PLL is not locked. Re-validation of any input clock that is not the selected clock will result in the PLL to attempt to lock on that input clock (for more information, see Revertive Switching). This mode is supported in dual PLL and PLL synthesizer modes.	Multiple inputs with qualified clock signals
Short-term Holdover $n M / A=10$	Input selection follows user-configuration of SEL[1:0]. Selection is never changed by the internal state machine. A failing reference clock will cause a LOS event. If the selected reference fails, the device will enter holdover immediately. Revalidation of the selected input clock is controlled by the CNTV setting. A successful re-validation will result in the PLL to re-lock on that input clock. This mode is supported in dual PLL and PLL synthesizer modes.	Single reference
Automatic with Holdover $n M / A=11$	Input selection follows LOS status by user preset input priorities. Each failing input clock will cause a LOS event for that clock input. If the selected clock detects a LOS event, the device will go into holdover and the hold-off down-counter (CNTH) starts. The device initiates a clock failover switch after expiration of the hold-off counter. The switch target is determined by the preset input priorities. No valid clock scenario: If no valid input clocks exist, the device will not attempt to switch and will remain in the holdover state. Re-validation of any input clock will result in the PLL to attempt to lock on that input clock (for more information, see Revertive Switching). This mode is supported in dual PLL mode.	Multiple inputs

4.4.4 Holdover

In holdover state, the output frequency and phase is derived from an internal, digital value based on previous frequency and phase information. Holdover characteristics are defined in AC Characteristics.

4.4.5 Input Priorities

Configurable settings encompass four selectable priorities with the range 0 (lowest priority) to 3 (highest priority). If an input has the priority 0 , it will not be selected as reference input for the PLLs. The user can change the input priorities at any time. In the automatic switch modes, input priority changes may cause immediate input selection changes.

4.4.6 Hold-off Counter

A configurable down-counter applicable to the "Automatic with holdover" selection mode. The purpose of this counter is a deferred, user-configurable, input switch after a LOS event. The counter expires when a zero-transition occurs; this triggers a new reference clock selection. The counter is clocked by the frequencydivided PLL-0 signal. The CNTR setting determines the hold-off counter frequency divider and the CNTH setting
the start value of the hold-off counter. For example, set CNTR to a value of $\div 131072$ to achieve 937.5 Hz (or a period of 1.066 ms at $\mathrm{f}_{\mathrm{VCXO}}=122.88 \mathrm{MHz}$): the 8-bit CNTH counter is clocked by 937.5 Hz and the userconfigurable hold-off period range is $0 \mathrm{~ms}(\mathrm{CNTR}=0 \times 00)$ to $272 \mathrm{~ms}(C N T R=0 x F F)$. After the counter expires, it reloads automatically from the CNTH SPI register. After the LOS status bit (LS_CLKn) for the corresponding input CLK_ n has been cleared by the user, the input is enabled for generating a new LOS event. The CNTR counter is only clocked if the device is configured in the clock selection mode "Automatic with holdover" AND the selected reference clock experiences a LOS event. Otherwise, the counter is automatically disabled (not clocked).

4.5 Revertive Switching

Revertive switching is applicable only to the two automatic switch modes shown in Table 18.

- Revertive switching enabled - Re-validation of any non-selected input clock(s) will cause a new input selection according to the user-preset input priorities (revertive switch). An input switch is only done if the re-validated input has a higher priority than the currently selected reference clock.
- Revertive switching disabled - Re-validation of a non-selected input clock has no impact on the clock selection. Default setting is revertive switching disabled.

4.6 Configuration for JESD204B Operation

4.6.1 SYSREF Generation

A SYSREF event is the generation of one or more consecutive pulses on Q_y outputs where the channel is configured to SYSREF operation. An event can be triggered by a SPI command or by a signal-transition on the EXT_SYS input. The number of SYSREF pulses generated and wait periods in between SYSREF pulses is programmable. The SYSREF signal can also be programmed to be continuous and be started and stopped by a signal on the EXT_SYS input. The N_{x} and N_{-}S frequency divider in each channel configures the SYSREF frequency/pulse rate. SYSREF output pulses are aligned to coincident rising clock edges of channels configured as clock outputs. Device settings for phase alignment between Q_y outputs is discussed in Clock to SYSREF Phase Alignment.
The generation of SYSREF is available after the initial setup of output clock divider and phase delay stages. A SYSREF event will automatically turn on the SYSREF outputs. After the event, SYSREF outputs are automatically turned off (power-down). SYSREF outputs with the nBIAS bit set high will bias the outputs at the LVDS crosspoint voltage level. The following SYSREF pulse generation modes and trigger modes are available and configurable by SPI:

Continues

Figure 10. SYSREF Pulse Generation Modes

Figure 11. SYSREF Trigger Modes

Table 19. SYSREF Generation Modes

SRG	Operation	SYSREF Frequency	Pulse Generation	
			Trigger/Start	Stop
000	EXT_SYS input signal is buffered out to all SYSREF outputs ${ }^{[1]}$	Same as EXT_SYS	Same as EXT_SYS input	
001	EXT_SYS input signal is synchronized to the incident edge of the Q_y (clock) outputs and buffered out to all SYSREF outputs ${ }^{[2][3][4]}$		Same as EXT_SYS input	

Table 19. SYSREF Generation Modes (Cont.)

SRG	Operation	SYSREF Frequency	Pulse Generation		
				Trigger/Start	Stop
010	Externally triggered mode ${ }^{[5]}$	$\begin{gathered} \mathrm{fVCO}_{\mathrm{V}}^{+} \\ \left(\mathrm{N}_{\mathrm{x}} \times \mathrm{N} _\mathrm{S}\right)^{[6]} \end{gathered}$	SRO		
			00	Pulsed, rising edge trigger	Automatically after pulse count ended ${ }^{[7]}$
			01	Pulsed, falling edge trigger	
			10	Rising EXT_SYS edge starts pulses	Falling EXT_SYS edge stops pulses
			11	Falling EXT_SYS edge starts pulses	Rising EXT_SYS edge stops pulses
011	Internally triggered mode		SRO		
			00	Pulsed Set INIT_REF = 1 to start	Automatically after pulse count ended
			01	Pulsed with auto repeat ${ }^{[8]}$ Set INIT_REF = 1	Set SRG = 111
100	Continuous SYSREF mode		00, 10	Set INIT_REF = 1	Set SRG = 111
			01	Rising EXT_SYS edge starts pulses	Set SRG = 111
			11	Falling EXT_SYS edge starts pulses	Set SRG = 111
111	Terminate SYSREF generation ${ }^{[9]}$	-	-		

1. Requires external synchronization.
2. $\operatorname{SRG}=001$: Set the SYSREF channel $N x$ to ≥ 8. To sample the signal at EXT_SYS, the frequency $f_{V C O} \div N x$ in the SYSREF channel should be ≥ 4 times higher than the frequency or pulse rate at EXT_SYS. The EXT_SYS input pulse width should be $T_{P}>1 /\left(f_{V C O} \div N x\right)$. Lower Nx dividers (higher output channel frequencies) allow narrower EXT_SYS input pulses.
3. $\operatorname{SRG}=001$ mode: The output of the (internal) Nx divider determines the signal edge of the SYSREF output (EXT_SYS going high: the next Nx divider rising edge will cause SYSREF outputs to from 0 to 1 . EXT_SYS going low will cause SYSREF outputs to go low at the next $N x$ divider rising edge)
4. Synchronized to the output of the $N x$ channel divider.
5. Set the INIT_REF bit before the first external trigger signal on the EXT_REF input.
6. SYSREF output pulse duty cycle is 50% for $S R G=010,011,100$.
7. Pulse count: Number of generated pulses set by SRPC register (1-255 pulses).
8. In pulsed mode with auto repeat, SRPC defines the number (1-255) of pulses to generate. SRWC defines the length of the stop period (in number of pulses, 1-255) before the next pulses are generated.
9. Terminates continuous SYSREF pulse generation by setting SRG to 111. Output pulses are not truncated (no runt pulse).

The generation of SYSREF pulses is configured by SPI commands and is available after the initial setup of output clock divider and Q_y phase delay stages. A SYSREF event will automatically turn on the SYSREF outputs. After the event in a pulsed mode, SYSREF outputs are automatically turned off (power-down or active low).

Figure 12. RF-PLL JESD204B Circuit Diagram

Table 20. Output Settings for JESD204B/C Applications

$\begin{gathered} \text { BIAS_TY } \\ \text { PE } \end{gathered}$	nBIAS r	Q_y Output (in SYSREF operation)			Application
		Initial	During SYSREF Event	SYSREF Completed	
0	0	Static low $\left(Q _y=L, n Q _y=H\right)$	Start switching for the number of configured SYSREF pulses	Released to static low (Q_y = L, nQ_y = H)	Q_y DC coupled
	1	Static low (Q_y = L, nQ_y = H)			
1	0	Static LVDS crosspoint level (Q_y = nQ_y = VOS)	Start switching for the number of configured SYSREF pulses	Released to static LVDS crosspoint level (Q_y = nQ_y = VOS)	Q_y AC coupled
	1	Static LVDS crosspoint level (Q_y = nQ_y = VOS)			

4.6.2 Clock to SYSREF Phase Alignment

Figure 13 shows phase alignment between the input and any of the Q_y clock/SYSREF and Q_VCXO outputs. In any configuration, Q_y (clock or SYSREF) outputs are automatically aligned on the incident rising edge. Alignment between clock and SYSREF outputs and inputs is achieved by setting the delay circuits to the values specified in Table 21. The alignment is deterministic to the same phase positions across power cycles of the device. By changing the settings of the delay circuits, any phase offsets can be achieved. For example, Figure 14 shows an output phase configuration for clocking JESD204B/C receivers: the phase of the SYSREF outputs is advanced versus the incident edge of the clock outputs. The exact phase alignment can be adjusted by using the phase delay circuits (see Table 13). Different frequency/divider configurations than shown in Table 21 may require different phase delay settings.

Table 21. Example Settings for Phase Alignment

Block/Mode	Setting for Phase Alignment (Figure 13)		Setting for JESD204B/C (Figure 14)	
PLL mode	Dual PLL, internal VCO	$\begin{aligned} & M_{0}=\div 32, M_{1}=\div 32, M_{2}=\div 16 \\ & F B _S E L=1 \\ & \Phi_{F B}=6 \\ & \text { SRG }=100 \end{aligned}$	Dual PLL, internal VCO	$\begin{aligned} & M_{0}=\div 32, M_{1}=\div 32, M_{2}=\div 16 \\ & F B _S E L=1 \\ & \Phi_{F B}=6 \\ & \text { SRG }=100 \end{aligned}$
CLK_n input frequency	122.88 MHz	$\begin{aligned} & R_{N}=\div 1 \\ & P_{0}=\div 32, P_{1}=\div 1 \end{aligned}$	122.88 MHz	$\begin{aligned} & R_{N}=\div 1 \\ & P_{0}=\div 32, P_{1}=\div 1 \end{aligned}$
Q_VCXO output frequency	122.88 MHz		122.88 MHz	
Q_y Clock output frequency	$\begin{aligned} & \hline 122 . \mathrm{MHz} \\ & 245.76 \mathrm{MHz} \\ & 491.52 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & N_{x}=\div 32, \Phi_{\text {WIDE }}=49 \\ & N_{x}=\div 16, \Phi_{\text {WIDE }}=49 \\ & N_{x}=\div 8, \Phi_{\text {WIDE }}=49 \end{aligned}$	$\begin{aligned} & 122 . \mathrm{MHz} \\ & 245.76 \mathrm{MHz} \\ & 491.52 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & N_{x}=\div 32, \Phi_{\text {WIDE }}=53 \\ & N_{x}=\div 16, \Phi_{\text {WIDE }}=53 \\ & N_{x}=\div 8, \Phi_{\text {WIDE }}=53 \end{aligned}$
Q_y SYSREF output	$15.36 \mathrm{MHz},$ continues or pulsed	$\begin{aligned} & \mathrm{N}_{\mathrm{x}}=\div 32 \\ & \mathrm{~N} _\mathrm{S}=\div 8 \\ & \Phi_{\text {WIDE }}=40, \Phi_{\text {FINE }}=0 \\ & \Phi_{\text {ANLG }}=110 \mathrm{~b} \end{aligned}$	7.68 MHz , continues or pulsed	$\begin{aligned} & N_{\mathrm{x}}=\div 32 \\ & \mathrm{~N}^{\mathrm{S}}=\div 16 \\ & \Phi_{\text {WIDE }}=49, \Phi_{\text {FINE }}=0 \\ & \Phi_{\text {ANLG }}=110 \mathrm{~b} \end{aligned}$

Input to Output (Clock and SYSREF) Phase Alignment

Figure 13. Input-to-Output Phase Alignment
SYSREF Output Phase in advance of Clock Output Phase (JESD204B/C)

Figure 14. Output Phase Alignment for JESD204B/C

4.7 General Purpose Input/Outputs (GPIO_[1:0])

The GPIOs are intended to provide the user with a flexible method to manage the control and status of the part via pins without providing dedicated pins for each possible function of the device. Each GPIO pin (GPIO_0, GPIO_1) can be individually configured to operate in one of the following modes:

- General Purpose Input - The GPIO pin will act as an input whose logic level controls a specific function of the device.
- General Purpose Output - The GPIO pin will act as an output that is driven by an internal register state or output of a specific function.

GPIO pins, in the role of a status indicator, have the same polarity as the corresponding register status bit. The GPIO_POL register bit, when set to 1 , inverts the GPIO output state for both GPIO_0 and GPIO_1 pins configured as output. A GPIO input replaces its corresponding register bit or function. For example, if a GPIO pin is configured as PLL-0 Force Holdover, the internal control bit FCV0 has no function.

If the GPIO pins are configured to "Manual input clock selection", the GPIO pins take precedence over the clock input selection by the nM/A[1:0] register bits. If the GPIO_0 and GPIO_1 pins are configured to the same input function with conflicting GPIO_0, GPIO_1 states, the behavior will be undefined.

4.7.1 GPIO Pin Configuration

GPIO pins are all powered off a separate voltage supply that supports 1.8 V operation.
Table 22. GPIO Register Functions

Register	GPIO_0 and GPIO_1 Pins		
$\begin{aligned} & \text { GPIO[7:4], } \\ & \text { GPIO[3:0] }{ }^{[1]} \end{aligned}$	Role	Function	Description
0000	Reserved		
0001	Input	PLL-0 Force Holdover	$0=$ PLL-0 attempts to lock to the selected reference 1 = Forces the device into holdover state
0010	Input	PLL-0 Control Voltage Force	$0=$ PLL-0 attempts to lock or is locked, PLL-0 control voltage is "free". 1 = Forces the control voltage of PLL-0 to $V_{\text {DDC33_V }} / 2$, will unlock PLL-0
0011-0110	Reserved		
$\begin{aligned} & \text { GPIO[3:0] }=0111^{[2]} \\ & \text { GPIO }[7: 4]=x x x x \end{aligned}$	Input	Manual input clock selection	The GPIO_[1:0] pins specify the clock input to select in manual mode $\begin{aligned} & 00=\text { CLK_0 } \\ & 01=\text { CLK_1 } \\ & 10=\text { CLK_2 } \\ & 11=\text { CLK_3 } \end{aligned}$
1000	Output	PLL-0 lock detect	$0=$ PLL-0 is not locked 1 = PLL-0 is locked
1001	Output	PLL-1 lock detect	$\begin{aligned} & 0=\text { PLL- } 1 \text { is not locked } \\ & 1=\text { PLL-1 is locked } \end{aligned}$
1010	Output	PLL-0 and PLL-1 lock detect	$\begin{aligned} & 0=\text { PLL-0 or PLL-0 is not locked } \\ & 1=\text { PLL-0 and PLL- } 1 \text { are both locked } \end{aligned}$
1011	Output	Input Activity Alarm	$0=$ An input activity monitor alarm (LOS) occurred on any enabled CLK_n input. Input enable/disable is controlled by DIS_CLKn. 1 = No input activity alarm

Table 22. GPIO Register Functions (Cont.)

Register	GPIO_0 and GPIO_1 Pins		
GPIO[7:4], GPIO[3:0] ${ }^{[1]}$	Role	Function	Description
1100	Output	Holdover State	$0=$ The device is in the holdover state $1=$ No holdover state
1101	Output	Interrupt	0 = No interrupt occurred 1 = Any of the non-masked status bit has change state to "set" indicating an alarm condition
1110	Reserved		
$\begin{aligned} & \text { GPIO[3:0] }=1111^{[3]} \\ & \text { GPIO[7:4] }=x x x x \end{aligned}$	Output	Selected clock	The GPIO_[1:0] pins indicate the currently selected clock signal $\begin{aligned} & 00=\text { CLK_0 } \\ & 01=\text { CLK_1 } \\ & 10=\text { CLK_2 } \\ & 11=\text { CLK_3 } \end{aligned}$

GPIO[7:4] defines the function of the GPIO_1 pin; GPIO[3:0] defines the function of the GPIO_0 pin.
GPIO[3:0] = 0111 configures both GPIO pins to manual clock selection inputs. The state of GPIO[7:4] does not matter.
GPIO[3:0] $=1111$ configures both GPIO pins to clock selection status outputs. The state of GPIO[7:4] does not matter.

4.7.2 GPIO Pin Configuration at Startup

Both GPIO pins are sampled at the rising edge of the internal reset signal and are used in setting the initial configuration. Table 23 shows which pins are used to control what aspects of the initial configuration. All of these register settings can be over-written later via serial port accesses.

Table 23. GPIO_0 Pin Configuration At Startup

Register Default	GPIO_0	
	Role	Function
GPIO[3:0] $=1011$	Output	Input activity alarm

Table 24. GPIO_1 Pin Configuration At Startup

Register Default	GPIO_1	
	Role	Function
GPIO[7:4] $=1010$	Output	PLL-0 and PLL-1 lock detect

4.8 Status Conditions and Interrupts

The device has an interrupt output to signal changes in status conditions. Settings for status conditions can be accessed in the Status registers. The device has several conditions that can indicate faults and status changes in the operation of the device. These are shown in Table 25 and can be monitored directly in the status registers. Status bits (named: ST_condition) are read-only and reflect the momentary device status at the time of readaccess. Several status bits are also copied into latched bit positions (named: LS_condition). The latched version is controlled by the corresponding fault and status conditions and remains set ("sticky") until reset by the user by writing 1 to the status register bit.

The reset of the status condition has an effect only if the corresponding fault condition is removed; otherwise, the status bit will set again. Setting a status bit on several latched registers can be programmed to generate an interrupt signal via settings in the Interrupt Enable bits (named: INTEN_condition). A setting of 0 in any of these bits will mask the corresponding latched status bit from affecting the GPIO configured as an interrupt pin. Setting
all INTEN_condition bits to 0 has the effect of disabling interrupts from the device. Interrupts are cleared by resetting the appropriate bit(s) in the latched register after the underlying fault condition has been resolved. When all valid interrupt sources have been cleared in this manner, this will release the GPIO output until the next unmasked fault.

Table 25. Status Bit Functions

Status Bit		Function				
Momentary	Latched	Description	Status if Bit is:		Interrupt signal on selected GPIO	
			1	0	Enable Bit Name	Reporting
ST_CLK0	LS_CLK0	CLK 0 input loss of signal	Active	Loss of signal(LOS)	INTEN_CLKO	$\begin{gathered} 1 \text { = Loss of } \\ \text { CLK0 } \end{gathered}$
ST_CLK1	LS_CLK1	CLK 1 input loss of signal			INTEN_CLK1	$\begin{gathered} \hline \text { = Loss of } \\ \text { CLK1 } \end{gathered}$
ST_CLK2	LS_CLK2	CLK 2 input loss of signal			INTEN_CLK2	$\begin{gathered} 1=\text { Loss of } \\ \text { CLK2 } \end{gathered}$
ST_CLK3	LS_CLK3	CLK 3 input loss of signal			INTEN_CLK3	$\begin{gathered} 1=\text { Loss of } \\ \text { CLK3 } \end{gathered}$
$\underset{K}{\text { ST_PLLOLOC }}$	$\underset{K}{\text { LS_PLLO_LOC }}$	PLL-0 lock state	Locked	$\begin{aligned} & \text { Loss of lock } \\ & \text { (LOL) } \end{aligned}$	INTEN_PLLO_ LOCK	$\begin{gathered} 1=\text { PLL-0 Loss } \\ \text { of lock } \end{gathered}$
$\underset{K}{\text { ST_PL1_LOC }}$	$\underset{K}{\text { LS_PLL_LOC }}$	PLL-1 lock state			INTEN_PLL1_ LOCK	$\begin{gathered} 1= \\ =\text { PLL-1 Loss } \\ \text { of lock } \end{gathered}$
$\underset{\mathrm{D}}{\mathrm{ST} \text { PLLO_HOL }}$	$\underset{\mathrm{D}}{\mathrm{LS} \text { LPLLOHOL }}$	Holdover	PLL-0 not in holdover	PLL-0 in holdover	INTEN_PLLO_ HOLD	1 = PLL-0 went into holdover
ST_PLLO_REF	LS_PLLO_REF	PLL-0 reference status	Valid reference	Reference lost ${ }^{[1]}$	$\begin{gathered} \text { INTEN_PLLO_ } \\ \text { REF } \end{gathered}$	1 = Selected input lost reference
-	$\begin{gathered} \text { LS_HOLD_DA } \\ \text { C[14:0] } \end{gathered}$	PLL-0 Holdover value	Binary Coding		-	-
$\begin{gathered} \text { ST_BIT_DO[8: } \\ 0] \end{gathered}$	-	PLL-1 Band Selection	Binary Coding		-	-
ST_REF[1:0]	-	Clock input selection	$\begin{aligned} & 00=\text { CLK_0 } \\ & 01=\text { CLK_1 } \\ & 10=\text { CLK_2 } \\ & 11=\text { CLK_3 } \end{aligned}$		-	-
ST_FCV0	-	Status of forced mid for PLL-0	Forced to mid level	Normal PLL lock	-	-
$\begin{gathered} \text { ST_RCOSC_I } \\ \text { NITCLK } \end{gathered}$	-	Completion of output divider synchronization	Not completed	Completed	-	-

1. "Manual" mode: 0 indicates if the reference selected by SEL[1:0] is lost.
"Automatic (no holdover)" mode: 0 indicates if all reference clocks are lost or inactive (by DIS_CLKn bit).
"Short-term holdover" and Automatic with holdover" modes: 0 indicates the reference is lost and still in holdover.

4.9 Power-Down Features

Applications now using all functional blocks of the device can use power-down settings to reduce power consumption and to minimize on-chip crosstalk (see Table 26).

Table 26. Power-Down Settings

Operation/Block	Power-Down Setting	
Unused outputs	Set PD_y = 1 and PD_SYSREF_y $=1$	Individual output power down, channel remains powered up
Unused output channel	Set PD_x = 1	Channel with all associated outputs, frequency divider, and delay circuits is powered down (overwrites PD_y = 1, PD_SYSREF_y setting)
Output channel used as clock output	Set PD_SYSREF_y = 1	Power down SYSREF signal path and associated $\Phi_{\text {FINE }}$ and $\Phi_{\text {ANLG }}$ delay circuits
Unused Q_VCXO output	Set PD_Q_VCXO	Q_VCXO output power down
Unused input	Set DIS_CLKn	Disable individual, unused inputs
Dual PLL mode, internal VCO	Set PD_M1 = 1	If FBSEL_PLL_0 $=0$ and no input monitoring (LOS) is used, M_{1} can be powered down
Dual PLL mode	Set PD_M1 = 1	If FBSEL_PLL_0 = 0 and no input monitoring (LOS) is used, M_{1} can be powered down
Single PLL mode (PLL-0 only)	Set PD_M1 = 1 Set PD_M2 = 1	If no input monitoring (LOS) is used, M_{1} can be powered down
Single PLL mode (PLL-1 only)	Set PD_M0 = 1 Set PD_M1 = 1	If no input monitoring (LOS) is used, M_{1} can be powered down
PLL bypass mode	Set PD_M0 = 1 Set PD_M1 = 1 Set PD_M2 = 1	
SYSREF operation when not actively generating SYSREF signals	PD_x (of SYSREF channels) PD_SYSREF_y	Applicable to the channels generating SYSREF signals

4.10 Device Startup, Reset, and Synchronization

At startup, an internal POR (power-on reset) resets the device and sets all register bits to its default value. The device forces the VCXO control voltage at the ICP_0 pin to half of the power supply voltage (about 50\% of VDD33_CP0) to center the VCXO-frequency. Clear the FCV0 register bit in or release the VCXO-PLL and it will attempt lock to the input frequency.
In the default configuration the Q_y outputs are disabled at startup.

4.10.1 Recommended Configuration Sequence (In Order)

1. (Optional) Set the values of the CPOL, LSBIT_1ST, SDO_ACT, and ASC_ON register bits to define the SPI read mode, bit order, and the SPI 3/4-wire mode. If no bits are set, the device will be in 3-wire mode, data output on falling SCLK edge, bit order is MSB first, and addresses are auto-incremented.
2. Configure all PLL settings, output divider, and delay circuits as well as other device configurations.
a. FBSEL_PLL_0, BYP_0, FD_1, SRC and (optional) P2_SEL for the desired PLL operation mode and configure the PLL and input dividers $R N, P_{0}, M_{0}, M_{1}, M_{2}$, and P_{1} as required to achieve PLL lock on both PLLs.
b. Charge pump currents and control bits for both PLLs (I_CP0/1_PD, I_CP0/1_SINK_EN, I_CPO/1, CPO_POL, FCVO, and I_CP0/1_OFFSET).
c. (Optional) $\mathrm{CP}[0,1]$ OFFSET for PLL static phase offset.
d. LOCK_TH and LOCK_GOOD_COUNT[1:0] for the desired PLL-0 lock characteristics.
e. nC/S_SEL_ x, EXT_VCO_SEL_ y for the channel operation and the dividers $N _x 0, N _x 1, N _S$ for output frequency generation incl. SYSREF.
f. Output features such as the desired output amplitude, style, power-down state, BIAS_TYPE_x and nBIAS_x for SYSREF outputs
g. Desired input selection and monitoring modes: This involves nM/A and SEL for input selection. In any of the automatic modes, configure PRIO[1:0]_n, BLOCK_LOR, and REVS. Configure the CNTH and CNTR counters for the desired holdover characteristics and CNTV[1:0] for input revalidation if applicable to the operation mode.
h. Set the individual delay registers $\Phi_{\text {FB }}, \Phi_{\text {WIDE_x }}, \Phi_{\text {FINE_y }}$, and $\Phi_{\text {ANLG_y }}$ for the desired phase alignment.
i. (Optional) Configure the interrupt enable configuration bits IE_status_condition, as desired for fault reporting.
j. (Optional) Configure the desired GPIO function.
k. Additional SYSREF operation settings: SRG, SRO, and SRPC, SRWC according to the desired SYSREF operation.
3. Write a logic 1 to INIT_CLK to synchronize output dividers, then wait at least 1 ms . Do not combine steps 4 and 5 in a single SPI write cycle.
4. Write a logic 1 to RELOCK, then wait at least 1 ms for PLL-1 to lock (if $\mathrm{SRC}=00,10$, or 11 , skip this step). Write logic 0 to FCVO: Release the VCXO control voltage; VCXO-PLL will attempt to lock to the input clock signal starting from its center frequency.
5. Clear the status flags.
6. Enable the outputs as desired by accessing the output-enable registers.
7. (Optional) For SYSREF pulse generation, write a logic 1 to RS to enable pulse generation. Do not combine this step with step 3, 4, or 5.

4.10.2 Changing Frequency Dividers and Phase Delay Values

4.10.2.1 Clock Frequency Divider and Delay

1. (Optional) Set the values of the CPOL, LSBIT_1ST, SDO_ACT, and ASC_ON register bits to define the SPI read mode, bit order and the SPI 3/4-wire mode. If no bits are set, the device will be in 3-wire mode, data output on falling SCLK edge, bit order is MSB first and addresses are auto-incremented.
2. Re-configure all PLL settings, output divider, and delay circuits as well as other device configurations as desired.

For any changes in a clock output channel (clock divider and delay), write a logic 1 to INIT_CLK to synchronize output dividers, then wait at least 1 ms . Changing SYSREF delay does not require to set INIT_CLK.

4.10.2.2 SYSREF Frequency Divider, Delay, and Starting/Re-Starting SYSREF Pulse Sequences SRG $=000$ and SRG $=001$ (EXT_SYS input buffered to SYSREF outputs)

1. Apply the external EXT_SYS signal edge.
2. To end SYSREF pulse generation, change SRG to a different configuration.

To re-start after SYSREF has ended, set the SRG bits again and go to step 1.
SRG = 010 and SRO = 00 or 01 (externally triggered SYSREF mode)

1. Configure the desired number of pulses.
2. Write 1 to RS .
3. Apply the external EXT_SYS signal.
4. SYSREF pulses are generated until completion of number of programmed pulses.

To re-start with the same number of pulses, go to step 3 . To change the number of pulses, go to step 1).
SRG = 010 and $\mathrm{SRO}=10$ or 11 (externally triggered SYSREF mode)

1. Write 1 to RS, then apply the external EXT_SYS signal.
2. Rising (falling) EXT_SYS signal edge starts pulse generation.
3. Falling (rising) EXT_SYS signal edge stops pulse generation.

To re-start, go to step 2.
SRG = 011 and SRO = 00 (internally triggered SYSREF mode, pulsed)

1. Configure the desired number of pulses.
2. Write 1 to RS.
3. SYSREF pulses are generated and end as configured.

To re-start with the same number of pulses, go to step 2 . To change the number of pulses, go to step 1.
SRG = 011 and $S R O=01$ (internally triggered SYSREF mode, pulsed with auto-repeat)

1. Configure the desired number of pulses.
2. Write 1 to RS .
3. SYSREF pulses are generated.

To end pulse generation, set SRG = 111 .
To re-start, set SRG = 011 and go to step 1 .
SRG = 100 (continuous SYSREF mode)

1. Write 1 to RS.
2. SYSREF pulses are generated.
3. To end SYSREF pulse generation, set SRG $=111$.

To re-start after SYSREF has ended, set the SRG = 100 and go to step 1.

4.11 SPI Interface

The 8V19N880 has a configurable 3-wire/4-wire serial control port capable of responding as a slave in an SPI configuration to allow read and write access to any of the internal registers for device programming or read back. The SPI interface consists of the SCLK (clock), SDAT (serial data input and output in 3-wire mode, input in 4-wire mode), MISO (serial data output in 4-wire mode), and nCS (chip select) pins. After power-up, the SPI interface is in 3 -wire mode. A data transfer consists of a direction bit, 15-bit address bits any integer multiple of 8 data bits and is always initiated by the SPI master on the bus. Internal register data is organized in SPI bytes of 8-bit each.

If nCS is at logic high, the SDAT data I/O is in high-impedance state and the SPI interface of the device is disabled.

In a write operation, data on SDAT will be clocked into the 8V19N880 on the rising edge of SCLK. In a read operation, data on SDAT / MISO will be clocked out of the 8V19N880 on the falling or rising edge of SCLK depending on the CPOL setting (CPOL $=0$: output data changes on the falling edge [SPI master will capture data on the rising edge of SCLK]; $C P O L=1$: output data changes on the rising edge [SPI master will capture data on the falling edge of SCLK]).

SPI 4 wire configuration: Use the register bits SDO_ACT and <SDO_ACT> to configure the interface to 4-wire if desired. On startup, the device is on 3-wire mode. In 4-wire mode, the MISO pin is designated for SPI data outputs. In 3-wire mode, SDAT is the data output (shared with data input).

Starting a data transfer requires nCS to set and hold at logic low level during the entire transfer. Setting nCS = 0 will enable the SPI interface with SDAT in data input mode. The master must initiate the first 8-bit transfer. The first bit presented by the SPI master in each transfer is the MSB (most significant bit). The first bit presented to the slave is the slave address bits $\mathrm{A}[15: 1]$ pointing to an internal register in the address space 0 to 127 , followed by the direction bit R/nW (1 = Read, $0=$ Write)

Read operation from an internal register to the data output (pin SDAT in 3-wire, pin MISO in 4-wire mode): a read operation starts with a 16-bit transfer from the master to the slave: SDAT (input) is clocked on the rising edge of SCLK. First presented on the slave is the address, designated by bits $\mathrm{A}[15: 1]$, pointing to and internal register in the address space 0 to 127 , followed by the direction bit $\mathrm{R} / \mathrm{nW}=1$ to indicate a read transfer. After the first 16 bits are clocked into SDAT, the register content addressed by $A[15: 1]$ are loaded into the shift register and the next 8 SCLK falling (CPOL=1) clock cycles will then present the loaded register data on the SPI data output and transfer these to the master. In SPI 3-wire mode, the SDAT I/O changes to output.
Transfers must be completed by de-asserting nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is undefined. SPI byte (8 bit) and back-to-back read transfers of multiple registers are supported with an address auto-increment. During multiple transfers, nCS must stay at logic low level and SDAT will present multiple registers (A), $(A+1),(A+2)$, etc. with each 8 SCLK cycles. During SPI Read operations, the user can continue to hold nCS low and provide further bytes of data for up to a total of $0 x A 7$ bytes in a single block read.

Write operation to a device register: During a write transfer, a SPI master transfers one or more bytes of data into the internal registers of the device. A write transfer starts by asserting nCS to low logic level. The first bit presented by the master must set the direction bit R / nW to 0 (Write) and the 15 address bits $\mathrm{A}[1: 15$] must contain the 15-bit register address. Bits D0 to D7 contain 8 bits of payload data, which is written into the register addressed by $\mathrm{A}[1: 15]$ at the end of an 8 -bit write transfer. Multiple, subsequent register transfers from the master to the slave are supported by holding nCS asserted at logic low level during write transfers. The 15-bit register address will auto-increment. Transfers must be completed with de-asserting nCS after any multiple 8 SCLK cycles. If nCS is de-asserted at any other number of SCLKs, the SPI behavior is undefined.

End of transfer: After nCS is de-asserted to logic 1, the SPI bus is available to transfers to other slaves on the SPI bus. See also the READ diagram (Figure 15) and WRITE (Figure 16) displaying the transfer of two bytes of data from and into registers.

Registers 0xA8 to 0xFF. Registers in the address range 0xA8 to 0xFF should not be used. Do not write into any registers in the 0xA8 to 0xFF range.

MSB is transmitted first: LSB_1ST = 0 (default)

LSB is transmitted first: LSB_1ST = 1

Figure 15. Logic Diagram: SPI 3-wire READ Data from Registers for CPOL = 0 and CPOL $=1$

MSB is transmitted first: LSB_1ST = 0 (default)

LSB is transmitted first: LSB_1ST = 1

Figure 16. Logic Diagram: SPI 3/4-wire WRITE Data into Registers

Table 27. SPI Read / Write Cycle Timing Parameters

Symbol	Parameter	Test Condition	Minimum	Maximum	Unit
$\mathrm{f}_{\text {SCLK }}$	SCLK frequency			20	MHz
$\mathrm{t}_{\mathrm{S} 1}$	Setup time, nCS (falling) to SCLK (rising)		5		ns
$\mathrm{t}_{\mathrm{S} 2}$	Setup time, SDAT (input) to SCLK (rising)		5		ns
$\mathrm{t}_{\mathrm{S} 3}$	Setup time, nCS (rising) to SCLK (rising)		5		ns
$\mathrm{t}_{\mathrm{H} 1}$	Hold time, SCLK (rising) to SDAT (input)		5		ns
$\mathrm{t}_{\mathrm{H} 2}$	Hold time, SCLK (falling) to nCS (rising)			12	ns
$\mathrm{t}_{\text {PD1F }}$	Propagation delay, SCLK (falling) to SDAT or to MISO	CPOL=0		12	ns
$\mathrm{t}_{\text {PD1R }}$	Propagation delay, SCLK (rising) to SDAT or to MISO	$\mathrm{CPOL=1}$		12	ns
$\mathrm{t}_{\text {PD2 }}$	Propagation delay, nCS to SDAT disable				

Figure 17. SPI Timing Diagram

5. Register Descriptions

5.1 Register Map

Table 28. Register Map

Register Address	Register Description
	Device Configuration Registers
0x00-0x01	SPI Configuration and Soft Reset
0×03	Device Type
0x04-0x05	Device Identifier
0x06	Device Version
0x0C-0x0D	Vendor Identifier
	Input, PLL-0 Frequency Divider and Control Registers
$0 \times 10-0 \times 11$	PLL-0 Input Divider P_{0}
0×12	CLK_n Input Divider R_{N}
0×13	PLL-0 Lock Detect Control, CLK_n Disable
0x14-0x15	PLL-0 Feedback Divider
0x16-0x17	PLL-0 Lock Detect Threshold
0x18-0x19	PLL-0/-1 Feedback Divider M_{1}
$0 \times 1 \mathrm{~A}-0 \times 1 \mathrm{~B}$	PLL-0/-1 Feedback Delay and M_{1} Power Down
	PLL-0 Charge Pump Control Registers
0x1C-0x1D	PLL-0 Charge pump settings
	PLL-1 Input and Bypass Control Registers
0x20	Frequency Doubler, PLL-1 Pre-Divider
0x21	PLL-1 Bypass controls
	PLL-1 Charge Pump Control Registers
0x28-0x29	PLL-1 Charge pump settings
	PLL-1 Feedback Control Registers
0x2C	PLL-1 Feedback Divider
0x2D	M_{2} Power Down, PLL-1 Feedback Divider
	Reference Switching Registers
0x34	Input switch priority
0×35	Block LOR, input switch modes, input manual select and switch control
0×36	Automatic with holdover counter period
0×37	Re-validation Count, Automatic with Holdover divide
	SYSREF Control Registers
0×38	SYSREF frequency/pulse rate divider
$0 \times 3 \mathrm{~A}$	SYSREF pulse wait counter SRWC
$0 \times 3 \mathrm{~B}$	SYSREF pulse counter SRPC
0x3D	SYSREF pulse generation control

Table 28. Register Map (Cont.)

Register Address	Register Description
Output Channel Registers	
$0 \times 40-0 \times 43$	Channel A: N_{A} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude $/ 1.8 \mathrm{~V}$ control, BIAS_TYPE and nBIAS
$0 \times 44-0 \times 47$	Channel B: N_{B} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude $/ 1.8 \mathrm{~V}$ control, BIAS_TYPE and nBIAS
$0 \times 48-0 \times 4 B$	Channel C: N_{C} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude/1.8V control, EXT_VCO_SEL
0x4C-0x4F	Channel D: N_{D} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude/1.8V control, EXT_VCO_SEL
0x50-0x53	Channel E: N_{E} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude/1.8V control, BIAS_TYPE and nBIAS
0x54-0x57	Channel F: N_{F} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude/1.8V control, BIAS_TYPE and nBIAS
0x58-0x5B	Channel G: N_{G} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude $/ 1.8 \mathrm{~V}$ control, BIAS_TYPE and nBIAS
$0 \times 5 \mathrm{C}-0 \times 5 \mathrm{~F}$	Channel H: N_{H} Frequency Divider, Delay (Wide), Power Down, Clock/SYSREF Selector, Amplitude $/ 1.8 \mathrm{~V}$ control, BIAS_TYPE and nBIAS
Output Registers	
0x60-0x61	Output Q_A0 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x62-0x63	Output Q_A1 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x64-0x65	Output Q_B0 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x66-0x67	Output Q_B1 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x68-0x69	Output Q_C0 State: power down, amplitude, SYSREF phase
0x6A-0x6B	Output Q_C1 State: power down, amplitude, SYSREF phase
0x6C-0x6D	Output Q_D0 State: power down, amplitude, SYSREF phase
$0 \times 6 \mathrm{E}-0 \times 6 \mathrm{~F}$	Output Q_D1 State: power down, amplitude, SYSREF phase
0x70-0x71	Output Q_E0 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x72-0x73	Output Q_E1 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x74-0x75	Output Q_E2 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x76-0x77	Output Q_FO State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x78-0x79	Output Q_F1 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x7A-0x7B	Output Q_G0 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x7C-0x7D	Output Q_G1 State: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x7E-0x7F	Output Q_HO: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x80-0x81	Output Q_H1: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x82-0x83	Output Q_H2: power down, LVDS/LVPECL style, amplitude, SYSREF phase
0x84	Output Q_VCXO power down, LVDS/LVPECL style
GPIO and Status Registers	
0x88	GPIO control
0x89	GPIO output signal polarity

Table 28. Register Map (Cont.)

Register Address	Register Description
	Output Enable Registers
0x8C	Interrupt enable control
	Output Enable Registers
0x90-0x92	Latch status bits
0x94-0x97	Momentary status bits
	Synchronization Control Registers
0x98-0x99, 0x9B	Synchronization bits
0x9C-0x9E	Output Enable
0xA8-0xFF	Reserved. Do not write into this register address range

5.2 Register Descriptions

This section contains all addressable registers, sorted by function, followed for a detailed description of each bit field for each register. Several functional blocks with multiple instances in this device have individual registers controlling their settings, but since the registers have an identical format and bit meaning, they are described only once, with an additional table to indicate their addresses and default values. All writable register fields will start up with default values as indicated in the (Factory) Default column unless altered by values loaded from non-volatile storage during the initialization sequence.

Fixed read-only bits will have defaults as indicated in their specific register descriptions. Read-only status bits will reflect valid status of the conditions they are designed to monitor once the internal power-up reset has been released. Unused registers and bit positions are Reserved. Reserved bit fields may be used for internal debug test and debug functions.

Note: All default values in the register tables are binary.

5.2.1 Device Configuration Registers

Table 29. Device Configuration Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x00	SRESET	LSBIT_1ST	ACS_ON	SDO_ACT	<SDO_ACT>	<ACS_ON>	<LSBIT_1ST>	<SRESET>
0x01	Reserved							CPOL
0×03	DEV_TYPE[7:0]							
0x04	DEV_ID[7:0]							
0x05	DEV_ID[15:8]							
0x06	DEV_VER[7:0]							
$0 \times 0 \mathrm{C}$	VENDOR_ID[7:0]							
0x0D	VENDOR_ID[15:8]							

Table 30. Device Configuration Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
$\begin{gathered} \text { SRESET } \\ \text { <SRESET> } \end{gathered}$	R/W Auto-Clear		Soft Reset: $0=$ Normal operation. $1=$ Register reset. The device loads the default values into the registers $0 \times 02-$ 0xA7. The content of the register addresses 0×00 and 0×01 and the SPI engine are not reset. SRESET bit D7 is mirrored with <SRESET> in bit position D0. Register reset requires to set both SRESET and <SRESET> bits.
$\begin{gathered} \hline \text { LSBIT_1ST } \\ \text { <LSBIT_1ST> } \end{gathered}$	R/W		Least Significant Bit Position: Defines the bit transmitted first in SPI transfers between slave and master. $0=$ The most significant bit (D7) first $1=$ The least significant bit (D0) first LSBIT_1ST bit D6 is mirrored with <LSBIT_1ST> in bit position D1. Changing LSBIT_1ST to most significant bit requires to set both LSBIT_1ST and <LSBIT_1ST> bits.
$\begin{aligned} & \text { ASC_ON } \\ & \text { <ASC_ON> } \end{aligned}$	R/W	1 Value: on, addresses autoincrement	Address Ascend on: $0=$ Address ascend is off (addresses auto-decrement in streaming SPI mode) 1 = Address ascend is on (addresses auto-increment in streaming SPI mode) The ASC_ON bit specifies whether addresses are incremented or decremented in streaming SPI transfers. ASC_ON bit D5 is mirrored with <ASC_ON> in bit position D2. Changing ASC_ON to "ON" requires to set both ASC_ON and <ASC_ON> bits.
$\begin{aligned} & \text { SDO_ACT } \\ & \text { <SDO_ACT> } \end{aligned}$	R/W	$\begin{gathered} 0 \\ \text { Value: SPI-3- } \\ \text { wire mode } \end{gathered}$	SPI 3/4 Wire Mode: Selects the unidirectional or bidirectional data transfer mode for the SDAT pin. 0 = SPI 3-wire mode: - SDAT is the SPI bidirectional data I/O pin - MISO pin is not used and is in static low state 1 = SPI 4-wire mode - SDAT is the SPI data input pin - MISO is the SPI data output pin SDO_ACT bit D4 is mirrored with <SDO_ACTIVE> in bit position D3. Changing SDO_ACT to SPI 4-wire mode requires to set both SDO_ACT and <SDO_ACT> bits.
CPOL	R/W	$\begin{gathered} 0 \\ \text { Value: data } \\ \text { output at } \\ \text { falling SCLK } \\ \text { edge } \end{gathered}$	SPI Read Operation SCLK Polarity: $0=$ Data bits on SDAT are output at the falling edge of SCLK edge (SPI master will capture data on the rising edge of SCLK) 1 = Data bits on SDAT are output at the rising edge of SCLK edge (SPI master will capture data on the falling edge of SCLK)
DEV_TYP[7:0]	R only	00000110 Value: RF- PLL	Device (Chip) Type: Reads 0x06 (RF-PLL) after power-up and reset.
DEV_ID[15:0]	R only	$\begin{gathered} 0 \times 04: \\ 01001000 \\ 0 \times 05: \\ 00000000 \\ \text { Value: } 0 \times 0048 \end{gathered}$	Device Identifier: Device is composed of registers 0×04 (low byte) and register 0×08 (high byte). Reads 0×0048 after power-up and reset.

Table 30. Device Configuration Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
DEV_VER[7:0]	R only	00001011	Device Version:
		Value: 0x0B	

5.2.2 Input, PLL-0 Frequency Divider and Control Registers

Table 31. Input, PLL-0 Frequency Divider, and Control Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x10	P0[7:0]							
0×11	Reserved	PO[14:8]						
0x12	R3[1:0]		R2[1:0]		R1[1:0]		R0[1:0]	
0x13	Reserved		LOCK_G	UNT[1:0]	DIS_CLK3	DIS_CLK2	DIS_CLK1	DIS_CLK0
0×14	M0[7:0]							
0x15	PD_M0	MO[14:8]						
0x16	LOCK_TH[7:0]							
0×17	Reserved	LOCK_TH[14:8]						
0x18	M1 [7:0]							
0x19	$\begin{gathered} \text { FBSEL_PL } \\ \text { LO } \end{gathered}$	Reserved	M1[13:8]					
$0 \times 1 \mathrm{~A}$	ФFB[7:0]							
$0 \times 1 \mathrm{~B}$	PD_M1	Reserved			ФFB[11:8]			

Table 32. Input, PLL-0 Frequency Divider and Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
P0[14:0]	R/W	$\begin{gathered} 0000010 \\ 00000000 \\ \text { Value: } \div 512 \end{gathered}$	PLL-0 Input Frequency Pre-Divider Register: The value of the frequency divider P_{0} (binary coding) Range: $\div 1$ to $\div 32,767$.
Rn[1:0]	R/W	00 Value for Rn: $\div 1$	Input Frequency Divider for inputs CLKn ($\mathrm{n}=0$ to 3) Use $\div 1$ if the input frequency at the CLK n input is less than 250 MHz , otherwise, use a higher divider value to scale the frequency into the P_{0} divider to $\leq 250 \mathrm{MHz}$. $\begin{aligned} & 00=\div 1 \\ & 01=\div 2 \\ & 10=\div 4 \\ & 11=\div 8 \end{aligned}$

Table 32. Input, PLL-0 Frequency Divider and Control Register Descriptions (Cont.)

Register Description				
Bit Field	Field Type	Default	Description	
$\begin{aligned} & \text { LOCK_GOO } \\ & \text { D_COUNT[1 } \\ & : 0] \end{aligned}$	R/W	00	PLL-0 Lock indicator counter. The device reports PLL-0 lock when the phase difference between both signals into the phase detector PLL-0 is lower than or equal to the phase difference set by LOCK_TH[14:0] for more than the number of clock cycles (of the M_{0} divider output) set in this register. $\begin{aligned} & 00=10,000 \text { clock cycles (default) } \\ & 01=100,000 \text { clock cycles } \\ & 10=1,000,000 \text { clock cycles } \\ & 11=10,000,000 \text { clock cycles } \end{aligned}$	
DIS_CLKn	R/W		Input Disable for inputs CLKn (n=0 to 3) Set to 1 to disable any CLK n input, applicable for cases where inputs are not connected. $0=$ Input CLKn and the associated clock input Divider Rn is enabled $1=$ Input CLKn and the associated clock input Divider Rn is disabled	
MO[14:0]	R/W	$\begin{gathered} 0000010 \\ 00000000 \\ \text { Value: } \div 512 \end{gathered}$	PLL-0 Feedback Divider: The value of the frequency divider M_{0} (binary coding). Range: $\div 1$ to $\div 32,767$. The input frequency to the M_{0} divider (output frequency of the FBSEL_PLL_0 multiplexer) must not exceed 250 MHz .	
PD_M0	R/W	0 (M0 Power up)	PLL-0 Feedback divider M_{0} power down state $0=M_{0}$ is powered up $1=M_{0}$ is powered down	
$\begin{gathered} \text { LOCK_TH[1 } \\ 4: 0] \end{gathered}$	R/W	$\begin{gathered} \hline 0000001 \\ 00000000 \\ \text { Value: } 256 \end{gathered}$	PLL-0 Lock Detect Phase Window Threshold: The device reports PLL-0 lock when the phase difference between both signals into the phase detector PLL-0 is lower than or equal to the phase difference set by LOCK_TH[14:0] for more than the number of clock cycles (of the M_{0} divider output) set in LOCK_GOOD_COUNT. Requires $\mathrm{M}_{0} \geq 4$. Set LOCK_TH[14:0] < $\left(\mathrm{M}_{0} \div 2\right)$. PLL-0 phase detector frequencies are: - $\mathrm{f}_{\text {CLK }} \div\left(\mathrm{Rn} \times \mathrm{P}_{0}\right)$ - $f_{V C x O} \div\left(M_{0}[\times 2\right.$ if P3_SEL $\left.=1]\right)$ is the internal output of the M_{0} divider	
M1[13:0]	R/W	$\begin{gathered} 000000001 \\ 10010 \\ \text { Value }=\div 50 \end{gathered}$	PLL-0/-1 Feedback-Divider. The value of the frequency divider (binary coding) Range: $\div 1$ to $\div 16,383$ If the input frequency to M_{1} is $>1 \mathrm{GHz}$, use M_{1} settings of $\div 8$ and higher.	
FBSEL_PLLO	R/W	1 Value: PLL-0 feedback through M_{1} $\times \mathrm{M}_{0}$ dividers	Feedback path selector for PLL-0. Controls the routing of the PLL-0 feedback path applicable to dual PLL mode. $\text { FBSEL_PLLO = } 0$ FBSEL_PLLO $=1$ (preferred)	
			Independent PLL feedback: PLL-0 feedback path through the M_{0} divider (and through an additional $\div 2$ if P3_SEL $=1$).	Preferred feedback configuration for achieving deterministic delay from input to the outputs. PLL-0 feedback path through the $\mathrm{M}_{1} \times \mathrm{M}_{0}$ dividers.

Table 32. Input, PLL-0 Frequency Divider and Control Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
ФFB[11:0]	R/W	$\begin{aligned} & 00000000 \\ & 0000 \\ & \text { Value: Ons } \end{aligned}$	PLL feedback phase delay. Inserts the specified phase delay to achieve an input-tooutput phase alignment in dual PLL mode. ФFB[11:0]
			PLL Feedback Phase Delay in ps $=\Phi$ FB $\times 254$ ps (4096 steps) $000000000000=0 n s$ $111111111111=1,041.41 \mathrm{~ns}$
PD_M1	R/W	0	PLL-0/PLL-1 feedback divider M_{1} power down state $0=$ Feedback divider M1 is powered up. 1 = Feedback divider M1 is powered down PD_M1 must be set to 0 (power up) for using the device function: input monitoring.

5.2.3 PLL-0 Charge Pump Control Registers

Table 33. PLL-0 Charge Pump Control Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x1C	I_CP0_PD	Reserved	I_CP0_SIN K_EN	I_CP0_X2		I_CP0[3:0]		
0x1D	CP0_POL	FCV0	I_CP0_OFFSET[5:0]					

Table 34. PLL-0 Charge Pump Control Register Descriptions

Register Description				
Bit Field	Field Type	Default	Description	
I_CP0_PD	R/W	0 Value: Power up	PLL-0 Charge pump power state 0 = Power up 1 = Power down and disabled	
$\underset{\text { _EN }}{\substack{\text { I_CPO_SINK }}}$	R/W		PLL-0 Enable charge pump sink current 0 = Disabled 1 = Enabled sink current, sink and source currents are equal	
I_CP0_X2	R/W	1	PLL-0 Charge pump current multiplier. $0=1 \mathrm{x}$ ($100 \mu \mathrm{~A}$ current steps for I_CPO[3:0]) $1=2 x(200 \mu A$ current steps for I_CPO[3:0])	
I_CP0[3:0]	R/W	$\begin{gathered} 0000 \\ \text { Value: } \\ 1.6 \mathrm{~mA} \end{gathered}$	PLL-0 Charge pump gain control. Sets the PLL-0 charge pump current. Current is programmable up to 3 mA in $100(200) \mathrm{HA}$ steps depending on the I_CPO_X2 bit setting.	
			$\begin{aligned} & \hline \text { I_CP0_X2 = } 0 \\ & 100 \mu \mathrm{~A} \text { steps } \end{aligned}$	$\begin{aligned} & \text { I_CPO_X2 = } 1 \\ & \text { 200 AA steps } \end{aligned}$
			PLL-0 charge pump current: $\begin{aligned} \text { I_CPO }= & \text { I_CPO[3] } \times 800 \mu \mathrm{~A}+ \\ & \text { I_CPO[2] } \times 400 \mu \mathrm{~A}+ \\ & \text { I_CPO[1] } \times 200 \mu \mathrm{~A}+ \\ & \text { I_CPO[0] } \times 100 \mu \mathrm{~A} . \end{aligned}$	PLL-0 charge pump current: $\begin{aligned} I _C P 0= & 1600 \mu \mathrm{~A}+ \\ & \text { I_CPO[2] } \times 800 \mu \mathrm{~A}+ \\ & \text { _CPO[1] } \times 400 \mu \mathrm{~A}+ \\ & \text { _CPO[0] } \times 200 \mu \mathrm{~A} . \end{aligned}$

Table 34. PLL-0 Charge Pump Control Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
CPO_POL	R/W	0	PLL-0 control voltage polarity $0=$ Positive (use with VCXOs that have a positive control voltage curve) $1=$ Negative (use with VCXOs that have a negative control voltage curve)
FCVo	R/W	1 Value: ICP_0 voltage is set to 50% of	PLL-0 Force ICP_0 control voltage $0=$ Normal operation (PLL-0 can lock) $1=$ Forces the voltage at the ICP_0 pin (VCXO control voltage) to 50% of VDD33_CP0. PLL-0 unlocks and the VCXO is forced to its mid-point frequency. FCVO $=1$ is the default setting at startup to center the VCXO frequency. FCVO must be cleared after startup to enable the PLL to lock to the reference frequency.
$\begin{aligned} & \text { I_CPO_OFF } \\ & \text { SET[5:0] } \end{aligned}$	R/W	000000	CPO (Charge pump of PLL-0) programmable charge pump offset output current. I_CPO_OFFSET is an additive current applied to the ICP_0 output effectively introducing a phase offset into PLL-0. Use I_CPO_OFFSET to improve charge pump linearity and PLL-0 phase noise. Programmable in $12.5 \mu \mathrm{~A}$ steps, range is $0 \mu \mathrm{~A}$ to $487.5 \mu \mathrm{~A}$. $\begin{aligned} \text { I_CPO_OFFSET }= & \text { I_CPO_OFFSET[5] } \times 200 \mu \mathrm{~A}+\text { I_CPO_OFFSET[4] } \times 100 \mu \mathrm{~A}+ \\ & \text { I_CPO_OFFSET[3] } \times 100 \mu \mathrm{~A}+\text { I_CPO_OFFSET[2] } \times 50 \mu \mathrm{~A}+ \\ & \text { } \left._ \text {_CPO_OFFSET } 1\right] \times 25 \mu \mathrm{~A}+\text { __CP0_OFFSET[0] } \times 12.5 \mu \mathrm{~A} \end{aligned}$

5.2.4 PLL-1 Input and Bypass Control Registers

Table 35. PLL-1 Input and Bypass Control Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×20	FD_1	P1[6:0]						
0×21	P3_SEL	P2_SEL	SRC[1:0]	BYP_0		Reserved		

Table 36. PLL-1 Frequency Divider and Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
FD_1	R/W	0	The input frequency of PLL-1 (2nd stage) is: $0=$ The output signal of the BYP_0 multiplexer, divided by the P_{1} divider. $1=$ The output signal of the BYP_0 multiplexer, doubled in frequency. Use this setting to improve phase nose. The P_{1} divider has no effect if $F \mathrm{D}_{-} 1=1$.
P1[6:0]	R/W	0000001 Value: $\div 1$	PLL-1 Pre-Divider: The value of the frequency divider (binary coding). Range: $\div 1$ to $\div 127$. $0000001=P_{1}$ is bypassed
P3_SEL	R/W	$\begin{gathered} 1 \\ \text { Value: } \div 2 \end{gathered}$	PLL-0 Feedback Frequency Limiting Divider Select. Set to 1 (selects a $\div 2$ divider) if the VCXO frequency is $>250 \mathrm{MHz}$ $0=$ Ext. VCXO frequencies is $\leq 250 \mathrm{MHz}$. PLL-0 feedback is M_{0} 1 = Ext. VCXO frequency is $>250 \mathrm{MHz}$. The VCXO-frequency is pre-divided by $\div 2$ before the M_{0} divider. The total PLL-0 feedback is $2 \times M_{0}$.
P2_SEL	R/W	Value: - 1	External VCO Frequency Limiting Divider Select. Set to 1 (selects a $\div 2$ divider) if the external VCO frequency is $>4000 \mathrm{MHz}$. $0=$ Ext. VCO frequency is $\leq 4000 \mathrm{MHz}$. 1 = Ext VCO components $>4000 \mathrm{MHz}$. External VCO frequency is divided by 2.

Table 36. PLL-1 Frequency Divider and Control Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
SRC[1:0]	R/W	01 Value: PLL-1	Output Channel Source Selector $00=$ External VCO 01 = Internal PLL-1 $10=$ Internal PLL-0 11 = Selected CLKn input (when BYP_0 = 1)
BYP_0		$\begin{gathered} 0 \\ \text { Value = Dual } \\ \text { PLL Mode } \end{gathered}$	PLL Frequency Generation Mode 0 = Dual PLL Mode 1 = Frequency Synthesizer Mode (PLL-0 is bypassed)

5.2.5 PLL-1 Charge Pump Control Registers

Table 37. PLL-1 Charge Pump Control Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×28	I_CP1_PD	Reserved	I_CP1_SIN K_EN	I_CP1_X2		I_CP1[3:0]		
0×29	Reserved	Reserved	I_CP1_OFFSET[5:0]					

Table 38. PLL-1 Frequency Divider and Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
I_CP1_PD	R/W	0 Value: Power up	PLL-1 Charge pump power state $0=$ Power up $1=$ Power down and disabled
I_CP1_SINK _EN	R/W	1 Value: Enabled	PLL-1 Enable charge pump sink current $0=$ Disabled $1=$ Enabled sink current; sink and source currents are equal
I_CP1_X2	R/W	1	PLL-0 Charge pump current multiplier. $0=1 \times(100 \mu A$ current steps for I_CP1[3:0]) $1=2 \times(200 \mu \mathrm{~A}$ current steps for I_CP1[3:0])

Table 38. PLL-1 Frequency Divider and Control Register Descriptions (Cont.)

Register Description				
Bit Field	Field Type	Default	Description	
I_CP1[3:0]	R/W	0000 Value: 1.6 mA	PLL-1 Charge pump gain control. Sets the PLL-1 charge pump current. Current is programmable up to 3 mA in $100(200) \mu \mathrm{A}$ steps depending on the I_CP1_X2 bit setting.	
			$\begin{aligned} & \text { I_CP1_X2 = } 0 \\ & 100 \mu A \text { steps } \end{aligned}$	$\text { I_CP1_X2 = } 1$ $200 \mu \mathrm{~A} \text { steps }$
			PLL-1 charge pump current: $\begin{aligned} \text { I_CP1 }= & \text { _CP1[3] } \times 800 \mu \mathrm{~A}+ \\ & \text { I_CP1[2] } \times 400 \mu \mathrm{~A}+ \\ & \text { ICP1[1] } \times 200 \mu \mathrm{~A}+ \\ & \text { I_CP1[0] } \times 100 \mu \mathrm{~A} . \end{aligned}$	PLL-1 charge pump current: $\begin{aligned} \text { I_CP1 }= & 1600 \mu \mathrm{~A}+ \\ & \text { I_CP1[2] } \times 800 \mu \mathrm{~A}+ \\ & \text { ICP1[1] } \times 400 \mu \mathrm{~A}+ \\ & \text { ICP1[0] } \times 200 \mu \mathrm{~A} . \end{aligned}$
$\begin{aligned} & \text { I_CP1_OFF } \\ & \text { SET[5:0] } \end{aligned}$	R/W	000000	CP1 (Charge pump of PLL-1) programmable charge pump offset output current. I_CP1_OFFSET is an additive current applied to the ICP_1 output effectively introducing a phase offset into PLL-1. Use I_CP1_OFFSET to improve charge pump linearity and PLL-1 phase noise. Programmable in $12.5 \mu \mathrm{~A}$ steps, range is $0 \mu \mathrm{~A}$ to $487.5 \mu \mathrm{~A}$. $\begin{aligned} \text { I_CP1_OFFSET }= & \text { __CP1_OFFSET[5] } \times 200 \mu \mathrm{~A}+\text { I_CP1_OFFSET[4] } \times 100 \mu \mathrm{~A}+ \\ & \text { I_CP1_OFFSET[3] } \times 100 \mu \mathrm{~A}+\text { I_CP1_OFFSET[2] } \times 50 \mu \mathrm{~A}+ \\ & \text { I_CP1_OFFSET[1] } \times 25 \mu \mathrm{~A}+\text { I_CP1_OFFSET }[0] \times 12.5 \mu \mathrm{~A} \end{aligned}$	

5.2.6 PLL-1 Feedback Control Registers

Table 39. PLL-1 Feedback Register Bit Field Locations

Register Address	Bit Field Location								
	D7	D6	D5	D4	D3	D2	D1	D0	
$0 \times 2 C$	M2[7:0]								
$0 \times 2 D$	PD_M2	Reserved	Reserved	Reserved	Reserved	Reserved	M2[9:8]		

Table 40. PLL-1 Frequency Divider and Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	
M2[9:0]	R/W	000010 0000 Value: $\div 32$	PLL-1 feedback divider M_{2} The value of the M_{2} frequency divider (binary coding). PD_M2 R/W
0 Value: Power up	PLL-1 feedback divider M_{2} power down state $0=$ PLL-1 $\left(M_{2}\right)$ feedback divider is powered up. $1=$ PLL-1 $\left(M_{2}\right)$ feedback divider is powered down.		

5.2.7 Reference Switching Registers

The content of the reference switching registers controls the input monitors and auto/manual input switching functions.

Table 41. Reference Switching Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×34	PRIO_0[1:0]		PRIO_1[1:0]		PRIO_2[1:0]		PRIO_3[1:0]	
0×35	Reserved	BLOCK_LOR	REVS	Reserved	nM/A[1:0]		SEL[1:0]	
0x36	CNTH[7:0]							
0x37	CNTR[1:0]		Reserved				CNTV[1:0]	

Table 42. Reference Switching Register Descriptions

Bit Field Location				
Bit Field	Field Type	Default	Description	
PRIO_n[1:0]	R/W	$\begin{aligned} & \hline \text { CLK_0: } 11 \\ & \text { CLK_1: } 10 \\ & \text { CLK_2: } 01 \\ & \text { CLK_3: } 00 \end{aligned}$	Controls the auto-selection priority of the clock input CLK_n $(n=0 \ldots 3)$. If multiple inputs have equal priority, the order within that priority is from CLK_0 (highest) to CLK_3 (lowest). $00=$ Priority 0 (lowest). Input is not selected by the switch logic. $01=$ Priority 1 $10=$ Priority 2 $11=$ Priority 3 (highest)	
BLOCK_LOR	R/W	0	Controls which event(s) set the PLL-0 lock status bits ST_PLLO_LOCK and LS_PLLO_LOCK	
			BLOCK_LOR = 0	BLOCK_LOR = 1
			- PLL-0 loss of lock, or - Inactivity of the selected reference clock	- Only PLL-0 loss of lock
			BLOCK_LOR = 1 will also block an loss-of-reference event from triggering a failure on the GPIO output pins (when selected).	
REVS	R/W	0 Value: Disabled	Revertive Switching The revertive input switching setting is only applicable to the two automatic selection modes shown in Table 18. If $\mathrm{nM} / \mathrm{A}[1: 0]=\mathrm{XO}$, the REVS setting has no meaning. $0=$ Disabled: Re-validation of a non-selected input clock has no impact on the clock selection. 1 = Enabled: Re-validation of any non-selected input clock(s) will cause an new input selection according to the pre-set input priorities (revertive switch). An input switch is only done if the re-validated input has a higher priority than the current PLL-0 reference clock. Default setting is revertive switching turned off.	

Table 42. Reference Switching Register Descriptions (Cont.)

Bit Field Location							
Bit Field	Field Type	Default	Description				
nM/A[1:0]	R/W	00 Value: Manual Selection	Reference Input Selection Mode. In any of the manual selection modes ($\mathrm{nM} / \mathrm{A}[1: 0]=00$ or 10), the PLL-0 reference input is selected by SEL[1:0]. In any of the automatic selection modes, the PLL-0 reference input is selected by an internal state machine according to the input LOS states and the priorities in the input priority registers $00=$ Manual selection. 01 = Automatic selection (no holdover) 10 = Short-term holdover 11 = Automatic selection with holdover GPIO input clock selection takes precedence over the selection by the nM/A[1:0] bits.				
SEL[1:0]	R/W	00 Value: CLK_0 selected	PLL-0 Input Reference Selection Controls the selection of the reference input in manual selection modes. In automatic selection modes ($\mathrm{nM} / \mathrm{A}[1: 0]=\mathrm{X} 1$), $\mathrm{SEL}[1: 0]$ has no meaning. $\begin{aligned} & 00=\text { CLK_0 } \\ & 01=\text { CLK_1 } \\ & 10=\text { CLK_2 } \\ & 11=\text { CLK_3 } \end{aligned}$				
CNTH[7:0]	R/W	$\begin{gathered} 10000000 \\ \text { (value: } \\ 136 \mathrm{~ms} \text {) } \end{gathered}$	Holdover, hold-off counter period. Applicable to automatic with holdover mode, $\mathrm{nM} / \mathrm{A}=11$. The device initiates a clock failover switch upon counter expiration (zero transition). The counters start to counts backwards after a LOS event is detected. The hold-off counter period is determined by the binary number of PLL-0 output pulses divided by CNTR[1:0]. With a VCXO frequency of 122.88 MHz and CNTR[1:0] $=10$, the counter has a period of ($1.066 \mathrm{~ms} \times$ binary setting). After each zero-transition, the counter automatically re-loads to the setting in this register. The default setting is 136 ms (VCXO $=122.88 \mathrm{MHz}: 1 / 122.88 \mathrm{MHz} \times 2^{17} \times$ 128)				
CNTR[1:0]	R/W	00 (Value: 2^{15})	Holdover reference divider. Applicable to automatic with holdover mode, nM/A=11.				
			CNTR[1:0]	CNTH frequency (period; range)			
				$\begin{gathered} \hline 38.4 \mathrm{MHz} \\ \text { VCXO } \\ \text { P3_SEL=0 } \end{gathered}$	$\begin{gathered} 122.88 \mathrm{MHz} \\ \text { VCXO } \\ \text { P3_SEL=0 } \end{gathered}$	$\begin{aligned} & 245.76 \mathrm{MHz} \\ & \text { VCXO } \\ & \text { P3_SEL=0 } \end{aligned}$	$\begin{gathered} 491.52 \mathrm{MHz} \\ \text { VCXO } \\ \text { P3_SEL=1 } \end{gathered}$
			$00=f_{\text {VCxO }} \div 215$	1171 Hz $(0.853 \mathrm{~ms} ;$ $0-217.6 \mathrm{~ms})$	$\begin{gathered} 3750 \mathrm{~Hz} \\ (0.266 \mathrm{~ms} ; \\ 0-68 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 7500 \mathrm{~Hz} \\ (0.133 \mathrm{~ms} ; \\ 0-34 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} \hline 7500 \mathrm{~Hz} \\ (0.133 \mathrm{~ms} ; \\ 0-34 \mathrm{~ms}) \end{gathered}$
			$01=\mathrm{f}_{\text {Vcxo }} \div 2^{16}$	$\begin{gathered} 585 \mathrm{~Hz} \\ (1.706 \mathrm{~ms} ; \\ 0-435.2 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 1875 \mathrm{~Hz} \\ (0.533 \mathrm{~ms} ; 0- \\ 136 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 3750 \mathrm{~Hz} \\ (0.266 \mathrm{~ms} ; \\ 0-68 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 3750 \mathrm{~Hz} \\ (0.266 \mathrm{~ms} ; \\ 0-68 \mathrm{~ms}) \end{gathered}$
			$10=\mathrm{f}_{\text {VCxO }} \div 2^{17}$	$\begin{gathered} 292 \mathrm{~Hz} \\ (3.412 \mathrm{~ms} ; \\ 0-870.4 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 937.5 \mathrm{~Hz} \\ (1.066 \mathrm{~ms} ; 0- \\ 272 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} \hline 1875 \mathrm{~Hz} \\ (0.533 \mathrm{~ms} ; \\ 0-136 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} \hline 1875 \mathrm{~Hz} \\ (0.533 \mathrm{~ms} ; \\ 0-136 \mathrm{~ms}) \end{gathered}$
			$11=\mathrm{f}_{\text {Vcxo }} \div 2^{18}$	$\begin{gathered} 146 \mathrm{~Hz} \\ (6.826 \mathrm{~ms} ; \\ 0-1740.8) \end{gathered}$	468 Hz $(0.213 \mathrm{~ms} ; 0-$ $544 \mathrm{~ms})$	$\begin{gathered} 937.5 \mathrm{~Hz} \\ (1.066 \mathrm{~ms} ; \\ 0-272 \mathrm{~ms}) \end{gathered}$	$\begin{gathered} 937.5 \mathrm{~Hz} \\ (1.066 \mathrm{~ms} ; \\ 0-272 \mathrm{~ms}) \end{gathered}$

Table 42. Reference Switching Register Descriptions (Cont.)

Bit Field Location						
Bit Field	Field Type	Default	Description			
CNTV[1:0]	R/W	00 (Value: 2 for $\left.R_{N}=\div 1\right)$	Controls the number of required consecutive, valid input reference pulses for clock re-validation on CLK_n ($n=0 \ldots 3$), in number of input periods after the R_{N} input divider. At a LOS event, the re-validation counter loads this setting from the register and counts down by one with every valid, consecutive input signal period. Missing input edges (for one input period) will cause this counter to re-load its setting. An input is re-validated when the counter transitions to zero and the corresponding LOS flag is reset.$\mathrm{R}_{\mathrm{N}}=00(\div 1) \quad \mathrm{R}_{\mathrm{N}}=01(\div 2) \quad \mathrm{R}_{\mathrm{N}}=10(\div 4) \quad \mathrm{R}_{\mathrm{N}}=11(\div 8)$			
			$00=2$ (shortest)	$00=4$	$00=8$	$00=16$
			$01=16$	$01=32$	$01=64$	$01=128$
			$10=32$	$10=64$	$10=128$	$10=256$
			$11=64$	$11=128$	$11=256$	$11=512$

5.2.8 SYSREF Control Registers

The content of the SYSREF registers controls generation of synchronization signals for JESD204B/C.
Table 43. SYSREF Control Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×38	N_S[3:0]				Reserved			
$0 \times 3 \mathrm{~A}$	SRWC[7:0]							
$0 \times 3 B$	SRPC[7:0]							
$0 \times 3 \mathrm{D}$	Reserved			SRO[1:0]		SRG[2:0]		

Table 44. SYSREF Control Register Descriptions

Bit Field Location				
Bit Field	Field Type	Default		Description
N_S[3:0]	R/W	$\begin{gathered} 0000 \\ \text { Value }=\div 1 \end{gathered}$	SYSREF Frequency Divider N_S. Sets the SYSREF frequency/pulse rate in conjunction with the output divider N_{x}. This setting is applicable to all channels configured for SYSREF operation. Divider value $=\div 2^{\mathrm{NS}[3: 0]}$. Configure the N_{x} channel divider to not exceed a N_S input frequency of 250 MHz . N_S[3:0] N_S Divider Value	
			0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 $1101-1111$	$\begin{aligned} & \div 1 \\ & \div 2 \\ & \div 2^{2} \\ & \div 2^{3} \\ & \div 2^{4} \\ & \div 2^{5} \\ & \div 2^{6} \\ & \div 2^{7} \\ & \div 2^{8} \\ & \div 2^{9} \\ & \div 2^{10} \\ & \div 2^{11} \\ & \div 2^{12}(\div 4096) \end{aligned}$ Reserved
SRWC[7:0]	R/W	0 (value: 0)	SYSREF pulse wait count Binary value of the number of pulses the SYSREF generator waits before generating the next series of SYSREF pulses. Allows a wait of 1 to 255 pulses before the next series of pulses is generated.	
SRPC[7:0]	R/W	$\begin{gathered} 00000001 \\ \text { (value: 1) } \end{gathered}$	SYSREF pulse count Binary value of the number of SYSREF pulses generated and output at all enabled SYSREF outputs. Allows 1 to 255 pulses to be generated.	
SRG[2:0]	R/W	011 Value: Internally triggered	SYSREF Generation Mode (see Table 19) SRG[2:0] SYSREF Operation	
			$\begin{aligned} & 000 \\ & 001 \\ & 010 \\ & 011 \\ & 100 \\ & 101,110 \\ & 111 \end{aligned}$	EXT_SYS input is fanout to SYSREF outputs (no internal sync.) EXT_SYS input is synchronized and fanout to SYSREF outputs Externally triggered SYSREF generation mode Internally triggered SYSREF mode Continuous mode (SYSREF is a clock signal) Reserved Terminate continuous SYSREF generation
SRO[1:0]	R/W	00	SYSREF Pulse Generation (see Table 19) SRO[1:0] SYSREF Operation	
			00 01 10 11	SRG = 010: Pulsed, rising edge triggered SRG = 011: Pulsed SRG $=010$: Pulsed, falling edge triggered SRG = 011: Pulsed with auto repeat Rising edge starts pulse, falling edge stops pulse (SRG = 010) Falling edge starts pulse, rising edge stops pulse $(S R G=010)$

5.2.9 Output Channel Registers

The content of the channel registers set the channel state, the clock divider, the clock phase delay.
Table 45. Output Channel Register Bit Field Locations

Register Address	Bit Field Location						
	D7	D6	D5	D3	D2	D1	D0
0x40	Reserved	N_A[6:0]					
0x41	ФWIDE_A[8:1]						
0×42	PD_A	$\begin{gathered} \text { 1P8_700M } \\ \text { V_A } \end{gathered}$		$\begin{aligned} & \text { RETIME_D } \\ & \text { IV1_A } \end{aligned}$	Reserved	$\underset{\mathrm{A}}{\mathrm{nCl}} \mathrm{~S}_{-} \mathrm{SEL}$	$\begin{aligned} & \text { ФWIDE_A[} \\ & 0] \end{aligned}$
0×43	Reserved					$\begin{gathered} \text { BIAS_TYP } \\ \text { E_A } \end{gathered}$	nBIAS_A
0x44	Reserved	N_B[6:0]					
0x45	ФWIDE_B[8:1]						
0×46	PD_B	$\begin{gathered} \text { 1P8_700M } \\ \text { V_B } \end{gathered}$		$\begin{aligned} & \text { RETIME_D } \\ & \text { IV1_B } \end{aligned}$	Reserved	$\underset{\mathrm{B}}{\mathrm{nC} / \mathrm{S}_{-} \mathrm{SEL}_{-}}$	ФWIDE_B[0]
0×47	Reserved					$\begin{gathered} \hline \text { BIAS_TYP } \\ \text { E_B } \end{gathered}$	nBIAS_B
0x48	Reserved	N_C[6:0]					
0x49	ФWIDE_C[8:1]						
$0 \times 4 \mathrm{~A}$	PD_C		eserv	$\begin{aligned} & \text { RETIME_D } \\ & \text { IV1_C } \end{aligned}$	$\begin{gathered} \text { EXT_VCO_ } \\ \text { SEL_C } \end{gathered}$	$\begin{gathered} \text { nC/S_SEL_ } \\ \mathrm{C} \end{gathered}$	ФWIDE_C[0]
0x4B	Reserved						
0x4C	Reserved	N_D[6:0]					
$0 \times 4 \mathrm{D}$	ФWIDE_D[8:1]						
$0 \times 4 \mathrm{E}$	PD_D		eserv	$\begin{gathered} \hline \text { RETIME_D } \\ \text { IV1_D } \end{gathered}$	$\begin{gathered} \text { EXT_VCO_ } \\ \text { SEL_D } \end{gathered}$	$\underset{\mathrm{D}}{\mathrm{nC} / \mathrm{S}_{-} \mathrm{SEL}_{-}}$	ФWIDE_D[0]
0x4F	Reserved						
0x50	Reserved	N_E[6:0]					
0x51	ФWIDE_E[8:1]						
0x52	PD_E	$\begin{gathered} \text { 1P8_700M } \\ \text { V_E } \end{gathered}$		$\begin{gathered} \text { RETIME_D } \\ \text { IV1_E } \end{gathered}$	Reserved	$\underset{\mathrm{E}}{\mathrm{nC} / \mathrm{S}_{-} \mathrm{SEL}_{-}}$	$\begin{aligned} & \text { ФWIDE_E[} \\ & 0] \end{aligned}$
0x53	Reserved					$\begin{gathered} \text { BIAS_TYP } \\ \text { E_E } \end{gathered}$	nBIAS_E
0×54	Reserved	N_F[6:0]					
0×55	ФWIDE_F[8:1]						
0x56	PD_F	$\begin{gathered} \text { 1P8_700M } \\ \text { V_F } \end{gathered}$		$\begin{gathered} \text { RETIME_D } \\ \text { IV1_F } \end{gathered}$	Reserved	$\underset{\mathrm{F}}{\mathrm{nC/S} \mathrm{SEL}_{-}}$	$\begin{aligned} & \text { ФWIDE_F[} \\ & 0] \end{aligned}$
0x57	Reserved					$\begin{gathered} \text { BIAS_TYP } \\ \text { E_F } \end{gathered}$	nBIAS_F
0x58	Reserved	N_G[6:0]					
0×59	ФWIDE_G[8:1]						
$0 \times 5 \mathrm{~A}$	PD_G	$\begin{gathered} \text { 1P8_700M } \\ \text { V_G } \end{gathered}$		$\begin{gathered} \text { RETIME_D } \\ \text { IV1_G } \end{gathered}$	Reserved	$\underset{\mathrm{G}}{\mathrm{nC} / \mathrm{S}_{-} \mathrm{SEL}}$	ФWIDE_G[$0]$

Table 45. Output Channel Register Bit Field Locations (Cont.)

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x5B	Reserved						$\begin{gathered} \hline \text { BIAS_TYP } \\ \text { E_G } \end{gathered}$	nBIAS_G
0x5C	Reserved	N_H[6:0]						
0x5D	ФWIDE_H[8:1]							
0x5E	PD_H	$\begin{gathered} \text { 1P8_700M } \\ \text { V_H } \end{gathered}$			$\begin{gathered} \text { RETIME_D } \\ \text { IV1_H } \end{gathered}$	Reserved	$\underset{\mathrm{H}}{\mathrm{nC} / \mathrm{S}_{2} \mathrm{SEL}_{-}}$	$\begin{aligned} & \text { ФWIDE_H[} \\ & 0] \end{aligned}$
0x5F	Reserved						$\begin{gathered} \text { BIAS_TYP } \\ \text { E_H } \end{gathered}$	nBIAS_H

Table 46. Output Channel Register Descriptions ${ }^{[1]}$

Bit Field Location						
Bit Field	Field Type	Default	Description			
Nx[6:0]	R/W	$\begin{gathered} 0001011 \\ \text { Value }= \\ \div 2 \times \div 4=\div 8 \end{gathered}$	Output Frequency Divider Nx. Sets the output frequency. The output divider N_{x} consists of two serial dividers. The effective output divider is the product of $\mathrm{N} _\mathrm{x} 0$ and $\mathrm{N} _\mathrm{x} 1$. $\mathrm{N} _\mathrm{x} 0$ uses the register bits $N_{-} \times[2: 0]$ and $N_{-} x 1$ uses $N_{-} x[6: 3]$. The setting $N_{-} \times 0=000$ will bypass $N _x 1$. The smallest N_{x} divider value is $\div 1$, the largest value is 20,480 (N _x0 $=5$, N_x1 = 4096). When multiple $N x _0, N x _1$ combination are available to achieve a desired, total N_{x} divider: use the highest possible $\mathrm{Nx} _0$ divider value. N_x1[6:3] Divider Value (N_x1) N_x0[2:0] Divider Value (N_x0)			
			0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111	$\div 2^{0}$ $\div 2^{1}$ $\div 2^{2}$ $\div 2^{3}$ $\div 2^{4}$ $\div 2^{5}$ $\div 2^{6}$ $\div 2^{7}$ $\div 2^{8}$ $\div 2^{9}$ $\div 2^{10}$ $\div 2^{11}$ $\div 2^{12}$ Reserved Reserved Reserved	000 001 010 011 100 $101-111$	```\div1 (also bypasses N_x1) \div2 \div3 \div4 \div5 Reserved```

Table 46. Output Channel Register Descriptions ${ }^{[1]}$ (Cont.)

Bit Field Location				
Bit Field	Field Type	Default	Description	
ФWIDE_ \times [8:0]	R/W	000000000	Channel x wide phase delay. Sets the phase delay common to all outputs in the channel. Delay in ps $=\Phi$ WIDE_ $x \times 127$ ps (512 steps). Values are for using the internal VCO. The input frequency to the ФWIDE_ x circuit should not exceed 4GHz. ФWIDE_x[8:0]	
			$\begin{aligned} & 000000000=0 \mathrm{ps} \\ & 000000001=0.127 \\ & 000000010=0.254 \\ & \ldots \\ & 111111111=64.977 \mathrm{~ns} \end{aligned}$	
PD_x	R/W	0 Value: Power up	Channel Power Up State $0=$ Channel x is powered up. 1 = Channel x is powered down. Output, divider and delay circuits are powered down. This bit has precedence over output power-down settings. Powered down outputs should not be terminated with a DC path to GND.	
$\begin{gathered} \text { 1P8_700MV } \\ { }_{-} x \end{gathered}$	R/W	0	Channel Amplitude 700 mV at $\mathrm{V}_{\mathrm{DDO} 18}=1.8 \mathrm{~V}$ for channels A, B and $\mathrm{E}-\mathrm{H}$ $0=$ Default setting $1=$ Set this bit when any output y in channel x is configured to an amplitude of $700 \mathrm{mV}\left(\mathrm{A}_{\mathrm{A}} \mathrm{y}[1: 0]=11\right)$ and the corresponding supply voltage is $\mathrm{V}_{\mathrm{DDO} 18}=1.8 \mathrm{~V}$	
$\begin{gathered} \text { RETIME_DIV } \\ x_{-} \end{gathered}$	R/W	0	Controls the delay step of the ФFINE y and ФWIDE_ x in a channel operating in SYSREF mode. RETIME_DIV_x has no impact on channels operating in clock mode. When the internal VCO or ext. VCO $\geq 2 \mathrm{GHz}$ is used, set RETIME_DIV_ $x=0$ When an external of VCO $<2 \mathrm{GHz}$ is used, RETIME_DIV_x can be set to 1 (or to $0)$. RETIME_DIV_ $x=0 \quad$ RETIME_DIV_ $x=1$	
			ФFINE y : delay step: $1 \div \mathrm{f}_{\mathrm{VCo}}$ (254ps for internal VCO)	ФFINE_y: delay step: $1 \div 2 \mathrm{f}_{\mathrm{vco}}$
			ФWIDE_x: delay step: $1 \div f_{\text {Vco }}$ (127ps for internal VCO) Valid settings are $0,1,4,5,8,9, \ldots$ (4n) and ($4 \mathrm{n}+1$) Valid delay values: $\begin{aligned} & 0=0 \mathrm{ps} \\ & 1=1 \div \mathrm{f}_{\mathrm{VCO}}(127 \mathrm{ps}) \\ & 2=\text { Invalid } \\ & 3=\text { Invalid } \\ & 4=4 \div \mathrm{f}_{\mathrm{VCO}}(509 \mathrm{ps}) \\ & 5=5 \div \mathrm{f}_{\mathrm{VCO}}(636 \mathrm{ps}) \\ & \ldots \\ & 252=32.043 \mathrm{~ns} \\ & 253=32.171 \mathrm{~ns} \\ & 254=\text { Invalid } \\ & 255=\text { Invalid } \end{aligned}$	ФWIDE_x: delay step: $1 \div \mathrm{f}_{\mathrm{Vco}}$ Valid settings are $0,1,2,3,4, \ldots, 255$ Valid delay values: $\begin{aligned} & 0=0 \mathrm{ps} \\ & 1=1 \div 2 \mathrm{f}_{\mathrm{Vco}} \\ & 2=2 \div 2 \mathrm{f}_{\mathrm{Vco}} \\ & 3=3 \div 2 \mathrm{f}_{\mathrm{Vco}} \\ & 4=4 \div 2 \mathrm{f}_{\mathrm{Vco}} \\ & 5=5 \div 2 \mathrm{f}_{\mathrm{Vco}} \end{aligned}$ $\begin{aligned} & 252=252 \div 2 \mathrm{f}_{\mathrm{VCO}} \\ & 253=253 \div 2 \mathrm{f}_{\mathrm{VCO}} \\ & 254=254 \div 2 \mathrm{f}_{\mathrm{VCO}} \\ & 255=255 \div 2 \mathrm{f}_{\mathrm{VCO}} \end{aligned}$
$n C / S _S E L _x$	R/W	0	Channel x Clock/SYSREF Select. Setting affects all outputs in the channel. $0=$ Channel x is a clock channel: output frequency is controlled by N_{x} divider 1 = Channel x is a SYSREF channel: SYSREF output states, frequency/pulse count are defined by the N_{x} and N_S dividers and SRG, SRO registers.	

Table 46. Output Channel Register Descriptions ${ }^{[1]}$ (Cont.)

Bit Field Location			
Bit Field	Field Type	Default	Description
BIAS_TYPE_x	R/W	1	SYSREF Output Voltage Bias Type Applicable to channel outputs in SYSREF operation. Defines the output voltage before and after a SYSREF operation. The output must be set to LVDS. $0=$ Q_y outputs are static low before and after a SYSREF event 1 = Q_y output voltage is the signal cross point before and after a SYSREF event This bit is not available for the LVPECL-only outputs of channel C and D.
nBIAS_x	R/W	0	Q_y Output Bias Voltage Force Applicable to channel outputs in SYSREF operation. See BIAS_TYPE_x. The output must be set to LVDS. $0=$ Q_y During a SYSREF event, the output channel x switches for the defined number of pulses 1 = Q_y During a SYSREF event, the output channel x is static (output voltage defined by BIAS_TYPE) This bit is not available for the LVPECL-only outputs of channel C and D.
$\begin{aligned} & \text { EXT_VCO_S } \\ & \text { EL_x } \\ & x=C, D \text { only } \end{aligned}$	R/W	0	Source (VCO) selector for outputs Q_C0, Q_C1, Q_D0, Q_D1 $0=$ Both outputs in channel x use the channel logic, frequency divider, and delay circuits. Use for operation with the internal PLL-0, PLL-1 and output frequencies up to 4 GHz . 1 = Both outputs in channels x buffers the OSC_1 signal. Channel logic and frequency division is not used. Use for operation with an external oscillator up to 6 GHz .

1. $x=A, B, C, D, E, F, G, H$

5.2.10 Output Registers

The content of the output register set the individual output state and phase delay.
Table 47. Clock Output Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x60	PD_AO	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_AO } \end{gathered}$	Reserved		$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_A0 } \end{gathered}$	STYLE_AO	A_AO[1:0]	
0×61	Reserved			ФFINE_AO[1:0]		ФANLG_AO[2:0]		
0×62	PD_A1	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_A1 } \end{gathered}$	Reserved		$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_A1 } \end{gathered}$	STYLE_A1	A_A1[1:0]	
0×63	Reserved			ФFINE_A1[1:0]		ФANLG_A1[2:0]		
0x64	PD_B0	PD_SYSR EF_BO	Reserved		$\begin{gathered} \text { INV_SYSR } \\ \text { EF_BO } \end{gathered}$	STYLE_B0		
0×65	Reserved			ФFINE_BO[1:0]		ФANLG_BO[2:0]		
0x66	PD_B1	PD_SYSR EF_B1	Reserved		$\begin{gathered} \text { INV_SYSR } \\ \text { EF_B1 } \end{gathered}$	STYLE_B1		
0x67	Reserved			ФFINE_B1[1:0]		ФANLG_B1[2:0]		
0x68	PD_C0	PD_SYSR EF_C0	Reserved		$\begin{gathered} \text { INV_SYSR } \\ \text { EF_CO } \end{gathered}$	Reserved		
0×69	Reserved			ФFINE_CO[1:0]		ФANLG_CO[2:0]		

Table 47. Clock Output Register Bit Field Locations (Cont.)

Register Address	Bit Field Location								
	D7	D6	D5		D4	D3	D2	D1	D0
$0 \times 6 \mathrm{~A}$	PD_C1	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_C1 } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_C1 } \end{gathered}$	Reserved	A_C1[1:0]	
$0 \times 6 \mathrm{~B}$	Reserved				ФFINE_C1[1:0]		ФANLG_C1[2:0]		
$0 \times 6 \mathrm{C}$	PD_D0	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_DO } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_DO } \end{gathered}$	Reserved	A_D0[1:0]	
0x6D	Reserved				ФFINE_DO[1:0]		ФANLG_DO[2:0]		
$0 \times 6 \mathrm{E}$	PD_D1	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_D1 } \end{gathered}$	Reserved			$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_D1 } \end{gathered}$	Reserved	A_D1[1:0]	
0x6F	Reserved				ФFINE_D1[1:0]		ФANLG_D1[2:0]		
0x70	PD_E0	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_EO } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_EO } \end{gathered}$	STYLE_E0	A_E0[1:0]	
0x71	Reserved				ФFINE_EO[1:0]		ФANLG_EO[2:0]		
0x72	PD_E1	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_E1 } \end{gathered}$	Reserved			$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_E1 } \end{gathered}$	STYLE_E1	A_E1[1:0]	
0x73	Reserved				ФFINE_E1[1:0]		ФANLG_E1[2:0]		
0x74	PD_E2	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_E2 } \end{gathered}$	Reserved			$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_E2 } \end{gathered}$	STYLE_E2	A_E2[1:0]	
0x75	Reserved				ФFINE_E2[1:0]		ФANLG_E2[2:0]		
0x76	PD_F0	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_FO } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_FO } \end{gathered}$	STYLE_F0	A_F0[1:0]	
0x77	Reserved				ФFINE_FO[1:0]		ФANLG_FO[2:0]		
0x78	PD_F1	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_F1 } \end{gathered}$	Reserved			$\begin{gathered} \hline \text { INV_SYSR } \\ \text { EF_F1 } \end{gathered}$	STYLE_F1	A_F1[1:0]	
0x79	Reserved				ФFINE_F1[1:0]		ФANLG_F1[2:0]		
$0 \times 7 \mathrm{~A}$	PD_G0	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_GO } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_GO } \end{gathered}$	STYLE_G0	A_G0[1:0]	
0x7B	Reserved				ФFINE_GO[1:0]		ФANLG_GO[2:0]		
0x7C	PD_G1	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_G1 } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_G1 } \end{gathered}$	STYLE_G1	A_G1[1:0]	
0x7D	Reserved				ФFINE_G1[1:0]		ФANLG_G1[2:0]		
0x7E	PD_H0	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_HO } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_HO } \end{gathered}$	STYLE_H0	A_H0[1:0]	
0x7F	Reserved				ФFINE_HO[1:0]		ФANLG_HO[2:0]		
0x80	PD_H1	$\begin{gathered} \text { PD_SYSR } \\ \text { EF_H1 } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_H1 } \end{gathered}$	STYLE_H1	A_H1[1:0]	
0x81	Reserved				ФFINE_H1[1:0]		ФANLG_H1[2:0]		
0×82	PD_H2	$\begin{gathered} \hline \text { PD_SYSR } \\ \text { EF_H2 } \end{gathered}$	Reserved			$\begin{gathered} \text { INV_SYSR } \\ \text { EF_H2 } \end{gathered}$	STYLE_H2	A_H2[1:0]	
0x83	Reserved				ФFINE_H2[1:0]		ФANLG_H2[2:0]		
0x84	PD_VCXO	Reserved					$\begin{gathered} \text { STYLE_VC } \\ x O \end{gathered}$	Reserved	

Table 48. Clock Output Register Descriptions ${ }^{[1]}$

Bit Field Location				
Bit Field	Field Type	Default	Description	
PD_y	R/W	0 Value: Power up	Q_y Output Power Down State $0=$ Output is powered up (if the corresponding channel is powered up: see channel control bit PD_x) 1 = Output is powered down. STYLE, EN_y and A[1:0] settings have no effect. Output should not have a DC path to GND in powered-down state.	
PD_SYSREF_y	R/W	1	Individual output delay circuits ФFINE_yx and ФANLG_yx power-down state. Powers down the entire signal path. $0=$ Powered up. Use in SYSREF operation for individual output delay and activity. 1 = Power down of all Φ FINE_ $y x$ and Φ ANLG_ $y x$ delay circuits and the output buffer itself in output y. Preferred to power down when the channel is configured as clock channel ($\mathrm{nC} / \mathrm{S}_{\mathbf{S}} \mathrm{SEL} _\mathrm{x}=0$) and for the lowest output noise floor.	
INV_SYSREF_y	R/W	0	Individual SYSREF output inversion. Use in SYSREF operation for individual output phase inversion. $0=$ Normal output polarity. 1 = SYSREF output is inverted $\left(180^{\circ}\right)$.	
STYLE_y	R/W		Q_y Output format and termination $0=100 \Omega$ output termination (LVDS-style termination). $1=50 \Omega$ output termination of to the specified recommended termination voltage (LVPECL style termination). For LVPECL termination voltages $\left(\mathrm{V}_{\mathrm{TT}}\right)$, see Table 17.	
A_y[1:0]	R/W	11	Q_y Output amplitude	
$\mathrm{y}=\mathrm{AO}-1, \mathrm{BO}-1,$ $\text { EO-2. } \mathrm{FO}-1, \mathrm{GO}-1$		Value: 700 mV	Setting for STYLE_y = 0 (LVDS)	Setting for STYLE_y = 1 (LVPECL)
H0-2			$\begin{aligned} & A[1: 0]=00: 350 \mathrm{mV} \\ & A[1: 0]=01: 350 \mathrm{mV} \\ & A[1: 0]=10: 500 \mathrm{mV} \\ & A[1: 0]=11: 500 \mathrm{mV} \end{aligned}$ Termination: 100Ω across	$\begin{aligned} & \mathrm{A}[1: 0]=00: 300 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=01: 400 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=10: 550 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=11: 700 \mathrm{mV} \end{aligned}$ Termination: 50Ω to V_{TT} For LVPECL termination voltages $\left(V_{T T}\right)$, see Table 17.
A_y[1:0]	R/W	$\begin{gathered} 11 \\ \text { Value: } \\ 700 \mathrm{mV} \end{gathered}$	Q_y Output amplitude	
$\begin{gathered} \text { Q_C0, Q_C1, } \\ \text { Q_D0, Q_D1 } \end{gathered}$			Setting for STYLE_y = 0 (LVDS)	Setting for STYLE_ $y=1$ (LVPECL)
6 GHz capable			Not supported. Use LVPECL for the outputs Q_C0, Q_C1, Q_D0, Q_D1.	$\begin{aligned} & \mathrm{A}[1: 0]=00: 300 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=01: 400 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=10: 550 \mathrm{mV} \\ & \mathrm{~A}[1: 0]=11: 700 \mathrm{mV} \end{aligned}$ Termination: 50Ω to V_{TT} For LVPECL termination voltages $\left(V_{\mathrm{TT}}\right)$, see Table 17.

Table 48. Clock Output Register Descriptions ${ }^{[1]}$ (Cont.)

Bit Field Location				
Bit Field	Field Type	Default	Description	
ФFINE_y[1:0]	R/W	00	Q_y Output fine phase delay in ps. The delay step is a function of the SYSREF_RETIME_DIV1 bit in the respective channel x and is a function of the VCO period. Channel Phase Delay in ns.	
			Setting for internal VCO (3932.16MHz) SYSREF_RETIME_DIV1_x = 0: ©FINE $y \times 254$ ps (4 steps). $\begin{aligned} & 00=0 \mathrm{~ns} \\ & 01=0.254 \mathrm{~ns} \\ & 10=0.507 \mathrm{~ns} \\ & 11=0.763 \mathrm{~ns} \end{aligned}$	Use for external VCO frequencies < 2GHz SYSREF_RETIME_DIV1_x $=1$: ФFINE $y \times\left(1 \div 2 \mathrm{f}_{\mathrm{Vco}}\right) \mathrm{ps}(4$ steps $)$. $\begin{aligned} & 00=0 \mathrm{~ns} \\ & 01=0.509 \mathrm{~ns} \\ & 10=1.017 \mathrm{~ns} \\ & 11=1.526 \mathrm{~ns} \end{aligned}$ Example delay value for an external VCO frequency of 983.04 MHz
ФANLG_y[2:0]	R/W	000	Q_y Output analog phase delay in ps $=\Phi$ ANLG $y \times 30 \mathrm{ps}(8$ steps $)$ Insert a SYSREF analog (buffer delay) phase delay in ps (8 steps) in addition to the delay value in ФFINE_y. The ФANLG_y delay value varies over PVT by about 20%.$\begin{aligned} & 000=0 \mathrm{ps} \\ & 001=30 \mathrm{ps} \end{aligned}$$111=0.210 \mathrm{~ns}$	
PD_VCXO	R/W	0	Power down Q_VCXO 0 = Output Q_VCXO power up 1 = Output Q_VCXO power down	
STYLE_VCXO	R/W	0	Q_VCXO Output format and termination $0=100 \Omega$ output termination (LVDS symmetric termination). Output amplitude is 350 mV . $1=50 \Omega$ output termination of to the specified recommended termination voltage (LVPECL style termination). Output amplitude is 700 mV . For LVPECL termination voltages $\left(\mathrm{V}_{T T}\right)$, see Table 17.	

1. $\mathrm{y}=\mathrm{A} 0-1, \mathrm{BO}-1, \mathrm{E} 0-2, \mathrm{~F} 0-1, \mathrm{GO}-1, \mathrm{HO}-2$

5.2.11 GPIO and Status Registers

Table 49. Status Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×88	GPIO[7:4]				GPIO[3:0]			
0×89	Reserved							GPIO_POL
$0 \times 8 \mathrm{C}$	$\begin{aligned} & \hline \text { INTEN_CL } \\ & \text { KO_LOS } \end{aligned}$	$\begin{aligned} & \text { INTEN_CL } \\ & \text { K1_LOS } \end{aligned}$	$\begin{gathered} \hline \text { INTEN_CL } \\ \text { K2_LOS } \end{gathered}$	$\begin{aligned} & \text { INTEN_CL } \\ & \text { K3_LOS } \end{aligned}$	INTEN_PL LO_LOCK	INTEN_PL L1_LOCK	$\begin{aligned} & \hline \text { INTEN_PL } \\ & \text { LO HOLD } \end{aligned}$	INTEN_PL LO_REF
0x90	LS_CLK0	LS_CLK1	LS_CLK2	LS_CLK3	$\begin{gathered} \hline \text { LS_PLLO_L } \\ \text { OCK } \end{gathered}$	$\begin{gathered} \hline \text { LS_PLL1_L } \\ \text { OCK } \end{gathered}$	$\begin{gathered} \hline \text { LS_PLLO_ } \\ \text { HOLD } \end{gathered}$	$\begin{gathered} \text { LS_PLLO_ } \\ \text { REF } \end{gathered}$

Table 49. Status Register Bit Field Locations (Cont.)

Register Address	Bit Field Location								
	D7	D6	D5	D4	D3	D2	D1	D0	
0×94	ST_CLK0	ST_CLK1	ST_CLK2	ST_CLK3	ST_PLL0_L OCK	ST_PLL1_L OCK	ST_PLL0_ HOLD	ST_PLL0_ REF	
0×96	ST_FCV0	Reserved	ST_REF[1:0]		Reserved		Reserved	Reserved	
0×97	Reserved	Reserved	Reserved	Reserved	Reserved	ST_RCOS C_INITREF	Reserved	Reserved	

Table 50. General Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
GPIO[3:0]	R/W	1011	Configures the function of pin GPIO_0
			```0000 = Reserved 0001 = PLL-0 Force Holdover (Input) \(0010=\) PLL-0 Force Control Voltage to \(\mathrm{V}_{\text {DCC33_V }} / 2\) (Input) 0011-0110 = Reserved \(0111=\) GPIO_0 and GPIO_1 are input select pins (Input) \(1000=\) PLL-0 detect (Output) 1001 = PLL-1 Lock detect (Output) 1010 = PLL-0 \& PLL-1 Lock detect (Output) 1011 = Input activity alarm (Output) \(1100=\) Holdover state (Output) \(1101=\) Interrupt (Output) \(1110=\) Reserved \(1111=\) GPIO_0 and GPIO_1 indicate the selected input (Output)```
GPIO[7:4]	R/W	1010	Configures the function of pin GPIO_1
			```0000 = Reserved 0001 = PLL-0 Force Holdover (Input) 0010 = PLL-0 Force Control Voltage to V VDC33_V / 2 (Input) 0011-0110 = Reserved 0111 = Reserved 1000 = PLL-0 Lock detect (Output) 1001 = PLL-1 Lock detect (Output) 1010 = PLL-0 & PLL-1 Lock detect (Output) 1011 = Input activity alarm (Output) 1100 = Holdover state (Output) 1101 = Interrupt (Output) 1110 = Reserved 1111 = Reserved```
GPIO_POL	R/W	0	GPIO_0, GPIO_1 Output polarity $0=$ Pin polarity normal 1 = Pin polarity inverted. All GPIO outputs report status information with inverted polarity.

Table 50. General Control Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
INTEN_alert	R/W	0	Enables the failure indicator alert to trigger an interrupt signal through a GPIO pin configured to interrupt (output) $0=$ Interrupt is masked (no interrupt will be triggered) 1 = Alert triggers an interrupt signal through a GPIO pin alert: CLKO_LOS: CLK_0 LOS input failure CLK1_LOS: CLK_1 LOS input failure CLK2_LOS: CLK_2 LOS input failure CLK3_LOS: CLK_3 LOS input failure PLLO_LOCK: PLL-0 loss of lock PLL1_LOCK: PLL-1 loss of lock PLLO_HOLD: PLL-0 went into holdover PLLO_REF: No valid reference at PLL-0
LS_CLK n	R/W	-	Input CLK_n status (latched status of ST_CLKn) Read $0=$ one or more LOS events detected on CLK_n after the last LS_CLKn clear Read 1 = No loss-of-signal detected on CLK_n input after the last LS_CLKn clear Write 1 = Clear LS_CLK n status latch (clears pending LS_CLK n interrupts on a GPIO)
ST_CLKn	R	-	$\begin{aligned} & \text { Input CLK_n status (momentary) } \\ & 0=\text { LOS detected on CLK_n } \\ & 1=\text { No LOS detected, CLK_ } n \text { input is active } \end{aligned}$
$\begin{aligned} & \text { LS_PLLO_LOCK } \\ & \text { LS_PLL1_LOCK } \end{aligned}$	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{R} / \mathrm{W} \end{aligned}$	- -	PLL-0/1 Lock Status (latched status of ST_PLL0/1_LOCK) Read $0=$ One or more unlock events detected after the last LS_PLL0/1 clear Read 1 = No unlock events detected after the last LS_PLLO/1 clear Write 1 = Clear LS_PLLO/1_LOCK status latch (clears pending PLL-0/1 unlock interrupts on a GPIO)
ST_PLLO_LOCK ST_PLL1_LOCK	$\begin{aligned} & \hline R \\ & R \end{aligned}$		PLL-0/1 Lock Status (momentary) $0=$ Not locked 1 = Locked
LS_PLLO_HOLD	R/W	-	PLL-0 Holdover Status (latched status of ST_PLLO_HOLD) Read $0=$ One or more holdover events detected after the last LS_PLLO_HOLD clear Read $1=$ No holdover events detected after the last LS_PLLO_HOLD clear Write 1 = Clear LS_PLLO_HOLD status latch (clears pending LS_PLLO_HOLD interrupts on a GPIO)
ST_PLLO_HOLD	R	-	PLL-0 Holdover Status $0=$ PLL-0 in holdover 1 = PLL-0 not in holdover
LS_PLLO_REF	R/W	-	Input reference status (latched status of ST_PLLO_REF) Read $0=$ Reference to PLL-0 is lost since last reset of this status bit. Read 1 = Reference to PLL-0 is valid since last reset of this status bit. Write 1 = Clear LS_PLLO_REF status latch (clears pending reference status interrupts on a GPIO)

Table 50. General Control Register Descriptions (Cont.)

Register Description			
Bit Field	Field Type	Default	Description
ST_PLLO_REF	R	-	Input reference status $0=$ No input reference present to PLL-0 $1=$ Input reference is present at the clock input (to PLL-0)
ST_FCV0	R	-	Status of PLL-0 Control Voltage forced to VDD33 / 2 $0=$ Control voltage Vc is not forced to VDD33 / 2 (normal Operation) $1=$ Control voltage Vc is forced to VDD33 / 2 either through register configuration or by using a GPIO pin
ST_REF[1:0]	R	-	Current PLL-0 Input Reference Selection Indicates the input selected by the device. The selected input may differ from the input selected by the SEL[1:0] control bits. $00=$ CLK_0 $01=$ CLK_1 $10=$ CLK_2 $11=$ CLK_3
ST_RCOSC_INIT	R		-
REF			$0=$ SYSREF Continuous/ Pulse with auto-repeat mode is not initialized $1=$ SYSREF Continuous/Pulse with auto repeat mode is initialized (Continuous mode can be terminated with writing SRG $=111$)

5.2.12 Synchronization Control Registers

Table 51. Synchronization Control Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0×98	RELOCK	Reserved						
0×99	INIT_CLK	Reserved						
0x9B	RS							

Table 52. General Control Register Descriptions

Register Description			
Bit Field	Field Type	Default	
RELOCK	W only Auto-Clear	X	Setting this bit to 1 will force PLL-1 to calibrate and to lock.
INIT_CLK	W only Auto-Clear	X	Set INIT_CLK = 1 to reset/synchronize divider and activate the phase delay functions. Required as part of the startup procedure and before Relock and SYSREF operation is started by RS $=1$.
RS	W only Auto-Clear	X	Set RS $=1$ to initiate the SYSREF pulse generation. Powers up the SYSREF circuitry and releases the SYSREF pulse(s) as configured by SRG and SRO. Setting RS to 1 should be the last operation, after the frequency dividers are synchronized by setting (INIT_CLK = 1).

5.2.13 Output Enable Registers

Table 53. Output Enable Register Bit Field Locations

Register Address	Bit Field Location							
	D7	D6	D5	D4	D3	D2	D1	D0
0x9C	EN_QD1	EN_QDO	EN_QC1	EN_QC0	EN_QB1	EN_QB0	EN_QA1	EN_QAO
0x9D	EN_QH0	EN_QG1	EN_QG0	EN_QF1	EN_QDO	EN_QE2	EN_QE1	EN_QEO
0x9E	Reserved						EN_QH2	EN_QH1
0x9F	Reserved	Reserved	Reserved					

Table 54. Output Enable Register Descriptions

Register Description			
Bit Field	Field Type	Default	Description
EN $_y$	R/W	0	Q_y Output enable (asynchronous)
			= Output is disabled at the logic low state $1=$ Output is enabled QC, QD outputs disable to static high state when driven by an external VCO (EXT_VCO_SEL_y $=1$).

6. Electrical Characteristics

6.1 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 8 V 19 N 880 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 55. Absolute Maximum Ratings

Item	Rating
Supply Voltage, $\mathrm{V}_{\text {DD_V }}$	3.6 V
Inputs	-0.5 V to $\mathrm{V}_{\text {DD_ }} \mathrm{V}+0.5 \mathrm{~V}$
Outputs, V_{O} (LVCMOS)	-0.5 V to $\mathrm{V}_{\text {DD_ }} \mathrm{V}+0.5 \mathrm{~V}$
Outputs, I_{O} (LVPECL) Continuous Current Surge Current	50 mA 100 mA
Outputs, I_{O} (LVDS) Continuous Current Surge Current	50 mA 100 mA
Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
ESD - Human Body Mode[${ }^{[1]}$	2000V
ESD - Charged Device Model[1]	750V

1. According to JEDEC JS-001-2012/JESD22-C101.

6.2 Recommended Operating Conditions

Table 56. Recommended Operating Conditions

Item	
Core Supply Voltage, $\mathrm{V}_{\text {DDC18_V }}$	1.8 V
Core Supply Voltage, $\mathrm{V}_{\text {DDC33_V }}$	3.3 V
Output Supply Voltage, $\mathrm{V}_{\text {DDO18_V }}$	1.8 V
Output Supply Voltage, $\mathrm{V}_{\text {DDO33_V }}$	3.3 V
Operating Junction Temperature, $\mathrm{T}_{\mathrm{J}}{ }^{[1]}$	$\leq 125^{\circ} \mathrm{C}$
Board Temperature, T_{B}	Table 75

1. $125^{\circ} \mathrm{C} / 10$ year lifetime is based on the evaluation of intrinsic wafer process technology reliability metrics. The limiting wafer level reliability factor for this technology with respect to high temperature operation is electromigration. The device is verified to the maximum operating junction temperature through simulation.

6.3 Pin Characteristics

Table 57. Pin Characteristics, $\mathrm{V}_{\mathrm{DDC1}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$. $\mathrm{V}_{\mathrm{DDO} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC33} \mathrm{~V}}=\mathrm{V}_{\mathrm{DDO} 33 \mathrm{~V}}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{C}_{\text {IN }}{ }^{[1]}$	Input Capacitance	OSC_0, nOSC_0, OSC_1, nOSC_1		2	4	pF
		other inputs		2	4	pF
$\mathrm{R}_{\text {PU }}$	Input Pull-Up Resistor	SDAT, nCS nCLK_n, nOSC_0	50 25		$\mathrm{k} \Omega$	
$\mathrm{R} \Omega$						
$\mathrm{R}_{\text {PD }}$	Input Pull-Down Resistor	EXT_SYS, SCLK, CLK_n, OSC_0, GPIO_0, GPIO_1		50		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {OUT }}$	LVCMOS Output Impedance	MISO, SDAT, GPIO_0, GPIO_1 (when output)		25		Ω

1. Guaranteed by design.

6.4 DC Characteristics

6.4.1 Supply Voltage and Power Consumption

Table 58. Power Supply DC Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1]}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$V_{\text {DDC18_V }}$	Core Supply Voltage		1.7	1.8	1.9	V
$V_{\text {DDO18_V }}$	Output Supply Voltage		1.7	1.8	1.9	V
$V_{\text {DDC33_V }}$	Core Supply Voltage		3.2	3.3	3.4	V
$V_{\text {DDO33_V }}$	Output Supply Voltage		3.2	3.3	3.4	V

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.

Table 59. Current and Power Consumption Characteristics, $\mathrm{V}_{\mathrm{DDC18}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$. $\mathrm{V}_{\mathrm{DDO18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC} 33_{-} \mathrm{V}}=\mathrm{V}_{\text {DDO33_V }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1]}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
I_{DD}	Power Supply Current			700	771	mA
$\mathrm{P}_{\text {TOT }}$	Power Consumption	Note ${ }^{[2]}$		1.85	2	W

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. Input $=122.88 \mathrm{MHz}, Q_{1} B 0, Q_{-} B 1, Q_{-} E 0-2: 550 \mathrm{mV}$ LVDS, Q_VCXO: 350 mV LVDS; Q_A = Q_F = Q_G = OFF; Q_C: $550 \mathrm{mV} \mathrm{LVPECL;}$ $Q_{-} D=O F F$ Unterminated, $N_{x}=\div 4, Q_{-} H 0-2=15.36 \mathrm{MHz}$ and 350 mV LVDS as SYSREF (Internally Triggered Pulse Mode)

Table 60. Typical Power Consumption Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V}$, $V_{D D 018 _v}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {DDC33_v }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{[1]}$

Symbol	Power Supply Current		Test Case		Unit
			$1{ }^{[2]}$	$2{ }^{[3]}$	
-	Clock outputs	Number (active)	10+Q_VCXO	10+Q_VCXO	-
		Style	LVPECL	LVPECL	-
		Amplitude	550	550	mV
	SYSREF outputs	Number (active)	8	0	-
		Style	LVDS	Power down	-
		Amplitude	500	Power down	mV
$\mathrm{I}_{\text {DD_A }}$	Current through VDDO_QA pin		97	97	mA
$\mathrm{I}_{\mathrm{DD} \text { _ }}$	Current through VDDO_QB pin		97	97	mA
$\mathrm{I}_{\text {DD_C }}$	Current through VDDO33_QC pin		124	124	mA
$\mathrm{I}_{\mathrm{DD} \text { _ }}$	Current through VDDO33_QD pin		124	124	mA
$\mathrm{I}_{\text {DD_E }}$	Current through VDDO_QE pin		127	0	mA
$\mathrm{I}_{\text {DD_F }}$	Current through VDDO_QF pin		98	98	mA
$\mathrm{I}_{\text {DD_G }}$	Current through VDDO_QG pin		103	0	mA
$\mathrm{I}_{\mathrm{DD} \text { _H }}$	Current through VDDO_QH pin		127	0	mA
IDD_CP0	Current through VDD33_CP0 pin		24	24	mA
IDD_CP1	Current through VDD33_CP1 pin		28	28	mA
IDD_Osco	Current through VDD_OSC0 pin		58	58	mA
IDD_OSC1	Current through VDD33_OSC1 pin		80	80	mA
IDD_vco	Current through VDD33_VCO pin		110	110	mA
$\mathrm{I}_{\mathrm{DD} \text { _SPI+INP }}$	Current through VDD_SPI + VDD_INPUT pin		45	45	mA
$\mathrm{I}_{\text {DD_PLL1 }}$	Current through VDD_PLL1 pin		85	85	mA
IDD_TOT18	Total Current	1.8 V	837	480	mA
IDD_TOT33	Total Current	3.3 V	490	490	mA
$\mathrm{P}_{\text {TOT }}$	Power Consumption	Device	2.71	2.07	W
$\mathrm{P}_{\text {TOT }}$	Power Consumption	System ${ }^{[4]}$	3.12	2.48	W

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. $\mathrm{f}_{\mathrm{CLKn}}=245.76 \mathrm{MHz}, \mathrm{f}_{\mathrm{VCXO}}=122.88 \mathrm{MHz}, \mathrm{Q}_{-} \mathrm{A} 0-1$ outputs: $491.52 \mathrm{MHz}, \mathrm{Q}_{-}$B0-1, $\mathrm{Q}_{-} \mathrm{C} 0-1, \mathrm{Q}_{1} \mathrm{D} 0-1$ outputs: 983.04 MHz , Q_F0-1 outputs: 245.76 MHz, Q_E0-2, Q_G0-1, Q_H0-2 outputs: SYSREF 7.68MHz, Q_VCXO $=122.88 \mathrm{MHz}$ LVPECL 700mV; Dual PLL mode and internal VCO.
3. $f_{C L K n}=245.76 \mathrm{MHz}, \mathrm{f}_{\mathrm{VCXO}}=122.88 \mathrm{MHz}, \mathrm{Q} _A 0-1$ outputs: $491.52 \mathrm{MHz}, \mathrm{Q}$ B0-1, $\mathrm{Q} _$C0-1, Q _D0-1 outputs: $983.04 \mathrm{MHz}, \mathrm{Q}$ F0-1 outputs: 491.52 MHz , Q_E0-2, Q_G0-1, Q_H0-2 outputs: power down, Q_VCXO $=122.88 \mathrm{MHz}$ LVPECL 700 mV ; Dual PLL mode and internal VCO.
4. Includes device power consumption and power dissipated in the external output termination components

6.4.2 LVCMOS I/O Characteristics

Table 61. LVCMOS DC Characteristics, $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC33}} \mathrm{v}=\mathrm{V}_{\mathrm{DDO33}, \mathrm{~V}}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}^{-}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}($ Case $){ }^{[1]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
Inputs EXT_SYS, GPIO_0, GPIO_1 (1.8V logic)							
V_{IH}	Input High Voltage			1.17		V ${ }_{\text {DCC18_V }}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3		0.63	V
I_{H}	Input High Current	Input with pull-down resistor	$\mathrm{V}_{\text {DCC18_ }} \mathrm{V}=1.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current		$\mathrm{V}_{\text {DDC18_V }}=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
SPI inputs SDAT, SCLK, nCS (1.8V logic)							
V_{IH}	Input High Voltage			1.17		V DDC18_V	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3		0.63	V
I_{IH}	Input High Current	Input with pull-down resistor	$\mathrm{V}_{\text {DDC18_V }}=1.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$			150	$\mu \mathrm{A}$
IIL	Input Low Current		$\mathrm{V}_{\mathrm{DDC1} 18} \mathrm{v}=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
I_{H}	Input High Current	Input with pull-up resistor	$\mathrm{V}_{\text {DCC1_ }} \mathrm{V}=1.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$			5	$\mu \mathrm{A}$
IIL	Input Low Current		$\mathrm{V}_{\mathrm{DDC1} 18} \mathrm{v}=1.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
Outputs GPIO_0, GPIO_1, SDAT, MISO (1.8V logic)							
V_{OH}	Output High Voltage		$\mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.35			V
V_{OL}	Output Low Voltage		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.45	V

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.

6.5 Differential I/O Characteristics

Table 62. Differential Input DC Characteristics, $\mathrm{V}_{\mathrm{DDC18} / \mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$. $\mathrm{V}_{\mathrm{DDO18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DDC33_v }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) $)^{[1]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
I_{H}	Input High Current	Inputs with pull-down resistor ${ }^{[2]}$	$\mathrm{V}_{\text {DDC18_V }}=\mathrm{V}_{\text {IN }}=1.9 \mathrm{~V}$			150	$\mu \mathrm{A}$
		Input with pull-down/pull-up resistor ${ }^{[3]}$				150	$\mu \mathrm{A}$
IIL	Input Low Current	Input with pull-down resistor ${ }^{[2]}$	$\mathrm{V}_{\text {DCC18_V }}=1.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
		Input with pull-down/pull-up inputs ${ }^{[3]}$		-150			$\mu \mathrm{A}$

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. Non-Inverting inputs: CLK_n, OSC_0
3. Inverting inputs: nCLK_n, nOSC_0

Table 63. LVPECL DC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC} 33 _} \mathrm{V}=\mathrm{V}_{\mathrm{DDO33}} \mathrm{v}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
V_{OH}	Output High Voltage	$\begin{aligned} & \text { 3.3V outputs } \\ & \text { Q_C, Q_D } \end{aligned}$	300 mV Amplitude Setting	$V_{\text {DDO33_V }}-0.98$		$V_{\text {DDO33_v }}-0.75$	V
			400 mV Amplitude Setting	$\mathrm{V}_{\text {DDO33_v }}$ - 1.03		$V_{\text {DD033_v }}-0.72$	V
			550 mV Amplitude Setting	$V_{\text {DDO33_V }}$ - 1.10		$V_{\text {DDO33_v }}-0.68$	V
			700 mV Amplitude Setting	$V_{\text {DDO33_v }}$ - 1.18		$V_{\text {DDO33_v }}-0.63$	V
		1.8 V outputs Q_A, Q_B, Q_E, Q_F, Q_G, Q_H	300 mV Amplitude Setting	$V_{\text {DDO18_V }}$ - 1.04		$V_{\text {DDO18_v }} 0.79$	V
			400 mV Amplitude Setting	$V_{\text {DD018_V }}$ - 1.09		$V_{\text {DD018_v }} 0.76$	V
			550 mV Amplitude Setting	$V_{\text {DD018_V }}$ - 1.17		$V_{\text {DDO18_v }}-0.70$	V
			700 mV Amplitude Setting	$V_{\text {DDO18_V }}$ - 1.22		$V_{\text {DDO18_v }}-0.67$	V
		1.8 V output Q_VCXO	700 mV Amplitude Setting	$V_{\text {DDC18_v }}$-1.22		$V_{\text {DDC18_v }}-0.67$	V
V_{OL}	Output Low Voltage Output Low Voltage	3.3V outputs Q_C, Q_D	300 mV Amplitude Setting	$V_{\text {DDO33_V }}-1.25$		$V_{\text {DDO33_v }}$ - 1.05	V
			400 mV Amplitude Setting	$V_{\text {DDO33_ }}$ - 1.43		$V_{\text {DDо33_v }}$ - 1.17	V
			550 mV Amplitude Setting	$V_{\text {DDO33_V }}-1.66$		$V_{\text {DDO33_v }}$ - 1.31	V
			700 mV Amplitude Setting	$\mathrm{V}_{\text {DDO33_v }}$-1.88		$V_{\text {DDO33_v }}$ - 1.42	V
		$\begin{aligned} & \text { 1.8V outputs } \\ & \text { Q_A, Q_B, } \\ & \text { Q_E, Q_F, } \\ & \text { Q_G, Q_H } \end{aligned}$	300 mV Amplitude Setting	$V_{\text {DDO18_V }}$ - 1.49		$V_{\text {DDO18_v }}$ - 1.09	V
			400 mV Amplitude Setting	$V_{\text {DDO18_V }}$-1.62		$V_{\text {DDO18_v - }} 1.17$	V
			550 mV Amplitude Setting	GND		$V_{\text {DD018_v }}$-1.31	V
			700 mV Amplitude Setting	GND		$V_{\text {DDO18_v }}$ - 1.30	V
		1.8V output Q_VCXO	700 mV Amplitude Setting	GND		$V_{\text {DDC18_V }} 1.3$	V

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. LVPECL outputs terminated according to Table 17.

Table 64. LVDS DC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC} 33 _} \mathrm{V}=\mathrm{V}_{\mathrm{DDO33}, \mathrm{~V}}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1]}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit	
$\mathrm{V}_{\text {OS }}$	Offset Voltage ${ }^{[2]}$	$V_{\text {DDO18_V }}=1.8 \mathrm{~V}$	350 mV Amplitude Setting		0.75	1.18	V
			500 mV Amplitude Setting		0.65	1.05	V
$\Delta \mathrm{~V}_{\text {OS }}$	$V_{\text {OS }}$ Magnitude Change			18	50	mV	

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. $V_{O S}$ changes with $V_{D D O 18 _V}$.

6.6 AC Characteristics

Table 65. AC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DDC33_V }}=\mathrm{V}_{\text {DDO33_V }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Inputs						
$\mathrm{f}_{\text {CLK }}$	Input Frequency ${ }^{[3]}$	CLK_n ($\mathrm{R}_{\mathrm{N}}=\div 8$)			2000	MHz
		CLK_n $\left(\mathrm{R}_{\mathrm{N}}=\div 1\right)$			250	MHz
		OSC_0			500	MHz
		OSC_1			6000	MHz
V_{IN}	Input Voltage Amplitude ${ }^{[4]}$	CLK_n, OSC_0	0.3		1.2	V
		OSC_1	0		6	dBm ${ }^{[5]}$
$\mathrm{V}_{\text {CMR }}$	Common Mode Input Voltage	CLK_n	1.0		$\begin{aligned} & V_{\mathrm{DDC18}} \mathrm{~V}^{-} \\ & \left(\mathrm{V}_{\mathrm{IN}} / 2\right)_{-} \end{aligned}$	V
		OSC_0	1.0		$\begin{aligned} & \hline V_{\mathrm{DDC18} 18-}- \\ & \left(\mathrm{V}_{\mathrm{IN}} / 2\right) \end{aligned}$	V
		OSC_1	0		V ${ }_{\text {DCC33_V }}$	V
PLL-0						
$\mathrm{f}_{\mathrm{Vcxo}}$	VCXO Frequency		15	122.88	500	MHz
$\mathrm{f}_{\text {PFD-0 }}$	Phase Detector Frequency				250	MHz
$\mathrm{f}_{\mathrm{P}, \mathrm{M0}}$	Input Frequency to P_{0} and M_{0} divider				250	MHz
$\mathrm{f}_{\mathrm{M} 1}$	Input Frequency to M_{1} divider	$\begin{aligned} & M_{1}=\div 1 \ldots \div 7 \\ & M_{1}>\div 7 \end{aligned}$			$\begin{aligned} & 1000 \\ & 4000 \end{aligned}$	MHz
$\mathrm{f}_{3 \mathrm{~dB}}$	Loop Bandwidth	Supported range	20		100	Hz
$\mathrm{t}_{\mathrm{D}, \mathrm{LOS}}$	LOS state detected (measured in input reference periods) ${ }^{[6]}$	$\mathrm{f}_{\text {CLK }}=122.88 \mathrm{MHz}$ or 245.76 MHz			2	$\mathrm{T}_{\text {IN }}$
$\Delta_{t, \text { RES }}$	PLL Lock Acquisition Time Error	$\mathrm{f}_{\mathrm{CLK}}=122.88 \mathrm{MHz} \text { or } 245.76 \mathrm{MHz}$ Steady-state time error after t_{D}, LOCK $=300 \mathrm{~ms}$. Initial frequency error < 200 ppm .			± 20	ns

Table 65. AC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{~V}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$,
$\mathrm{V}_{\text {DCC33_V }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$ (Cont.)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{t}_{\mathrm{D}, \text { LOCK }}$	PLL-0 Lock Detect	Until valid and stable. Measured from the end of the last configuration write (nCS going high) to lock detect at GPIO pin.[7]			60	ms
$t_{\text {D, RES-H }}$	Holdover Residual Error	Measured 50 ms after the reference clock re-appeared in a holdover scenario. Reference point: final value of clock output phase after all phase transitions settled. Holdover duration up to 200 ms .			± 8.138	ns
Δ_{fp}	Static Frequency Error	$\mathrm{f}_{\text {CLK }}=0 \mathrm{pbb}$ frequency deviation		0		ppb
$\Delta_{\text {frms }}$	Dynamic Frequency Error RMS ${ }^{[8]}$	$\mathrm{f}_{\text {CLK }}=0 \mathrm{ppb}$ frequency deviation		0		ppb
Δ_{fp}	Peak Frequency Deviation during PLL-O relock	Max. frequency deviation during the relock period after a short-term holdover.			± 5	ppm
$\Delta \mathrm{f}_{\mathrm{HOLD}}$	Holdover accuracy	Max. frequency deviation during holdover			± 5	ppm
	Charge Pump Leakage	During Holdover			5	nA
PLL-1						
fvco	VCO Frequency	Internal VCO		3932.16		MHz
		External VCO	700		6000	MHz
$\mathrm{f}_{\text {PFD-1 }}$	Phase Detector Frequency				500	MHz
$\mathrm{f}_{\mathrm{M} 2}$	Input Frequency to M2 Divider	Internal VCO (M2 > +7)			3932.16	MHz
		External VCO ${ }^{[9]}$			2949.12	
$\mathrm{V}_{\text {CP }}$	ICP_1 Tuning Voltage Range	External VCO	0.3		3.0	V
Outputs						
fout	Output Frequency	$\begin{aligned} & \text { Q_y (C0, C1, D0, D1) } \\ & \text { EXT_VCO_SEL_y=1 } \end{aligned}$			6000	MHz
		$\begin{aligned} & \text { Q_y (C0, C1, D0, D1) } \\ & \text { EXT_VCO_SEL_y=0 } \end{aligned}$			4000	MHz
		Q_y (A0-B1, E0-H2)			4000	MHz
		Q_VCXO			500	MHz
Δ_{fp}	Static Frequency Error at any Q y output	$\mathrm{f}_{\text {CLK }}=0 \mathrm{pbb}$ frequency deviation		0		ppb
$\Delta_{\text {frms }}$	Dynamic Frequency Error RMS ${ }^{[10]}$	$\mathrm{f}_{\text {CLK }}=0 \mathrm{ppb}$ frequency deviation		0		ppb
odc	Output Duty Cycle	Q_y, $\mathrm{N}_{\mathrm{x}}=\div 1, \mathrm{AC}$ coupled[${ }^{[11]}$	45	50	55	\%
		Q_y, $\mathrm{N}_{\mathrm{x}} \neq \div 1$, DC coupled	47	50	53	\%

Table 65. AC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{~V}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$,
$\mathrm{V}_{\text {DCC33_V }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$ (Cont.)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
t_{R} / t_{F}	Output Rise/Fall Time, Differential	Q_y (LVPECL), 20% to 80\%			280	ps
		Q_y (LVDS), 20\% to 80\%			330	ps
	Output Rise/Fall Time	LVCMOS outputs, 20\%-80\%			1	ns
$\mathrm{V}_{\mathrm{O}(\mathrm{PP})}{ }^{[12]}$	LVPECL Output Amplitude Q_C0-1, Q_D0-1 outputs at $V_{\text {DDO33 }}=3.3 \mathrm{~V}$, Peak-topeak, 5898.24 MHz	300 mV Amplitude Setting	215	244		mV
		400mV Amplitude Setting	318	352		mV
		550 mV Amplitude Setting	434	487		mV
		700mV Amplitude Setting	559	613		mV
$\mathrm{V}_{\mathrm{O}(\mathrm{PP})^{[13]}}$	LVPECL Output Amplitude Q_A, Q_B, Q_E, Q_F, Q_G, Q_H outputs at $V_{\text {DDO18 }} \mathrm{V}=1.8 \mathrm{~V}$, Peak-topeak, $3 \overline{9} 32.16 \mathrm{MHz}$	300mV Amplitude Setting	247	353		mV
		400mV Amplitude Setting	311	430		mV
		550 mV Amplitude Setting	415	580		mV
		700mV Amplitude Setting	466	607		mV
$V_{O D}{ }^{[14]}$	LVDS Output Amplitude Q_A, Q_B, Q_E, Q_F, Q_G, Q_H outputs at $V_{\text {DDO18 }}=1.8 \mathrm{~V}$, Peak-topeak, $3 \overline{9} 32.16 \mathrm{MHz}$	350 mV Amplitude Setting	244	322		mV
		500 mV Amplitude Setting	370	471		mV
Device Timing						
$\Delta \mathrm{t}_{\text {PD }}$	Propagation delay variation between reference input and any Q_y output (PLL modes)	Measured after phase delay circuits configured	-200		+200	ps
		Temperature drift			1	$\mathrm{ps} /{ }^{\circ} \mathrm{C}$
$t_{\text {PD }}$	Propagation delay	Clock (PLL bypass) ${ }^{[15]}$	0.79	0.982	1.175	ns
		SYSREF: EXT_SYS to Q_y (SRG=000) ${ }^{[16]}$ Q_A, B, E, F, G, H outputs Q_C, Q_D outputs	$\begin{aligned} & 1.69 \\ & 1.89 \end{aligned}$		$\begin{aligned} & 2.79 \\ & 2.68 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
$t \mathrm{sk}(\mathrm{o})$	Output Skew; NOTE[17] [18] All delays set to 0 ; all output driven from the same source	Q_y (excluding Q_C, Q_D banks)			100	ps
		Bank skew within Q_C, Q_D banks		36	60	ps
		Q y (SYSREF)		67	120	ps
		Q_y (SYSREF) to Q y (incident rising Q_y edge, excluding Q_C, Q_D banks)		49	100	ps
		Q y (SYSREF) to $Q _y$ (incident rising Q_y edge)		79	164	ps
		Q_VCXO to Q_y (Clock) (incident rising edge)			± 500	ps
$\Delta t \mathrm{sk}(\mathrm{o})$	Output to output skew variation (drift) over temperature	Any Q_y to any other Q_y (clock and SYSREF)			1	$\mathrm{ps} /{ }^{\circ} \mathrm{C}$

Table 65. AC Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{v}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DDC33_V }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}^{-}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$ (Cont.)

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
$\Delta \mathrm{t}_{\mathrm{s}}$	PLL Feedback Delay Variation		$\mathrm{f}_{\mathrm{VCO}}=3932.16 \mathrm{MHz}$	-26	0	26	ps
	Q_y Wide Phase Delay Variation		$\mathrm{f}_{\mathrm{VCO}}=3932.16 \mathrm{MHz}$	-32	0	32	ps
	Q_y Fine Phase Delay Variation		$\mathrm{f}_{\mathrm{VCO}}=3932.16 \mathrm{MHz}$	-38	0	38	ps
	Q_y Analog Phase Delay Variation		Reference: nominal value	-20	0	+20	\%
t_{H}	Hold Time	EXT_SYS to CLK_n ${ }^{[19]}$	SRG $=001$	6			ns
t_{s}	Setup Time	EXT_SYS to CLK_n ${ }^{[19]}$	SRG $=001$	-1			ns
$t_{\text {w }}$	Pulse Width	EXT_SYS ${ }^{[20]}$	SRG $=001$	$\begin{gathered} 4 \mathrm{Nx} \div \\ \mathrm{f}_{\mathrm{VCo}}{ }^{[20]} \end{gathered}$			ns
			SRG $=010$ or 100	4			ns

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm . The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. PLL-0 bandwidth $=100 \mathrm{~Hz}$.
3. In the PLL modes, the minimum input frequency is determined by achieving PLL lock with the specific external VCXO or VCO components. Minimum input frequency in PLL bypass (fanout buffer) mode is 0 Hz . For information for the supported frequency range of the monitor and lock detect circuits, see PLL-0 (VCXO-PLL) Lock Detect, PLL-1 Lock Detect and Monitoring and LOS of Input Signal.
4. V_{IL} should not be less than -0.3 V and V_{IH} should not be greater than $\mathrm{V}_{\mathrm{DD}} \mathrm{V}$.
5. Measured as single-ended sin-wave, 50Ω terminated, AC coupled.
6. LOS state is detected within two input frequency periods ($\mathrm{f}_{\mathrm{CLK}} \div \mathrm{P}$). Signaling LOS state at a GPIO with a small additional propagation delay.
7. PLL-0 loop bandwidth $=100 \mathrm{~Hz}, \mathrm{f}_{\text {CLK_n }}=122.88 \mathrm{MHz}, \mathrm{f}_{\text {PFD }}(\mathrm{PLL}-0)=3.84 \mathrm{MHz}$, LOCK_GOOD_COUNT $=100.000 \mathrm{cycles}$, LOCK_TH $=15$, Dual PLL mode.
8. RMS frequency error, measured at any Q y output, caused by Gaussian noise. Weighted with a 1 ms low pass time window filter.
9. For external VCO frequencies $>2949.12 \mathrm{MHz}$, set P2_SEL $=1$ to pre-divide the VCO frequency by $\div 2$.
10. RMS frequency error, measured at any Q_y output, caused by Gaussian noise. Weighted with a 1 ms low pass time window filter.
11. Use AC-coupling when $N x=\div 1$. DC-coupled outputs are supported when $N x=\div 1$ but duty cycle may degrade to $\sim 65 \%$.
12. Measured single-ended RF output amplitudes are based on after de-embedding the trace and cable losses. For LVPECL termination voltages $\left(\mathrm{V}_{\mathrm{TT}}\right)$, see Table 17.
13. Measured single-ended RF output amplitudes are based on after de-embedding the trace and cable losses. For LVPECL termination voltages $\left(\mathrm{V}_{\mathrm{TT}}\right)$, see Table 17.
14. Measured single-ended RF output amplitudes are based on after de-embedding the trace and cable losses. LVDS outputs terminated 100Ω across terminals
15. PLL bypass: $B Y P _0=1, F D _1=0$ and $S R C=11$; Dividers $N_{x}=\div 1, R_{N}=\div 1$ and $P_{1}=\div 1$.
16. Delay values in SYSREF path set to 0 .
17. This parameter is defined in accordance with JEDEC standard 65.
18. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points
19. Configuration for SYSREF ext. trigger modes $S R G=001$: BYP_0 $=0$, FBSEL_PLL-0 $=1$ (PLL feedback through M_{0} and M_{1}), $P_{0}=\div 1024$, $M_{0}=\div 1024, M_{1}=\div 32, N x=\div 32, N _S=\div 16, f_{C L K}=122.88 \mathrm{MHz}$, delay stages set to 0 . For setup and hold time definition, see Figure 18 .
20. Determined by $N x$ divider in the SYSREF channel: EXT_SYS signal should be sampled at least 4 times by $f_{V c o} / N x$. Example: if $N x=\div 32$ and using the internal VCO $(3932.16 \mathrm{MHz})$, min EXT_SYS pulse width is 32.55 ns (4 periods of 122.88 MHz).

Table 66. Clock Phase Noise Characteristics, $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO18}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC} 33 _\mathrm{V}}=\mathrm{V}_{\mathrm{DDO} 33_{2} \mathrm{~V}}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit	
Q_A - Q_H Clock Outputs driven in dual PLL mode, internal VCO								
tjit(Ø)	Clock RMS Phase Jitter (Random)		Integration Range: 1 kHz - 76.8 MHz $\begin{aligned} \mathrm{f}_{\text {out }} & =983.04 \mathrm{MHz} \\ \mathrm{f}_{\text {out }} & =491.52 \mathrm{MHz} \\ \mathrm{f}_{\text {out }} & =245.76 \mathrm{MHz} \end{aligned}$ Integration Range: 12 kHz 20 MHz $\begin{aligned} \mathrm{f}_{\text {out }} & =983.04 \mathrm{MHz} \\ \mathrm{f}_{\text {out }} & =491.52 \mathrm{MHz} \\ \mathrm{f}_{\text {out }} & =245.76 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 79 \\ 94 \\ 113 \end{gathered}$	$\begin{gathered} 85 \\ 103 \\ 132 \end{gathered}$	fs fs fs	
				$\begin{aligned} & 67 \\ & 74 \\ & 85 \end{aligned}$	$\begin{aligned} & 72 \\ & 80 \\ & 97 \end{aligned}$	fs fs fs		
L(10Hz)	Clock singleside band phase noise	983.04 MHz		10 Hz offset ${ }^{[3]}$		-70	-63	$\mathrm{dBc} / \mathrm{Hz}$
L(100Hz)			100 Hz offset ${ }^{[3]}$		-83	-79	$\mathrm{dBc} / \mathrm{Hz}$	
L(500Hz)			500 Hz offset from Carrier		-102	-100	dBc/Hz	
L(1 kHz)			1 kHz offset from Carrier		-108	-107	$\mathrm{dBc} / \mathrm{Hz}$	
L(10kHz)			10kHz offset from Carrier		-122	-121	$\mathrm{dBc} / \mathrm{Hz}$	
L(60kHz)			60 kHz offset from Carrier		-126	-124	dBc/Hz	
L(100kHz)			100kHz offset from Carrier		-127	-126	$\mathrm{dBc} / \mathrm{Hz}$	
L(200kHz)			200kHz offset from Carrier		-130	-123	dBc/Hz	
L(800kHz)			800kHz offset from Carrier		-138.4	-138	dBc/Hz	
L(5MHz)			5 MHz offset from Carrier		-151	-150.4	dBc/Hz	
$\mathrm{L}(\geq 10 \mathrm{MHz})$			$\geq 10 \mathrm{MHz}$ offset from Carrier and Noise Floor		-152.1	-151.6	$\mathrm{dBc} / \mathrm{Hz}$	
L(10Hz)	Clock singleside band phase noise	491.52MHz ${ }^{[4]}$	10 Hz offset ${ }^{[3]}$		-76	-69	$\mathrm{dBc} / \mathrm{Hz}$	
L(100Hz)			100 Hz offset ${ }^{[3]}$		-89	-85	$\mathrm{dBc} / \mathrm{Hz}$	
L(500Hz)			500 Hz offset from Carrier		-108	-105	$\mathrm{dBc} / \mathrm{Hz}$	
L(1kHz)			1 kHz offset from Carrier		-115	-113	$\mathrm{dBc} / \mathrm{Hz}$	
L(10kHz)			10kHz offset from Carrier		-128	-126	$\mathrm{dBc} / \mathrm{Hz}$	
L(60kHz)			60kHz offset from Carrier		-131	-130	$\mathrm{dBc} / \mathrm{Hz}$	
L(100kHz)			100kHz offset from Carrier		-132.6	-131.4	dBc/Hz	
L(200kHz)			200 kHz offset from Carrier		-135.6	-134.8	$\mathrm{dBc} / \mathrm{Hz}$	
L(800kHz)			800kHz offset from Carrier		-144.7	-144	$\mathrm{dBc} / \mathrm{Hz}$	
L(5MHz)			5 MHz offset from Carrier		-154.3	-153.2	$\mathrm{dBc} / \mathrm{Hz}$	
$\mathrm{L}(\geq 10 \mathrm{MHz})$			$\geq 10 \mathrm{MHz}$ offset from Carrier and Noise Floor		-154.8	-153.7	$\mathrm{dBc} / \mathrm{Hz}$	

Table 66. Clock Phase Noise Characteristics, $\mathrm{V}_{\mathrm{DDC} 18 _\mathrm{V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DDC33_V }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$ (Cont.)

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
$\mathrm{L}(10 \mathrm{~Hz})$	Clock singleside band phase noise	245.76 MHz	10 Hz offset ${ }^{[3]}$		-82	-76	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(100 \mathrm{~Hz})$			100 Hz offset ${ }^{[3]}$		-95	-92	$\mathrm{dBc} / \mathrm{Hz}$
L(500Hz)			500 Hz offset from Carrier		-114	-111	$\mathrm{dBc} / \mathrm{Hz}$
L(1kHz)			1 kHz offset from Carrier		-121	-119	$\mathrm{dBc} / \mathrm{Hz}$
L(10kHz)			10kHz offset from Carrier		-134	-132	$\mathrm{dBc} / \mathrm{Hz}$
L(60kHz)			60kHz offset from Carrier		-137	-135	$\mathrm{dBc} / \mathrm{Hz}$
L(100kHz)			100 kHz offset from Carrier		-138	-137	$\mathrm{dBc} / \mathrm{Hz}$
L(200kHz)			200 kHz offset from Carrier		-141.4	-140.5	$\mathrm{dBc} / \mathrm{Hz}$
L(800kHz)			800 kHz offset from Carrier		-150.4	-150	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(5 \mathrm{MHz})$			5 MHz offset from Carrier		-157.1	-155.2	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(\geq 10 \mathrm{MHz})$			$\geq 10 \mathrm{MHz}$ offset from Carrier and Noise Floor		-157.4	-155.4	$\mathrm{dBc} / \mathrm{Hz}$

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 Ifpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. $f_{V C X O}=122.88 \mathrm{MHz}$, phase noise characteristics: $10 \mathrm{~Hz}:-65 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{~Hz}:-99 \mathrm{dBc} / \mathrm{Hz}, 1 \mathrm{kHz}:-126 \mathrm{dBc} / \mathrm{Hz}, 10 \mathrm{kHz}:-148 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{kHz}$: $-152 d B c / H z$.
3. Determined by the input reference clock and the VCXO.
4. PLL-1 loop bandwidth: 190 kHz .

Table 67. Clock Phase Noise Characteristics (External VCO), $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO18}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DCC33_v }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
Q_C, Q_D Clock Outputs driven in dual PLL mode, external VCO, EXT_VCO_SEL_y = 1							
$t \mathrm{jit}(\varnothing)$	Clock RMS Phase Jitter (Random)		Integration Range: $1 \mathrm{kHz}-76.8 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=5898.24 \mathrm{MHz}$		42	45	fs
			Integration Range: $12 \mathrm{kHz}-20 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=5898.24 \mathrm{MHz}$		23	25	fs
L(10Hz)	Clock singleside band phase noise	5898.24 MHz	10 Hz offset ${ }^{[3]}$		-50.8	-42.4	$\mathrm{dBc} / \mathrm{Hz}$
L(100Hz)			100 Hz offset ${ }^{[3]}$		-76.7	-73.4	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(500 \mathrm{~Hz})$			500 Hz offset from Carrier		-92.6	-90.0	$\mathrm{dBc} / \mathrm{Hz}$
L(1kHz)			1 kHz offset from Carrier		-96.3	-94.7	$\mathrm{dBc} / \mathrm{Hz}$
L(10kHz)			10kHz offset from Carrier		-105.8	-105.2	$\mathrm{dBc} / \mathrm{Hz}$
L(60kHz)			60 kHz offset from Carrier		-121.7	-121.4	$\mathrm{dBc} / \mathrm{Hz}$
L(100kHz)			100 kHz offset from Carrier		-126.8	-126.5	$\mathrm{dBc} / \mathrm{Hz}$
L(200kHz)			200 kHz offset from Carrier		-132.5	-132.3	$\mathrm{dBc} / \mathrm{Hz}$
L(800kHz)			800 kHz offset from Carrier		-138.4	-137.6	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(5 \mathrm{MHz})$			5 MHz offset from Carrier		-140.3	-139.5	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(\geq 10 \mathrm{MHz})$			$\geq 10 \mathrm{MHz}$ offset from Carrier and Noise Floor		-141.5	-140.3	$\mathrm{dBc} / \mathrm{Hz}$

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. $\mathrm{f}_{\mathrm{VcXO}}=491.52 \mathrm{MHz}$, phase noise characteristics: phase noise characteristics: $10 \mathrm{~Hz}:-67 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{~Hz}:-101 \mathrm{dBc} / \mathrm{Hz}, 1 \mathrm{kHz}:-124 \mathrm{dBc} / \mathrm{Hz}$, $10 \mathrm{kHz}:-145 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{kHz}:-153 \mathrm{dBc} / \mathrm{Hz}$
3. Determined by the input reference clock and the VCXO.

Table 68. SYSREF Phase Noise, Spurious and Isolation Characteristics, $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DDC33_v }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
Q_A - Q_H SYSREF Outputs driven in dual PLL mode, internal VCO							
tjit(Ø)	Clock RMS Phase Jitter (Random)		Integration Range: $12 \mathrm{kHz}-3.84 \mathrm{MHz}$ $\mathrm{f}_{\text {out }}=7.68 \mathrm{MHz}$		1	1.2	ps
L(500)	SYSREF single-side band phase noise	30.72 MHz	500 Hz offset		-131	-130	$\mathrm{dBc} / \mathrm{Hz}$
L(1 kHz)			10kHz offset from Carrier		-150	-149	dBc/Hz
L(60kHz)			60kHz offset from Carrier		-153	-151	$\mathrm{dBc} / \mathrm{Hz}$
L(800kHz)			800 kHz offset from Carrier		-159	-156	dBc/Hz
L($\geq 3 \mathrm{M}$)			$\geq 3 \mathrm{MHz}$ offset from Carrier and Noise Floor		-160	-156	$\mathrm{dBc} / \mathrm{Hz}$

Table 68. SYSREF Phase Noise, Spurious and Isolation Characteristics, $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{~V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, $\mathrm{V}_{\text {DCC33_v }}=\mathrm{V}_{\text {DDO33_v }}=3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case) ${ }^{[1][2]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
L(500Hz)	SYSREF single-side band phase noise	15.36MHz	500 Hz offset		-136	-134	$\mathrm{dBc} / \mathrm{Hz}$
L(10kHz)			10kHz offset from Carrier		-155	-153	$\mathrm{dBc} / \mathrm{Hz}$
L(60kHz)			60 kHz offset from Carrier		-157	-155	$\mathrm{dBc} / \mathrm{Hz}$
L(800kHz)			800 kHz offset from Carrier		-161	-156	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(\geq 3 \mathrm{MHz})$			$\geq 3 \mathrm{MHz}$ offset from Carrier and Noise Floor		-161	-156	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(500 \mathrm{~Hz})$	SYSREF single-side band phase noise	7.68 MHz	500 Hz offset		-142	-139	$\mathrm{dBc} / \mathrm{Hz}$
L(10kHz)			10kHz offset from Carrier		-158	-155	$\mathrm{dBc} / \mathrm{Hz}$
L(60kHz)			60 kHz offset from Carrier		-160	-156	$\mathrm{dBc} / \mathrm{Hz}$
L(800kHz)			800 kHz offset from Carrier		-162	-155	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{L}(\geq 3 \mathrm{MHz})$			$\geq 3 \mathrm{MHz}$ offset from Carrier and Noise Floor		-162	-155	$\mathrm{dBc} / \mathrm{Hz}$

1. Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
2. $\mathrm{f}_{\mathrm{VCXO}}=122.88 \mathrm{MHz}$, phase noise characteristics: $10 \mathrm{~Hz}:-65 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{~Hz}:-99 \mathrm{dBc} / \mathrm{Hz}, 1 \mathrm{kHz}:-126 \mathrm{dBc} / \mathrm{Hz}, 10 \mathrm{kHz}:-148 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{kHz}$: $-152 d B c / H z$

Table 69. Spurious and Isolation Characteristics, $\mathrm{V}_{\mathrm{DDC18} \mathrm{~V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{_}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDC33} \text { _ }}=\mathrm{V}_{\mathrm{DDO33}} \mathrm{v}=$ $3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case)

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Unit
Q_A - Q_H Clock Outputs driven in dual PLL mode, internal VCO							
L	Spurious signals ${ }^{[1]}$ (Q_y)	983.04 MHz	$100 \mathrm{~Hz}-300 \mathrm{~Hz}$		-82	-81	dB
			300 Hz - 100 kHz		-103	-97	dB
			100kHz - 100MHz		-94	-88	dB
			122.88 MHz spurious		-88	-84	dB
			245.76 MHz spurious		-75	-72	dB
			491.52MHz spurious		-74	-72	dB
		491.52MHz	$100 \mathrm{~Hz}-300 \mathrm{~Hz}$		-90	-85	dB
			300 Hz - 100 kHz		-98	-92	dB
			100 kHz - 100 MHz		-99	-97	dB
			122.88 MHz spurious		-96	-92	dB
			245.76 MHz spurious		-84	-77	dB
		245.76 MHz	100 Hz - 300Hz		-96	-93	dB
			300 Hz - 100kHz		-111	-106	dB
			100kHz - 100MHz		-102	-99	dB
			122.88 MHz spurious		-96	-93	dB

Table 69. Spurious and Isolation Characteristics, $\mathrm{V}_{\mathrm{DDC18} \mathrm{~V}}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V} . \mathrm{V}_{\mathrm{DDO18} \mathrm{_}} \mathrm{v}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDC33} \text { _ }}=\mathrm{V}_{\mathrm{DDO33} \text { _ }}=$ $3.3 \mathrm{~V} \pm 0.1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$ (Case)

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
Q_C, Q_D Clock Outputs driven in dual PLL mode, external VCO (5898.24MHz), EXT_VCO_SEL_y = 0						
L	Spurious signals (Q_y) 5898.24 MHz 	$100 \mathrm{~Hz}-300 \mathrm{~Hz}$		-59		dB
		300 Hz - 100 kHz		-79		dB
		100kHz - 100MHz		-109		dB
		122.88 MHz spurious		-84		dB
		245.76 MHz spurious		-86		dB
		491.52MHz spurious		-78		dB
Q_A - Q_H SYSREF Outputs driven in dual PLL mode, internal VCO						
L	Spurious signals ${ }^{[2]}$	> 500 Hz		-71	-69	dB
		> 500Hz		-71	-68	dB
		> 500Hz		-73	-71	dB
Output Isolation						
$\Delta \mathrm{L}$	Output isolation between any neighboring clock output	$\mathrm{f}_{\text {OUT }}=983.04 \mathrm{MHz}$	72			dB
		$\mathrm{f}_{\text {OUT }}=491.52 \mathrm{MHz}$	76			dB
		$\mathrm{f}_{\text {OUT }}=245.76 \mathrm{MHz}$	93			dB
$\Delta \mathrm{L}$	Output isolation between any Q_y (clock) and Q_y (SYSREF[${ }^{[3]}$) output	Both SYSREF and clock signals active	68			dB

1. Measured differentially with output delay circuits set to Ons. Q_G delay circuits should be set to greater than zero to minimize spurious signals coupling into neighboring Q_F outputs.
2. Measured as sum of all spurious amplitudes in one side band in the offset frequency range above 500 Hz , excluding the harmonics of the fundamental frequency of $n \times f_{\text {SYSREF }}$ (e.g., $\left.n \times 7.68 M H z\right)$).
3. SYSREF frequencies: $30.72,15.36,7.68 \mathrm{MHz}$

Figure 18. Setup And Hold Time Definition for SRG = 001

7. Clock Phase Noise Characteristics

Measurement conditions for phase noise characteristics:

- $\mathrm{f}_{\mathrm{VCXO}}=122.88 \mathrm{MHz}$, phase noise characteristics: $10 \mathrm{~Hz}:-65 \mathrm{dBc} / \mathrm{Hz}, 100 \mathrm{~Hz}:-99 \mathrm{dBc} / \mathrm{Hz}, 1 \mathrm{kHz}:-126 \mathrm{dBc} / \mathrm{Hz}$, 10kHz: -148dBc/Hz, 100kHz: -152dBc/Hz
- Input frequency: 122.88 MHz
- PLL-0 bandwidth: 100 Hz
- PLL-1 bandwidth: 190kHz

Figure 19. 983.04MHz Output Phase Noise

Figure 20. 491.52MHz Output Phase Noise

Figure 21. 245.76MHz Output Phase Noise

8. Application Information

8.1 OSC_1 Input Termination (External VCO)

The differential OSC_1/nOSC_1 input is used in applications with an external VCO as oscillator for PLL-1. For signal termination of the external VCO, the OSC_1/nOSC_1 input has two built-in 50Ω termination resistors with its junction connected to the J7 pin. The external VCO can have a differential LVPECL, LVDS, or single-ended sinusoidal waveform output driver. For recommended interfaces, see the following figures.

Figure 22. External VCO 3.3V LVPECL Driver to OSC_1/nOSC_1 Input Interface

Figure 23. External VCO 3.3V LVPECL Driver to OSC_1/nOSC_1 input, Alternative Interface

Figure 24. External VCO LVDS Driver to OSC_1/nOSC_1 Input Interface

Figure 25. External VCO Single-ended Sinusoidal-Driver to OSC_1/nOSC_1 Input Interface

8.2 Termination for Differential Q_y LVPECL Outputs

When the output is configured to LVPECL, the driver is an open-emitter type requiring a DC current path to the termination voltage V_{TT} through the pull-down resistor. Figure 26 shows a standard LVPECL driver termination, while Figure 27 to Figure 29 show alternative terminations. The LVPECL output driver is configurable and the applicable termination voltage V_{TT} depends on the output amplitude setting and output supply voltage $\mathrm{V}_{\text {DDO_V }} \mathrm{V}$ (see the V_{TT} and termination resistor value tables below each diagram).

Figure 26. LVPECL Style Termination
Table 70. V_{TT} Values for Output Termination in Figure 26

Output Supply Voltage	Output Amplitude	V_{TT}
$\mathrm{V}_{\text {DDO_V }}=1.8 \mathrm{~V}$	300 mV	$\mathrm{V}_{\text {DDO_v }}-1.55 \mathrm{~V}$
	400 mV	$\mathrm{V}_{\text {DDO_v }}-1.65 \mathrm{~V}$
	550 mV	GND
	700 mV	GND
	300 mV	$\mathrm{V}_{\text {DDO_v }}-1.55 \mathrm{~V}$
	400 mV	$\mathrm{V}_{\text {DDO_v }}-1.65 \mathrm{~V}$
	550 mV	$\mathrm{V}_{\text {DDO_v }}-1.8 \mathrm{~V}$
	700 mV	$\mathrm{V}_{\text {DDO_v }}-1.95 \mathrm{~V}$

Figure 27. Alternative LVPECL Style Termination

Table 71. Resistor Values for Output Termination in Figure 27

Output Supply Voltage	Output Amplitude	R1, R3	R2, R4
$\mathrm{V}_{\text {DDO_V }}=1.8 \mathrm{~V}$	300 mV	360Ω	58.1Ω
	400 mV	600Ω	54.5Ω
	550 mV	No-pop	50Ω
	700 mV	No-pop	50Ω
	300 mV	94.2Ω	106.5Ω
	400 mV	100Ω	100Ω
	550 mV	110Ω	91.7Ω
	700 mV	122.2Ω	84.6Ω

Figure 28. Alternative LVPECL Style Termination

Table 72. Resistor Values for Output Termination in Figure 28

Output Supply Voltage	Amplitude	R3
$\mathrm{V}_{\text {DDO_V }}=1.8 \mathrm{~V}$	300 mV	14Ω
	400 mV	7.6Ω
	550 mV	0Ω
	700 mV	0Ω
	300 mV	80.6Ω
	400 mV	73.3Ω
	550 mV	61.2Ω
	700 mV	50Ω

Figure 29. Alternative LVPECL Style Termination
Table 73. Resistor Values for Output Termination in Figure 29

Output Supply Voltage	Amplitude	R1, R2 (Ohm)
$\mathrm{V}_{\text {DDO_V }}=1.8 \mathrm{~V}$	300 mV	77.9Ω
	400 mV	65.3Ω
	550 mV	50Ω
	700 mV	50Ω
	300 mV	211Ω
	400 mV	196Ω
	550 mV	172Ω
	700 mV	150Ω

8.3 Termination for Differential Q_y LVDS Outputs

Unlike the LVPECL style driver, the LVDS style driver does not require a board-level pull-down resistor. Figure 30 and Figure 31 show typical termination examples with DC coupling for the LVDS style driver. A termination example with AC coupling is shown in Figure 32. All three of the figures are for LVDS receivers with a high-input impedance (no built-in 100Ω termination).

For receivers with built-in 100Ω termination, see footnote [2]. The LVDS termination examples in the figures are independent of the output amplitude setting and the output supply voltage $V_{\text {DDO_v }}$.

Figure 30. LVDS Style Driver Termination (DC Coupled)

Figure 31. LVDS Style Alternative Driver Termination (DC Coupled)

Figure 32. LVDS Style Alternative Driver Termination (AC Coupled) ${ }^{[2]}$

[^1]
9. Thermal Characteristics

Table 74. Thermal Characteristics for the 100 CABGA Package ${ }^{[1]}$

Multi-Layer PCB, JEDEC Standard Test Board				
Symbol		Thermal Parameter	Condition	Value
Θ_{JA}	Junction to ambient	$0 \mathrm{~m} / \mathrm{s}$ air flow	22.4	
		$1 \mathrm{~m} / \mathrm{s}$ air flow	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
		$2 \mathrm{~m} / \mathrm{s}$ air flow	20.3	
Θ_{JC}	Junction to case	-	18.7	
Θ_{JB}	Junction to board	-	19.9	

1. Standard JEDEC 2S2P multilayer PCB

9.1 Temperature Considerations

The 8V19N880 supports applications in a natural convection environment as long as the junction temperature does not exceed the specified junction temperature, T_{J}. In applications where the heat dissipates through the $\mathrm{PCB}, \Theta_{\mathrm{JB}}$ is the correct metric to calculate the junction temperature. Ψ_{JB} is the right metric in all other applications where the majority of the heat dissipates through the board (80%) and a minority (20%) through the top of the device. The following calculation uses the junction-to-board thermal characterization parameter $\Theta_{J B}$ to calculate the junction temperature, T_{J}. Care must be taken to not exceed the maximum allowed junction temperature, T_{J}, of $125^{\circ} \mathrm{C}$.

The junction temperature T_{j} is calculated using the following equation:
$T_{J}=T_{B}+\Theta_{J B} \times P_{D}$, where

- $\mathrm{T}_{\mathrm{J}}=$ Junction temperature at steady state condition in $\left({ }^{\circ} \mathrm{C}\right)$.
- $\mathrm{T}_{\mathrm{B}}=$ Case temperature (Bottom) at steady state condition in $\left({ }^{\circ} \mathrm{C}\right)$.
- $\Theta_{\mathrm{JB}}=$ Thermal characterization parameter to report the difference between TJ and TB
- $\mathrm{P}_{\text {TOT }}=$ Total power dissipation (W)

8V19N880 Maximum power dissipation scenario: With the maximum allowed junction temperature, the maximum device power consumption and at the maximum supply voltages, the maximum supported board temperature can be determined. In this example, the device is configured as described in test case 1 in Table 60.

- Total device power dissipation: $\mathrm{P}_{\text {TOT }}=2.71 \mathrm{~W}$

In this scenario and with the Θ_{JB} thermal model, the maximum supported board temperature is:

- $\mathrm{T}_{\mathrm{B}, \mathrm{MAX}}=\mathrm{T}_{\mathrm{J}, \mathrm{MAX}}-\Theta_{\mathrm{JB}} \times \mathrm{P}_{\mathrm{TOT}}$
- $\mathrm{T}_{\mathrm{B}, \mathrm{MAX}}=125^{\circ} \mathrm{C}-8.24^{\circ} \mathrm{C} / \mathrm{W} \times 2.71 \mathrm{~W}$
- $\mathrm{T}_{\mathrm{B}, \mathrm{MAX}}=102.6^{\circ} \mathrm{C}$

From the above calculation example at the maximum power dissipation, the board temperature must be kept below $102.6^{\circ} \mathrm{C}$. The board layout must have sufficient path for heat release through the whole board.

8V19N880 Application power dissipation scenarios: Applications may use device settings that result in a lower power dissipation than the maximum power scenario. The 8 V 19 N 880 is a multi-functional, high-speed device that targets a variety of applications. Since this device is highly programmable with a broad range of settings and configurations, the power consumption will vary as settings and configurations are changed. Table 75 shows the typical current consumption and total device power consumption along with the junction temperature for the 2 test cases shown in Table 60. The table also displays the maximum board temperature for the Θ_{JB} model.

Table 75. Typical Device Power Dissipation and Junction Temperature

Test Case Table 60	Output Configuration	Device	$\theta_{\text {JB }}$ Thermal Model	
		$\mathrm{P}_{\text {TOT }}$	$\mathrm{T}_{\mathrm{J}}{ }^{[1]}$	$\mathrm{T}_{\mathrm{B}, \mathrm{MAX}}{ }^{[2]}$
		W	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
1	Clocks: LVPECL, 550mV SYSREF: LVDS, 500 mV	2.71	117.3	102.6
2	Clocks: LVPECL, 550mV SYSREF: power-down	2.07	112.1	107.9

1. Junction temperature for a board temperature of $T_{B}=95^{\circ} \mathrm{C}$
2. Maximum board temperature for a junction temperature of $T_{J}<125^{\circ} \mathrm{C}$.

Figure 33. Assembly for Exposed Pad Thermal Release Path - Side View (Drawing not to scale)

10. Package Outline Drawings

The package outline drawings are located at the end of this document. The package information is the most current data available and is subject to change without revision of this document.

11. Ordering Information

Orderable Part Number	Package	Shipping Packaging	Temperature
8V19N880BDGI	RoHS 6/6 100-CABGA, $11 \times 11 \mathrm{~mm}^{2}$	Tray	$-40^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
		Tape and Reel	

12. Marking Diagram

| \#V19N880 |
| :--- | :--- |
| \#YGI |
| \#YYWW\$ |
| - LOT COO |

- Lines 1 and 2 indicate the part number.
- Line 3 indicates the following:
- "\#" denotes stepping.
- " YY " is the last two digits of the year; " $W W$ " is the work week number when the part was assembled.
- "\$" denotes the mark code.

13. Glossary

Abbreviation	Description
Index n	Denominates a clock input CLK_n and associated input frequency divider Rn. Range: 0 to 3
$\mathrm{f}_{\text {CLK }}$	Input frequency to the selected CLK_n input.
$\mathrm{f}_{\text {REF }}$	The reference frequency to a PLL (frequency at the phase detector).
Index x	Denominates a channel, channel frequency divider, wide channel delay and the associated configuration bits. Range: A, B, C, D, E, F, G, H.
Index y	Denominates an individual output and associated configuration bits. Range: A0, A1, B0, B1, C0, C1, D0, D1, E0, E1, E2, F0, F1, G0, G1, H0, H1, H2.
$\mathrm{V}_{\text {DD_V }}$	Denominates all voltage supply pins. Range: $\mathrm{V}_{\mathrm{DDC18}} \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO18}} \mathrm{~V}$, $\mathrm{V}_{\mathrm{DDC33}} \mathrm{~V}, \mathrm{~V}_{\mathrm{DDO33}} \mathrm{~V}$.
V ${ }_{\text {DDO_V }}$	Denominates all output voltage supply pins. Range: $\mathrm{V}_{\text {DDO18_V }}$ and $\mathrm{V}_{\text {DDO33_V }} \mathrm{V}$.
$\mathrm{V}_{\text {DDC18_V }}$	Denominates the 1.8 V core voltage supply pins. Range: VDD_INPUT, VDD_OSC0, VDD_PLL1, VDD_SPI
V ${ }_{\text {DO18_V }}$	Denominates the 1.8 Voutput supply pins. Range: VDDO_QA, VDDO_QB, VDDO_QE, VDDO_QF, VDDO_QG, VDDO_QH.
$\mathrm{V}_{\text {DDC33_V }}$	Denominates the 3.3V core voltage supply pins. Range: VDD33_CP0, VDD33_CP1, VDD33_OSC1, VDD33_VCO.
$\mathrm{V}_{\text {DDO33_V }}$	Denominates the 3.3V output supply pins. Range: VDDO33_QC, VDDO33_QD.
[...]	Index brackets describe a group associated with a logical function or a bank of outputs.
\{...\}	List of discrete values.

14. Revision History

Revision	Date	Description
1.1	Mar 11, 2021	Completed a minor, non-technical update to Table 66.
1.0	Feb 1, 2021	Initial release.

Renesns

CABGA-100, Package Outline Drawing

$11.0 \times 11.0 \times 1.1 \mathrm{~mm}$ Body, 1.0 mm Pitch BDG100D1, PSC-4491-01, Rev 00, Page 1

NOTES:
BOTTOM VIEW

1. ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1982
2. ALL DIMENSION ARE IN MILLIMETERS

RECOMMENDED LAND PATTERN DIMENSION

NOTES:

1. ALL DIMENSION ARE IN MM. ANGLES IN DEGREES
2. TOP DOWN VIEW ON PCB
3. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC

REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN

Package Revision History		
Date Created	Rev No.	
Oct 23, 2018	Rev 00	Initial Rescription

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-4BCPZ-REEL7 AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1

[^0]: 1. M_{1} must be configured and powered-on by setting $\mathrm{PD} _\mathrm{M} 1=0$.
[^1]: 2. For receivers with built-in 100Ω termination that provides its own DC offset (self-bias): Apply the AC-coupled termination shown in Figure 32 and do not populate the resistors R1, R2, and R3.
