2.5V Wide Range Frequency Clock Driver (45MHz - 233MHz)

Recommended Application:

- DDR Memory Modules / Zero Delay Board Fan Out
- Provides complete DDR registered DIMM solution with SSTVF16857, SSTVF16859 or SSTV32852

Product Description/Features:

- Low skew, low jitter PLL clock driver
- 1 to 10 differential clock distribution (SSTL_2)
- Feedback pins for input to output synchronization
- PD\# for power management
- Spread Spectrum-tolerant inputs
- Auto PD when input signal removed

Specifications:

- Meets PC3200 Class A+ specification for DDR-I 400 support
- Covers all DDRI speed grades

Switching Characteristics:

- CYCLE - CYCLE jitter: < 50ps
- OUTPUT- OUTPUT skew: <40ps
- Periodjitter: ± 30 ps

6.10 mm Body, 0.50 mm Pitch = TSSOP
4.40 mm Body, 0.40 mm Pitch = TVSOP

Functionality

INPUTS				OUTPUTS				PLL State
AVDD	PD\#	CLK_INT	CLK_INC	CLKT	CLKC	FB_OUTT	FB_OUTC	
GND	H	L	H	L	H	L	H	Bypassed/off
GND	H	H	L	H	L	H	L	Bypassed/off
$\begin{aligned} & 2.5 \mathrm{~V} \\ & \text { (nom) } \end{aligned}$	L	L	H	Z	Z	Z	Z	off
$\begin{aligned} & 2.5 \mathrm{~V} \\ & \text { (nom) } \end{aligned}$	L	H	L	Z	Z	Z	Z	off
$\begin{gathered} 2.5 \mathrm{~V} \\ \text { (nom) } \end{gathered}$	H	L	H	L	H	L	H	on
$\begin{gathered} 2.5 \mathrm{~V} \\ \text { (nom) } \end{gathered}$	H	H	L	H	L	H	L	on
$\begin{aligned} & 2.5 \mathrm{~V} \\ & (\mathrm{n} 0 \mathrm{~m}) \end{aligned}$	X	<20M	$\mathrm{Hz})^{(1)}$	Z	Z	Z	Z	off

Block Diagram

Pin Configuration

	0	0		0	0		0
в	0	0	-	-	0	-	0
	0	0		-	0	-	0
	0	0		-	0		0
	0	0				0	0
	0	0				0	0
	0	0		-	0	\bigcirc	0
	0	0		-	0	0	0
	0	0		-	0	-	0
	0	0			0		

56-Ball BGA
Top View

	1	2	3	4	5	6
A	CLKTO	CLKC0	GND	GND	CLKC5	CLKT5
B	CLKC1	CLKT1	VDD	VDD	CLKT6	CLKC6
C	GND	GND	NC	NC	GND	GND
D	CLKT2	CLKC2	NC	NC	CLKC7	CLKI7
E	VDD	VDD	NB	NB	VDD	PD\#
F	CLK_INT	CLK_INC	NB	NB	FB_INC	FB_NT
G	VDD	AVDD	NC	NC	FB_OUTC	VDD
H	AGND	GND	NC	NC	GND	FB_OUTT
J	CLKC3	CLKT3	VDD	VDD	CLKT8	CLKC8
K	CLKT4	CLKC4	GND	GND	CLKC9	CLKT9

95V857

Pin Descriptions

PIN NAME	TYPE	DESCRIPTION
VDD	PWR	Power supply, 2.5V
GND	PWR	Ground
AVDD	PWR	Analog power supply, 2.5V
AGND	PWR	Analog ground
CLKT(9:0)	OUT	"True" Clock of differential pair outputs
CLKC(9:0)	OUT	"Complementary" clocks of differential pair outputs
CLK_INC	IN	"Complementary" reference clock input
CLK_INT	IN	"True" reference clock input
FB_OUTC	OUT	"Complementary" Feedback output, dedicated for external feedback. It switches at the same frequency as the CLK. This output must be wired to FB_INC
FB_OUTT	"True" " Feedback output, dedicated for external feedback. It switches FB_INT FB	
FB_INT	IN	"True" Feedback input, provides feedback signal to the internal PLL for synchronization with CLK_INT to eliminate phase error
FB_INC	"Complementary" Feedback input, provides signal to the internal PLL for synchronization with CLK_INC to eliminate phase error	
PD\#	IN	Power Down. LVCMOS input

This PLL Clock Buffer is designed for a V_{DD} of 2.5 V , an AV DD of 2.5 V and differential data input and output levels.
The 95V857 is a zero delay buffer that distributes a differential clock input pair (CLK_INC, CLK_INT) to ten differential pair of clock outputs (CLKT[0:9], CLKC[0:9]) and one differential pair feedback clock output (FB_OUT, FB_OUTC). The clock outputs are controlled by the input clocks (CLK_INC, CLK_INT), the feedback clocks (FB_INT, FB_INC), the 2.5-V LVCMOS input (PD\#) and the Analog Power input (AVDD). When input (PD\#) is low while power is applied, the receivers are disabled, the PLL is turned off and the differential clock outputs are tri-stated. When AVDD is grounded, the PLL is turned off and bypassed for test purposes.

When the input frequency is less than the operating frequency of the PLL, appproximately 20 MHz , the device will enter a low power mode. An input frequency detection circuit on the differential inputs, independent from the input buffers, will detect the low frequency condition and perform the same low power features as when the (PD\#) input is low. When the input frequency increases to greater than approximately 20 MHz , the PLL will be turned back on, the inputs and outputs will be enabled and PLL will obtain phase lock between the feedback clock pair (FB_INT, FB_INC) and the input clock pair (CLK_INC, CLK_INT).

The PLL to the 95V857 clock driver uses the input clocks (CLK_INC, CLK_INT) and the feedback clocks (FB_INT, FB_INC) provide high-performance, low-skew, low-jitter, output differential clocks (CLKT[0:9], CLKC[0:9]). The 95V857 is also able to track Spread Spectrum Clock (SSC) for reduced EMI.

The 95V857 is characterized for operation from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and will meet JEDEC Standard 82-1 and 82-1A Class A+ for registered DDR clock drivers.
0674S-3/3/2015

95V857

Absolute Maximum Ratings

```
Supply Voltage (VDD \& AVDD) . . . . . . . . . . . -0.5V to 4.6 V
Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5 V to \(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\)
Ambient Operating Temperature . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
Storage Temperature . . . . . . . . . . . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{A}_{\mathrm{VDD}}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I_{H}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND	5			$\mu \mathrm{A}$
Input Low Current	ILL	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND			5	$\mu \mathrm{A}$
Operating Supply Current	$\mathrm{I}_{\mathrm{DD2} .5}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pf}$ @ 200MHz		148	170	mA
	IDDPD	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pf}$			100	$\mu \mathrm{A}$
Output High Current	IOH	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=1 \mathrm{~V}$	-18	-32		mA
Output Low Current	loL	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\text {Out }}=1.2 \mathrm{~V}$	26	35		mA
High Impedance Output Current	loz	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$, Vout $=\mathrm{V}_{\mathrm{DD}}$ or GND			± 10	mA
Input Clamp Voltage	V_{IK}	$\mathrm{V}_{\mathrm{DDQ}}=2.3 \mathrm{~V}$ lin $=-18 \mathrm{~mA}$			-1.2	V
High-level output voltage	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\min \text { to } \mathrm{max}, \\ & \mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$	$V_{\text {DDQ }}-0.1$			V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DDQ}}=2.3 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$	1.7			V
Low-level output voltage	VoL	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\min \text { to } \mathrm{max} \\ & \mathrm{l}_{\mathrm{OL}=1 \mathrm{~mA}} \end{aligned}$			0.1	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{DDQ}}=2.3 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{HH}}=12 \mathrm{~mA} \end{aligned}$			0.6	V
Input Capacitance ${ }^{1}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{GND}$ or V_{DD}		3		pF
Output Capacitance ${ }^{1}$	Cout	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ or $\mathrm{V}_{\text {DD }}$		3		pF

[^0]Recommended Operating Condition (see note1)
$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C}$; Supply Voltage AVDD, VDD $=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}, \mathrm{A}_{\text {VDD }}$		2.3	2.5	2.7	V
Low level input voltage	VIL	CLKT, CLKC, FB_INC		0.4	$\mathrm{V}_{\text {DD }} / 2-0.18$	V
		PD\#	-0.3		0.7	V
High level input voltage	V_{IH}	CLKT, CLKC, FB_INC	$\mathrm{V}_{\mathrm{DD}} / 2+0.18$	2.1		V
		PD\#	1.7		$\mathrm{V}_{\mathrm{DD}}+0.6$	V
DC input signal voltage (note 2)	$\mathrm{V}_{\text {IN }}$		-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Differential input signal voltage (note 3)	$\mathrm{V}_{\text {ID }}$	DC - CLKT, FB_INT	0.36		$\mathrm{V}_{\mathrm{DD}}+0.6$	V
		AC - CLKT, FB_INT	0.7		$\mathrm{V}_{\mathrm{DD}}+0.6$	V
Output differential cross voltage (note 4)	V_{Ox}		$\mathrm{V}_{\mathrm{DD}} / 2-0.15$		$\mathrm{V}_{\mathrm{DD}} / 2+0.15$	V
Input differential cross- voltage (note 4)	$\mathrm{V}_{\text {IX }}$		$\mathrm{V}_{\mathrm{DD}} / 2-0.2$	$\mathrm{V}_{\mathrm{DD}} / 2$	$\mathrm{V}_{\mathrm{DD}} / 2+0.2$	V
High level output current	ІОн				-6.4	mA
Low level output current	loL				5.5	mA
Operating free-air temperature	$\mathrm{T}_{\text {A }}$		0		85	${ }^{\circ} \mathrm{C}$

Notes:

1. Unused inputs must be held high or low to prevent them from floating
2. DC input signal voltage specifies the allowable DC execution of differential input.
3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VT is the true input level and VCP is the complementary input level.
4. Differential cross-point voltage is expected to track variations of $V_{D D}$ and is the voltage at which the differential signal must be crossing.

95V857

Timing Requirements

$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{A}_{\mathrm{VDD}}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency	freq $_{\text {op }}$	$2.5 \mathrm{~V}_{ \pm 0.2 \mathrm{~V} @ 25^{\circ} \mathrm{C}}$	45	233	MHz
Application Frequency Range	freq $_{\text {App }}$	$2.5 \mathrm{~V}_{ \pm} 0.2 \mathrm{~V} @ 25^{\circ} \mathrm{C}$	95	220	MHz
Input clock duty cycle	$\mathrm{d}_{\text {tin }}$		40	60	$\%$
CLK stabilization	$\mathrm{T}_{\text {STAB }}$			15	$\mu \mathrm{~s}$

Switching Characteristics (see note 3)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Low-to high level propagation delay time	tPLH^{1}	CLK_IN to any output		3.5		ns
High-to low level propagation delay time	tPLL^{1}	CLK_IN to any output		3.5		ns
Output enable time	t_{EN}	PD\# to any output		3		ns
Output disable time	tdis	PD\# to any output		3		ns
Period jitter	$\mathrm{T}_{\text {iit (per) }}$	100 MHz to 200 MHz	-30		30	ps
Half-period jitter	t (iit_hper)	100 MHz to 200 MHz	-75		75	ps
Input clock slew rate	$\mathrm{t}_{\text {slij) }}$		1		4	V / ns
Output clock slew rate	$\mathrm{t}_{\text {sl(0) }}$		1		2	V / ns
Cycle to Cycle Jitter ${ }^{1}$	$\mathrm{T}_{\text {cyc }}-\mathrm{T}_{\text {cyc }}$	100 MHz to 200 MHz	-50		50	ps
Static Phase Offset	$\mathrm{t}_{\text {(static ohase offset) }}{ }^{4}$		-50	0	50	ps
Output to Output Skew	$\mathrm{T}_{\text {skew }}$				40	ps

Notes:

1. Refers to transition on noninverting output in PLL bypass mode.
2. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle $=t_{w H} / t_{c}$, where the cycle (t_{c}) decreases as the frequency goes up.
3. Switching characteristics guaranteed for application frequency range.
4. Static phase offset shifted by design.

Parameter Measurement Information

Figure 1. IBIS Model Output Load

Figure 2. Output Load Test Circuit

Figure 3. Cycle-to-Cycle Jitter

95V857

Parameter Measurement Information

Figure 4. Static Phase Offset

Figure 5. Output Skew

Figure 6. Period Jitter

Parameter Measurement Information

Figure 7. Half-Period Jitter

Figure 8. Input and Output Slew Rates

95V857

SYMBOL	In Millimeters COMMON DIMENSIONS		In Inches COMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	--	1.20	--	. 047
A1	0.05	0.15	. 002	. 006
A2	0.80	1.05	. 032	. 041
b	0.17	0.27	. 007	. 011
c	0.09	0.20	. 0035	. 008
D	SEE VARIATIONS		SEE VARIATIONS	
E	8.10 BASIC		0.319 BASIC	
E1	6.00	6.20	236	. 244
e	0.50 BASIC		0.020 BASIC	
L	0.45	0.75	. 018	. 030
N	SEE VARIATIONS		SEE VARIATIONS	
a	0°	8°	0°	8°
aaa	--	0.10	--	. 004

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
48	12.40	12.60	.488	.496

Reference Doc.: JEDEC Publication 95, M O-153
10-0039
6.10 mm. Body, 0.50 mm. pitch TSSOP
(240 mil) (0.020 mil)

Ordering Information

Example:

95V857AG LF-T

0674S-3/3/2015

SYMBOL	In Millimeters COMMON DIMENSIONS		In InchesCOMMON DIMENSIONS	
	MIN	MAX	MIN	MAX
A	--	1.20	--	. 047
A1	0.05	0.15	. 002	. 006
A2	0.80	1.05	. 032	. 041
b	0.13	0.23	. 005	. 009
c	0.09	0.20	. 0035	. 008
D	SEE VARIATIONS		SEE VARIATIONS	
E	6.40 BASIC		0.252 BASIC	
E1	4.30	4.50	. 169	. 177
e	0.40 BASIC		0.016 BASIC	
L	0.45	0.75	. 018	. 030
N	SEE VARIATIONS		SEE VARIATIONS	
a	0°	8°	0°	8°
aaa	--	0.08	--	. 003

VARIATIONS

N	D mm.		D (inch)	
	MIN	MAX	MIN	MAX
48	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, M O-153
10-0037
4.40 mm . Body, 0.40 mm . pitch TSSOP
(173 mil) (16 mil)

Ordering Information

Example:

95V857

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

N	40	SYMBOL	MIN.	MAX.
N_{D}	10	A	0.80	1.00
N_{E}	10	A1	0	0.05
D x E BASIC	6.00×6.00	A3	0.25 Reference	
D2 MIN. / MAX.	2.75 / 3.05	b	0.18	0.30
E2 MIN. / MAX.	2.75 / 3.05	e	0.50 BASIC	
L MIN. / MAX.	$0.30 / 0.50$			

Source Reference: MLF2TMSE 10-0053

Ordering Information

Example:

95V857AKLF-T

95V857

ALL DIMENSIONS IN MILLIMETERS

D	E	T Min/Max	e	----- BALL GRID -----		Max. TOTAL	d Min/Max	$\begin{gathered} \mathrm{h} \\ \text { Min/Max } \end{gathered}$	D1	E1	REF. DIMENSIONS	
				HORIZ	VERT						b	c
7.00 Bsc	4.50 Bsc	0.86/1.00	0.65 Bsc	6	10	60	0.35/0.45	0.15/0.21	5.85 Bsc	3.25 Bsc	0.575	0.625

Note: Ball grid total indicates maximum ball count for package. Lesser quantity may be used.

* Source Ref.: JEDEC Publication 95, \qquad
10-0055

Ordering Information

Example:

95V857AHLF-T

Example:

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG HMC7043LP7FETR ISPPAC-CLK5520V-01T100C 6ES7212-1AF40-0XB0 EC4P-221-MRXD1 6EP1332-1SH71 6ES7222-1BH32-0XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807ASOG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI

[^0]: ${ }^{1}$ Guaranteed by design at 220 MHz , not 100% tested in production.

