FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

Description

The 9ZX21501C is a 15 -output version of the Intel DB1900Z Differential Buffer suitable for PCI-Express Gen3 or QPI applications. The part is backwards compatible to PCle Gen1 and Gen2. A fixed external feedback maintains low drift for critical QPI applications. In bypass mode, the 9ZX21501C can provide outputs up to 400MHz.

Recommended Application

15-output PCle Gen3/QPI buffer with fixed feedback for Romley platforms

Output Features

- 15-0.7V current mode differential HCSL output pairs

Features/Benefits

- Fixed feedback path; Ops input-to-output delay
- 9 Selectable SMBus addresses; multiple devices can share same SMBus segment
- 7 dedicated OE\# pins; hardware control of outputs
- PLL or bypass mode; PLL can dejitter incoming clock
- Selectable PLL BW; minimizes jitter peaking in downstream PLL's
- Spread spectrum compatible; tracks spreading input clock for EMI reduction
- SMBus Interface; unused outputs can be disabled
- 100 MHz \& 133.33MHz PLL mode; legacy QPI support
- Undriven differential outputs in Power Down mode for maximum power savings

Key Specifications

- Cycle-to-cycle jitter: <50ps
- Output-to-output skew: <65ps
- Input-to-output delay: Fixed at 0 ps
- Input-to-output delay variation: <50ps
- Phase jitter: PCle Gen3 <1ps rms
- Phase jitter: QPI 9.6GB/s <0.2ps rms

Functional Block Diagram

Pin Configuration

		64636261605958575655545352515049		
IREF	1		48	OE11\#
100M_133M	2		47	DIF_11\#
HIBW_BYPM_LOBW\#	3		46	DIF_11
CKPWRGD_PD\#	4		45	OE10\#
GND	5		44	DIF_10\#
VDDR	6	9ZX21501C	43	DIF_10
DIF_IN	7		42	NC
DIF_IN\#	8	NOTE: The DFB_OUT pins must be	41	VDD
SMB_AO_tri	9	terminated identically to the DIF	40	GND
SMBDAT	10	outputs!	39	OE8\#
SMBCLK	11		38 37	DIF_8\# DIF 8
NC	13		36	OE7\#
NC	14		35	DIF_7\#
DFB_OUT\#	15		34	DIF_7
DFB_OUT	16		33	OE6\#
		17181920212223242526272829303132		

Power Management Table

Inputs		Control Bits/Pins				Outputs	PLL State
CKPWRGD॰/PD\#	DIF_IN/ DIF_IN\#	SMBus EN bit	OE\# Pin	$\begin{aligned} & \text { DIF(5:8,10:12)/ } \\ & \text { DIF(5:8,10:12)\# } \end{aligned}$	Other DIF/ DIF\#	DFB_OUT/ DFB_OUT\#	
0	X	X	X	$\mathrm{Hi}-\mathrm{Z}^{1}$	$\mathrm{Hi}-\mathrm{Z}^{1}$	$\mathrm{Hi}-\mathrm{Z}^{1}$	OFF
1	Running	0	X	$\mathrm{Hi}-\mathrm{Z}^{1}$	$\mathrm{Hi}-\mathrm{Z}^{1}$	Running	ON
		1	0	Running	Running	Running	ON
		1	1	$\mathrm{Hi}-\mathrm{Z}^{1}$	Running	Running	ON

NOTE 1: Due to external pull down resistors, HI-Z results in Low/Low on the True/Complement outputs

Functionality at Power-up (PLL mode)

100M_133M\#	DIF_IN (MHz)	DIF MHz
1	100.00	DIF_IN
0	133.33	DIF_IN

PLL Operating Mode

HiBW_BypM_LoBW\#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode

PLL Operating Mode Readback Table

HiBW_BypM_LoBW\#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Tri-Level Input Thresholds

Power Connections

Pin Number		Description
VDD	GND	
63	64	Analog PLL
6	5	Input Circuit
$19,27,41,52$, 60	$24,40,55$	DIF clocks

SMBus Addressing

Pin		SMBus Address $(\mathbf{R d} /$ Wrt bit $=\mathbf{0})$
SMB_A1_tri	SMB_A0_tri	D8
0	0	DA
0	M	DE
0	1	C 2
M	0	C 4
M	M	C
M	1	CA
1	0	CC
1	M	CE
1	1	

Level	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<\mathrm{Vin}<1.8 \mathrm{~V}$
High	$\mathrm{Vin}>2.2 \mathrm{~V}$

Pin Descriptions

PIN \#	PIN NAME	TYPE	DESCRIPTION
1	IREF	OUT	This pin establishes the reference for the differential current-mode output pairs. It requires a fixed precision resistor to ground. 4750hm is the standard value for 100ohm differential impedance. Other impedances require different values. See data sheet.
2	100M_133M\#	IN	3.3V Input to select operating frequency See Functionality Table for Definition
3	HIBW_BYPM_LOBW\#	IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
4	CKPWRGD_PD\#	IN	Notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
5	GND	PWR	Ground pin.
6	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
7	DIF_IN	IN	0.7 V Differential TRUE input
8	DIF_IN\#	IN	0.7 V Differential Complementary Input
9	SMB_A0_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_A1 to decode 1 of 9 SMBus Addresses.
10	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
11	SMBCLK	IN	Clock pin of SMBUS circuitry, 5 V tolerant
12	SMB_A1_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SMB_AO to decode 1 of 9 SMBus Addresses.
13	NC	N/A	No Connection.
14	NC	N/A	No Connection.
15	DFB_OUT\#	OUT	Complementary half of differential feedback output, provides feedback signal to the PLL for synchronization with input clock to eliminate phase error.
16	DFB_OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error.
17	DIF_0	OUT	0.7V differential true clock output
18	DIF_0\#	OUT	0.7V differential Complementary clock output
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_1	OUT	0.7V differential true clock output
21	DIF_1\#	OUT	0.7V differential Complementary clock output
22	DIF_2	OUT	0.7V differential true clock output
23	DIF_2\#	OUT	0.7V differential Complementary clock output
24	GND	PWR	Ground pin.
25	DIF_4	OUT	0.7V differential true clock output
26	DIF_4\#	OUT	0.7V differential Complementary clock output
27	VDD	PWR	Power supply, nominal 3.3V
28	DIF_5	OUT	0.7V differential true clock output
29	DIF_5\#	OUT	0.7V differential Complementary clock output
30	OE5\#	IN	Active low input for enabling DIF pair 5. 1 =disable outputs, $0=$ enable outputs
31	DIF_6	OUT	0.7V differential true clock output
32	DIF_6\#	OUT	0.7V differential Complementary clock output
33	OE6\#	IN	Active low input for enabling DIF pair 6. 1 =disable outputs, $0=$ enable outputs
34	DIF_7	OUT	0.7V differential true clock output
35	DIF_7\#	OUT	0.7V differential Complementary clock output
36	OE7\#	IN	Active low input for enabling DIF pair 7. 1 =disable outputs, $0=$ enable outputs

9ZX21501C
FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

Pin Descriptions (continued)

37	DIF_8	OUT	0.7V differential true clock output
38	DIF_8\#	OUT	0.7V differential Complementary clock output
39	OE8\#	IN	Active low input for enabling DIF pair 8. 1 =disable outputs, $0=$ enable outputs
40	GND	PWR	Ground pin.
41	VDD	PWR	Power supply, nominal 3.3V
42	NC	N/A	No Connection.
43	DIF_10	OUT	0.7V differential true clock output
44	DIF_10\#	OUT	0.7V differential Complementary clock output
45	OE10\#	IN	Active low input for enabling DIF pair 10. 1 =disable outputs, $0=$ enable outputs
46	DIF_11	OUT	0.7 V differential true clock output
47	DIF_11\#	OUT	0.7V differential Complementary clock output
48	OE11\#	IN	Active low input for enabling DIF pair 11. $1=$ disable outputs, $0=$ enable outputs
49	DIF_12	OUT	0.7 V differential true clock output
50	DIF_12\#	OUT	0.7V differential Complementary clock output
51	OE12\#	IN	Active low input for enabling DIF pair 12. 1 =disable outputs, $0=$ enable outputs
52	VDD	PWR	Power supply, nominal 3.3V
53	DIF_13	OUT	0.7V differential true clock output
54	DIF_13\#	OUT	0.7V differential Complementary clock output
55	GND	PWR	Ground pin.
56	DIF_15	OUT	0.7V differential true clock output
57	DIF_15\#	OUT	0.7V differential Complementary clock output
58	DIF_16	OUT	0.7 V differential true clock output
59	DIF_16\#	OUT	0.7V differential Complementary clock output
60	VDD	PWR	Power supply, nominal 3.3V
61	DIF_17	OUT	0.7V differential true clock output
62	DIF_17\#	OUT	0.7V differential Complementary clock output
63	VDDA	PWR	3.3V power for the PLL core.
64	GNDA	PWR	Ground pin for the PLL core.

9ZX21501C
FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the 9ZX21501C. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			$\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	V	1
Input High Voltage	$\mathrm{V}_{\mathrm{IHSMB}}$	SMBus clock and data pins			5.5 V	V	1
Storage Temperature	Ts		-65		150	${ }^{\circ} \mathrm{C}$	1
Junction Temperature	Tj				125	${ }^{\circ} \mathrm{C}$	1
Input ESD protection	ESD prot	Human Body Model	2000			V	1

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ Operation under these conditions is neither implied nor guaranteed.

Electrical Characteristics-Clock Input Parameters

TA $=\mathrm{T}_{\text {Com; }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	$\mathrm{V}_{\text {IHDIF }}$	Differential inputs (single-ended measurement)	600	750	1150	mV	1
Input Low Voltage - DIF_IN	$\mathrm{V}_{\text {ILDIF }}$	Differential inputs (single-ended measurement)	$\mathrm{V}_{\text {SS }}-300$	0	300	mV	1
Input Common Mode Voltage - DIF IN	$\mathrm{V}_{\text {com }}$	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	$\mathrm{V}_{\text {SWING }}$	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V / ns	1,2
Input Leakage Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\text {IN }}=\mathrm{GND}$	-5		5	uA	1
Input Duty Cycle	$\mathrm{d}_{\text {tin }}$	Measurement from differential wavefrom	45		55	\%	1
Input Jitter - Cycle to Cycle	$\mathrm{J}_{\text {DIFIn }}$	Differential Measurement	0		125	ps	1

[^0]
Electrical Characteristics-Input/Supply/Common Output Parameters

TA $=\mathrm{T}_{\text {Com; }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating Temperature	Tсом	Commmercial range	0		70	${ }^{\circ} \mathrm{C}$	1
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V	1
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Single-ended inputs, except SMBus, Iow threshold and tri-level inputs	GND - 0.3		0.8	V	1
	$\mathrm{I}_{\text {IN }}$	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{GND}, \mathrm{V}_{\text {IN }}=\mathrm{VDD}$	-5		5	uA	1
Input Current	$\mathrm{l}_{\text {INP }}$	Single-ended inputs $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$; Inputs with internal pull-up resistors $\mathrm{V}_{\text {IN }}=$ VDD; Inputs with internal pull-down resistors	-200		200	uA	1
	$\mathrm{F}_{\text {ibyp }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass mode	33		400	MHz	2
Input Frequency	$F_{\text {ipll }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 100 \mathrm{MHz}$ PLL mode	90	100.00	105	MHz	2
	$\mathrm{F}_{\text {ipll }}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, 133.33MHz PLL mode	120	133.33	140	MHz	2
Pin Inductance	$L_{\text {pin }}$				7	nH	1
	$\mathrm{C}_{\text {IN }}$	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	$\mathrm{C}_{\text {INDIF_IN }}$	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	$\mathrm{Cout}^{\text {O }}$	Output pin capacitance			6	pF	1
Clk Stabilization	$\mathrm{T}_{\text {StAB }}$	From $V_{D D}$ Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	$\mathrm{f}_{\text {MODIN }}$	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE\# Latency	t Latoe\#	DIF start after OE\# assertion DIF stop after OE\# deassertion	4		12	clocks	1,3
Tdrive_PD\#	$\mathrm{t}_{\text {DRVPD }}$	DIF output enable after PD\# de-assertion			300	us	1,3
Tfall	t_{F}	Fall time of control inputs			5	ns	1,2
Trise	t_{R}	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	$\mathrm{V}_{\text {ILSMB }}$				0.8	V	1
SMBus Input High Voltage	$\mathrm{V}_{\text {IHSMB }}$		2.1		$\mathrm{V}_{\text {DDSMB }}$	V	1
SMBus Output Low Voltage	$\mathrm{V}_{\text {OLSMB }}$	@ $\mathrm{I}_{\text {PuLup }}$			0.4	V	1
SMBus Sink Current	IPULLUP	@ V_{OL}	4			mA	1
Nominal Bus Voltage	$\mathrm{V}_{\text {DDSMB }}$	3 V to 5V +/-10\%	2.7		5.5	V	1
SCLK/SDATA Rise Time	$\mathrm{t}_{\text {RSMB }}$	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	$\mathrm{t}_{\text {FSMB }}$	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	$\mathrm{f}_{\text {MAXSMB }}$	Maximum SMBus operating frequency			100	kHz	1,5

[^1]
Electrical Characteristics-DIF 0.7V Current Mode Differential Outputs

TA = $\mathrm{T}_{\text {сом: }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	Trf	Scope averaging on	1	2.5	4	V/ns	1, 2, 3
Slew rate matching	Δ Trf	Slew rate matching, Scope averaging on			20	\%	1, 2, 4
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660	750	850	mV	1
Voltage Low	VLow		-150		150		1
Max Voltage	Vmax	Measurement on single ended signal using absolute value. (Scope averaging off)			1150	mV	1
Min Voltage	Vmin		-300				1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250		550	mV	1,5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off			140	mV	1,6

${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production. IREF $=\mathrm{VDD} /\left(3 x R_{R}\right)$. For $R_{R}=475 \Omega(1 \%), I_{R E F}=2.32 m A$. $\mathrm{I}_{\mathrm{OH}}=6 \times \mathrm{I}_{\mathrm{REF}}$ and $\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V} @ \mathrm{Z}_{\mathrm{O}}=50 \Omega$ (100Ω differential impedance).
${ }^{2}$ Measured from differential waveform
${ }^{3}$ Slew rate is measured through the Vswing voltage range centered around differential $0 V$. This results in $\mathrm{a}+/-150 \mathrm{mV}$ window around differential 0 V .
${ }^{4}$ Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $+/-75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
${ }^{5}$ Vcross is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
${ }^{6}$ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V _cross_delta to be smaller than V _cross absolute.

Electrical Characteristics-Current Consumption

TA $=\mathrm{T}_{\text {сом }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	$\mathrm{I}_{\mathrm{DD} 3.30 \mathrm{P}}$	All outputs active @100MHz, $\mathrm{C}_{\mathrm{L}}=$ Full load;		390	425	mA	1
Powerdown Current	$\mathrm{I}_{\text {DD3.3PDZ }}$	All differential pairs tri-stated		5	15	mA	1

[^2]9ZX21501C
FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

Electrical Characteristics-Skew and Differential Jitter Parameters

TA $=\mathrm{T}_{\text {сом; }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {SPO_PLL }}$	Input-to-Output Skew in PLL mode nominal value @ $25^{\circ} \mathrm{C}$, 3.3 V	-100	0	100	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {PD_BYP }}$	Input-to-Output Skew in Bypass mode nominal value @ $25^{\circ} \mathrm{C}$, 3.3 V	2.5	3.5	4.5	ns	1,2,3,5,8
CLK_IN, DIF[x:0]	t ${ }_{\text {DSPO_PLL }}$	Input-to-Output Skew Varation in PLL mode across voltage and temperature	-50	0	50	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	$\mathrm{t}_{\text {DSPO_BYP }}$	Input-to-Output Skew Varation in Bypass mode across voltage and temperature	-250	0	250	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	$t_{\text {dte }}$	Random Differential Tracking error beween two 9ZX devices in Hi BW Mode		3	5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,3,5,8
CLK_IN, DIF[x:0]	$t_{\text {dsste }}$	Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode		15	75	ps	1,2,3,5,8
DIF\{x:0]	$\mathrm{t}_{\text {SKEW_ALL }}$	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		37	65	ps	1,2,3,8
PLL Jitter Peaking	jeaak-hibw	LOBW\#_BYPASS_HIBW = 1	0	1.3	2.5	dB	7,8
PLL Jitter Peaking	jopak-lobw	LOBW\#_BYPASS_HIBW = 0	0	0.8	2	dB	7,8
PLL Bandwidth	$\mathrm{pll}_{\text {HIBW }}$	LOBW\#_BYPASS_HIBW = 1	2	3	4	MHz	8,9
PLL Bandwidth	pll ${ }_{\text {LOBW }}$	LOBW\#_BYPASS_HIBW = 0	0.7	1.1	1.4	MHz	8,9
Duty Cycle	t_{DC}	Measured differentially, PLL Mode	45	50	55	\%	1
Duty Cycle Distortion	$t_{\text {DCD }}$	Measured differentially, Bypass Mode @ 100MHz	-2	0	2	\%	1,10
Jitter, Cycle to cycle		PLL mode		41	50	ps	1,11
Jitter, Cycle to cycle	tjcyc-cyc	Additive Jitter in Bypass Mode		20	50	ps	1,11

Notes for preceding table:

${ }^{1}$ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
${ }^{2}$ Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
${ }^{3}$ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
${ }^{4}$ This parameter is deterministic for a given device
${ }^{5}$ Measured with scope averaging on to find mean value. DIF_IN slew rate must be matched to DIF output slew rate.
${ }^{6} t$ is the period of the input clock
${ }^{7}$ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
8. Guaranteed by design and characterization, not 100% tested in production.
${ }^{9}$ Measured at 3 db down or half power point.
${ }^{10}$ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mod
${ }^{11}$ Measured from differential waveform

9ZX21501C
FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

Electrical Characteristics-Phase Jitter Parameters

TA = $\mathrm{T}_{\text {сом; }}$ Supply Voltage VDD/VDDA $=3.3 \mathrm{~V}+/-5 \%$, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Jitter, Phase	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		39	86	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		1.1	3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz)		2.6	3.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.6	1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,4
	$\mathrm{t}_{\text {jphQPI_SMI }}$	QPI \& SMI (100MHz or $133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI})$		0.36	0.5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5
		QPI \& SMI $(100 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})$		0.23	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5
		QPI \& SMI (100MHz, 9.6Gb/s, 12UI)		0.18	0.2	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \\ \hline \end{gathered}$	1,5
AdditivePhase Jitter, Bypass mode	$\mathrm{t}_{\text {jphPCleG1 }}$	PCle Gen 1		4	10	ps (p-p)	1,2,3
	$\mathrm{t}_{\text {jphPCleG2 }}$	PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$		0.25	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,6
		PCIe Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz)		0.57	0.7	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,6
	$\mathrm{t}_{\text {jphPCleG3 }}$	PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.20	0.3	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,2,4,6
	$\mathrm{t}_{\text {jphQPI_SMI }}$	QPI \& SMI $(100 \mathrm{MHz}$ or $133 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI})$		0.22	0.3	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \end{gathered}$	1,5,6
		QPI \& SMI $(100 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})$		0.08	0.1	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	1,5,6
		$\begin{gathered} \text { QPI \& SMI } \\ (100 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}) \end{gathered}$		0.08	0.1	$\begin{gathered} \mathrm{ps} \\ \text { (rms) } \\ \hline \end{gathered}$	1,5,6

${ }^{1}$ Applies to all outputs.
${ }^{2}$ See http://www.pcisig.com for complete specs
${ }^{3}$ Sample size of at least 100 K cycles. This figures extrapolates to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk}$ @ 1 M cycles for a BER of 1-12.
${ }^{4}$ Subject to final ratification by PCI SIG.
${ }^{5}$ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3
${ }^{6}$ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)^2 $=(\text { total jittter) })^{\wedge} 2-(\text { input jitter) })^{\wedge} 2$

Clock Periods-Differential Outputs with Spread Spectrum Disabled

SSC OFF	Center Freq. MHz	Measurement Window							Units	Notes
		1 Clock	1us	0.1 s	0.15	0.1 s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3
	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2,4

Clock Periods-Differential Outputs with Spread Spectrum Enabled

SSC ON	Center Freq. MHz	Measurement Window							Units	Notes
		1 Clock	1us	0.15	0.15	0.1 s	1us	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2,4

Notes:
${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
${ }^{2}$ All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 9ZX21501 itself does not contribute to ppm error.
${ }^{3}$ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode
${ }^{4}$ Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode

Differential Output Termination Table

DIF Zo (Ω)	$\operatorname{Iref}(\Omega)$	Rs (Ω)	$\operatorname{Rp}(\Omega)$
100	475	33	50
85	412	27	42.2 or 43.2

9ZX21501 Differential Test Loads

General SMBus Serial Interface Information for 9ZX21501C

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte $\mathrm{N}+\mathrm{X}-1$
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Index Block Write Operation			
Controller (Host)			IDT (Slave/Receiver)
T	starT bit		
Slave Address $\mathrm{XX}_{(\mathrm{H})}$			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count $=\mathrm{X}$			
			ACK
Beginning Byte N		$\underset{\sim}{x}$	
			ACK
0			
0			0
0			0
			0
Byte N + X - 1			
			ACK
P	stoP bit		

Note: $\mathrm{XX}_{(\mathrm{H})}$ is defined by SMBus addess select pins.

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address $X_{(H)}$
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- IDT clock will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address $\mathrm{YY}_{(\mathrm{H})}$
- IDT clock will acknowledge
- IDT clock will send the data byte count $=X$
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte \mathbf{X} (if $X_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

9ZX21501C

FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

SMBusTable: PLL Mode, and Frequency Select Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	3	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode Readback Table		Latch
Bit 6	3	PLL Mode 0	PLL Operating Mode Rd back 0	R			Latch
Bit 5		Reserved					1
Bit 4	61/62	DIF_17_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 3	58/59	DIF_16_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 2		Reserved					0
Bit 1		Reserved					0
Bit 0	2	100M_133\#	Frequency Select Readback	R	133 MHz	100MHz	Latch

SMBusTable: Output Control Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	34/35	DIF_7_En	Output Control overrides OE\# pin	RW	$\mathrm{Hi}-\mathrm{Z}$	Enable	1
Bit 6	31/32	DIF_6_En	Output Control overrides OE\# pin	RW			1
Bit 5	28/29	DIF_5_En	Output Control overrides OE\# pin	RW			1
Bit 4	25/26	DIF_4_En	Output Control overrides OE\# pin	RW			1
Bit 3		Reserved					1
Bit 2	22/23	DIF_2_En	Output Control overrides OE\# pin	RW	$\mathrm{Hi}-\mathrm{Z}$	Enable	1
Bit 1	20/21	DIF_1_En	Output Control overrides OE\# pin	RW			1
Bit 0	17/18	DIF_0_En	Output Control overrides OE\# pin	RW			1

SMBusTable: Output Control Register

Byte	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	56/57	DIF_15_En	Output Control overrides OE\# pin	RW	$\mathrm{Hi}-\mathrm{Z}$	Enable	1
Bit 6		Reserved					1
Bit 5	53/54	DIF_13 En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	1
Bit 4	49/50	DIF_12_En	Output Control overrides OE\# pin	RW			1
Bit 3	46/47	DIF_11_En	Output Control overrides OE\# pin	RW			1
Bit 2	43/44	DIF_10_En	Output Control overrides OE\# pin	RW			1
Bit 1		Reserved					1
Bit 0	37/38	DIF_8_En	Output Control overrides OE\# pin	RW	Hi-Z	Enable	

SMBusTable: Output Enable Pin Status Readback Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	51	OE_RB12	Real Time readback of OE\#12	R	OE\# pin Low	OE\# Pin High	Real time
Bit 6	48	OE_RB11	Real Time readback of OE\#11	R			Real time
Bit 5	45	OE_RB10	Real Time readback of OE\#10	R			Real time
Bit 4		Reserved					0
Bit 3	39	OE_RB8	Real Time readback of OE\#8	R	OE\# pin Low	OE\# Pin High	Real time
Bit 2	36	OE_=RB7	Real Time readback of OE\#7	R			Real time
Bit 1	33	OE_RB6	Real Time readback of OE\#6	R			Real time
Bit 0	30	OE_RB5	Real Time readback of OE\#5	R			Real time

SMBusTable: Reserved Register

Byte 4	Pin \#	Name	Control Function	Type	$\mathbf{0}$
Bit 7	Reserved	1	Default		
Bit 6		Reserved	0		
Bit 5		Reserved	0		
Bit 4	Reserved	0			
Bit 3	Reserved	0			
Bit 2	Reserved	0			
Bit 1	Reserved	0			
Bit 0	Reserved	0			

9ZX21501C
FIFTEEN OUTPUT DIFFERENTIAL ZBUFFER FOR PCIE GEN2/3 AND QPI

SMBusTable: Vendor \& Revision ID Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	$\begin{aligned} & \mathrm{Brev}=0001 \\ & \mathrm{Crev}=0010 \end{aligned}$		X
Bit 6	-	RID2		R			X
Bit 5	-	RID1		R			X
Bit 4	-	RID0		R			X
Bit 3	-	VID3	VENDOR ID	R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1		R	-	-	0
Bit 0	-	VID0		R	-	-	1

SMBusTable: DEVICE ID

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-		Device ID 7 (MSB)	R	Device ID is 219 decimal or DB hex.		1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R			0
Bit 4	-		Device ID 4	R			1
Bit 3	-		Device ID 3	R			1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R			1

SMBusTable: Byte Count Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					0
Bit 6		Reserved					0
Bit 5		Reserved					0
Bit 4	-	BC4	Writing to this register configures how many bytes will be read back.	RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.		0
Bit 3	-	BC3		RW			1
Bit 2	-	BC2		RW			0
Bit 1	-	BC1		RW			0
Bit 0	-	BC0		RW			0

SMBusTable: Reserved Register

Byt	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

DIF Reference Clock			
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1
Rs	33	ohm	1
Rt	49.9	ohm	1

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2

Figure 1: Down Device Routing

Figure 2: PCI Express Connector Routing

Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note
0.45 v	0.22 v	1.08	33	150	100	100	
0.58	0.28	0.6	33	78.7	137	100	
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible
0.60	0.3	1.2	33	174	140	100	Standard LVDS
R1a $=$ R1b $=$ R1							
R2a $=$ R2b $=$ R2							

Figure 3

Cable Connected AC Coupled Application (figure 4)

Component	Value	Note
R5a, R5b	$8.2 \mathrm{~K} 5 \%$	
R6a, R6b	1K 5%	
Cc	$0.1 \mu \mathrm{~F}$	
Vcm	0.350 volts	

Marking Diagram

Notes:

1. "LOT" is the lot number.
2. "COO" is the country of origin.
3. "YYWW" is the last two digits of the year and week that the part was assembled.
4. "L" denotes RoHS compliant package.

Package Outline and Package Dimensions (64-pin MLF)

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature
$9 Z X 21501 \mathrm{CKLF}$	Trays	$64-$ pin MLF	0 to $+70^{\circ} \mathrm{C}$
$9 Z X 21501 \mathrm{CKLFT}$	Tape and Reel	$64-$ pin MLF	0 to $+70^{\circ} \mathrm{C}$

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
" C " is the device revision designator (will not correlate with the datasheet revision).
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Who	Description	Page \#
A	$8 / 3 / 2010$	RDW	Move to final.	
B	$5 / 11 / 2011$	RDW	1 Added note to pinout indicating that DFB_OUT pins need to be terminated identically to normal DIF outputs.	2
C	$12 / 8 / 2011$	RDW	1. Updated tDSPO_BYP parameter from +/-350 to +/-250ps	7
D	$12 / 15 / 2011$	RDW	1. Lowered IDD3.3OP from MAX 500mA/TYP 407 mA to MAX 425mA/ TYP 390mA 2. Lowered IDD3.3PDZ from MAX36mA/TYP 12 mA to MAX $15 \mathrm{~mA} /$ TYP 5 mA	6
E	$4 / 23 / 2012$	RDW	1. Updated Rp values on Output Terminations Table from 43.2 ohms to 42.2 or 43.2 ohms to be consistent with Intel.	9
F	$4 / 16 / 2013$	RDW	Corrected typo in OE\# Latency parameter; changed 1 min. to 3 max. cycles to 4 min. to 12 max. clocks	6

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G
ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T PI6C4931502-04LIE NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX

PI6C10806BLEX ZL40226LDG1 ZL40219LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB3N2304NZDTR2G NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK846BCPZ-REEL7

[^0]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Slew rate measured through $+/-75 \mathrm{mV}$ window centered around differential zero

[^1]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.
 ${ }^{2}$ Control input must be monotonic from 20% to 80% of input swing.
 ${ }^{3}$ Time from deassertion until outputs are $>200 \mathrm{mV}$
 ${ }^{4}$ DIF_IN input
 ${ }^{5}$ The differential input clock must be running for the SMBus to be active

[^2]: ${ }^{1}$ Guaranteed by design and characterization, not 100% tested in production.

