

Four Output Differential Buffer for PCI-Express

Recommended Application:

DB400 Intel Yellow Cover part with PCI-Express support.

Output Features:

- 4 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available

Key Specifications:

- Outputs cycle-cycle jitter: < 50ps
- Outputs skew: < 50ps
- +/- 300ppm frequency accuracy on output clocks

Features/Benefits:

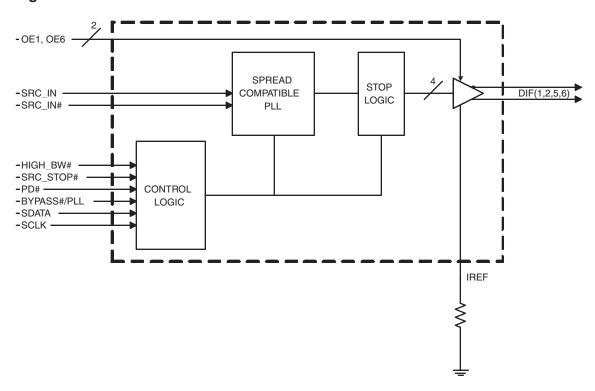
- Supports tight ppm accuracy clocks for Serial-ATA
- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- 28-p Supports undriven differential output pair in PD# and SRC_STOP# for power management.

Pin Configuration

DIF_1 DIF_1# OE_1 DIF_2 DIF_2# VDD	2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13	VDDA GNDA IREF GND VDD DIF_6 DIF_6# OE_6 DIF_5 DIF_5# VDD HIGH_BW# SRC_STOP# PD#
---	---	---

28-pin SSOP & TSSOP

Pin Description


PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7V differential true clock outputs
7	DIF_1#	OUT	0.7V differential complement clock outputs
8	OE_1	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
9	DIF_2	OUT	0.7V differential true clock outputs
10	DIF_2#	OUT	0.7V differential complement clock outputs
11	VDD	PWR	Power supply, nominal 3.3V
12	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
13	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
14	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.
15	PD#	IN	Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.
16	SRC_STOP#	IN	Active low input to stop diff outputs.
17	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5#	OUT	0.7V differential complement clock outputs
20	DIF_5	OUT	0.7V differential true clock outputs
21	OE_6	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
22	DIF_6#	OUT	0.7V differential complement clock outputs
23	DIF_6	OUT	0.7V differential true clock outputs
24	VDD	PWR	Power supply, nominal 3.3V
25	GND	PWR	Ground pin.
26	IREF	OUT	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

General Description

ICS9DB104 follows the Intel DB400 Differential Buffer Specification. This buffer provides four SRC clocks for PCI-Express, next generation I/O devices. ICS9DB104 is driven by a differential input pair from a CK409/CK410 main clock generator, such as the ICS952601 or ICS954101. ICS9DB104 can run at speeds up to 200MHz. It provides ouputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

Block Diagram

Power Groups

Pin N	lumber	Description				
VDD	GND	Description				
1	4	SRC_IN/SRC_IN#				
5,11,18,24	4,25	DIF Outputs				
28	27	IREF				
28	27	Analog VDD & GND for PLL core				

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		٧
V_{IH}	Input High Voltage		$V_{DD}+0.5V$	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
lanut lanu Commant	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	
Input Low Current	I _{IL2}	$V_{IN} = 0 V$; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3OP}	Full Active, $C_L = Full load$;			200	mA	
Powerdown Current	I _{DD3.3PD}	all diff pairs driven			40	mA	
1 owerdown Current	טאנ.נטטי	all differential pairs tri-stated			12	mA	
Input Frequency ³	Fi	$V_{DD} = 3.3 \text{ V}$	80	100/133 166/200	220	MHz	3
Pin Inductance ¹	L_{pin}				7	nΗ	1
Input Capacitance ¹	C_{IN}	Logic Inputs	1.5		5	рF	1
input Capacitance	C_OUT	Output pin capacitance			6	pF	1
PLL Bandwidth	BW	PLL Bandwidth when PLL BW=0		4		MHz	1
PLL Bandwidth	DVV	PLL Bandwidth when PLL BW=1		2		MHz	1
		From V _{DD} Power-Up and after					
Clk Stabilization ^{1,2}	T_{STAB}	input clock stabilization or de- assertion of PD# to 1st clock			1	ms	1,2
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion	- 50		10	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements. ³Time from deassertion until outputs are >200 mV

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_{A} = 0 - 70^{\circ}C; \ V_{DD} = 3.3 \ V \ + / -5\%; \ C_{L} = 2pF, \ R_{S} = 33.2\Omega, \ R_{P} = 49.9\Omega, \ I_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	1110	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
		200MHz nominal	4.9985		5.0015	ns	2
		200MHz spread	4.9985		5.0266	ns	2
	Tperiod	166.66MHz nominal	5.9982		6.0018	ns	2
Average period		166.66MHz spread	5.9982		6.0320	ns	2
Average period		133.33MHz nominal	7.4978		7.5023	ns	2
		133.33MHz spread	7.4978		5.4000	ns	2
		100.00MHz nominal	9.9970		10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
		200MHz nominal	4.8735			ns	1,2
Absolute min period	T _{absmin}	166.66MHz nominal/spread	5.8732			ns	1,2
Absolute IIIII period	absmin	133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements

 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6~x~I_{REF}$ and $V_{OH} = 0.7V~@~Z_{O} = 50\Omega$.

General SMBus serial interface information for the ICS9DB104

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will *acknowledge* each byte *one at a time*
- Controller (host) sends a Stop bit

Ind	ex Block W	/rit	e Operation
Cor	ntroller (Host)	ICS (Slave/Receiver)	
Т	starT bit		
Slav	e Address DC _(h)		
WR	WRite		
	_		ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	nning Byte N		
			ACK
	\Diamond	ıte	
	\Diamond	X Byte	\diamond
	\rightarrow	×	\Q
			\rightarrow
Byt	e N + X - 1		
			ACK
Р	stoP bit		

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD_(h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation
Con	troller (Host)	IC	S (Slave/Receiver)
Т	starT bit		
Slave	Address DC _(h)		
WR	WRite		
			ACK
Begir	nning Byte = N		
			ACK
RT	Repeat starT		
Slave	Address DD _(h)		
RD	ReaD		
			ACK
		D	ata Byte Count = X
	ACK		
			Beginning Byte N
	ACK		
		yte.	\rightarrow
	Q	X Byte	\Q
	\rightarrow	×	\Q
	O		
	Later to the		Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Byte 0 Pi		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		PD# dr	ive mode	RW	driven	Hi-Z	0
Bit 6	-		SRC_S	top# drive	RW	driven	Hi-Z	0
Bit 5	-		Res	erved	RW	W Reserved		Χ
Bit 4	-		Res	erved	RW	Reserved		Χ
Bit 3	-		Res	erved	RW	Rese	erved	Χ
Bit 2	-		PLL_B\	N# adjust	RW	High BW	Low BW	1
Bit 1	-		BYPA	SS#/PLL	RW	fan-out	ZDB	1
Bit 0	-	·	SRC	_DIV#	RW	div /2	x1	1

SMBus Table: Output Control Register

Byt	e 1	Pin # Name Control Type 0 1			PWD			
Bit 7	-		Res	erved	RW	User should write '0' to minimize power		1
Bit 6	23,2	2	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	20,19		DIF_5	Output Control	RW	Disable	Enable	1
Bit 4	-		Res	erved	RW	User should write '0' to minimize power		1
Bit 3	-		Res	erved	RW		uld write '0' ize power	1
Bit 2	9,10)	DIF_2	Output Control	RW	Disable	·	
Bit 1	6,7		DIF_1	Output Control	RW	Disable Enable		1
Bit 0	-		Res	erved	RW	User should write '0' to minimize power		1

SMBus Table: Output Control Register

Byt	e 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Res	erved	RW	Res	erved	0
Bit 6	23,22		DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	20,19		DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	•		Res	erved	RW	Res	erved	0
Bit 3	•		Res	erved	RW	Res	erved	0
Bit 2	9,10)	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	6,7		DIF_1	Output Control	RW	Free-run Stoppable		0
Bit 0	-		Res	erved	RW	Res	erved	0

SMBus Table: Output Control Register

Byt	Byte 3 Pin #		Name	Control Function	Туре	0	1	PWD
Bit 7			Res	erved	RW	Res	erved	Χ
Bit 6			Res	erved	RW	Res	erved	Χ
Bit 5			Reserved		RW	Reserved		Χ
Bit 4			Res	erved	RW	Reserved		Χ
Bit 3			Res	erved	RW	Res	erved	Χ
Bit 2			Reserved		RW	Res	erved	Χ
Bit 1			Reserved		RW	Res	erved	Х
Bit 0			Res	erved	RW	Res	erved	Х

SMBus Table: Vendor & Revision ID Register

Byt	e 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	•		RID3		R	ı	•	Х
Bit 6	ı		RID2	REVISION	R	ı	•	Х
Bit 5	ı		RID1	ID	R	ı	•	Х
Bit 4	ı		RID0		R	ı	-	Х
Bit 3	-		VID3		R	-	-	0
Bit 2	-		VID2	VENDOR	R	-	-	0
Bit 1	-		VID1	ID	R	-	-	0
Bit 0	-		VID0		R	-	-	1

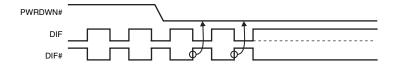
SMBus Table: DEVICE ID

Byt	te 5	Pin #	Name	Control Function	Туре	0	1		PWD
Bit 7	-		Device ID 7 (MSB)		RW	Reserved			0
Bit 6	-		Device ID 6		RW	Reserved		0	
Bit 5	-		Device ID 5		RW	Reserved		0	
Bit 4	-		Device ID 4		RW	Res	erved		0
Bit 3	-		Device ID 3		RW	Res	erved		1
Bit 2	-		Device ID 2		RW	Res	erved		0
Bit 1	-		Devi	ce ID 1	RW	Res	erved		0
Bit 0	-		Devi	ce ID 0	RW	Res	erved		0

SMBus Table: Byte Count Register

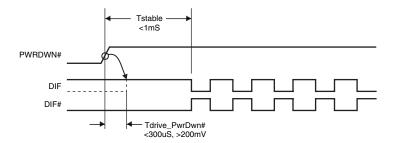
Cinduo Tubioi Byto Count Hogictor								
Byt	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	-	BC7	Writing to	RW	1	-	0
Bit 6	-		BC6	this register	RW	•	-	0
Bit 5	-		BC5	configures	RW	-	-	0
Bit 4	-		BC4	how many	RW	ı	1	0
Bit 3	-		BC3	bytes will	RW	ı	1	0
Bit 2	-		BC2	be read	RW	ı	-	1
Bit 1	-		BC1	be read back.	RW	-	-	0
Bit 0	-		BC0	Dack.	RW	-	-	1

0767E-12/14/07



PD#

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

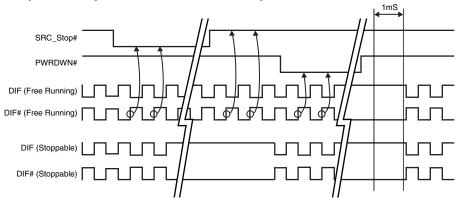
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

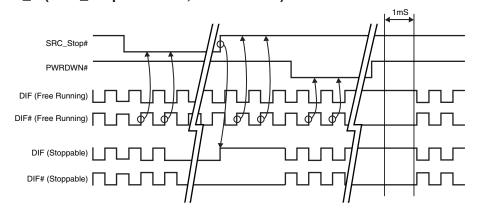
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.

SRC STOP#

The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

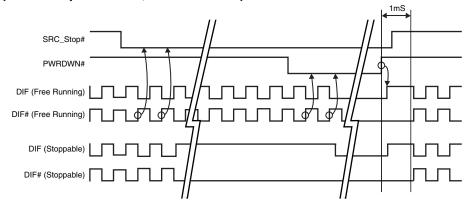

SRC_STOP# - Assertion (transition from '1' to '0')

Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

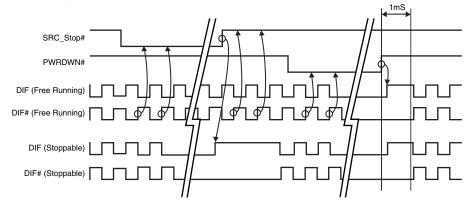

SRC_STOP# - De-assertion (transition from '0' to '1')

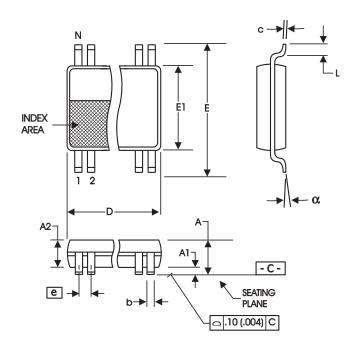
All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)



SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)




SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

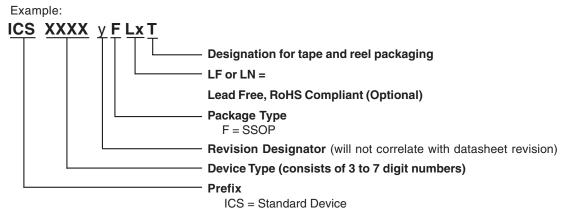
SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

209 mil SSOP								
	In Mill	limeters	In Inches					
SYMBOL	COMMON I	DIMENSIONS	COMMON DIMENSIONS					
	MIN	MAX	MIN	MAX				
Α		2.00	-	.079				
A1	0.05		.002					
A2	1.65	1.85	.065	.073				
b	0.22	0.38	.009	.015				
С	0.09	0.25	.0035	.010				
D	SEE VA	RIATIONS	SEE VARIATIONS					
E	7.40	8.20	.291	.323				
E1	5.00	5.60	.197	.220				
е	0.65 BASIC		0.0256 BASIC					
L	0.55	0.95	.022	.037				

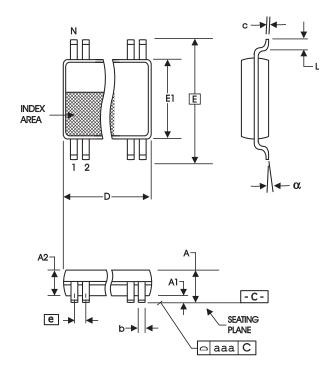
VARIATIONS

N	D	mm.	D (inch)		
	MIN	MAX	MIN	MAX	
28	9.90	10.50	.390	.413	

SEE


0°

Reference Doc.: JEDEC Publication 95, MO-150


10-0033

Ordering Information

ICS9DB104yFLxT

0767E-12/14/07

4.40 mm. Body, 0.65 mm. Pitch TSSOP (25.6 mil)

(173 mil)

	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS	
E	6.40 E	BASIC	0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65 E	BASIC	0.0256 BASIC		
L	0.45	0.75	.018	.030	

aaa **VARIATIONS**

N	D n	nm.	D (inch)		
	MIN	MAX	MIN	MAX	
28	9.60	9.80	.378	.386	

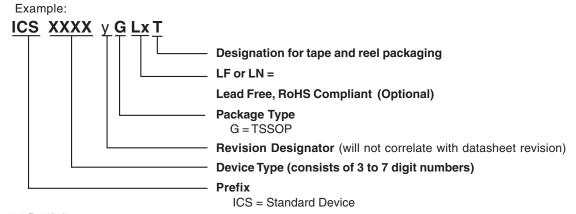
0.10

SEE VARIATIONS

.004

0°

SEE VARIATIONS


Reference Doc.: JEDEC Publication 95, MO-153

0°

10-0035

Ordering Information

ICS9DB104yGLxT

0767E-12/14/07

Revision History

Rev.	Issue Date	Description	Page #
D	10/26/05	Updated LF Ordering Information to LN or LF.	12, 13
Е	12/14/07	Updated SMBus serial Interface Information.	6

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG
NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2