Low Skew Dual Bank DDR I/II Fan-out Buffer

Description

Dual DDR I/II fanout buffer for VIA Chipset

Output Features

- Low skew, fanout buffer
- SMBus for functional and output control
- Single bank 1-6 differential clock distribution
- 1 pair of differential feedback pins for input to output synchronization
- Supports up to 2 DDR DIMMs
- 266 MHz (DDRI 533) output frequency support
- 400 MHz (DDRII 800) output frequency support
- Programmable skew through SMBus
- Individual output control programmable through SMBus

Key Specifications

- OUTPUT - OUTPUT skew: <100ps
- Output Rise and Fall Time for DDR outputs: 650ps - 950ps
- DUTY CYCLE: 47\%-53\%
- 28-pin SSOP/TSSOP package
- RoHS compliant packaging

Pin Configuration

AVDD2.5	1		28	GND
AGND	2		27	VDDQ2.5/1.8
BUF_INT	3		26	AVDD2.5
BUF_INC	4		25	AGND
DDRT0	5		24	DDRT5
DDRC0	6	$\mathbf{0}$	23	DDRC5
DDRT1	7	$\mathbf{0}$	22	GND
DDRC1	8	$\mathbf{0}$	21	VDDQ2.5/1.8
GND	9	$\mathbf{0}$	20	DDRT4
VDDQ2.5/1.8	10	$\underline{\mathbf{U}}$	19	DDRC4
FB_OUTT	11		18	DDRT3
FB_OUTC	12		17	DDRC3
DDRT2	13	16	SDATA	
DDRC2	14		15	SCLK

Funtional Block Diagram

Pin Description

PIN \#	PIN NAME	PIN TYPE	DESCRIPTION
1	AVDD2.5	PWR	2.5V Analog Power pin for Core PLL
2	AGND	PWR	Analog Ground pin for Core PLL
3	BUF_INT	IN	True Buffer In signal for memory outputs.
4	BUF_INC	IN	Complementary Buffer In signal for memory outputs.
5	DDRT0	OUT	-40
6	DDRC0	OUT	"Complementary" Clock of differential pair output.
7	DDRT1	OUT	"True" Clock of differential pair output.
8	DDRC1	OUT	"Complementary" Clock of differential pair output.
9	GND	PWR	Ground pin.
10	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5 V or 1.8 V for DDR or DDR 2 outputs respectively
11	FB_OUTT	OUT	True single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs.
12	FB_OUTC	OUT	Complementary single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs.
13	DDRT2	OUT	"True" Clock of differential pair output.
14	DDRC2	OUT	"Complementary" Clock of differential pair output.
15	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
16	SDATA	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
17	DDRC3	OUT	"Complementary" Clock of differential pair output.
18	DDRT3	OUT	"True" Clock of differential pair output.
19	DDRC4	OUT	"Complementary" Clock of differential pair output.
20	DDRT4	OUT	"True" Clock of differential pair output.
21	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8 V for DDR or DDR 2 outputs respectively
22	GND	PWR	Ground pin.
23	DDRC5	OUT	"Complementary" Clock of differential pair output.
24	DDRT5	OUT	"True" Clock of differential pair output.
25	AGND	PWR	Analog Ground pin for Core PLL
26	AVDD2.5	PWR	$2.5 V$ Analog Power pin for Core PLL
27	VDDQ2.5/1.8	PWR	Power supply, nominal 2.5 V or 1.8 V for DDR or DDR 2 outputs respectively
28	GND	PWR	Ground pin.

Absolute Max

Supply Voltage	-0.5 V to 3.6 V
Logic Inputs	$\mathrm{GND}-0.5 \mathrm{~V}$ to $\mathrm{V} D+0.5 \mathrm{~V}$ or 3.6 V , whichever is less
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Case Temperature	$115^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters (VDDQ2.5/1.8 = 1.8V +/- 0.1V)

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage AVDD $=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPEC			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I_{IH}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DDQ}}$ or GND	-40			$\mu \mathrm{A}$
Input Low Current	$\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {DDQ }}$ or GND			10	$\mu \mathrm{A}$
Operating Supply	$\mathrm{I}_{\text {DDAVDD2. } 5}$	$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pf}$ @ 266 MHz		23	26	mA
Current	$\mathrm{I}_{\text {DDVDDQ2.5/1.8 }}$	$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pf} @ 266 \mathrm{MHz}$		164	180	mA
Input Clamp Voltage	V_{IK}	$\mathrm{V}_{\mathrm{DDQ}}=1.8 \mathrm{~V}$ lin $=-18 \mathrm{~mA}$			-1.2	V
High-level output voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-9 \mathrm{~mA}$	1.1			V
Low-level output voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=9 \mathrm{~mA}$			0.6	V
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{\text {DDQ }}$	2	3	4	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ or $\mathrm{V}_{\text {DDQ }}$	2	3	4	pF
Input clock slew rate	$\mathrm{t}_{\text {s(i) }}$	Input clock	1	2.5	4	V / ns

Recommended Operating Condition (VDDQ2.5/1.8 = 1.8V +/- 0.1V) (see note1)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AVDD}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPECIFICATION			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low level input voltage	$\mathrm{V}_{\text {IL }}$	BUF_INT, BUF_INC			$0.35 \times \mathrm{V}_{\text {DDQ }}$	V
High level input voltage	V_{IH}	BUF_INT, BUF_INC	$0.65 \times \mathrm{V}_{\text {DDQ }}$			V
DC input signal voltage (note 2)	$\mathrm{V}_{\text {IN }}$		-0.3		$\mathrm{V}_{\mathrm{DDQ}}+0.3$	V
Differential input signal voltage (note 3)	$\mathrm{V}_{\text {ID }}$	DC - BUF_INT, BUF_INC	0.3		$\mathrm{V}_{\mathrm{DDQ}}+0.4$	V
		AC - BUF_INT, BUF_INC	0.6		$\mathrm{V}_{\mathrm{DDQ}}+0.4$	V
Output differential crossvoltage (note 4)	Vox		$\mathrm{V}_{\text {DDQ }} / 2-0.1$		$\mathrm{V}_{\mathrm{DDQ}} / 2+0.1$	V
Input differential crossvoltage (note 4)	$\mathrm{V}_{\text {IX }}$		$\mathrm{V}_{\text {DDQ }} / 2-0.15$	$\mathrm{V}_{\mathrm{DDQ}} / 2$	$\mathrm{V}_{\text {DQQ }} / 2+0.15$	V

1. Unused inputs must be held high or low to prevent them from floating.
2. $D C$ input signal voltage specifies the allow able $D C$ excursion of differential input.
3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for sw itching, where VTR is the true input level and VCP is the complimentary input level.
4. Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be changed.

Timing Requirements VDDQ2.5/1.8 = 1.8 V +/- 0.1V
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$ Supply Voltage AVDD2.5 $=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPECIFICATION		
PARAMETER	SYMBOL	CONDITIONS	-40	MAX	UNITS
Max clock frequency	freg $_{\text {op }}$		125	400	MHz
Application Frequency Range	$\mathrm{freq}_{\text {App }}$		160	400	MHz
Input clock duty cycle	$\mathrm{d}_{\text {tin }}$		40	60	\%
CLK stabilization	$\mathrm{T}_{\text {STAB }}$			15	$\mu \mathrm{s}$

Switching Characteristics (VDDQ2.5/1.8 = 1.8V +/-0.1V) (see note 1)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AVDD}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$, VDDQ2.5/1.8 $=1.8 \mathrm{~V}+/-0.1 \mathrm{~V}$ (unless otherwise stated)

			SPECIFICATION			
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Period jitter	$\mathrm{T}_{\text {jit (}}^{\text {per }}$)	Period jitter	-40		40	ps
Half-period jitter	$\mathrm{T}_{\text {(iit_hper) }}$	Half period jitter	-60		60	ps
Cycle to Cycle	$\mathrm{T}_{\text {cyc }}-\mathrm{T}_{\text {cyc }}$	Cycle to Cycle jitter	-40		40	ps
Dynamic Phase Offset	$\mathrm{T}_{\text {(} \mathrm{PPO} \text {) }}$		-50		50	ps
Static Phase Offset	$\mathrm{T}_{(\text {SPO) }}$		-50	0	50	ps
Output to Output Skew	$\mathrm{t}_{\text {skew }}$	DDR(0:5)			40	ps
Output Duty Cycle	$\mathrm{t}_{\text {duty }}$		47		53	ps
Output clock slew rate	$\mathrm{t}_{\mathrm{sl}(\mathrm{i})}$	Measured from 20% to 80% of VDDQ	1.5		3	V/ns

1. Switching characteristics guaranteed for operating frequency range

Electrical Characteristics - Input/Supply/Common Output Parameters (VDDQ2.5/1.8 = 2.5V $\mathbf{+}$ - 0.2V)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage AVDD $=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPEC			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	$\mathrm{IIH}^{\text {l }}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND	-10			$\mu \mathrm{A}$
Input Low Current	$\mathrm{I}_{\text {IL }}$	$V_{1}=V_{D D}$ or GND			10	$\mu \mathrm{A}$
Operating Supply	IDDAVDD2.5	$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pf}$ @ 200MHz		20	23	mA
Current	I ${ }_{\text {DDVDDQ2.5/1.8 }}$	$\mathrm{R}_{\mathrm{L}}=120 \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pf}$ @ 200MHz		220	250	mA
Input Clamp Voltage	V_{IK}	$\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}, \operatorname{lin}=-18 \mathrm{~mA}$			-1	V
High-level output voltage	V_{OH}	$\mathrm{IOH}=-12 \mathrm{~mA}$	1.7			V
Low-level output voltage	Vol	$\mathrm{IOL}^{\text {a }} 12 \mathrm{~mA}$			0.6	V
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{\text {DDQ }}$	2	3	4	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$ or $\mathrm{V}_{\text {DDQ }}$	2	3	4	pF
Input clock slew rate	$\mathrm{tsl}_{\text {(i) }}$	Input clock	1	2.5	4	V / ns

Recommended Operating Condition (VDDQ2.5/1.8 = 2.5V +/- 0.2V) (see note1)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AVDD}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPECIFICATION			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Low level input voltage	V_{IL}	BUF_INT, BUF_INC			$\mathrm{V}_{\text {DDO } / 2} / 2-0.18$	V
High level input voltage	V_{IH}	BUF_INT, BUF_INC	$\mathrm{V}_{\text {DDQ }} / 2+0.18$			V
DC input signal voltage (note 2)	$\mathrm{V}_{\text {IN }}$		-0.3		$\mathrm{V}_{\mathrm{DDQ}}+0.3$	V
Differential input signal voltage (note 3)	$V_{\text {ID }}$	DC - BUF_INT, BUF_INC	0.36		$\mathrm{V}_{\text {DDQ }}+0.6$	V
		AC - BUF_INT, BUF_INC	0.7		$\mathrm{V}_{\mathrm{DDQ}}+0.6$	V
Output differential cross voltage (note 4)	V_{Ox}		$\mathrm{V}_{\text {DDO }} / 2-0.15$		$\mathrm{V}_{\mathrm{DDQ}} / 2+0.15$	V
Input differential crossvoltage (note 4)	$\mathrm{V}_{\text {IX }}$		$\mathrm{V}_{\mathrm{DDO}} / 2-0.2$	$\mathrm{V}_{\mathrm{DDQ}} / 2$	$\mathrm{V}_{\mathrm{DDO}} / 2+0.2$	V

1. Unused inputs must be held high or low to prevent them from floating.
2. DC input signal voltage specifies the allow able DC excursion of differential input.
3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for sw itching, where VTR is the true input level and VCP is the complimentary input level.
4. Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be changed.

Timing Requirements VDDQ2.5/1.8 = 2.5V +/- 0.2V

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$ Supply Voltage AVDD2.5 $=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

		SPECIFICATION			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency	freq $_{\text {op }}$		45	500	MHz
Application Frequency Range	freq $_{\text {App }}$		95	233	MHz
Input clock duty cycle	$\mathrm{d}_{\text {tin }}$		40	60	$\%$
CLK stabilization	$\mathrm{T}_{\text {STAB }}$			15	$\mu \mathrm{~s}$

Switching Characteristics (VDDQ2.5/1.8 = 2.5V +/- 0.2V) (see note 1)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{AVDD}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}, \mathrm{VDDQ2.5/1.8}=2.5 \mathrm{~V}+/-0.2 \mathrm{~V}$ (unless otherwise stated)

			SPECIFICATION			
PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Period jitter	$\mathrm{T}_{\text {jit (per) }}$	Period jitter	-60		60	ps
Half-period jitter	$\mathrm{T}_{\text {(it_ } \text { hper) }}$	Half period jitter	-75		75	ps
Cycle to Cycle Jitter	$\mathrm{T}_{\text {cyc }}-\mathrm{T}_{\text {cyc }}$	Cycle to Cycle jitter	-60		60	ps
Static Phase Offset	$\mathrm{T}_{\text {(SPO) }}$		-50	0	50	ps
Output to Output Skew	$\mathrm{T}_{\text {skew }}$	DDR(0:5)			40	ps
Output Duty Cycle	$\mathrm{t}_{\text {duty }}$		47		53	ps
Output clock slew rate	$\mathrm{t}_{\mathrm{sl}(0)}$	Measured from 20% to 80% of VDDQ	1.5		4	V/ns

1. Switching characteristics guaranteed for operating frequency range

General I ${ }^{2} \mathrm{C}$ serial interface information

The information in this section assumes familiarity with $I^{2} \mathrm{C}$ programming. For more information, contact ICS for an $I^{2} C$ programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends a dummy command code
- ICS clock will acknowledge
- Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will acknowledge each byte one at a time.
- Controller (host) sends a Stop bit

How to Write:	
Controller (Host)	ICS (Slave/Receiver)
Start Bit	
Address D4 (H)	
	ACK
Dummy Command Code	
	ACK
Dummy Byte Count	
Byte 0	ACK
	ACK
Byte 1	ACK
	Byte 2
Byte 3	ACK
	ACK
Byte 4	ACK
	BCK
Byte 5	ACK
Byte 6	ACK
Byte 7	
Stop Bit	

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D5 ${ }_{(H)}$
- ICS clock will acknowledge
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 7
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:	
Controller (Host)	ICS (Slave/Receiver)
Start Bit	
Address $_{\text {D5 }_{(\mathrm{H})}}$	
	ACK
ACK	Byte Count
	Byte 0
ACK	Byte 1
	Byte 2
ACK	Byte 3
	Byte 4
ACK	
	Byte 5
ACK	Byte 6
ACK	
	Byte 7
ACK	
ACK	
Stop Bit	

Notes:

1. The ICS clock generator is a slave/receiver, $I^{2} C$ component. It can read back the data stored in the latches for verification. Read-Back will support Intel PIIX4 "Block-Read" protocol.
2. The data transfer rate supported by this clock generator is 100 K bits/sec or less (standard mode)
3. The input is operating at 3.3 V logic levels.
4. The data byte format is 8 bit bytes.
5. To simplify the clock generator $I^{2} \mathrm{C}$ interface, the protocol is set to use only "Block-Writes" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
6. At power-on, all registers are set to a default condition, as shown.

$I^{2} \mathrm{C}$ Table: Output Control Register

Byte 7		Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	Default
Bit 7	-	BUFF_IN_T/C	Frequency Detect	RW	OFF	ON	1	
Bit 6	-	FB_OUT_T/C	FB_OUT Control	RW	Disable	Enable	1	
Bit 5	-	DDR_T5/C5	Output Control	RW	Disable	Enable	1	
Bit 4	-	DDR_T4/C4	Output Control	RW	Disable	Enable	1	
Bit 3	-	DDR_T3/C3	Output Control	RW	Disable	Enable	1	
Bit 2	-	DDR_T2/C2	Output Control	RW	Disable	Enable	1	
Bit 1	-	DDR_T1/C1	Output Control	RW	Disable	Enable	1	
Bit 0	-	DDR_T0/C0	Output Control	RW	Disable	Enable	1	

$\mathrm{I}^{2} \mathrm{C}$ Table: Byte Count Register

Byte 8			Pin \#	Name	Control Function	Type	0 0 1	Default
Bit 7		-		BC7	Byte Count Programming b(7:0)	RW	Writing to this register will configure how many bytes will be read back, default is $\mathrm{Oh}=15$ bytes	0
Bit 6		-		BC6		RW		0
Bit 5		-		BC5		RW		0
Bit 4	.	-		BC4		RW		0
Bit 3		-		BC3		RW		1
Bit 2		-		BC2		RW		1
Bit 1		-		BC1		RW		1
Bit 0		-		BC0		RW		1

$\mathrm{I}^{2} \mathrm{C}$ Table: Group Skew Control Register

	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	DDR_CSkw3	DDR_C Skew Control (also see table1)	RW	$0000=0$	$1101=600$	0
Bit 6	-	DDR_CSkw2		RW	$0100=150$	$1110=750$	0
Bit 5	-	DDR_CSkw1		RW	$1000=300$	$1111=900$	0
Bit 4	-	DDR_CSkw0		RW	$1100=450$	N/A	0
Bit 3	-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 2	-	Reserved	Reserved	RW	Reserved	Reserved	0
Bit 1	-	FBOUTSkw1	FB_OUT Skew Control (also see table 2)	RW	$00=0$	$10=500$	0
Bit 0	-	FBOUTSkw0		RW	$01=250$	$11=750$	0

$\mathrm{I}^{2} \mathrm{C}$ Table: Group Skew Control Register

| Byte 20 | | Pin \# | Name | Control Function | Type | $\mathbf{0}$ | $\mathbf{1}$ | Default |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit 7 | - | | | | | | | |

Note: Bytes not shown are reserved and should not be altered.

28-pin SSOP Package Drawing and Dimensions

209 mil SSOP

28-pin TSSOP Package Drawing and Dimensions

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9P936AFLF	Tubes	28-pin SSOP	0 to $+70^{\circ} \mathrm{C}$
9P936AFLFT	Tape and Reel	28-pin SSOP	0 to $+70^{\circ} \mathrm{C}$
9P936AGLF	Tubes	28-pin TSSOP	0 to $+70^{\circ} \mathrm{C}$
9P936AGLFT	Tape and Reel	$28-$ pin TSSOP	0 to $+70^{\circ} \mathrm{C}$

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. " A " denotes the revision designator (will not correlate to datasheet revision).

ICS9P936
Low Skew Dual Bank DDR I/II Fan-out Buffer

Revision History

Rev.	Issue Date	Description	Page \#
0.1	$3 / 23 / 2005$	Updated Electrical Characteristics	$5-9$
0.2	$4 / 1 / 2005$	Updated Skew programming bytes and I2c programming address	3,10
0.3	$9 / 12 / 2005$	Updated LF Ordering Information	11
0.4	$9 / 14 / 2005$	Added TSSOP Ordering Information.	12
0.5	$11 / 13 / 2006$	Updated I2C.	6
0.6	$4 / 5 / 2007$	Updated Switching Characteristics.	$1,7,10$
0.7	$6 / 26 / 2007$	Updated Max Clock Frequency.	Various
A	$4 / 8 / 2009$	Released to final.	
B	$11 / 12 / 2009$	1. Updated all electrical tables to specify VDDQ = 1.8V and 2.5V. 2. Updated ordering information table 3. Updated pinout and pin descriptions	1.Corrected Byte 19/20 default to 00 hex. 2.Corrected typos in electrical tables, made formatting improvements for readability.
C	$12 / 2 / 2009$		

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7

