High Performance Communication Buffer

General Description

The ICS91305 is a high performance, low skew, low jitter clock driver. It uses a phase lock loop (PLL) technology to align, in both phase and frequency, the REF input with the CLKOUT signal. It is designed to distribute high speed clocks in communication systems operating at speeds from 10 to 133 MHz .

ICS91305 is a zero delay buffer that provides synchronization between the input and output. The synchronization is established via CLKOUT feed back to the input of the PLL. Since the skew between the input and output is less than $+/-350 \mathrm{pS}$, the part acts as a zero delay buffer.

The ICS91305 comes in an eight pin 150 mil SOIC package. It has five output clocks. In the absence of REF input, will be in the power down mode. In this mode, the PLL is turned off and the output buffers are pulled low. Power down mode provides the lowest power consumption for a standby condition.

Block Diagram

Features

- Zero input - output delay
- Frequency range 10-133 MHz (3.3V)
- 5 V tolerant input REF
- High loop filter bandwidth ideal for Spread Spectrum applications.
- Less than 200 ps Jitter between outputs
- Skew controlled outputs
- Skew less than 250 ps between outputs
- Available in 8 pin 150 mil SOIC \& 173 mil TSSOP packages
- $3.3 \mathrm{~V} \pm 10 \%$ operation

Pin Configuration

8 pin SOIC \& TSSOP

Renesns

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	REF 2	IN	Input reference frequency, 5V tolerant input.
2	CLK2 3	OUT	Buffered clock output
3	CLK1 3	OUT	Buffered clock output
4	GND	PWR	Ground
5	CLK3 3	OUT	Buffered clock output
6	VDD 7	PWR	Power Supply (3.3V)
7	CLK4 3	OUT	Buffered clock output
8	CLKOUT 3	OUT	Buffered clock output. Internal feedback on this pin

Notes:

1. Guaranteed by design and characterization. Not subject to 100% test.
2. Weak pull-down
3. Weak pull-down on all outputs

Renesns

Absolute Maximum Ratings

Supply Voltage	7.0 V
Logic Inputs (Except REF).	GND -0.5 V to VDD +0.5 V
Logic Input REF	GND -0.5 V to GND + 5.5 V
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics at 3.3V

$V_{D D}=3.0-3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$ unless otherwise stated

DC Characteristics							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
Input Low Voltage	V_{IL}				0.8	V	
Input High Voltage	V_{IH}		2.0			V	
Input Low Current	I_{IL}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		19	50.0	$\mu \mathrm{~A}$	
Input High Current	I_{IH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		0.10	100.0	$\mu \mathrm{~A}$	
Output Low Voltage ${ }^{1}$	$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$		0.25	0.4	V	
Output High Voltage ${ }^{1}$	$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA}$	2.4	2.9		V	
Power Down Supply Current	I_{DD}	$\mathrm{REF}=0 \mathrm{MHz}$	0.3	50.0	$\mu \mathrm{~A}$		
Supply Current	I_{DD}	Unloaded oututs at 66.66 MHz SEL inputs at V_{DD} or GND		30.0	40.0	mA	

Notes:

1. Guaranteed by design and characterization. Not subject to 100% test.
2. All Skew specifications are mesured with a 50Ω transmission line, load teminated with 50Ω to 1.4 V .
3. Duty cycle measured at 1.4 V .
4. Skew measured at 1.4 V on rising edges. Loading must be equal on outputs.

Renesas

Switching Characteristics

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Output period	t1	With CL $=30 \mathrm{pF}$	$\begin{gathered} 100.00 \\ (10) \\ \hline \end{gathered}$		$\begin{gathered} 7.5 \\ (133) \end{gathered}$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{MHz}) \end{gathered}$
Input period	t1	With CL $=30 \mathrm{pF}$	$\begin{gathered} 100.00 \\ (10) \end{gathered}$		$\begin{gathered} \hline 7.5 \\ (133) \end{gathered}$	$\begin{gathered} \mathrm{ns} \\ (\mathrm{MHz}) \end{gathered}$
Duty Cycle ${ }^{1}$	Dt1	Measured at $1.4 \mathrm{~V} ; \mathrm{CL}=30 \mathrm{pF}$	40.0	50	60	\%
Duty Cycle ${ }^{1}$	Dt2	Measured at VDD/2 Fout $<66.6 \mathrm{MHz}$	45	50	55	\%
Rise Time ${ }^{1}$	tr1	Measured between 0.8 V and 2.0V: CL=30pF		1.2	1.5	ns
Fall Time ${ }^{1}$	tf1	Measured between 2.0 V and 0.8 V ; CL=30pF		1.2	1.5	ns
Rise Time ${ }^{1}$	tr1	Measured between 0.8 V and 2.0 V : $\mathrm{CL}=5 \mathrm{pF}$	1			ns
Fall Time ${ }^{1}$	tf1	Measured between 2.0 V and 0.8 V ; CL=5pF	1			ns
Delay, REF Rising Edge to CLKOUT Rising Edge ${ }^{1,2}$	Dr1	Measured at 1.4V		0	± 350	ps
Output to Output Skew ${ }^{1}$	Tskew	All outputs equally loaded, CL $=20 \mathrm{pF}$			250	ps
Device to Device Skew ${ }^{1}$	Tdsk-Tdsk	Measured at VDD/2 on the CLKOUT pins of devices		0	700	ps
Cycle to Cycle Jitter ${ }^{1}$	Tcyc-Tcyc	Measured at 66.66 MHz , loaded outputs			200	ps
PLL Lock Time ${ }^{1}$	tLOCK	Stable power supply, valid clock presented on REF pin			1.0	ms
Jitter; Absolute Jitter ${ }^{1}$	Tjabs	@ 10,000 cycles $C L=30 \mathrm{pF}$	-100	70	100	ps
Jitter; 1 - Sigma ${ }^{1}$	Tj1s	$\begin{aligned} & @ \text { 10,000 cycles } \\ & \mathrm{CL}=30 \mathrm{pF} \end{aligned}$		14	30	ps

Notes:

1. Guaranteed by design and characterization. Not subject to 100% test.
2. REF input has a threshold voltage of 1.4 V
3. All parameters expected with loaded outputs

Renesas

Output to Output Skew

The skew between CLKOUT and the CLK(1-4) outputs is not dynamically adjusted by the PLL. Since CLKOUT is one of the inputs to the PLL, zero phase difference is maintained from REF to CLKOUT. If all outputs are equally loaded, zero phase difference will maintained from REF to all outputs.
If applications requiring zero output-output skew, all the outputs must equally loaded.
If the CLK(1-4) outputs are less loaded than CLKOUT, CLK(1-4) outputs will lead it; and if the CLK(1-4) is more loaded than CLKOUT, CLK(1-4) will lag the CLKOUT.
Since the CLKOUT and the CLK(1-4) outputs are identical, they all start at the same time, but different loads cause them to have different rise times and different times crossing the measurement thresholds.

REF input and CLK(1-4)
outputs loaded equally, with
CLKOUT Ioaded More.

REF input and CLK(1_4) outputs loaded equally, with CLKOUT Ioaded Less.

Timing diagrams with different loading configurations

Renesns

150 mil (Narrow Body) SOIC

Ordering Information

91305yMLFT

Example:

Renesns

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
8	2.90	3.10	.114	.122

Reference Doc.: JEDEC Publication 95, MO-153
10-0035

Ordering Information

91305yGLFT

Example:

Renesns

Revision History

Rev.	Issue Date	Description	Page \#
G	$8 / 6 / 2007$	Updated Rise/Fall Time.	4
H	$12 / 2 / 2008$	Removed ICS prefix from ordering information	$6-7$

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG ISPPAC-CLK5520V-01T100C EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 6ES7231-4HD32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZREEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

