Description

The 8 V 49 NS 0412 is a clock generator with four output dividers: three integers, and one that is either integer or fractional. When used with an external crystal, the 8V49NS0412 generates high-performance timing for the communications and datacom markets, especially for applications that demand extremely low phase noise, such as $10 \mathrm{GE}, 40 \mathrm{GE}, 100 \mathrm{G}$, and 400GE.
The 8V49NS0412 provides versatile frequency configurations and output formats, and is optimized to deliver excellent phase noise performance. The device delivers an optimum combination of high clock frequency and low phase noise performance, combined with high power supply noise rejection.
The 8V49NS0412 supports two types of output levels: LVPECL or LVDS on eleven of its outputs. In addition, the device has a single LVCMOS output that can provide a generated clock, or act as a reference bypass output.

The device can be configured to deliver specific configurations under pin control only, or additional configurations through an $I^{2} \mathrm{C}$ serial interface by external processor, or an external $I^{2} C$ EEPROM to loading the configuration.

Typical Applications

- 10G/40G/100/400G Ethernet
- Fiber optics
- Gigabit Ethernet, Terabit IP switches/routers
- CPRI Interfaces

Features

- Eleven differential LVPECL and LVDS outputs with programmable voltage swings
- One LVCMOS output: Input reference can be passed to this output
- The clock input operates in full differential mode (LVDS, LVPECL) or single-ended LVCMOS mode
- Driven from a crystal or differential clock input
- $2.4-2.5 \mathrm{GHz}$ PLL frequency range supports Ethernet, SONET, and CPRI frequency plans
- Four Integer output dividers with a range of output divide ratios (see Table 5)
- One Fractional output divider can generate any desired output frequency
- Support of output power-down
- Excellent clock output phase noise:

Offset Output Frequency Single-side Band Phase Noise $100 \mathrm{kHz} \quad 156.25 \mathrm{MHz} \quad-143 \mathrm{dBc} / \mathrm{Hz}$

- RMS phase noise, 12 kHz to 20 MHz integration range: 110 fs (maximum) at 156.25 MHz
- Selected configurations can be controlled via the control input pins without need for serial port access
- LVCMOS compatible ${ }^{2} \mathrm{C}$ serial interface gives access to additional configuration by external processor or loading the configuration from an external $I^{2} \mathrm{C}$ EEPROM, or in combination with the control input pins
- Single 3.3 V supply voltage
- 64-VFQFN $9 \times 9 \mathrm{~mm}$, lead-free (RoHS 6) package
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature

Contents

Description 1
Typical Applications 1
Features 1
Block Diagram 3
Pin Assignments 4
Pin Descriptions 4
Principles of Operation 7
Pin versus Register Control 7
Input Clock Selection (REF_SEL) 8
Prescaler and PLL Configuration 8
PLL Loop Bandwidth 9
Output Divider Frequency Sources 9
Integer Output Dividers (Banks A, B, C, and D) 10
Fractional Output Divider (Bank D) 11
Output Drivers 11
Pin Control of the Output Frequencies and Protocols 11
Device Start-up and Reset Behavior 14
Serial Control Port Description 14
Serial Control Port Configuration Description 14
$I^{2} \mathrm{C}$ Mode Operation 14
$1^{2} \mathrm{C}$ Master Mode Operation and Device Start-up Behavior 15
Register Descriptions 17
Absolute Maximum Ratings 30
DC Electrical Characteristics 31
AC Electrical Characteristics 36
Phase Noise Plots 38
Applications Information 41
Recommendations for Unused Input and Output Pins 41
Inputs 41
Outputs 41
Overdriving the XTAL Interface 41
Wiring the Differential Input to Accept Single-Ended Levels 42
3.3V Differential Clock Input Interface 43
LVDS Driver Termination 44
Termination for 3.3V LVPECL Outputs 46
VFQFN EPAD Thermal Release Path 47
Schematic and Layout Recommendations 48
Power Dissipation and Thermal Considerations. 50
Example 1. LVPECL, 750mV Output Swing 50
Example 2. LVDS, 350 mV Output Swing 52
Reliability Information 53
Package Outline Drawings 53
Marking Diagram 54
Ordering Information 54
Errata 54
Recommendations 54
Revision History 55

Block Diagram

Figure 1: 8V49NS0412 Block Diagram

Transistor count: 132,756

Pin Assignments

Figure 2: Pin Assignments for $9 \times 9 \mathrm{~mm}$ 64-Lead VFQFN Package - Top View

Pin Descriptions

Table 1. Pin Descriptions

Number	Name ${ }^{\text {[a] }}$	Type	
1	VCOB	Power	Power supply voltage for output Bank B (3.3V).
2	QB0	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
3	nQB0	Output	
4	QB1	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
5	nQB1	Output	
6	QB2	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
7	nQB2	Output	
8	QB3	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
9	nQB3	Output	
10	VCCOB	Power	Power supply voltage for output Bank B (3.3V).
11	ND[0]	Input [PU/PD]	Control input for output Bank D. 3-level signals (see Table 10).

Table 1. Pin Descriptions (Cont.)

Number	Name ${ }^{[\mathrm{a}]}$	Type	Description
12	ND[1]	Input [PU/PD]	Control input for output Bank D. 3-level signals (see Table 10).
13	$\mathrm{V}_{\text {CCOD }}$	Power	Power supply voltage for output Bank D (3.3V).
14	QD1	Output	Single-ended output clock. LVCMOS output levels.
15	QDO	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
16	nQD0	Output	
17	NB[0]	Input [PU/PD]	Control input for output Bank B. 3-level signals (see Table 8).
18	NB[1]	Input [PU/PD]	Control input for output Bank B. 3-level signals (see Table 8).
19	NC[0]	Input [PU/PD]	Control input for output Bank C. 3-level signals (see Table 9).
20	NC[1]	Input [PU/PD]	Control input for output Bank C. 3-level signals (see Table 9).
21	VCCA_IN1	Power	Analog power supply voltage for PLL (3.3V).
22	NA[1]	Input [PU/PD]	Control input for output Bank A. 3-level signals (see Table 7).
23	CAP ${ }_{\text {BIAS }}$	Analog	Internal VCO bias decoupling capacitor. Use a $4.7 \mu \mathrm{~F}$ capacitor between the CAP $_{\text {BIAS }}$ terminal and V_{EE}.
24	VCCA_IN2	Power	Analog power supply voltage for VCO (3.3V).
25	CR	Analog	Internal VCO regulator decoupling capacitor. Use a $1 \mu \mathrm{~F}$ capacitor between the CR and the $\mathrm{V}_{\mathrm{CCA}}$ terminals.
26	CAP ${ }_{\text {Reg }}$	Analog	Internal VCO regulator decoupling capacitor. Use a $4.7 \mu \mathrm{~F}$ capacitor between the CAP $_{\text {REG }}$ terminal and V_{EE}.
27	LFFR	Analog	Ground return path pin for the PLL loop filter.
28	LFF	Output	Loop filter/charge pump output for the FemtoClock NG PLL. Connect to the external loop filter.
29	$\mathrm{V}_{\text {CCA }}$	Power	Analog power supply voltage for VCO (3.3V).
30	nc	-	No connect. Do not use.
31	VCC_CP	Power	Analog power supply voltage for PLL charge pump (3.3V).
32	ICP	Analog	Charge pump current input for PLL. Connect to LFF pin (28).
33	$\mathrm{V}_{\text {cCoc }}$	Power	Power supply voltage for output Bank C (3.3V).
34	nQC1	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
35	QC1	Output	
36	nQC0	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
37	QCO	Output	
38	$\mathrm{V}_{\text {cooc }}$	Power	Power supply voltage for output Bank C (3.3V).
39	$V_{\text {CCOA }}$	Power	Power supply voltage for output Bank A (3.3V).
40	nQA3	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
41	QA3	Output	
42	nQA2	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
43	QA2	Output	

Table 1. Pin Descriptions (Cont.)

Number	Name ${ }^{[4]}$	Type	Description
44	nQA1	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
45	QA1	Output	
46	nQA0	Output	Differential clock output pair. LVPECL or LVDS with configurable amplitude.
47	QAO	Output	
48	$\mathrm{V}_{\text {CCOA }}$	Power	Power supply voltage for output Bank A (3.3V).
49	REF_SEL	Input [PD]	Selects input reference source. LVCMOS interface levels. $0=$ Crystal input on pins OSCI, OSCO (default) 1 = Reference clock input on pins CLK, nCLK
50	$\mathrm{V}_{\text {CC_CK }}$	Power	Power supply voltage for input CLK, nCLK (3.3V).
51	nCLK	Input [PU/PD]	Inverting differential clock input. Internal resistor bias to $\mathrm{V}_{\text {CC_CK }} / 2$.
52	CLK	Input [PD]	Non-inverting differential clock input.
53	FIN[1]	Input [PU/PD]	Control Inputs for input reference frequencies. 3-level signals (see Table 3).
54	FIN[0]	Input [PU/PD]	
55	CAP ${ }_{\text {XTAL }}$	Analog	Crystal oscillator circuit decoupling capacitor. Use a $4.7 \mu \mathrm{~F}$ capacitor between the $\mathrm{CAP}_{\mathrm{XTAL}}$ and the V_{EE} terminals.
56	OSCO	Output	Crystal oscillator interface.
57	OSCI	Input	
58	VCCA_XT	Power	Analog power supply voltage for the crystal oscillator (3.3V).
59	NA[0]	Input [PU/PD]	Control input for output Bank A. 3-level signals (see Table 7).
60	RES	Analog	Connect a $2.8 \mathrm{k} \Omega(1 \%)$ resistor to $\mathrm{V}_{\text {EE }}$ for output current calibration.
61	SDATA	I/O [PU]	$1^{2} \mathrm{C}$ data input/output: LVCMOS interface levels. Open-drain pin.
62	SCLK	I/O [PU]	$1^{2} \mathrm{C}$ clock input/output. LVCMOS interface levels. Open-drain pin.
63	$V_{\text {CC_SP }}$	Power	Power supply voltage for the $\mathrm{I}^{2} \mathrm{C}$ port (3.3V).
64	LOCK	Output	Lock status output. LVCMOS interface levels. Logic Low = PLL not locked Logic High = PLL locked
ePad	$\mathrm{V}_{\text {EE }}$	Power	Negative supply. Exposed pad must be connected to ground.

[a] Unless otherwise noted above, all Power and GND pins must be connected for proper device functionality.

Principles of Operation

The 8 V 49 NS 0412 can be locked to either an input reference clock or a 10 MHz to 50 MHz fundamental-mode crystal, and generate a wide range of synchronized output clocks. Lock status can be monitored via the LOCK pin.

The 8V49NS0412 accepts a differential or single-ended input clock ranging from 5 MHz to 1 GHz . It generates up to twelve output clocks with up to four different output frequencies, ranging from 10.91 MHz to 2.5 GHz .

The device outputs are divided into four output banks. Each bank supports conversion of the input frequency to a different output frequency: one independent or integer related output frequency on Bank $D(Q D[0: 1]$) and three more integer related frequencies on Bank A (QA[0:3]), Bank B (QB[0:3]), and Bank C (QC[0:1]). All outputs within a bank will have the same frequency.
The device is programmable through an $I^{2} \mathrm{C}$ serial interface by an external processor, or loaded through an external $I^{2} \mathrm{C}$ EEPROM or control input pins.

Pin versus Register Control

The 8V49NS0412 can be configured via input control pins and/or over an $I^{2} \mathrm{C}$ serial port. The pins/registers used to control each function are shown in Table 2. Each function is controlled at power-up via the control input pins. Access over the ${ }^{2} \mathrm{C}$ serial port can change each function individually via register control. This allows for any mixture of register or pin control; however, any of the indicated functions can only be controlled by a register or by a pin at any given time, but not by both. Use of register control allows access to a wider range of configuration options, but values are lost on power-down. If the output bank or PLL is controlled by control input pins (at power-up or through Control Select bit), corresponding register values remain unchanged and have no impact on device functions.
Table 2. Control of Specific Functions

Function	Control Select Bit	Control Input Pins	Register Fields Affected
Prescaler and PLL Feedback Divider	FIN_CTL	FIN[1:0]	PS[5:0], FDP, M[8:0]
Bank A - Divider and Output Type	NA_CTL	NA[1:0]	NA_DIV, PD_A, PD_QAx, STY_QAx, AMP_QAx[1:0]
Bank B - Divider and Output Type	NB_CTL	NB[1:0]	NB_DIV, PD_B, PD_QBx, STY_QBx, AMP_QBx[1:0]
Bank C - Divider and Output Type	NC_CTL	NC[1:0]	NC_DIV, PD_C, PD_QCx, STY_QCx, AMP_QCx[1:0]
Bank D - Divider and Output Type	ND_CTL	ND[1:0]	ND[5:0], ND_FINT[3:0], ND_FRAC[23:0], ND_DIVF[1:0], ND_SRC, ND_DIV, PD_D, PD_QDx, STY_QD0, AMP_QDO[1:0]

Changes to the control pins while the part is active are allowed, but limited, and cannot be guaranteed a glitch-free output transition. During the state transition of the control pins, the output phase alignment (synchronization) may be lost and Bank D outputs in Fractional Mode (FOD) may be unavailable. If $I^{2} \mathrm{C}$ registers are accessible, then assertion of the INIT_CLK bit or powering down and then powering up the part will restore phase alignment and activate the Fractional output frequency.

Glitch-free operation can be performed by disabling the outputs using the $\mathrm{I}^{2} \mathrm{C}$-accessible registers, then re-enabling once changes are completed.

Any change to the output dividers performed over the $\mathrm{I}^{2} \mathrm{C}$ interface must be followed by an assertion of the INIT_CLK register bit to force the loading of the new divider values, as well as to synchronize the output dividers.

Input Clock Selection (REF_SEL)

The 8V49NS0412 must be provided with an input reference frequency either from its crystal input pins (OSCI, OSCO), or its reference clock input pins (CLK, nCLK). The REF_SEL input pin controls which source is used.

The crystal input on the 8V49NS0412 can be driven by a parallel-resonant, fundamental mode crystal with a frequency of 10 MHz to 50 MHz . The crystal input also supports being driven by a single-ended crystal oscillator or reference clock, but only a frequency from 10 MHz to 50 MHz may be used on these pins.

The reference clock input accepts clocks with frequencies from 5 MHz to 1 GHz . The input can accept LVPECL, LVDS, LVHSTL, HCSL or LVCMOS inputs using 2.5 V or 3.3 V logic levels as shown in Applications Information.

Prescaler and PLL Configuration

When the input frequency (f_{f}), whether generated by a crystal or clock input is known, and the desired PLL operating frequency has been determined, several constraints need to be met:

- The Phase / Frequency Detector operating frequency (fpFD) must be within the specified limits shown in Table 31. This is controlled by selecting the doubler (FDP) or an appropriate prescaler (PS) value, but not both. If multiple values are possible, a higher $f_{\text {PFD }}$ will provide better phase noise performance.
- The VCO operating frequency (f_{vc}) must be within the specified limits shown in Table 31. This is controlled by selecting an appropriate PLL feedback divider (M) value. Note, it may be necessary to select a different prescaler value if the limits cannot be met by the available values of M . It may also be necessary to select an appropriate input frequency value.

Several preset configurations can be selected directly from the FIN[1:0] control input pins. These configurations are based on a particular input frequency $f_{\mathbb{N}}$ and a particular $f_{V C O}$ (see Table 3). These selections apply whether the input frequency is provided from the crystal or reference clock inputs.

Table 3. Input Selection Control

FIN[1]	FIN[0]	$\mathbf{f}_{\mathbb{N}}(\mathbf{M H z})$	$\mathbf{f}_{\text {VCO }}(\mathbf{M H z})$
High	High	38.88	2488.32
High	Middle $^{[\mathrm{a}]}$	38.4	2457.6
High	Low	31.25	2500
Middle	High	312.5	2500
Middle	Middle	125	2500
Middle	Low	156.25	2500
Low	High	100	2500
Low	Middle	25	2500
Low	Low	50	2500

[a] A "middle" voltage level is defined in Table 24. Leaving the input pin open will also generate this level via a weak internal resistor network.

Alternatively the user can directly access the registers for M, FDP, and PS over the serial interface for a wider range of options (see Table 4).
Inputs do not support transmission of spread-spectrum clocking sources. Since this family of devices is intended for high-performance applications, it will assume input reference sources to have stabilities of +100 ppm or greater.

Table 4. PLL Frequency Control Examples

$\mathbf{f}_{\text {IN }}(\mathbf{M H z})$	PS	FDP	$\mathbf{f}_{\text {PFD }}(\mathbf{M H z})$	\mathbf{M}	PLL Operating Frequency (MHz)
25	1	2	50	50	2500
39.0625	1	2	78.125	32	2500
50	1	2	100	25	2500
100	1	1	100	25	2500
125	1	1	125	20	2500
156.25	1	1	156.25	16	2500
200	2	1	100	25	2500
250	2	1	125	20	2500
312.5	2	1	156.25	16	2500
400	4	1	100	25	2500
500	4	1	125	20	2500
625	4	1	156.25	16	2500
19.44	1	2	38.88	64	2488.32
38.88	1	2	77.76	32	2488.32
38.4	1	2	76.8	32	2457.6

PLL Loop Bandwidth

The 8V49NS0412 PLL requires external loop components (resistor and capacitors) connecting in between the ICP and LFF pins. The PLL loop bandwidth generally depends on the loop components, charge pump current, PFD frequency, and VCO gain.

Output Divider Frequency Sources

Output dividers associated with Banks A, B, and C take their input frequency directly from the PLL. Bank D also has the option to bypass the input frequency (after mux) directly to the output.

Integer Output Dividers (Banks A, B, C, and D)

The 8V49NS0412 supports four integer output dividers: one per output bank. Each integer output divider block independently supports one of several divide ratios as shown in their respective register descriptions (Table 14, Table 15, Table 16 or Table 17). Selected divide ratios can be chosen directly from the control input pins for that particular output bank. The remaining ratios can only be selected via the serial interface. Bank D can choose whether to use the integer divider or a separate fractional divider to generate the output frequency.

Output frequency examples are shown in Table 5 for the minimum $f_{V C O}(2400 \mathrm{MHz})$, the maximum $f_{V C O}(2500 \mathrm{MHz})$, and two additional common VCO frequencies. With appropriate input frequencies and configuration selections, any $f_{V C O}$ and $f_{O U T}$ between the minimum and maximum can be generated.

Table 5. Integer Output Divider Control Examples

Divide Ratio	$\mathrm{f}_{\text {OUT }}(\mathrm{MHz})$			
	$\mathrm{f}_{\mathrm{VCO}}=2400 \mathrm{MHz}$	$\mathrm{f}_{\mathrm{VCO}}=\mathbf{2 4 5 7 . 6 M H z}$	$\mathrm{f}_{\mathrm{VCO}}=2488.32 \mathrm{MHz}$	$\mathrm{f}_{\mathrm{VCO}}=2500 \mathrm{MHz}$
1	2400	2457.6	2488.32	2500
2	1200	1228.8	1244.16	1250
4	600	614.4	622.08	625
5	480	491.52	497.664	500
6	400	409.6	414.72	416.667
8	300	307.2	311.04	312.5
9	266.667	273.07	276.48	277.78
10	240	245.76	248.832	250
12	200	204.8	207.36	208.333
16	150	153.6	155.52	156.25
18	133.333	136.533	138.24	138.889
20	120	122.88	124.416	125
25	96	98.3	99.53	100
32	75	76.8	77.76	78.125
36	66.667	68.267	69.12	69.444
40	60	61.44	62.208	62.5
50	48	49.152	49.766	50
64	37.5	38.4	38.88	39.063
72	33.333	34.133	34.56	34.722
80	30	30.72	31.104	31.25
100	24	24.576	24.883	25
128	18.75	19.2	19.44	19.531
160	15	15.36	15.552	15.625
200	12	12.29	12.44	12.5
220	10.91	11.17	11.31	11.36

Fractional Output Divider (Bank D)

For the fractional output divider in Bank D , the output divide ratio is given by:
$\mathrm{f}_{\text {OUT }}=\frac{\mathrm{f}_{\text {VCO }}}{2 \times\left(\text { FINT }+\frac{\text { FRAC }}{2^{24}}\right) \times(\text { FDIV })}$
Where,

- FINT = Integer Part: 5, 6, ... $\left.2^{4}-1\right)$ - given by ND_FINT[3:0]
- FRAC = Fractional Part: $0,1,2, \ldots\left(2^{24}-1\right)$ - given by ND_FRAC[23:0]
- FDIV = Post-divider: 1, 2 or 4 - given by ND_DIVF[1:0]

This provides a frequency range of 20 to 250 MHz

Output Drivers

Each of the four output banks are provided with pin or register-controlled output drivers. Differential outputs can be individually selected as LVDS, LVPECL, or POWER-DOWN. When powered-down, both outputs of the differential output pair will drive a logic-high level, and the single-ended QD1 output will be in a High-Impedance state.

The differential outputs can individually choose one of several different output voltage swings: $350 \mathrm{mV}, 500 \mathrm{mV}$, or 750 mV - measured single-ended.
Note, under pin-control, all differential outputs within an output bank will assume the same configuration. Pin-control does not allow configuration of individual outputs within a bank.

Pin Control of the Output Frequencies and Protocols

For pin-control settings, see Table 6 to Table 10. All of the output frequencies assume $f_{\text {Vco }}=2500 \mathrm{MHz}$. With different $\mathrm{f}_{\mathrm{Vco}}$ configurations, the pins can still be used to select the indicated divide ratios for each bank, but the $\mathrm{f}_{\text {Out }}$ will be different.

The control pins do not affect the internal register values, but act directly on the output structures. Register values will not change to match the control input pin selections.

Each output bank can be powered-up/down and enabled/disabled by register bits. In the disabled state, an output will drive a logic low level. The default state is all outputs enabled. Pin-control does not require register access to enable the outputs. Additionally, individual outputs within a bank can be powered up/down by register bits only.
Table 6. Definition of Output Disabled / Power-Down ${ }^{[a]}$

Output Conditions	Q $_{\text {MN }}{ }^{[b]}$	nQ $_{\text {MN }}{ }^{[\mathrm{cc}]}$	QD1
DISABLED (register-control only)	LOW	HIGH	LOW
POWER-DOWN (pin-control or register-control)	HIGH	HIGH	High-Impedance

[a] Do not terminate the differential outputs when DISABLED or POWER-DOWN.
[b] $Q_{\text {MN }}$ refers to output pins QA[0:3], QB[0:3], QC[0:1], and QD0.
[c] n_{MN} refers to output pins nQA[0:3], nQB[0:3], nQC[0:1], and nQDO.

Table 7. Bank A Divider/Driver Pin-Control (3-level Control Signals)

NA[1]	NA[0]	Output Type	Divide Ratio	$\mathrm{f}_{\text {OUT }}(\mathrm{MHz}$)
Low	Low	LVPECL ${ }^{[a]}$	16	156.25
Low	Middle	LVPECL	20	125
Low	High	LVPECL	25	100
Middle	Low	LVPECL	100	25
Middle	Middle	POWER-DOWN ${ }^{[b]}$	-	-
Middle	High	LVDS ${ }^{[\mathrm{c}]}$	16	156.25
High	Low	LVDS	20	125
High	Middle	LVPECL	8	312.5
High	High	Loading the configuration from EEPROM ${ }^{[d]}$		

[a] Under pin control, all outputs of the bank are LVPECL using 750 mV output swing.
[b] No active receivers should be connected to QA outputs.
[c] Under pin control, all outputs of the bank are LVDS using 350 mV output swing.
[d] When the configuration is loading from an external EEPROM (NA[1] and NA[0] pins are HIGH), pins NB[1] and NB[0] act as address pins for EEPROM (for more information, see $I^{2} C$ Master Mode Operation and Device Start-up Behavior).

Table 8. Bank B Divider/Driver Pin-Control (3-level Control Signals) ${ }^{\text {[a] }}$

NB[1]	NB[0]	Output Type	Divide Ratio	f $_{\text {OUT }}$ (MHz)
Low	Low	LVPECL $^{[b]}$	16	156.25
Low	Middle	LVPECL	20	125
Low	High	LVPECL	25	100
Middle	Low	LVPECL	100	25
Middle	Middle	POWER-DOWN ${ }^{[c]}$	-	-
Middle	High	LVDS[d]	16	156.25
High	Low	LVDS	20	125
High	Middle	LVPECL	8	312.5
High	High	LVPECL	50	50

[a] When the configuration is loading from an external EEPROM (NA[1] and NA[0] pins are HIGH), pins NB[1] and NB[0] act as address pins for EEPROM (for more information, see $I^{2} \mathrm{C}$ Master Mode Operation and Device Start-up Behavior).
[b] Under pin control, all outputs of the bank are LVPECL using 750 mV output swing.
[c] No active receivers should be connected to QB outputs.
[d] Under pin control, all outputs of the bank are LVDS using 350 mV output swing.

Table 9. Bank C Divider/Driver Pin-Control (3-level Control Signals)

NC[1]	NC[0]	Output Type	Divide Ratio	$\mathrm{f}_{\text {Out }}(\mathrm{MHz}$)
Low	Low	LVPECL ${ }^{[a]}$	8	312.5
Low	Middle	LVPECL	16	156.25
Low	High	LVPECL	20	125
Middle	Low	LVPECL	100	25
Middle	Middle	POWER-DOWN ${ }^{[b]}$		-
Middle	High	LVDS ${ }^{[\mathrm{c}]}$	20	125
High	Low	LVDS	25	100
High	Middle	LVPECL	50	50
High	High	LVDS	16	156.25

[a] Under pin control, all outputs of the bank are LVPECL using 750 mV output swing.
[b] No active receivers should be connected to QC outputs.
[c] Under pin control, all outputs of the bank are LVDS using 350 mV output swing.

Table 10. Bank D Divider/Driver Pin-Control (3-level Control Signals)

ND[1]	ND[0]	QD0 Output Type	QD1 Output Type	Divide Ratio	fout (MHz) $^{\text {Low }}$
Low	Middle	LVPECL $^{[a]}$	LVCMOS	$18.75^{[b]}$	133.333
Low	High	LVPECL	High-Impedance	$11.76^{[b]}$	66.667
Middle	Low	Reserved	Reserved	Reserved	Reserved
Middle	Middle	POWER-DOWN ${ }^{[c]}$	High-Impedance	-	-
Middle	High	LVPECL	LVCMOS	27.5	
High	Low	LVPECL	LVCMOS	100	100
High	Middle	LVPECL	LVCMOS	20	25
High	High	LVPECL	LVCMOS	1	125

[a] Under pin control, all outputs of the bank are LVPECL using 750 mV output swing.
[b] Generated from a fractional divider.
[c] No active receivers should be connected to QDO outputs.
[d] Bypasses the input frequency directly to the output.

Device Start-up and Reset Behavior

The 8V49NS0412 has an internal power-on reset (POR) circuit. The POR circuit will remain active for a maximum of 175 msec after device power-up when recommended CR (pin 25) value (1.0uF) used. For faster power-up to Lock Time, a minimum CR value of 0.1 uF can be used.

While in the reset state (POR active), the device will operate as follows:

1. All registers will return to and be held in their default states as indicated in the applicable register description.
2. All internal state machines will be in their reset conditions.
3. The serial interface will not respond to read or write cycles.
4. Lock status will be cleared.

Upon the internal POR circuit expiring, the device will exit reset and begin self-configuration.
Self-configuration initiates the loading of appropriate values indicated by the control input pins, and the default values into the registers indicated in the register descriptions.
When the NA[1] and NA[0] pins are set up to HIGH, the device will load the configuration from an external $I^{2} C$ EEPROM at a defined address (for more information, see $I^{2} \mathrm{C}$ Master Mode Operation and Device Start-up Behavior). Once the full configuration has been loaded, the device will respond to accesses on the serial port and will attempt to lock the PLL to the input frequency, if available. Once the PLL is locked, all of the outputs will be synchronized.

Serial Control Port Description

Serial Control Port Configuration Description

The 8V49NS0412 has a serial control port that can respond as a slave in an I ${ }^{2} \mathrm{C}$ compatible configuration at a base address of 1101100 b , to allow access to any of the internal registers for device programming or examination of internal status. In addition, the device can become a master only in order to read the initial register configuration from a serial EEPROM on the $\mathrm{I}^{2} \mathrm{C}$ bus.

$I^{\mathbf{2}} \mathbf{C}$ Mode Operation

The $I^{2} \mathrm{C}$ interface is designed to fully support v1.2 of the I2C Specification for Fast mode operation. The 8V49NS0412 acts as a slave device on the $\mathrm{I}^{2} \mathrm{C}$ bus at 400 kHz using a fixed base address of 1101100 b . The interface accepts byte-oriented block write and block read operations. One address byte specifies the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer.
For full electrical $I^{2} C$ compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors have a size of $51 \mathrm{k} \Omega$ typical.

Figure 3: $I^{\mathbf{2}} \mathbf{C}$ Slave Read and Write Cycle Sequencing

Current Read

S	Dev Addr + R	A	Data X	A	Data $X+1$	A	00	A	Data $X+n$	\bar{A}	P

Sequential Read

S	Dev Addr + W	A	Offset Addr X	A	Sr	Dev Addr + R	A	Data X	A	Data X +1	A	000	A	Data $\mathrm{X}+\mathrm{n}$	$\overline{\text { A }}$	P

Sequential Write

S	Dev Addr + W	A	Offset Addr X	A	Data X	A	Data $\mathrm{X}+1$	A	000	A	Data $\mathrm{X}+\mathrm{n}$	A	P
	From master to slave			S = Start				Note:					
	Fommaster	slave			eated sta				X refers		ata at Offset		
	From slave to master			$\begin{aligned} & A=\text { Acknowledge } \\ & \bar{A}=\text { Not Acknowledge } \\ & P=\text { Stop } \end{aligned}$				Data $\mathrm{X}+1$ refers to the data at Offset Addr +1 , etc.					

$\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Master Mode Operation and Device Start-up Behavior

The 8V49NS0412 can load the device configuration from an external EEPROM. During start-up if the configuration pins NA[1] and NA[0] are set to HIGH, or if after start-up they transition to HIGH, the 8V49NS0412 acts as a master on the I2C bus and initiates reading its configuration from an external ${ }^{2} \mathrm{C}$ EEPROM device. Only a block read cycle is supported.

The expected external EEPROM address is pin configurable and depends on the setting of the NB[1] and NB[0] pins. All the address pins of the external EEPROM device must be configured to match the expected EEPROM Address of the 8V49NS0412. The EEPROM address configuration of the 8V49NS0412 is displayed in Table 11.

Table 11. Expected EEPROM Address Settings

NB[1]	NB[0]	Expected EEPROM Address
LOW	LOW	
LOW	MIDDLE	0×550
MIDDLE	LOW	
MIDDLE	MIDDLE	
LOW	HIGH	0×52
MIDDLE	HIGH	
HIGH	LOW	0×56
HIGH	MIDDLE	
HIGH	HIGH	

The 8V49NS0412 loads 82 bytes of data from the external EEPROM device. The first 81 bytes of data contain the device configuration. The last byte (address 0×51) is the location of the CRC checksum. If the CRC is incorrect, the data still loads into the registers but a checksum error is flagged in bit 0 of the 'd59 status register.
The speed of the Master I2C clock is from 200 to 400 kHz . IDT recommends the use of an external EEPROM device with an appropriate speed to match the speed of the 8V49NS0412.

Bit 4 of the 'd59 status register is set to 1 if an EEPROM read is triggered based on the pin configuration until the end of this EEPROM read (then it will go back to 0). Bit 2 of the 'd59 status register is set to 1 after an EEPROM read based on the pin configuration has been completed. These two bits remain 0 for other pin configurations when an EEPROM read is never requested.
As an I^{2} C bus master, the 8V49NS0412 supports the following functions:

- 7-bit addressing mode
- Validation of the read block via CCITT-8 CRC check against the value stored in the last byte (0×51) of the EEPROM
- Support for 400 kHz operation without speed negotiation
- Support for 1-byte addressing mode
- Fixed-period cycle response timer to prevent permanently hanging the $I^{2} \mathrm{C}$ bus
- Read will abort with a status error (bit $1=1$ in the 'd59 register) if one of the following conditions occurs:
- Slave NACK
- Arbitration fail
- Collision during address phase
- Slave response timeout

The 8V49NS0412 does not support the following functions:

- $I^{2} C$ general call
- Slave clock stretching
- $\left.\right|^{2} \mathrm{C}$ start byte protocol
- EEPROM chaining
- CBUS compatibility
- Responding to its own slave address when acting as a master

Register Descriptions

Table 12. Register Blocks

Register Ranges Offset (Hex)	Register Block Description
00-08	Prescaler and PLL Control Registers
09-0F	Reserved ${ }^{[\mathrm{a}]}$
10-17	Bank A Control Registers
18-1F	Bank B Control Registers
20-27	Bank C Control Registers
28-31	Bank D Control Registers
32-37	Reserved
38-3A	Reserved
3B	EEPROM Reading Status Register
3 C	Reserved
3D-40	Device Control Registers
41-4B	Reserved
4C-4F	Reserved
50-FF	Reserved

[a] Reserved registers should not be written to and have indeterminate read values.

Table 13. Prescaler and PLL Control Register Bit Field Locations and Descriptions

Prescaler and PLL Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
00	Rsvd	Rsvd	PS[5:0]					
01	Rsvd							FDP
02	Rsvd						FIN_CTL	OSC_LOW
03	Rsvd							
04	Rsvd							M[8]
05	M[7:0]							
06	Rsvd							
07	Rsvd							
08	Rsvd			CP[4:0]				

Prescaler and PLL Control Register Block Field Descriptions			
Bit Field Name	Field Type	Default Value	Description
PS[5:0]	R/W	000000b	Prescaler - scales input frequency by the value: 00h = Reserved $01 \mathrm{~h}-3 \mathrm{Fh}=$ Divide by the value used (e.g. $04=$ divide-by-4) Note: When FDP $=1$, Prescalar values are ignored and have no impact on device functions.
FDP	R/W	1 b	Input frequency doubler: $\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$
FIN_CTL	R/W	Ob	Prescaler and PLL configuration control: $0=$ PS, FDP, and M settings determined by FIN[1:0] control pins $1=P S$, FDP, and M settings determined by register settings over ${ }^{2} C$
OSC_LOW	R/W	Ob	Crystal oscillator gain control selection: $0=$ Normal gain for crystal frequencies of 25 MHz and up 1 = Low gain for crystal frequencies less than 25 MHz
M[8:0]	R/W	019h	PLL Feedback divider ratio: 000h-003h = Reserved (do not use) 004h-1FFh = Divide the value used (e.g. $04=$ divide-by-4)
CP[4:0]	R/W	11001b	PLL Charge Pump Current control: $\mathrm{ICP}=200 \mu \mathrm{~A} \times(\mathrm{CP}[4: 0]+1)$ Maximum charge pump current is 6.4 mA . Default setting is $5.2 \mathrm{~mA}:((25+1) \times 200 \mu \mathrm{~A})$.
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

Table 14. Bank A Control Register Bit Field Locations and Descriptions

Bank A Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
10	Rsvd		NA[5:0]					
11	Rsvd							
12	PD_A	Rsvd						NA_CTL
13	Rsvd							
14	PD_QAO	Rsvd				STY_QAO	AMP_QA0[1:0]	
15	PD_QA1	Rsvd				STY_QA1	AMP_QA1[1:0]	
16	PD_QA2	Rsvd				STY_QA2	AMP_QA2[1:0]	
17	PD_QA3	Rsvd				STY_QA3	AMP_QA3[1:0]	

Bank A Control Register Block Field Descriptions

Bit Field Name ${ }^{[\mathrm{a}]}$	Field Type	Default Value	Description		
NA[5:0]	R/W	ODh	Divider ratio for Bank A:		
			$000000 \mathrm{~b}=$ Reserved		
			$000001 \mathrm{~b}=\div 1$	$010110 \mathrm{~b}=\div 30$	$101011 \mathrm{~b}=\div 88$
			$000010 \mathrm{~b}=\div 2$	$010111 \mathrm{~b}=\div 32$	$101100 \mathrm{~b}=\div 90$
			$000011 \mathrm{~b}=\div 3$	$011000 \mathrm{~b}=\div 33$	10 1101b $=\div 96$
			$000100 \mathrm{~b}=\div 4$	$011001 \mathrm{~b}=-35$	$101110 b=\div 100$
			$000101 \mathrm{~b}=\div 5$	$011010 \mathrm{~b}=\div 36$	$101111 \mathrm{~b}=\div 108$
			$000110 \mathrm{~b}=\div 6$	$011011 \mathrm{~b}=\div 40$	$110000 \mathrm{~b}=\div 110$
			$000111 \mathrm{~b}=\div 8$	$011100 \mathrm{~b}=\div 42$	$110001 \mathrm{~b}=\div 112$
			$001000 \mathrm{~b}=\div 9$	$011101 \mathrm{~b}=\div 44$	$110010 \mathrm{~b}=\div 120$
			$001001 \mathrm{~b}=\div 10$	$011110 \mathrm{~b}=\div 45$	$110011 \mathrm{~b}=\div 128$
			$001010 b=\div 12$	$011111 \mathrm{~b}=\div 48$	$110100 \mathrm{~b}=\div 132$
			$001011 \mathrm{~b}=\div 14$	$100000 \mathrm{~b}=\div 50$	$110101 \mathrm{~b}=\div 140$
			$001100 b=\div 15$	$100001 \mathrm{~b}=-54$	$110110 \mathrm{~b}=\div 144$
			$001101 \mathrm{~b}=\div 16$	$100010 \mathrm{~b}=\div 55$	$110111 \mathrm{~b}=\div 160$
			$001110 \mathrm{~b}=\div 18$	$100011 \mathrm{~b}=\div 56$	$111000 \mathrm{~b}=\div 176$
			$001111 \mathrm{~b}=\div 20$	$100100 \mathrm{~b}=\div 60$	11 1001b $=\div 180$
			$010000 \mathrm{~b}=\div 21$	$100101 \mathrm{~b}=\div 64$	11 1010b $=\div 200$
			$010001 \mathrm{~b}=\div 22$	$100110 \mathrm{~b}=\div 66$	$111011 \mathrm{~b}=\div 220$
			$010010 \mathrm{~b}=\div 24$	$100111 \mathrm{~b}=\div 70$	$111100 \mathrm{~b}=$ Reserved
			$010011 \mathrm{~b}=\div 25$	10 1000b $=\div 72$	$111101 \mathrm{~b}=$ Reserved
			$010100 \mathrm{~b}=\div 27$	$101001 \mathrm{~b}=\div 80$	111110 b = Reserved
			$010101 \mathrm{~b}=\div 28$	$101010 \mathrm{~b}=\div 84$	111111 b = Reserved

Bank A Control Register Block Field Descriptions			
Bit Field Name ${ }^{\text {[a] }}$	Field Type	Default Value	Description
PD_A	R/W	Ob	Power-down Bank A: 0 = Bank A and all QA outputs powered and operate normally 1 = Bank A and all QA outputs powered down - no active receivers should be connected to QA outputs. When powering down the output bank, it is recommended to also write a 1 to the PD_QAx fields.
NA_CTL	R/W	Ob	Bank A configuration control: $0=N A[5: 0]$, PD_A, STY_Ax, and AMP_Ax[1:0] settings determined by NA[1:0] control pins 1 = NA[5:0], PD_A, STY_Ax, and AMP_Ax[1:0] settings determined by register settings over ${ }^{2} \mathrm{C}$
PD_QAx	R/W	Ob	Power-down output QAx: $0=$ QAx output powered and operates normally 1 = QAx output powered-down - no active receivers should be connected to the QAx output.
STY_QAx	R/W	Ob	Output style for output QAx: $\begin{aligned} & 0=\text { QAx is LVDS } \\ & 1=\text { QAx is LVPECL } \end{aligned}$
AMP_QAx[1:0]	R/W	00b	Output amplitude for output QAx (measured single-ended): $\begin{aligned} & 00=350 \mathrm{mV} \\ & 01=500 \mathrm{mV} \\ & 10=750 \mathrm{mV} \\ & 11=\text { Reserved } \end{aligned}$
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

[a] Where $x=0,1,2$, or 3 .

Table 15. Bank B Control Register Bit Field Locations and Descriptions

Bank B Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
18	Rsvd		NB[5:0]					
19	Rsvd							
1A	PD_B	Rsvd						NB_CTL
1B	Rsvd							
1 C	PD_QB0	Rsvd				STY_QB0	AMP_QB0[1:0]	
1D	PD_QB1	Rsvd				STY_QB1	AMP_QB1[1:0]	
1E	PD_QB2	Rsvd				STY_QB2	AMP_QB2[1:0]	
1F	PD_QB3	Rsvd				STY_QB3	AMP_QB3[1:0]	

Bank B Control Register Block Field Descriptions

Bank B Control Register Block Field Descriptions			
Bit Field Name ${ }^{[a]}$	Field Type	Default Value	Description
PD_B	R/W	Ob	Power-down Bank B: $0=$ Bank B and all QB outputs powered and operate normally 1 = Bank B and all QB outputs powered down - no active receivers should be connected to QB outputs. When powering down the output bank, it is recommended to also write a 1 to the PD_QBx fields.
NB_CTL	R/W	Ob	Bank B configuration control: $0=\mathrm{NB}[5: 0]$, PD_B, STY_Bx, and AMP_Bx[1:0] settings determined by NB[1:0] control pins $1=\mathrm{NB}[5: 0]$, PD_B, STY_Bx, and AMP_Bx[1:0] settings determined by register settings over ${ }^{2} \mathrm{C}$
$P D _Q B x$	R/W	Ob	Power-down output QBx: $0=$ QBx output powered and operates normally. 1 = QBx output powered down - no active receivers should be connected to the QBx output.
STY_QBx	R/W	Ob	Output style for output QBx: $\begin{aligned} & 0=\text { QBx is LVDS } \\ & 1=\text { QBx is LVPECL } \end{aligned}$
AMP_QBx[1:0]	R/W	00b	Output amplitude for output QBx (measured single-ended): $\begin{aligned} & 00=350 \mathrm{mV} \\ & 01=500 \mathrm{mV} \\ & 10=750 \mathrm{mV} \\ & 11=\text { Reserved } \end{aligned}$
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

[a] Where $x=0,1,2$, or 3 .

Table 16. Bank C Control Register Bit Field Locations and Descriptions

Bank C Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
20	Rsvd		NC[5:0]					
21	Rsvd							
22	PD_C	Rsvd						NC_CTL
23	Rsvd							
24	PD_QCO	Rsvd				STY_QCO	AMP_QCO[1:0]	
25	PD_QC1	Rsvd				STY_QC1	AMP_QC1[1:0]	

Bank C Control Register Block Field Descriptions

Bank C Control Register Block Field Descriptions			
Bit Field Name ${ }^{[\text {a] }}$	Field Type	Default Value	Description
NC_CTL	R/W	Ob	Bank C configuration control: $0=$ NC[5:0], PD_C, STY_Cx, and AMP_Cx[1:0] settings determined by NC[1:0] control pins $1=$ NC[5:0], PD_C, STY_Cx, and AMP_Cx[1:0] settings determined by register settings over ${ }^{2}{ }^{2} \mathrm{C}$
PD_QCx	R/W	Ob	Power-down output QCx: $0=$ QCx output powered and operates normally. 1 = QCx output powered down - no active receivers should be connected to the QCx output.
STY_QCx	R/W	Ob	Output style for output QCx: $\begin{aligned} & 0=\text { QCx is LVDS } \\ & 1=\text { QCx is LVPECL } \end{aligned}$
AMP_QCx[1:0]	R/W	00b	Output amplitude for output QCx (measured single-ended): $\begin{aligned} & 00=350 \mathrm{mV} \\ & 01=500 \mathrm{mV} \\ & 10=750 \mathrm{mV} \\ & 11=\text { Reserved } \end{aligned}$
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

[a] Where $\mathrm{x}=0$ or 1 .

Table 17. Bank D Control Register Bit Field Locations and Descriptions

Bank D Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
28	ND_FRAC[7:0]							
29	ND_FRAC[15:8]							
2A	ND_FRAC[23:16]							
2B	Rsvd				ND_FINT[3:0]			
2 C	Rsvd		ND[5:0]					
2D	Rsvd				ND_DIVF[1:0]		ND_DIV	ND_SRC
2E	PD_D	Rsvd						ND_CTL
2 F	Rsvd							
30	PD_QD0	Rsvd				STY_QD0	AMP	[1:0]
31	PD_QD1	Rsvd						

Bank D Control Register Block Field Descriptions

Bit Field Name	Field Type	Default Value	Description
ND_FRAC[23:0]	R/W	600000 h	Fractional portion of divider ratio for fractional divider Bank D: Fraction used in divide ratio $=$ ND_FRAC[23:0] / 24
ND_FINT[3:0]	R/W	1001 b	Integer portion of divider ratio for fractional divider Bank D: $0 h-4 h=$ Reserved $5 h-F h ~$ Divide by the value used (e.g. $5=$ divide-by-5)

Bank D Control Register Block Field Descriptions

Bank D Control Register Block Field Descriptions

Bit Field Name	Field Type	Default Value	Description
PD_D	R/W	Ob	Power-down Bank D: 0 = Bank D and all QD outputs powered and operate normally 1 = Bank D and all QD outputs powered down - no active receivers should be connected to QD0 output. QD1 output is in High-Impedance. When powering down the output bank, it is recommended to also write a 1 to the PD_QDx fields.
ND_CTL	R/W	Ob	Bank D configuration control: $0=$ ND[5:0], ND_FRAC[23:0], ND_FINT[3:0], ND_DIVF[1:0], ND_DIV, ND_SRC, PD_D, PD_QD1, STY_D0, and AMP_D0[1:0] settings determined by ND[1:0] control pins 1 = ND[5:0], ND_FRAC[23:0], ND_FINT[3:0], ND_DIVF[1:0], ND_DIV, ND_SRC, PD_D, PD_QD1, STY_D0, and AMP_D0[1:0] settings determined by register settings over ${ }^{2} \mathrm{C}$
PD_QDx	R/W	Ob	Power-down output QDx: $0=\mathrm{QD}[0: 1]$ outputs powered and operate normally. 1 = QD0 output powered down - no active receivers should be connected to the QD0 output, QD1 output is in High-Impedance.
STY_QD0	R/W	Ob	Output style for output QDO: $\begin{aligned} & 0=\text { QDO is LVDS } \\ & 1=\text { QDO is LVPECL } \end{aligned}$
AMP_QD0[1:0]	R/W	00b	Output amplitude for output QDO (measured single-ended): $\begin{aligned} & 00=350 \mathrm{mV} \\ & 01=500 \mathrm{mV} \\ & 10=750 \mathrm{mV} \\ & 11=\text { Reserved } \end{aligned}$
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

Table 18. EEPROM Reading Status Register Bit Field Locations and Descriptions

Device Control Register Block Field Locations														
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0						
3B	Rsvd									EE_ACT	Rsvd	EE_DONE	EE_ABORT	EE_CHK

EEPROM Reading Status Register Field Descriptions			
Bit Field Name	Field Type	Default Value	Description
EE_ACT	R	-	$0=$ EEPROM reading completed or has not started / been requested yet $1=$ EEPROM reading is active
EE_DONE	R	-	$0=$ EEPROM reading was never requested / did not complete $1=$ EEPROM reading completed
EE_ABORT	R	-	$0=$ EEPROM reading did not abort $1=$ EEPROM reading aborted
EE_CHK	R	-	$0=$ No checksum error was detected $1=$ Checksum error was detected
Rsvd	R	-	Reserved. Always write 0 to this bit location. Read values are not defined.

Table 19. Device Control Register Bit Field Locations and Descriptions

Device Control Register Block Field Locations								
Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0
3D	INIT_CLK	Rsvd						
3 E	RELOCK	Rsvd						
3 F	PB_CAL	Rsvd						
40	Rsvd				EN_A	EN_B	EN_C	EN_D

Device Control Register Block Field Descriptions			
Bit Field Name	Field Type	Default Value	Description
INIT_CLK	W/O ${ }^{[a]}$	0b	Writing a 1 to this bit location will cause output dividers to be synchronized. This must be done every time a divider value is changed. This bit will auto-clear.
RELOCK	W/0 ${ }^{[a]}$	0b	Writing a 1 to this bit location will cause the PLL to re-lock. This bit will auto-clear.
PB_CAL	W/ $\mathrm{ol}^{[a]}$	0b	Precision Bias Calibration: Setting this bit to 1 will start the calibration of an internal precision bias current source. The bias current is used as reference for outputs configured as LVDS and for as reference for the charge pump currents. This bit will auto-clear.
EN_A	R/W	1b	Output Enable control for Bank A: $0=$ Bank A outputs QA[0:3] disabled to logic-low state ($\mathrm{QAx}=0, \mathrm{nQAx}=1$) 1 = Bank A outputs QA[0:3] enabled
EN_B	R/W	1b	Output Enable control for Bank B: $0=$ Bank B outputs $\mathrm{QB}[0: 3]$ disabled to logic-low state ($\mathrm{QBx}=0, \mathrm{nQBx}=1$) 1 = Bank B outputs QB[0:3] enabled
EN_C	R/W	1b	Output Enable control for Bank C: $0=$ Bank C outputs $Q C[0: 1]$ disabled to logic-low state $(Q C x=0, n Q C x=1)$ 1 = Bank C outputs QC[0:1] enabled
EN_D	R/W	1b	Output Enable control for Bank D: $0=$ Bank D outputs $Q D[0: 1]$ disabled to logic-low state ($Q D 0=0, n Q D 0=1$, QD1 = 0) 1 = Bank D outputs QD[0:1] enabled Note: If Bank D is powered down via the PD_D bit or the QD1 output is powered down by the PD_QD1 bit, then QD1 will be in High-Impedance regardless of the state of this bit.
Rsvd	R/W	-	Reserved. Always write 0 to this bit location. Read values are not defined.

[a] These bits are read as 0 . When a 1 is written to them, it will have the indicated effect and then self-clear back to 0 .

Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the DC Electrical Characteristics or AC Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.
Table 20. Absolute Maximum Ratings

Item	
Supply Voltage, V_{CC}	3.6 V
Inputs, V_{I} OSCI Other Inputs	-0.9 V to 3.6 V
Outputs, V_{O} (LVCMOS)	-0.5 V to 3.6 V
Outputs, Continuous Current Surge Current	-0.5 V to 3.6 V
Outputs, Co (LVDS) Continuous Current Surge Current Maximum Junction Temperature, $\mathrm{t}_{\mathrm{JMAX}}$	50 mA
Storage Temperature, $\mathrm{T}_{\text {STG }}$	100 mA

Table 21. Input Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance ${ }^{[\mathrm{a}]}$			3.5		pF
$\mathrm{R}_{\text {PULLDown }}$	Input Pulldown Resistor			51		$\mathrm{k} \Omega$
$\mathrm{R}_{\text {PULLUP }}$	Input Pullup Resistor			51		$\mathrm{k} \Omega$

[a] This specification does not apply to OSCI and OSCO pins.

Table 22. Output Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$R_{\text {OUT }}$	Output Impedance	LOCK	$\mathrm{V}_{\text {CC }}{ }^{[a]}=3.3 \mathrm{~V}$			20	
		QD1			30		

[a] V_{CC} denotes $\mathrm{V}_{\text {CC_sp }}$, $\mathrm{V}_{\text {CCOD }}$.

DC Electrical Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {CC_X }}$	Core Supply Voltage			3.135	3.3	3.465	V
$V_{\text {CCA_ }}{ }^{[\text {[c] }}$	Analog Supply Voltage			3.135	3.3	3.465	V
$\mathrm{V}_{\text {ccox }}$	Output Supply Voltage			3.135	3.3	3.465	V
$\mathrm{ICC}_{\text {c }}{ }^{[d]}$	Core Supply Current				83	100	mA
$\mathrm{I}_{\text {CCA_ }}{ }^{[\text {e] }]}$	Analog Supply Current				138	165	mA
$I_{\text {CCOA }}{ }^{[f]}$	Bank A Output Supply Current	LVPECL	350 mV , all outputs enabled and terminated ${ }^{[9]}$		130	160	mA
			500 mV , all outputs enabled and terminated ${ }^{[\mathrm{h}]}$		143	175	mA
			750 mV , all outputs enabled and terminated ${ }^{[1]}$		165	200	mA
		LVDS	350 mV , all outputs enabled and terminated ${ }^{[\mathrm{j}]}$		83	96	mA
			500 mV , all outputs enabled and terminated ${ }^{[5]}$		100	120	mA
			750 mV , all outputs enabled and terminated ${ }^{[5]}$		129	152	mA
		LVPECL or LVDS	350 mV , divider and buffers disabled and unterminated		1	2	mA
			500 mV , divider and buffers disabled and unterminated		1	2	mA
			750 mV , divider and buffers disabled and unterminated		1	2	mA
$\mathrm{I}_{\mathrm{COOB}}{ }^{[f]}$	Bank B Output Supply Current	LVPECL	350 mV , all outputs enabled and terminated ${ }^{[9]}$		130	160	mA
			500 mV , all outputs enabled and terminated ${ }^{[\mathrm{h}]}$		143	175	mA
			750 mV , all outputs enabled and terminated ${ }^{[i]}$		165	200	mA
		LVDS	350 mV , all outputs enabled and terminated ${ }^{[5]}$		83	96	mA
			500 mV , all outputs enabled and terminated ${ }^{[j]}$		100	120	mA
			750 mV , all outputs enabled and terminated ${ }^{[5]}$		129	152	mA
		LVPECL or LVDS	350 mV , divider and buffers disabled and unterminated		1	2	mA
			500 mV , divider and buffers disabled and unterminated		1	2	mA
			750 mV , divider and buffers disabled and unterminated		1	2	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{I}_{\mathrm{CoOc}}{ }^{[f]}$	Bank C Output Supply Current	LVPECL	350 mV , all outputs enabled and terminated ${ }^{[9]}$		80	98	mA
			500 mV , all outputs enabled and terminated ${ }^{[\mathrm{h}]}$		87	105	mA
			750 mV , all outputs enabled and terminated ${ }^{[i]}$		98	120	mA
		LVDS	350 mV , all outputs enabled and terminated ${ }^{[5]}$		53	65	mA
			500 mV , all outputs enabled and terminated ${ }^{[5]}$		64	75	mA
			750 mV , all outputs enabled and terminated ${ }^{[\mathrm{jI]}}$		76	92	mA
		LVPECL or LVDS	350 mV , divider and buffers disabled and unterminated		1	2	mA
			500 mV , divider and buffers disabled and unterminated		1	2	mA
			750 mV , divider and buffers disabled and unterminated		1	2	mA
$\mathrm{I}_{\text {cood }}{ }^{[f]}$	Bank D Output Supply Current	LVPECL	350 mV , all outputs enabled and terminated ${ }^{[9]}$		82	100	mA
			500 mV , all outputs enabled and terminated ${ }^{[\mathrm{h}]}$		84	105	mA
			750 mV , all outputs enabled and terminated ${ }^{[[]}$		90	112	mA
		LVDS	350 mV , all outputs enabled and terminated ${ }^{[5]}$		72	86	mA
			500 mV , all outputs enabled and terminated ${ }^{[j]}$		76	92	mA
			750 mV , all outputs enabled and terminated ${ }^{[1]}$		84	100	mA
		LVPECL or LVDS	350 mV , divider and buffers disabled and unterminated		3	4	mA
			500 mV , divider and buffers disabled and unterminated		3	4	mA
			750 mV , divider and buffers disabled and unterminated		3	4	mA
$\mathrm{IEE}^{[f]}$	Power Supply Current for V_{EE}	LVPECL	350 mV , outputs enabled and terminated ${ }^{[9]}$		422	495	mA
			500 mV , outputs enabled and terminated ${ }^{[\mathrm{h}]}$		430	506	mA
			750 mV , outputs enabled and terminated ${ }^{[1]}$		446	523	mA
		LVPECL	350 mV , divider and buffers disabled and unterminated		220	262	mA
			500 mV , divider and buffers disabled and unterminated		220	262	mA
			750 mV , divider and buffers disabled and unterminated		220	262	mA

[a] $\mathrm{V}_{\text {CC_ }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_SP }}$.
[b] $\mathrm{V}_{\text {CCOX }}$ denotes $\mathrm{V}_{\text {CCOA }}, \mathrm{V}_{\text {CCOB }}, \mathrm{V}_{\text {CCOC }}, \mathrm{V}_{\text {CCOD }}$.
[c] $V_{\text {CCA_ }}$ denotes $V_{\text {CCA_IN } 1}, V_{\text {CCA_IN } 2}, V_{\text {CCA }}, V_{\text {CCA_XT }}$.

[e] $I_{\text {CCA_ }}$ denotes $I_{\text {CCA_IN } 1, ~}$ I ${ }_{\text {CCA_IN2 }}, I_{\text {CCA }}, I_{\text {CCA_XT }}$.
[f] Internal maximum dynamic switching current is included.
[g] Differential outputs terminated with 50Ω to $\mathrm{V}_{\text {CCOX }}-1.6 \mathrm{~V}$. QD1 output terminated with 50Ω to $\mathrm{V}_{\text {CcoD }} / 2$.
[h] Differential outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{CCOX}}-1.75 \mathrm{~V}$. QD1 output terminated with 50Ω to $\mathrm{V}_{\mathrm{CCOD}} / 2$.
[i] Differential outputs terminated with 50Ω to $\mathrm{V}_{\mathrm{CCOX}}-2 \mathrm{~V}$. QD1 output terminated with 50Ω to $\mathrm{V}_{\mathrm{CCOD}} / 2$.
[j] Differential outputs terminated with 100Ω across Q and $n Q$. QD1 output terminated with 50Ω to $V_{C C O D} / 2$.

Table 24. LVCMOS DC Characteristics for 3-level Pins, $V_{C c _} X^{[a]}=V_{C c o x}{ }^{[b]}=3.3 V \pm 5 \%, T_{A}=-40^{\circ} C$ to $+85^{\circ} C, V_{E E}=0 V$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage	$\begin{aligned} & \text { FIN[1:0], } \\ & \text { NA[1:0], } \mathrm{NB}[1: 0], \\ & \text { NC[1:0], ND[1:0] } \end{aligned}$		$0.7 \times \mathrm{V}_{\text {CC }}{ }^{[\mathrm{c}]}$		3.465	V
$\mathrm{V}_{\text {IM }}$	Input Middle Voltage			$0.4 \times \mathrm{V}_{\text {CC }}{ }^{[\mathrm{c}]}$		$0.6 \times \mathrm{V}_{C C}{ }^{[\mathrm{c]}}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.3		$0.3 \times \mathrm{V}_{C C}{ }^{[\mathrm{c}]}$	V
I_{IH}	Input High Current		$\mathrm{V}_{C C}{ }^{[c]}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
I_{IM}	Input Middle Current		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}{ }^{[\mathrm{c}]} / 2$		± 1		$\mu \mathrm{A}$
IIL	Input Low Current		$\mathrm{V}_{C C}{ }^{[\mathrm{c}]}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$

[a] $\mathrm{V}_{\text {CC_X }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_SP }}$.
[b] $\mathrm{V}_{\text {CCOX }}$ denotes $\mathrm{V}_{\text {CCOA }}, \mathrm{V}_{\text {CCOB }}, \mathrm{V}_{\mathrm{CCOC}}, \mathrm{V}_{\mathrm{CCOD}}$.
[c] $\mathrm{V}_{\text {CC }}$ denotes $\mathrm{V}_{\text {CCA_IN1 }}, \mathrm{V}_{\text {CC_CK }}$.

Table 25. LVCMOS DC Characteristics for 2-level Pins, $V_{C c _}{ }^{[a]}=V_{C C O X}{ }^{[b]}=3.3 V \pm 5 \%, T_{A}=-40^{\circ} C$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Voltage			$0.7 \times \mathrm{V}_{\mathrm{CC}}{ }^{[\mathrm{c}]}$		3.465	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	REF_SEL		-0.3		$0.3 \times \mathrm{V}_{C C}{ }^{[\mathrm{c}]}$	V
		SDATA, SCLK		-0.3		$0.15 \times \mathrm{V}_{C C}{ }^{[\mathrm{C]}}$	V
I_{H}	Input High Current	SCLK, SDATA	$\mathrm{V}_{\mathrm{CC}}{ }^{[c]}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			5	$\mu \mathrm{A}$
		REF_SEL	$\mathrm{V}_{\mathrm{CC}}{ }^{[\mathrm{c}]}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	SCLK, SDATA	$\mathrm{V}_{C C}{ }^{[\mathrm{c}]}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
		REF_SEL	$\mathrm{V}_{\mathrm{CC}}{ }^{[\mathrm{c}]}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
V_{OH}	Output High Voltage	LOCK	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	2.2			V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & \text { SDATA, SCLK, } \\ & \text { LOCK } \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$			0.45	V

[a] $V_{\text {CC_X }}$ denotes $V_{\text {CC_CP }}, V_{C_{C C}}$ CK,$V_{\text {CC_SP. }}$.
[b] $\mathrm{V}_{\text {CCOX }}$ denotes $\mathrm{V}_{\text {CCOA }}, \mathrm{V}_{\mathrm{CCOB}}, \mathrm{V}_{\mathrm{CCOC}}, \mathrm{V}_{\mathrm{CCOD}}$.
[c] V_{CC} denotes $\mathrm{V}_{\text {CC_SP, }}, \mathrm{V}_{\text {CC_CK }}$.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
I_{H}	Input High Current	CLK_IN, nCLK IN	$\mathrm{V}_{\text {CC }}{ }^{[\mathrm{c}]}=\mathrm{V}_{\text {IN }}=3.465 \mathrm{~V}$			150	$\mu \mathrm{A}$
ILL	Input Low Current	CLK_IN	$\mathrm{V}_{\text {CC }}{ }^{[c]}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
		nCLK_IN	$\mathrm{V}_{\text {CC }}{ }^{[\mathrm{c]}]}=3.465 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$	-150			$\mu \mathrm{A}$
$V_{\text {PP }}$	Peak-to-Peak Voltage ${ }^{[d] \text {, }}$ [e]	CLK_IN, nCLK_IN		0.2		1.4	V
$\mathrm{V}_{\text {CMR }}$	Common Mode Input Voltage ${ }^{[\mathrm{d}]}[\mathrm{e}]$	CLK_IN, nCLK_IN		$\mathrm{V}_{\mathrm{EE}}+1.1$		$V_{C C}{ }^{[c]}-0.3$	V

[a] $\mathrm{V}_{\text {CC_ }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_sp }}$.
[b] $\mathrm{V}_{\text {CCOX }}$ denotes $\mathrm{V}_{\text {CCOA }}, \mathrm{V}_{\text {CCOB }}, \mathrm{V}_{\text {CCOC }}, \mathrm{V}_{\text {CCOD }}$.
[c] $V_{C C}$ denotes $V_{C C _}$ck.
[d] Common mode voltage is defined as the cross point.
[e] Input voltage cannot be less than $V_{E E}-300 \mathrm{mV}$ or more than V_{CC}.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage ${ }^{[d]}$	350 mV Amplitude setting	$\mathrm{V}_{\text {ccox }}-1.1$		$V_{\text {Ccox }}-0.8$	V
		500mV Amplitude setting	$V_{\text {ccox }}-1.1$		$V_{\text {Ccox }}-0.8$	
		750mV Amplitude setting	$V_{\text {ccox }}-1.1$		$\mathrm{V}_{\text {Ccox }}-0.8$	
V_{OL}	Output Low Voltage ${ }^{[d]}$	350mV Amplitude setting	$V_{\text {ccox }}-1.5$		$V_{\text {ccox }}-1.1$	V
		500 mV Amplitude setting	$V_{\text {ccox }}-1.6$		$V_{\text {ccox }}-1.3$	
		750 mV Amplitude setting	$V_{\text {ccox }}-1.8$		$\mathrm{V}_{\text {Ccox }}-1.5$	
$\mathrm{V}_{\text {SWING }}$	Single-ended Peak-to-Peak Output Voltage Swing	350 mV Amplitude setting	280	350	420	mV
		500 mV Amplitude setting	430	500	570	
		750mV Amplitude setting	630	700	770	

[a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1], and QDO.
[b] $\mathrm{V}_{\text {CC_ }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_SP }}$.
[c] $V_{\text {CCOX }}$ denotes $V_{\text {CCOA }}, V_{\text {CCOB }}, V_{C C O C}, V_{\text {CCOD }}$.
[d] Outputs terminated with 50Ω to $\mathrm{V}_{\text {CCOX }}-2 \mathrm{~V}$ for 750 mV amplitude setting, $\mathrm{V}_{\mathrm{CCOX}}-1.75 \mathrm{~V}$ for 500 mV amplitude setting, and $\mathrm{V}_{\mathrm{CcOX}}-1.6 \mathrm{~V}$ for 350 mV amplitude setting.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
$V_{O D}$	Differential Output Voltage	350 mV Amplitude setting	0.27	0.32	0.37	V
		500 mV Amplitude setting	0.39	0.46	0.53	
		750 mV Amplitude setting	0.62	0.69	0.76	
$\Delta \mathrm{V}_{\mathrm{OD}}$	$\mathrm{V}_{\text {OD }}$ Magnitude Change				50	mV
$\mathrm{V}_{\text {OS }}$	Offset Voltage ${ }^{[d],[e],[f], ~[g] ~}$	350 mV Amplitude setting	1.9	2.3	2.7	V
		500 mV Amplitude setting	1.8	2.2	2.6	
		750 mV Amplitude setting	1.7	2.1	2.5	
$\Delta \mathrm{V}_{\text {OS }}$	$V_{\text {OS }}$ Magnitude Change				50	mV

[a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1], and QD0.
[b] $\mathrm{V}_{\text {CC_X }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_SP }}$.
[c] $\mathrm{V}_{\text {CCOX }}$ denotes $\mathrm{V}_{\text {CCOA }}, \mathrm{V}_{\text {CCOB }}, \mathrm{V}_{\text {CCOC }}, \mathrm{V}_{\text {CCOD }}$.
[d] No external DC pulldown resistor.
[e] Loading condition is with 100Ω across the differential output.
[f] Offset voltage (V_{OS}) changes with amplitude setting.
[g] It does not conform to standard LVDS $V_{0 S}$ values.

Table 29. LVCMOS DC Characteristics for QD1 Output, $\mathbf{V C C}_{\text {Cl }}{ }^{[a]}=\mathbf{V}_{\text {ccod }}=\mathbf{3 . 3 V} \mathbf{\pm 5 \%}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V_{OH}	Output High Voltage	$\mathrm{QD} 1, \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.6			V
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{QD} 1, \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.5	V

$$
\text { [a] } \mathrm{V}_{\text {CC_x }} \text { denotes } \mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {CC_SP }}
$$

Table 30. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		10		50	MHz
Equivalent Series Resistance (ESR)	$>32 \mathrm{MHz}$			30	Ω
	$\leq 32 \mathrm{MHz}$			50	
Load Capacitance (C_{L})	50MHz Crystal		8	< 12	pF
	25MHz Crystal		12	<22	
Shunt Capacitance	$>32 \mathrm{MHz}$			3	pF
	$\leq 32 \mathrm{MHz}$			7	pF
Maximum Crystal Drive Level			200		$\mu \mathrm{W}$
Frequency Stability (Total)		-100		100	ppm

AC Electrical Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
$\mathrm{f}_{\mathrm{Vco}}$	VCO Frequency			2400		2500	MHz
$\mathrm{f}_{\text {PFD }}$	Phase / Frequency Detector Frequency			5		200	MHz
fout	Output Frequency	QA[0:3], nQA[0:3] QB[0:3], nQB[0:3] QC[0:1], nQC[0:1]		10.91		2500	MHz
		QD0, nQD0	Integer divider selected	10.91		2500	MHz
			Fractional divider selected	20		250	MHz
		QD1	Integer divider selected	10.91		250	MHz
			Fractional divider selected	20		250	MHz
$t s k(b)$	Bank Skew ${ }^{[d],}$ [[e], [f]	Bank A	Same frequency and output type			45	ps
		Bank B				45	
		Bank C				20	
t_{R} / t_{F}	Output Rise/Fall Time	$\begin{aligned} & \text { QA[0:3],nQA[0:3] } \\ & \text { QB[0:3], nQB[0:3] } \\ & \text { QC[0:1], nQC[0:1] } \\ & \text { QDO, nQDO } \end{aligned}$	20\% to 80\%		100	200	ps
		QD1	20\% to 80\%		700	1100	
odc	Output Duty Cycle ${ }^{[9]}$	QA[0:3], nQA[0:3]	$\mathrm{F}_{\text {OUT }} \leq 1250 \mathrm{MHz}$	45	50	55	\%
		$\begin{aligned} & \text { QC[0:1], nQC[0:1], } \\ & \text { QDO, nQDO } \end{aligned}$	$\mathrm{F}_{\text {OUT }}>1250 \mathrm{MHz}$	40	50	60	\%
		QD1	$\mathrm{F}_{\text {OUT }}<156.25 \mathrm{MHz}$	45	50	55	\%
			$\mathrm{F}_{\text {OUT }} \geq 156.25 \mathrm{MHz}$	40	50	60	\%
tıock	PLL Lock Time ${ }^{[h]}$				10		ms
$\mathrm{t}_{\text {STARTUP }}$	PLL Power up to Lock Time ${ }^{[i]}$		CR $=0.1 \mu \mathrm{~F}, 50 \mathrm{MHz}$ Crystal		32	40	ms
			CR $=0.1 \mu \mathrm{~F}, 25 \mathrm{MHz}$ Crystal		41	50	
			CR $=1 \mu \mathrm{~F}, 50 \mathrm{MHz}$ Crystal		117	170	
			CR $=1 \mu \mathrm{~F}, 25 \mathrm{MHz}$ Crystal		129	180	

[a] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
[b] $\mathrm{V}_{\text {CC_ }}$ denotes $\mathrm{V}_{\text {cc_cP }}, \mathrm{V}_{\text {CC_CK }}, \mathrm{V}_{\text {cc_sP }}$.
[c] $V_{\text {CCOX }}$ denotes $V_{\text {CCOA }}, V_{\text {CCOB }}, V_{C C O C}, V_{C C O D}$.
[d] Defined as skew among outputs at the same supply voltage and with equal load conditions. Measured at the output differential crosspoints.
[e] This parameter is defined in accordance with JEDEC Standard 65.
[f] This parameter is guaranteed by characterization. Not tested in production.
[g] Duty cycle of PLL bypassed signals (input reference clock or crystal input) is not adjusted by the device.
[h] PLL Lock Time is defined as time from input clock availability to frequency locked output. The following loop filter component values may be used: $R_{Z}=150 \Omega, C_{Z}=0.1 \mu F, C_{P}=30 p F$. See Applications Information.
[i] PLL Power up to Lock Time is defined as time from 80% power supply ($<500 \mu \mathrm{~s}$ ramp rate) to frequency locked output. By design, the output is active only when the PLL is locked. Characterized with the following loop filter component values: $R_{Z}=150 \Omega, C_{Z}=4.7 \mu F$, and $C_{P}=30 p F$.

Table 32. $\mathbf{Q m n}^{[a]}$ and QD1 Phase Noise and Jitter Characteristics, $\mathbf{V}_{\mathbf{c c} x^{[b]}}{ }^{[b]} \mathbf{V}_{\mathbf{c c o x}}{ }^{[\mathrm{cc}]}=\mathbf{3 . 3 V}+5 \%$, $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}^{[d][e][f][g][h][i]}$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
tjit(Ø)	RMS Phase Jitter Random	$\begin{aligned} & \text { Qmn = } \\ & 156.25 \mathrm{MHz} \end{aligned}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		80	110	fs
	RMS Phase Jitter Random	$\mathrm{Qmn}=125 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		85		fs
	RMS Phase Jitter Random	$\mathrm{Qmn}=100 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		92		fs
	RMS Phase Jitter Random	Qmn $=25 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		115		fs
	RMS Phase Jitter Random	$\begin{aligned} & \mathrm{QDO}=212.5 \mathrm{MHz} \\ & \text { (fractional }^{[i]} \end{aligned}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		132		fs
	RMS Phase Jitter Random	QD1 $=125 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		170		fs
	RMS Phase Jitter Random ${ }^{[k]}$	QAn $=156.25 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		95		fs
		QBn $=100 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		140		fs
		QCn $=25 \mathrm{MHz}$	Integration range: $12 \mathrm{kHz}-5 \mathrm{MHz}$		115		fs
		QDO $=212.5 \mathrm{MHz}$ (fractional)	Integration range: $12 \mathrm{kHz}-20 \mathrm{MHz}$		133		fs
$\Phi_{N}(10)$	Single-Side Band Noise Power, 10Hz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-71		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{N}(100)$	Single-Side Band Noise Power, 100Hz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-113		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{N}(1 \mathrm{k})$	Single-Side Band Noise Power, 1kHz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-136		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{N}(10 \mathrm{k})$	Single-Side Band Noise Power, 10kHz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-137.6		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\mathrm{N}}(100 \mathrm{k})$	Single-Side Band Noise Power, 100kHz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-143.4		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\mathrm{N}}(1 \mathrm{M})$	Single-Side Band Noise Power, 1MHz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-156		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{\mathrm{N}}(10 \mathrm{M})$	Single-Side Band Noise Power, 10MHz from Carrier		Qmn $=156.25 \mathrm{MHz}$		-162		$\mathrm{dBc} / \mathrm{Hz}$
$\Phi_{N}(\propto)$	Noise Floor ($\geq 30 \mathrm{MHz}$ from Carrier)		Qmn $=156.25 \mathrm{MHz}$		-162		$\mathrm{dBc} / \mathrm{Hz}$

[a] Qmn denotes the differential outputs QA[0:3], QB[0:3], QC[0:1] or QD0.
[b] $\mathrm{V}_{\text {CC_X }}$ denotes $\mathrm{V}_{\text {CC_CP }}, \mathrm{V}_{\text {CC_CK }}, V_{\text {CC_SP. }}$.
[c] $\mathrm{V}_{\mathrm{CCOX}}$ denotes $\mathrm{V}_{\mathrm{CCOA}}, \mathrm{V}_{\mathrm{CCOB}}, \mathrm{V}_{\mathrm{CCOC}}, \mathrm{V}_{\mathrm{CCOD}}$.
[d] Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
[e] All outputs enabled and configured for the same output frequency unless otherwise noted.
[f] Characterized using a 50 MHz Crystal unless otherwise noted.
[g] $\mathrm{V}_{C C A}$ requires a voltage regulator. Voltage supplied to $\mathrm{V}_{C C A}$ should be derived from a regulator with a typical power supply rejection ratio of 80 dB at 1 kHz and ultra-low noise generation with a typical value of $3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 10 kHz and $7 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 kHz .
[h] Characterized with 750 mV output voltage swing configuration for all differential outputs.
[i] The following loop filter component values were used: $\mathrm{R}_{\mathrm{Z}}=150 \Omega, \mathrm{C}_{Z}=0.1 \mu \mathrm{~F}, \mathrm{CP}=200 \mathrm{pF}$. PLL Charge Pump Current Control set at 5.2 mA .
[j] $Q A x=156.25 \mathrm{MHz}, Q B x=156.25 \mathrm{MHz}, Q C x=156.25 \mathrm{MHz}, Q D 1=O F F$.
$[k]$ QAx $=156.25 \mathrm{MHz}, Q B x=100 \mathrm{MHz}, Q C x=25 \mathrm{MHz}, Q D 0=212.5 \mathrm{MHz}$ (fractional), QD1 $=$ OFF.

Phase Noise Plots

Figure 4: Typical Phase Noise at 312.5MHz (QB1)

Offset Frequency (Hz)

Figure 5: Typical Phase Noise at 156.25MHz (QB1)

Offset Frequency (Hz)

Figure 6: Typical Phase Noise at 125 MHz (QB1) ${ }^{[1]}$

Offset Frequency (Hz)
[1] Measured using a $50 \mathrm{MHz}, 12 \mathrm{pF}$ crystal as input reference.

Applications Information

Recommendations for Unused Input and Output Pins

Inputs

LVCMOS Control Pins

All control pins have internal pull-up and/or pull-down resistors; additional resistance is not required but can be added for additional protection. A $1 \mathrm{k} \Omega$ resistor can be used.

Outputs

LVPECL Outputs

All unused LVPECL outputs must be left floating. IDT recommends that there is no trace attached.

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If left floating, there should be no trace attached.

LVCMOS Outputs

QD1 output can be left floating if unused. There should be no trace attached.

Overdriving the XTAL Interface

The OSCI input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The OSCO pin can be left floating. The amplitude of the input signal should be between 500 mV and 1.2 V and the slew rate should not be less than $0.2 \mathrm{~V} / \mathrm{ns}$. For 3.3 V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 7 shows an example of the interface diagram for a high-speed 3.3 V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals 90Ω. In addition, matched termination at the crystal input will further attenuate the signal. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver.

Figure 7: General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 8 shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the OSCl input. It is recommended that all components in the schematics be placed in the layout. Though some components may not be used, they can be used for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 8: General Diagram for LVPECL Driver to XTAL Input Interface

Wiring the Differential Input to Accept Single-Ended Levels

Figure 9 shows how a differential input can be wired to accept single-ended levels. The reference voltage $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{Cc}} / 2$ is generated by the bias resistors, R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 may need to be adjusted to position the V_{1} in the center of the input voltage swing. For example, if the input clock is driven from a single-ended 2.5 V LVCMOS driver and the DC offset (or swing center) of this signal is 1.25 V , then adjust the R 1 and R 2 values to set V_{1} at 1.25 V . The values below are when both the single-ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance.

Figure 9. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The resistor values can be increased to reduce the loading for a slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits for differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended to reduce the amplitude while maintaining an edge rate faster than $1 \mathrm{~V} / \mathrm{ns}$. The datasheet specifies a lower differential amplitude, however, this only applies to differential signals. For single-ended applications, the swing can be larger, however, V_{IL} cannot be less than -0.3 V , and V_{IH} cannot be more than $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$. Though some of the recommended components may not be used, the pads should be placed in the layout. They can be used for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

3.3V Differential Clock Input Interface

CLK, nCLK accepts LVDS, LVPECL and other differential signals. Both $\mathrm{V}_{\text {SWING }}$ and $\mathrm{V}_{\text {Ox }}$ must meet the V_{PP} and $\mathrm{V}_{\text {CMR }}$ input requirements. Figure 10 to Figure 12 show interface examples for the CLK, nCLK input driven by the most common driver types. The input interfaces suggested here are some examples of direct-coupled termination.

Figure 10. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 11. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 12. CLK/nCLK Input Driven by a 3.3V LVDS Driver

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance $\left(Z_{T}\right)$ is between 90Ω and 132Ω. The actual value should be selected to match the differential impedance $\left(Z_{0}\right)$ of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source.

The standard termination schematic as shown in Figure 13 can be used with either type of output structure. Figure 14, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50 pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

Figure 13: Standard LVDS Termination

Figure 14: Optional LVDS Termination

For more information on the recommended termination schemes, see Figure 15 to Figure 17.

Figure 15: DC Termination for LVDS Outputs

Figure 16: AC Termination for LVDS Outputs

Figure 17. AC Termination for LVDS Outputs Used with an Input Clock Receiver with Internal 50Ω Terminations and DC Bias

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts are recommended only as guidelines. The differential outputs generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figure 18 and Figure 19 show two different termination schemes that are recommended only as guidelines. Other suitable clock termination schemes may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 18: 3.3V LVPECL Output Termination

Figure 19: 3.3V LVPECL Output Termination

Figure 18 and Figure 19 show two different LVPECL termination schemes for 750 mV amplitude setting which are recommended only as guidelines. Recommended values of R1/R2/R3/R4 for LVPECL termination (Figure 19; Thevenin Equivalent) for 350 mV and 500 mV amplitude settings can be found in the following table.
Table 33. LVPECL Output Termination, $\mathbf{V}_{\text {ccox }}=\mathbf{3 . 3 V} \mathbf{\pm 5 \%}$

Test Conditions	Bias Voltage	R1 $[\Omega]$	R2 $[\Omega]$	R3 $[\Omega]$	R4 $[\Omega]$
350 mV Amplitude Setting	$\mathrm{V}_{\text {CCOX }}-1.6 \mathrm{~V}$	105	105	97.6	97.6
500 mV Amplitude Setting	$\mathrm{V}_{\text {Ccox }}-1.75 \mathrm{~V}$	95.3	95.3	107	107
750 mV Amplitude Setting	$\mathrm{V}_{\text {Ccox }}-2.0 \mathrm{~V}$	84	84	125	125

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 20. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to $13 \mathrm{mils}(0.30$ to 0.33 mm$)$ with $10 z$ copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only.
For more information, see the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Lead-frame Base Package, Amkor Technology.

Figure 20: P.C. Assembly for Exposed Pad Thermal Release Path - Side View (Drawing not to scale)

Schematic and Layout Recommendations

Figure 21 shows an example 8 V 49 NS 0412 application schematic operating the device at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$. This example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set for the application.

Figure 21: 8V49NS0412 Application Schematic

To demonstrate the range of output stage configurations possible, the application schematic assumes that the 8V49NS0412 is programmed over $I^{2} \mathrm{C}$. For alternative DC coupled LVPECL options, please see IDT Application Note, AN-828; for AC coupling options, use IDT Application Note, AN-844.

For a 12 pF parallel resonant crystal, tuning capacitors C145 and C146 are recommended for frequency accuracy. Depending on the parasitic of the PCB layout, these values may require a slight adjustment to optimize the frequency accuracy. Crystals with other load capacitance specifications can be used. This will require adjusting C145 and C146. For this device, the crystal tuning capacitors are required for proper operation.
Crystal layout is very important to minimize capacitive coupling between the crystal pads and leads and other metal in the circuit board. Capacitive coupling to other conductors has two adverse effects: it reduces the oscillator frequency leaving less tuning margin and noise coupling from power planes, and logic transitions on signal traces can pull the phase of the crystal resonance, inducing jitter. Routing $I^{2} \mathrm{C}$ under the crystal is a common layout error, based on the assumption that it is a low frequency signal and will not affect the crystal oscillation. In fact, $I^{2} \mathrm{C}$ transition times are short enough to capacitively couple into the crystal-oscillator loop if they are routed close enough to the crystal traces.
In layout, all capacitive coupling to the crystal from any signal trace is to be minimized, that is to the OSCI and OSCO pins, traces to the crystal pads, the crystal pads, and the tuning capacitors. Using a crystal on the top layer as an example, void all signal and power layers under the crystal connections between the top layer and the ground plane used by the 8V49NS0412. Then calculate the parasitic capacity to the ground and determine if it is large enough to preclude tuning the oscillator. If the coupling is excessive, particularly if the first layer under the crystal is a ground plane, a layout option is to void the ground plane and all deeper layers until the next ground plane is reached. The ground connection of the tuning capacitors should first be made between the capacitors on the top layer, then a single ground via is dropped to connect the tuning cap ground to the ground plane as close to the 8V49NS0412 as possible as shown in the schematic.

As with any high-speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 8V49NS0412 provides separate power supplies to isolate any high switching noise from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. The ferrite bead and the 0.1 uF capacitor in each power pin filter should always be placed on the device side of the board. The other components can be on the opposite side of the PCB if space on the top side is limited. Pull-up and pull-down resistors to set configuration pins can all be placed on the PCB side opposite the device side to free up the device side area if necessary.

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. Depending on the application, the filter may need to be adjusted to get a lower cutoff frequency to adequately attenuate low-frequency noise. Additionally, good general design practices for power plane voltage stability suggest adding bulk capacitance in the local area of all devices.

For additional layout recommendations and guidelines, contact clocks@idt.com.

Power Dissipation and Thermal Considerations

The 8V49NS0412 is a multi-functional, high-speed device that targets a wide variety of clock frequencies and applications. Since this device is highly programmable with a broad range of features and functionality, the power consumption will vary as each of these features and functions is enabled.

The device is designed and characterized to operate within the ambient industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable junction temperature. Extreme care must be taken to avoid exceeding $125^{\circ} \mathrm{C}$ junction temperature.

The following power calculation examples were generated using a maximum ambient temperature and supply voltage. For many applications, the power consumption will be much lower. Contact IDT technical support for any concerns on calculating the power dissipation for your own specific configuration.

Example 1. LVPECL, 750mV Output Swing

This section provides information on power dissipation and junction temperature when the device differential outputs are configured for LVPECL level, 750 mV output swing. Equations and example calculations are also provided.
Table 34. Power Calculations Configuration \#1

Output	Output Style	Output Swing
QA0	LVPECL	750 mV
QA1	LVPECL	750 mV
QA2	LVPECL	750 mV
QA3	LVPECL	750 mV
QB0	LVPECL	750 mV
QB1	LVPECL	750 mV
QB2	LVPECL	750 mV
QB3	LVPECL	750 mV
QC0	LVPECL	750 mV
QC1	LVPECL	750 mV
QD0	LVPECL	750 mV
QD1	LVCMOS	N/A

1. Power Dissipation

The total power dissipation is the sum of the core power plus the power dissipated due to output loading. The following is the power dissipation for $\mathrm{V}_{\mathrm{CC}}=3.465 \mathrm{~V}$, which gives worst case results.

- $\operatorname{Power}(\text { core })_{\text {MAX }}=\mathrm{V}_{\text {CC_MAX }} \times \mathrm{I}_{\text {EE_MAX }}{ }^{[1]}=3.465 \mathrm{~V} \times 523 \mathrm{~mA}=1812.2 \mathrm{~mW}$
- Power(LVPECL outputs) MAX $=34.2 \mathrm{~mW} /$ Loaded Output pair. See Junction Temperature. If all outputs are loaded, the total power is $11 \times 34.2 \mathrm{~mW}=376.2 \mathrm{~mW}$
- Total Power ${ }_{\text {MAX }}=$ Power(core) + Power (LVPECL outputs) + Power (LVCMOS output) $=1812.1 \mathrm{~mW}+376.2 \mathrm{~mW}=2188.3 \mathrm{~mW}=2.1883 \mathrm{~W}$
[1] Maximum QD1 output switching current is included.

2. Junction Temperature

Junction temperature, T_{J}, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, T_{J}, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for T_{J} is as follows: $T_{J}=T_{A}+P_{D} \times \theta_{J A}$:
$T_{J}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$\mathrm{PD}=$ Power Dissipation (W) in desired operating configuration
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance must be used. Assuming no air flow and a multi-layer board, the appropriate value is $15.6^{\circ} \mathrm{C} / \mathrm{W}$ per Table 36 .
Therefore, assuming $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ and all outputs switching, T_{J} will be:
$85^{\circ} \mathrm{C}+2.1883 \mathrm{~W} \times 15.6^{\circ} \mathrm{C} / \mathrm{W}=119.1^{\circ} \mathrm{C}$. This is below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. T_{J} will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer).

3. Power Dissipation due to output loading

This section calculates the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination are shown in Figure 22.
Figure 22. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation at the output(s), use the following equations which assume a 50Ω load, and a termination voltage of $\mathrm{V}_{\mathrm{ccox}}-2 \mathrm{~V}$. These are typical calculations.

- For logic high, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OH_maX }}=\mathrm{V}_{\text {CCOX_maX }}-\mathbf{0 . 8 V}$
$\left(\mathrm{V}_{\text {CCOX_MAX }}-\mathrm{V}_{\text {OH_MAX }}\right)=\overline{0} .8 \mathrm{~V}$
- For logic low, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OL_MAX }}=\mathrm{V}_{\text {CCOX_MAX }}-1.5 \mathrm{~V}$
$\left(V_{\text {CCOX_MAX }}-\mathrm{V}_{\text {OL_MAX }}\right)=1.5 \mathrm{~V}$
$\mathrm{Pd} _\mathrm{H}$ is the power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
 $[(2 \mathrm{~V}-0.8 \mathrm{~V}) / 50 \Omega] \times 0.8 \mathrm{~V}=19.2 \mathrm{~mW}$

Pd_L $=[($ Vol_max $-($ Vccox_max $-2 V)) / R L] \times\left(V \operatorname{ccox} _m a x-V o l _m a x\right)=\left[\left(2 V-\left(V c c o x _m a x-V o l _m a x\right)\right) / R L\right] x\left(V c c o x _m a x-V o l _m a x\right)=$ $[(2 \mathrm{~V}-1.5 \mathrm{~V}) / 50 \Omega] \times 1.5 \mathrm{~V}=15 \mathrm{~mW}$

Total Power Dissipation per output pair $=$ Pd_H + Pd_L $=34.2 \mathrm{~mW}$

Example 2. LVDS, 350mV Output Swing

This section provides information on power dissipation and junction temperature when the device differential outputs are configured for LVDS levels, 350 mV output swing. Equations and example calculations are also provided.
Table 35. Power Calculations Configuration \#2

Output	Output Style	Output Swing
QA0	LVDS	350 mV
QA1	LVDS	350 mV
QA2	LVDS	350 mV
QA3	LVDS	350 mV
QB0	LVDS	350 mV
QB1	LVDS	350 mV
QB2	LVDS	350 mV
QB3	LVDS	350 mV
QC0	LVDS	350 mV
QC1	LVDS	350 mV
QD0	LVDS	350 mV
QD1	LVCMOS	N/A

1. Power Dissipation

The total power dissipation is the sum of the core power plus the power dissipation due to output loading. The following is the power dissipation for $\mathrm{V}_{C C X}=\mathrm{V}_{\text {CCA_ }}=\mathrm{V}_{\text {CCOX }}=3.465 \mathrm{~V}$, which gives worst case results.

$=3.465 \mathrm{~V} \times 100 \mathrm{~mA}+3.465 \mathrm{~V} \times 165 \mathrm{~mA}+3.465 \mathrm{~V}(96 \mathrm{~mA}+96 \mathrm{~mA}+65 \mathrm{~mA}+86 \mathrm{~mA})$
$=346.5 \mathrm{~mW}+571.1 \mathrm{~mW}+1188.5 \mathrm{~mW}=2106.7 \mathrm{~mW}=2.107 \mathrm{~W}$

2. Junction Temperature

Junction temperature, T_{J}, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is $125^{\circ} \mathrm{C}$. Limiting the internal transistor junction temperature, T_{J}, to $125^{\circ} \mathrm{C}$ ensures that the bond wire and bond pad temperature remains below $125^{\circ} \mathrm{C}$.

The equation for T_{J} is as follows: $T_{J}=T_{A}+P_{D} \times \theta_{J A}$:
$T_{J}=$ Junction Temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
PD = Power Dissipation (W) in desired operating configuration
$\theta_{\mathrm{JA}}=$ Junction-to-Ambient Thermal Resistance
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance must be used. Assuming no air flow and a multi-layer board, the appropriate value is $15.6^{\circ} \mathrm{C} / \mathrm{W}$ per Table 36 .

Therefore, assuming $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ and all outputs switching, T_{J} will be:
$85^{\circ} \mathrm{C}+2.107 \mathrm{~W} \times 15.6^{\circ} \mathrm{C} / \mathrm{W}=117.9^{\circ} \mathrm{C}$. This is below the limit of $125^{\circ} \mathrm{C}$.
This calculation is only an example. T_{J} will vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (multi-layer).

Reliability Information

Table 36. Thermal Resistance for 64-VFQFN Package

Symbol	Thermal Parameter	Condition	Value	Unit
$\theta_{\mathrm{JA}}{ }^{[\mathrm{ar}]}$	Junction-to-Ambient	No air flow	15.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC}	Junction-to-Case		15.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JB}	Junction-to-Board		0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[a] Theta $J_{A}\left(\theta_{J A}\right)$ values calculated using an 8-layer PCB $(114.3 \mathrm{~mm} \times 101.6 \mathrm{~mm})$, with $20 z$. $(70 \mu \mathrm{~m})$ copper plating on all 8 layers, with ePad connected to 4 ground planes.

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.
www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-60-x-60-mm-nlg64p5

Marking Diagram

IDT
8V49NS0412
NLGI
\#YYWWS

- Line 1 indicates the part number prefix.
- Line 2 indicates the part number.
- Line 3 indicates the part number suffix.
- Line 4:
- "\#" is the stepping.
- " YY " is the last two digits of the year.
- "WW" is the work week number that the part was assembled.
- " $\$$ " is the mark code.
- LOT is the sequential lot code; COO indicates country of origin.

Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8V49NS0412NLGI	IDT8V49NS0412NLGI	$64-$ VFQFN $9 \times 9 \mathrm{~mm}$, Lead-free	Tray	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
8V49NS0412NLGI8	IDT8V49NS0412NLGI	$64-V F Q F N ~$	$\times 9 \mathrm{~mm}$, Lead-free	Tape and Reel

Errata

The 8V49NS0412 does not load a configuration correctly from an external ${ }^{2} \mathrm{C}$ EEPROM device when the power supply ramps fast (< 10 ms from OV to VCC).

Recommendations

Do not connect an external EEPROM device to the $I^{2} \mathrm{C}$ bus. IDT also recommends not to connect or switch NA[1] and NA[0] pins to High / Power Supply (VCC) at any time. A new device, the 8V49NS1412, eliminates the configuration loading issue from an external $\|^{2} \mathrm{C}$ EEPROM and is recommended for new designs.

Revision History

Date	Description of Change
April 28, 2021	Updated OSCl input voltage rating in Absolute Maximum Ratings table from -0.5 V to 3.6V to -0.9V to 3.6V.
July 28, 2020	Added note [a] to Table 1.
September 3, 2019	Added the tsTARTUP symbol to Table 31.
April 23, 2019	- Updated Overdriving the XTAL Interface. - Added a paragraph and item list after Table 33. May 14, 2018 Added Figure 4.
March 21, 2018	Added Errata.
February 16, 2018	Updated load capacitance in Table 30 (Crystal Characteristics).
October 6, 2017	Initial release.

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.

4 PIN1 INDEX ID IS INDICATED WITH EITHER EXPOSED PAD CORNER CHAMFER OR HALF CIRCLED CUT NEAR THE EXPOSED PAD CORNER.

64-VFQFPN, Package Outline Drawing
$9.0 \times 9.0 \times 0.9 \mathrm{~mm}$ Body, 0.5 mm Pitch, Epad $6.0 \times 6.0 \mathrm{~mm}$ NLG64P5, PSC-4147-05, Rev 04, Page 2

RECOMMENDED LAND PATTERN

NOTES:

1. ALL DIMENSIONS ARE \mathbb{N} MM. ANGLES IN DEGREES.
2. TOP DOWN VIEW AS VIEWED ON PCB.
3. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
4. LAND PATTERN RECOMMENDATION PER IPC-7351 LP CALCULATOR.

Package Revision History		
Date Created	Rev No.	Description
Feb 16, 2018	Rev 03	New Format
April 19, 2018	Rev 04	Add Chamfer on Corner Leads

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Generators \& Support Products category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1 ZL30142GGG2 ZL30250LDG1

