FOUR OUTPUT DIFFERENTIAL BUFFER FOR PCIE GEN1-3

Description

The 9DB433 zero-delay buffer supports PCle Gen3 requirements, while being backwards compatible to PCle Gen2 and Gen1. The 9DB433 is driven by a differential SRC output pair from an IDT 932S421 or 932SQ420 or equivalent main clock generator.

Typical Applications

4 output PCle Gen1-3 zero-delay/fanout buffer

Key Specifications

- Output cycle-cycle jitter <50ps
- Output to Output skew <50ps
- Phase jitter: PCle Gen3 <1.Ops rms

Features

- 3 selectable SMBus addresses; multiple devices can share the same SMBus segment
- OE\# pins; suitable for Express Card applications
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL bandwidth; minimizes jitter peaking in downstream PLLs
- Spread spectrum compatible; tracks spreading input clock for low EMI
- SMBus interface; unused outputs can be disabled
- Supports undriven differential outputs in Power Down mode for power management

Output Features

- 40.7 V current-mode differential HCSL output pairs
- Supports zero delay buffer mode and fanout mode
- Selectable bandwidth
- $50-110 \mathrm{MHz}$ operation in PLL mode
- $5-166 \mathrm{MHz}$ operation in Bypass mode

Block Diagram

Pin Configuration

VDDR	1		28	VDDA
SRC_IN	2		27	GNDA
SRC_IN\#	3		26	IREF
GND	4		25	PD\#
VDD	5		24	VDD
DIF_1	6	\cdots	23	DIF_6
DIF_1\#	7	\downarrow	22	DIF_6\#
OE1\#	8	∞	21	OE6\#
DIF_2	9	の	20	DIF_5
DIF_2\#	10		19	DIF_5\#
VDD	11		18	VDD
BYP\#_HIBW_LOBW	12		17	SMB_ADR_tri
SMBCLK	13		16	VDD
SMBDAT	14		15	GND

Notes:

Highlighted Pins are the differences between 9DB403 and 9DB433.
Pin 12 and Pin 17 are latched on power up. Please make sure that the power supply to the pullup/pulldown resistors ramps at the same time as the main supply to the chip.

SMBus Address Selection and Readback

SMB_ADR_tri	Address
Low	DA/DB
Mid	DC/DD
High	D8/D9

PLL Operating Mode Readback Table

BYP\#_LOBW_HIBW	MODE	Byte0, bit 3	Byte 0 bit 1
Low	Bypass	0	0
Mid	PLL 100M Hi BW	1	0
High	PLL 100M Low BW	0	1

Power Groups

Pin Number		Description
VDD	GND	
1	4	SRC_IN/SRC_IN\#
$5,11,18,24$	4	DIF(1,2,5,6)
16	15	DIGITAL VDD/GND
28	27	Analog VDD/GND for PLL in IREF

For best results, treat pin 1 as analog VDD.

Tri-Level Input Logic Pins

State of Pin	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<\operatorname{Vin}<1.8 \mathrm{~V}$
High	$\operatorname{Vin}>2.0 \mathrm{~V}$

Pin Descriptions

PIN \#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
2	SRC_IN	IN	0.7 V Differential SRC TRUE input
3	SRC_IN\#	IN	0.7 V Differential SRC COMPLEMENTARY input
4	GND	PWR	Ground pin.
5	VDD	PWR	Power supply, nominal 3.3V
6	DIF_1	OUT	0.7 V differential true clock output
7	DIF_1\#	OUT	0.7V differential Complementary clock output
8	OE1\#	IN	Active low input for enabling DIF pair 1. 1 =disable outputs, $0=$ enable outputs
9	DIF_2	OUT	0.7 V differential true clock output
10	DIF_2\#	OUT	0.7 V differential Complementary clock output
11	VDD	PWR	Power supply, nominal 3.3V
12	BYP\#_HIBW_LOBW	IN	Tri-level input to select bypass mode, Hi BW PLL, or Lo BW PLL mode
13	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
14	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
15	GND	PWR	Ground pin.
16	VDD	PWR	Power supply, nominal 3.3V
17	SMB_ADR_tri	IN	SMBus address select bit. This is a tri-level input that decodes 1 of 3 SMBus Addresses.
18	VDD	PWR	Power supply, nominal 3.3V
19	DIF_5\#	OUT	0.7 V differential Complementary clock output
20	DIF_5	OUT	0.7 V differential true clock output
21	OE6\#	IN	Active low input for enabling DIF pair 6. 1 =disable outputs, $0=$ enable outputs
22	DIF_6\#	OUT	0.7 V differential Complementary clock output
23	DIF_6	OUT	0.7 V differential true clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	PD\#	IN	Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal osc. (if any) are stopped.
26	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750 hm is the standard value for 100ohm differential impedance. Other impedances require different values. See data sheet.
27	GNDA	PWR	Ground pin for the PLL core.
28	VDDA	PWR	3.3V power for the PLL core.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DB433. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA/R				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	$\mathrm{V}_{\text {IH }}$	Except for SMBus interface			$\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V	1
Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins			5.5 V	V	1
Storage Temperature	Ts		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics-DIF 0.7V Current Mode Differential Outputs

$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {Com }}$ or $\mathrm{T}_{\text {IND: }}$ Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1.5	2.8	4	V/ns	1, 2, 3
Slew rate matching	Δ Trf	Slew rate matching, Scope averaging on		8	20	\%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	797	850	mV	1
Voltage Low	VLow		-150	14	150		1
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		813	1150	mV	1
Min Voltage	Vmin		-300	-1			1
Vswing	Vswing	Scope averaging off (Differential)	300	1596.9		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	378	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		16	140	mV	1, 6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production. IREF $=\mathrm{VDD} /\left(3 x R_{R}\right)$. For $R_{R}=475 \Omega(1 \%)$, $\mathrm{I}_{\mathrm{REF}}=2.32 \mathrm{~mA}$. $\mathrm{I}_{\mathrm{OH}}=6 \times \mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V} @ \mathrm{Z}_{\mathrm{O}}=50 \Omega$ (100Ω differential impedance).
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential $0 V$. This results in $a+/-150 \mathrm{mV}$ window around differential OV.
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V _cross_min/max (V _cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

Electrical Characteristics-Input/Supply/Common Parameters

TA $=\mathrm{T}_{\text {COM }}$ or $\mathrm{T}_{\text {IND; }}$ Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	$\mathrm{T}_{\text {com }}$	Commercial range	0		70	${ }^{\circ} \mathrm{C}$	1
	$\mathrm{T}_{\text {IND }}$	Industrial range	-40		85	${ }^{\circ} \mathrm{C}$	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, Iow threshold and tri-level inputs	2		$V_{D D}+0.3$	V	1
Input Low Voltage	VIL	Single-ended inputs, except SMBus, Iow threshold and tri-level inputs	GND - 0.3		0.8	V	1
Input Current	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=$ GND, $\mathrm{V}_{\text {IN }}=$ VDD	-5	-0.02	5	uA	1
	1 INP	Single-ended inputs $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\mathrm{IN}}=$ VDD; Inputs with internal pull-down resistors	-50		50	uA	1
Input Frequency	$\mathrm{F}_{\text {ibyp }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass mode	5		166	MHz	2
	$\mathrm{F}_{\text {ipll }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 100 \mathrm{MHz}$ PLL mode	50	100	110	MHz	2
Pin Inductance	$L_{\text {pin }}$				7	nH	1
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	Cout	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {StAB }}$	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1	ms	1,2
Input SS Modulation Frequency	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency (Triangular Modulation)	30	31.5	33	kHz	1
OE\# Latency	t ${ }_{\text {Latoe }}$	DIF start after OE\# assertion DIF stop after OE\# deassertion	1	2	3	cycles	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	DIF output enable after PD\# de-assertion		13	300	us	1,3
Tfall	t_{F}	Fall time of control inputs			5	ns	1,2
Trise	t_{R}	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$				0.8	V	1
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$		2.1		$\mathrm{V}_{\text {DDSMB }}$	V	1
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ IPULLUP			0.4	V	1
SMBus Sink Current	$\mathrm{I}_{\text {PULLUP }}$	@ $\mathrm{V}_{\text {OL }}$	4			mA	1
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$	3V to 5V +/-10\%	2.7		5.5	V	1
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {MAXSMB }}$	Maximum SMBus operating frequency			440	kHz	1,5

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$.
${ }^{4}$ DIF_IN input.
${ }^{5}$ The differential input clock must be running for the SMBus to be active.

Electrical Characteristics-DIF_IN Clock Input Parameters

$\mathrm{T}_{\text {AMB }}=\mathrm{T}_{\text {COM }}$ or $\mathrm{T}_{\text {IND }}$ unless otherwise indicated, supply voltages per normal operation conditions; see Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Crossover Voltage - DIF_IN	$\mathrm{V}_{\text {CROSs }}$	Cross Over Voltage	150	375	900	mV	1
Input Swing - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Differential value	300			mV	1
Input Slew Rate - DIF_IN	$\mathrm{dv} / \mathrm{dt}$	Measured differentially	0.6		8	$\mathrm{~V} / \mathrm{ns}$	1,2
Input Leakage Current	I_{IN}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-5		5	uA	
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential waveform	45		55	$\%$	1
Input Jitter - Cycle to Cycle	$\mathrm{J}_{\mathrm{DIFIn}}$	Differential measurement	0		125	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero.

Electrical Characteristics-Current Consumption

TA $=\mathrm{T}_{\text {сом }}$ or $\mathrm{T}_{\text {IND; }}$ Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$\mathrm{I}_{\mathrm{DD3.30P}}$	All outputs active @ $100 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=$ Full load;		93	120	mA	1
Powerdown Current	$\mathrm{I}_{\text {DD3 3PD }}$	All diff pairs driven		30	40	mA	1
	$\mathrm{I}_{\mathrm{DD} 3.3 \mathrm{PDZ}}$	All differential pairs tri-stated		3	6	mA	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA $=\mathrm{T}_{\text {COM }}$ or $\mathrm{T}_{\mathrm{IND} ;}$ Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode ($\mathrm{T}_{\text {IND }}$)	1.5	2.8	4.1	MHz	1
		-3dB point in High BW Mode ($\mathrm{T}_{\text {com }}$)	2	2.8	4	MHz	1
		-3dB point in Low BW Mode	0.7	1.1	1.4	MHz	1
PLL Jitter Peaking	$\mathrm{t}_{\text {JPEAK }}$	Peak Pass band Gain		1.5	2	dB	1
Duty Cycle	$t_{D C}$	Measured differentially, PLL Mode	45	49.2	55	\%	1
Duty Cycle Distortion	$t_{\text {DCD }}$	Measured differentially, Bypass Mode @ 100MHz	-2	-0.4	2	\%	1,4
Skew, Input to Output	$\mathrm{t}_{\text {pdBYP }}$	Bypass Mode, $\mathrm{V}_{\mathrm{T}}=50 \%$ ($\mathrm{T}_{\text {IND }}$)	3500	4263	4900	ps	1
		Bypass Mode, $\mathrm{V}_{\mathrm{T}}=50 \%$ ($\mathrm{T}_{\text {com }}$)	3500	4115	4500	ps	1,5
	$\mathrm{t}_{\text {pdPLL }}$	PLL Mode $\mathrm{V}_{T}=50 \%$	-250	-45	250	ps	1
Skew, Output to Output	$\mathrm{t}_{\text {sk3 }}$	$\mathrm{V}_{\mathrm{T}}=50 \%$		40.0	50/60	ps	1,5
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	PLL mode		21	50	ps	1,3
		Additive Jitter in Bypass Mode		3	10	ps	1,3

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2} I_{\text {REF }}=V_{D D} /\left(3 \times R_{R}\right)$. For $R_{R}=475 \Omega(1 \%), I_{\text {REF }}=2.32 \mathrm{~mA}$. $I_{O H}=6 \times I_{\text {REF }}$ and $V_{O H}=0.7 \mathrm{~V} @ Z_{O}=50 \Omega$.
${ }^{3}$ Measured from differential waveform
${ }^{4}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
${ }^{5}$ First number is commercial temp, second number is industrial temp.

Electrical Characteristics-PCle Phase Jitter Parameters
TA = $\mathrm{T}_{\text {Com }}$ or $\mathrm{T}_{\text {IND; }}$ Supply Voltage VDD $=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Phase Jitter, PLL Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		26	40	86	$\begin{gathered} \hline \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.8	1.2	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \\ \hline \end{gathered}$	1,2
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}<$ Nyquist $(50 \mathrm{MHz})$		1.6	1.8	3.1	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	1,2
	$\mathrm{t}_{\text {jphPCleG3 }}$	$\begin{gathered} \text { PCle Gen 3 } \\ (\mathrm{PLL} \mathrm{BW} \text { of } 2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}) \\ \hline \end{gathered}$		0.48	0.6	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,4
Additive Phase Jitter, Bypass Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		2.6	5	N/A	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band 10 kHz < $\mathrm{f}<1.5 \mathrm{MHz}$		0.06	0.2	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}<$ Nyquist (50 MHz)			0.3	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 $($ PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz})$			0.1	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2

${ }^{1}$ Applies to all outputs.
${ }^{2}$ See http://www.pcisig.com for complete specs
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to 108 ps pk-pk @ 1 M cycles for a BER of 1-12.

Clock Periods-Differential Outputs Tracking Spread Spectrum

Measurement Window	1 Clock	1us	0.1 s	0.1 s	0.1 s	1us	1 Clock	Units	Notes
Symbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition	Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
	Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum		
DIF 100	9.949	9.999	10.024	10.025	10.026	10.051	10.101	ns	1,2,3

Output Termination and Layout Information			
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1
Rs	33	ohm	1
Rt	49.9	ohm	1

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2

Figure 1: Down Device Routing

Figure 2: Differential Routing to PCI Express Controller

Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 v	0.22 v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS
R1a $=$ R1b $=$ R1							
R2a $=$ R2b $=$ R2							

Figure 3

Termination for Cable AC Coupled Application (figure 4)

Component	Value	Note
R5a, R5b	$8.2 \mathrm{~K} 5 \%$	
R6a, R6b	$1 \mathrm{~K} 5 \%$	
Cc	$0.1 \mu \mathrm{~F}$	
Vcm	0.350 volts	

General SMBus Serial Interface Information for 9DB433

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte $\mathrm{N}+\mathrm{X}-1$
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count $=$ X			
			ACK
Beginning Byte N		$\begin{array}{\|l} \times \\ \underset{\sim}{\mathbb{D}} \end{array}$	
			ACK
0			
0			0
0			0
			0
Byte N + X - 1			
			ACK
P	stoP bit		

Read Address	Write Address
$\mathrm{DD}^{*}(\mathrm{H})$	$\mathrm{DC}^{*}{ }_{(\mathrm{H})}$

*Assuming SMB_ADR_tri is at mid-level

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count $=X$
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte \mathbf{X} (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count=X
ACK			
		$\sum_{\substack{\infty \\ \times \\ \hline}}$	Beginning Byte N
ACK			
			0
	0		0
0			0
0			
			Byte N + X - 1
N	Not acknowledge		
P	stoP bit		

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (Selectable)

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	PD_Mode	PD\# drive mode	RW	driven	Hi-Z	1
Bit 6	-	OE_Mode	OE\#_Stop drive mode	RW	driven	Hi-Z	0
Bit 5	-	Reserved					0
Bit 4	-	Reserved					X
Bit 3	-	MODE1	BYPASS\#/PLL1	RW	See Operating Mode Readback Table		Latched
Bit 2	-	Reserved					1
Bit 1	-	MODE0	BYPASS\#/PLL0	RW	See Op Readb	Mode Table	Latched
Bit 0	-	SRC_DIV\#	SRC Divide by 2 Select	RW	$\mathrm{x} / 2$	$\mathrm{x} / 1$	1

SMBus Table: Output Control Register

Byte	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					1
Bit 6	22,23	DIF_6	Output Enable	RW	Disable	Enable	1
Bit 5	19,20	DIF_5	Output Enable	RW	Disable	Enable	1
Bit 4		Reserved					1
Bit 3		Reserved					1
Bit 2	9,10	DIF_2	Output Enable	RW	Disable	Enable	1
Bit 1	6,7	DIF_1	Output Enable	RW	Disable	Enable	1
Bit 0							1

NOTE: The SMBus Output Enable Bit must be '1' AND the respective OE pin must be active for the output to run!
SMBus Table: OE Pin Control Register

Byte	Pin \#	Name	Control Function	Type	0	1	Default
		Reserved					0
Bit 6	22,23	DIF_6	DIF_6 Stoppable with OE6\#	RW	Free-run	Stoppable	0
Bit 5	19,20	DIF_5	DIF_5 Stoppable with OE5\#	RW	Free-run	Stoppable	0
Bit 4		Reserved					0
Bit 3		Reserved					0
Bit 2	9,10	DIF_2	DIF_2 Stoppable with OE2\#	RW	Free-run	Stoppable	0
Bit 1	6,7	DIF_1	DIF_1 Stoppable with OE1\#	RW	Free-run	Stoppable	0
Bit 0			Reserved				0

NOTE: Only OE1\# and OE6\# are available on 28-TSSOP/SSOP packages. If you wish the default to be "Stoppable" see the 9DB434.

SMBus Table: Reserved Register

Byte	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				X
Bit 6			Reserved				X
Bit 5			Reserved				X
Bit 4			Reserved				X
Bit 3			Reserved				X
Bit 2			Reserved				X
Bit 1			Reserved				X
Bit 0			Reserved				X

SMBus Table: Vendor \& Revision ID Register

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	-	-	0
Bit 6	-	RID2		R	-	-	0
Bit 5	-	RID1		R	-	-	0
Bit 4	-	RID0		R	-	-	1
Bit 3	-	VID3	VENDOR ID	R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBus Table: DEVICE ID

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	DID7	Device ID 7 (MSB)	R	Device ID is 43 Hex for 9DB433		0
Bit 6	-	DID6	Device ID 6	R			1
Bit 5	-	DID5	Device ID 5	R			0
Bit 4	-	DID4	Device ID 4	R			0
Bit 3	-	DID3	Device ID 3	R			0
Bit 2	-	DID2	Device ID 2	R			0
Bit 1	-	DID1	Device ID 1	R			1
Bit 0	-	DID0	Device ID 0	R			1

SMBus Table: Byte Count Register

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	BC7	Writing to this register configures how many bytes will be read back.	RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5		RW	-	-	0
Bit 4	-	BC4		RW	-	-	0
Bit 3	-	BC3		RW	-	-	0
Bit 2	-	BC2		RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1

PD\#, Power Down

The PD\# pin cleanly shuts off all clocks and places the device into a power saving mode. PD\# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD\# is asserted, all clocks will be driven high, or tri-stated (depending on the PD\# drive mode and Output control bits) before the PLL is shut down.

PD\# Assertion

When PD\# is sampled low by two consecutive rising edges of DIF\#, all DIF outputs must be held High, or tri-stated (depending on the PD\# drive mode and Output control bits) on the next High-Low transition of the DIF\# outputs. When the PD\# drive mode bit is set to ' 0 ', all clock outputs will be held with DIF driven High with $2 \times$ IREF and DIF\# tri-stated. If the PD\# drive mode bit is set to ' 1 ', both DIF and DIF\# are tri-stated.

PD\# De-assertion

Power-up latency is less than 1 ms . This is the time from de-assertion of the PD\# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD\# drive mode bit is set to ' 1 ', all the DIF outputs must driven to a voltage of $>200 \mathrm{mV}$ within 300μ s of PD\# de-assertion.

Package Outline Drawings (28-pin SSOP)

Package Outline Drawings (28-pin TSSOP)

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB433AFLF	Tubes	28 -pin SSOP	0 to $+70^{\circ} \mathrm{C}$
9DB433AFLFT	Tape and Reel	28 -pin SSOP	0 to $+70^{\circ} \mathrm{C}$
9DB433AGLF	Tubes	28 -pin TSSOP	0 to $+70^{\circ} \mathrm{C}$
9DB433AGLFT	Tape and Reel	28 -pin TSSOP	0 to $+70^{\circ} \mathrm{C}$
9DB433AFILF	Tubes	28 -pin SSOP	-40 to $+85^{\circ} \mathrm{C}$
9DB433AFILFT	Tape and Reel	28 -pin SSOP	-40 to $+85^{\circ} \mathrm{C}$
9DB433AGILF	Tubes	28-pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$
9DB433AGILFT	Tape and Reel	28 -pin TSSOP	-40 to $+85^{\circ} \mathrm{C}$

"LF" suffix to the part number denotes Pb-Free configuration, RoHS compliant.
" A " is the device revision designator (will not correlate with the datasheet revision).

Revision History

Issue Date	Description	Page \#
$6 / 30 / 2010$	Released to final	1. Update pin 1 pin-name and pin description from VDD to VDDR. This highlights that optimal performance is obtained by treating VDDR as in analog pin. This is a document update only, there is no silicon change.
$5 / 9 / 2011$	1. Added additional line to PLL Bandwidth "-3dB point in High BW Mode" conditions for industrial mode (min1.5, typ 2.7, max 4.1 MHz) 2. Added additional line to Skew, Input to Output "Bypass Mode" conditions for industrial mode (min 2500, max 4900 ps)	6
$3 / 13 / 2012$ Various		
$7 / 5 / 2012$	1. Changed references of PCle Gen3 to PCle Gen1,2,3	6
$7 / 12 / 2012$	1. Added missing typical values to DS.	Various
$9 / 18 / 2012$	Updated Byte 2, bits 1, 2, 5 and 6 per char review. Outputs can be programmed with Byte 2 to be Stoppable or Free-Run with DIF_Stop pin, not the OE pins.	Various
$9 / 30 / 2013$	Corrected typo in ordering information for 28-SSOP I-temp device.	15
$8 / 14 / 2015$	1. Corrected default value of Byte 2 to 00hex. Added note referring to 9DB434 if FFhex is the desired default.	11
	1. Corrected Idd values for 9DB433. 2. Updated typical values in electrical tables. 3. Updated clock input electrical table to latest format. 4. Updated SMbus operating frequency to 440KHz. $5 . ~ C o r r e c t e d ~ t y p o ~ i n ~ B y t e ~ 0, ~ b i t ~ 6 ~ d e f a u l t s ~ t o ~ 0 . ~$	Various
$5 / 25 / 2018$	1. Updated the minimum input slew rate from 1 V/ns to 0.6V/ns.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG

NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2

