Description

The 9SQL4952 is a member of IDT's 'Lite' family of server clocks. It generates 2100 MHz outputs that exceed the requirements of the CK420BQ CPU/SRC clocks. Each output has its own OE\# pin for clock management and supports 2 different spread spectrum levels in addition to spread off. It also provides a copy of the 25 MHz internal XO. The 9SQL4952 supports PCle Common Clock (CC) and Independent Reference Clock (IR) architectures.

Recommended Application

PCle Gen1, Gen2, Gen3, Gen4 Server Clock

Output Features

- 2-100MHz push-pull Low-power (LP) HCSL BCLK pairs
- Integrated terminations for 85Ω Zout
- 1-3.3V 25MHz LVCMOS REF output

Key Specifications

- BCLK outputs:
- Cycle-to-cycle jitter <50ps
- Output-to-output skew <50ps
- PCle Gen1, Gen2, Gen3, Gen4 CC compliant
- PCle Gen2, Gen3 IR compliant
- QPI/UPI compliant
- SAS12G compliant (SSC off)
- 12k-20M phase jitter <2ps rms (SSC off)
- REF output:
- Phase jitter <200fs rms (SSC off)
- $\pm 50 \mathrm{ppm}$ frequency accuracy on all clocks

Features/Benefits

- Direct connection to 85Ω transmission lines; saves 8 resistors and $14 \mathrm{~mm}^{2}$ compared to standard HCSL
- 112 mW typical power consumption; eases thermal concerns @ 1/10 the power of CK420BQ
- Contains default configuration; SMBus interface not required for device operation
- OE\# pins; support BCLK power management
- 25 MHz input frequency; standard crystal
- 25 MHz REF output; eliminates XO from board
- Pin/SMBus selectable $0 \%,-0.25 \%$ or -0.5% spread on BCLK outputs; minimize EMI and phase jitter for each application
- BCLK outputs blocked until PLL is locked; clean system start-up
- Two selectable SMBus addresses; multiple devices can easily share an SMBus segment
- Space saving 24 -pin $4 \times 4 \mathrm{~mm}$ VFQFPN; minimal board space

Block Diagram

Pin Configuration

24-pin VFQFPN, 4x4 mm, 0.5mm pitch

\wedge prefix indicates internal 120KOhm pull up resistor
v prefix indicates internal 120KOhm pull down resistor

SMBus Address Selection Table

	SADR	Address	+
Read/Write Bit			
State of SADR on first application of CKPWRGD_PD\#	0	1101000	x
	1	1101010	x

Power Management Table ${ }^{3}$

CKPWRGD_PD\#	SMBus OE bit	BCLKx		REF
		Comp. O/P		
0	X	Low 1	Low 1	Hi-Z 2
1	1	Running	Running	Running
1	1	Disabled 1	Disabled 1	Running
1	0	Disabled 1	Disabled 1	Disabled 4

1. The output state is set by B11[1:0] (Low/Low default)
2. REF is Hi-Z until the 1st assertion of CKPWRGD_PD\# high. After this, when CKPWRG_PD\# is low, REF is disabled unless Byte3[5]=1, in which case REF is running..
3. Input polarities defined at default SMBus values.
4. See SMBus description for Byte 3, bit 4

Power Connections

Pin Number		Description
VDD	GND	
3	5,24	XTAL, REF
7	6	Digital Power
11,20	$10,21,25$	BCLK outputs
16	15	PLL Analog

Pin Descriptions

Pin\#	Pin Name	Type	Pin Description
1	XIN/CLKIN_25	IN	Crystal input or Reference Clock input. Nominally 25 MHz .
2	X2	OUT	Crystal output.
3	VDDXTAL3. 3	PWR	Power supply for XTAL, nominal 3.3V
4	vSADR/REF3.3	$\begin{gathered} \hline \text { LATCHED } \\ \text { I/O } \end{gathered}$	Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin
5	GNDREF	GND	Ground pin for the REF outputs.
6	GNDDIG	GND	Ground pin for digital circuitry
7	VDDDIG3.3	PWR	3.3 V digital power (dirty power)
8	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
9	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3 V tolerant.
10	GND	GND	Ground pin.
11	VDD3.3	PWR	Power supply, nominal 3.3V
12	vOEO\#	IN	Active low input for enabling output 0 . This pin has an internal 120kohm pull-down. 1 =disable outputs, $0=$ enable outputs
13	BCLKO	OUT	True output of differential BCLK.
14	BCLKO\#	OUT	Complement output of differential BCLK.
15	GNDA	GND	Ground pin for the PLL core.
16	VDDA3.3	PWR	3.3V power for the PLL core.
17	BCLK1	OUT	True output of differential BCLK.
18	BCLK1\#	OUT	Complement output of differential BCLK.
19	vOE1\#	IN	Active low input for enabling output 1. This pin has an internal 120 kohm pull-down. 1 =disable outputs, $0=$ enable outputs
20	VDD3. 3	PWR	Power supply, nominal 3.3V
21	GND	GND	Ground pin.
22	^CKPWRGD_PD\#	IN	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal 120kohm pull-up resistor.
23	vSS_EN_tri	LATCHED IN	Latched select input to select spread spectrum amount at initial power up : $1=-0.5 \%$ spread, $M=-0.25 \%, 0=$ Spread Off
24	GNDXTAL	GND	GND for XTAL
25	ePAD	GND	Connect to ground

Test Loads

Terminations

Zo $(\boldsymbol{\Omega})$	$\mathbf{R s}(\boldsymbol{\Omega})$
85	0
100	7.5

Alternate Terminations

The 9SQL family can easily drive LVPECL, LVDS, and CML logic. See "AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's "Universal" Low-Power HCSL Outputs" for details.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9SQL4952. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Supply Voltage	VDDxxx	Applies to all VDD pins	-0.5		3.9	V	1,2
Input Voltage	$\mathrm{V}_{\text {IN }}$		-0.5		DD 	$\mathrm{V}_{\text {IHSMB }}$	SMBus clock and data pins
0.5 V	V	1,3					
Input High Voltage, SMBus				3.9	V	1	
Storage Temperature	TS		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2500			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.
${ }^{3}$ Not to exceed 4.5 V .

Electrical Characteristics-SMBus Parameters

$T A=T_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$	$\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$			0.8	V	
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$	$\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$	2.1		3.6	V	
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@PULLUP			0.4	V	
SMBus Sink Current	$\mathrm{I}_{\text {PULLUP }}$	@ $\mathrm{V}_{\text {OL }}$	4		mA		
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$		2.7		3.6	V	
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL -0.15) to (Min VIH +0.15$)$			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH +0.15) to (Max VIL -0.15$)$			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {SMBMAX }}$	Maximum SMBus operating frequency			500	kHz	

[^0]
Electrical Characteristics-Input/Supply/Common Parameters-Normal Operating Conditions

TA $=\mathrm{T}_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	VDDxxx	Supply voltage for core, analog and single-ended LVCMOS outputs.	3.135	3.3	3.465	V	
Ambient Operating Temperature	$\mathrm{T}_{\text {AMB }}$	Industrial range	-40	25	85	${ }^{\circ} \mathrm{C}$	
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus	$0.75 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Input Mid Voltage	$\mathrm{V}_{\text {IM }}$	Single-ended tri-level inputs ('_tri' suffix)	$0.4 \mathrm{~V}_{\mathrm{DD}}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.6 \mathrm{~V}_{\mathrm{DD}}$	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Single-ended inputs, except SMBus	-0.3		$0.25 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{VDD}$	-5		5	uA	
Input Current	$\mathrm{I}_{\text {INP }}$	Single-ended inputs $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\text {IN }}=$ VDD; Inputs with internal pull-down resistors	-200		200	uA	
Input Frequency	$\mathrm{F}_{\text {in }}$	XTAL, or X1 input		25		MHz	
Pin Inductance	$L_{\text {pin }}$				7	nH	1
Capacitance	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {STAB }}$	From $V_{D D}$ Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock		0.35	1.8	ms	1,2
SS Modulation Frequency	$\mathrm{f}_{\text {MOD }}$	Allowable Frequency (Triangular Modulation)	30	31.6	33	kHz	1
OE\# Latency	$\mathrm{t}_{\text {Latoe }}$	BCLK start after OE\# assertion BCLK stop after OE\# deassertion	1		3	clocks	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	BCLK output enable after PD\# de-assertion		28	300	us	1,3
Tfall	t_{F}	Fall time of single-ended control inputs			5	ns	1,2
Trise	t_{R}	Rise time of single-ended control inputs			5	ns	1,2

[^1]
Electrical Characteristics-BCLK Low-Power HCSL Outputs

TA $=\mathrm{T}_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on, fast setting	2	3.1	4	V/ns	2,3
		Scope averaging, slow setting	1	2.2	3	V / ns	2,3
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	376.5	550	mV	1,4,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		13.8	140	mV	1,4,9
Avg. Clock Period Accuracy	Tperiod_avg		-50		+2550	ppm	2,10,13
Absolute Period	TPERIOD_ABS	Includes jitter and Spread Spectrum Modulation	9.9491	10.0	10.1011	ns	2,6
Jitter, Cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$			23	50	ps	2
Voltage High	$\mathrm{V}_{\text {HIGH }}$	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	797	850	mV	1
Voltage Low	V Low		-150	10	150		1
Absolute Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)		822	1150	mV	1,7,15
Absolute Min Voltage	Vmin		-300	-101			1,8,15
Duty Cycle	$t_{\text {DC }}$		45	50	55	\%	2
Slew rate matching	Δ Trf			6	20	\%	1,14
Skew, Output to Output	$\mathrm{t}_{\text {sk3 }}$	Averaging on, $\mathrm{V}_{\mathrm{T}}=50 \%$		24	50	ps	2

${ }^{1}$ Measured from single-ended waveform.
${ }^{2}$ Measured from differential waveform.
${ }^{3}$ Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300 mV measurement window is centered on the differential zero crossing.
${ }^{4}$ Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.
${ }^{5}$ Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement.
${ }^{6}$ Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative PPM tolerance, and spread spectrum modulation.
${ }^{7}$ Defined as the maximum instantaneous voltage including overshoot.
${ }^{8}$ Defined as the minimum instantaneous voltage including undershoot.
${ }^{9}$ Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in $V_{\text {CROss }}$ for any particular system.
${ }^{10}$ Refer to Section 4.3.7.1.1 of the PCI Express Base Specification, Revision 3.0 for information regarding PPM considerations.
${ }^{11}$ System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe can be used for differential measurements. Test load CL $=2 \mathrm{pF}$.
${ }^{12} \mathrm{~T}_{\text {Stable }}$ is the time the differential clock must maintain a minimum $\pm 150 \mathrm{mV}$ differential voltage after rising/falling edges before it is allowed to droop back into the VRB $\pm 100 \mathrm{mV}$ differential range.
${ }^{13}$ PPM refers to parts per million and is a DC absolute period accuracy specification. 1 PPM is $1 / 1,000,000$ th of 100.000000 MHz exactly or 100 Hz . For 300 PPM , then we have an error budget of $100 \mathrm{~Hz} / \mathrm{PPM}$ * $300 \mathrm{PPM}=30 \mathrm{kHz}$. The period is to be measured with a frequency counter with measurement window set to 100 ms or greater. The ± 300 PPM applies to systems that do not employ Spread Spectrum Clocking, or that use common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500 PPM nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of $+2,800$ PPM.
${ }^{14}$ Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a $\pm 75 \mathrm{mV}$ window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate.
${ }^{15}$ At default SMBus amplitude settings.

Electrical Characterisstics-Filtered Phase Jitter Parameters - PCle Common Clocked (CC) Architectures ${ }^{1,2,5}$

$\mathrm{T}_{\mathrm{AMB}}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
Phase Jitter, PLL Mode	$\mathrm{t}_{\text {jphPCleG1-CC }}$	PCle Gen 1		17	30	86	ps (p-p)	3
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	$\text { PCle Gen } 2 \text { Low Band }$ $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$ (PLL BW of $5-16 \mathrm{MHz}, 8-16 \mathrm{MHz}, \mathrm{CDR}=5 \mathrm{MHz}$)		0.4	0.6	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
		$\begin{gathered} \text { PCle Gen } 2 \text { High Band } \\ 1.5 \mathrm{MHz}<\mathrm{f}<\text { Nyquist }(50 \mathrm{MHz}) \\ \text { (PLL BW of } 5-16 \mathrm{MHz}, 8-16 \mathrm{MHz}, \mathrm{CDR}=5 \mathrm{MHz}) \end{gathered}$		1.1	1.7	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
	$\mathrm{t}_{\text {jphPCleG3-Cc }}$	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, 2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.29	0.42	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
	$\mathrm{t}_{\text {jphPCleG4-CC }}$	PCle Gen 4 (PLL BW of $2-4 \mathrm{MHz}, 2-5 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.29	0.42	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	

Electrical Characteristics-Filtered Phase Jitter Parameters - PCle Independent Reference (IR) Architectures ${ }^{1,5,6}$

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY LIMIT	UNITS	NOTES		
	$\mathrm{t}_{\text {jphPCleG1- }}$									
SRIS									\quad	PCle Gen 1
:---:										

Notes on PCle Filter Phase Jitter Tables

${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
${ }^{2}$ Based on PCle Base Specification Rev4.0 version 0.7 draft. See http://www.pcisig.com for latest specifications.
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk}$ @ 1 M cycles for a BER of 1-12.
${ }^{4}$ Additive jitter for RMS values is calculated by solving for b where $\left[b=s q r t\left(c^{2}-a^{2}\right)\right.$], a is rms input jitter and c is rms total jitter.
${ }^{5}$ Driven by 9FGL0841 or equivalent
${ }^{6}$ IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCle clock architectures.
${ }^{7}$ According to the PCle Base Specification Rev4.0 version 0.7 draft, the jitter transfer functions and corresponding jitter limits are not defined for the IR clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this table. There are no accepted filters or limits for IR clock architectures at PCle Gen1 or Gen4 data rates

Electrical Characteristics-Filtered Phase Jitter Parameters - QPI/UPI, SAS ${ }^{1,2}$

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
Phase Jitter, PLL Mode	$\mathrm{t}_{\text {jphQPI_UPI }}$	QPI \& UPI (100 MHz or $133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}$, $6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI})$		0.11	0.15	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
		QPI \& UPI $(100 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})$		0.08	0.11	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
		QPI \& UPI (100MHz, ?9.6Gb/s, 12UI)		0.07	0.1	0.2	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
Phase Jitter, SAS12G BCLK Outputs	$\mathrm{t}_{\text {jphSAS12G }}$	100MHz, SSC Off, REF output enabled		0.40	0.45	1.2	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2

Notes

${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.
${ }^{2}$ Calculated from Intel-supplied Clock Jitter Tool
${ }^{3}$ For RMS values additive jitter is calculated by solving for b where $\left[b=s q r t\left(c^{2}-a^{2}\right)\right]$, a is rms input jitter and c is rms total jitter.

Electrical Characteristics-12kHz-20MHz Phase Jitter

$\mathrm{T}_{\text {AMB }}=$ over the specified operating range. Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	SPECIFICATION LIMIT	UNITS	NOTES
Phase Jitter, $12 \mathrm{kHz}-20 \mathrm{MHz}$ BCLK Outputs	$\mathrm{t}_{\text {jph12k-20M }}$	100MHz, SSC Off, REF output enabled		1.5	2	n / a	ps	
(rms)	1							

Notes

${ }^{1}$ Applies to all differential outputs, guaranteed by design and characterization.

Electrical Characteristics-Current Consumption

TA = $\mathrm{T}_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$I_{\text {DDAOP }}$	VDDA, All outputs active @ 100MHz		13	16	mA	
	$I_{\text {DDOP }}$	All VDD, except VDDA, All outputs active					
@ 100MHz							

[^2]
Electrical Characteristics- REF

TA $=T_{\text {AMB; }}$ Supply Voltages per normal operation conditions, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	0			ppm	1,2
Clock period	$\mathrm{T}_{\text {period }}$	25 MHz output		40		ns	2
Output High Voltage	V_{IH}	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	$\begin{gathered} \hline 0.8 \mathrm{x} \\ \mathrm{~V}_{\text {DDREF }} \\ \hline \end{gathered}$			V	
Output Low Voltage	$V_{\text {IL }}$	$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$			$\begin{gathered} \hline 0.2 x \\ \mathrm{~V}_{\text {DDREF }} \end{gathered}$	V	
Rise/Fall Slew Rate	$\mathrm{t}_{\text {ff1 }}$	Byte $3=1 \mathrm{~F}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{VDD}-0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.45 \mathrm{~V}$	0.5	0.8	1.5	V / ns	1
Rise/Fall Slew Rate	$\mathrm{t}_{\text {ff1 }}$	Byte 3 $=5 \mathrm{~F}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{VDD}-0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.45 \mathrm{~V}$	1.0	1.5	2.5	V / ns	1,3
Rise/Fall Slew Rate	$\mathrm{t}_{\mathrm{ff} 1}$	Byte 3 $=9 \mathrm{~F}, \mathrm{~V}_{\mathrm{OH}}=\mathrm{VDD}-0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.45 \mathrm{~V}$	1.5	2.2	2.9	V / ns	1
Rise/Fall Slew Rate	$\mathrm{t}_{\mathrm{ff1}}$	Byte $3=\mathrm{DF}, \mathrm{V}_{\mathrm{OH}}=\mathrm{VDD}-0.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.45 \mathrm{~V}$	2.2	2.9	3.9	V / ns	1
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1 \mathrm{X}}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{VDD} / 2 \mathrm{~V}$	45	49.8	55	\%	1,4
Duty Cycle Distortion	$\mathrm{d}_{\mathrm{tcd}}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{VDD} / 2 \mathrm{~V}$	-0.5	0.0	+0.5	\%	1,5
Jitter, cycle to cycle	$\mathrm{t}_{\text {jcyc-cyc }}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{VDD} / 2 \mathrm{~V}$		81	250	ps	1,4
Noise floor	$\mathrm{t}_{\mathrm{ddBC} 1 \mathrm{k}}$	1 kHz offset			-120	dBc	1,4
Noise floor	$\mathrm{t}_{\mathrm{jdBC} 10 \mathrm{k}}$	10kHz offset to Nyquist			-130	dBc	1,4
Jitter, phase	$\mathrm{t}_{\text {jphREF }}$	12 kHz to 5 MHz , DIF SSC Off			0.3	ps (rms)	1,4
Jitter, phase	$\mathrm{t}_{\text {jphREF }}$	12 kHz to 5 MHz , DIF SSC On			1	ps (rms)	1,4

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00 MHz
${ }^{3}$ Default SMBus Value
${ }^{4}$ When driven by a crystal.
${ }^{5}$ When driven by an external oscillator via the X1 pin, X2 should be floating.

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count $=X$
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count $=$ X			
			ACK
Beginning Byte N			
			ACK
0			
0			0
0			0
			0
Byte N+X-1		$\stackrel{\times}{\infty}$	
			ACK
P	stoP bit		

Note: SMBus Read/Write Address is Latched on SADR pin.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count $=X$
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte \mathbf{X} (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address			
RD	ReaD		
			ACK
			Data Byte Count=X
	ACK		
		$\stackrel{0}{\substack{\infty \\ \times \\ \times \\ \hline}}$	Beginning Byte N
ACK			
			0
	0		0
0			0
0			
			Byte N + X - 1
N	Not acknowledge		
P	stoP bit		

SMBus Table: Output Enable Register

Byte 0	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					X
Bit 6	Reserved					X
Bit 5	Reserved					X
Bit 4	Reserved					X
Bit 3	Reserved					X
Bit 2	BCLK OE1	Output Enable	RW	Low/Low	Enabled	1
Bit 1	BCLK OE0	Output Enable	RW	Low/Low	Enabled	1
Bit 0	Reserved					X

1. A low on these bits will overide the OE\# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default).

SMBus Table: SS Readback and Vhigh Control Register

Byte 1	Name	Control Function	Type	0	1	Default
Bit 7	SSENRB1	SS Enable Readback Bit1	R	$\begin{gathered} \text { 00' for SS_EN_tri = 0, '01' for SS_EN_tri } \\ =\text { 'M', '11 for SS_EN_tri = '1' } \end{gathered}$		Latch
Bit 6	SSENRB1	SS Enable Readback Bit0	R			Latch
Bit 5	SSEN_SWCNTRL	Enable SW control of SS	RW	SS control locked	Values in B1[4:3] control SS amount.	0
Bit 4	SSENSW1	SS Enable Software Ctl Bit1	RW ${ }^{1}$	$\begin{aligned} & \hline 00 '=\text { SS Off, '01' = }-0.25 \% \text { SS, } \\ & \text { '10' = Reserved, '11'= }-0.5 \% \text { SS } \end{aligned}$		0
Bit 3	SSENSW0	SS Enable Software Ctl Bit0	RW ${ }^{1}$			0
Bit 2	Reserved					X
Bit 1	AMPLITUDE 1	Controls Output Amplitude	RW	$00=0.6 \mathrm{~V}$	01= 0.68 V	1
Bit 0	AMPLITUDE 0		RW	$10=0.75 \mathrm{~V}$	$11=0.85 \mathrm{~V}$	0

1. Spread must be selected OFF or ON with the hardware latch pin. These bits should not be used to turn spread ON or OFF after power up. These bits can be used to change the spread amount, and B1[5] must be set to a 1 for these bits to have any effect on the part. If These bits are used to turn spread OFF or ON, the system will need to be reset.

SMBus Table: BCLK Slew Rate Control Register

Byte 2	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					X
Bit 6	Reserved					X
Bit 5	Reserved					X
Bit 4	Reserved					X
Bit 3	Reserved					X
Bit 2	SLEWRATESEL BCLK1	Adjust Slew Rate of BCLK1	RW	Slow Setting	Fast Setting	1
Bit 1	SLEWRATESEL BCLK0	Adjust Slew Rate of BCLK0	RW	Slow Setting	Fast Setting	1
Bit 0	Reserved					X

Note: See "Low-Power HCSL Outputs" table for slew rates.
SMBus Table: REF Control Register

Byte 3	Name	Control Function	Type	0	1	Default
Bit 7	REF	Slew Rate Control	RW	00 = Slowest	01 = Slow	0
Bit 6			RW	10 = Fast	11 = Faster	1
Bit 5	REF Power Down Function	Wake-on-Lan Enable for REF	RW	REF disabled in Power Down	REF runs in Power Down	0
Bit 4	REF OE	REF Output Enable	RW	Disabled ${ }^{1}$	Enabled	1
Bit 3	Reserved					X
Bit 2	Reserved					X
Bit 1	Reserved					X
Bit 0	Reserved					X

1. The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=Hlgh

Byte 4 is Reserved

9SQL4952 DATASHEET

SMBus Table: Revision and Vendor ID Register

Byte 5	Name	Control Function	Type	0	Default
Bit 7	RID3	Revision ID	R	$B \mathrm{rev}=0001$	0
Bit 6	RID2		R		0
Bit 5	RID1		R		0
Bit 4	RID0		R		1
Bit 3	VID3	VENDOR ID	R	0001 = IDT	0
Bit 2	VID2		R		0
Bit 1	VID1		R		0
Bit 0	VID0		R		1

SMBus Table: Device Type/Device ID

Byte 6	Name	Control Function	Type	0	1	Default
Bit 7	Device Type1	Device Type	R	$00=9$ QQL49xx		0
Bit 6	Device Type0		R			0
Bit 5	Device ID5	Device ID	R	00010 binary or 02 hex		0
Bit 4	Device ID4		R			0
Bit 3	Device ID3		R			0
Bit 2	Device ID2		R			0
Bit 1	Device ID1		R			1
Bit 0	Device ID0		R			0

SMBus Table: Byte Count Register

Byte 7	Name	Control Function	Type	0 1	Default
Bit 7	Reserved				X
Bit 6	Reserved				X
Bit 5	Reserved				X
Bit 4	BC4	Byte Count Programming	RW	Writing to this register will configure how many bytes will be read back, default is $=8$ bytes.	0
Bit 3	BC3		RW		1
Bit 2	BC2		RW		0
Bit 1	BC1		RW		0
Bit 0	BC0		RW		0

Bytes 8 and 9 are Reserved.

SMBus Table: PLL MN Enable, PD_Restore

SMBus Table: Stop State Control

Byte 11	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					X
Bit 6	Reserved					X
Bit 5	Reserved					X
Bit 4	Reserved					X
Bit 3	Reserved					X
Bit 2	Reserved					X
Bit 1	STP[1]	True/Complement BCLK OutputDisable State	RW	00 = Low/Low	10 = High/Low	0
Bit 0	STP[0]		RW	01 = HiZ/HiZ	11 = Low/High	0

SMBus Table: Impedance Control

SMBus Table: Impedance Control

Byte 13	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					X
Bit 6	Reserved					X
Bit 5	Reserved					X
Bit 4	Reserved					X
Bit 3	BCLK1_imp[1]	BCLK1 Zout	RW	$00=33 \Omega$ Zout	10=100 Ω Zout	0
Bit 2	BCLK1_imp[0]	BCLK1 Zout	RW	01=85 Ω Zout	11 = Reserved	1
Bit 1	Reserved					X
Bit 0	Reserved					X

SMBus Table: Pull-up Pull-down Control

Byte 14	Name	Control Function	Type	0	1	Default
Bit 7	OE0_pu/pd[1]	OE0 Pull-up(PuP)/	RW	00=None	10=Pup	0
Bit 6	OE0_pu/pd[0]	Pull-down(Pdwn) control	RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 5	Reserved					X
Bit 4						X
Bit 3	Reserved					X
Bit 2	Reserved					X
Bit 1	Reserved					X
Bit 0	Reserved					X

SMBus Table: Pull-up Pull-down Control

Byte 15	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					1
Bit 5	Reserved					0
Bit 4	Reserved					1
Bit 3	OE1_pu/pd[1]	OE1 Pull-up(PuP)/ Pull-down(Pdwn) control	RW	00=None	10=Pup	0
Bit 2	OE1_pu/pd[0]		RW	01=Pdwn	11 = Pup+Pdwn	1
Bit 1	Reserved					0
Bit 0	Reserved					1

SMBus Table: Pull-up Pull-down Control

Byte 16	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					0
Bit 5	Reserved					1
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					1
Bit 1	CKPWRGD_PD_pu/pd[1]	$\begin{gathered} \hline \text { CKPWRGD_PD Pull-up(PuP)/ } \\ \text { Pull-down(Pdwn) control } \\ \hline \end{gathered}$	RW	00=None	10=Pup	1
Bit 0	CKPWRGD_PD_pu/pd[0]		RW	01=Pdwn	11 = Pup+Pdwn	0

Byte 17 is Reserved

SMBus Table: Polarity Control

Byte 18	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					0
Bit 5	OE1_polarity	Sets OE1 polarity	RW	Enabled when Low	Enabled when High	0
Bit 4	Reserved					0
Bit 3	OE0_polarity	Sets OE0 polarity	RW	Enabled when Low	Enabled when High	0
Bit 2	Reserved					0
Bit 1	Reserved					0
Bit 0	Reserved					0

SMBus Table: Polarity Control

Byte 19	Name	Control Function	Type	0	1	Default
Bit 7	Reserved					0
Bit 6	Reserved					0
Bit 5	Reserved					0
Bit 4	Reserved					0
Bit 3	Reserved					0
Bit 2	Reserved					0
Bit 1	Reserved					0
Bit 0	CKPWRGD_PD	Determines CKPWRGD_PD polarity	RW	Power Down when Low	Power Down when High	0

Recommended Crystal Characteristics (3225 package)

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	
Resonance Mode	Fundamental	-	
Frequency Tolerance @ $25^{\circ} \mathrm{C}$	± 20	PPM Max	
Frequency Stability, ref @ $25^{\circ} \mathrm{C}$ Over Operating Temperature Range	± 20	PPM Max	
Temperature Range (commerical)	$0 \sim 70$	${ }^{\circ} \mathrm{C}$	
Temperature Range (industrial)	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$	
Equivalent Series Resistance (ESR)	50	Ω Max	
Shunt Capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$	7	pF Max	
Load Capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$	8	pF Max	
Drive Level	0.3	mW Max	
Aging per year	± 5	PPM Max	

Marking Diagram

952BGI
YYWWS

Notes:

1. Line 1: truncated part number
2. "I" denotes industrial temperature range device.
3. "YYWW" is the last two digits of the year and week that the part was assembled.
4. "\$" denotes mark code.
5. "LOT" is the lot sequence number.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP VALUE	UNITS	NOTES
Thermal Resistance	$\theta_{\text {Jc }}$	Junction to Case	NLG24	62	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	θ_{Jb}	Junction to Base		5.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JAO }}$	Junction to Air, still air		50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA1 }}$	Junction to Air, $1 \mathrm{~m} / \mathrm{s}$ air flow		43	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA3 }}$	Junction to Air, $3 \mathrm{~m} / \mathrm{s}$ air flow		39	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1
	$\theta_{\text {JA5 }}$	Junction to Air, $5 \mathrm{~m} / \mathrm{s}$ air flow		38	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1

${ }^{1}$ ePad soldered to board

Package Outline and Package Dimensions (NLG24)

Package Outline and Package Dimensions (NLG24), cont.

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9SQL4952BNLGI	Trays	24-pin VFQFPN	-40° to $+85^{\circ} \mathrm{C}$
9SQL4952BNLGI8	Tape and Reel	24-pin VFQFPN	-40° to $+85^{\circ} \mathrm{C}$

"G" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
" B " is the device revision designator (will not correlate with the datasheet revision).

Revision History

\(\left.$$
\begin{array}{|c|c|c|l|c|}\hline \text { Rev. } & \text { Issue Date } & \text { Intiator } & \text { Description } & \text { Page \# } \\
\hline \text { F } & 11 / 4 / 2016 & \text { RDW } & \begin{array}{l}\text { 1. Updated test loads diagrams } \\
\text { 2. Added typical Tdrive_PD\# value } \\
\text { 3. Slight adjustments to max REF slew rates } \\
\text { 4. Added default impedance settings to Byte 12 and 13 }\end{array}
$$ \& 4,6,10,

14\end{array}\right]\)| 1. Corrected impedance of differential test load from 100ohms to |
| :--- |
| $850 h m s$ |$\quad 4$

Corporate Headquarters

6024 Silver Creek Valley Road

Sales
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales

Tech Support
www.idt.com/go/support

 document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.
 expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
 names, logos and designs, are the property of IDT or their respective third party owners.

Copyright ©2016 Integrated Device Technology, Inc.. All rights reserved.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R
MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG

NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1
NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7 ADCLK854BCPZ-REEL7
ADCLK905BCPZ-R2

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
 ${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$

[^2]: ${ }^{1}$ This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit $5=1$)

