Renesas 2:11.5V PCle Gen1-2-3 Clock Mux w/Zo=100ohms

General Description

The 9DMU0141 is a member of IDT's SOC-Friendly 1.5 V Ultra-Low-Power (ULP) PCIe Gen1-2-3 family. It has integrated output terminations providing $\mathrm{Zo}=100 \mathrm{ohms}$ for direct connection to 1000 hm transmission lines. The output has an OE\# pin for optimal system control and power management. The part provides asynchronous or glitch-free switching modes.

Recommended Application

2:1 1.5V PCle Gen1-2-3 Clock Mux

Output Features

- 1 - Low-Power (LP) HCSL DIF pair w/Zo=100 Ω

Features/Benefits

- LP-HCSL output w/integrated terminations; saves 4 resistors compared to standard HCSL output
- 1.5 V operation; 11 mW typical power consumption
- Selectable asynchronous or glitch-free switching; allows the mux to be selected at power up even if both inputs are not running, then transition to glitch-free switching mode
- Spread Spectrum Compatible; supports EMI reduction
- OE\# pins; support DIF power management
- HCSL differential inputs; can be driven by common clock sources
- 1 MHz to 167 MHz operating frequency
- Space saving 16-pin 3x3mm VFQFPN; minimal board space

Key Specifications

- DIF additive cycle-to-cycle jitter <5ps
- DIF phase jitter is PCle Gen1-2-3 compliant
- 125MHz additive phase jitter 535fs rms typical (12 kHz to 20MHz)

Block Diagram

Pin Configuration

16-pin VFQFPN, $3 \times 3 \mathrm{~mm}, 0.5 \mathrm{~mm}$ pitch
\wedge prefix indicates internal 120 KOhm pull up resistor
v prefix indicates internal 120KOhm pull down resistor
Note: Paddle may be connected to ground for thermal
purposes. It is not required electrically.

Power Management Table

OEx\# Pin	DIF_IN	DIFx	
		True O/P	Comp. O/P
0	Running	Running	Running
1	Running	Low	Low

Power Connections

Pin Number		Description
VDD	GND	
2	1	Input A receiver analog
3	4	Input B receiver analog
12	11	DIF outputs

Note: Pins 2 and 3 should be decoupled separately to pins 1 and 4 respectively.

Pin Descriptions

Pin\#	Pin Name	Type	Pin Description
1	GNDR	GND	Analog Ground pin for the differential input (receiver)
2	VDDR1.5	PWR	1.5V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
3	VDDR1.5	PWR	1.5 V power for differential input clock (receiver). This VDD should be treated as an Analog power rail and filtered appropriately.
4	GNDR	GND	Analog Ground pin for the differential input (receiver)
5	DIF_INB	IN	HCSL Differential True input
6	DIF_INB\#	IN	HCSL Differential Complement Input
7	vSW_MODE	IN	Switch Mode. This pin selects either asynchronous or glitch-free switching of the mux. Use asynchronous mode if 0 or 1 of the input clocks is running. Use glitch-free mode if both input clocks are running. This pin has an internal pull down resistor of $\sim 120 \mathrm{kohms}$. $0=\text { asynchronous mode }$ 1 = glitch-free mode
8	^OEO\#	IN	Active low input for enabling DIF pair 0 . This pin has an internal pull-up resistor. $1=$ disable outputs, $0=$ enable outputs
9	DIF0	OUT	Differential true clock output
10	DIFO\#	OUT	Differential Complementary clock output
11	GND	GND	Ground pin.
12	VDD1.5	PWR	Power supply, nominally 1.5 V
13	NC	N/A	No Connection.
14	^SEL_A_B\#	IN	Input to select differential input clock A or differential input clock B. This input has an internal pull-up resistor. $0=$ Input B selected, $1=\operatorname{Input} A$ selected.
15	DIF_INA	IN	HCSL Differential True input
16	DIF_INA\#	IN	HCSL Differential Complement Input

Renesns

Test Loads

Driving LVDS

Driving LVDS inputs

Component	Value		Note
	Receiver has termination	Receiver does not have termination	
R7a, R7b	10 K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Cc	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

Electrical Characteristics-Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx		-0.5		2	V	1,2
Input Voltage	$\mathrm{V}_{\text {IN }}$		-0.5		$\mathrm{~V}_{\text {DD }}+0.5$	V	1,3
Input High Voltage, SMBus	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins			3.3	V	1
Storage Temperature	TS		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000		V	1	

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.
${ }^{3}$ Not to exceed 2.0V.

Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDx	Supply voltage for core and analog	1.425	1.5	1.575	V	
Ambient Operating Temperature	$\mathrm{T}_{\text {AMB }}$	Industrial range	-40	25	85	${ }^{\circ} \mathrm{C}$	1
Input High Voltage	$\mathrm{V}_{1 \mathrm{H}}$	Single-ended inputs, except SMBus	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Single-ended inputs, except SMBus	-0.3		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=$ GND, $\mathrm{V}_{\text {IN }}=$ VDD	-5		5	uA	
Input Current	$\mathrm{I}_{\text {INP }}$	Single-ended inputs $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\mathrm{IN}}=$ VDD; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	$\mathrm{F}_{\text {in }}$		1		167	MHz	2
Pin Inductance	$L_{\text {pin }}$				7	nH	1
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	Cout	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {Stab }}$	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1	ms	1,2
Input SS Modulation Frequency PCle	$\mathrm{f}_{\text {MODINPCle }}$	Allowable Frequency for PCle Applications (Triangular Modulation)	30		33	kHz	
Input SS Modulation Frequency non-PCle	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency for non-PCle Applications (Triangular Modulation)	0		66	kHz	
OE\# Latency	$\mathrm{t}_{\text {Latoe\# }}$	DIF start after OE\# assertion DIF stop after OE\# deassertion	1		3	clocks	1,3
Tfall	t_{F}	Fall time of single-ended control inputs			5	ns	2
Trise	t_{R}	Rise time of single-ended control inputs			5	ns	2

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$
${ }^{4}$ DIF_IN input

Electrical Characteristics-Clock Input Parameters

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	$\mathrm{V}_{\text {IHDIF }}$	Differential inputs (single-ended measurement)	300	750	1150	mV	1
Input Low Voltage - DIF_IN	VILDIF	Differential inputs (single-ended measurement)	$V_{\text {Ss }}-300$	0	300	mV	1
Input Common Mode Voltage - DIF_IN	$\mathrm{V}_{\text {com }}$	Common Mode Input Voltage	200		725	mV	1
Input Amplitude - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Peak to Peak value (V ${ }_{\text {IHDIF }}$ - $\mathrm{V}_{\text {ILDIF }}$)	300		1450	mV	1
Input Slew Rate - DIF_IN	$\mathrm{dv} / \mathrm{dt}$	Measured differentially	0.35		8	V / ns	1,2
Input Leakage Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-5		5	uA	
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential wavefrom	45	50	55	\%	1
Input Jitter - Cycle to Cycle	$J_{\text {DIFIn }}$	Differential Measurement	0		150	ps	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero

Electrical Characteristics-DIF Low-Power HCSL Outputs

TA $=\mathrm{T}_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on, fast setting	1.2	2.4	3.6	V/ns	1,2,3
Slew rate matching	$\Delta \mathrm{dV} / \mathrm{dt}$	Slew rate matching, Scope averaging on		13	20	\%	1,2,4
Voltage High	$\mathrm{V}_{\text {HIGH }}$	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	550	755	850	mV	
Voltage Low	V Low		-150	21	150		
Max Voltage	V max	Measurement on single ended signal using absolute value. (Scope averaging off)		766	1150	mV	
Min Voltage	Vmin		-300	-25			
Vswing	Vswing	Scope averaging off	300	1469		mV	1,2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	367	550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		12	140	mV	1,6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential 0 V . This results in $\mathrm{a}+/-150 \mathrm{mV}$ window around differential OV.
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.

Electrical Characteristics-Current Consumption

TA = $\mathrm{T}_{\text {AMB, }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$\mathrm{I}_{\text {DD }}$	VDD, All outputs active @100MHz		7	11	mA	1
Powerdown Current	$\mathrm{I}_{\text {DDPD }}$	VDD, all outputs disabled		1.4	2.5	mA	1,2

[^0]
Electrical Characteristics-Output Duty Cycle, Jitter, Skew and PLL Characteristics

$T A=T_{\text {AMB }}$, Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Duty Cycle Distortion	$\mathrm{t}_{\text {DCD }}$	Measured differentially @100MHz	-1	-0.2	1	$\%$	1,3
Skew, Input to Output	$\mathrm{t}_{\mathrm{pdBYP}}$	Bypass Mode, $\mathrm{V}_{\mathrm{T}}=50 \%$	2196	2923	3978	ps	1
Skew, Output to Output	$\mathrm{t}_{\text {sk3 }}$	$\mathrm{V}_{\mathrm{T}}=50 \%$		$\mathrm{~N} / \mathrm{A}$	N / A	ps	1
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	Additive Jitter		0.1	8	ps	1,2

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

Electrical Characteristics-Phase Jitter Parameters

$\mathrm{TA}=\mathrm{T}_{\text {AMB, }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	Notes
Additive Phase Jitter, Bypass Mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		0.4	5	N/A	ps (p-p)	1,2,3,5
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.4	0.6	N/A	$\begin{gathered} \hline \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	$\begin{gathered} \hline 1,2,3,4, \\ 5 \\ \hline \end{gathered}$
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz)		0.1	0.2	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \\ \hline \end{gathered}$	1,2,3,4
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 (PLL BW of 2-4 or $2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.050	0.1	N/A	$\begin{gathered} \mathrm{ps} \\ (\mathrm{~ms}) \end{gathered}$	1,2,3,4
	$\mathrm{t}_{\text {jph125M0 }}$	$125 \mathrm{MHz}, 1.5 \mathrm{MHz}$ to $10 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		365	380	N/A	$\begin{aligned} & \text { fs } \\ & \text { (rms) } \end{aligned}$	1,6
	$\mathrm{t}_{\text {jph125M1 }}$	$125 \mathrm{MHz}, 12 \mathrm{KHz}$ to $20 \mathrm{MHz},-20 \mathrm{~dB} /$ decade rollover < 1.5MHz, -40db/decade rolloff > 10MHz		535	550	N/A	$\begin{gathered} \mathrm{fs} \\ (\mathrm{rms}) \end{gathered}$	1,6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ See http://www.pcisig.com for complete specs
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk}$ @ 1 M cycles for a BER of 1-12.
${ }^{4}$ For RMS figures, additive jitter is calculated by solving the following equation: Additive jitter = SQRT[(total jitter) ${ }^{\wedge} 2-\left(\right.$ input jitter) ${ }^{\wedge} 2$]
${ }^{5}$ Driven by 9FGU0831 or equivalent
${ }^{6}$ Rohde\&Schartz SMA100

Marking Diagrams

Notes:

1. " $X X X$ " is the last 3 characters of the lot number.
2. "YYWW" is the last two digits of the year and week that the part was assembled.
3. Line 3: truncated part number
4. "I" denotes industrial temperature grade.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	$\theta_{\text {JC }}$	Junction to Case	NLG16	66	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JAO }}$	Junction to Air, still air		63	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA1 }}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		56	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		51	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA5 }}$	Junction to Air, $5 \mathrm{~m} / \mathrm{s}$ air flow		49	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

[^1]
Package Outline and Package Dimensions (NLG16)

Package dimensions are kept current with JEDEC Publication No. 95

	Millimeters	
Symbol	Min	Max
A	0.80	1.00
A1	0	0.05
A3	0.20 Reference	
b	0.18	0.30
e	0.50 BASIC	
N	16	
$\mathrm{~N}_{\mathrm{D}}$	4	
$\mathrm{~N}_{\mathrm{E}}$	4	
D x E BASIC	3.00×3.00	
D2	1.55	1.80
E2	1.55	1.80
L	0.30	0.50

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DMU0141AKILF	Trays	16-pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$
9DMU0141AKILFT	Tape and Reel	$16-$ pin VFQFPN	-40 to $+85^{\circ} \mathrm{C}$

"LF" to the suffix denotes Pb-Free configuration, RoHS compliant.
" A " is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page \#
A	RDW	$9 / 29 / 2014$	1. Update front page text and electrical tables with char data. 2. Update pinout diagram with note about package paddle. 3. Move to final.	Various

Renesns

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
8501BYLF P9090-0NLGI8 854110AKILF 83210AYLF NB6VQ572MMNG HMC6832ALP5LETR RS232-S5 6ES7390-1AF30-0AA0 CDCVF2505IDRQ1 LV5609LP-E NB7L572MNR4G SY100EP33VKG ISPPAC-CLK5520V-01T100C 6EP1332-1SH71 6ES7231-4HD320XB0 AD246JN AD246JY AD9510BCPZ AD9510BCPZ-REEL7 AD9511BCPZ AD9511BCPZ-REEL7 AD9512BCPZ AD9512UCPZ-EP AD9513BCPZ AD9514BCPZ AD9514BCPZ-REEL7 AD9515BCPZ AD9515BCPZ-REEL7 AD9572ACPZLVD AD9572ACPZPEC AD9513BCPZ-REEL7 ADCLK950BCPZ-REEL7 ADCLK950BCPZ AD9553BCPZ HMC940LC4B HMC6832ALP5LE CSPUA877ABVG8 9P936AFLFT 49FCT3805ASOG 49FCT3805DQGI 49FCT3805EQGI 49FCT805CTQG 74FCT3807EQGI 74FCT388915TEPYG 853S013AMILF 853S058AGILF 8SLVD1208-33NBGI 8V79S680NLGI ISPPAC-CLK5312S-01TN48I ISPPAC-CLK5520V-01TN100I

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Input clock stopped.

[^1]: ${ }^{1}$ ePad soldered to board

