Description

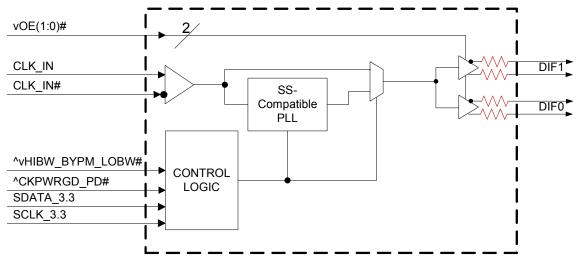
The 9DBU0241 is a member of IDT's 1.5V Ultra-Low-Power (ULP) PCle family. It has integrated output terminations providing Zo=100ohms for direct connection to 100ohm transmission lines. The device has 2 output enables for clock management.

Recommended Application

1.5V PCIe Gen1-2-3 Zero-Delay/Fan-out Buffer (ZDB/FOB)

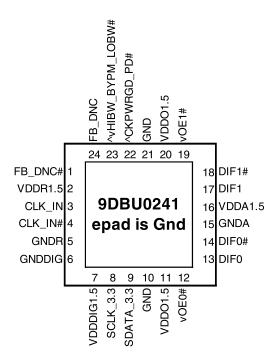
Output Features

 2 – 1-167MHz Low-Power (LP) HCSL DIF pairs w/Zo=100Ω


Key Specifications

- DIF cycle-to-cycle jitter <50ps
- DIF output-to-output skew <50ps
- DIF phase jitter is PCIe Gen1-2-3 compliant
- DIF bypass mode additive phase jitter is <300fs rms for PCle Gen3
- DIF bypass mode additive phase jitter <350fs rms for 12k-20MHz

Features/Benefits


- Direct connection to 100Ω transmission lines; saves 8 resistors compared to standard HCSL outputs
- 35mW typical power consumption in PLL mode; eliminates thermal concerns
- Spread Spectrum (SS) compatible; allows SS for EMI reduction
- OE# pins; support DIF power management
- HCSL-compatible differential input; can be driven by common clock sources
- SMBus-selectable features; optimize signal integrity to application
 - · slew rate for each output
 - · differential output amplitude
- Pin/SMBus selectable PLL bandwidth and PLL Bypass; optimize PLL to application
- Outputs blocked until PLL is locked; clean system start-up
- Device contains default configuration; SMBus interface not required for device control
- 3.3V tolerant SMBus interface works with legacy controllers
- Space saving 24-pin 4x4mm VFQFPN; minimal board space

Block Diagram

1

Pin Configuration

24-pin VFQFPN, 4x4 mm, 0.5mm pitch

^ prefix indicates internal 120KOhm pull up resistor ^v prefix indicates internal 120KOhm pull up AND pull down resistor (biased to VDD/2) v prefix indicates internal 120KOhm pull down resistor

SMBus Address Selection Table

Address	+ Read/Write bit
1101101	x

Power Management Table

CKPWRGD PD#	CLK IN	SMBus OEx# Pin		DIF	PLL	
CKFWKGD_FD#	OLK_IN	OEx bit	OLX# FIII	True O/P	Comp. O/P	FLL
0	Х	Х	Х	Low	Low	Off
1	Running	0	Х	Low	Low	On ¹
1	Running	1	0	Running	Running	On ¹
1	Running	1	1	Low	Low	On ¹

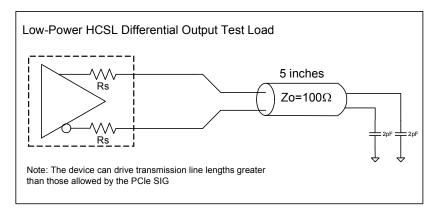
^{1.} If Bypass mode is selected, the PLL will be off, and outputs will be running.

Power Connections

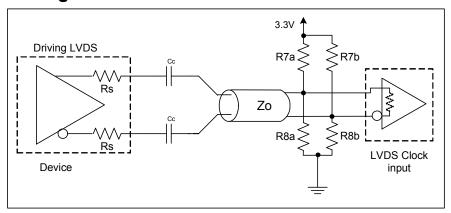
Pin Numl	per	Decemention			
VDD	GND	Description			
2	5	Input receiver analog			
7	6	Digital Power			
11,20	10,21	DIF outputs			
16	15	PLL Analog			

Note: epad on this device is not electrically connected to the die. It should be connected to ground for best thermal performance.

PLL Operating Mode


HiBW_BypM_LoBW#	MODE	Byte1 [7:6] Readback	Byte1 [4:3] Control
0	PLL Lo BW	00	00
M	Bypass	01	01
1	PLL Hi BW	11	11

Pin Descriptions


Pin#	Pin Name	Pin Type	Description
			Complement clock of differential feedback. The feedback output
1	FB_DNC#	DNC	and feedback input are connected internally on this pin. Do not
			connect anything to this pin.
2	VDDR1.5	PWR	1.5V power for differential input clock (receiver). This VDD should
			be treated as an Analog power rail and filtered appropriately.
3	CLK_IN	IN	True Input for differential reference clock.
4	CLK_IN#	IN	Complementary Input for differential reference clock.
5	GNDR	GND	Analog Ground pin for the differential input (receiver)
6	GNDDIG	GND	Ground pin for digital circuitry
7	VDDDIG1.5	PWR	1.5V digital power (dirty power)
8	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
9	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
10	GND	GND	Ground pin.
11	VDDO1.5	PWR	Power supply for outputs, nominally 1.5V.
			Active low input for enabling DIF pair 0. This pin has an internal pull-
12	vOE0#	IN	down.
			1 =disable outputs, 0 = enable outputs
13	DIF0	OUT	Differential true clock output
14	DIF0#	OUT	Differential Complementary clock output
15	GNDA	GND	Ground pin for the PLL core.
	VDDA1.5	PWR	1.5V power for the PLL core.
17	DIF1	OUT	Differential true clock output
18	DIF1#	OUT	Differential Complementary clock output
			Active low input for enabling DIF pair 1. This pin has an internal pull-
19	vOE1#	IN	down.
			1 =disable outputs, 0 = enable outputs
20	VDDO1.5	PWR	Power supply for outputs, nominally 1.5V.
21	GND	GND	Ground pin.
			Input notifies device to sample latched inputs and start up on first
22	^CKPWRGD_PD#	IN	high assertion. Low enters Power Down Mode, subsequent high
~~	TORI WIND_I D#	111	assertions exit Power Down Mode. This pin has internal pull-up
			resistor.
23	^vHIBW_BYPM_LOBW#	LATCHED	Trilevel input to select High BW, Bypass or Low BW mode.
	VI IIDVV_DI FIVI_LODVV#	IN	See PLL Operating Mode Table for Details.
			True clock of differential feedback. The feedback output and
24	FB_DNC	DNC	feedback input are connected internally on this pin. Do not connect
			anything to this pin.
25	ePad	GND	Connect epad to ground.

NOTE: DNC indicates Do Not Connect anything to this pin.

Test Loads

Driving LVDS

Driving LVDS inputs

Ditting 1100 mpate								
	,	Value						
	Receiver has	Receiver has Receiver does not						
Component	termination	have termination	Note					
R7a, R7b	10K ohm	140 ohm						
R8a, R8b	5.6K ohm	75 ohm						
Cc	0.1 uF	0.1 uF						
Vcm	1.2 volts	1.2 volts						

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9DBU0241. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2	٧	1,2
Input Voltage	V_{IN}		-0.5		V _{DD} +0.5	٧	1,3
Input High Voltage, SMBus	V_{IHSMB}	SMBus clock and data pins			3.3	٧	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	ç	1
Input ESD protection	ESD prot	Human Body Model	2000			>	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Clock Input Parameters

TA = T_{AMB.} Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	200		725	mV	1
Input Swing - DIF_IN	V _{SWING}	Differential value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	
Input Duty Cycle	d _{tin}	Measurement from differential wavefrom	45	50	55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		150	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied nor guaranteed.

³ Not to exceed 2.0V.

² Slew rate measured through +/-75mV window centered around differential zero

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

 $TA = T_{AMB}$; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.425	1.5	1.575	V	
Ambient Operating	T _{AMB}	Commmercial range	0	25	70	°C	1
Temperature	I AMB	Industrial range	-40	25	85	°C	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	$0.75~V_{DD}$		$V_{DD} + 0.3$	V	
Input Mid Voltage	V_{IM}	Single-ended tri-level inputs ('_tri' suffix)	$0.4~V_{DD}$		$0.6 V_{DD}$	٧	
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	٧	
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	
Input Current		Single-ended inputs					
input Current	I _{INP}	$V_{IN} = 0 V$; Inputs with internal pull-up resistors	-200		200	uA	
		V_{IN} = VDD; Inputs with internal pull-down resistors					
Input Frequency	F_{ibyp}	Bypass mode	1		167	MHz	2
Input Frequency	F_{ipll}	100MHz PLL mode	20	100.00	110	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C _{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,5
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock			1	mo	1,2
	I STAB	stabilization or de-assertion of PD# to 1st clock			l	ms	1,2
Input SS Modulation	f _{MODINPCle}	Allowable Frequency for PCIe Applications	30		33	kHz	
Frequency PCIe	INODINPCIE	(Triangular Modulation)				11112	
Input SS Modulation	f _{MODIN}	Allowable Frequency for non-PCIe Applications	0		66	kHz	
Frequency non-PCIe		(Triangular Modulation) DIF start after OE# assertion					
OE# Latency	t _{LATOE#}	DIF stant after OE# assertion DIF stop after OE# deassertion	1		3	clocks	1,3
		DIF output enable after					
Tdrive_PD#	t _{DRVPD}	PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of single-ended control inputs			5	ns	2
Trise	t _R	Rise time of single-ended control inputs			5	ns	2
SMBus Input Low Voltage	V _{ILSMB}	5			0.6	V	
SMBus Input High Voltage	V _{IHSMB}	$V_{DDSMB} = 3.3V$, see note 4 for $V_{DDSMB} < 3.3V$	2.1		3.3	V	4
SMBus Output Low Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	
Nominal Bus Voltage	V _{DDSMB}	Bus Voltage	1.425		3.3	V	
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			400	kHz	6

¹Guaranteed by design and characterization, not 100% tested in production.

²Control input must be monotonic from 20% to 80% of input swing.

 $^{^3}$ Time from deassertion until outputs are >200 mV

 $^{^4}$ For $V_{\text{DDSMB}} < 3.3 V, \ V_{\text{IHSMB}} >= 0.8 x V_{\text{DDSMB}}$

⁵DIF_IN input

⁶The differential input clock must be running for the SMBus to be active

Electrical Characteristics-DIF Low-Power HCSL Outputs

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting (100MHz)	1	2.4	3.5	V/ns	1,2,3
Siew rate	dV/dt	Scope averaging on, slow setting (100MHz)	0.7	1.7	2.5	V/ns	1,2,3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on		9	20	%	1,2,4
Voltage High	V_{HIGH}	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	630	750	850	mV	7
Voltage Low	V_{LOW}	averaging on)	-150	26	150	1117	7
Max Voltage	Vmax	Measurement on single ended signal using		763	1150	mV	7
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300	22		IIIV	7
Vswing	Vswing	Scope averaging off	300	1448		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	390	550	mV	1,5
Crossing Voltage (var)	∆-Vcross	Scope averaging off		11	140	mV	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Current Consumption

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DDR}	VDDR @100MHz		3	6	mA	1
	I _{DDDIG}	VDDIG, All outputs @100MHz		0.125	0.25	mA	1
	I _{DDAO}	VDDA+VDDO, PLL Mode, All outputs @100MHz		13	17	mA	1
	I _{DDRPD}	VDDR, CKPWRGD_PD# = 0		0.1	0.3	mA	1,2,3
Powerdown Current	I _{DDDIGPD}	VDDDIG, CKPWRGD_PD# = 0		0.1	0.2	mA	1,2
	I _{DDAOPD}	VDDA+VDDO, CKPWRGD_PD# = 0		0.7	1	mA	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

⁷ At default SMBus settings.

² Input clock stopped.

³ In bypass mode, the PLL is off and IDDAO is ~50% of this value.

Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

/ (IVID)		peranter containing of					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
PLL Bandwidth	BW	-3dB point in High BW Mode (100MHz)	2.3	3.6	4.7	MHz	1,5
FLL Bandwidth	DVV	-3dB point in Low BW Mode (100MHz)	1	1.6	2.5	MHz	1,5
PLL Jitter Peaking	t _{JPEAK}	Peak Pass band Gain (100MHz)		1.3	2.5	dB	1
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-1.5	-1.1	0	%	1,3
Ckow Input to Output	t _{pdBYP}	Bypass Mode, V _T = 50%	3400	4301	5200	ps	1
Skew, Input to Output	t _{pdPLL}	PLL Mode V _T = 50%	0	50	150	ps	1,4
Skew, Output to Output	t _{sk3}	V _T = 50%		37	50	ps	1,4
Jitter, Cycle to cycle	+.	PLL mode		24	50	ps	1,2
Jitter, Cycle to Cycle	t _{jcyc-cyc}	Additive Jitter in Bypass Mode		0.1	5	ps	1,2

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics-Phase Jitter Parameters

TA = T_{AMB}; Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

						INDUSTRY		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	LIMIT	UNITS	Notes
	t _{jphPCleG1}	PCle Gen 1		30	58	86	ps (p-p)	1,2,3,5
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.9	1.4	3	ps (rms)	1,2,3,5
Phase Jitter, PLL Mode	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		2.1	2.6	3.1	ps (rms)	1,2,3,5
Thase sitter, The Wode	t _{jphPCleG3Com}	PCIe Gen 3 Common Clock Architecture (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.5	0.6	1	ps (rms)	1,2,3,5
	t _{jphPCleG3SRn} S	PCIe Gen 3 Separate Reference No Spread (SRnS) (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.5	0.6	0.7	ps (rms)	1,2,3,5
	t _{jphPCleG1}	PCle Gen 1		0.1	5	N/A	ps (p-p)	1,2,3,5
		PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.1	0.5	N/A	ps (rms)	1,2,3,4, 5
	t _{jphPCleG2}	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.1	0.3	N/A	ps (rms)	1,2,3,4
Additive Phase Jitter, Bypass Mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR = 10MHz)		0.2	0.3	N/A	ps (rms)	1,2,3,4
Бураж інісас	t _{jph125M0}	125MHz, 1.5MHz to 10MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		200	300	N/A	fs (rms)	1,6
	t _{jph125M1}	125MHz, 12KHz to 20MHz, -20dB/decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		313	350	N/A	fs (rms)	1,6

¹Guaranteed by design and characterization, not 100% tested in production.

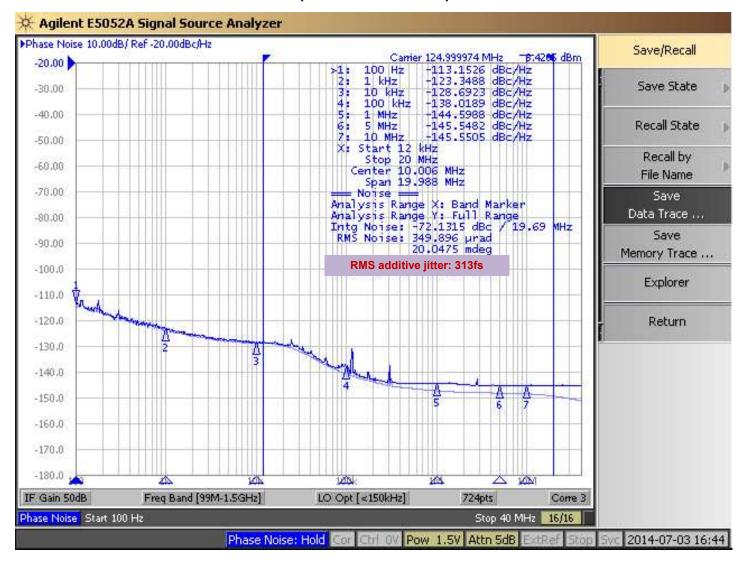
² Measured from differential waveform

³ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

⁴ All outputs at default slew rate

⁵ The MIN/TYP/MAX values of each BW setting track each other, i.e., Low BW MAX will never occur with Hi BW MIN.

² See http://www.pcisig.com for complete specs


³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter)^2 - (input jitter)^2]

⁵ Driven by 9FGU0831 or equivalent

⁶ Rohde&Schartz SMA100

Additive Phase Jitter Plot: 125M (12kHz to 20MHz)

General SMBus Serial Interface Information

How to Write

- · Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index Blo	ock '	Write Operation
Controll	er (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave A	Address		
WR	WRite		
			ACK
Beginning	Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnin	g Byte N		
			ACK
0		×	
0		X Byte	0
0		ল	0
			0
Byte N	+ X - 1		
			ACK
Р	stoP bit		

Note: SMBus Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Block F	peration	
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		<u>e</u>	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Output Enable Register ¹

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved					
Bit 6	Reserved					
Bit 5	DIF OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 4		Reserved				1
Bit 3	DIF OE0	Output Enable	RW	Low/Low	Enabled	1
Bit 2		Reserved				1
Bit 1	Reserved					
Bit 0		Reserved				1

^{1.} A low on these bits will overide the OE# pin and force the differential output Low/Low

SMBus Table: PLL Operating Mode and Output Amplitude Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	PLLMODERB1	PLL Mode Readback Bit 1	R	See PLL Operating Mode Table		Latch
Bit 6	PLLMODERB0	PLL Mode Readback Bit 0	R	Gee i LL Operat	ing wode rable	Latch
Bit 5	PLLMODE_SWCNTRL	Enable SW control of PLL Mode	RW	Values in B1[7:6] set PLL Mode	Values in B1[4:3] set PLL Mode	0
	2111025	511.14.1.0.1.1511.1		Set PLL Mode	Set PLL Mode	
Bit 4	PLLMODE1	PLL Mode Control Bit 1	RW ¹	See PLL Operat	ing Mode Table	0
Bit 3	PLLMODE0	PLL Mode Control Bit 0	RW ¹	Gee i LL Operat	ing wode rable	0
Bit 2		Reserved				
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	00 = 0.55V	01 = 0.65V	1
Bit 0	AMPLITUDE 0	Controls Catput Amplitude	RW	10= 0.75V	11 = 0.85V	0

^{1.} B1[5] must be set to a 1 for these bits to have any effect on the part.

SMBus Table: DIF Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				1
Bit 6		Reserved				1
Bit 5	SLEWRATESEL DIF1	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 4		Reserved				1
Bit 3	SLEWRATESEL DIF0	Slew Rate Selection	RW	Slow Setting	Fast Setting	1
Bit 2	Reserved					
Bit 1	Reserved					1
Bit 0		Reserved				1

SMBus Table: FB Slew Rate Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				1
Bit 6		Reserved				1
Bit 5		Reserved				0
Bit 4	Reserved					
Bit 3		Reserved				0
Bit 2	Reserved					
Bit 1	Reserved					
Bit 0	SLEWRATESEL FB	Adjust Slew Rate of FB	RW	Slow Setting	Fast Setting	1

Byte 4 is Reserved and reads back 'hFF

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	1	Default
Bit 7	RID3		R			0
Bit 6	RID2	Revision ID	Revision ID R A rev = 0000	- 0000	0	
Bit 5	RID1		R	A 16V - 0000		0
Bit 4	RID0		R			0
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001	- IDT	0
Bit 1	VID1	VENDORID	R	0001	- IUI	0
Bit 0	VID0		R			1

SMBus Table: Device Type/Device ID

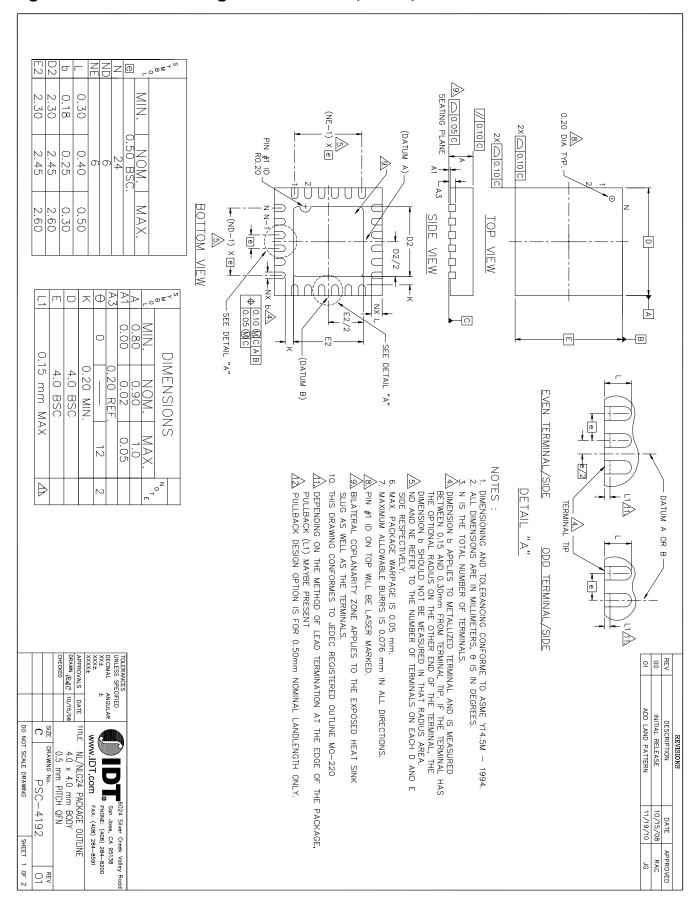
Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Device Type1	Doving Type	R	00 = FGx, 01 =	DBx ZDB/FOB,	0
Bit 6	Device Type0	Device Type	R	10 = DMx, 11= DBx FOB		1
Bit 5	Device ID5		R			0
Bit 4	Device ID4		R			0
Bit 3	Device ID3	Device ID	R	000100 bina	ny or 02 hev	0
Bit 2	Device ID2	Device ID	R	000 TOO DITIA	Ty Of UZ HEX	0
Bit 1	Device ID1		R			1
Bit 0	Device ID0	7	R			0

SMBus Table: Byte Count Register

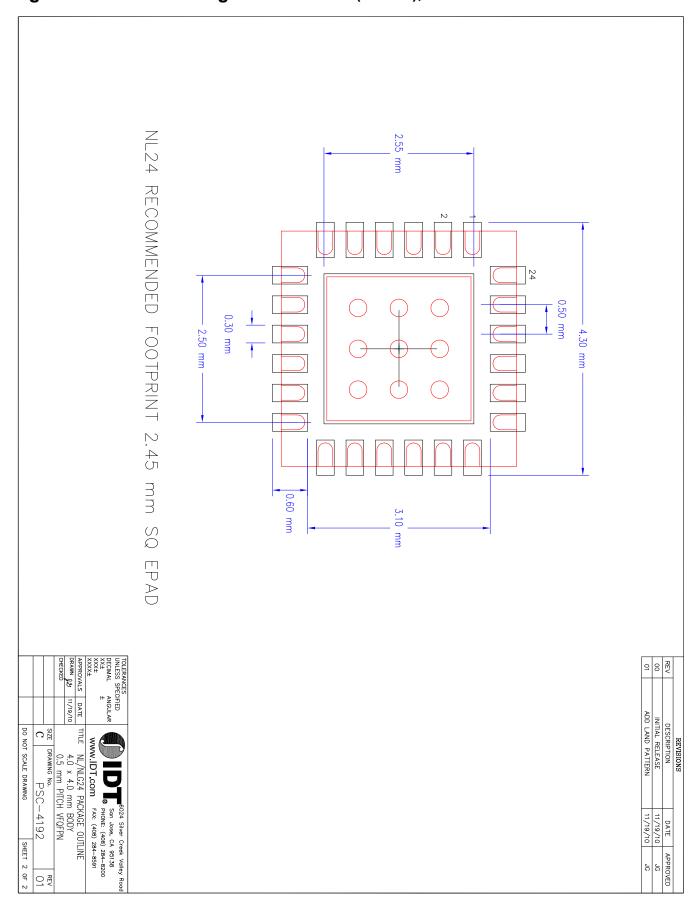
Byte 7	Name	Control Function	Type	0	1	Default
Bit 7		Reserved				0
Bit 6		Reserved				0
Bit 5		Reserved				0
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	er will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be r	ead back, default is	0
Bit 1	BC1		RW	= 8 b	ytes.	0
Bit 0	BC0		RW			0

Marking Diagrams

Notes:


- 1. "LOT" is the lot sequence number.
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. Line 2: truncated part number
- 4. "L" denotes RoHS compliant package.
- 5. "I" denotes industrial temperature range device.

Thermal Characteristics


PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
	Θ _{JC}	Junction to Case		62	°C/W	1
	Θ_{Jb}	Junction to Base		5.4	°C/W	1
Thermal Resistance	Θ_{JA0}	Junction to Air, still air	NLG20	50	°C/W	1
Theimai nesistance	Θ_{JA1}	Junction to Air, 1 m/s air flow	NLG24	43	°C/W	1
	Θ_{JA3}	Junction to Air, 3 m/s air flow		39	°C/W	1
	Θ_{JA5}	Junction to Air, 5 m/s air flow		38	°C/W	1

¹ePad soldered to board

Package Outline and Package Dimensions (NLG24)

Package Outline and Package Dimensions (NLG24), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DBU0241AKLF	Tubes	24-pin VFQFPN	0 to +70° C
9DBU0241AKLFT	Tape and Reel	24-pin VFQFPN	0 to +70° C
9DBU0241AKILF	Tubes	24-pin VFQFPN	-40 to +85° C
9DBU0241AKILFT	Tape and Reel	24-pin VFQFPN	-40 to +85° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

Rev.	Initiator	Issue Date	Description	Page #
А	RDW	7/14/2014	 Updated electrical tables with char data. Added an additive phase jitter plot. Added 12kHz to 20MHz additive phase jitter spec. Updated Amplitude control bit descriptions in Byte 1. 	Various
В	RDW	9/19/2014	Updated SMBus Input High/Low parameters conditions, MAX values, and footnotes.	6
С	RDW	4/22/2015	 Updated pin out and pin descriptions to show ePad on package connected to ground. Updated front page text to standard format for these devices. Added explicit bullet indicated Spread Spectrum compatibility. Updated Clock Input Parameters table to be consistent with PCIe Vswing parameter. Minor updates to front page text for family consistency. Add note about epad to Power Connections table. 	1-5

[&]quot;A" is the device revision designator (will not correlate with the datasheet revision).

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T
PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX
PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG
NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2