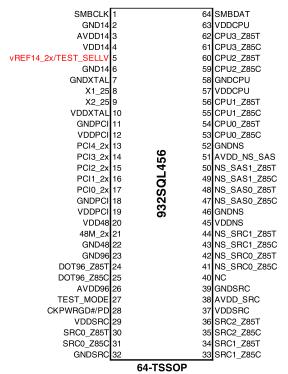
Low-Power CK420BQ Derivative for PCIe Separate Clock Architectures

DATASHEET

General Description

The 932SQL456 is a low power version of the CK420BQ synthesizer for Intel-based server platforms. It has 85 ohm Low-Power (LP) HCSL outputs that save 48 resistors and reduce power consumption by 50% compared to the standard CK420BQ. The 932SQL456 is driven with a 25MHz crystal for maximum performance. It generates CPU outputs of 100MHz. This device meets Separate- Reference-no-Spread (SRnS) PCIe requirements making it ideal for use in systems that need to communicate "outside the box".

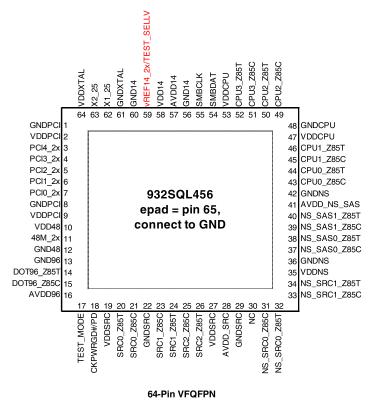

Recommended Application

Low-Power CK420BQ for SRnS PCIe Applications

Key Specifications

- CPU, SRC, NS_SRC and NS_SAS cycle-cycle jitter <50ps
- Output to output skew <50ps
- Phase jitter: PCle Gen2 SRnS <2.2ps rms
- Phase jitter: PCle Gen3 SRnS < 0.7ps rms
- Phase jitter: QPI < 0.3ps rms
- Phase jitter: NS-SAS <1.3ps rms using long period phase jitter method

Pin Configurations


Note: Pins with ^ prefix have internal 120K pullup Pins with v prefix have internal 120K pulldown

Features/Benefits

- Integrated 85-ohm differential terminations; saves 48 resistors compared to CK420BQ
- LP-HCSL outputs; up to 50% power savings compared to standard CK420BQ
- 64-pin TSSOP and VFQFPN packages; smallest board footprint
- Available in -40° to +85°C industrial temperature range version; supports demanding operating environments

Output Features

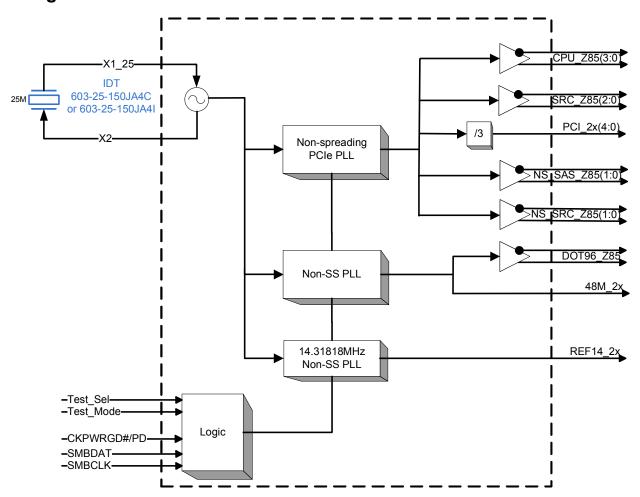
- Differential outputs are LP-HCSL with integrated 85Ω terminations
- 11 non-spreading interchangeable 100MHz differential outputs
 - 4 "CPU" outputs
 - 2 "NS SAS" outputs
 - 2 "NS_SRC" outputs
 - 3 "SRC" outputs
- 1 DOT96 96MHz output
- 1 3.3V 48M output
- 5 3.3V PCI outputs
- 1 3.3V 14.318M output

64TSSOP Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
1	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
2	GND14	PWR	Ground pin for 14MHz output and logic.
3	AVDD14		Analog power pin for 14MHz PLL
4	VDD14		Power pin for 14MHz output and logic
			14.318 MHz reference clock capable of driving 2 loads/ TEST_SEL latched input to enable test
5	vREF14_2x/TEST_SELLV	1/0	mode. The TEST_SEL input is a low threshold input. See the Electrical Tables and the Test
		"	Clarification Table. This pin has a weak (~120Kohm) internal pull down.
6	GND14	PWR	Ground pin for 14MHz output and logic.
7	GNDXTAL		Ground pin for Crystal Oscillator.
8	X1_25		Crystal input, Nominally 25.00MHz.
9	X2_25		Crystal output, Nominally 25.00MHz.
10	VDDXTAL		3.3V power for the crystal oscillator.
11	GNDPCI		Ground pin for PCI outputs and logic.
12	VDDPCI		3.3V power for the PCI outputs and logic
13	PCI4_2x		3.3V PCI clock output
14	PCI3_2x		3.3V PCI clock output
15	PCI2_2x		3.3V PCI clock output
16	PCI1_2x	_	3.3V PCI clock output
17	PCI0_2x		3.3V PCI clock output
18	GNDPCI		Ground pin for PCI outputs and logic.
19	VDDPCI		3.3V power for the PCI outputs and logic
			3.3V power for the 48MHz output and logic
20 21	VDD48 48M_2x		3.3V 48MHz output
22	GND48		Ground pin for 48MHz output and logic.
23	GND96	PWR	Ground pin for DOT96 output and logic.
24	DOT96_Z85T	OUT	True clock of low-power push-pull differential 96MHz output. Internally terminated to drive 85ohm
			transmission lines with no external components.
25	DOT96_Z85C	OUT	Complementary clock of low-power push-pull differential 96MHz output. Internally terminated to
			drive 85ohm transmission lines with no external components.
26	AVDD96	IPWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
27	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test
			mode. Refer to Test Clarification Table.
		l	CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power
28	CKPWRGD#/PD	IN	Up. PD is an asynchronous active high input pin used to put the device into a low power state.
			The internal clocks and PLLs are stopped.
29	VDDSRC	PWR	3.3V power for the SRC outputs and logic
30	SRC0_Z85T	Гоит	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
			transmission lines with no external components.
31	SRC0_Z85C	Гоит	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
			drive 85ohm transmission lines with no external components.
32	GNDSRC	PWR	Ground pin for SRC outputs and logic.
33	SRC1_Z85C	ООТ	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
		00.	drive 85ohm transmission lines with no external components.
34	SRC1_Z85T	ООТ	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
٥,	01101_2001	00.	transmission lines with no external components.
35	SRC2_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
55	0.10L_2000	1001	drive 85ohm transmission lines with no external components.
36	SRC2_Z85T	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
50			transmission lines with no external components.
37	VDDSRC	PWR	3.3V power for the SRC outputs and logic
38	AVDD_SRC	_	3.3V power for the SRC PLL analog circuits
39	GNDSRC		Ground pin for SRC outputs and logic.
40	NC	_	No Connection.

64TSSOP Pin Descriptions (cont.)

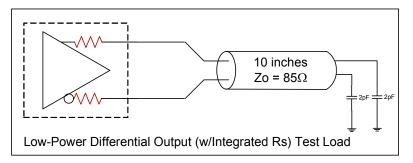
PIN#	PIN NAME	TYPE	DESCRIPTION
			Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
41	NS_SRC0_Z85C	OUT	terminated to drive 85ohm transmission lines with no external components.
40	NC CDC0 70FT	OUT	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
42	NS_SRC0_Z85T	001	drive 85ohm transmission lines with no external components.
40	NC CDC1 705C	OUT	Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
43	NS_SRC1_Z85C	001	terminated to drive 85ohm transmission lines with no external components.
44	NC CDC1 705T	OUT	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
44	NS_SRC1_Z85T	001	drive 85ohm transmission lines with no external components.
45	VDDNS	PWR	3.3V power for the Non-Spreading differential outputs outputs and logic
46	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
47	NS_SAS0_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
47	N3_3A30_283C	001	terminated to drive 85ohm transmission lines with no external components.
48	NS_SAS0_Z85T	OUT	True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
40	NS_SASU_2831	001	drive 85ohm transmission lines with no external components.
49	NS_SAS1_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
49	N3_3A31_283C		terminated to drive 85ohm transmission lines with no external components.
50	NS_SAS1_Z85T	OUT	True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
50		001	drive 85ohm transmission lines with no external components.
51	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
52	GNDNS		Ground pin for non-spreading differential outputs and logic.
53	CPU0_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
55	GI 00_2830		drive 85ohm transmission lines with no external components.
54	CPU0_Z85T		True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
34	O1 00_2831	001	transmission lines with no external components.
55	CPU1_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
- 55	C1		drive 85ohm transmission lines with no external components.
56	CPU1_Z85T	1 ()	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
30			transmission lines with no external components.
57	VDDCPU		3.3V power for the CPU outputs and logic
58	GNDCPU		Ground pin for CPU outputs and logic.
59		1 ()() 1	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
- 55	CPU2_Z85C		drive 85ohm transmission lines with no external components.
60	CPU2_Z85T	1 (2011)	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
لـــّنـــا	5. 6L_L001		transmission lines with no external components.
61	CPU3_Z85C		Complementary clock of low-power push-pull differential CPU output. Internally terminated to
_ <u>`</u> `.			drive 85ohm transmission lines with no external components.
62	CPU3_Z85T		True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
			transmission lines with no external components.
63	VDDCPU		3.3V power for the CPU outputs and logic
64	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant

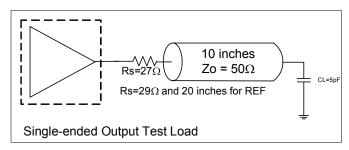

64VFQFPN Pin Descriptions

PIN#	PIN NAME	TYPE	DESCRIPTION
	GNDPCI		Ground pin for PCI outputs and logic.
	VDDPCI		3.3V power for the PCI outputs and logic
	PCI4_2x		3.3V PCI clock output
	PCI3_2x		3.3V PCI clock output
	PCI2_2x		3.3V PCI clock output
	PCI1_2x	_	3.3V PCI clock output
	PCI0_2x		3.3V PCI clock output
	GNDPCI	_	Ground pin for PCI outputs and logic.
	VDDPCI		3.3V power for the PCI outputs and logic
	VDD48	_	3.3V power for the 48MHz output and logic
11	48M_2x		3.3V 48MHz output
	GND48		Ground pin for 48MHz output and logic.
	GND96		Ground pin for DOT96 output and logic.
			True clock of low-power push-pull differential 96MHz output. Internally terminated to drive 85ohm
14	DOT96_Z85T	OUT	transmission lines with no external components.
4.5	DOTOG 7050	OUT	Complementary clock of low-power push-pull differential 96MHz output. Internally terminated to
15	DOT96_Z85C	OUT	drive 85ohm transmission lines with no external components.
16	AVDD96	PWR	3.3V power for the 48/96MHz PLL and the 96MHz output and logic
17	TECT MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test
17	TEST_MODE	IIN	mode. Refer to Test Clarification Table.
			CKPWRGD# is an active low input used to sample latched inputs and allow the device to Power
18	CKPWRGD#/PD	IN	Up. PD is an asynchronous active high input pin used to put the device into a low power state.
			The internal clocks and PLLs are stopped.
19	VDDSRC	PWR	3.3V power for the SRC outputs and logic
20	CDC0 70FT	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
20	SRC0_Z85T	001	transmission lines with no external components.
21	SRC0_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
۷۱	3HC0_203C	001	drive 85ohm transmission lines with no external components.
22	GNDSRC	PWR	Ground pin for SRC outputs and logic.
23	SRC1_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
20	01101_2000	001	drive 85ohm transmission lines with no external components.
24	SRC1_Z85T	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
2-7	01101_2001	- 001	transmission lines with no external components.
25	SRC2_Z85C	OUT	Complementary clock of low-power push-pull differential SRC output. Internally terminated to
20			drive 85ohm transmission lines with no external components.
26	SRC2_Z85T	OUT	True clock of low-power push-pull differential SRC output. Internally terminated to drive 85ohm
			transmission lines with no external components.
	VDDSRC		3.3V power for the SRC outputs and logic
	AVDD_SRC	_	3.3V power for the SRC PLL analog circuits
	GNDSRC		Ground pin for SRC outputs and logic.
30	NC	N/A	No Connection.
31	NS_SRC0_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
01	110_01100_2000		terminated to drive 85ohm transmission lines with no external components.
32	NS_SRC0_Z85T	OUT	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
			drive 85ohm transmission lines with no external components.
33	NS_SRC1_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SRC output. Internally
00			terminated to drive 85ohm transmission lines with no external components.
34	NS SRC1 Z85T	OUT	True clock of low-power push-pull differential non-spreading SRC output. Internally terminated to
			drive 85ohm transmission lines with no external components.
	VDDNS		3.3V power for the Non-Spreading differential outputs outputs and logic
36	GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
37	NS_SAS0_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
٠,		301	terminated to drive 85ohm transmission lines with no external components.
38	NS_SAS0_Z85T	OUT	True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
55		1 50,	drive 85ohm transmission lines with no external components.

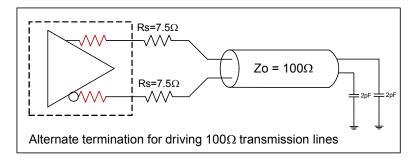
64VFQFPN Pin Descriptions (cont.)

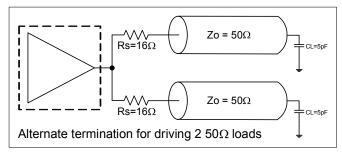
39 1	PIN NAME		DESCRIPTION
ا فق ا	NS_SAS1_Z85C	OUT	Complementary clock of low-power push-pull differential non-spreading SAS output. Internally
	NO_SAS1_Z80C	5	terminated to drive 85ohm transmission lines with no external components.
40 N	NS_SAS1_Z85T	OUT	True clock of low-power push-pull differential non-spreading SAS output. Internally terminated to
40	NS_SAS1_Z001	001	drive 85ohm transmission lines with no external components.
41 /	AVDD_NS_SAS	PWR	3.3V power for the non-spreading SAS/SRC PLL analog circuits.
42 (GNDNS	PWR	Ground pin for non-spreading differential outputs and logic.
43	CPU0_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
43	CF 00_265C	001	drive 85ohm transmission lines with no external components.
44	CPU0_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
44	GF 00_2651	001	transmission lines with no external components.
45	CPU1_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
45	CF 01_203C	0	drive 85ohm transmission lines with no external components.
46	CPU1_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
		001	transmission lines with no external components.
	VDDCPU	PWR	3.3V power for the CPU outputs and logic
48 C	GNDCPU	PWR	Ground pin for CPU outputs and logic.
49 0	CPU2_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
43	CI 02_203C	001	drive 85ohm transmission lines with no external components.
50 0	CPU2 Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
30	CI 02_2031	001	transmission lines with no external components.
51 0	CPU3_Z85C	OUT	Complementary clock of low-power push-pull differential CPU output. Internally terminated to
3, 1	01 00_2000	001	drive 85ohm transmission lines with no external components.
52	CPU3_Z85T	OUT	True clock of low-power push-pull differential CPU output. Internally terminated to drive 85ohm
32	01 03_2031	001	transmission lines with no external components.
53 \	VDDCPU	PWR	3.3V power for the CPU outputs and logic
54	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
	SMBCLK		Clock pin of SMBUS circuitry, 5V tolerant
	GND14		Ground pin for 14MHz output and logic.
	AVDD14		Analog power pin for 14MHz PLL
58 \	VDD14	PWR	Power pin for 14MHz output and logic
			14.318 MHz reference clock capable of driving 2 loads/ TEST_SEL latched input to enable test
59 v	vREF14_2x/TEST_SELLV	I/O	mode. The TEST_SEL input is a low threshold input. See the Electrical Tables and the Test
			Clarification Table. This pin has a weak (~120Kohm) internal pull down.
	GND14	PWR	Ground pin for 14MHz output and logic.
61 (GNDXTAL	PWR	Ground pin for Crystal Oscillator.
62 >	X1_25	IN	Crystal input, Nominally 25.00MHz.
63 >	X2_25	OUT	Crystal output, Nominally 25.00MHz.
	VDDXTAL	PWR	3.3V power for the crystal oscillator.
65 E	EPAD	GND	Epad should be connected to ground.


Block Diagram



Power Supply and Test Loads


Power Group Pin Numbers


F OWEL C	ai oup	.	IIIDCIO	
VFQF	PN	TSS	SOP	Description
VDD	GND	VDD	GND	Description
57	56	3	2	14MHz PLL Analog
58	60	4	6	REF14M Output and Logic
64	61	10	7	25MHz XTAL
2, 9	1, 8	12, 19	11, 18	PCI Outputs and Logic
10	12	20	22	48MHz Output and Logic
16	13	26	23	96MHz PLL Analog, Output and Logic
19, 27	22	29, 37	32	SRC Outputs and Logic
28	29	38	39	SRC PLL Analog
35	36	45	46	Non-Spreading Differential Outputs & Logic
41	42	51	52	NS-SAS/SRC PLL Analog
47, 53	48	57,63	58	CPU Outputs and Logic

Alternate Terminations

The 932SQL456 can also drive other logic levels such as LVPECL, LVDS, and CML. See <u>"AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs"</u> for details.

Functionality Tables

932SQL456 Functionality

				NS_SAS			
CPU	SRC	PCI	REF	NS_SRC	DOT96	USB	
100	100	33.33	14.318	100.00	96.00	48.00	MHz

932SQL456 Power Down Functionality

ozzedzios i ewel Berni i diletionality								
CKPWRGD#/PD	Differential Outputs	Single- ended Outputs	Single- ended Outputs w/Latch					
1	Low/Low	Low	Low ¹					
0		Running						

^{1.} Single-ended outputs with a Latch will be Hi-Z until the first application of CKPWRGD#.

Clock AC Tolerances

	CPU, SRC	NS_SAS, NS SRC	PCI	DOT96	48MHz	REF	
PPM tolerance	, , , , , , , , , , , , , , , , , , ,	100	100	100	100	100	ppm
Cycle to Cycle Jitter	50	50	250	50	250	250	ps
Spread	0.00%	0.00%	0.00%	0	0.00%	0.00%	%

Clock Periods-Outputs

				Me	asurement W	indow				
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min 0 ppm Period Nominal		+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
SRC, NS_SAS, NS_SRC	100.000	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2
PCI	33.333	29.74700		29.99700	30.00000	30.00300		30.25300	ns	1,2
DOT96	96.000	10.36563		10.41563	10.41667	10.41771		10.46771	ns	1,2
48MHz	48.000	20.58125		20.83125	20.83333	20.83542		21.08542	ns	1,2
REF	14.318	69.78429		69.83429	69.84128	69.84826		69.89826	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the REF output is tuned to exactly 14.31818MHz.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 932SQL456. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			V _{DD} +0.5V	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Case Temperature	Tc				110	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, $C_L = Full load;$		217	250	mA	1
Powerdown Current	I _{DD3.3PDZ}			4.3	8	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

AC Electrical Characteristics-CPU, SRC, NS_SAS, NS_SRC, DOT96 LP-HCSL Outputs

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

DADAMETED			MAINI	TVD	8887	LINUTO	NOTEO
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	49.6%	55	%	
Skew, Output to Output	t _{sk3SRC}	Across all SRC outputs, $V_T = 50\%$		23	50	ps	1
Skew, Output to Output	t _{sk3CPU}	Across all CPU outputs, $V_T = 50\%$		24	50	ps	1
littor Cycle to cycle	+	CPU, SRC, NS_SAS outputs		6	50	ps	1,3
Jitter, Cycle to cycle	^l jcyc-cyc	DOT96 output		5	50	ps	1,3

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

² Zo=85 Ω (differential impedance).

³ Measured from differential waveform

Electrical Characteristics-Input/Supply/Common Parameters

 $TA = T_{AMR}$ Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Voltage	٧		3.135	3.3	3.465	V	
Ambient Operating Temperature	T_AMB	Commmercial range	0		70	°C	
remperature		Industrial range	-40		85	°C	
Input High Voltage	V _{IH}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	2		V _{DD} + 0.3	V	
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri- level inputs	GND - 0.3		0.8	V	
	I _{IN}	Single-ended inputs, $V_{IN} = GND, V_{IN} = VDD$	-5		5	uA	
Input Current	I _{INP}	Single-ended inputs. V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = VDD; Inputs with internal pull-down resistors	-200		200	uA	
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7		V _{DD} + 0.3	V	
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3		0.35	V	
Input Frequency	F_i			25.00		MHz	2
Pin Inductance	L_{pin}				7	nH	1
	C_{IN}	Logic Inputs			5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			5	pF	1
	C_{INX}	X1 & X2 pins			5	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock			1.8	ms	2
Tdrive_PD#	t _{DRVPD}	Differential output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V _{ILSMB}				0.8	V	
SMBus Input High Voltage	V_{IHSMB}		2.1		V _{DDSMB}	٧	
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{SMB}	SMBus operating frequency	400			kHz	

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

DC Electrical Characteristics-CPU, SRC, NS_SAS, NS_SRC, DOT96 LP-HCSL Outputs

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on	2	3.3	4.5	V/ns	1, 2, 3
Slew rate matching	ΔdV/dt	Slew rate matching, Scope averaging on		11.1	20	%	1, 2, 4
Rise/Fall Time Matching	ΔTrf	Rise/fall matching, Scope averaging off		9.0	125	ps	1, 8, 9
Voltage High	VHigh	Statistical measurement on single-ended signal using	660	845	850	mV	
Voltage Low	VLow	oscilloscope math function. (Scope averaging on)	-150	122	150	IIIV	
Max Voltage	Vmax	Measurement on single ended		1026	1150	mV	1, 7
Min Voltage	Vmin	signal using absolute value.	-300	-22		IIIV	1, 7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	482	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		22	140	mV	1, 6

 $^{^{1}}$ Guaranteed by design and characterization, not 100% tested in production. Z_{Ω} =85 Ω (differential impedance).

Electrical Characteristics-48MHz

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V _{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	8.094		10.036	ns	1
Clock Low Time	T _{LOW}	1.5V	7.694		9.836	ns	1
Edge Rate	t _{slewr/f_USB}	Rising/Falling edge rate	1	1.7	2	V/ns	1,2
Duty Cycle	d _{t1}	$V_{T} = 1.5 V$	45	50.4	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_T = 1.5 V$		29	250	ps	1

See "Power Supply and Test Loads" page for termination circuits

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than

⁷ Includes overshoot and undershoot.

⁸ Measured from single-ended waveform

⁹ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

Electrical Characteristics-PCI

 $TA = T_{AMB}$: Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Output High Voltage	V_{OH}	$I_{OH} = -1 \text{ mA}$	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	12			ns	1
Clock Low Time	T_{LOW}	1.5V	12			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.7	4	V/ns	1,2
Duty Cycle	d _{t1}	$V_{T} = 1.5 V$	45	50.6	55	%	1
Group Skew	t _{skew}	V _T = 1.5 V		496	550	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 V$		23	250	ps	1

See "Power Supply and Test Loads" page for termination circuits

Electrical Characteristics-Phase Jitter Parameters

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	IND. LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		24.8	30	86	ps (p-p)	1,2,3, 6
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.54	0.7	3	ps (rms)	1,2,6
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.2	2.6/3	3.1	ps (rms)	1,2,6
	t _{jphPCleG3Com}	PCIe Gen 3 Common Clock (PLL BW of 2-4MHz. CDR = 10MHz)		0.46	0.6	1	ps (rms)	1,2,4, 6
Phase Jitter	t _{jphPCleG3SRn}	PCIe Gen 3 Separate Reference no Spread (SRnS) (PLL BW of 2-4MHz. CDR = 10MHz)		0.46	0.6	0.7	ps (rms)	1,2,4, 6
		QPI & SMI (100MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.24	0.4	0.5	ps (rms)	1,5,6
	t _{jphQPI_SMI}	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.13	0.15	0.3	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.11	0.13	0.2	ps (rms)	1,5,6
	t _{jphSAS12G}	SAS 12G		0.84	1.1/1.2	1.3	ps (rms)	1,5,6

¹ Guaranteed by design and characterization, not 100% tested in production.

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

⁵ Calculated from Intel-supplied Clock Jitter Tool v 1.6.6

⁶ Applied to SRC, CPU and NS_SRC, NS_SAS outputs, second figure if present applies to -40C.

Electrical Characteristics-REF14M

 $TA = T_{AMB}$; Supply Voltage VDDx = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4			V	
Output Low Voltage	V_{OL}	I _{OL} = 1 mA			0.55	V	
Clock High Time	T _{HIGH}	1.5V	27.5			ns	1
Clock Low Time	T _{LOW}	1.5V	27.5			ns	1
Edge Rate	t _{slewr/f}	Rising/Falling edge rate	1	1.9	4	V/ns	1,2
Duty Cycle	d _{t1}	V _T = 1.5 V	45	50.2	55	%	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_{T} = 1.5 V$		19	250	ps	1

See "Power Supply and Test Loads" page for termination circuits

Test Clarification Table

Comments	Н	IW	S		
	TEST_SEL HW PIN	TEST_MOD E HW PIN	TEST ENTRY BIT B6b6	REF/N or HI-Z B6b7	ОИТРИТ
	0	X	0	Χ	NORMAL
Power-up w/ TEST_SEL = 1 (>0.7V) to enter test	1	0	Χ	0	HI-Z
mode. TEST_SEL is low threshold input. Cycle power	1	0	Χ	1	REF/N
to disable test mode.	1	1	Χ	0	REF/N
	1	1	Χ	1	REF/N
	0	Х	1	0	HI-Z
If TEST_SEL HW pin is 0 during power-up, test mode can be selected through B6b6. If test mode is selected by B6b6, then B6b7 is used to select HI-Z or REF/N FS_B/TEST_Mode pin is not used. Cycle power to disable test mode.	0	X	1	1	REF/N

B6b6: 1= ENTER TEST MODE, Default = 0 (NORMAL OPERATION)

B6b7: 1 = REF/N, Default = 0 (HI-Z)

¹Guaranteed by design and characterization, not 100% tested in production.

² Measured between 0.8V and 2.0V

General SMBus Serial Interface Information for 932SQL456

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Block Write Operation										
Controlle	er (Host)		IDT (Slave/Receiver)								
Т	starT bit										
Slave Add	ress D2 _(H)										
WR	WRite										
			ACK								
Beginning	Byte = N										
			ACK								
Data Byte	Count = X										
			ACK								
Beginnin	g Byte N	×									
		X Byte	ACK								
0											
0			0								
0			0								
			0								
Byte N	+ X - 1										
			ACK								
Р	stoP bit										

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- · Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block Read Operation							
Co	ntroller (Host)		IDT (Slave/Receiver)					
Т	starT bit							
Slave	Address D2 _(H)							
WR	WRite							
			ACK					
Begi	nning Byte = N							
			ACK					
RT	Repeat starT							
Slave	Address D3 _(H)							
RD	ReaD							
			ACK					
			Data Byte Count=X					
	ACK							
			Beginning Byte N					
	ACK							
			0					
	0		0					
	0	0	0					
	0	X Byte						
		×	Byte N + X - 1					
N	Not acknowledge							
Р	stoP bit							

Read Address	Write Address
D3 _(H)	D2 _(H)

NOTE: Pin numbers refer to TSSOP

SMBus Table: Output Enable Register

Byte	0 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	24/25	DOT96 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 6	50/49	NS_SAS1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 5	48/47	NS_SAS0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 4	44/43	NS_SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 3	42/41	NS_SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 2	36/35	SRC2 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 1	34/33	SRC1 Enable	Output Enable	RW	Disable-Low/Low	Enable	1
Bit 0	30/31	SRC0 Enable	Output Enable	RW	Disable-Low/Low	Enable	1

SMBus Table: Output Enable Register

Byte	1 Pin #	Name	Control Function	Туре	0	1	Default	
Bit 7	5	REF14_2x Enable	Output Enable	RW	Disable-Low	Enable	1	
Bit 6			RESERVED					
Bit 5			RESERVED					
Bit 4	62/61	CPU3	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 3	60/59	CPU2	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 2	56/55	CPU1	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 1	54/53	CPU0	Output Enable	RW	Disable-Low/Low	Enable	1	
Bit 0		RESERVED						

SMBus Table: Output Enable Register

Byte	2 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		RESERVED					
Bit 6			RESERVE	:D			0
Bit 5	13	PCI4 Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 4	14	PCI3 Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 3	15	PCI2 Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 2	16	PCI1 Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 1	17	PCI0 Enable	Output Enable	RW	Disable-Low	Enable	1
Bit 0	21	48MHz Enable	Output Enable	RW	Disable-Low	Enable	1

SMBus Table: Differential Amplitude Control

Byte	3 Pin #	Name	Control Function	Type	0	1	Default
Bit 7		CPU AMPLITUDE 1	CPU Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 6		CPU AMPLITUDE 0	CFO VIIIgII	RW	10 = 900mV	11 = 1000mV	1
Bit 5		SRC AMPLITUDE 1	SRC Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 4		SRC AMPLITUDE 0	Sho viligii	RW	10 = 900mV	11 = 1000mV	1
Bit 3		DOT96 AMPLITUDE 1	DOT96 Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 2		DOT96 AMPLITUDE 0	DO 196 Viligii	RW	10 = 900mV	11 = 1000mV	1
Bit 1		NS-SAS/SRC AMPLITUDE 1	NS-SAS/SRC Vhigh	RW	00 = 700mV	01 = 800mV	0
Bit 0		NS-SAS/SRC AMPLITUDE 0	No-SAS/SHC VIIIgII	RW	10 = 900mV	11 = 1000mV	1

SMBus Table: Reserved

Byte 4	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			RESERVEI	Ď			0
Bit 6			RESERVEI	D			0
Bit 5		RESERVED				0	
Bit 4		RESERVED				0	
Bit 3			RESERVEI	D			0
Bit 2			RESERVED				0
Bit 1		RESERVED				1	
Bit 0		RESERVED				1	

SMBus Table: Reserved

Byte	5 Piı	n #	Name	Control Function	Type	0	1	Default
Bit 7	·			RESERVE	D			0
Bit 6				RESERVEI	D			0
Bit 5				RESERVED				0
Bit 4			RESERVED				0	
Bit 3				RESERVEI	D			0
Bit 2				RESERVED				1
Bit 1			RESERVED			1		
Bit 0			RESERVED				1	

SMBus Table: Test Mode and CPU/SRC/PCI Frequency Select Register

Byte	6 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	-	Test Mode	Test Mode Type	RW	Hi-Z	REF/N	0
Bit 6	-	Test Select	Select Test Mode	RW	Disable	Enable	0
Bit 5	-	RESERVED					
Bit 4	-	RESERVED					1
Bit 3	-		RESERVE	D			0
Bit 2	-	RESERVED					0
Bit 1	-	RESERVED				1	
Bit 0	-	RESERVED					1

SMBus Table: Vendor & Revision ID Register

Byte	7 Pin #	Name	Control Function	Type	0	1	Default
Bit 7		RID3		R	0 for A rev		0
Bit 6	•	RID2	REVISION ID	R			0
Bit 5	-	RID1	(10h for A rev)	R			0
Bit 4	-	RID0		R			0
Bit 3	-	VID3		R			0
Bit 2	•	VID2	VENDOR ID	R	0001 for ICS/IDT		0
Bit 1	-	VID1	V EINDOR ID	R			0
Bit 0	•	VID0		R			1

SMBus Table: Byte Count Register

Byte	8 Pin #	Name	Control Function	Туре	0	1	Default
Bit 7	-	BC7		RW			0
Bit 6	-	BC6		RW			0
Bit 5	•	BC5		RW	Writing to this regis	ster will configure	0
Bit 4	-	BC4	Byte Count	RW	how many bytes v	vill be read back,	0
Bit 3	•	BC3	Programming b(7:0)	RW	default is	A bytes.	0
Bit 2	-	BC2		RW	(0 to	9	0
Bit 1	-	BC1		RW			0
Bit 0	-	BC0		RW			1

SMBus Table: Device ID Register

Byte	9	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			DID7		R	-	-	0
Bit 6			DID6		R	ı	-	1
Bit 5			DID5		R	ı	ı	0
Bit 4			DID4	Device ID	R	=	-	0
Bit 3			DID3	(46 hex)	R	ī	-	0
Bit 2			DID2		R	ı	•	1
Bit 1		·	DID1		R	-	-	1
Bit 0	•	·	DID0		R	-	-	0

Recommended Crystal Characteristics (3225 package)

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	1	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	<u>+</u> 20	PPM Max	1
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	2
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (C _L)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

Notes:

1. IDT 603-25-150JA4C or 603-25-150JA4I

Marking Diagrams

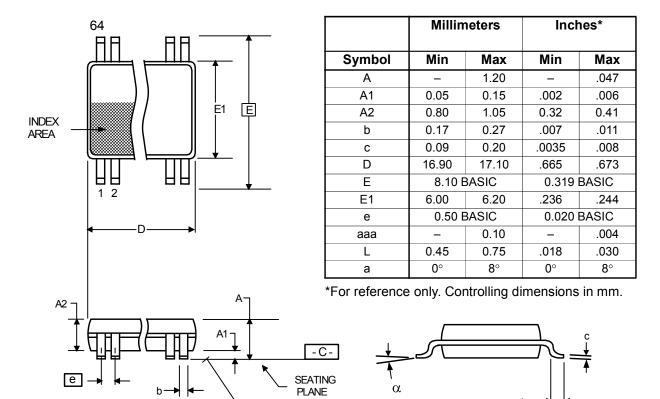
ICS LOT YYWW 932SQL456AGL

ICS 932SQL456AL LOT COO YYWW

64TSSOP

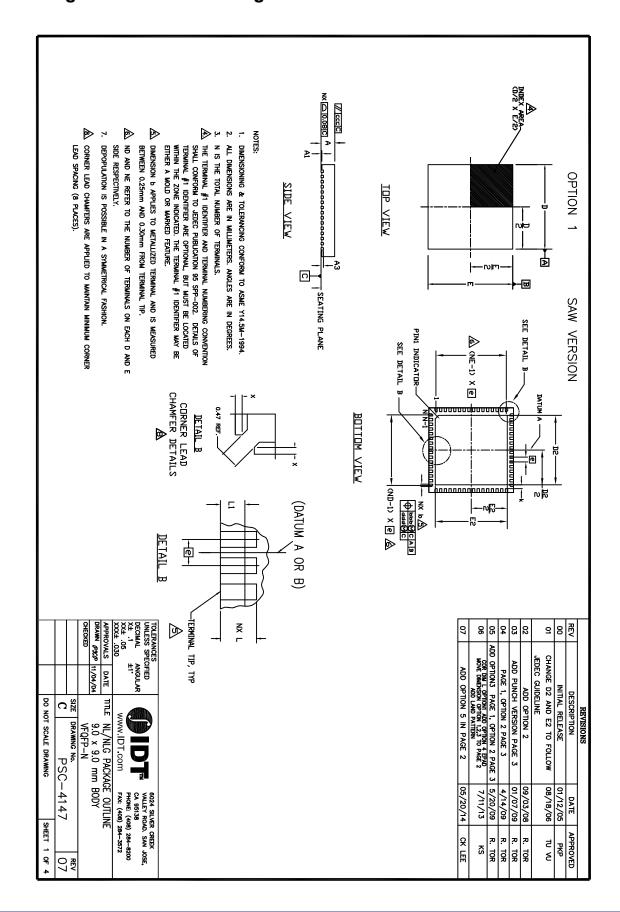
64VFQFPN

ICS LOT YYWW 932SQL456AIL ICS 32SQL456AIL LOT COO YYWW

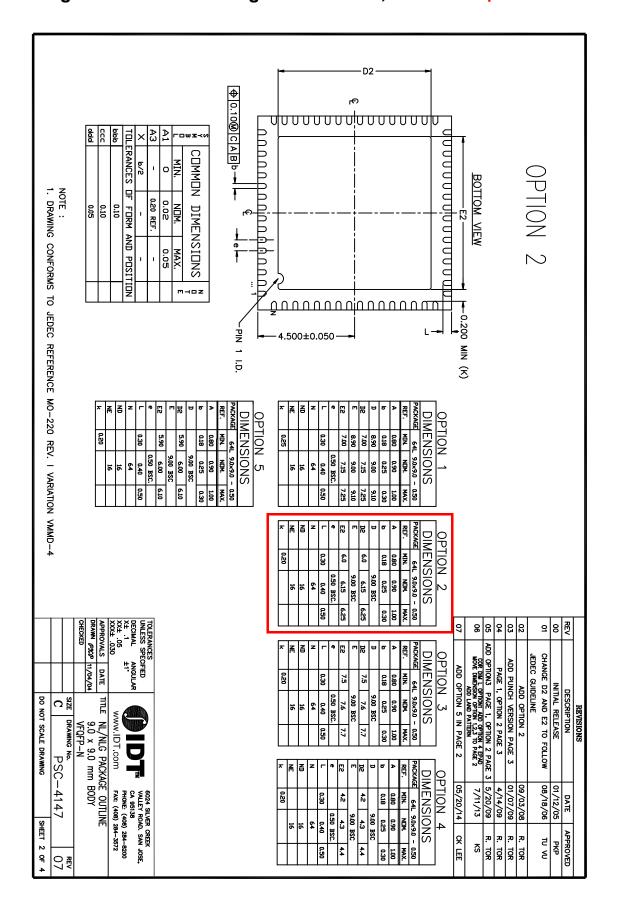

64TSSOP

64VFQFPN

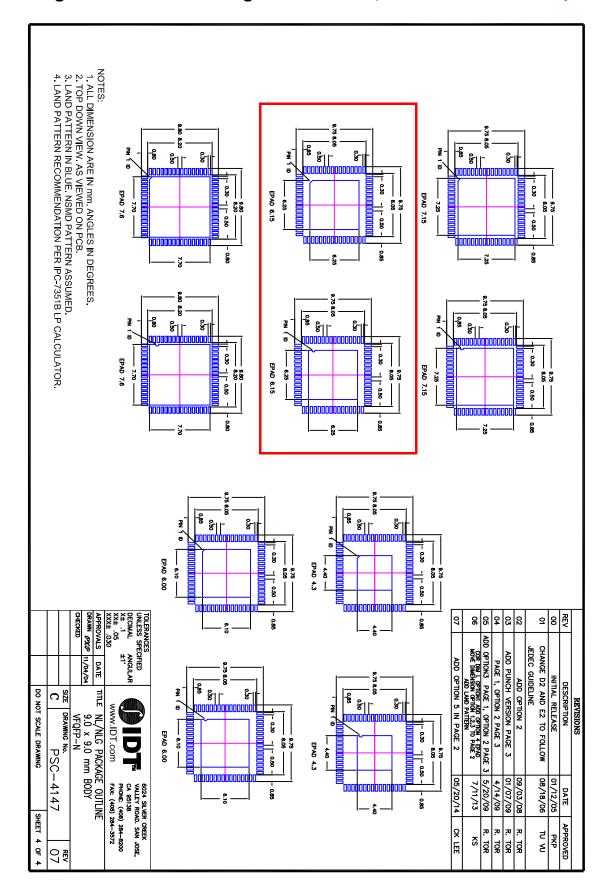
Notes:


- 1. "L" denotes Pb-free, RoHS compliant.
- 2. "LOT" denotes the lot number.
- 3. "YYWW" denotes the last two digits and week the part was assembled.
- 4. "COO" denotes the country of origin.
- 5. "A" denotes the device revision designator.
- 6. Bottom marking (TSSOP only): country of origin.

Package Outline and Package Dimensions (64-pin TSSOP)



aaa C


NLG64 Package Outline and Package Dimensions

NLG64 Package Outline and Package Dimensions, cont. Use Option 2 dimensions table.

NLG64 Package Outline and Package Dimensions, cont. Use EPAD 6.15 option

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
932SQL456AGLF	Tubes	64-pin TSSOP	0 to +70° C
932SQL456AGLFT	Tape and Reel	64-pin TSSOP	0 to +70° C
932SQL456AKLF	Tray	64-pin VFQFPN	0 to +70° C
932SQL456AKLFT	Tape and Reel	64-pin VFQFPN	0 to +70° C
932SQL456AGILF	Tubes	64-pin TSSOP	-40 to +85° C
932SQL456AGILFT	Tape and Reel	64-pin TSSOP	-40 to +85° C
932SQL456AKILF	Tray	64-pin VFQFPN	-40 to +85° C
932SQL456AKILFT	Tape and Reel	64-pin VFQFPN	-40 to +85° C

[&]quot;LF" suffix to the part number denotes Pb-Free configuration, RoHS6.6 compliant.

Revision History

Rev.	Issue Date	Who	Description	Page #
А	8/5/2015	RDW	 Updated front page text and data sheet title. Updated REF14 pin name to reflect 2x drive. Update pin description for REF14 pin. Moved block diagram to page 1 and pinouts to page 2. Updated block diagram to incorporate crystal recommendations. Updated Clock AC tolerance to reflected tightened c2c jitter specs on single ended outputs. Updated Clock periods table accordingly. Updated AC/DC Electrical tables with char data. Updated package drawing to latest format for NLG64. Move to final and release. 	1-14,20
В	9/29/2015	RDW	 Added I-temp device to data sheet Changed max power down current from 6mA to 8mA Slight updates to PCIe Gen2 Hi-band and SAS12G for -40C Corrected typo in bit name of Byte 1, bit 7. Updated marking diagrams to include I-temp devices Updated ordering information to include I-temp devices. 	1,9,12, 15,17, 22

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Synthesizer/Jitter Cleaner category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC9230EIR2 PL902166USY 954204CGLF 9LPRS485DGLF PL902167USY 8V19N490ABDGI LMK04821NKDT CDCE937QPWRQ1
PI6CX201ALE 9LPRS355BGLF CDCEL913IPWRQ1 ABMJB-903-101UMG-T5 ABMJB-903-150UMG-T5 ABMJB-903-151UMG-T5
AD9542BCPZ AD9578BCPZ 9FG104EFILF 9FG104EFLF 308RILF 840001BGI-25LF 843004AGLF 843801AGI-24LF 844004BGI-01LF
844S42BKILF 8A34044C-000NLG 954226AGLF 9FG108EFLF 9LPR363EGLF 9LPRS355BKLF 9LPRS365BGLF GS4915-INE3
9DB306BLLF ABMJB-902-155USY-T5 ABMJB-902-156USY-T5 ABMJB-902-Q76USY-T5 ABMJB-902-Q82USY-T5 ABMJB-902104USY-T5 ABMJB-902-153USY-T5 ABMJB-902-154USY-T5 ABMJB-902-Q42USY-T5 ABMJB-902-Q57USY-T5 ABMJB-902Q74USY-T5 ABMJB-902-Q78USY-T5 LTC6951IUHF-1#PBF 650GI-44LF 8430252CGI-45LF 8432DYI-101LF 84329BYLF 8432DY101LF 8432BY-51LF