Low-Power CK420BQ Derivative for PCIe Common Clock Architectures

DATASHEET

General Description

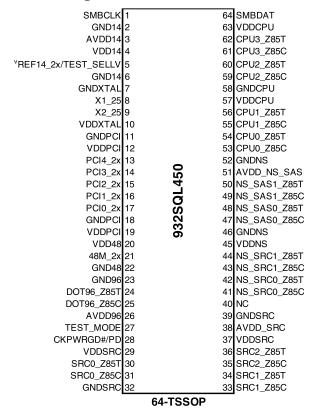
The 932SQL450 is a low power version of the CK420BQ synthesizer for Intel-based server platforms. It has 85-ohm LP-HCSL outputs allowing for direct connection to 85-ohm transmission lines. The 932SQL450 is driven with a 25MHz crystal for maximum performance. It generates CPU outputs of 100MHz. This device has a "low-drift" non-spread SAS/SRC PLL for use in systems that need to communicate across PCIe domains.

Recommended Application

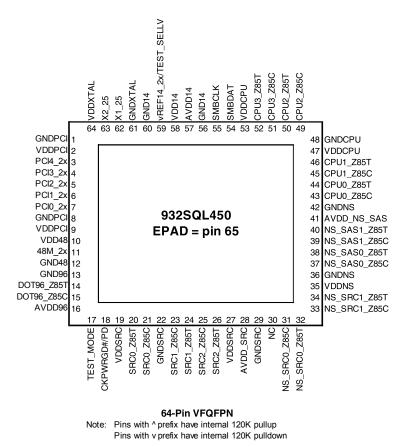
Low Power CK420BQ w/Zout=85ohms or PCle Common Clocked Systems (CC)

Key Specifications

- CPU, SRC, NS_SRC and NS_SAS cycle-cycle jitter <50ps
- Output to output skew <50ps
- Phase jitter: PCIe Gen2 <2.5ps rms
- Phase jitter: PCle Gen3 < 0.6ps rms
- Phase jitter: QPI < 0.3ps rms
- Phase jitter: NS-SAS <1.3ps rms using long period phase jitter method


Features/Benefits

- Integrated 85 ohm differential terminations; saves 48 resistors and 82mm² area
- LP-HCSL output drivers; 40% typical power savings over 932SQ420
- 0.5% down spread capable on CPU, SRC and PCI outputs; reduce EMI
- Additional down spread amounts selectable via SMBus; maximal system flexibility
- 64-pin TSSOP and VFQFPN packages; smallest board footprint


Output Features

- 4 Low-Power HCSL-compatible (LP-HCSL) CPU outputs
- 2 LP-HCSL NS SAS outputs
- 2 LP-HCSL NS_SRC outputs
- 3 LP-HCSL SRC outputs
- 1 LP-HCSL DOT96 output
- 1 3.3V 48M output
- 5 3.3V PCI outputs
- 1 3.3V 14.318M output

Pin Configurations

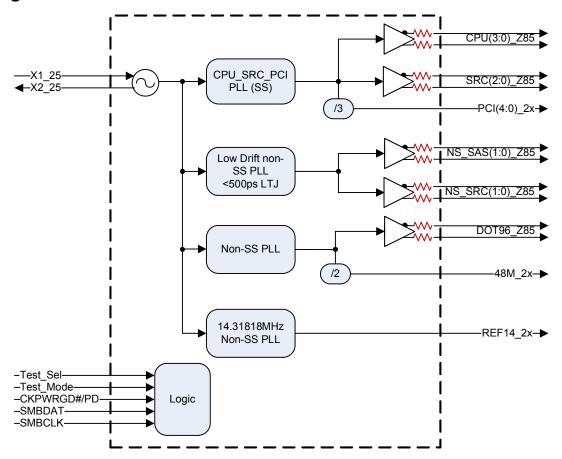
Note: Pins with ^ prefix have internal 120K pullup Pins with v prefix have internal 120K pulldown

64TSSOP Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
1	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
2	GND14	PWR	Ground pin for 14MHz output and logic.
3	AVDD14	PWR	Analog power pin for 14MHz PLL
4	VDD14	PWR	Power pin for 14MHz output and logic
			14.318 MHz reference clock capable of driving 2 loads/ TEST_SEL latched input to enable test
5	vREF14_2x/TEST_SELLV		mode. The TEST_SEL input is a low threshold input. See the Electrical Tables and the Test
			Clarification Table. This pin has a weak (~120Kohm) internal pull down.
6	GND14	PWR	Ground pin for 14MHz output and logic.
7	GNDXTAL	PWR	Ground pin for Crystal Oscillator.
8	X1_25		Crystal input, Nominally 25.00MHz.
9	X2_25	OUT	Crystal output, Nominally 25.00MHz.
10	VDDXTAL		3.3V power for the crystal oscillator.
11	GNDPCI		Ground pin for PCI outputs and logic.
12	VDDPCI		3.3V power for the PCI outputs and logic
13	PCI4_2x		3.3V PCI clock output capable of driving two loads.
14	PCI3_2x		3.3V PCI clock output capable of driving two loads.
15	PCI2_2x	OUT	3.3V PCI clock output capable of driving two loads.
16	PCI1_2x		3.3V PCI clock output capable of driving two loads.
17	PCI0_2x	OUT	3.3V PCI clock output capable of driving two loads.
18	GNDPCI	PWR	Ground pin for PCI outputs and logic.
19	VDDPCI	PWR	3.3V power for the PCI outputs and logic
20	VDD48		3.3V power for the 48MHz output and logic
21	48M_2x		3.3V 48MHz output capable of driving 2 loads.
22	GND48		Ground pin for 48MHz output and logic.
23	GND96		Ground pin for DOT96 output and logic.
0.4	DOTO0 705T	OUT	True clock of low-power push-pull differential 96MHz output. Internally terminated to drive 85ohm
24	DOT96_Z85T	001	transmission lines with no external components.
25	DOTOG 705C	OUT	Complementary clock of low-power push-pull differential 96MHz output. Internally terminated to
25	DOT96_Z85C		drive 85ohm transmission lines with no external components.
26	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
27	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test
21	TEST_WODE	IIN	mode. Refer to Test Clarification Table.
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power
28	CKPWRGD#/PD	IN	Up. PD is an asynchronous active high input pin used to put the device into a low power state.
			The internal clocks and PLLs are stopped.
29	VDDSRC	PWR	3.3V power for the SRC outputs and logic
30	SRC0_Z85T	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
30	31100_2831	001	transmission lines with no external components.
31	SRC0_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
31	31100_2830	001	drive 85ohm transmission lines with no external components.
32	GNDSRC	PWR	Ground pin for SRC outputs and logic.
33	SRC1_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
33	31101_2030	001	drive 85ohm transmission lines with no external components.
34	SRC1_Z85T	ОПТ	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
34	31101_2831	001	transmission lines with no external components.
35	SRC2_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
35		001	drive 85ohm transmission lines with no external components.
26	SRC2_Z85T	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
36	U1102_2001	001	transmission lines with no external components.
37	VDDSRC	PWR	3.3V power for the SRC outputs and logic
38	AVDD_SRC	PWR	3.3V power for the SRC PLL analog circuits
39	GNDSRC	PWR	Ground pin for SRC outputs and logic.
40	NC	N/A	No Connection.

64TSSOP Pin Descriptions (cont.)

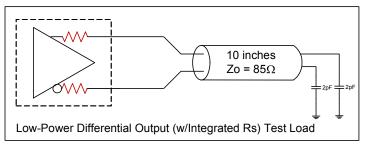
PIN#	PIN NAME	TYPE	DESCRIPTION
41	NS_SRC0_Z85C		Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
41	NS_SHCU_285C	001	terminated to drive 85ohm transmission lines with no external components.
42	NS_SRC0_Z85T	OUT	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
42	NS_SRC0_2851		drive 85ohm transmission lines with no external components.
43	NS_SRC1_Z85C	ОПТ	Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
70	110_01101_2000		terminated to drive 85ohm transmission lines with no external components.
44	NS_SRC1_Z85T	1 ()	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
			drive 85ohm transmission lines with no external components.
45	VDDNS		3.3V power for the Non-Spreading differential outputs outputs and logic
46	GNDNS		Ground pin for non-spreading differential outputs and logic.
47	NS_SAS0_Z85C	1 ()	Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
			terminated to drive 85ohm transmission lines with no external components.
48	NS_SAS0_Z85T	1 ()	True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
			drive 85ohm transmission lines with no external components.
49	NS_SAS1_Z85C		Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
			terminated to drive 85ohm transmission lines with no external components.
50	NS_SAS1_Z85T		True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
L			drive 85ohm transmission lines with no external components.
51	AVDD_NS_SAS		3.3V power for the non-spreading SAS/SRC PLL analog circuits.
52	GNDNS		Ground pin for non-spreading differential outputs and logic.
53	CPU0_Z85C	1 ()() 1	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
\vdash			drive 85ohm transmission lines with no external components.
54	CPU0_Z85T	1 ()() 1	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
			transmission lines with no external components.
55	CPU1_Z85C	1 ()	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
\vdash			drive 85ohm transmission lines with no external components.
56	CPU1_Z85T	1 ()	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
F7	VDDCPU		transmission lines with no external components.
57			3.3V power for the CPU outputs and logic
58	GNDCPU	PWR	Ground pin for CPU outputs and logic.
59	CDI 10, 705C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
	CPU2_Z85C		drive 85ohm transmission lines with no external components.
60	CPU2_Z85T		True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
\vdash			transmission lines with no external components.
61	CPU3_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
			drive 85ohm transmission lines with no external components.
62	CPU3_Z85T	1 ()	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
	VDDCDII		transmission lines with no external components.
63	VDDCPU		3.3V power for the CPU outputs and logic
64	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant

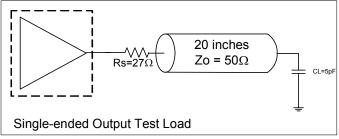

64VFQFPN Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
	GNDPCI		Ground pin for PCI outputs and logic.
	VDDPCI		3.3V power for the PCI outputs and logic
	PCI4_2x		3.3V PCI clock output capable of driving two loads.
	PCI3_2x	_	3.3V PCI clock output capable of driving two loads.
	PCI2_2x		3.3V PCI clock output capable of driving two loads.
	PCI1_2x		3.3V PCI clock output capable of driving two loads.
	PCI0_2x	_	3.3V PCI clock output capable of driving two loads.
	GNDPCI		Ground pin for PCI outputs and logic.
	VDDPCI		3.3V power for the PCI outputs and logic
10	VDD48		3.3V power for the 48MHz output and logic
11	48M_2x		3.3V 48MHz output capable of driving 2 loads.
12	GND48	_	Ground pin for 48MHz output and logic.
13	GND96	_	Ground pin for DOT96 output and logic.
4.4			True clock of low-power push-pull differential 96MHz output. Internally terminated to drive
14	DOT96_Z85T	OUT	85ohm transmission lines with no external components.
			Complementary clock of low-power push-pull differential 96MHz output. Internally
15	DOT96_Z85C	OUT	terminated to drive 85ohm transmission lines with no external components.
16	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
			TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in
17	TEST_MODE	IN	test mode. Refer to Test Clarification Table.
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to
18	CKPWRGD#/PD	IN	Power Up. PD is an asynchronous active high input pin used to put the device into a low
10	OR WRODWI D	"	power state. The internal clocks and PLLs are stopped.
19	VDDSRC	PWR	3.3V power for the SRC outputs and logic
			True clock of low-power push-pull differential SRC output. Internally terminated to drive
20	SRC0_Z85T	OUT	85ohm transmission lines with no external components.
			Complementary clock of low-power push-pull differential SRC output. Internally terminated
21	SRC0_Z85C	OUT	to drive 85ohm transmission lines with no external components.
22	GNDSRC	PWR	Ground pin for SRC outputs and logic.
			Complementary clock of low-power push-pull differential SRC output. Internally terminated
23	SRC1_Z85C	OUT	to drive 85ohm transmission lines with no external components.
	-		True clock of low-power push-pull differential SRC output. Internally terminated to drive
24	SRC1_Z85T	OUT	85ohm transmission lines with no external components.
			Complementary clock of low-power push-pull differential SRC output. Internally terminated
25	SRC2_Z85C	OUT	to drive 85ohm transmission lines with no external components.
			True clock of low-power push-pull differential SRC output. Internally terminated to drive
26	SRC2_Z85T	OUT	85ohm transmission lines with no external components.
27	VDDSRC	PWR	3.3V power for the SRC outputs and logic
	AVDD_SRC	_	3.3V power for the SRC PLL analog circuits
29	GNDSRC	_	Ground pin for SRC outputs and logic.
	NC		No Connection.
			Complementary clock of low-power push-pull differential non-spreading SRC output.
31	NS_SRC0_Z85C	OUT	Internally terminated to drive 85ohm transmission lines with no external components.
			True clock of low-power push-pull differential non-spreading SRC output. Internally
32	NS_SRC0_Z85T	OUT	terminated to drive 850hm transmission lines with no external components.
			Complementary clock of low-power push-pull differential non-spreading SRC output.
33	NS_SRC1_Z85C	OUT	Internally terminated to drive 85ohm transmission lines with no external components.
		1	True clock of low-power push-pull differential non-spreading SRC output. Internally
34	NS_SRC1_Z85T	OUT	terminated to drive 850hm transmission lines with no external components.
35	VDDNS	PWP	3.3V power for the Non-Spreading differential outputs outputs and logic
36	GNDNS		Ground pin for non-spreading differential outputs and logic.
			True clock of low-power push-pull differential non-spreading SAS output. Internally
38	NS_SAS0_Z85T	OUT	terminated to drive 850hm transmission lines with no external components.
		1	commuted to drive occini transmission into with no external components.

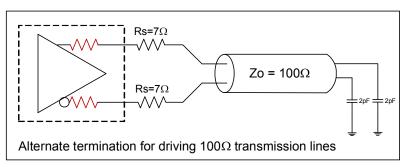
64VFQFPN Pin Descriptions (cont.)

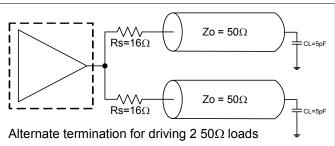
PIN#	PIN NAME	TYPE	DESCRIPTION
39	NS_SAS1_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SAS output.
39	NS_SAS1_203C	001	Internally terminated to drive 85ohm transmission lines with no external components.
40	NS_SAS1_Z85T	OUT	True clock of low-power push-pull differential non-spreading SAS output. Internally
			terminated to drive 85ohm transmission lines with no external components.
41	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
42	GNDNS		Ground pin for non-spreading differential outputs and logic.
43	CPU0_Z85C		Complementary clock of low-power push-pull differential CPU output. Internally terminated
	01 00_2000	001	to drive 85ohm transmission lines with no external components.
44	CPU0_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive
	01 00_2001	001	85ohm transmission lines with no external components.
45	CPU1_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated
	01 01_2000	00.	to drive 85ohm transmission lines with no external components.
46	CPU1_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive
			85ohm transmission lines with no external components.
47	VDDCPU		3.3V power for the CPU outputs and logic
48	GNDCPU		Ground pin for CPU outputs and logic.
49	9 CPU2_Z85C OUT		Complementary clock of low-power push-pull differential CPU output. Internally terminated
43			to drive 85ohm transmission lines with no external components.
50	50 CPU2_Z85T O		True clock of low-power push-pull differential CPU output. Internally terminated to drive
			85ohm transmission lines with no external components.
51	CPU3_Z85C OU		Complementary clock of low-power push-pull differential CPU output. Internally terminated
J1	01 03_2030	001	to drive 85ohm transmission lines with no external components.
52	CPU3_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive
52	Ci 03_2651	001	85ohm transmission lines with no external components.
53	VDDCPU	PWR	3.3V power for the CPU outputs and logic
54	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
55	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
56	GND14	PWR	Ground pin for 14MHz output and logic.
57	AVDD14	PWR	Analog power pin for 14MHz PLL
58	VDD14	PWR	Power pin for 14MHz output and logic
			14.318 MHz reference clock capable of driving 2 loads/ TEST_SEL latched input to enable
59	vREF14_2x/TEST_SELLV	I/O	test mode. The TEST_SEL input is a low threshold input. See the Electrical Tables and the
			Test Clarification Table. This pin has a weak (~120Kohm) internal pull down.
60	GND14	PWR	Ground pin for 14MHz output and logic.
61	GNDXTAL	PWR	Ground pin for Crystal Oscillator.
62	X1_25		Crystal input, Nominally 25.00MHz.
63	X2_25		Crystal output, Nominally 25.00MHz.
64	VDDXTAL		3.3V power for the crystal oscillator.
65	EPAD		Epad should be connected to ground.


Block Diagram



Power Supply and Test Loads


Power Group Pin Numbers


1 OWEI C	ai oup	.	1118010	
VFQF	PN	TSS	SOP	Description
VDD	GND	VDD	GND	Description
57	56	3	2	14MHz PLL Analog
58	60	4	6	REF14M Output and Logic
64	61	10	7	25MHz XTAL
2, 9	1, 8	12, 19	11, 18	PCI Outputs and Logic
10	12	20	22	48MHz Output and Logic
16	13	26	23	96MHz PLL Analog, Output and Logic
19, 27	22	29, 37	32	SRC Outputs and Logic
28	29	38	39	SRC PLL Analog
35	36	45	46	Non-Spreading Differential Outputs & Logic
41	42	51	52	NS-SAS/SRC PLL Analog
47, 53	48	57,63	58	CPU Outputs and Logic

Alternate Terminations

Functionality and CPU SAS Frequency Tables

932SQL450 Functionality

				NS_SAS			
CPU	SRC	PCI	REF	NS_SRC	DOT96	USB	
100	100	33.33	14.318	100.00	96.00	48.00	MHz

Spread Spectrum Control Functionality

SS_Enable	CPU, SRC &
(B1b0)	PCI
0	OFF
1	-0.50%

932SQL450 Power Down Functionality

3323 QL 430 F OWEL DOWN I dilettorianty								
CKPWRGD#/PD	Differential Outputs	Single- ended Outputs	Single- ended Outputs w/Latch					
1	Low/Low	Low	Low ¹					
0		Running						

^{1.} Single-ended outputs with a Latch will be Hi-Z until the first application of CKPWRGD#.

CPU/SRC/PCI Margining Table

Line	Byte6 Bit2 FS2	Byte6 Bit1 FS1	Byte6 Bit0 FS0	CPU Speed (MHz)	SRC (MHz)	PCI (MHz)
0	0	0	0	97.00	97.00	32.33
1	0	0	1	98.00	98.00	32.67
2	0	1	0	99.00	99.00	33.00
3	0	1	1	100.00	100.00	33.33
4	1	0	0	101.00	101.00	33.67
5	1	0	1	102.00	102.00	34.00
6	1	1	0	103.00	103.00	34.33
7	1	1	1	104.00	104.00	34.67

Default for 100MHz

NS_SAS Margining Table

Line	Byte5 Bit3 FS3	Byte5 Bit2 FS2	Byte5 Bit1 FS1	Byte5 Bit0 FS0	NS_xxx (MHz)
0	0	0	0	0	82.5
1	0	0	0	1	85.0
2	0	0	1	0	87.5
3	0	0	1	1	90.0
4	0	1	0	0	92.5
5	0	1	0	1	95.0
6	0	1	1	0	97.5
7	0	1	1	1	100.0
8	1	0	0	0	102.5
9	1	0	0	1	105.0
10	1	0	1	0	107.5
11	1	0	1	1	110.0
12	1	1	0	0	112.5
13	1	1	0	1	115.0
14	1	1	1	0	117.5
15	1	1	1	1	120.0

NOTE: Operation at other than the default entry is not guaranteed. These values are for margining purposes only.

Clock AC Tolerances

	CPU, SRC	NS_SAS, NS_SRC	PCI	DOT96	48MHz	REF	
PPM tolerance	100	100	100	100	100	100	ppm
Cycle to Cycle Jitter	50	50	500	250	350	1000	ps
Spread	-0.50%	0.00%	-0.50%	0	0.00%	0.00%	%

Clock Periods-Outputs with Spread Spectrum Disabled

		Measurement Window								
SSC OFF	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
CPU	100.000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
SRC, NS_SAS, NS_SRC	100.000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
PCI	33.333	29.49700		29.99700	30.00000	30.00300		30.50300	ns	1,2
DOT96	96.000	10.16563		10.41563	10.41667	10.41771		10.66771	ns	1,2
48MHz	48.000	20.48125		20.83125	20.83333	20.83542		21.18542	ns	1,2
REF	14.318	69.78429		69.83429	69.84128	69.84826		69.89826	ns	1,2

Clock Periods-Outputs with Spread Spectrum Enabled

			Measurement Window							
	Comton	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
CPU	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2
PCI	33.25	29.49718	29.99718	30.07218	30.07519	30.07820	30.15320	30.65320	ns	1,2
SRC	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the REF output is tuned to exactly 14.31818MHz.

General SMBus Serial Interface Information for 932SQL450

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ck \	Write Operation
Controlle	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave Add	ress D2 _(H)		
WR	WRite		
			ACK
Beginning	Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		$\rfloor \times$	
0		X Byte	0
0		æ	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Read Address	Write Address
D3 _(H)	D2 _(H)

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block Read Operation						
Coi	ntroller (Host)		IDT (Slave/Receiver)				
Т	starT bit						
Slave	Address D2 _(H)						
WR	WRite						
			ACK				
Begi	nning Byte = N						
			ACK				
RT	Repeat starT						
Slave	Address D3 _(H)						
RD	ReaD						
			ACK				
			Data Byte Count=X				
	ACK						
			Beginning Byte N				
	ACK						
		क	0				
	0	X Byte	0				
	0	×	0				
	0						
			Byte N + X - 1				
N	Not acknowledge						
Р	stoP bit						

NOTE: Pin numbers refer to TSSOP

SMBus Table: Output Enable Register

Byte	0	Pin #	Name	Control Function	Type	0	1	Default
Bit 7	2	4/25	DOT96 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 6	5	0/49	NS_SAS1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 5	4	8/47	NS_SAS0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 4	4	4/43	NS_SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 3	4	2/41	NS_SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 2	3	6/35	SRC2 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 1	3	4/33	SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 0	3	0/31	SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1

SMBus Table: Output Enable Register

Byte	1 Pin #	Name	Control Function	Type	0	1	Default		
Bit 7	5	REF14_3x Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 6			RESERVED						
Bit 5		RESERVED							
Bit 4	62/61	CPU3	Output Enable	RW	Disable-Low/Low	Enable	1		
Bit 3	60/59	CPU2	Output Enable	RW	Disable-Low/Low	Enable	1		
Bit 2	56/55	CPU1	Output Enable	RW	Disable-Low/Low	Enable	1		
Bit 1	54/53	CPU0	Output Enable	RW	Disable-Low/Low	Enable	1		
Bit 0	CPU/SRC/ PCI	Spread Spectrum Enable	Spread Off/On	RW	Spread Off	Spread On	0		

SMBus Table: Output Enable Register

Byte	2 Pin #	Name	Control Function	Type	0	1	Default		
Bit 7			RESERVE	:D			0		
Bit 6			RESERVED						
Bit 5	13	PCI4 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 4	14	PCI3 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 3	15	PCI2 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 2	16	PCI1 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 1	17	PCI0 Enable	Output Enable	RW	Disable-Low	Enable	1		
Bit 0	21	48MHz Enable	Output Enable	RW	Disable-Low	Enable	1		

SMBus Table: Differential Amplitude Control

Byte 3	3 Pin #	Name	Control Function	Type	0	1	Default
Bit 7		CPU AMPLITUDE 1	CPU Vhigh	RW	00 = 700 mV	01 = 800mV	0
Bit 6		CPU AMPLITUDE 0	Of O Viligit	RW	10 = 900mV	11 = 1000mV	1
Bit 5		SRC AMPLITUDE 1	SRC Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 4		SRC AMPLITUDE 0		RW	10 = 900mV	11 = 1000mV	1
Bit 3		DOT96 AMPLITUDE 1	DOT96 Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 2		DOT96 AMPLITUDE 0	DO 196 Viligii	RW	10 = 900mV	11 = 1000mV	1
Bit 1		NS-SAS/SRC AMPLITUDE 1	NC CAC/CDC Visials	RW	00 = 700mV	01 = 800mV	0
Bit 0		NS-SAS/SRC AMPLITUDE 0	NS-SAS/SRC Vhigh	RW	10 = 900mV	11 = 1000mV	1

SMBus Table: Spread Amount Register

Byte 4	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			RESERVEI)			0
Bit 6		RESERVED					
Bit 5		RESERVED					
Bit 4		RESERVED					
Bit 3			RESERVEI)			0
Bit 2			RESERVEI)			0
Bit 1		SS AMOUNT[1]	Spread Amount (note	RW	00= -0.2%	10= -0.4%	1
Bit 0		SS AMOUNT[0]	B1b0 must be set to '1')	RW	01= -0.3%	11= -0.5%	1

SMBus Table: NS_SAS/NS_SRC Frequency Margining Table

Byte	5 Pin#	Name	Control Function	Type	0	1	Default		
Bit 7			RESERVE	Ď			0		
Bit 6			RESERVE	D			0		
Bit 5			RESERVED						
Bit 4			RESERVED						
Bit 3	-	FS3	Freq. Sel 3	RW			0		
Bit 2	•	FS2	Freq. Sel 2	RW	See NS_SAS/NS	_SRC Frequency	1		
Bit 1	-	FS1	Freq. Sel 1	RW	Tab	le.	1		
Bit 0	-	FS0	Freq. Sel 0	RW			1		

SMBus Table: Test Mode and CPU/SRC/PCI Frequency Select Register

Byte	6 Pin#	Name	Control Function	Туре	0	1	Default	
Bit 7	ī	Test Mode	Test Mode Type	RW	Hi-Z	REF/N	0	
Bit 6	-	Test Select	Select Test Mode	RW	Disable	Enable	0	
Bit 5	-	RESERVED						
Bit 4	-		RESERVED					
Bit 3	-		RESERVE	D			0	
Bit 2	-	FS2	Freq. Sel 2	RW	Coo CDU/CDC/I	OCI Fraguenav	0	
Bit 1	-	FS1	Freq. Sel 1	RW	See CPU/SRC/PCI Frequency Select Table		1	
Bit 0	-	FS0	Freq. Sel 0	RW	Select	1		

Note: Internal Pull up on 100M_133M# pin will result in default CPU frequency of 100 MHz.

SMBus Table: Vendor & Revision ID Register

Byte	7 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3		R	1 for B rev		0
Bit 6	-	RID2	REVISION ID	R			0
Bit 5	-	RID1	(1h forB rev)	R	1 101 5	0	
Bit 4	-	RID0		R	1		1
Bit 3	-	VID3		R			0
Bit 2	-	VID2	VENDOR ID	R	0001 for	CC/IDT	0
Bit 1	-	VID1	I A EINDOR ID	R 0001 for ICS/IDT		0	
Bit 0	-	VID0		R			1

SMBus Table: Byte Count Register

Byte 8	B Pin#	Name	Control Function	Туре	0	1	Default
Bit 7		BC7		RW			0
Bit 6	-	BC6		RW			0
Bit 5	-	BC5		RW	Writing to this regis	ster will configure	0
Bit 4	-	BC4	Byte Count	RW	how many bytes v	vill be read back,	0
Bit 3	-	BC3	Programming b(7:0)	RW	default is	A bytes.	0
Bit 2	-	BC2		RW	(0 to	9	0
Bit 1	-	BC1		RW			0
Bit 0	-	BC0		RW			1

SMBus Table: Device ID Register

Byte 9	Pin #	Name	Control Function	Type	0	1	Default
Bit 7		DID7		R	•	•	0
Bit 6		DID6		R	1	,	1
Bit 5		DID5		R	-	-	0
Bit 4		DID4	Device ID	R	-	-	0
Bit 3		DID3	(45 hex)	R	-		0
Bit 2		DID2		R	-	-	1
Bit 1		DID1		R	-	-	0
Bit 0		DID0		R	•	-	1

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 932SQL450. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	٧	1,2
3.3V Logic Supply Voltage	VDD				4.6	٧	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Case Temperature	Tc				110	°C	1
Input ESD protection	ESD prot	Human Body Model	2000	•		V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

 $TA = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active CPU@100MHz, See Test Loads.		233	265	mA	
Powerdown Current	I _{DD3.3PDZ}			6	10	mA	

AC Electrical Characteristics-Differential LP-HCSL Outputs (CPU, SRC, NS_SAS, NS_SRC, DOT96)

 $TA = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.9	55	%	1
Skew, Output to Output	t _{sk3SRC}	Across all SRC outputs, V _T = 50%		40	50	ps	1
Skew, Output to Output	t _{sk3CPU}	Across all CPU outputs, V _T = 50%		19	50	ps	1
Jitter, Cycle to cycle	+.	CPU, SRC, NS_SAS outputs		15	50	ps	1,3
Sitter, Cycle to cycle	^l jcyc-cyc	DOT96 output		16	250	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

13

² Operation under these conditions is neither implied nor guaranteed.

 $^{^{2}}$ Zo=85 Ω (differential impedance).

³ Measured from differential waveform

Electrical Characteristics-Input/Supply/Common Parameters

 $TA = T_{COM}$; Supply Voltage VDD = 3.3 V +/-5%

TA = T _{COM} ; Supply Voltage	VDD = 3.3	V + /-J /0					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	Тсом	Commmercial range	0		70	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	>	
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	٧	
Low Threshold Input- Low Voltage	$V_{IL_{FS}}$	3.3 V +/-5%	V _{SS} - 0.3		0.35	٧	
	I _{IN}	Single-ended inputs, $V_{IN} = GND, V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs. V _{IN} = 0 V; Inputs with internal pull- up resistors V _{IN} = VDD; Inputs with internal pull- down resistors	-200		200	uA	
Input Frequency	Fi			25.00		MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs			5	рF	1
Capacitance	C _{OUT}	Output pin capacitance			5	рF	1
	C_{INX}	X1 & X2 pins			5	рF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.4	1.8	ms	1,2
SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30	31.5	33	kHz	1
Tdrive_PD#	t _{DRVPD}	Differential output enable after PD# de-assertion		98	300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				0.8	V	
SMBus Input High Voltage	V _{IHSMB}		2.1		V_{DDSMB}	V	
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	٧	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2\}mbox{Control}$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

DC Electrical Characteristics-Differential LP-HCSL Outputs (CPU, SRC, NS_SAS, NS_SRC, DOT96)

 $T_A = T_{COM}$: Supply Voltage VDD = 3.3 V +/-5%

· A · COW, - app.y · arraige							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on	1.5	2.9	4	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on		5	20	%	1,2,4
Voltage High	VHigh	Statistical measurement on single- ended signal using oscilloscope	660	774	850	mV	
Voltage Low	VLow	math function. (Scope averaging on)	-150	83	150	IIIV	
Max Voltage	Vmax	Measurement on single ended		918	1150	mV	7
Min Voltage	Vmin	signal using absolute value. (Scope	-300	-3		IIIV	7
Vswing	Vswing	Scope averaging off	300	1359		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	432	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		14	140	mV	1,6

 $^{^{1}}$ Guaranteed by design and characterization, not 100% tested in production. $Z_{O}=85\Omega$ (differential impedance).

Electrical Characteristics-48MHz

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 V + /-5$ %,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R_{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12	21.7	55	Ω	1
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Clock High Time	T _{HIGH}	1.5V	8.094		10.036	ns	1
Clock Low Time	T_LOW	1.5V	7.694		9.836	ns	1
Edge Rate	t _{slewr/f_USB}	Rising/Falling edge rate	1		2.3	V/ns	1,2
Duty Cycle	d _{t1}	$V_{T} = 1.5 V$	45	50.4	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 V$		·	350	ps	1

See "Power Supply and Test Loads" page for termination circuits

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than

⁷ Includes overshoot and undershoot.

⁸ Measured from single-ended waveform

⁹ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Electrical Characteristics-Phase Jitter Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V } +/-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUST. LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		35	39	86	ps (p-p)	1,2,3, 6
	t	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.52	1.84	3	ps (rms)	1,2,6
	^t jphPCleG2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.19	2.42	3.1	ps (rms)	1,2,6
Phase Jitter	t _{jphPCle} G3	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.51	0.59	1	ps (rms)	1,2,4, 6
	t _{jphQPI_} SMI	QPI & SMI (100MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.25	0.37	0.5	ps (rms)	1,5,7
		QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.18	0.23	0.3	ps (rms)	1,5,7
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.15	0.19	0.2	ps (rms)	1,5,7
	t _{jphSAS12G}	SAS 12G		1.15	1.27	1.3	ps (rms)	1,5,8

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-PCI

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V } +/-5\%$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12	22	55	Ω	1
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	12			ns	1
Clock Low Time	T _{LOW}	1.5V	12			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.7	4	V/ns	1,2
Duty Cycle	d _{t1}	$V_{T} = 1.5 V$	45	50.4	55	%	1
Group Skew	t _{skew}	$V_{T} = 1.5 V$		197	500	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 V$		45.52	500	ps	1

See "Power Supply and Test Loads" page for termination circuits

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.6

⁶ Applied to SRC outputs

⁷ Applies to CPU outputs

⁸ Applies to NS_SAS, NS_SRC outputs, Spread Off

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Electrical Characteristics-REF14M

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD/}V_{DDA} = 3.3 \text{ V +/-5\%}$,

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Output Impedance	R _{DSP}	$V_{O} = V_{DD}^{*}(0.5)$	12	21.7	55	Ω	1
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	$I_{OL} = 1 \text{ mA}$			0.55	V	
Clock High Time	T _{HIGH}	1.5V	27.5			ns	1
Clock Low Time	T _{LOW}	1.5V	27.5			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.9	4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45	50.1	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V		42	1000	ps	1

See "Power Supply and Test Loads" page for termination circuits

Test Clarification Table

Comments	H	IW	S	W	
	TEST_SEL HW PIN	TEST_MOD E HW PIN	TEST ENTRY BIT B6b6	REF/N or HI-Z B6b7	ОИТРИТ
	0	Χ	0	Χ	NORMAL
Power-up w/ TEST_SEL = 1 (>0.7V) to enter test	1	0	Χ	0	HI-Z
mode. Cycle power to disable test mode.	1	0	Χ	1	REF/N
Iniode. Cycle power to disable test mode.	1	1	Х	0	REF/N
	1	1	Χ	1	REF/N
	0	Х	1	0	HI-Z
If TEST_SEL HW pin is 0 during power-up, test mode can be selected through B6b6. If test mode is selected by B6b6, then B6b7 is used to select HI-Z or REF/N FS_B/TEST_Mode pin is not used. Cycle power to disable test mode.	0	x	1	1	REF/N

B6b6: 1= ENTER TEST MODE, Default = 0 (NORMAL OPERATION)

B6b7: 1= REF/N, Default = 0 (HI-Z)

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Recommended Crystal Characteristics (3225 package)

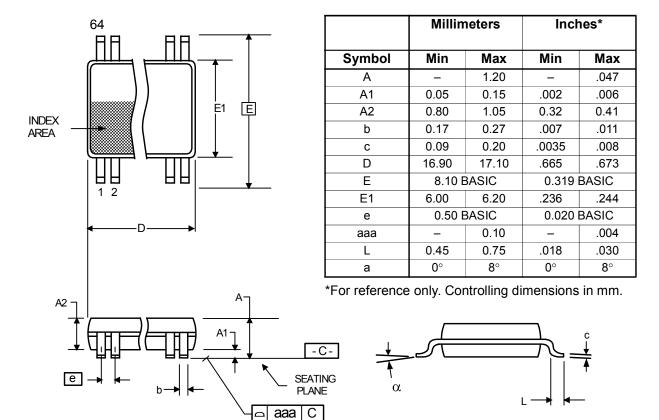
PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	ı	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over	+20	PPM Max	1
Operating Temperature Range	120	1 1 W Wax	'
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	2
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

Notes:

- 1. Fox Electronics 603-25-150 or equivalent
- 2. For I-temp, contact Fox Electronics at Foxonline.com

Marking Diagrams

ICS LOT YYWW 932SQL450BGL ICS
932SQL450BL
LOT
COO YYWW


64TSSOP

64VFQFPN

Notes:

- 1. "L" denotes Pb-free, RoHS compliant.
- 2. "LOT" denotes the lot number.
- 3. "YYWW" denotes the last two digits and week the part was assembled.
- 4. "COO" denotes the country of origin.
- 5. "B" denotes the device revision designator.
- 6. Bottom marking (TSSOP only): country of origin.

Package Outline and Package Dimensions (64-pin TSSOP)

Package Outline and Package Dimensions (64-pin VFQFPN) △0.15 C SEATING PLANE △0.15C ⁄ ԾԾԾԾԾԾԾԾԾԾԾԾԾԾԾ . dooooooooooooooo -DETAIL △|0.08|C CDETAIL B PUNCH VERSION // |0.10|C DETAIL B 0.60 MAX 0.60 MAX. . REFER TO JEDEC STD: MO-220. . NMENSION "5" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL THE IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA. TOLERANCES UNLESS SPECIFIED DECIMAL ANGUL X± .1 ±1° XX± .05 XXX± .030 CHECKED DRAWN PXP APPROVALS E 2 밀ㅁ 띡 A3 TITE. DO NOT SCALE DRAWING C DESCRIPTION INITIAL RELEASE CHANGE D2 AND E2 TO FOLLOW 6.0 6.15 6.25 0.18 0.00 0.80 6.0 6.15 6.25 MN. www.IDT.com PSC-4147 .30 9.00 BSC 8.75 BSC NL/NLG PACKAGE OUTLINE 9.00 8.75 9.0 x 9.0 mm VFQFP-N DIMENSION ADD OPTION 2 0.25 0.02 0.40 0.20 BS BS 0.50 1.00 1.00 0.05 6024 SILVER CREEK VALLEY ROAD. SAN JOSE, CA 95138 PHONE: (408) 284-8200 FAX: (408) 284-3572 o, 236 236 DATE 01/12/05 08/18/06 05/20/14 344 DIMENSION 354 242 242 344 354 20 NOM. 5 33 SHEET 16 BSC BSC BSC BSC 용 7. 7. 7. 7. 7. 103 103 103 103 104 103 103 3 유 246 07

Package Outline and Package Dimensions (64-pin VFQFPN), cont.

- NOTES:

 1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
 2. TOP DOWN VIEW. AS VIEWED ON PCB.
 3. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
 4. LAND PATTERN RECOMMENDATION PER IPC-7351B LP CALCULATOR.

EPAD 6.15 6.25 000000

			CHECKED	DRAWN 090 11/04/04	APPROVALS	XX± .05	DECIMAL /	TOLERANCES UNLESS SPECIFIED
				11/04/04	DATE		ANGULAR ±1°	#FIED
DO NO	C	SIZE			TITE	8		
DO NOT SCALE DRAWING	PSC-4147	DRAWING No.	VFQFP-N	9.0 x 9.0 mm BODY	TITLE NL/NLG PACKAGE OUTLINE	www.IDT.com Fax: (4	PHONE: (4	6024 SI
SHEET 4 OF 4	7				Ħ	FAX: (408) 284-3572	CA 95138 PHONE: (408) 284-8200	6024 SILVER CREEK VALLEY ROAD. SAN JOSE,
4 OF 4	07	REV				72	3200	JOSE,

07	90	05	04	03	02		9	00	REV	
ADD OPTION 5 IN PAGE 2	COR DIM L OPTION1 ADD OPTION 4 EPAD MOVE DIMENSION OPTION 1,2,3 TO PAGE 2 ADD LAND PATTERN	ADD OPTION3 PAGE 1, OPTION 2 PAGE 3 5/20/09	PAGE 1, OPTION 2 PAGE 3	ADD PUNCH VERSION PAGE 3	ADD OPTION 2	JEDEC GUIDELINE	CHANGE D2 AND E2 TO FOLLOW	INITIAL RELEASE	DESCRIPTION	REVISIONS
05/20/14	7/11/13	5/20/09	4/14/09	01/07/09	09/03/08		08/18/06	01/12/05	DATE	
SK FEE	KS	R. TOR	R. TOR	R. TOR	R. TOR		JV VT	PKP	APPROVED	

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
932SQL450BGLF	Tubes	64-pin TSSOP	0 to +70° C
932SQL450BGLFT	Tape and Reel	64-pin TSSOP	0 to +70° C
932SQL450BKLF	Tray	64-pin VFQFPN	0 to +70° C
932SQL450BKLFT	Tape and Reel	64-pin VFQFPN	0 to +70° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

Rev.	Issue Date	Who	Description	Page #
А	3/5/2014	RDW	1. Updated electrical table format and data to final. 2. Updated TEST_SEL pin description and TEST CLARIFICATION TABLE to indicate that this input is a low threshold input. 3. Updated TEST LOADS and added ALTERNATE TERMINATIONS diagrams. 4. Updated block diagram to latest format and updated pin names to match the pinout. 5. Updated front page text to latest format 6. Move to Final.	Various
В	3/6/2015	RDW	Corrected typo in Powerdown Current max limit. Max limit changed from 9mA to 10mA.	13

[&]quot;B" is the device revision designator (will not correlate with the datasheet revision).

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Synthesizer/Jitter Cleaner category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC9230EIR2 PL902166USY 954204CGLF 9LPRS485DGLF PL902167USY 8V19N490ABDGI LMK04821NKDT CDCE937QPWRQ1
PI6CX201ALE 9LPRS355BGLF CDCEL913IPWRQ1 ABMJB-903-101UMG-T5 ABMJB-903-150UMG-T5 ABMJB-903-151UMG-T5
AD9542BCPZ AD9578BCPZ 9FG104EFILF 9FG104EFLF 308RILF 840001BGI-25LF 843004AGLF 843801AGI-24LF 844004BGI-01LF
844S42BKILF 8A34044C-000NLG 954226AGLF 9FG108EFLF 9LPR363EGLF 9LPRS355BKLF 9LPRS365BGLF GS4915-INE3
9DB306BLLF ABMJB-902-155USY-T5 ABMJB-902-156USY-T5 ABMJB-902-Q76USY-T5 ABMJB-902-Q82USY-T5 ABMJB-902104USY-T5 ABMJB-902-153USY-T5 ABMJB-902-154USY-T5 ABMJB-902-Q42USY-T5 ABMJB-902-Q57USY-T5 ABMJB-902Q74USY-T5 ABMJB-902-Q78USY-T5 LTC6951IUHF-1#PBF 650GI-44LF 8430252CGI-45LF 8432DYI-101LF 84329BYLF 8432DY101LF 8432BY-51LF