

PROGRAMMABLE TIMING CONTROL HUB FOR INTEL BASED SYSTEMS

Recommended Application:

CK505 version 1-1 clock, with fully integrated voltage regulators and series resistors

Output Features:

- 2 CPU differential low power push-pull pairs
- 1 SRC differential low power push-pull pair
- 1 SATA differential low power push-pull pair
- 1 DOT differential low power push-pull pair
- 1 REF, able to drive 3 loads, 14.318MHz
- 1 27MHz_SS/non_SS single-ended output pair

Features/Benefits:

- Supports spread spectrum modulation, 0 to -0.5% down spread for CPU and SRC clocks
- Uses external 14.318MHz crystal, external crystal load caps are required for frequency tuning

Key Specifications:

- CPU outputs cycle-cycle jitter < 85ps
- SRC outputs cycle-cycle jitter < 125ps
- +/- 100ppm frequency accuracy on all clocks

9LRS3197

Pin Description

Pin#	Pin Name	Туре	Pin Description
1	VDDDOT96MHz_3.3	PWR	Power pin for the DOT96MHz output 3.3V.
2	GNDDOT96MHz	PWR	Ground pin for the DOT96MHz output
		.	True clock DOT96 output with integrated 330hm series resistor. No
3	DO1961_LPR	001	50ohm resistor to GND needed.
			Complement clock DOT96 output with integrated 330hm series
4	DOT96C_LPR	001	resistor. No 500hm resistor to GND needed.
5	VDD_27MHz	PWR	Power pin for the 27MHz output 3.3V.
6	27MHz_nonSS	OUT	27MHz non-spread output, 3.3V
7	27MHz_SS	OUT	27MHz spread output, 3.3V
8	GND27MHz	PWR	Ground pin for the 27MHz output
9	GNDSATA	PWR	Ground pin for the SATA output 3.3V.
10	SATAT_LPR	OUT	True clock of differential 0.8V push-pull SATA output with integrated 33ohm series resistor. No 50ohm resistor to GND needed.
11	SATAC_LPR	OUT	Complementary clock of differential 0.8V push-pull SATA output with integrated 33ohm series resistor. No 50ohm resistor to GND needed.
12	GNDSRC	PWR	Ground pin for the SRC outputs
13	SBCT1 LPB	ОШТ	True clock of differential 0.8V push-pull SRC output with integrated
10		001	33ohm series resistor. No 50ohm resistor to GND needed.
			Complementary clock of differential 0.8V push-pull SRC output with
14	SRCC1_LPR	OUT	integrated 33ohm series resistor. No 50ohm resistor to GND
			needed.
15	VDDSRC_IO	PWR	1.05V to 3.3V from external power supply
16	*CPU_STOP#	IN	Stops all CPU clocks, except those set to be free running clocks
17	VDDSRC_3.3	PWR	Supply for SRC clocks, 3.3V nominal
18		PWR	1.05V to 3.3V from external power supply
19	CPUC1_LPR	OUT	with integrated 330hm series resistor. No 50 ohm resistor to GND
			needed.
			True clock of differential pair 0.8V push-pull CPU outputs with
20	CPUT1_LPR	OUT	integrated 330hm series resistor. No 50 ohm resistor to GND
			needed.
21	GNDCPU	PWR	Ground pin for the CPU outputs
			Complementary clock of differential pair 0.8V push-pull CPU outputs
22	CPUC0_LPR	OUT	with integrated 33ohm series resistor. No 50 ohm resistor to GND
			needed.
		0.UT	I rue clock of differential pair 0.8V push-pull CPU outputs with
23	CPUI0_LPR	001	integrated 330hm series resistor. No 50 ohm resistor to GND
0.4			needed.
24	VDDCP0_3.3	PWR	Supply for CPU clocks, 3.3V nominal
25	CLKPWRGD/PD#_3.3	IN	PWRDWN# mode
26	GNDREF	PWR	Ground pin for the REF outputs.
27	X2	OUT	Crystal output, Nominally 14.318MHz
28	X1	IN	Crystal input, Nominally 14.318MHz.
29	VDDREF_3.3	PWR	Power pin for the XTAL and REF clocks, nominal 3.3V
			14.318 MHz reference clock, which can drive 3 loads / 3.3V tolerant
30	REF_3L/FSLC_3.3**	I/O	input tor CPU frequency selection. Refer to input electrical
		1/2	characteristics for Vil_FS and Vih_FS values.
31		1/0	Data pin for SMBus circuitry, 3.3V tolerant.
- 32	SULK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.

General Description

The **9LRS3197** is a CK505 clock synthesizer. The **9LRS3197** provides a single-chip solution for Intel based systems. The **9LRS3197** is driven with a 14.318MHz crystal.

Functional Block Diagram

Table 1: CPU Frequency Select Table

FSLC		SRC	REF	
1מעם				
0 (Default)	133.33	100.00	14 010	06.00
1	100.00	100.00	14.310	96.00

 FS_LC is a low-threshold input.Please see V_{IL_FS} and V_{IH_FS} specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table.

Table 2: pin 6, 7 Configuration

R1b2	B1b2 B1	P1b1	Pin 6	Pin 7	Spread	Commont
BTD3	DIDZ	ыл	MHz	MHz	%	Comment
0	0	0	27MHz_nonSS	27MHz_SS	-1.75%	
0	0	1	27MHz_nonSS	27MHz_SS	+-0.5%	
0	1	0	27MHz_nonSS	27MHz_SS	-0.5%	Default
0	1	1	27MHz_nonSS	27MHz_SS	-1%	
1	0	0	27MHz_nonSS	27MHz_SS	-1.5%	
1	0	1	27MHz_nonSS	27MHz_SS	-2%	
1	1	0	27MHz_nonSS	27MHz_SS	-0.75%	
1	1	1	27MHz_nonSS	27MHz_SS	-1.25%	

IO_Vout Select Table

b2	b1	b0	IO_Vout
0	0	0	N/A
0	0	0	N/A
0	1	0	0.5V
0	1	1	0.6V
1	0	0	0.7V
1	0	1	0.8V
1	1	0	0.9V
1	1	1	1.0V

* Bold is default

General SMBus serial interface information for the 9LRS3197

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the beginning byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will *acknowledge* each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Write Operation				
Со	ntroller (Host)		ICS (Slave/Receiver)	
Т	starT bit			
Slav	e Address D2 _(H)			
WR	WRite			
			ACK	
Beg	inning Byte = N			
			ACK	
Data	Byte Count = X			
			ACK	
Begir	nning Byte N			
			ACK	
	0	ę		
	0	B	0	
	0	\times	0	
			Ó	
Byt	e N + X - 1			
			ACK	
Р	stoP bit			

Index Block Read Operation			
Con	troller (Host)	IC	CS (Slave/Receiver)
Т	starT bit		
Slave	e Address D2 _(H)		
WR	WRite		
			ACK
Begi	nning Byte = N		
	-		ACK
RT	Repeat starT		
Slave	e Address D3 _(H)		
RD	ReaD		
			ACK
		D	Data Byte Count = X
	ACK		
			Beginning Byte N
	ACK		
		fe fe	0
	0	б	0
	0]×0	
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

Byte 0 FS Readback and PLL Selection Register

Bit	Name	Description	Туре	0	1	Default
7	FSLC	CPU Freq. Sel. Bit	R			Latch
6	Reserved	Reserved	RW	-	-	0
5	Reserved	Reserved	RW	-	-	1
4	iAMT_EN	Set via SMBus	RW (Sticky "1")	Legacy Mode	iAMT Enabled	0
3	Reserved	Reserved	RW			0
2	Reserved	Reserved	RW	Reserved	Reserved	0
1	SATA_SEL	Select source for SATA clock	RW	SATA (SRC2 100MHz_SS) = SRC_Main	SATA (100MHz non_SS) = SATA PLL	0
0	PD_Restore	 1 = on Power Down de-assert return to last known state 0 = clear all SMBus configurations as if cold power- on and go to latches open state This bit is ignored and treated at '1' if device is in iAMT mode. 	RW	Configuration Not Saved	Configuration Saved	1

Byte 1 DOT96 Select and PLL3 Quick Config Register,

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	1
6	CK505 PLL1_SSC_SEL	Select 0.5% down or center SSC	RW	Down spread	Center spread	0
5	Reserved	Reserved	RW	-	-	1
4	PLL3_CF3	PLL3 Quick Config Bit 3	RW			0
3	PLL3_CF2	PLL3 Quick Config Bit 2	RW	Cae Table Or sin (C/7 Configuration	0
2	PLL3_CF1	PLL3 Quick Config Bit 1	RW	See Table 2: pin 6/7 Configuration		1
1	PLL3_CF0	PLL3 Quick Config Bit 0	RW			0
0	Reserved	Reserved	RW	-	-	1

Byte 2 Output Enable Register

Bit	Name	Description	Туре	0	1	Default
7	REF_3L_OE	Output enable for REF0, if disabled output is tri- stated	RW	Output Disabled	Output Enabled	1
6	Reserved	Reserved	RW	-	-	1
5	Reserved	Reserved	RW	-	-	1
4	Reserved	Reserved	RW	-	-	1
3	Reserved	Reserved	RW	-	-	1
2	Reserved	Reserved	RW	-	-	1
1	Reserved	Reserved	RW	-	-	1
0	Reserved	Reserved	RW	-	-	1

Byte 3 Output Enable Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	1
6	Reserved	Reserved	RW	-	-	1
5	Reserved	Reserved	RW	-	-	1
4	Reserved	Reserved	RW	-	-	1
3	Reserved	Reserved	RW	-	-	1
2	Reserved	Reserved	RW	-	-	1
1	Reserved	Reserved	RW			1
0	Reserved	Reserved	RW	-	-	1

Byte 4 Output Enable and Spread Spectrum Disable Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	1
6	SATA_OE	Output enable for SATA	RW	Output Disabled	Output Enabled	1
5	SRC1_OE	Output enable for SRC1	RW	Output Disabled	Output Enabled	1
4	DOT96_OE	Output enable for DOT96	RW	Output Disabled	Output Enabled	1
3	CPU1_OE	Output enable for CPU1	RW	Output Disabled	Output Enabled	1
2	CPU0_OE	Output enable for CPU0	RW	Output Disabled	Output Enabled	1
1	SSC_EN1 (MSB)	SSC_EN1 (MSB)	RW	00=All Spread OFF 01=Reserved		1
0	SSC_EN0 (LSB)	SSC_EN0 (LSB)	RW	10=Reserved 11=All Spread ON		1

Byte 5 Reserved Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	1
6	Reserved	Reserved	RW	-	-	1
5	Reserved	Reserved	RW	-	-	1
4	Reserved	Reserved	RW	-	-	1
3	Reserved	Reserved	RW	-	-	1
2	Reserved	Reserved	RW	-	-	1
1	Reserved	Reserved	RW	-	-	1
0	Reserved	Reserved	RW	-	-	1

Byte 6 Slew Rate Control Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	0
6	Reserved	Reserved	RW	-	-	0
5	REF Slew	Slew Rate Control	RW	2 V/ns	1 V/ns	0
4	Reserved	Reserved	RW	-	-	0
3	27MHz Slew	Slew Rate Control	RW	2 V/ns	1 V/ns	0
2	Reserved	Reserved	RW	-	-	0
1	Reserved	Reserved	RW	-	-	0
0	Reserved	Reserved	RW	-	-	0

Byte 7 Vendor ID/ Revision ID

Bit	Name	Description	Туре	0	1	Default
7	Rev Code Bit 3		R			0
6	Rev Code Bit 2	Povision ID	R			0
5	Rev Code Bit 1	Revision in	R			0
4	Rev Code Bit 0		R	Vondorg	0	
3	Vendor ID bit 3		R	vendors	specific	0
2	Vendor ID bit 2	Vendor ID	R			0
1	Vendor ID bit 1	ICS is 0001, binary	R		0	
0	Vendor ID bit 0		R			1

Byte 8 Device ID and Output Enable Register

Bit	Name	Description	Туре	0	1	Default
7	Device_ID3		R			1
6	Device_ID2	Table of Device identifier codes, used for	R	See Devie		0
5	Device_ID1	differentiating between CK505 package options, etc.	R	See Device		0
4	Device_ID0		R		0	
3	Reserved	Reserved	RW	-	-	0
2	Reserved	Reserved	RW	-	-	0
1	27MHz_nonSS_OE	Output enable for 27MHz_nonSS	RW	Disabled	Enabled	1
0	27MHz_SS_OE	Output enable for 27MHz_SS	RW	Disabled	Enabled	1

Byte 9 Output Control Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	0
6	Reserved	Reserved	R			0
5	Reserved	Reserved	RW	-	-	1
4	Reserved	Reserved	RW	- ·		0
3	Reserved	Reserved	RW			0
2	IO_VOUT2	IO Output Voltage Select (Most Significant Bit)	RW	See Table 3: V_IO Selection		1
1	IO_VOUT1	IO Output Voltage Select	RW			0
0	IO_VOUT0	IO Output Voltage Select (Least Significant Bit)	RW	(Delault	IS 0.8V)	1

Byte 10 Output Control Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW	-	-	0
6	Reserved	Reserved	RW	-	-	0
5	Reserved	Reserved	RW	-	-	0
4	Reserved	Reserved	RW	-	-	0
3	Reserved	Reserved	RW	-	-	0
2	Reserved	Reserved		-	-	0
1	CPU 1 Stop Enable	Stop Enable Enables control of CPU1 with CPU_STOP#		Free Running	Stoppable	1
0	CPU 0 Stop Enable	Enables control of CPU 0 with CPU_STOP#	RW	Free Running	Stoppable	1

Byte 11 Reserved Register

	· · · · · · · · · · · · · · · · · · ·					
Bit	Name	Description	Туре	0	1	Default
7	Reserved	Reserved	RW			0
6	Reserved	Reserved	RW			0
5	Reserved	Reserved	RW			0
4	Reserved	Reserved	RW			0
3	Reserved	Reserved	RW	-	-	0
2	CPU1_AMT_EN	M1 mode clk enable	RW	Disable	Enable	1
1	PCI-E_GEN2	Determines if PCI-E Gen2 compliant	R	non-Gen2	PCI-E Gen2 Compliant	1
0	Reserved	Reserved	RW	-	-	1

Byte 12 Byte Count Register

Bit	Name	Description	Туре	0	1	Default
7	Reserved		RW			0
6	Reserved		RW			0
5	BC5		RW			0
4	BC4		RW			0
3	BC3	Read Back byte count register,	RW			1
2	BC2	max bytes = 32	RW			1
1	BC1		RW			0
0	BC0		RW			1

Datasheet

Absolute Maximum Ratings - DC Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDDxxx	Supply Voltage		4.6	V	7
Maximum Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply		3.8	V	7
Maximum Input Voltage	V _{IH}	3.3V Inputs		4.6	V	4,5,7
Minimum Input Voltage	V _{IL}	Any Input	GND - 0.5		v	4,7
Storage Temperature	Ts	-	-65	150	°C	4,7
Input ESD protection	ESD prot	Human Body Model	2000		V	6,7

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied, nor guaranteed.

³ Maximum input voltage is not to exceed VDD

Electrical Characteristics - Input/Supply/Common Output DC Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	Tambient	-	0	70	°C	
Supply Voltage	VDDxxx	Supply Voltage	3.135	3.465	V	
Supply Voltage	VDDxxx_IO	Low-Voltage Differential I/O Supply	0.9975	3.465	V	
Input High Voltage	VIHSE	Single-ended 3.3V inputs	2	$V_{DD} + 0.3$	V	3
Input Low Voltage	V _{ILSE}	Single-ended 3.3V inputs	V _{SS} - 0.3	0.8	V	3
Low Threshold Input- FSC = '1' Voltage	V _{IH_FSC}	3.3 V +/-5%	0.7	3.5	V	
Low Threshold Input-Low Voltage	V _{IL_FSC}	3.3 V +/-5%	V _{SS} - 0.3	0.35	V	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	5	uA	2
Input Leakage Current	I _{INRES}	Inputs with pull up or pull down resistors $V_{IN} = V_{DD}$, $V_{IN} = GND$	-200	200	uA	
Output High Voltage	V _{OHSE}	Single-ended outputs, I _{OH} = -1mA	2.4		V	1
Output Low Voltage	V _{OLSE}	Single-ended outputs, I _{OL} = 1 mA		0.4	V	1
On eventing Supply Support	I _{DDOP3.3}	Full Active, $C_L =$ Full load; Idd 3.3V		125	Image: original sector Image: original sector <t< td=""><td></td></t<>	
Operating Supply Current	I _{DDOP IO}	Full Active, C_L = Full load; IDD IO	0.4 V 125 mA 28 mA 15 MHz 7 nH 1.5 5 6 pF			
Input Frequency	F _i	$V_{DD} = 3.3 V$		15	MHz	
Pin Inductance	L _{pin}			7	nH	
	C _{IN}	Logic Inputs	1.5	5	pF	
Input Capacitance	C _{OUT}	Output pin capacitance		6	pF	
	C _{INX}	X1 & X2 pins	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pF		
Clk Stabilization	T _{STAB}	From VDD Power-Up or de-assertion of PD to 1st clock		1.8	ms	
Tfall_SE	T _{FALL}			10	ns	
Trise_SE	T _{RISE}	Fail/rise time of all 3.3V control inputs from 20-80%		10	ns	
SMBus Voltage	V _{DD}		2.7	5.5	V	
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}		0.4	V	
Current sinking at V _{OLSMB} = 0.4 V	IPULLUP	SMB Data Pin	4		mA	
SCLK/SDATA Clock/Data Bise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)		1000	ns	
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)		300	ns	
Maximum SMBus Operating Frequency	F _{SMBUS}			100	kHz	
Spread Spectrum Modulation Frequency	f _{SSMOD}	Triangular Modulation	30	33	kHz	

Electrical Characteristics - Input/Supply/Common Output DC ParametersDC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

¹Signal is required to be monotonic in this region.

² input leakage current does not include inputs with pull-up or pull-down resistors

³ 3.3V referenced inputs are: SCLK, SDATA, and CKPWRGD if selected.

- ⁴ Intentionally blank
- ⁵ Maximum VIH is not to exceed VDD

⁶ Human Body Model

⁷ Operation under these conditions is neither implied, nor guaranteed.

⁸ Frequency Select pins which have tri-level input

AC Electrical Characteristics - Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	tSLR	Averaging on	2.5	5	V/ns	2, 3
Falling Edge Slew Rate	tFLR	Averaging on	2.5	5	V/ns	2, 3
Slew Rate Variation	tSLVAR	Averaging on		20	%	1, 6
Differential Voltage Swing	VSWING	Averaging off	300		mV	2
Crossing Point Voltage	VXABS	Averaging off	300	550	mV	1,4,5
Crossing Point Variation	VXABSVAR	Averaging off		140	mV	1,4,9
Maximum Output Voltage	VHIGH	Averaging off		1150	mV	1,7
Minimum Output Voltage	VLOW	Averaging off	-300		mV	1,8
Duty Cycle	DCYC	Averaging on	45	55	%	2
CPU Skew	CPUSKEW	Averaging on		100	ps	
SRC_SATA Skew	SRCSKEW	Differential Measurement		300	ps	1

NOTES on DIF Output AC Specs: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

¹Measurement taken for single ended waveform on a component test board (not in system)

² Measurement taken from differential waveform on a component test board. (not in system)

 $^{\rm 3}$ Slew rate emastured through V_swing voltage range centered about differential zero

⁴ Vcross is defined at the voltage where Clock = Clock#, measured on a component test board (not in system)

⁵ Only applies to the differential rising edge (Clock rising, Clock# falling)

⁶ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage

⁷ The max voltage including overshoot.

⁸ The min voltage including undershoot.

⁹ The total variation of all Vcross measurements in any particular system. Note this is a subset of V_cross min/mas (V_Cross absolute) allowed. The intent is to limit Vcross induced modulation by setting C_cross_delta to be smaller than V_Cross absolute

Clock Jitter Specifications - Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
CPU Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement		85	ps	1,2
SRC Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement		125	ps	1,2,3
SATA Jitter - Cycle to Cycle	SATAJ _{C2C}	Differential Measurement		125	ps	1,2
DOT Jitter - Cycle to Cycle	DOTJ _{C2C}	Differential Measurement		250	ps	1,2
SRC Phase Jitter	t _{jphasePLL}	PCIe Gen 1		86	ps (p-p)	1,2
	t _{jphaseLo}	PCIe Gen 2 10kHz < f < 1.5MHz		3	ps (RMS)	1,4
	t _{jphaseHigh}	PCIe Gen 2 1.5MHz < f < Nyquist (50MHz)		3.1	ps (RMS)	1,4

*TA = 0 - 70°C; Supply Voltage VDD = 3.3V+/-5%, Rs = 0ohms, CL = 2pF

¹ Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

²JItter specs are specified as measured on a clock characterization board. System designers need to take special care not to use these numbers, as the in-system performance will be somewhat degraded. The receiver EMTS (chispet or CPU) will have the receiver requirements.

³ Phase jitter requirement: The deisgnated Gen2 outputs will meet the reference clock jitter requirements from the PCI Express Gen2 Base Spec. The test is performed on a component test board under quiet condittions with all outputs on.

⁴See http://www.pcisig.com for complete specs

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-100	100	ppm	2, 4
Clock period	Tperiod	14.318MHz output nominal	69.82033	69.86224	ns	2, 3
Absolute min/max period	Tabs	14.318MHz output nominal	69.83400	70.84800	ns	2
CLK High Time	THIGH		29.97543	38.46654	V	
CLK Low time	TLOW		29.57543	38.26654	V	
Output High Voltage	VOH	IOH = -1 mA	2.4		V	
Output Low Voltage	VOL	IOL = 1 mA		0.4	V	
Output High Current	ЮН	VOH @MIN = 1.0 V, VOH@MAX = 3.135 V	-33	-33	mA	
Output Low Current	IOL	VOL @MIN = 1.95 V, VOL @MAX = 0.4 V	30	38	mA	
Rising Edge Slew Rate	tSLR	Measured between 0.8V and 2.0V	1	4	V/ns	1
Falling Edge Slew Rate	tFLR	Measured between 2.0V and 0.8V	1	4	V/ns	1
Duty Cycle	dt1	VT = 1.5 V	45	55	%	2
Jitter, Cycle to cycle	tjcyc-cyc	VT = 1.5 V		1000	ps	2

NOTES on SE outputs: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

¹Edge rate is measured between 0.8V to 2.0V.

² Duty cycle, Peroid and Jitter are measured with respect to 1.5V

³ The average period over any 1us period of time

⁴ Using frequency counter with the measurment interval equal or greater that 0.15s, target frequencies are 14.318180 MHz, 33.333333MHz and 48.000000MHz

Electrical Characteristics - 27MHz_Spread / 27MHz_NonSpread

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	0.000	and Travial min may values	-50	50	ppm	1,2
	ppm	see Tpenou min-max values	-15	15		1,2,3
Clock period	T _{period}	27.000MHz output nominal	37.0365	37.0376		
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.55	V	1
Output High Current	I _{ОН}	V _{OH} @MIN = 1.0 V	-29		mA	1
		V _{OH} @MAX = 3.135 V		-23	mA	1
Output Low Current	I _{OL}	V _{OL} @ MIN = 1.95 V	29		mA	1
		V _{OL} @ MAX = 0.4 V		27	mA	1
Rising Edge Rate	t _{slewr/r}	Measured between 0.8V and 2.0V		4	V/ns	1
Falling Edge Rate	t _{slewr/f}	Measured between 2.0V and 0.8V	1	4	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1
Jitter	t _{itj}	Long Term (10us)		800	ps	1,4
	t _{jpk-pk}		-250	250	ps	1
	t _{jcyc-cyc}	V _T = 1.5 V		500	ps	1

*TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

³ At nominal voltage and temperature

⁴ 27MHz-Non-spread only

IDT[®] Programmable Timing Control Hub for Intel Based Systems

9LRS3197 Programmable Timing Control Hub for Intel Based Systems

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

SYMBOL MIN. A 0.8 A1 0 A3 0.20

DIMENSIONS

A3	0.20 Reference		
b	0.18	0.3	
е	0.50 BASIC		

Marking Diagram

۲	ICS
	RS3197AL
	YYWW
	ORIGIN
	#####

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9LRS3197AKLF	Trays	32-pin MLF	0 to +70° C
9LRS3197AKLFT	Tape and Reel	32-pin MLF	0 to +70° C

MAX.

1.0

0.05

"A" is the device revision designator (will not correlate to the datasheet revision) "LF" denotes Pb-free, RoHS compliant package

DIMENSIONS

	ICS 32L	
SYMBOL	TOLERANCE	
N	32	
N _D	8	
N _E	8	
D x E BASIC	5.00 x 5.00	
D2 MIN. / MAX.	3.0/ 3.3	
E2 MIN. / MAX.	3.0/ 3.3	
L MIN. / MAX.	0.30 / 0.50	

Datasheet

Revision History

Rev.	Issue Date	Description	Page #
A	01/17/11	Release to final	
		Updated "Electrical Characteristics - Input/Supply/Common Output DC	
В	07/29/11	Parameters" table	
С	08/22/11	Updated Electrical parameters and ordering info table	9-12

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

For Tech Support

408-284-6578 pcclockhelp@idt.com

Asia Pacific and Japan

IDT Singapore Pte. Ltd. 1 Kallang Sector #07-01/06 KolamAyer Industrial Park Singapore 349276 Phone: 65-6-744-3356 Fax: 65-6-744-1764

Europe

IDT Europe Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England Phone: 44-1372-363339 Fax: 44-1372-378851

© 2011 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H5150-01MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30156GGG2 ZL30673LFG7 MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI 5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2 MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD9516-0BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1