Integrated
ICS9112-17
Circuit
Systems, Inc.

## Low Skew Output Buffer

## General Description

The ICS9112-17 is a high performance, low skew, low jitter zero delay buffer. It uses a phase lock loop (PLL) technology to align, in both phase and frequency, the REF input with the CLKOUT signal. It is designed to distribute high speed clocks in PC systems operating at speeds from 25 to 133 MHz .

ICS9112-17 is a zero delay buffer that provides synchronization between the input and output. The synchronization is established via CLKOUT feed back to the input of the PLL. Since the skew between the input and output is less than $+/-350 \mathrm{pS}$, the part acts as a zero delay buffer.

The ICS9112-17 has two banks of four outputs controlled by two address lines. Depending on the selected address line, bank B or both banks can be put in a tri-state mode. In this mode, the PLL is still running and only the output buffers are put in a high impedance mode. The test mode shuts off the PLL and connects the input directly to the output buffers (see table below for functionality).

The ICS9112-17 comes in a sixteen pin 150 mil SOIC or 16 pin SSOP package. In the absence of REF input, will be in the power down mode. In this mode, the PLL is turned off and the output buffers are pulled low. Power down mode provides the lowest power consumption for a standby condition.

Block Diagram


0051K—11/02/04

## Features

- Zero input - output delay
- Frequency range 25-133 MHz (3.3V)
- High loop filter bandwidth ideal for Spread Spectrum applications.
- Less than 200 ps cycle to cycle Jitter
- Skew controlled outputs
- Skew less than 250 ps between outputs
- Available in 16 pin, 150 mil SSOP \& SOIC package


## Pin Configuration



16 pin SSOP \& SOIC

Functionality

| FS2 | FS1 | CLKA <br> $(1,4)$ | CLKB <br> $(1,4)$ | CLKOUT | Output <br> Source | PLL <br> Shutdown |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | Tristate | Tristate | Driven | PLL | N |
| 0 | 1 | Driven | Tristate | Driven | PLL | N |
| 1 | 0 | PLL <br> Bypass <br> Mode | PLL <br> Bypass <br> Mode | PLL <br> Bypass <br> Mode | REF | Y |
| 1 | 1 | Driven | Driven | Driven | PLL | N |

## Pin Descriptions

| PIN NUMBER | PIN NAME | TYPE | DESCRIPTION |
| :---: | :--- | :---: | :--- |
| 1 | REF $^{2}$ | IN | Input reference frequency. |
| 2 | CLKA1 $^{3}$ | OUT | Buffered clock output, Bank A |
| 3 | CLKA2 $^{3}$ | OUT | Buffered clock output, Bank A |
| 4,13 | VDD | PWR | Power Supply (3.3V) |
| 5,12 | GND | PWR | Ground |
| 6 | CLKB1 $^{3}$ | OUT | Buffered clock output. Bank B |
| 7 | CLKB2 $^{3}$ | OUT | Buffered clock output. Bank B |
| 8 | FS2 $^{4}$ | IN | Select input, bit 2 |
| 9 | FS1 $^{4}$ | IN | Select input, bit 1 |
| 10 | CLKB3 $^{3}$ | OUT | Buffered clock output. Bank B |
| 11 | CLKB4 $^{3}$ | OUT | Buffered clock output. Bank B |
| 14 | CLKA3 $^{3}$ | OUT | Buffered clock output, Bank A |
| 15 | CLKA4 $^{3}$ | OUT | Buffered clock output, Bank A |
| 16 | CLKOUT $^{3}$ | OUT | Buffered clock output, internal feedback on this pin |

Notes:

1. Guaranteed by design and characterization. Not subject to $100 \%$ test.
2. Weak pull-down
3. Weak pull-down on all outputs
4. Weak pull-ups on these inputs

ICS9112-17

## Absolute Maximum Ratings

```
Supply Voltage
7.0 V
Logic Inputs ............................. . . GND -0.5 V to \(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\)
Ambient Operating Temperature . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
Storage Temperature . . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

## Electrical Characteristics - Input \& Supply

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}+/-10 \%$ (unless otherwise stated)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.0 | 2.5 | $\mathrm{VDD}+0.5$ | V |
| Input Low Voltage | $\mathrm{V}_{\mathrm{IL}}$ |  | $\mathrm{GND}-0.5$ |  | 0.8 | V |
| Input High Current | $\mathrm{I}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ |  | 0.1 | 100 | uA |
| Input Low Current | $\mathrm{I}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ;$ |  | 19 | 50 | UA |
| Operating current | $\mathrm{I}_{\mathrm{DD} 1}$ | $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} ; \mathrm{F}_{\mathrm{IN}} @ 66 \mathrm{M}$ |  | 45 | 65 | mA |
| Input frequency | $\mathrm{F}_{\mathrm{i}}{ }^{1}$ | $\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} ;$ All Outputs Loaded | 25 |  | 133 | MHz |
| Input Capacitance | $\mathrm{C}_{\mathrm{IN}}{ }^{1}$ | Logic Inputs |  |  | 5 | pF |

${ }^{1}$ Guaranteed by design, not $100 \%$ tested in production.

## Electrical Characteristics - Input \& Supply

$\mathrm{T}_{\mathrm{A}}=0-70 \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-10 \%$ (unless otherwise stated)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Input High Voltage | $\mathrm{V}_{\mathrm{IH}}$ |  | 2.0 | 2.0 | $\mathrm{~V}_{\mathrm{DD}}+0.3$ | V |
| Input Low Voltage | $\mathrm{V}_{\mathrm{IL}}$ |  | $\mathrm{GND}-0.3$ |  | 0.8 | V |
| Input High Current | $\mathrm{I}_{\mathrm{IH}}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ |  | 0.1 | 100 | uA |
| Input Low Current | $\mathrm{I}_{\mathrm{IL}}$ | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ;$ |  | 19 | 50 | uA |
| Operating current | $\mathrm{I}_{\mathrm{DD} 1}$ | $\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} ; \mathrm{F}_{\mathrm{IN}} @ 66 \mathrm{M}$ |  | 30 | 45 | mA |
| Input frequency | $\mathrm{F}_{\mathrm{i}}{ }^{1}$ | $\mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$; AII Outputs Loaded | 25 |  | 133 | MHz |
| Input Capacitance | $\mathrm{C}_{I \mathrm{I}}{ }^{1}$ | Logic Inputs |  |  | 5.0 | pF |

${ }^{1}$ Guarenteed by design, not $100 \%$ tested in production.

## Electrical Characteristics - OUTPUT

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDL}}=5.0 \mathrm{~V}+/-10 \% ; \mathrm{C}_{\mathrm{L}}=20-30 \mathrm{pF}$ (unless otherwise stated)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| Output Impedance | $\mathrm{R}_{\mathrm{DSP}}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}{ }^{*}(0.5)$ | 10 |  | 24 | $\Omega$ |
| Output Impedance | $\mathrm{R}_{\mathrm{DSN}}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}{ }^{*}(0.5)$ | 10 |  | 24 | $\Omega$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 2.4 | 2.9 | 5.0 | V |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  | 0.25 | 0.4 | V |
| Rise Time $^{1}$ | $\mathrm{~T}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$ |  | 0.8 | 1.5 | ns |
| Fall Time $^{1}$ | $\mathrm{~T}_{\mathrm{f}}$ | $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ |  | 1.0 | 1.5 | ns |
| PLL Lock Time $^{1}$ | tLOCK | Stable power supply, valid clock <br> presented on REF pin |  |  | 1.0 | ms |
| Duty Cycle ${ }^{1}$ | $\mathrm{D}_{\mathrm{t}}$ | $\mathrm{V}_{\mathrm{T}}=1.4 \mathrm{~V} ; \mathrm{Cl}=30 \mathrm{pF}$ |  | 40 | 50 | 60 |
| Cycle to Cycle jitter |  |  |  |  |  |  |

${ }^{1}$ Guaranteed by design, not $100 \%$ tested in production.

## Electrical Characteristics - OUTPUT

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDL}}=3.3 \mathrm{~V}+/-10 \% ; \mathrm{C}_{\mathrm{L}}=20-30 \mathrm{pF}$ (unless otherwise stated)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Impedance | $\mathrm{R}_{\text {DSP }}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {DD }}{ }^{*}(0.5)$ | 10 |  | 24 | $\Omega$ |
| Output Impedance | $\mathrm{R}_{\text {DSN }}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}{ }^{*}(0.5)$ | 10 |  | 24 | $\Omega$ |
| Output High Voltage | $\mathrm{V}_{\mathrm{OH}}$ | $\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 2.4 | 2.9 | 3.3 | V |
| Output Low Voltage | $\mathrm{V}_{\mathrm{OL}}$ | $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$ |  | 0.25 | 0.4 | V |
| Rise Time ${ }^{1}$ | $\mathrm{T}_{\mathrm{r}}$ | $\mathrm{V}_{\mathrm{OL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$ |  | 1.2 | 2.0 | ns |
| Fall Time ${ }^{1}$ | $\mathrm{T}_{\mathrm{f}}$ | $\mathrm{V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$ |  | 1.2 | 2.0 | ns |
| PLL Lock Time1 | tLOCK | Stable power supply, valid clock presented on REF pin |  |  | 1.0 | ms |
| Duty Cycle ${ }^{1}$ | $\mathrm{D}_{\mathrm{t}}$ | $\mathrm{V}_{\mathrm{T}}=1.4 \mathrm{~V} ; \mathrm{Cl}=30 \mathrm{pF}$ | 40 | 50 | 60 | \% |
|  | $\mathrm{D}_{\mathrm{t}}$ | $\mathrm{V}_{\mathrm{T}}=\mathrm{Vdd} / 2$; Fout $<66.6 \mathrm{MHz}$ | 45 | 50 | 55 | \% |
| Cycle to Cycle jitter ${ }^{1}$ | Tcyc-cyc | at 66MHz , Loaded Outputs |  |  | 250 | ps |
|  | Tcyc-cyc | $>66 \mathrm{MHz}$, Loaded Outputs |  |  | 200 | ps |
| Absolute Jitter ${ }^{1}$ | Tjabs | 10000 cycles; $\mathrm{Cl}=30 \mathrm{pF}$ | -100 | 70 | 100 | ps |
| Jitter; 1-Sigma ${ }^{1}$ | Tj1s | 10000 cycles; $\mathrm{Cl}=30 \mathrm{pF}$ |  | 14 | 30 | ps |
| Skew ${ }^{1}$ | $\mathrm{T}_{\text {sk }}$ | $\mathrm{V}_{\mathrm{T}}=1.4 \mathrm{~V}$ (Window) Output to Output |  |  | 250 | ps |
| Pevice to Device Skew | Tdsk-Tdsk | Measured at VDD/2 on the CLKOUT pins of devices |  | 0 | 700 | ps |
| Delay Input-Output ${ }^{1}$ | $\mathrm{D}_{\mathrm{R} 1}$ | $\mathrm{V}_{\mathrm{T}}=1.4 \mathrm{~V}$ |  | 0 | 700 | ps |

${ }^{1}$ Guaranteed by design, not $100 \%$ tested in production.
0051K-11/02/04

ICS9112-17

## Output to Output Skew

The skew between CLKOUT and the CLKA/B outputs is not dynamically adjusted by the PLL. Since CLKOUT is one of the inputs to the PLL, zero phase difference is maintained from REF to CLKOUT. If all outputs are equally loaded, zero phase difference will maintained from REF to all outputs.
If applications requiring zero output-output skew, all the outputs must equally loaded.
If the CLKA/B outputs are less loaded than CLKOUT, CLKA/B outputs will lead it; and if the CLKA/B is more loaded than CLKOUT, CLKA/B will lag the CLKOUT.
Since the CLKOUT and the CLKA/B outputs are identical, they all start at the same time, but different loads cause them to have different rise times and different times crossing the measurement thresholds.


## Application Suggestion:

ICS9112-17 is a mixed analog/digital product. The analog portion of the PLL is very sensitive to any random noise generated by charging or discharging of internal or external capacitor on the power supply pins. This type of noise will cause excess jitter to the outputs of ICS9112-17. Below is a recommended lay out to alleviate any addition noise. For additional information on FT. layout, please refer to our AN07. The 0.1 uF capacitors should be connected as close as possible to power pins (4 \& 13). An Isolated power plane with a 2.2 uF capacitor to ground will enhance the power line stability.


ICS9112-17


150 mil SSOP (QSOP)

| SYMBOL | $\begin{array}{c}\text { In Millimeters } \\ \text { COMMON DIMENSIONS }\end{array}$ |  | In Inches |  |
| :---: | :---: | :---: | :---: | :---: |
|  | COMMON DIMENSIONS |  |  |  |$\}$

VARIATIONS

| N | D mm. |  | ZD | D (inch) |  | ZD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | (Ref) | MIN | MAX | (Ref) |
| 16 | 4.80 | 5.00 | 0.23 | .189 | .197 | .009 |

Reference Doc.: JEDEC Publication 95, MO-137
10-0032

## Ordering Information

## 9112yF-17LF-T

Example:



150 mil (Narrow Body) SOIC

| SYMBOL | In MillimetersCOMMON DIMENSIONS |  | In Inches <br> COMMON DIMENSIONS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| A | 1.35 | 1.75 | . 0532 | . 0688 |
| A1 | 0.10 | 0.25 | . 0040 | . 0098 |
| B | 0.33 | 0.51 | . 013 | . 020 |
| C | 0.19 | 0.25 | . 0075 | . 0098 |
| D | SEE VARIATIONS |  | SEE VARIATIONS |  |
| E | 3.80 | 4.00 | . 1497 | . 1574 |
| e | 1.27 BASIC |  | 0.050 BASIC |  |
| H | 5.80 | 6.20 | . 2284 | . 2440 |
| h | 0.25 | 0.50 | . 010 | . 020 |
| L | 0.40 | 1.27 | . 016 | . 050 |
| N | SEE VARIATIONS |  | SEE VARIATIONS |  |
| $\alpha$ | $0^{\circ}$ | $8^{\circ}$ | $0^{\circ}$ | $8^{\circ}$ |

VARIATIONS

| N | D mm. |  | D (inch) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |
| 16 | 9.80 | 10.00 | .3859 | .3937 |

## Ordering Information

9112yM-17LF-T
Example:


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:

## Click to view products by Renesas manufacturer:

Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG

NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2

