

Six Output Differential Buffer for PCle Gen 2

9DB106

Description

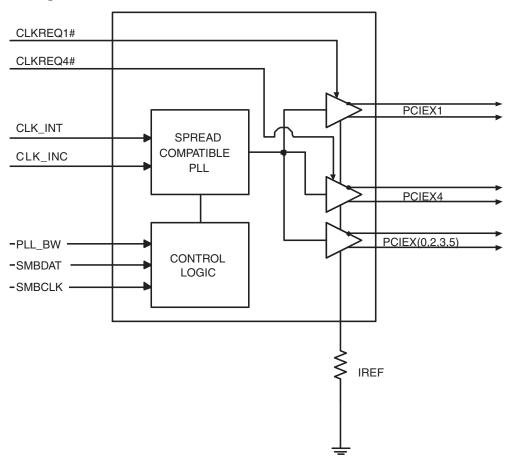
The **9DB106** zero-delay buffer supports PCIe Gen1 and Gen2 clocking requirements. The **9DB106** is driven by a differential SRC output pair from an IDT CK410/CK505-compliant main clock generator. It attenuates jitter on the input clock and has a selectable PLL bandwidth to maximize performance in systems with or without Spread-Spectrum clocking. An SMBus interface allows control of the PLL bandwidth and bypass options, while 2 clock request (CLKREQ#) pins make the **9DB106** suitable for Express Card applications.

Recommended Applications

6 Output Differential Buffer for PCIe Gen 2

Output Features

6 - 0.7V current mode differential output pairs (HCSL)


Features/Benefits

- CLKREQ# pin for outputs 1 and 4/ supports Express Card applications
- PLL or bypass mode/PLL can dejitter incoming clock
- Selectable PLL bandwidth/minimizes jitter peaking in downstream PLL's
- Spread Spectrum Compatible/tracks spreading input clock for low EMI
- SMBus Interface/unused outputs can be disabled

Key Specifications

- Cycle-to-cycle jitter < 50ps
- Output-to-output skew < 50 ps

Functional Block Diagram

Pin Configuration

PLL BW	1	2	3 VDDA
_			
CLK_INT	2	2	7 GNDA
CLK_INC	3	2	6 IREF
vCLKREQ1#	4	2	vCLKREQ4#
PCIEXT0	5		4 PCIEXT5
PCIEXC0	6	901 2 2	3 PCIEXC5
VDD	7		2 VDD
GND	8	2	1 GND
PCIEXT1	9	6 2	PCIEXT4
PCIEXC1	10	1	PCIEXC4
PCIEXT2	11	1	B PCIEXT3
PCIEXC2	12	1	7 PCIEXC3
VDD	13	1	3 VDD
SMBDAT	14	1	5 SMBCLK

Note:Pins preceeded by 'v' have internal 120K ohm pull down resistors

28-pin SSOP & TSSOP

Power Groups

Pin N	lumber	Description
VDD	GND	Description
7, 13, 16, 22	8,21	PCI Express Outputs
TBD	TBD	SMBUS
N/A	27	IREF
28	27	Analog VDD & GND for PLL core

Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
4	DI DW	IN	3.3V input for selecting PLL Band Width
1	PLL_BW	IIN	0 = low, 1= high
2	CLK_INT	IN	True Input for differential reference clock.
3	CLK_INC	IN	Complementary Input for differential reference clock.
4	vCLKREQ1#	IN	Output enable for PCI Express output pair 1.
4	VCERNEQ1#	IIN	0 = enabled, 1 =disabled
5	PCIEXT0	OUT	True clock of differential PCI_Express pair.
6	PCIEXC0	OUT	Complementary clock of differential PCI_Express pair.
7	VDD	PWR	Power supply, nominal 3.3V
8	GND	IN	Ground pin.
9	PCIEXT1	OUT	True clock of differential PCI_Express pair.
10	PCIEXC1	OUT	Complementary clock of differential PCI_Express pair.
11	PCIEXT2	OUT	True clock of differential PCI_Express pair.
12	PCIEXC2	OUT	Complementary clock of differential PCI_Express pair.
13	VDD	PWR	Power supply, nominal 3.3V
14	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
15	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
16	VDD	PWR	Power supply, nominal 3.3V
17	PCIEXC3	OUT	Complementary clock of differential PCI_Express pair.
18	PCIEXT3	OUT	True clock of differential PCI_Express pair.
19	PCIEXC4	OUT	Complementary clock of differential PCI_Express pair.
20	PCIEXT4	OUT	True clock of differential PCI_Express pair.
21	GND	PWR	Ground pin.
22	VDD	PWR	Power supply, nominal 3.3V
23	PCIEXC5	OUT	Complementary clock of differential PCI_Express pair.
24	PCIEXT5	OUT	True clock of differential PCI_Express pair.
0.5	· OLKDEOA#	INI	Output enable for PCI Express output pair 4.
25	vCLKREQ4#	IN	0 = enabled, 1 =disabled
_			This pin establishes the reference for the differential current-mode
			output pairs. It requires a fixed precision resistor to ground.
26	IREF	OUT	4750hm is the standard value for 1000hm differential impedance.
			Other impedances require different values. See data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Note:

Pins preceded by 'v' have internal 120K ohm pull down resistors

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			٧	1
Input High Voltage	V_{IH}	Except for SMBus interface			$V_{DD} + 0.5V$	٧	1
Input High Voltage	V _{IHSMB}	SMBus clock and data pins			5.5V	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	$^{\circ}$	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Ambient Operating	T _{COM}	Commmercial range	0		70	∞	1
Temperature	T_IND	Industrial range	-40		85	∞	1
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	1,2
Input Low Voltage	V_{IL}	3.3 V +/-5%	V _{SS} - 0.3		0.8	V	1,2
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1,2
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull- up resistors	-5			uA	1,2
input Low Guilent	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	1,2
Operating Supply Current	l	Full Active, $C_L = Full load$;		130	150	mA	1
Operating Supply Current	I _{DD3.3OP}	all differential pairs tri-stated		30	40	mA	1
Input Frequency	Fi	$V_{DD} = 3.3 \text{ V}$	80	100	105	MHz	
Pin Inductance	L_{pin}				7	nΗ	1
Input Capacitance	C_{IN}	Logic Inputs			5	pF	1
input Gapacitance	C _{OUT}	Output pin capacitance			4.5	pF	1
Clk Stabilization	T _{STAB}	From VDD reaching 3.1V and input clock stable			1.8	ms	1
Input Spread Spectrum Modulation Frequency		Triangular Modulation	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
SMBus Voltage	V_{DD}		2.7		5.5	V	1
Low-level Output Voltage	V_{OL}	@ I _{PULLUP}			0.4	V	1
Current sinking at $V_{OL} = 0.4 \text{ V}$	I _{PULLUP}		4			mA	1
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

²Except differential input clock

³Time from deassertion until outputs are >200mV

Electrical Characteristics - Clock Input Parameters

 $TA = T_{COM}$ or T_{IND} : Supply Voltage VDD = 3.3 V +/-5%

TITE TOOM OF TIND; Cuppiy	y voitago v b b = 0.0 v 1/ 0/0						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V_{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V_{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - PLL Parameters

 $TA = T_{COM}$ or T_{IND} ; Supply Voltage VDD = 3.3 V +/-5%

Group	Parameter	Description	Min	Тур	Max	Units	Notes
PLL Jitter Peaking	j peak-hibw	(PLL_BW = 1)	0	1	2.5	dB	1,4
PLL Jitter Peaking	jpeak-lobw	$(PLL_BW = 0)$	0	1	2	dB	1,4
PLL Bandwidth	pll _{HIBW}	(PLL_BW = 1)	2	2.5	3	MHz	1,5
PLL Bandwidth	pll_LOBW	$(PLL_BW = 0)$	0.4	0.5	1	MHz	1,5
	e t _{jphasePLL}	PCIe Gen 1 phase jitter (1.5 - 22 MHz)		40	108	ps	1,2,3
litter Phase		PCIe Gen 2 jitter (8-16 MHz, 5-16 MHz) Hi-Band >1.5MHz (PLL_BW=1)		2.7	3.1	ps rms	1,2,3
Jitter, Phase		PCIe Gen 2 jitter (8-16 MHz, 5-16 MHz) Hi-Band >1.5MHz (PLL_BW=0)		2.2	3.1	ps rms	1,2,3
		PCIe Gen 2 jitter (8-16 MHz, 5-16 MHz) Lo-Band <1.5MHz		1.3	3	ps rms	1,2,3

NOTES:

- 1. Guaranteed by design and characterization, not 100% tested in production.
- 2. See http://www.pcisig.com for complete specs
- 3. Device driven by 932S421BGLF or equivalent
- 4. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
- 5. Measured at 3 db down or half power point.

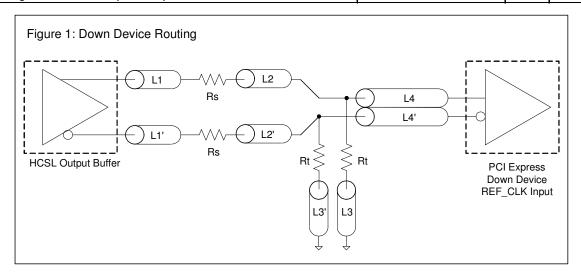
²Slew rate measured through +/-75mV window centered around differential zero

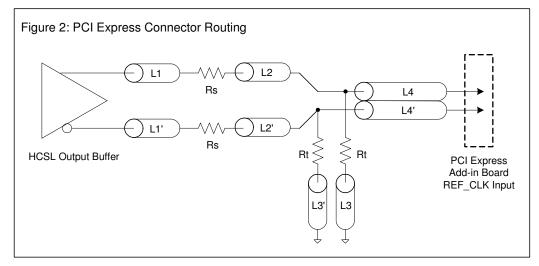
Electrical Characteristics - PCIEX 0.7V Current Mode Differential Outputs

 $TA = T_{COM} \ or \ T_{IND}; \ V_{DD} = 3.3 \ V \ +/-5\%; \ C_L \ =2pF, \ R_S = 33.2 \Omega, \ R_P = 49.9 \Omega, \ I_{REF} = 475 \Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LINITS	NOTES
	STIVIDOL	CONDITIONS	IVIIIV	1 11	IVIAA	CIVITS	INOTES
Current Source Output Impedance	Zo ¹	$V_O = V_X$	3000			<	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	111 🗸	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1,3
Min Voltage	Vuds	signal using absolute value.	-300			111 V	1,3
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1,3
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1,3
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Average period	T_{period}	100.00MHz nominal	9.9970		10.0030	ns	2
Average period		100.00MHz spread	9.9970		10.0533	ns	2
Absolute min period	T _{absmin}	100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525V \ V_{OL} = 0.175V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Input to Output Dolov	t _{pd}	PLL Mode.	0		150	ps	1
Input to Output Delay	t _{pdbyp}	Bypass mode	3.7		4.2	ns	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Output-to-Output Skew	t _{sk3}	V _T = 50%		40	50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom		35	50	ps	1
		BYPASS mode as additive jitter		35	50	ps	1

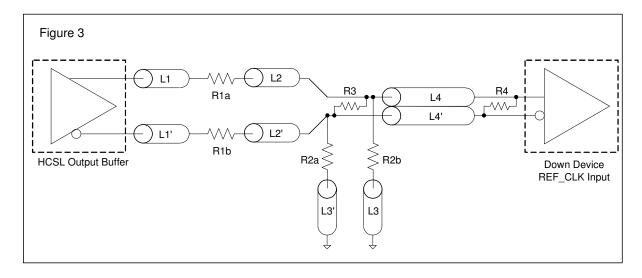
¹Guaranteed by design and characterization, not 100% tested in production.

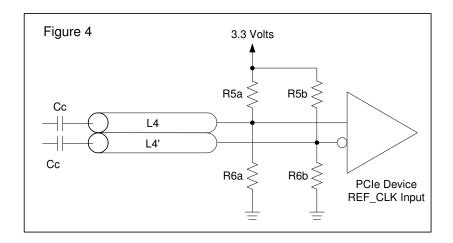

² The 9DB106 does not add a ppm error to the input clock.


 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6$ x I_{REF} and $V_{OH} = 0.7V$ @ $Z_{O} = 50\Omega$.

SRC Reference Clock									
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure						
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1						
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1						
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1						
Rs	33	ohm	1						
Rt	49.9	ohm	1						

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2



	Alternative Termination for LVDS and other Common Differential Signals (figure 3)										
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note				
0.45v	0.22v	1.08	33	150	100	100					
0.58	0.28	0.6	33	78.7	137	100					
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible				
0.60	0.3	1.2	33	174	140	100	Standard LVDS				

R1a = R1b = R1R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)						
Component	Value	Note				
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Cc	0.1 μF					
Vcm	0.350 volts					

General SMBus serial interface information for the 9DB106

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (h)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1)
- IDT clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D4 (h)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (h)
- IDT clock will *acknowledge*
- IDT clock will send the data byte count = X
- IDT clock sends Byte N + X -1
- IDT clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit

In dead Distall Dead On analism

· Controller (host) will send a stop bit

Ind	Index Block Write Operation						
Cor	ntroller (Host)	IDT (Slave/Receiver)					
Т	starT bit						
Slav	e Address D4 _(h)						
WR	WRite						
			ACK				
Begi	nning Byte = N						
			ACK				
Data	Byte Count = X						
			ACK				
Begir	nning Byte N						
			ACK				
	\rightarrow	Byte					
	\Q	Ву	♦				
	\rightarrow	×	\Q				
		\Q					
Byt	e N + X - 1						
			ACK				
Р	stoP bit						

Ind	ex Block Rea	ad	Operation	
Con	troller (Host)	ID	T (Slave/Receiver)	
Т	starT bit			
Slave	e Address D4 _(h)			
WR	WRite			
			ACK	
Begir	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	e Address D5 _(h)			
RD	ReaD			
	•	ACK		
		Data Byte Count = X		
	ACK			
		r	Beginning Byte N	
	ACK			
		/te	\Q	
	♦	X Byte	\Q	
	\Q	×	\Q	
	\Q			
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

SMBusTable: Device Control Register, READ/WRITE ADDRESS (D4/D5)

Byte	0	Pin#	Name	Control Function	Type	0	1	PWD
Bit 7	-		SW_EN	Enables SMBus Control of bits (1:0)	RW	PLL controlled by SMBus registers	PLL controlled by device pins	1
Bit 6	-		RESE	ERVED	RW		-	Χ
Bit 5	-		RESE	ERVED	RW		-	Х
Bit 4	-		RESE	ERVED	RW		-	Χ
Bit 3	-		RESE	ERVED	RW		-	Χ
Bit 2	-		RESE	ERVED	RW		-	Χ
Bit 1	-		PLL BW #adjust	Selects PLL Bandwidth	RW	Low BW	High BW	1
Bit 0	-		PLL Enable	Bypasses PLL for board test	RW	PLL bypassed (fan out mode)		1

SMBusTable: Output Enable Register

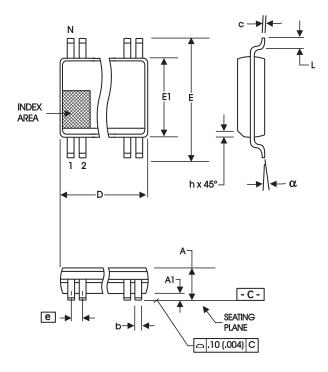
OIII Dao I a	Simbas rabie: Output Enable riegister							
Byte	1 Pin #	Name	Control Function	Type	0	1	PWD	
Bit 7	-	RESI	ERVED	RW		-	Х	
Bit 6	-	RESI	ERVED	RW		-	Х	
Bit 5	24,23	PCIEX5	Output Control	RW	Disable	Enable	1	
Bit 4	-	RESI	ERVED	RW	-		Χ	
Bit 3	18,17	PCIEX3	Output Control	RW	Disable	Enable	1	
Bit 2	11,12	PCIEX2	Output Control	RW	Disable	Enable	1	
Bit 1	-	RESI	ERVED	RW	-		Х	
Bit 0	5,6	PCIEX0	Output Control	RW	Disable	Enable	1	

SMBusTable: Function Select Register

Byte	2	Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7			RESE	ERVED	RW	-		Х
Bit 6			RESE	ERVED	RW	-		X
Bit 5	-		RESE	ERVED	RW		-	X
Bit 4	-		RESE	ERVED	RW	-		X
Bit 3	-		RESE	ERVED	RW		-	Х
Bit 2	-		RESE	ERVED	RW		-	X
Bit 1	-		RESERVED		RW		-	Х
Bit 0	-		RESE	ERVED	RW		-	Х

SMBusTable: Vendor & Revision ID Register

Byte	3	Pin#	Name	Control Function	Type	0	1	PWD
Bit 7			RID3		R	-	-	0
Bit 6	-		RID2	REVISION ID	R	-	-	0
Bit 5	-		RID1	HE VISION ID	R	-	-	0
Bit 4	-		RID0		R	-	-	1
Bit 3	ı		VID3		R	-	-	0
Bit 2	-		VID2	VENDOR ID	R	-	-	0
Bit 1	-		VID1	VENDORID	R	-	-	0
Bit 0	-		VID0		R	-	-	1


9DB106 Six Output Differential Buffer for PCle Gen 2

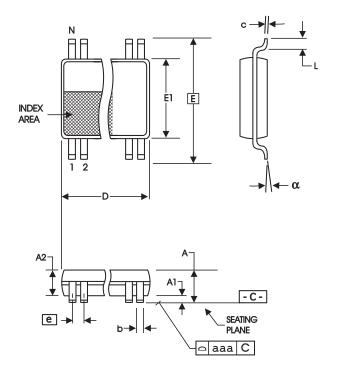
SMBusTable: DEVICE ID

Byte 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-			R		-	0
Bit 6	-			R		-	0
Bit 5	-			R		-	0
Bit 4	-	Dev	rice ID	R		-	0
Bit 3	-	= 0	6 Hex	R		-	0
Bit 2	-			R		-	1
Bit 1	-			R		-	1
Bit 0	-			R		-	0

SMBusTable: Byte Count Register

Byte	5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW	ı	ı	0
Bit 6	-		BC6	Writing to this	RW	-	-	0
Bit 5	-		BC5	register will	RW	-	-	0
Bit 4	-		BC4	configure how	RW	-	-	0
Bit 3	-		BC3	many bytes will be	RW	-	-	0
Bit 2	-		BC2	read back, default	RW	-	-	1
Bit 1	-		BC1	is 06 = 6 bytes.	RW	-	-	1
Bit 0	-		BC0		RW	-	-	0

209 mil SSOP


	In Milli	meters	In Inches				
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS				
	MIN	MAX	MIN	MAX			
Α		2.00		.079			
A1	0.05		.002				
A2	1.65	1.85	.065	.073			
b	0.22	0.38	.009	.015			
С	0.09	0.25	.0035	.010			
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS			
E	7.40	8.20	.291	.323			
E1	5.00	5.60	.197	.220			
е	0.65 E	BASIC	0.0256	BASIC			
L	0.55	0.95	.022	.037			
N	SEE VARIATIONS		SEE VARIATIONS				
а	0°	8°	0°	8°			

VARIATIONS

N	Dn	nm.	D (inch)		
N		MIN	MAX	MIN	MAX
2	8	9.90	10.50	.390	.413

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

4.40 mm. Body, 0.65 mm. Pitch TSSOP

(173 mil) (25.6 mil)

·	In Milli	meters	In In	ches
SYMBOL	COMMON DIMENSIONS		COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
Α		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS
E	6.40 E	BASIC	0.252	BASIC
E1	4.30	4.50	.169	.177
е	0.65 E	BASIC	0.0256	BASIC
L	0.45	0.75	.018	.030
N	SEE VAF	RIATIONS	SEE VARIATIONS	
а	0°	8°	0°	8°
aaa		0.10		.004

VARIATIONS

N	D mm.		D (inch)	
N	MIN	MAX	MIN	MAX
28	9.60	9.80	.378	.386

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB106BFLF	Tubes	28-pin SSOP	0 to +70℃
9DB106BFLFT	Tape and Reel	28-pin SSOP	0 to +70℃
9DB106BGLF	Tubes	28-pin TSSOP	0 to +70℃
9DB106BGLFT	Tape and Reel	28-pin TSSOP	0 to +70℃
9DB106BFILF	Tubes	28-pin SSOP	-40 to +85℃
9DB106BFILFT	Tape and Reel	28-pin SSOP	-40 to +85℃
9DB106BGILF	Tubes	28-pin TSSOP	-40 to +85℃
9DB106BGILFT	Tape and Reel	28-pin TSSOP	-40 to +85℃

[&]quot;LF" after the package code are the Pb-Free configuration and are RoHS compliant.

[&]quot;B" is the device revision designator (will not correlate to the datasheet revision).

9DB106 Six Output Differential Buffer for PCle Gen 2

Revision History

Rev.	Originator	Issue Date	Description	Page #
			1. Changed Output to Output skew from 30ps to 45ps.	
			2. Changed PLL mode jitter from 40ps to 35ps.	
			3. Changed Bypass mode additive jitter from 25ps to 35ps.	5,
В	RDW	9/12/2005	4. Updated LF Ordering Information.	8-9
С	RDW	8/17/2006	Corrected Typo of SMBus Read/Write Address.	7
D	RDW	3/12/2007	Added SMBus Read/Write Table.	6
			1. Added Phase Noise Parameters, Updated input to output delay values.	
			2. PLL BW moved to PLL parameters table.	
Е	RDW	8/6/2007	3. Added terminations tables.	6-8
F		12/14/2007	Updated SMBus serial Interface Information.	9
G	RDW	4/1/2010	Updated ordering info for Rev B	13
			Updated DS to include I-temp specs and ordering information	
			2. Updated electrical tables to reflect common set of numbers for I-temp and C-temp	
			3. Converted all references of ICS to IDT	
Н	RDW	9/15/2010	4. Corrected placement of AC coupling caps in Figure 4	
J	RDW	1/27/2011	Updated Termination Figure 4.	8
K	RDW	4/20/2011	1. Changed pull down indicator from "**" to " v " to correct pin description of CLKREQ# pins	S.
L	AT	5/24/2012	Added OE# Latency spec to Common Input/Output Parameters table	4

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG
NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G
ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ
ADCLK846BCPZ-REEL7