

VERY LOW POWER CLOCK FOR 2011 NETBOOKS

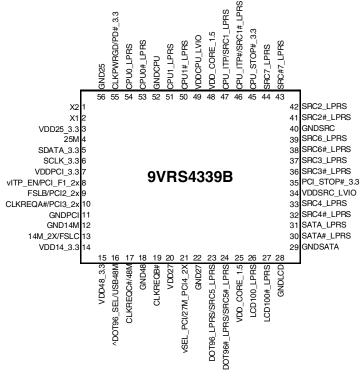
9VRS4339B

General Description

The 9VRS4339B is a Intel CK-NET compatible main clock for Intel Netbooks, conforming to the CK-NET specification. It is driven with a 25MHz crystal and generates a variety of clocks, including an LCD clock. An SMBus interface allows full control of the device.

Output Features

- 2 0.8V push-pull differential CPU pairs
- 5 0.8V push-pull differential SRC pairs
- 1 − 0.8V push-pull differential SATA pair
- 1 0.8V push-pull differential DOT96/SRC pair
- 1 0.8V push-pull differential LCD100 pair
- 1 0.8V push-pull differential CPU_ITP/SRC pair
- 2 PCI (33MHz)
- 1 PCI F, (33MHz) free-running
- 1 USB 48MHz
- 1 48MHz
- 1 25MHz
- 1 27MHz/PCI
- 1 14.318MHz


Features/Benefits

- Supports Wake_On_LAN (see pin55 pin description)
- Selectable spread % on CPU, SRC, PCI; Supports margining
- Uses external 25MHz crystal, external crystal load caps are required for frequency tuning
- CLKREQ# pins; Support SRC power management
- Low power differential clock outputs driving 100 ohm differential traces; reduced powe
- Integrated 33 ohm series resistors on all differential outputs; reduced board space

Key Specifications

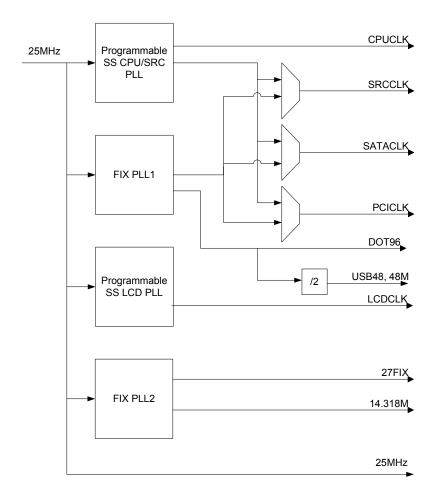
- CPU outputs cycle-to-cycle jitter <85ps
- SRC cycle-to-cycle jitter <85ps
- SRC meets PCIEX Gen2 specifications
- SATA outputs cycle-to-cycle jitter <125ps
- PCI outputs cycle-to-cycle jitter <500ps
- ±100ppm frequency accuracy on all clocks

Pin Configuration

v prefix indicates internal pull-down resistor

^ prefix indicates internal pull-up resistor

Pin Descriptions


PIN#		TYPE	DESCRIPTION
1	X2	OUT	Crystal output, nominally 25MHz
2	X1	IN	Crystal input, nominally 25MHz
3	VDD25_3.3	PWR	Power pin for crystal and 25MHz output, nominal 3.3V
4	25M	OUT	3.3V 25MHz clock output
5	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
6	SCLK_3.3	OUT	Clock pin of SMBus circuitry, 3.3V tolerant.
7	VDDPCI_3.3	PWR	Power supply for PCI clocks, nominal 3.3V
8	vITP_EN/PCI_F1_2x	I/O	ITP enable latched input ITP_Enable Selects the functionality of the CPU_ITP/SRC output as follows: 1 = CPU_ITP output 0 = SRC1 output / Free-Running 3.3V PCI clock output, default to drive 2 loads.
9	FSLB/PCI2_2x	I/O	3.3V tolerant input for CPU frequency selection. Low voltage threshold inputs, see input electrical characteristics for Vil_FS and Vih_FS values / 3.3V PCI clock output, default to drive 2 loads.
10	CLKREQA#/PCI3_2x	I/O	3.3V real-time output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled. Pin function is programmable through SMBus. See CLKREQ# Control Table and SRC Power Management Table for details 0 = controlled outputs are enabled 1 = controlled outputs are Low/Low / 3.3V PCI clock output, default to drive 2 loads.
11	GNDPCI	PWR	Ground pin for the PCI outputs
12	GND14M	PWR	Ground pin for the 14.318MHz output
13	14M_2X/FSLC	I/O	3.3V 14.318 MHz clock output, default to drive 2 loads / 3.3V tolerant input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values.
14	VDD14_3.3	PWR	Power pin for 14.318MHz output, nominal 3.3V
15	VDD48_3.3	PWR	Power pin for 48MHz outputs, nominal 3.3V
16	^DOT96_SEL/USB48M	I/O	Input latched pin to select Pin23/24 as DOT 96MHz clock or SRC clock 1 = DOT96 output 0 = SRC5 output / 3.3V 48MHz USB clock output.
17	CLKREQC#/48M	1/0	3.3V real-time output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled. Pin function is programmable through SMBus. See CLKREQ# Control Table and SRC Power Management Table for details 0 = controlled outputs are enabled 1 = controlled outputs are Low/Low / 3.3V 48MHz clock output
18	GND48	PWR	Ground pin for 48MHz outputs
19	CLKREQB#	IN	3.3V real-time output enable for PCI Express (SRC) outputs. SMBus selects which outputs are controlled. 0 = controlled outputs are enabled 1 = controlled outputs are Low/Low
20	VDD27	PWR	Power pin for 27MHz output , nominal 3.3V
21	vSEL_PCI/27M_PCI4_2X	I/O	3.3V input latch pin to select this pin as 27M output or PCl4 clock output. This pin has an internal pulldown resistor. Latch functionality is as follows: 0 = 27MHz output 1 = 33.33MHz PCl output
22	GND27	PWR	Ground pin for the 27MHz output
23	DOT96_LPRS/SRC5_LPRS	OUT	True clock of push-pull DOT96 or SRC clock with integrated series resistor. No 50 ohm pull down needed. Default is pending on Pin16 DOT96_SEL.
24	DOT96#_LPRS/SRC5#_LPRS	OUT	Complement clock of push-pull DOT96 or SRC clock with integrated series resistor. No 50 ohm pull down needed. Default is pending on Pin16 DOT96_SEL.
25	VDD_CORE_1.5	PWR	Power pin for core PLL's, nominal 1.5V.
26	LCD100_LPRS	OUT	True clock of differential push-pull LCD100 output with integrated 33ohm series resistor. No 50ohm resistor to GND needed.
27	LCD100#_LPRS	OUT	Complementary clock of differential push-pull LCD100 output with integrated 33ohm series resistor. No 50ohm resistor to GND needed.
28	GNDLCD	PWR	Ground pin for LCD clock output

Pin Descriptions (cont.)

	= = = = :	/	
29	GNDSATA	PWR	Ground pin for the SATA outputs
30	SATA#_LPRS	OUT	Complementary clock of low power differential push-pull SATA clock pair with
30	SATA#_LITTO	001	integrated 33ohm series resistor. No 50 ohm resistor to GND needed.
31	SATA_LPRS	OUT	True clock of low power differential push-pull SATA clock pair with integrated 33ohm
0.	C/T/T_EI TIO		series resistor. No 50 ohm resistor to GND needed.
32	SRC4#_LPRS	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
- 02	Orto-#_El Tio	001	series resistor. No 50ohm resistor to GND needed.
33	SRC4_LPRS	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
- 00	OHO+_EF HO	001	resistor. No 50ohm resistor to GND needed.
34	VDDSRC_LVIO	PWR	Power pin for SRC I/O, nominally 1.05V to 1.5V from external power supply
35	PCI_STOP#_3.3	IN	Stops all stoppable PCI, SATA and SRC clocks when low. Free-Running PCI, SATA
	. 66.66.6		and SRC clocks are not effected by this input. This input is 3.3V tolerant.
36	SRC3# LPRS	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
	0.1002110		series resistor. No 50ohm resistor to GND needed.
37	SRC3_LPRS	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
	0.100_1.110		resistor. No 50ohm resistor to GND needed.
38	SRC6#_LPRS	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
			series resistor. No 50ohm resistor to GND needed.
39	SRC6_LPRS	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
			resistor. No 500hm resistor to GND needed.
40	GNDSRC	PWR	Ground pin for the SRC outputs
41	SRC2#_LPRS	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
	_		series resistor. No 500hm resistor to GND needed.
42	SRC2_LPRS	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
			resistor. No 50ohm resistor to GND needed.
43	SRC#7_LPRS	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
			series resistor. No 500hm resistor to GND needed.
44	SRC7_LPRS	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
45	ODLL OTOD# 0.0	INI	resistor. No 500hm resistor to GND needed.
45	CPU_STOP#_3.3	IN	Stops all stoppable CPU clocks when enabled. This is a 3.3V tolerant input. Complementary clock of low power differential CPU_ITP/SRC pair with integrated
			330hm series resistor. No 500hm resistor to GND needed. The pin function is
46	CPU_ITP#/SRC1#_LPRS	OUT	determined by the latched value on ITP_EN:
40	CFU_IIF#/ShCI#_LFh3	001	0 = SRC1#
			1 = CPU ITP#
			True clock of low power differential CPU_ITP/SRC pair with integrated 33ohm series
			resistor. No 500hm resistor to GND needed. The pin function is determined by the
47	CPU_ITP/SRC1_LPRS	OUT	latched value on ITP_EN:
"'	or o_m /one i_Er no	001	0 = SRC1
			1 = CPU_ITP
48	VDD_CORE_1.5	PWR	Power pin for core PLL, nominal 1.5V
49	VDDCPU_LVIO	PWR	Power pin for CPU I/O, nominally 1.05V to 1.5V from external power supply
			Complementary clock of differential pair 0.8V push-pull CPU output with integrated
50	CPU1#_LPRS	OUT	33ohm series resistor. No 50 ohm resistor to GND needed.
			True clock of differential pair 0.8V push-pull CPU output with integrated 33ohm series
51	CPU1_LPRS	OUT	resistor. No 50 ohm resistor to GND needed.
52	GNDCPU	PWR	Ground pin for the CPU outputs
	CDUO# LDBC		Complementary clock of differential pair 0.8V push-pull CPU output with integrated
53	CPU0#_LPRS	OUT	33ohm series resistor. No 50 ohm resistor to GND needed.
ΕΛ	CRUO I RRS	OUT	True clock of differential pair 0.8V push-pull CPU output with integrated 33ohm series
54	CPU0_LPRS	OUT	resistor. No 50 ohm resistor to GND needed.
			This 3.3V LVTTL input notifies device to sample latched inputs and start up on first
			high assertion or exit Power Down Mode on subsequent assertions. When WLAN
			enable in Byte13 bit 5 =1, device will enter Wake-On-LAN mode with 25MHz being
	CLKDWDCD/DD# C C	INI	free-running.
55	CLKPWRGD/PD#_3.3	IN	1 = Normal operation
			0 = Power Down Mode or Wake-On-LAN mode
			Note: For lowest power saving during WOL mode, it is mandatory to connect 3.3V
			and 1.5V core VDD pins to standby power and suspend/remove VDDIO pins.
56	GND25	PWR	Ground pin for 25MHz

3

Block Diagram

Series Resistors for Single Ended Outputs

	Number of	Match Daint for N. 9 D	Number of Loads Actually Driven.			
D.C.Drive Strength	Loads to Drive	Match Point for N & P Voltage / Current (mA)	1 Load Rs =	2 Loads Rs=	3 Loads Rs =	
	1	0.56 / 33 (17Ω)	33Ω [39Ω]	-	-	
	2	0.92 / 66 (14Ω)	39Ω [43Ω]	22Ω [27Ω]	-	

Notes:

- 1. Preferred drive strengths using CK505 clock sources. Transmission lines to load do not share series resistors.
- 2. Desktop/Mobile Platforms with Zo = 50/55 ohms use the first resistor value.
- 3. Systems with Zo = 60 ohms use the resistor values in brackets [].

Table 1: CPU/SRC PLL Spread Frequency Selection

CPU/SRC SS Select (B1b6)	SS1 (B1b5)	SS0 (B1b4)	FSLC (B0b7)	FSLB (B0b6)	SPREAD %	CPU MHz	SRC MHz	SATA MHz	PCI MHz
0	0	0	0	0	-0.50%	133.33	100.00	100.00	33.33
0	0	0	0	1	-0.50%	166.67	100.00	100.00	33.33
0	0	0	1	0	-0.50%	100.00	100.00	100.00	33.33
0	0	0	1	1	-0.50%	200.00	100.00	100.00	33.33
0	0	1	0	0	-0.40%	133.33	100.00	100.00	33.33
0	0	1	0	1	-0.40%	166.67	100.00	100.00	33.33
0	0	1	1	0	-0.40%	100.00	100.00	100.00	33.33
0	0	1	1	1	-0.40%	200.00	100.00	100.00	33.33
0	1	0	0	0	-0.30%	133.33	100.00	100.00	33.33
0	1	0	0	1	-0.30%	166.67	100.00	100.00	33.33
0	1	0	1	0	-0.30%	100.00	100.00	100.00	33.33
0	1	0	1	1	-0.30%	200.00	100.00	100.00	33.33
0	1	1	0	0	OFF	133.33	100.00	100.00	33.33
0	1	1	0	1	OFF	166.67	100.00	100.00	33.33
0	1	1	1	0	OFF	100.00	100.00	100.00	33.33
0	1	1	1	1	OFF	200.00	100.00	100.00	33.33
1	0	0	0	0	+/-0.25%	133.33	100.00	100.00	33.33
1	0	0	0	1	+/-0.25%	166.67	100.00	100.00	33.33
1	0	0	1	0	+/-0.25%	100.00	100.00	100.00	33.33
1	0	0	1	1	+/-0.25%	200.00	100.00	100.00	33.33
1	0	1	0	0	+/-0.20%	133.33	100.00	100.00	33.33
1	0	1	0	1	+/-0.20%	166.67	100.00	100.00	33.33
1	0	1	1	0	+/-0.20%	100.00	100.00	100.00	33.33
1	0	1	1	1	+/-0.20%	200.00	100.00	100.00	33.33
1	1	0	0	0	+/-0.15%	133.33	100.00	100.00	33.33
1	1	0	0	1	+/-0.15%	166.67	100.00	100.00	33.33
1	1	0	1	0	+/-0.15%	100.00	100.00	100.00	33.33
1	1	0	1	1	+/-0.15%	200.00	100.00	100.00	33.33
1	1	1	0	0	OFF	133.33	100.00	100.00	33.33
1	1	1	0	1	OFF	166.67	100.00	100.00	33.33
1	1	1	1	0	OFF	100.00	100.00	100.00	33.33
1	1	1	1	1	OFF	200.00	100.00	100.00	33.33

^{*} Bold is default

Table 2: LCD Spread Selection Table

FS2	FS1	FS0	LCD SS	SPREAD	LCD100
0	1	0	0	-0.50%	100.00
0	1	1	0	-1.0%	100.00
1	0	0	0	-1.5%	100.00
1	0	1	0	-2.0%	100.00
1	1	0	0	-2.50%	100.00
0	1	0	1	+/-0.25%	100.00
0	1	1	1	+/-0.5%	100.00
1	0	0	1	+/-0.75%	100.00
1	0	1	1	+/-1.0%	100.00
1	1	0	1	+/-1.25%	100.00

^{*} Bold is default

5

Power Distribution Table

	Pin N	lumber		Description			
3.3V VDD	1.5V VDD	1.05-1.5V VDD	GND	Description			
3	-	-	56	25MHz Crystal I/O; Internal Control Logic; 25MHz Output			
7	-	-	11	PCICLK Outputs			
14	-	-	12	14.318MHz & 27MHz outputs, 14/27MHz PLL Digital			
15	-	-	18	48MHz output			
20	-	-	22	27MHz output, 14/27MHz PLL analog			
-	25	-	28, 29	DOT96 Fix PLL Analog & Digital, LCD100 PLL Analog & Digital			
-	-	34	40	SRC Outputs			
-	48	-	52	CPU/SRC PLL Analog & Digital			
-	-	49	52	CPU Outputs			

CPU Power Management Table

CLKPWRGD/P	SMBus	CPU STOP#	CPU (0, 1, ITP)				
D#_3.3	Register OE	01 0_3101#	True O/P	Comp. O/P			
1	Enable	1	Running	Running			
1	Enable	0	High	Low			
0	X	Х	Low/20K	Low			
Х	Disable	X	Low/20K	Low			

DOT96 and SATA Power Management Table

CLKPWRGD/P	SMBus			SA	TA	SA	TA	DOT96	
D# 3.3	Register OE	PCI_STOP# CLKREQC#		PEREQC#	Controlled	PEREQC# No	ot-Controlled	ספ	190
D#_3.3	Register OE			True O/P	Comp. O/P	True O/P	Comp. O/P	True O/P	Comp. O/P
1	Enable	1	0	Running	Running	Running	Running	Running	Running
1	Enable	1	1	Low/20K	Low	Running	Running	Running	Running
0	Х	Х	Х	Low/20K	Low	Low/20K	Low	Low/20K	Low
X	Disable	X	X	Low/20K	Low	Low/20K	Low	Low/20K	Low

SRC Power Management Table

CLKPWRGD/P	SMBus	SRC controlled by SRC not controlled by SRC control CLKREQx# CLKREQx# CLKREG		REQx#	Qx# CLKREQx#						
D# 3.3	Register OE	PCI_STOP#	CLKREQx#	Free-Running					Stoppa	ble	
5 11_0.0	rtogiotor OL				Comp. O/P	True O/P	Comp. O/P	True O/P	Comp. O/P	True O/P	Comp. O/P
1	Enable	1	0	Running	Running	Running	Running	Running	Running	Running	Running
1	Enable	1	1	Low/20K	Low	Running	Running	Low/20K	Low	Running	Running
1	Enable	0	0	Running	Running	Running	Running	High	Low	High	Low
1	Enable	0	1	Low/20K	Low	Running	Running	Low/20K	Low	High	Low
0	Enable	Χ	Х	Low/20K	Low	Low/20K	Low	Low/20K	Low	Low/20K	Low
X	Disable	X	X	Low/20K	Low	Low/20K	Low	Low/20K	Low	Low/20K	Low

Single-ended Power Management Table

CLKPWRGD/P		DOL STOD#		PCI2, PCI4	PC	C13	25	БМ	14.318M	USB48	48M	27MHz
D#_3.3	Register OE	101_0101#	Free-run	Stoppable	Free-run	Stoppable	WOL Enabled	WOL Disabled	14.5101	00540	40111	27111112
1	Enable	1	Running	Running	Running	Running	Running	Running	Running	Running	Running	Running
1	Enable	0	Running	Low	Running	Low	Running	Running	Running	Running	Running	Running
0	Enable	X	Hi-Z	Hi-Z	Low	Low	Running	Low	Hi-Z	Hi-Z	Low	Hi-Z
0	Disable	Х	Hi-Z	Hi-Z	Low	Low	Low	Low	Hi-Z	Hi-Z	Low	Hi-Z
1	Disable	X	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low

CLKREQ# Control Table

CLKREQ#	SRC/SATA controlled
Α	SRC1, 2, 3
В	SRC4, 6
C	SRC5, 7,
C	SATA

General SMBus Serial Interface Information for 9VRS4339

How to Write

- · Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index BI	ock W	rite Operation
Control	ler (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slave	Address		
WR	WRite		
			ACK
Beginnin	g Byte = N		
			ACK
Data Byte	Count = X		
			ACK
Beginnii	ng Byte N		
			ACK
0		$]_{\times}[$	
0		X Byte	0
0		e	0
			0
Byte N	I + X - 1		
			ACK
Р	stoP bit		

Read Address	Write Address
D3 _(H)	D2 _(H)

How to Read

- · Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

	Index Block F	Read O	peration
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
SI	ave Address		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
RT	Repeat starT		
SI	ave Address		
RD	ReaD		
			ACK
	•		Data Byte Count=X
	ACK		
			Beginning Byte N
	ACK		
		ā	0
	0	X Byte	0
	0	×	0
	0		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

SMBus Table: Frequency Select, PD Config Source Select Register

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	FSLC	Freq Select Bit 1	RW	See Table 1: CPU/SI	RC PLL Frequency &	Latch
Bit 6	FSLB	Freq Select Bit 0	RW	Spread Sele	ection Table	Latch
Bit 5	CPU1 STOP EN	Enables Control of CPU1 with CPU_STOP	RW	Free-Running	Stoppable	0
Bit 4	CPU0 STOP EN	Enables Control of CPU0 with CPU_STOP	RW	Free-Running	Stoppable	0
Bit 3	PCI_SSEL	PCI Source Select	RW	CPU/SRC SS PLL	FIX PLL	0
Bit 2	SRC_SSEL	SRC Source Select	RW	CPU/SRC SS PLL	FIX PLL	0
Bit 1	SATA_SSEL	SATA Source Select	RW	CPU/SRC SS PLL	FIX PLL	0
Bit 0	PD Config	Forces "cold" start during PD	RW	Reset and Relatch	Normal PD# mode	1

SMBus Table: CPU, LCD SS and DOT96/SRC5 Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	DOT96_SEL	Selects DOT96 or SRC5	R	SRC5	DOT96	Latch
Bit 6	CPU/SRC SS Select	Selects Center or Down Spread for CPU & SRC	RW	Down Spread	Center Spread	0
Bit 5	CPU SS1	CPU SS Magnitude MSB	RW	See Table 1: CPU/SRC PLL Frequency &		0
Bit 4	CPU SS0	CPU SS Magnitude LSB	RW	Spread Selection Table		0
Bit 3	LCD SS2	LCD SS Magnitude MSB	RW	See Table 2: LCDC	LK Spread Spectrum	1
Bit 2	LCD SS1	LCD SS Magnitude	RW			1
Bit 1	LCD SS0	LCD SS Magnitude LSB	RW	- Table		0
Bit 0	LCD SS Select	Selects Center or Down Spread for LCDCLK	RW	Down Spread	Center Spread	0

SMBus Table: Output Enable Control Register

Byte 2	Name	Control Function	Туре	0	1	Default
Bit 7	REF OE	Output Enable	RW	Disable	Enable	1
Bit 6	48M OE (Pin17)	Output Enable	RW	Disable	Enable	1
Bit 5	USB48M OE (Pin16)	Output Enable	RW	Disable	Enable	1
Bit 4	25M OE	Output Enable	RW	Disable	Enable	1
Bit 3	PCI3 OE	Output Enable	RW	Disable	Enable	1
Bit 2	PCI2 OE	Output Enable	RW	Disable	Enable	1
Bit 1	PCI_F1 OE	Output Enable	RW	Disable	Enable	1
Bit 0	CPU_ITP STOP EN	Enables Control of CPU_ITP with CPU_STOP	RW	Free-Running	Stoppable	0

SMBus Table: Output Enable Control Register

Byte 3	Name	Control Function	Туре	0	1	Default
Bit 7	SRC7 OE	Output Enable	RW	Disable	Enable	1
Bit 6	SRC6 OE	Output Enable	RW	Disable	Enable	1
Bit 5	CLKREQC# Control	SRC5 is controlled	RW	Not Controlled	Controlled	0
Bit 4	CLKREQC# Control	SRC7 is controlled	RW	Not Controlled	Controlled	0
Bit 3	PCI4/27M OE	Output Enable	RW	Disable	Enable	1
Bit 2	LCDCLK OE	LCDPLL & Output Enable	RW	Disable	Enable	1
Bit 1	SRC4 OE	Output Enable	RW	Disable	Enable	1
Bit 0	SATA OE	Output Enable	RW	Disable	Enable	1

SMBus Table: Output Enable and SS Enable Control Register

Byte 4	Name	Control Function	Туре	0	1	Default
Bit 7	SRC3 OE	Output Enable	RW	Disable	Enable	1
Bit 6	SRC2 OE	Output Enable	RW	Disable	Enable	1
Bit 5	CPU_ITP/SRC1 OE	Output Enable	RW	Disable	Enable	1
Bit 4	DOT96/SRC5 OE	Output Enable	RW	Disable	Enable	1
Bit 3	CPU1 OE	Output Enable	RW	Disable	Enable	1
Bit 2	CPU0 OE	Output Enable	RW	Disable	Enable	1
Bit 1	CPU/SRC PLL SS EN	Output Enable	RW	SS OFF	SS ON	1
Bit 0	CLKREQC# Control	SATA is controlled	RW	Not Controlled	Controlled	0

SMBus Table: CLKREQ Control Register

Byte 5	Name	Control Function	Туре	0	1	Default
Bit 7	CLKREQA# EN	CLKREQA# Enable	RW	Disable	Enable	0
Bit 6	CLKREQA# Control	SRC1 is controlled	RW	Not Controlled	Controlled	0
Bit 5	CLKREQA# Control	SRC2 is controlled	RW	Not Controlled	Controlled	0
Bit 4	CLKREQA# Control	SRC3 is controlled	RW	Not Controlled	Controlled	0
Bit 3	CLKREQB# EN	CLKREQB# Enable	RW	Disable	Enable	0
Bit 2	CLKREQB# Control	SRC4 is controlled	RW	Not Controlled	Controlled	0
Bit 1	CLKREQB# Control	SRC6 is controlled	RW	Not Controlled	Controlled	0
Bit 0	CLKREQC# EN	CLKREQC# Enable	RW	Disable	Enable	0

Note: To enable CLKREQC function, please write "0" to Byte 9 bit 7 and "1" to Byte 5 bit 0. To select which output to control, please make necessay selection in Bytes 3 & 4.

Byte 6 Reserved Register

SMBus Table: Revision and Vendor ID Register

Byte 7	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R			0
Bit 6	RID2	Revision ID	R	B rov	- 0001	0
Bit 5	RID1	Revision ID R B rev = 0001	0			
Bit 4	RID0		R		1	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001 =	ICS/IDT	0
Bit 1	VID1	VENDORID	R	0001 = ICS/IDT	0	
Bit 0	VID0		R			1

SMBus Table: Output Control Register

Byte 8	Name	Control Function	Type	0	1	Default
Bit 7	48M (Pin17) SR	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 6	40W (1 II117) 310	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 5	27M / PCI4 SR	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 4	27W7 F CI4 SIX	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 3	Reserved	Reserved	RW	-	-	0
Bit 2	PCI_SKEW_MODE	PCICLK Skew Mode Control	RW	PCI Aligned	PCI Delayed	0
Bit 1	LCD_AMP<1>	LCD Amplitude Control bit1	RW	00 = 700mV	01 = 800mV	0
Bit 0	LCD_AMP<0>	LCD Amplitude Control bit0	RW	10 = 900mV	11 = 1000mV	1

Note: A ssystem reset maybe required when switching between PCICLK aligned and skew mode

SMBus Table: Byte Count Register

Byte 9	Name	Control Function	Туре	0	1	Default
Bit 7	48M_SEL	Selects 48M or CLKREQC	RW	CLKREQC	48M	1
Bit 6	Reserved	Reserved	RW	-	-	0
Bit 5	Reserved	Reserved	RW	-	-	0
Bit 4	BC4		RW			0
Bit 3	BC3		RW	Writing to this regist	ter will configure how	1
Bit 2	BC2	Byte Count Programming	RW	many bytes will be	read back, default is	1
Bit 1	BC1		RW	0F or 1F =	= 15 bytes.	1
Bit 0	BC0		RW			1

Note: To enable CLKREQC function, please write "0" to Byte 9 bit 7 and "1" to Byte 5 bit 0. To select which output to control, please make necessay selection in Bytes 3 & 4.

SMBus Table: Output Control Register

Byte 10	Name	Control Function	Туре	0	1	Default
Bit 7	LIOD 40M (Di-40) OD	Oleve Dete Oceans	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 6	USB48M (Pin16) SR	Slew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 5	REF SR	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 4	KEF 3K	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 3	PCI3 SR	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 2	PCB SR	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 1	25M SR	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 0	ZJIVI JR	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0

SMBus Table: Output Control Register

Byte 11	Name	Control Function	Туре	0	1	Default
Bit 7	CPU	Differential Slew Rate		0=2.5V/ns	1=4V/ns	1
Bit 6	SRC	Differential Slew Rate	RW	0=2.5V/ns	1=4V/ns	1
Bit 5	SATA	Differential Slew Rate	RW	0=2.5V/ns	1=4V/ns	1
Bit 4	DOT96	Differential Slew Rate	RW	0=2.5V/ns	1=4V/ns	1
Bit 3	PCI2	Slew Rate Control	RW	00 = 1.5 V/ns	01 = 2.0V/ns	0
Bit 2	I CIZ	Siew Nate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0
Bit 1	PCI1	Slew Rate Control	RW	00 = 1.5V/ns	01 = 2.0V/ns	0
Bit 0	1 011	Siew Rate Control	RW	10 = 2.6V/ns	11 = 3.3V/ns	0

SMBus Table: M/N Enable & Output Stop Control Register

Byte 12	Name	Control Function	Туре	0	1	Default
Bit 7	CPU/SRC PLL M/N En	Enables M/N programming for CPU/SRC PLL	RW	Disable	Enable	0
Bit 6	SRC1 STOP EN	Enables Control of SRC1 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 5	SRC2 STOP EN	Enables Control of SRC2 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 4	SRC3 STOP EN	Enables Control of SRC3 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 3	SRC4 STOP EN	Enables Control of SRC4 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 2	SRC5 STOP EN	Enables Control of SRC5 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 1	SRC6 STOP EN	Enables Control of SRC6 with PCI_STOP	RW	Free-Running	Stoppable	0
Bit 0	SRC7 STOP EN	Enables Control of SRC7 with PCI_STOP	RW	Free-Running	Stoppable	0

SMBus Table: Output Control Register

Byte 13	Name	Control Function	Type	0	1	Default
Bit 7	ITP_EN	ITP_EN readback	R	SRC1	CPU_ITP	Latch
Bit 6	SEL_PCI	Select PCI Readback	R	27M	PCI4	Latch
Bit 5	WOL Enable	WOL Enable for 25M	RW	WOL Disabled	WOL Enabled	1
Bit 4	PCI_F1	Free Running with PCI_STOP#	RW	Free-Running	Stoppable	0
Bit 3	PCI2	Free Running with PCI_STOP#	RW	Free-Running	Stoppable	1
Bit 2	PCI3	Free Running with PCI_STOP#	RW	Free-Running	Stoppable	1
Bit 1	PCI4	Free Running with PCI_STOP#	RW	Free-Running	Stoppable	1
Bit 0	SATA STOP EN	Enables Control of SATA with PCI_STOP	RW	Free-Running	Stoppable	0

^{*} For lowest power saving during WOL mode, it is mandatory to connect 3.3V and 1.5V core VDD pins to standby power and suspend/remove VDDIO pins.

SMBus Table: Differential Output Amplitude Control Register

Byte 14	Name	Control Function	Type	0	1	Default
Bit 7	PCIEX_AMP<1>	PCIEX Amplitude Control bit1	RW	00 = 700mV	01 = 800mV	0
Bit 6	PCIEX_AMP<0>	PCIEX Amplitude Control bit0	RW	10 = 900mV	11 = 1000mV	1
Bit 5	DOT96_AMP<1>	DOT96 Amplitude Control bit1	RW	00 = 700mV	01 = 800mV	0
Bit 4	DOT96_AMP<0>	DOT96 Amplitude Control bit0	RW	10 = 900mV	11 = 1000mV	1
Bit 3	SATA_AMP<1>	SATA Amplitude Control bit1	RW	00 = 700mV	01 = 800mV	0
Bit 2	SATA_AMP<0>	SATA Amplitude Control bit0	RW	10 = 900mV	11 = 1000mV	1
Bit 1	CPU_AMP<1>	CPUCLK Amplitude Control bit1	RW	00 = 700mV	01 = 800mV	0
Bit 0	CPU_AMP<0>	CPUCLK Amplitude Control bit0	RW	10 = 900mV	11 = 1000mV	1

Bytes 15+ Reserved Registers

All reserved bits and reserved bytes in this SMBus table should not be overwritten at any instance. Writing to these reserved bits and bytes may cause unexpected behavior. IDT does not warrant any application issue going forward if continuing to overwrite these reserve bits and bytes.

Absolute Maximum Ratings-DC Parameters

Stresses above the ratings listed below can cause permanent damage to the 9VRS4339B. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Maximum Supply Voltage	VDD27, VDD_3.3	Supply Voltage		4.6	V	1,4
Maximum Supply Voltage	VDD_CORE_1.5	Supply Voltage		1.9	V	1,4
Maximum Supply Voltage	VDD_LVIO	Supply Voltage		1.9	V	1,4
Maximum Input Voltage	V _{IH}	3.3V Inputs, including SMBus		4.6	V	1,2,4
Minimum Input Voltage	V _{IL}	Any Input	GND - 0.5		V	1,4
Storage Temperature	Ts	-	-65	150	°C	4
Case Temperature	Tcase	-		115	°C	1
Input ESD protection	ESD prot	Human Body Model	2000		V	3,4

NOTES on DC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

Electrical Characteristics-PCICLK/PCICLK_F

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Long Accuracy	pp m	se e Tperiod min-max values	-100	100	ppm	1,2
Clock period	T _{period}	33.33MHz output no spread	29.99700	30.00300	ns	1,2,5
Clock period	i period	33.33MHz output spread	30.08421	30.23459	ppm	1,2,5
Absolute min/max period	T _{abs}	33.33MHz output no spread	29.49700	30.50300	ns	1,2
Absolute IIIII/IIIax period	1 abs	33.33MHz output nominal/spread	29.56617	30.58421	ns	1,2
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current	1	V _{OH} @MIN = 1.0 V	-33		mA	1
Output High Current	Гон	V _{OH} @MAX = 3.135 V		-33	mA	1
Output Low Current	1	V _{OL} @ MIN = 1.95 V	30		mA	1
ou put Low outlett	l _{OL}	V _{OL} @ MAX = 0.4 V		38	mA	1
Rising Edge Slew Rate	t _{slR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1,3
Falling Edge Slew Rate	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1,3
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1,4
Adjacent Pin to Pin Skew	t _{skew}	V _T = 1.5 V, PCI Aligned Mode (Default)		250	ps	1,4,7
Adjacent Pin to Pin Intentional Delay	t _{s kew_de lay}	V _T = 1.5 V, PCI Dela yed Mode	200ps	typical	ps	1,4,8
Total PCI Skew Window	t _{skew_total}	V _T = 1.5 V , PCI Delayed Mode		800	ps	1,4,9
Jitter, Cycle to cycle	t _{j cyc-cyc}	V _T = 1.5 V		500	ps	1,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, Rs=39ohm, CL=5pF

IDT® VERY LOW POWER CLOCK FOR 2011 NETBOOKS

11

¹ Intentionally blank

² Maximum VIH is not to exceed VDD

³ Human Body Model

⁴ Operation under these conditions is neither implied, nor guaranteed.

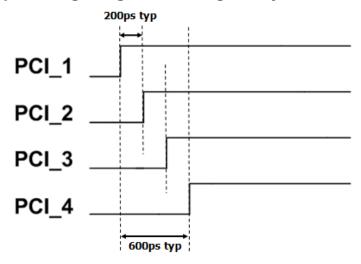
¹ Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³Edge rate in system is measured from 0.8 V to 2.0 V.

⁴ Duty cycle, Peroid, Skew and Jitter are measured with respect to 1.5V

⁵ The average period over any 1us period of time


⁶ Using frequency counter with the measurment interval equal or greater that 0.15s. Target frequencies are 14.318181 MHz, 25.000000MHz, 33.333333MHz, 27.000000MHz and 48.000000MHz

⁷ Adja cent pin to pin skew is the pin to pin skew between PCI1 and PCI2, PCI2 and PCI3, or PCI3 to PCI4.

⁸ Adja cent pin to pin intentional delay is the intentional delay between PCI1 and PCI2, PCI2 and PCI3, or PCI3 to PCI4.

⁹ Total PCI skew winodw is absolute skew between PCI1 and PCI4.

PCICLK Relationship Timing Diagram During Delayed Mode

Electrical Characteristics-Input/Supply/Common Output DC Parameters

		<u> </u>				
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	Tambient	-	0	70	°C	
0 1 . 1/ "	VDD27, VDD_3.3	Supply Voltage	3.135	3.465	V	
Supply Voltage	VDD_CORE_1.5	Supply Voltage	1.425	1.575	V	
Innut High Vallage	VDD_LVIO	Supply Voltage	0.9975	1.575	V	2
Input High Voltage	V _{IHSE}	Single-ended 3.3V inputs	2	V _{DD} + 0.3		3
Input Low Voltage	V _{ILSE}	Single-ended 3.3V inputs	V _{SS} - 0.3	0.8	V	3
Latched Input High Voltage	V_{IH_LI}	Single-ended 3.3V Latched Inputs	2	VDD + 0.3	V	
Latched Input Low Voltage	V _{IL_LI}	Single-ended 3.3V Latched Inputs	V _{SS} - 0.3	0.8	V	
Low Threshold Latched Input- High Voltage	V _{IH_FS}	Low threshold inputs FSL[C:B]	0.7	VDD+0.3	V	
Low Threshold Latched Input- Low Voltage	V_{IL_FS}	Low threshold inputs FSL[C:B]	V _{SS} - 0.3	0.35	V	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5	5	uA	2
Input Leakage Current	I _{INRES}	Inputs with pull up or pull down resistors $V_{IN} = V_{DD}, V_{IN} = GND$	-200	200	uA	
Output High Voltage	V _{OHSE}	Single-ended outputs, I _{OH} = -1mA	2.4		V	1
Output Low Voltage	V _{OLSE}	Single-ended outputs, I _{OL} = 1 mA		0.4	V	1
,	I _{DDOP3.3}	Full Active, C _L = Full load; IDD 3.3V		38	mA	
Operating Supply Current				40	mA	
Operating Supply Current IDDOP1.5			46	mA		
				1.2	mA	5
Powerdown Current		, , , , , , , , , , , , , , , , , , ,				5
rowerdown Current		· ·		1	mA	
	IDDPDLVIO			0	mA .	5
	I _{DDWOL3.3}	Wake On LAN mode, 3.3V Rail		10	mA	6
Wake-On-Lan Current	I _{DDWOL1.5}	Wake On LAN mode, 1.5V Rail		1	mA	6
	I _{DDWOLLVIO}	Wake On LAN mode, LVIO Rail		0	mA	6
Input Frequency	Fi	V _{DD} = 3.3 V	25MHz	Typical	MHz	4
Pin Inductance	L _{pin}			7	nΗ	
	C _{IN}	Logic Inputs	1.5	5	pF	
Input Capacitance	C _{OUT}	Output pin capacitance		6	pF	
	C _{INX}	X1 & X2 pins		6	pF	
Clk Stabilization	T _{STAB}	From VDD Power-Up or de-assertion of PD to 1st clock		1.8	ms	
Tstop_CR_off	T _{CROFF}	Output stop after CLKREQ# deasserted	2	3	Clocks	
Trun_CR_on	T _{CRON}	Output run after CLKREQ# asserted	2	3	Clocks	
Tstop	T _{STOP}	CPU or PCI stop after CPU or PCI STOP# assertion	2	3	Clocks	
Trun	T _{RUN}	CPU or PCI run after CPU or PCI STOP# de-assertion	2	3	Clocks	
Tfall_SE	T _{FALL}	Fall/rise time of all 3.3V control inputs from 20-		10	ns	
Trise_SE	T _{RISE}	80%		10	ns	
SMBus Voltage	V _{DD}		2.7	3.3	V	
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}		0.4	V	
Current sinking at	* OLSWID			V	-	
V _{OLSMB} = 0.4 V	I _{PULLUP}	SMB Data Pin	4		mA	
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)		1000	ns	
SCLK/SDATA		(Min VIH + 0.15) (Min VIH + 0.15) to				
Clock/Data Fall Time	T _{FI2C}	(Max VIL - 0.15)		300	ns	
Maximum SMBus Operating Frequency Spread Spectrum Modulation Frequency	F _{SMBUS}	Triangular Modulation		100 33	kHz kHz	

NOTES on DC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

13

¹Signal is required to be monotonic in this region.

² input leakage current does not include inputs with pull-up or pull-down resistors

³3.3V referenced inputs are: PCI_STOP#, CPU_STOP#, ITP_EN, SCLK, SDATA, CLKPWRGD/PD#, DOT96_SEL, SEL_PCI, 48M_SEL and PEREQ# inputs if selected

 $^{^4}$ For margining purposes only. Normal operation should have Fin = 25MHz +/-50ppm

 $^{^{\}rm 5}\,{\rm Standard}$ powerdown with Wake on LAN disabled.

⁶ Powerdown with Wake on LAN enabled

AC Electrical Characteristics-CPU, SRC, SATA, DOT96MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	tSLR	Differential Measurement	2.5	4	V/ns	1,3
Falling Edge Slew Rate	tFLR	Differential Measurement	2.5	4	V/ns	1,3
Slew Rate Variation	tSLVAR	Single-ended Measurement		20	%	1,3
Maximum Output Voltage	VHIGH	Indudes overshoot		1150	mV	1
Minimum Output Voltage	VLOW	Includes un dershoot	-300		mV	1
Differential Voltage Swing	VSWING	Differential Measurement	300		mV	1
Crossing Point Voltage	VXABS	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	VXABSVAR	Single-ended Measurement		140	mV	1,3,5
Duty Cycle	DCYC	Differential Measurement	45	55	%	1
CPU Jitter - Cycle to Cycle	CPUJC2C	Differential Measurement		85	ps	1
SRC Jitter - Cycle to Cycle	SRCJC2C	Differential Measurement		85	ps	1
SATA Jitter - Cycle to Cycle	SATAJC2C	Differential Measurement		125	ps	1
DOT Jitter - Cycle to Cycle	DOTJC2C	Differential Measurement		250	ps	1
CPU[1:0] Skew	CPU10SKEW	Differential Measurement		100	ps	1,6
CPU[ITP:0] Skew	CPU20SKEW	Differential Measurement		150	ps	1,6
PCIEX(6, 4:2) Skew	PCIEXSKEW	Differential Measurement		250	ps	1
PCIEX(7:1) Skew	PCIEXSKEW	Differential Measurement		500	ps	1

Notes: $T_A = 0.70$ °C; $V_{DD} = 3.3$ V +/-5%; $C_L = 2$ pF, Rs=0 Ω (unless specified otherwise)

Electrical Characteristics-USB48MHz/48MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-100	100	ppm	1,2
Clock period	T_{period}	48.00MHz output nominal	20.83125	20.83542	ns	1,2,5
Absolute min/max period	T _{abs}	48.00MHz output nominal	20.48125	21.18542	ns	1,2
Output High Voltage	V _{OH}	$I_{OH} = -1 \text{ mA}$	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current		V _{OH} @MIN = 1.0 V	-29		mA	1
Output High Current	Гон	V _{OH} @MAX = 3.135 V		-23	mA	1
Output Low Current	1	V _{OL} @ MIN = 1.95 V	29		mA	1
Ou put Low Current	l _{OL}	V _{OL} @ MAX = 0.4 V		3125 20.83542 3125 21.18542 4 0.4 19 -23 9 27 1 2 1 2 4 4	mA	1
Rising Edge Slew Rate (USB48M)	t _{SLR}	Me asured from 0.8 to 2.0 V	1	2	V/ns	1,3
Falling Edge Slew Rate (USB48M)	t _{FLR}	Measured from 2.0 to 0.8 V	1	2	V/ns	1,3
Rising Edge Slew Rate (48M)	t _{sLR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1,3
Falling Edge Slew Rate (48M)	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1,3
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1,4
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V		350	ps	1,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, Rs=39ohm, CL=5pF

¹ Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³ Slew rate emastured through V_swing voltage range centered about differential zero

⁴Vcross is defined at the voltage where Clock = Clock#.

⁵ Only applies to the differential rising edge (Clock rising, Clock# falling.)

⁶ CPU group skew is nominally 0ps.

¹Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³Edge rate in system is measured from 0.8V to 2.0V.

⁴ Duty cycle, Peroid and Jitter are measured with respect to 1.5V

⁵ The average period over any 1us period of time

⁶ Using frequency counter with the measurment interval equal or greater that 0.15s. Target frequencies are 14.318181 MHz, 25.000000MHz, 33.333333MHz, 27.000000MHz and 48.000000MHz

Electrical Characteristics-25MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Long Accuracy	ppm	see Tperiod min-max values	-30	30	ppm	1,2
Clock period	T_{period}	25.00MHz output nominal	39.99880	40.00120	ns	1,2,5
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current	І _{он} -	V _{OH} @MIN = 1.0 V	-29		mA	1
Ou put riigh Current		V _{OH} @MAX = 3.135 V		-23	mA	1
Ou tout Low Current		V _{OL} @ MIN = 1.95 V	29		mA	1
Ou put Low Current	l _{OL}	V_{OL} @ MAX = 0.4 V		27	mA	1
Rising Edge Slew Rate	t _{SLR}	Me asured from 0.8 to 2.0 V	0.5	2	V/ns	1,3
Falling Edge Slew Rate	t _{FLR}	Me asured from 2.0 to 0.8 V	0.5	2	V/ns	1,3
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1,4
Jitter, Cycle to cycle	t _{jcyc-cyc}	V _T = 1.5 V		200	ps	1,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, Rs=39ohm, CL=5pF

Electrical Characteristics-REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-100	100	ppm	1,2
Clock period	Tperiod	14.3 18MHz output nominal	69.82033	69.86224	ns	1,2,5
Absolute min/max period	Tabs	14.318MHz output nominal	69.83400	70.84800	ns	1,2
Output High Voltage	V _{OH}	IOH = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	IOL = 1 mA		0.4	V	1
Output High Current	I _{OH}	V _{OH} @MIN = 1.0 V	-29		mA	1
Ou put High Current		V _{OH} @MAX = 3.135 V		-23	mA	1
Output Law Current		V _{OL} @ MIN = 1.95 V	29		mA	1
Output Low Current	I _{OL}	V _{OL} @ MAX = 0.4 V		27	mA	1
Rising Edge Slew Rate	t _{slR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1,3
Falling Edge Slew Rate	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1,3
Duty Cycle	d _{t1}	VT = 1.5 V	45	55	%	1,4
Jitter, Cycle to cycle	t _j cyc-cyc	VT = 1.5 V		1000	ps	1,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, Rs=39ohm, CL=5pF

¹Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³Edge rate in system is measured from 0.8V to 2.0V.

⁴ Duty cycle, Peroid and Jitter are measured with respect to 1.5V

⁵ The average period over any 1us period of time

⁶ Using frequency counter with the measurment interval equal or greater that 0.15s. Target frequencies are 14.318181 MHz, 25.000000MHz, 33.333333MHz, 27.000000MHz and 48.000000MHz

¹Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³Edge rate in system is measured from 0.8V to 2.0V.

⁴ Duty cycle, Peroid and Jitter are measured with respect to 1.5V

⁵ The average period over any 1us period of time

⁶ Using frequency counter with the measurment interval equal or greater that 0.15s. Target frequencies are 14.318181 MHz, 25.000000MHz, 33.333333MHz, 27.000000MHz and 48.000000MHz

Electrical Characteristics-27MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-50	50	ppm	1,2
Long/localdoy	ppiii	occ i period imir max valdes	-15	15	ppm	1,2,7
Clock period	T_{period}	27.000MHz output nominal	37.0365	37.0376	ns	1,4,5
Output High Voltage	V _{OH}	I _{OH} = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current	1	V _{OH} @MIN = 1.0 V	-29		mA	1
Ou put Tiigh Cunent	ГОН	V _{он} @MAX = 3.135 V		-23	mA	1
Outrot I am Comment	1	V _{OL} @ MIN = 1.95 V	29		mA	1
Output Low Current	l _{OL}	V _{OL} @ MAX = 0.4 V		27	mA	1
Rising Edge Slew Rate	t _{SLR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1,3
Falling Edge Slew Rate	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1,3
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1,4
litto r	ţ _{i ţi}	Long Term (10us), , V _T = 1.5 V		400	ps	1,4
Jitter	t _{j cyc-cyc}	Cycle to Cycle, $V_T = 1.5 \text{ V}$		200	ps	1,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V +/-5%, Rs = 39ohm, CL = 5pF

Clock Jitter Specifications - Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
PCIEX Phase Jitter	t _{jp ha sePLL}	PCle Gen 1		86	ps (p-p)	1,2
	t _{jp ha seLo}	PCIe Gen 2 10kHz < f < 1.5MHz		3.0	ps (RMS)	1,3,4
	^t jp ha seH igh	PCIe Gen 2 1.5MHz < f < Nyquist (50MHz)		3.1	ps (RMS)	1,3,4

^{*}TA = 0 - 70°C; Supply Voltage VDD = 1.5V +/- 5%, Rs=0ohm, CL=2pF

¹ Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 25.000000MHz

³Edge rate in system is measured from 0.8V to 2.0V.

⁴ Duty cycle, Peroid and Jitter are measured with respect to 1.5V

⁵ The average period over any 1us period of time

⁶ Using frequency counter with the measurment interval equal or greater that 0.15s. Target frequencies are 14.318181 MHz, 25.000000MHz, 33.333333MHz, 27.000000MHz and 48.000000MHz

⁷ At nominal voltage and temperature.

¹ Unless otherwise noted, guaranteed by design and characterization, not 100% tested in production.

² Jitter specs are specified as measured on a clock characterization board. System designers need to take special care not to use these numbers, as the in-system

³ Phase jitter requirement: The designated Gen2 outputs will meet the reference clock jitter requirements from the PCI Express Gen2 Base Spec. The test is performed

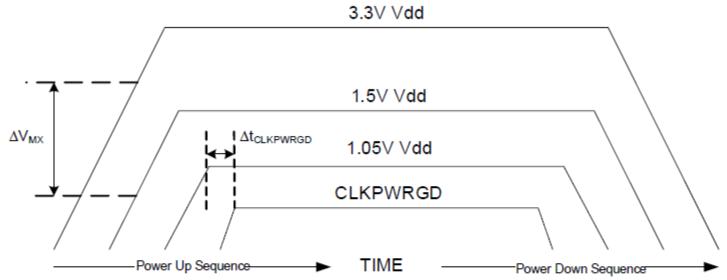
⁴See http://www.pcisig.com for complete specs

Differential Clock Tolerances

	CPU	SRC	DOT96	SATA	
PPM tolerance	100	100	100	100	ppm
Cycle to Cycle Jitter	85	85	250	125	ps
Spread	-0.50%	-0.50%	0.00%	-0.50%	%

Clock Periods-Differential Outputs with Spread Spectrum Disabled

		Measurement Window								
SSC OFF	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
	100.00	9.91400	IVIII	9.99900	10.00000	10.00100	IWAX	10.08600	ns	1,2
CDU	133.33	7.41425	1	7.49925	7.50000	7.50075		7.58575	ns	1,2
CPU	166.67	5.91440		5.99940	6.00000	6.00060		6.08560	ns	1,2
	200.00	4.91450		4.99950	5.00000	5.00050		5.08550	ns	1,2
SRC	100.00	9.87400		9.99900	10.00000	10.00100		10.12600	ns	1,2
SATA	100.00	9.87400		9.99900	10.00000	10.00100		10.12600	ns	1,2
DOT96	96.00	10.16563		10.41563	10.41667	10.41771		10.66771	ns	1,2


Clock Periods-Differential Outputs with Spread Spectrum Enabled

		Measurement Window								
SSC ON F	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
	Freg.	a Oa littar	-SSC	- ppm		+ ppm	+SSC	. a Ca littar	Unite	Notes
	MHz	-c2c jitter AbsPer	Short-Term	Long-Term	0 ppm Period	Long-Term	Short-Term	+c2c jitter U	Units	NOTES
	IVITIZ	Min	Average	Average	Nominal	Average	Average	Max		
		IVIII	Min	Min		Max	Max	IVIAX		
	99.75	9.91406	9.99906	10.02406	10.02506	10.02607	10.05107	10.13607	ns	1,2
CPU	133.00	7.41430	7.49930	7.51805	7.51880	7.51955	7.53830	7.62330	ns	1,2
	166.25	5.91444	5.99944	6.01444	6.01504	6.01564	6.03064	6.11564	ns	1,2
	199.50	4.91453	4.99953	5.01203	5.01253	5.01303	5.02553	5.11053	ns	1,2
SRC	99.75	9.87406	9.99906	10.02406	10.02506	10.02607	10.05107	10.17607	ns	1,2
SATA	99.75	9.87406	9.99906	10.02406	10.02506	10.02607	10.05107	10.17607	ns	1,2

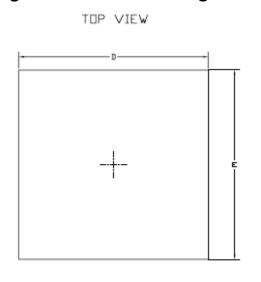
¹Guaranteed by design and characterization, not 100% tested in production.

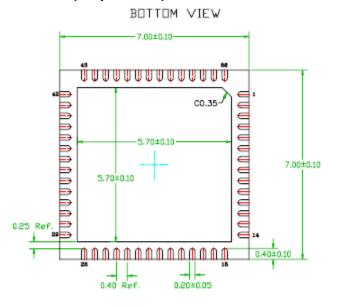
² All Long Term Accuracy specifications are guaranteed with the assumption that the crystal input is tuned to exactly 25.000000MHz.

Power-up Sequencing Requirements

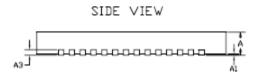
Notes:

- The maximum difference (ΔV_{MX}) between any two voltages is 0.7V if the lower power supply is powered up first.
- There are no timing requirements between the higher and lower voltages if the higher voltages power up first.
- The minimum time before CLKPWRGD can be set (Δt_{CLKPWRGD} = 0) is 0 sec from the last power supply that is powered up.


Marking Diagram



Notes:


- 1. ##### is the lot number.
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "L" denotes RoHS compliant package.
- 4. "ORIGIN" is the country of origin.

Package Outline and Package Dimensions (56-pin MLF)

	Millim	neters
Symbol	Min	Max
Α	0.8	1.0
A1	0	0.05
A3	0.2 Ref	erence
b	0.15	0.25
е	0.40 E	BASIC
D x E BASIC	7.00 >	¢ 7.00
D2 MIN./MAX.	5.60	5.80
E2 MIN./MAX.	5.60	5.80
L MIN./MAX.	0.30	0.50
N	5	6
N_D	1	4
N _E	1	4

Ordering Information

Part / Order Number	Marking	Shipping Packaging	Package	Temperature
9VRS4339BKLF	see page 18	Trays	56-pin MLF	0 to +70° C
9VRS4339BKLFT		Tape and Reel	56-pin MLF	0 to +70° C

[&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

[&]quot;B" is the device revision designator (will not correlate with the datasheet revision).

Revision History

Rev.	Initiator	Issue Date	Description	Page #	
0.1	DC	4/25/2011	Initial Release	-	
			1. Updated "Features/Benefits" section		
	DC	DC 10/11/2011	2. Updated Power Distribution table	Various	
0.2 DC			3. Updated Byte 13	Various	
			4. Updated pin 55 description		
			1. Updated "General Description"		
			2. Updated "Features/Benefits"		
1 ,	DC	DC 1/3/2012 4. L 5. L	3. Updated pin descriptions	Mania	
A DC	DC		4. Updated Byte13	Various	
			5. Updated "Absolute Max Ratings" and "Electrical Characteristics -		
			Input/Supply/Common Output DC Parameters" tables		

SYNTHESIZERS

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Clock Generators & Support Products category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

CV183-2TPAG 950810CGLF 9DBV0741AKILF 9VRS4420DKLF CY25404ZXI226 CY25422SXI-004 MPC9893AE NB3H515001MNTXG PL602-20-K52TC ICS557GI-03LF PI6LC48P0101LIE 82P33814ANLG 840021AGLF ZL30244LFG7 PI6LC48C21LE
ZL30245LFG7 PI6LC48P0405LIE PI6LC48P03LE MAX24505EXG+ ZL30163GDG2 5L1503L-000NVGI8 ZL30156GGG2 ZL30673LFG7
MAX24188ETK2 ZL30152GGG2 5L1503-000NVGI8 PI6C557-01BZHIEX PI6LC48C21LIE CY2542QC002 5P35023-106NLGI
5X1503L-000NLGI8 ZL30121GGG2V2 ZL30282LDG1 ZL30102QDG1 ZL30159GGG2 DS1070K ZL30145GGG2 ZL30312GKG2
MAX24405EXG2 ZL30237GGG2 SY100EL34LZG 9FGV1002BQ506LTGI AD9518-4ABCPZ MX852BB0030 PI6LC4840ZHE AD95160BCPZ-REEL7 AD9574BCPZ-REEL7 PL602-21TC-R ZL30105QDG1 ZL30100QDG1