Description

The 9DBL09x1 devices are 3.3 V members of IDT's Full-Featured PCle clock family. The 9DBL09x1 devices support PCle Gen1-4 Common Clocked (CC) and PCle Separate Reference Independent Spread (SRIS) systems. They offer a choice of integrated output terminations providing direct connection to 85Ω or 100Ω transmission lines. The 9DBL09P1 can be factory programmed with a user-defined power up default SMBus configuration.

Recommended Application

PCle Gen1-4 clock distribution for Riser Cards, Storage, Networking, JBOD, Communications, Access Points

Output Features

- 9-1-200 MHz Low-Power (LP) HCSL DIF pairs
- 9DBL0941 default Zout = 100Ω
-9DBL0951 default Zout $=85 \Omega$
- 9DBL09P1 factory programmable defaults
- Easy AC-coupling to other logic families, see IDT application note AN-891.

Key Specifications

- DIF additive cycle-to-cycle jitter < 5ps
- DIF output-to-output skew < 50ps
- Additive phase jitter is Ops (typical rms) for PCle Gen1-4 CC, SRIS
- Additive phase jitter 111fs rms typical at 156.25M (1.5M to 10M)

Features/Benefits

- Direct connection to 100Ω (xx41) or 85Ω (xx51) transmission lines; saves 36 resistors compared to standard PCle devices
- 165 mW typical power consumption (at 3.3 V); eliminates thermal concerns
- VDDIO allows 50% power savings at optional 1.05 V ; maximum power savings
- SMBus-selectable features allows optimization to customer requirements:
- control input polarity
- control input pull up/downs
- slew rate for each output
- differential output amplitude
- output impedance for each output
- Customer defined SMBus power up default can be programmed into P1 device; allows exact optimization to customer requirements
- OE\# pins; support DIF power management
- HCSL differential input; can be driven by common clock sources
- Spread spectrum tolerant; allows reduction of EMI
- Device contains default configuration; SMBus interface not required for device operation
- Three selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 48-pin $6 \times 6 \mathrm{~mm}$ VFQFPN; minimal board space

Block Diagram

[^0]
Pin Configuration

48-pin VFQFPN, 6x6 mm, 0.4mm pitch

\wedge^{\wedge} prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2)
v prefix indicates internal 120KOhm pull down resistor
\wedge prefix indicates internal 120 KOhm pull up resistor

SMBus Address Selection Table

	SADR	Address	$\boldsymbol{+}$
Read/Write bit			
State of SADR on first	0	1101011	x
application of CKPWRGD_PD\#	M	1101100	x
	1	1101101	x

Note: If not using CKPWRGD (i.e., CKPWRGD tied to VDD3.3), all 3.3V
VDD need to transition from 2.1V to 3.135 V in <300 usec.
Power Management Table

CKPWRGD_PD\#	CLK_IN	SMBus OEx bit	OEx\# Pin	DIFx	
		True O/P			
0	X	X	X	Low 1	Low 1
1	Running	0	X	Low 1	Low 1
1	Running	1	0	Running	Running
1	Running	1	1	Low 1	Low 1

1. The output state is set by B11[1:0] (Low/Low default)

Power Connections

Pin Number			Description
VDD	VDDIO	GND	
5		8	receiver analog
12		9	Digital Power
$20,30,31,38$	$13,21,31,39,47$	$22,29,40,49$	DIF outputs

Pin Descriptions

PIN \#	PIN NAME	TYPE	DESCRIPTION
1	vSADR_tri	$\begin{gathered} \hline \text { LATCHED } \\ \text { IN } \end{gathered}$	Tri-level latch to select SMBus Address. See SMBus Address Selection Table.
2	vOE8\#	IN	Active low input for enabling DIF pair 8. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
3	DIF8	OUT	Differential true clock output
4	DIF8\#	OUT	Differential Complementary clock output
5	VDDR3.3	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
6	CLK_IN	IN	True Input for differential reference clock.
7	CLK_IN\#	IN	Complementary Input for differential reference clock.
8	GNDR	GND	Analog Ground pin for the differential input (receiver)
9	GNDDIG	GND	Ground pin for digital circuitry
10	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
11	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
12	VDDDIG3.3	PWR	3.3V digital power (dirty power)
13	VDDIO	PWR	Power supply for differential outputs
14	vOE0\#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
15	DIF0	OUT	Differential true clock output
16	DIFO\#	OUT	Differential Complementary clock output
17	vOE1\#	IN	Active low input for enabling DIF pair 1. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
18	DIF1	OUT	Differential true clock output
19	DIF1\#	OUT	Differential Complementary clock output
20	VDD3.3	PWR	Power supply, nominal 3.3V
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin.
23	DIF2	OUT	Differential true clock output
24	DIF2\#	OUT	Differential Complementary clock output
25	vOE2\#	IN	Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
26	DIF3	OUT	Differential true clock output
27	DIF3\#	OUT	Differential Complementary clock output
28	vOE3\#	IN	Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
29	GNDA	GND	Ground pin for the PLL core.
30	VDD3.3	PWR	Power supply, nominal 3.3V
31	VDDIO	PWR	Power supply for differential outputs
32	DIF4	OUT	Differential true clock output
33	DIF4\#	OUT	Differential Complementary clock output
34	vOE4\#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
35	DIF5	OUT	Differential true clock output
36	DIF5\#	OUT	Differential Complementary clock output
37	vOE5\#	IN	Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 =disable outputs, $0=$ enable outputs
38	VDD3.3	PWR	Power supply, nominal 3.3V
39	VDDIO	PWR	Power supply for differential outputs
40	GND	GND	Ground pin.

Pin Descriptions (cont.)

PIN \#	PIN NAME	TYPE	DESCRIPTION
41	DIF6	OUT	Differential true clock output
42	DIF6\#	OUT	Differential Complementary clock output
43	vOE6\#	IN	Active low input for enabling DIF pair 6. This pin has an internal pull-down. $1=$ disable outputs, 0 = enable outputs
44	DIF7	OUT	Differential true clock output
45	DIF7\#	OUT	Differential Complementary clock output
46	vOE7\#	IN	Active low input for enabling DIF pair 7. This pin has an internal pull-down. $1=$ disable outputs, 0 e enable outputs
47	VDDIO	PWR	Power supply for differential outputs
48	^CKPWRGD_PD\#	IN	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.
49	EPAD	GND	Connect to Ground.

Test Loads

Low-Power push-pull HCSL Output test load (integrated terminations)

Terminations

Device	Zo $(\mathbf{\Omega})$	Rs $(\mathbf{\Omega})$
9DBL0941	100	None needed
9DBL0951	100	7.5
9DBL09P1	100	Prog.
9DBL0941	85	N/A
9DBL0951	85	None needed
9DBL09P1	85	Prog.

L=5 inches

Alternate Terminations

The 9DBL family can easily drive LVPECL, LVDS, and CML logic. See "AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs" for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBL09x1. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx				4.6	V	1,2
Input Voltage	$\mathrm{V}_{\text {IN }}$		-0.5		$\mathrm{~V}_{\text {DD }}+0.5$	V	1,3
Input High Voltage, SMBus	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins			3.9	V	1
Storage Temperature	Ts		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2500			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.
${ }^{3}$ Not to exceed 4.6V.

Electrical Characteristics-SMBus Parameters

TA $=T_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$	$\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$			0.8	V	
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$	$\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$	2.1		3.6	V	
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ IPULLUP			0.4	V	
SMBus Sink Current	IpuLLup	@ V OL	4			mA	
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$		2.7		3.6	V	
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {SMB }}$	SMBus operating frequency			500	kHz	2,3

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
2. The device must be powered up for the SMBus to function.
3. The differential input clock must be running for the SMBus to be active

Electrical Characteristics-Clock Input Parameters

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Crossover Voltage DIF_IN	$\mathrm{V}_{\text {CROss }}$	Cross Over Voltage	150		900	mV	1
Input Swing - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Differential value	300			mV	1
Input Slew Rate - DIF_IN	$\mathrm{dv} / \mathrm{dt}$	Measured differentially	0.4		8	$\mathrm{~V} / \mathrm{ns}$	1,2
Input Leakage Current	I_{IN}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-5		5	uA	
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential waveform	45		55	$\%$	1
Input Jitter - Cycle to Cycle	$\mathrm{J}_{\text {DIFIn }}$	Differential Measurement	0		125	ps	1

[^1]
Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	3.135	3.3	3.465	V	
Output Supply Voltage	VDDIO	Supply voltage for Low Power HCSL Outputs	0.95	1.05-3.3	3.465	V	
Ambient Operating Temperature	$\mathrm{T}_{\text {AMB }}$	Industrial range	-40	25	85	${ }^{\circ} \mathrm{C}$	
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	$0.75 \mathrm{~V}_{\mathrm{DDx}}$		$\mathrm{V}_{\mathrm{DDx}}+0.3$	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-0.3		$0.25 \mathrm{~V}_{\text {DDx }}$	V	
Input High Voltage	$\mathrm{V}_{\text {IHtri }}$	Single-ended tri-level inputs ('_tri' suffix)	$0.75 \mathrm{~V}_{\mathrm{DDx}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input Mid Voltage	$\mathrm{V}_{\text {IMtri }}$		0.4 V $\mathrm{V}_{\mathrm{DDx}}$	0.5 V ${ }_{\text {DDx }}$	$0.6 \mathrm{~V}_{\mathrm{DDx}}$	V	
Input Low Voltage	$\mathrm{V}_{\text {ILtri }}$		-0.3		$0.25 \mathrm{~V}_{\mathrm{DDx}}$	V	
	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{VDD}$	-5		5	uA	
Input Current	$\mathrm{I}_{\mathrm{INP}}$	Single-ended inputs $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\mathrm{IN}}=$ VDD; Inputs with internal pull-down resistors	-50		50	uA	
Input Frequency	FIN		1		200	MHz	2
Pin Inductance	$L_{\text {pin }}$				7	nH	1
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1
	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {StAB }}$	From $V_{D D}$ Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCle	$\mathrm{f}_{\text {MODINPCle }}$	Allowable Frequency for PCle Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCle	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE\# Latency	$\mathrm{t}_{\text {Latoe\# }}$	DIF start after OE\# assertion DIF stop after OE\# deassertion	1		3	clocks	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	DIF output enable after PD\# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of single-ended control inputs			5	ns	2
Trise	t_{R}	Rise time of single-ended control inputs			5	ns	2

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$

Electrical Characteristics-DIF Low-Power HCSL Outputs

$\mathrm{TA}=\mathrm{T}_{\mathrm{AMB}}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.7	2.7	4	V/ns	1,2,3
	dV/dt	Scope averaging on, slow setting	0.8	1.9	2.8	V/ns	1,2,3
Slew rate matching	$\Delta \mathrm{dV} / \mathrm{dt}$	Slew rate matching		6	20	\%	1,4
Voltage High	$\mathrm{V}_{\text {HIGH }}$	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	783	850	mV	7
Voltage Low	$V_{\text {Low }}$		-150	-17	150		7
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		818	1150	mV	7
Min Voltage	V min		-300	-54			7
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	377	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		18	140	mV	1,6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential $0 V$. This results in $\mathrm{a}+/-150 \mathrm{mV}$ window around differential 0 V .
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.
${ }^{7}$ At default SMBus settings.

Electrical Characteristics-Current Consumption

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I_{DD}	VDD + VDDR All outputs active @100MHz, 100 Loads		13	20	mA	
	$I_{\text {dDDIG }}$	VDDDIG All outputs active @100MHz, $100 \quad$ Loads		0.4	0.8	mA	
	$I_{\text {DDIO }}$	VDDIO All outputs active @ $100 \mathrm{MHz}, 100$ Loads		36	40	mA	
Powerdown Current	$\mathrm{I}_{\text {DDPD }}$	VDD + VDDR, CKPWRGD_PD\#=0		1	2	mA	2
	$\mathrm{I}_{\text {DDDIGPD }}$	VDDDIG, CKPWRGD_PD\#=0		0.4	0.8	mA	2
	$\mathrm{I}_{\text {DDIOPD }}$	VDDIO, CKPWRGD_PD\#=0		0.04	0.1	mA	2

[^2]
Electrical Characteristics-Output Duty Cycle, Jitter, and Skew Characteristics

TA $=\mathrm{T}_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	$\mathrm{t}_{\mathrm{DCD}}$	Measured differentially, 100MHz	-1	-0.1	1	$\%$	3
Skew, Input to Output	t_{pd}	$\mathrm{V}_{\mathrm{T}}=50 \%$	2200	2982	4000	ps	2
Skew, Output to Output	$\mathrm{t}_{\mathrm{sk} 3}$	$\mathrm{~V}_{\mathrm{T}}=50 \%$		43	50	ps	2,4
Jitter, Cycle to cycle	$\mathrm{t}_{\mathrm{jcyc}} \mathrm{cyc}$	Additive Jitter		0.1	1	ps	2

[^3]
Electrical Characteristics-Filtered Phase Jitter Parameters - PCle Common Clocked (CC) Architectures ${ }^{1,5}$

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Additive Phase Jitter	$\mathrm{t}_{\text {jphPCleG1-CC }}$	PCle Gen 1		0.4	2	n/a	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	2,3
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	$\begin{gathered} \text { PCle Gen } 2 \text { Lo Band } \\ 10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz} \\ \text { (PLL BW of } 5-16 \mathrm{MHz} \text { or } 8-5 \mathrm{MHz}, \mathrm{CDR}=5 \mathrm{MHz} \text {) } \end{gathered}$		0.0	0.1		$\begin{gathered} \mathrm{ps} \\ (\mathrm{~ms}) \end{gathered}$	2,4
		PCle Gen 2 High Band $1.5 \mathrm{MHz}<\mathrm{f}$ < Nyquist (50 MHz) (PLL BW of $5-16 \mathrm{MHz}$ or $8-5 \mathrm{MHz}, \mathrm{CDR}=5 \mathrm{MHz}$)		0.24	0.5		$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	2,4
	$\mathrm{t}_{\text {jphPCleG3-cc }}$	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}$ or $2-5 \mathrm{MHz}, C D R=10 \mathrm{MHz}$)		0.07	0.15		$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	2,4
	$\mathrm{t}_{\text {jphPCleG4-Cc }}$	PCle Gen 4 (PLL BW of $2-4 \mathrm{MHz}$ or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.07	0.15		$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	2,4

${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
${ }^{2}$ Based on PCle Base Specification Rev4.0 version 0.7 draft. See http://www.pcisig.com for latest specifications.
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk}$ @ 1 M cycles for a BER of 1-12.
${ }^{4}$ For RMS values additive jitter is calculated by solving the following equation for b [$\left.a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2\right]$ where a is rms input jitter and c is rms total jitter.
${ }^{5}$ Driven by 9FGL0841 or equivalent

Electrical Characteristics-Filtered Phase Jitter Parameters - PCle Separate Reference Independent Spread (SRIS) Architectures ${ }^{1}$

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Additive Phase Jitter	$\mathrm{t}_{\text {jphPCleG1- }}$ SRIS	PCle Gen 1	TBD			Note 5	$\begin{gathered} \mathrm{ps} \\ \text { (pk-pk) } \end{gathered}$	2,3
	$\mathrm{t}_{\text {jphPCleG2 }}-$ SRIS	PCle Gen 2 $($ PLL BW of $16 \mathrm{MHz}, \mathrm{CDR}=5 \mathrm{MHz})$		0.3	0.4		$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \\ \hline \end{gathered}$	2
	$\mathrm{t}_{\mathrm{jphPCleG3}}$ SRIS	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}$ or $2-5 \mathrm{MHz}, C D R=10 \mathrm{MHz}$)		0.03	0.13		$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \\ \hline \end{gathered}$	2
	$\mathrm{t}_{\mathrm{jphPCleG4}}$ SRIS	PCle Gen 4 (PLL BW of $2-4 \mathrm{MHz}$ or $2-5 \mathrm{MHz}, C D R=10 \mathrm{MHz}$)	TBD				$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	2

${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
${ }^{2}$ Based PCle Base Specification Rev3.1a filters. These filters are different than Common Clock filters. See http://www.pcisig.com for latest specifications and are not defined for Gen1 or Gen4
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk} @ 1 \mathrm{M}$ cycles for a BER of 1-12.
${ }^{4}$ For RMS values, additive jitter is calculated by solving the following equation for b [$a^{\wedge 2}+b^{\wedge} 2=c^{\wedge} 2$] where a is rms input jitter and c is rms total jitter.
${ }^{5}$ As of PCle Base Specification Rev4.0 draft 0.7, SRIS limits are defined as implementation depdendent.

Electrical Characteristics-Unfiltered Phase Jitter Parameters ${ }^{1}$

TA $=\mathrm{T}_{\text {AMB, }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Additive Phase Jitter	$\mathrm{t}_{\text {jph } 156 \mathrm{~m}}$	$156.25 \mathrm{MHz}, 1.5 \mathrm{MHz}$ to $10 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover $<1.5 \mathrm{MHz}$, $-40 \mathrm{db} /$ decade rolloff $>10 \mathrm{MHz}$		111		N/A	$\begin{gathered} \mathrm{fs} \\ (\mathrm{rms}) \end{gathered}$	2,3
	$\mathrm{t}_{\text {jph } 156 \mathrm{M} 12 \mathrm{k}}$-20	$156.25 \mathrm{MHz}, 12 \mathrm{kHz}$ to $20 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover <12kHz, -40db/decade rolloff > 20MHz		272		N/A	$\begin{gathered} \hline \mathrm{fs} \\ \text { (rms) } \end{gathered}$	2,3

[^4]
General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count $=X$
- IDT clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count $=$ X			
			ACK
Beginning Byte N		$\begin{aligned} & \times \\ & \underset{\infty}{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$	
			ACK
0			
0			0
0			0
			0
Byte N + X - 1			
			ACK
P	stoP bit		

Note: SMBus Address is Latched on SADR pin. Unless otherwise indicated, default values are for the xx 41 and $\mathrm{xx51}$. P1 devices are fully factory programmable.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count $=X$
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count=X
ACK			
		$\begin{aligned} & \stackrel{0}{㐅} \\ & \underset{\times}{\times} \end{aligned}$	Beginning Byte N
ACK			
			0
	0		0
	0		0
0			
			Byte N + X - 1
N	Not acknowledge		
P	stoP bit		

SMBus Table: Output Enable Register ${ }^{1}$

Byte 0	Name	Control Function	Type	$\mathbf{0}$	1	Default
Bit $\mathbf{7}$	DIF OE7	Output Enable	RW	Low/Low	Enabled	1
Bit 6	DIF OE6	Output Enable	RW	Low/Low	Enabled	1
Bit 5	DIF OE5	Output Enable	RW	Low/Low	Enabled	1
Bit 4	DIF OE4	Output Enable	RW	Low/Low	Enabled	1
Bit 3	DIF OE3	Output Enable	RW	Low/Low	Enabled	1
Bit 2	DIF OE2	Output Enable	RW	Low/Low	Enabled	1
Bit 1	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 0	DIF OE0	Output Enable	RW	Low/Low	Enabled	1

1. A low on these bits will override the OE\# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: Output Enable and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					1
Bit 5	DIF OE8	Output Enable	RW	Low/Low	Enabled	1
Bit 4	Reserved					0
Bit 3	Reserved					1
Bit 2	Reserved					1
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	$00=0.6 \mathrm{~V}$	01= 0.68 V	1
Bit 0	AMPLITUDE 0		RW	$10=0.75 \mathrm{~V}$	$11=0.85 \mathrm{~V}$	0

1. A low on these bits will override the OE\# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	$\mathbf{0}$	1	Default
Bit 7	SLEWRATESEL DIF7	Adjust Slew Rate of DIF7	RW	Slow Setting	Fast Setting	1
Bit 6	SLEWRATESEL DIF6	Adjust Slew Rate of DIF6	RW	Slow Setting	Fast Setting	1
Bit 5	SLEWRATESEL DIF5	Adjust Slew Rate of DIF5	RW	Slow Setting	Fast Setting	1
Bit 4	SLEWRATESEL DIF4	Adjust Slew Rate of DIF4	RW	Slow Setting	Fast Setting	1
Bit 3	SLEWRATESEL DIF3	Adjust Slew Rate of DIF3	RW	Slow Setting	Fast Setting	1
Bit 2	SLEWRATESEL DIF2	Adjust Slew Rate of DIF2	RW	Slow Setting	Fast Setting	1
Bit 1	SLEWRATESEL DIF1	Adjust Slew Rate of DIF1	RW	Slow Setting	Fast Setting	1
Bit 0	SLEWRATESEL DIF0	Adjust Slew Rate of DIF0	RW	Slow Setting	Fast Setting	1

Note: See "Low-Power HCSL Outputs" table for slew rates.
SMBus Table: DIF Slew Rate Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					1
Bit 6	Reserved					1
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					1
Bit 1	Reserved					1
Bit 0	SLEWRATESEL DIF8	Adjust Slew Rate of DIF8	RW	Slow Setting	Fast Setting	1

Note: See "Low-Power HCSL Outputs" table for slew rates.

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	1	Default
Bit 7	RID3	Revision ID	R	$B \mathrm{rev}=0001$		0
Bit 6	RID2		R			0
Bit 5	RID1		R			0
Bit 4	RID0		R			1
Bit 3	VID3	VENDOR ID	R	0001 = IDT		0
Bit 2	VID2		R			0
Bit 1	VID1		R			0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Type	0	Default
Bit 7	Device Type1	Device Type	R	$\begin{gathered} 00=F G x, 01=\mathrm{DBx}, \\ 10=\mathrm{DMx}, 11=\mathrm{DBx} \text { w/oPLL} \end{gathered}$	1
Bit 6	Device Type0		R		1
Bit 5	Device ID5	Device ID	R	001001binary or 09 hex	0
Bit 4	Device ID4		R		0
Bit 3	Device ID3		R		1
Bit 2	Device ID2		R		0
Bit 1	Device ID1		R		0
Bit 0	Device ID0		R		1

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	BC4	Byte Count Programming	RW	Writing to this register will configure how many bytes will be read back, default is $=8$ bytes.		0
Bit 3	BC3		RW			1
Bit 2	BC2		RW			0
Bit 1	BC1		RW			0
Bit 0	BC0		RW			0

Bytes 8 and 9 are Reserved

SMBus Table: PLL MN Enable, PD_Restore

Byte 10	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					1
Bit 6	Power-Down (PD) Restore	Restore Default Config. In PD	RW	Clear Config in PD	Keep Config in PD	1
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					0
Bit 1	Reserved					0
Bit 0	Reserved					0

SMBus Table: Impedance Control

Byte 11	Name	Control Function	Type	0	1	Default
Bit 7	DIF8_imp[1]	DIF8 Zout	RW	00=33 2 DIF Zout	10=100 $\Omega_{\text {d }}$ DIF Zout	see Note
Bit 6	DIF8_imp[0]		RW	01=85 Ω DIF Zout	11 = Reserved	
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					0
Bit 1	STP[1]	True/Complement DIF Output Disable State	RW	00 = Low/Low	10 = High/Low	0
Bit 0	STP[0]		RW	01 = HiZ/HiZ	11 = Low/High	0

Note: xx41 = 10, xx51 = 01, P1 = factory programmable.
SMBus Table: Impedance Control

Byte 12	Name	Control Function	Type	$\mathbf{0}$	1	Default
Bit 7	DIF3_imp[1]	DIF3 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 6	DIF3_imp[0]	DIF3 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 5	DIF2_imp[1]	DIF2 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 4	DIF2_imp[0]	DIF2 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 3	DIF1_imp[1]	DIF1 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 2	DIF1_imp[0]	DIF1 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 1	DIFO_imp[1]	DIF0 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 0	DIF0_imp[0]	DIF0 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	

Note: $\mathrm{xx} 41=10, \mathrm{xx} 51=01, \mathrm{P} 1=$ factory programmable.

SMBus Table: Impedance Control

Byte 13	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	Default
Bit 7	DIF7_imp[1]	DIF7 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 6	DIF7_imp[0]	DIF7 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 5	DIF6_imp[1]	DIF6 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 4	DIF6_imp[0]	DIF6 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 3	DIF5_imp[1]	DIF5 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 2	DIF5_imp[0]	DIF5 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	
Bit 1	DIF4_imp[1]	DIF4 Zout	RW	$00=33 \Omega$ DIF Zout	$10=100 \Omega$ DIF Zout	
Bit 0	DIF4_imp[0]	DIF4 Zout	RW	$01=85 \Omega$ DIF Zout	$11=$ Reserved	

Note: xx41 = 10, xx51 = 01, P1 = factory programmable.
SMBus Table: Pull-up Pull-down Control

Byte 14	Name	Control Function	Type	0	1	Default
Bit 7	OE3_pu/pd[1]	OE3 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE3_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE2_pu/pd[1]	OE2 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE2_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE1_pu/pd[1]	OE1 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE1_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	OE0_pu/pd[1]	OE0 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

Note: These values are for xx 41 and $\mathrm{xx51}$. P 1 is factory programmable.

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function	Type	0	1	Default
Bit 7	OE7_pu/pd[1]	OE7 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE7_pu/pd0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	OE6_pu/pd[1]	OE6 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 4	OE6_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 3	OE5_pu/pd[1]	OE5 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 2	OE5_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	OE4_pu/pd[1]	OE4 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 0	OE4_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1

Note: These values are for $\mathrm{xx41}$ and $\mathrm{xx51}$.P 1 is factory programmable.
SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					0
Bit 5	Reserved					1
Bit 4	Reserved					0
Bit 3	OE8_pu/pd[1]	OE8 Pull-up(PuP)/Pull-down(Pdwn) control	RW	00=None	10=Pup	0
Bit 2	OE8_pu/pd[0]		RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	CKPWRGD_PD_pu/pd[1]	CKPWRGD_PD Pull-up(PuP)/ Pull-down(Pdwn) control	RW	00=None	10=Pup	1
Bit 0	CKPWRGD_PD_pu/pd[0]		RW	01=Pdwn	11 = Pup+Pdwn	0

Note: These values are for xx 41 and xx 51 . P 1 is factory programmable.

Bytes 17 is Reserved and reads back 0h00.

SMBus Table: Polarity Control

Byte 18	Name	Control Function	Type	$\mathbf{0}$	1	Default
Bit 7	OE7_polarity	Sets OE7 polarity	RW	Enabled when Low	Enabled when High	0
Bit 6	OE6_polarity	Sets OE6 polarity	RW	Enabled when Low	Enabled when High	0
Bit 5	OE5_polarity	Sets OE5 polarity	RW	Enabled when Low	Enabled when High	0
Bit 4	OE4_polarity	Sets OE4 polarity	RW	Enabled when Low	Enabled when High	0
Bit 3	OE3_polarity	Sets OE3 polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	OE2_polarity	Sets OE2 polarity	RW	Enabled when Low	Enabled when High	0
Bit 1	OE1_polarity	Sets OE1 polarity	RW	Enabled when Low	Enabled when High	0
Bit 0	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0

SMBus Table: Polarity Control

Byte 19	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					0
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					0
Bit 1	OE8_polarity	Determines OE9 polarity	RW	Enabled when Low	Enabled when High	0
Bit 0	CKPWRGD_PD	Determines CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0

Renesns

Marking Diagrams

\bullet	ICS
DBL0941BI	
YYWW	
COO	
LOT	

Notes:

1. "LOT" is the lot sequence number.
2. "COO" denotes country of origin.
3. "YYWW" is the last two digits of the year and week that the part was assembled.
4. Line 2: truncated part number
5. "I" denotes industrial temperature range device.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	$\begin{gathered} \hline \text { TYP } \\ \text { VALUE } \end{gathered}$	UNITS	NOTES
Thermal Resistance	$\theta_{J c}$	Junction to Case	NDG48	33	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\mathrm{JAO} 0}$	Junction to Air, still air		37	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\mathrm{JA} 1}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		30	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		27	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA5 }}$	Junction to Air, $5 \mathrm{~m} / \mathrm{s}$ air flow		26	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

[^5]

```
Renesns

```

RECOMMENDED LAND PATTERN DIMENSION
NOTES:

1. ALL DIMENSIONS ARE $\operatorname{IN} \mathrm{mm}$. ANGLES IN DEGREES.
2. TOP DOWN VIEW. AS VIEWED ON PCB.
3. COMPONENT OUTLINE SHOWS FOR REFERENCE IN GREEN
4. LAND PATTERN IN BLUE. NSMD PATTERN ASSUMED.
5. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT
FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

TOLERANCESUNLESS SPECIFIEDDECIMAL \quad ANGULAR$\times \pm$$X X \pm$$X X X \pm$			
APPROVALS	DATE	TITLE ND/NDG 48 PACK $6.0 \times 6.0 \mathrm{~mm} \mathrm{BC}$ 0.40 mm PITCH	
DRAWN RAE	01/11/08		
CHECKED			
		$\begin{gathered} \mathrm{SIZE} \\ \mathrm{C} \end{gathered}$	DRAWING No.$p S C-4$
		DO NOT SCALE DRAWING	

```

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline Part / Order Number & Output Impedance & Shipping Packaging & Package & Temperature \\
\hline 9DBL0941BKILF & \multirow[t]{2}{*}{\(100 \Omega\)} & Trays & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline 9DBL0941BKILFT & & Tape and Reel & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline 9DBL0951BKILF & \multirow[b]{2}{*}{\(85 \Omega\)} & Trays & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline 9DBL0951BKILFT & & Tape and Reel & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline 9DBL09P1BxxxKILF & \multirow[t]{2}{*}{Factory configurable. Contact IDT for addtional information.} & Trays & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline 9DBL09P1BxxxKILFT & & Tape and Reel & 48-pin VFQFPN & -40 to \(+85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. " \(B\) " is the device revision designator (will not correlate with the datasheet revision). " \(x x x\) " is a unique factory assigned number to identify a particular default configuration.

\section*{Revision History}
\begin{tabular}{|c|c|c|l|l|c|}
\hline Rev. & Initiator & Issue Date & Description & Page \# \\
\hline A & RDW & \(9 / 16 / 2016\) & \begin{tabular}{l} 
1. Updated front page text \\
2. Changed VDDA3.3 pin to VDD3.3, since this part has no PLL \\
3. Removed references to PLL mode, since this part has no PLL \\
4. Regrouped IDD values to simplify the table \\
5. Updated Electrical tables to latest version, including PCle Gen4 \\
6. Updated ordering information to B rev \\
7. Corrected readback of SMbus B1[1:0], B3[7], B5[4], B10[7], B16[5] - \\
most of these are reserved bits \\
8. Updated footnote text under block diagram. \\
9. Updated block diagram for stylistic consistency. \\
10. Updated electrical tables with char data, move to final.
\end{tabular} & Various \\
\hline B & RDW & \(9 / 26 / 2016\) & 1. Corrected Byte 11[1:0] bit definitions. & \\
\hline C & RDW & \(8 / 1 / 2017\) & Removed refernce to differential waveform in slew rate matching spec & 7 \\
\hline
\end{tabular}

\section*{Renesas}

\section*{IMPORTANT NOTICE AND DISCLAIMER}

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

\section*{Corporate Headquarters}

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

\section*{Contact Information}

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

\section*{Trademarks}

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:

\section*{Click to view products by Renesas manufacturer:}

Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG

NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2```


[^0]:    Note: Resistors default to internal on 41/51 devices. P1 devices have programmable default impedances on an output-by-output basis.

[^1]:    ${ }^{1}$ Guaranteed by design and characterization, not $100 \%$ tested in production.
    ${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero

[^2]:    ${ }^{1}$ Guaranteed by design and characterization, not $100 \%$ tested in production.
    ${ }^{2}$ Input clock stopped.

[^3]:    ${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
    ${ }^{2}$ Measured from differential waveform
    ${ }^{3}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
    ${ }^{4}$ All outputs at same slew rate

[^4]:    ${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
    ${ }^{2}$ Driven by Rohde \& Schartz SMA100
    ${ }^{3}$ For RMS values, additive jitter is calculated by solving the following equation for $b$ [ $\left.a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2\right]$ where $a$ is rms input jitter and $c$ is rms total jitter.

[^5]:    ${ }^{1}$ ePad soldered to board

