Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

32

SH7618 Group

Hardware Manual

Renesas 32-Bit RISC Microcomputer SuperHTM RISC engine Family / SH7618 Series

> SH7618 HD6417618 SH7618A HD6417618A

Renesas Electronics

Rev.6.00 2007.06

Rev. 6.00 Jun. 12, 2007 Page ii of xxxii

document, please confirm the latest product information with a Renesas sales office. Also, please pay and careful attention to additional and different information to be disclosed by Renesas such as that dis through our website. (http://www.renesas.com)

- Renesas has used reasonable care in compiling the information included in this document, but Renesa assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the info included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the informat light of the total system before deciding about the applicability of such information to the intended appli Renesas makes no representations, warranties or guaranties regarding the suitability of its products fo particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure malfunction of which may cause a direct threat to human life or create a risk of human injury or which r especially high quality and reliability such as safety systems, or equipment or systems for transportatio traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea commu transmission. If you are considering the use of our products for such purposes, please contact a Rener sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth at
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes liste
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchase elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless F Technology Corp., its affiliated companies and their officers, directors, and employees against any and damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with ro to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfundamages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specharacteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injinjury or damage caused by fire in the event of the failure of a Renesas product, such as safety design hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final prod system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesa products are attached or affixed, the risk of accident such as swallowing by infants and small children i high. You should implement safety measures so that Renesas products may not be easily detached from products. Renesas shall have no liability for damages arising out of such detachment.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior writ approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in document, Renesas semiconductor products, or if you have any other inquiries.

Rev. 6.00 Jun. 12, 2007 Pa

Rev. 6.00 Jun. 12, 2007 Page iv of xxxii

- are in their open states, intermediate levels are induced by noise in the vicinity, a through current flows internally, and a malfunction may occur.
- 3. Processing before Initialization
- Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied through chip and a low level is input on the reset pin. During the period where the states undefined, the register settings and the output state of each pin are also undefine your system so that it does not malfunction because of processing while it is in t undefined state. For those products which have a reset function, reset the LSI im after the power supply has been turned on.

- 4. Prohibition of Access to Undefined or Reserved Addresses
- Note: Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test re may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

RENESAS

Rev. 6.00 Jun. 12, 2007 Pa

- 1
- CPU and System-Control Modules
- On-Chip Peripheral Modules

The configuration of the functional description of each module differs according to the module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Eac includes notes in relation to the descriptions given, and usage notes are given, as required final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier very This does not include all of the revised contents. For details, see the actual locations in the manual.

11. Index

Rev. 6.00 Jun. 12, 2007 Page vi of xxxii

characteristics of the SH7618 and SH7618A to the target users. Refer to the SH-1/SH-2/SH-DSP Software Manual for a detailed description instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized on the CPU, system control functions, peripheral functions and electrical characteris
- In order to understand the details of the CPU's functions Read the SH-1/SH-2/SH-DSP Software Manual.
- In order to understand the details of a register when its name is known
- The addresses, bits, and initial values of the registers are summarized in section 20, 1 Registers.

Examples:	Register name:	The following notation is used for cases when the similar function, e.g. 16-bit timer pulse unit or se
		communication interface, is implemented on mor channel:
		XXX_N (XXX is the register name and N is the number)
	Bit order:	The MSB is on the left and the LSB is on the right
	Number notation:	Binary is B'xxxx, hexadecimal is H'xxxx, decima
	Signal notation:	An overbar is added to a low-active signal: \overline{xxxx}

Related Manuals: The latest versions of all related manuals are available from our we Please ensure you have the latest versions of all documents you rec http://www.renesas.com/

RENESAS

Rev. 6.00 Jun. 12, 2007 Pag

SuperH RISC engine High-performance Embedded Workshop 3 User's Manual	REJ10B0
SuperH RISC engine High-performance Embedded Workshop 3 Tutorial	REJ10B0

Application note:

Document Title	Documer
SuperH RISC engine C/C++ Compiler	REJ05B0

All trademarks and registered trademarks are the property of their respective owners.

Rev. 6.00 Jun. 12, 2007 Page viii of xxxii

Rev. 6.00 Jun. 12, 2007 Pa

2.1	Features		
2.2	Registe	er Configuration	
	2.2.1	General Registers (Rn)	
	2.2.2	Control Registers	
	2.2.3	System Registers	
	2.2.4	Initial Values of Registers	
2.3	Data Formats		
	2.3.1	Register Data Format	
	2.3.2	Memory Data Formats	
	2.3.3	Immediate Data Formats	
2.4	Feature	es of Instructions	
	2.4.1	RISC Type	
	2.4.2	Addressing Modes	
	2.4.3	Instruction Formats	
2.5	Instruc	tion Set	
	2.5.1	Instruction Set by Type	
2.6	Proces	sing States	
	2.6.1	State Transition	
Sect	ion 3 C	Cache	
3.1	Feature	28	
	3.1.1	Cache Structure	
	3.1.2	Divided Areas and Cache	
3.2	Registe	er Descriptions	
	3.2.1	Cache Control Register 1 (CCR1)	
	3.2.2	Cache Control Register 3 (CCR3)	
3.3	Operat	ion	
	3.3.1	Searching Cache	
	3.3.2	Read Access	

Rev. 6.00 Jun. 12, 2007 Page x of xxxii

Secti	ion 5 E	xception Handling
5.1		ew
	5.1.1	Types of Exception Handling and Priority
	5.1.2	Exception Handling Operations
	5.1.3	Exception Handling Vector Table
5.2	Resets	
	5.2.1	Types of Resets
	5.2.2	Power-On Reset
	5.2.3	H-UDI Reset
5.3	Addres	ss Errors
	5.3.1	Address Error Sources
	5.3.2	Address Error Exception Source
5.4	Interru	pts
	5.4.1	Interrupt Sources
	5.4.2	Interrupt Priority
	5.4.3	Interrupt Exception Handling
5.5	Except	ions Triggered by Instructions
	5.5.1	Types of Exceptions Triggered by Instructions
	5.5.2	Trap Instructions
	5.5.3	Illegal Slot Instructions
	5.5.4	General Illegal Instructions
5.6	Cases when Exceptions are Accepted	
5.7	Stack States after Exception Handling Ends	
5.8	Usage	Notes
	5.8.1	Value of Stack Pointer (SP)
	5.8.2	Value of Vector Base Register (VBR)
	5.8.3	Address Errors Caused by Stacking for Address Error Exception Handlin
	5.8.4	Notes on Slot Illegal Instruction Exception Handling

RENESAS

Rev. 6.00 Jun. 12, 2007 Pa

	6.4.3	User Break Interrupt
	6.4.4	H-UDI Interrupt
6.5	Interru	pt Exception Handling Vector Table
6.6	Interru	pt Operation
	6.6.1	Interrupt Sequence
	6.6.2	Stack after Interrupt Exception Handling
6.7	Interru	pt Response Time
Sect	tion 7 E	Bus State Controller (BSC)
7.1	Featur	es
7.2	Input/	Output Pins
7.3	Area (Dverview
	7.3.1	Area Division
	7.3.2	Shadow Area
	7.3.3	Address Map
	7.3.4	Area 0 Memory Type and Memory Bus Width
	7.3.5	Data Alignment
7.4	Regist	er Descriptions
	7.4.1	Common Control Register (CMNCR)
	7.4.2	CSn Space Bus Control Register (CSnBCR) (n = 0, 2, 3, 4, 5B, 6B)
	7.4.3	CSn Space Wait Control Register (CSnWCR) (n = 0, 3, 4, 5B, 6B)
	7.4.4	SDRAM Control Register (SDCR)
	7.4.5	Refresh Timer Control/Status Register (RTCSR)
	7.4.6	Refresh Timer Counter (RTCNT)
	7.4.7	Refresh Time Constant Register (RTCOR)
7.5	Operat	tion
	7.5.1	Endian/Access Size and Data Alignment
	7.5.2	Normal Space Interface
	7.5.3	Access Wait Control

Rev. 6.00 Jun. 12, 2007 Page xii of xxxii

8.4	Register Descriptions		
	8.4.1	Frequency Control Register (FRQCR)	
	8.4.2	PHY-LSI Clock Frequency Control Register (MCLKCR)	
	8.4.3	Usage Notes	
8.5	Changi	ng Frequency	
	8.5.1	Changing Multiplication Ratio	
	8.5.2	Changing Division Ratio	
	8.5.3	Changing Clock Operating Mode	
8.6	Notes of	on Board Design	
Secti	ion 9 W	/atchdog Timer (WDT)	
9.1	Feature	28	
9.2	Registe	er Descriptions	
	9.2.1	Watchdog Timer Counter (WTCNT)	
	9.2.2	Watchdog Timer Control/Status Register (WTCSR)	
	9.2.3	Notes on Register Access	
9.3	WDT (Dperation	
	9.3.1	Canceling Software Standbys	
	9.3.2	Changing Frequency	
	9.3.3	Using Watchdog Timer Mode	
	9.3.4	Using Interval Timer Mode	
9.4	Usage 1	Note	
Secti	ion 10]	Power-Down Modes	
10.1	Feature	² S	
	10.1.1	Types of Power-Down Modes	
10.2			
10.3	Registe	r Descriptions	
	10.3.1	Standby Control Register (STBCR)	

Rev. 6.00 Jun. 12, 2007 Pag

	10.6.2	Canceling Module Standby Function
Secti	ion 11 F	Ethernet Controller (EtherC)
11.1		s
11.2		Putput Pins
11.3	-	r Description
	0	EtherC Mode Register (ECMR)
		EtherC Status Register (ECSR)
		EtherC Interrupt Permission Register (ECSIPR)
		PHY Interface Register (PIR)
		MAC Address High Register (MAHR)
		MAC Address Low Register (MALR)
		Receive Frame Length Register (RFLR)
		PHY Status Register (PSR)
		Transmit Retry Over Counter Register (TROCR)
	11.3.10	Delayed Collision Detect Counter Register (CDCR)
	11.3.11	Lost Carrier Counter Register (LCCR)
	11.3.12	Carrier Not Detect Counter Register (CNDCR)
	11.3.13	CRC Error Frame Counter Register (CEFCR)
	11.3.14	Frame Receive Error Counter Register (FRECR)
	11.3.15	Too-Short Frame Receive Counter Register (TSFRCR)
	11.3.16	Too-Long Frame Receive Counter Register (TLFRCR)
	11.3.17	Residual-Bit Frame Counter Register (RFCR)
	11.3.18	Multicast Address Frame Counter Register (MAFCR)
	11.3.19	IPG Register (IPGR)
	11.3.20	Automatic PAUSE Frame Set Register (APR)
	11.3.21	Manual PAUSE Frame Set Register (MPR)
	11.3.22	Automatic PAUSE Frame Retransfer Count Set Register (TPAUSER)
11.4	Operati	on

Rev. 6.00 Jun. 12, 2007 Page xiv of xxxii

		(E-DMAC)
12.1	Feature	S
12.2		r Descriptions
	12.2.1	E-DMAC Mode Register (EDMR)
	12.2.2	E-DMAC Transmit Request Register (EDTRR)
		E-DMAC Receive Request Register (EDRRR)
	12.2.4	Transmit Descriptor List Address Register (TDLAR)
	12.2.5	Receive Descriptor List Address Register (RDLAR)
	12.2.6	EtherC/E-DMAC Status Register (EESR)
	12.2.7	EtherC/E-DMAC Status Interrupt Permission Register (EESIPR)
	12.2.8	Transmit/Receive Status Copy Enable Register (TRSCER)
	12.2.9	Receive Missed-Frame Counter Register (RMFCR)
		Transmit FIFO Threshold Register (TFTR)
	12.2.11	FIFO Depth Register (FDR)
	12.2.12	Receiving method Control Register (RMCR)
	12.2.13	E-DMAC Operation Control Register (EDOCR)
	12.2.14	Receiving-Buffer Write Address Register (RBWAR)
	12.2.15	Receiving-Descriptor Fetch Address Register (RDFAR)
	12.2.16	Transmission-Buffer Read Address Register (TBRAR)
	12.2.17	Transmission-Descriptor Fetch Address Register (TDFAR)
	12.2.18	Flow Control FIFO Threshold Register (FCFTR)
	12.2.19	Transmit Interrupt Register (TRIMD)
12.3	Operati	on
	12.3.1	Descriptor List and Data Buffers
	12.3.2	Transmission
	12.3.3	Reception
	12.3.4	Multi-Buffer Frame Transmit/Receive Processing
12.4		Notes
	12.4.1	Usage Notes on SH-Ether EtherC/E-DMAC Status Register (EESR)

RENESAS

Rev. 6.00 Jun. 12, 2007 Pag

	13.3.2	CMCNT Count Timing	
13.4	Interrupts		
		Interrupt Sources	
	13.4.2	Timing of Setting Compare Match Flag	
		Timing of Clearing Compare Match Flag	
13.5		Notes	
	13.5.1	Conflict between Write and Compare-Match Processes of CMCNT	
	13.5.2	Conflict between Word-Write and Count-Up Processes of CMCNT	
	13.5.3	Conflict between Byte-Write and Count-Up Processes of CMCNT	
	13.5.4	Conflict between Write Processes to CMCNT with the Counting Stopped	
		CMCOR	
Secti	on 14 S	Serial Communication Interface with FIFO (SCIF)	
14.1	Overvie	?W	
	14.1.1	Features	
14.2	Pin Con	figuration	
14.3		r Description	
	14.3.1	Receive Shift Register (SCRSR)	
	14.3.2	Receive FIFO Data Register (SCFRDR)	
	14.3.3	Transmit Shift Register (SCTSR)	
		Transmit FIFO Data Register (SCFTDR)	
	14.3.5	Serial Mode Register (SCSMR)	
		Serial Control Register (SCSCR)	
		Serial Status Register (SCFSR)	
	14.3.8	Bit Rate Register (SCBRR)	
		FIFO Control Register (SCFCR)	
	14.3.10	FIFO Data Count Register (SCFDR)	
		Serial Port Register (SCSPTR)	
	14.3.12	Line Status Register (SCLSR)	

Rev. 6.00 Jun. 12, 2007 Page xvi of xxxii

15.3	Parallel Access		
	15.3.1	Operation	
	15.3.2	Connection Method	
15.4	Registe	er Descriptions	
	15.4.1	HIF Index Register (HIFIDX)	
	15.4.2	HIF General Status Register (HIFGSR)	
	15.4.3	HIF Status/Control Register (HIFSCR)	
	15.4.4	HIF Memory Control Register (HIFMCR)	
	15.4.5	HIF Internal Interrupt Control Register (HIFIICR)	
	15.4.6	HIF External Interrupt Control Register (HIFEICR)	
	15.4.7	HIF Address Register (HIFADR)	
	15.4.8	HIF Data Register (HIFDATA)	
		HIF Boot Control Register (HIFBCR)	
	15.4.10) HIFDREQ Trigger Register (HIFDTR)	
	15.4.11	HIF Bank Interrupt Control Register (HIFBICR)	
15.5			
15.6	• •		
15.7			
	15.7.1	HIFIDX Write/HIFGSR Read	
	15.7.2	Reading/Writing of HIF Registers other than HIFIDX and HIFGSR	
	15.7.3	Consecutive Data Writing to HIFRAM by External Device	
		Consecutive Data Reading from HIFRAM to External Device	
15.8		al DMAC Interface	
15.9		ce When External Device Power is Cut Off	
Secti	ion 16	Pin Function Controller (PFC)	
16.1		er Descriptions	
	U	Port A IO Register H (PAIORH)	
		Port A Control Register H1 and H2 (PACRH1 and PACRH2)	

Renesas

Rev. 6.00 Jun. 12, 2007 Page

17.1	Port A.	
	17.1.1	Register Description
	17.1.2	Port A Data Register H (PADRH)
17.2	Port B.	
	17.2.1	Register Description
	17.2.2	Port B Data Register L (PBDRL)
17.3	Port C.	
	17.3.1	Register Description
	17.3.2	Port C Data Registers H and L (PCDRH and PCDRL)
17.4	Port D.	-
	17.4.1	Register Description
	17.4.2	Port D Data Register L (PDDRL)
17.5	Port E.	-
	17.5.1	Register Description
	17.5.2	Port E Data Registers H and L (PEDRH and PEDRL)
17.6		Note
Secti	ion 18 I	User Break Controller (UBC)
18.1	Feature	35
18.2		r Descriptions
	18.2.1	Break Address Register A (BARA)
	18.2.2	Break Address Mask Register A (BAMRA)
	18.2.3	Break Bus Cycle Register A (BBRA)
		Break Address Register B (BARB)
	18.2.5	Break Address Mask Register B (BAMRB)
	18.2.6	Break Data Register B (BDRB)
	18.2.7	Break Data Mask Register B (BDMRB)
	18.2.8	Break Bus Cycle Register B (BBRB)
	18.2.9	Break Control Register (BRCR)
		U ()

Rev. 6.00 Jun. 12, 2007 Page xviii of xxxii

	18.3.8	Usage Notes
Secti	on 191	User Debugging Interface (H-UDI)
19.1		18
19.2		Dutput Pins
19.3	-	r Descriptions
		Bypass Register (SDBPR)
		Instruction Register (SDIR)
		Boundary Scan Register (SDBSR)
	19.3.4	ID Register (SDID)
19.4		on
	19.4.1	TAP Controller
	19.4.2	Reset Configuration
	19.4.3	TDO Output Timing
	19.4.4	H-UDI Reset
	19.4.5	H-UDI Interrupt
19.5	Bounda	ıry Scan
		Supported Instructions
	19.5.2	Points for Attention
19.6	Usage l	Notes
Secti		List of Registers
20.1		r Addresses (Address Order)
20.2		r Bits
20.3	Registe	r States in Each Processing State
~ .		
		Electrical Characteristics
21.1		te Maximum Ratings
21.2	Power-	On and Power-Off Order

Rev. 6.00 Jun. 12, 2007 Pag

21.4.10 EtherC Timing
21.4.11 H-UDI Related Pin Timing
21.4.12 AC Characteristic Test Conditions
21.4.13 Delay Time Variation Due to Load Capacitance (Reference Values)
ndix
Port States in Each Pin State
Product Code Lineup
Package Dimensions
C
Revisions and Additions in this Edition

Rev. 6.00 Jun. 12, 2007 Page xx of xxxii

Figure 2.4	
Section 3	Cache
Figure 3.1	Cache Structure
Figure 3.2	Cache Search Scheme
Figure 3.3	Write-Back Buffer Configuration
Figure 3.4	Specifying Address and Data for Memory-Mapped Cache Access
Section 6	Interrupt Controller (INTC)
Figure 6.1	INTC Block Diagram
Figure 6.2	Block Diagram of IRQ7 to IRQ0 Interrupts Control.
	Interrupt Sequence Flowchart
Figure 6.4	Stack after Interrupt Exception Handling
Section 7	Bus State Controller (BSC)
Figure 7.1	Block Diagram of BSC
Figure 7.2	Address Space
Figure 7.3	Normal Space Basic Access Timing (No-Wait Access)
Figure 7.4	Consecutive Access to Normal Space (1): Bus Width = 16 bits,
	Longword Access, CSnWCR.WM = 0 (Access Wait = 0, Cycle Wait = 0)
Figure 7.5	Consecutive Access to Normal Space (2): Bus Width = 16 bits,
	Longword Access, CSnWCR.WM = 1 (Access Wait = 0, Cycle Wait = 0)
Figure 7.6	Example of 16-Bit Data-Width SRAM Connection
Figure 7.7	Example of 8-Bit Data-Width SRAM Connection
Figure 7.8	Wait Timing for Normal Space Access (Software Wait Only)
Figure 7.9	Wait Cycle Timing for Normal Space Access (Wait cycle Insertion using \overline{W}
Figure 7.10	Example of Timing when CSn Assertion Period is Extended
Figure 7.11	Example of 16-Bit Data-Width SDRAM Connection
Figure 7.12	Burst Read Basic Timing (Auto Precharge)
Figure 7.13	Burst Read Wait Specification Timing (Auto Precharge)
Figure 7.14	Basic Timing for Single Read (Auto Precharge)

Rev. 6.00 Jun. 12, 2007 Pag

Figure 7.26	Basic Access Timing for Byte-Selection SRAM (BAS = 0)
Figure 7.27	Basic Access Timing for Byte-Selection SRAM (BAS = 1)
Figure 7.28	Wait Timing for Byte-Selection SRAM (BAS = 1) (Software Wait Only)
Figure 7.29	Example of Connection with 16-Bit Data-Width Byte-Selection SRAM
Figure 7.30	Example of PCMCIA Interface Connection
Figure 7.31	Basic Access Timing for PCMCIA Memory Card Interface
Figure 7.32	Wait Timing for PCMCIA Memory Card Interface (TED[3:0] = B'0010,
	TEH[3:0] = B'0001, Software Wait = 1, Hardware Wait = 1)
Figure 7.33	Example of PCMCIA Space Assignment (CS5BWCR.SA[1:0] = B'10,
	CS6BWCR.SA[1:0] = B'10)
Figure 7.34	Basic Timing for PCMCIA I/O Card Interface
Figure 7.35	Wait Timing for PCMCIA I/O Card Interface (TED[3:0] = B'0010,
	TEH[3:0] = B'0001, Software Wait = 1, Hardware Wait = 1)
Figure 7.36	Timing for Dynamic Bus Sizing of PCMCIA I/O Card Interface
	(TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Waits = 3)
Section 8 (Clock Pulse Generator (CPG)
Figure 8.1	Block Diagram of CPG
Figure 8.2	Points for Attention when Using Crystal Resonator
Section 9	Watchdog Timer (WDT)
Figure 9.1	Block Diagram of WDT
	Writing to WTCNT and WTCSR
Section 10	Power-Down Modes
Figure 10.1	Canceling Standby Mode with STBY Bit in STBCR
Section 11	Ethernet Controller (EtherC)
	Configuration of EtherC
	EtherC Transmitter State Transitions
e	EtherC Receiver State Transmissions
8	

Rev. 6.00 Jun. 12, 2007 Page xxii of xxxii

Figure 11.7	Changing IPG and Transmission Efficiency	
Figure 11.8	Example of Connection to DP83846AVHG	
Section 12	Ethernet Controller Direct Memory Access Controller (E-DMAC)	
Figure 12.1	Configuration of E-DMAC, and Descriptors and Buffers	
Figure 12.2	Relationship between Transmit Descriptor and Transmit Buffer	
Figure 12.3	Relationship between Receive Descriptor and Receive Buffer	
Figure 12.4	Sample Transmission Flowchart	
Figure 12.5	Sample Reception Flowchart	
Figure 12.6	E-DMAC Operation after Transmit Error	
Figure 12.7	E-DMAC Operation after Receive Error	
Figure 12.8	Timing of the Case where Setting of the Interrupt Source Bit in EESR	
	by the E-DMAC Fails	
Figure 12.9	Countermeasure by Monitoring the Transmit Descriptor in Processing	
	of Interrupts Other than the Frame Transmit Complete (TC) Interrupt	
Figure 12.10) Method of Adding Timeout Processing	
Figure 12.1	Operation when E-DMAC Stops and the Transmit FIFO	
Figure 12.12	2 Processing Transmission without Handling of the TC Interrupt	
Figure 12.13	3 Countermeasure for the Case with TC Interrupt-Driven Software:	
	Addition of Timeout Processing within the Limit Imposed by the	
	Maximum Specified Time	
Section 13 Compare Match Timer (CMT)		
Figure 13.1	Block Diagram of Compare Match Timer	
	Counter Operation	
Figure 13.3	Count Timing	
Figure 13.4	Timing of CMF Setting	
Figure 13.5	Conflict between Write and Compare-Match Processes of CMCNT	
Figure 13.6	Conflict between Word-Write and Count-Up Processes of CMCNT	
Figure 13.7	Conflict between Byte-Write and Count-Up Processes of CMCNT	

Rev. 6.00 Jun. 12, 2007 Page

Figure 14.10	Example of Operation Using Modem Control (RTS)
Figure 14.11	Data Format in Synchronous Communication
Figure 14.12	Sample Flowchart for SCIF Initialization
Figure 14.13	Sample Flowchart for Transmitting Serial Data
Figure 14.14	Example of SCIF Transmit Operation
Figure 14.15	Sample Flowchart for Receiving Serial Data (1)
Figure 14.16	Sample Flowchart for Receiving Serial Data (2)
Figure 14.17	Example of SCIF Receive Operation
Figure 14.18	Sample Flowchart for Transmitting/Receiving Serial Data
Figure 14.19	RTSIO Bit, RTSDT bit, and RTS Pin
Figure 14.20	CTSIO Bit, CTSDT bit, and CTS Pin
Figure 14.21	SCKIO Bit, SCKDT bit, and SCK Pin
Figure 14.22	SPBIO Bit, SPBDT bit, and TxD Pin
Figure 14.23	SPBDT bit and RxD Pin
Figure 14.24	Receive Data Sampling Timing in Asynchronous Mode
Section 15	Host Interface (HIF)
Figure 15.1	Block Diagram of HIF
Figure 15.2	HIF Connection Example
Figure 15.3	Basic Timing for HIF Interface
Figure 15.4	
	HIFIDX Write and HIFGSR Read
Figure 15.5	HIFIDX Write and HIFGSR Read HIF Register Settings
-	
Figure 15.6	HIF Register Settings
Figure 15.6 Figure 15.7	HIF Register Settings Consecutive Data Writing to HIFRAM
Figure 15.6 Figure 15.7 Figure 15.8	HIF Register Settings Consecutive Data Writing to HIFRAM Consecutive Data Reading from HIFRAM
Figure 15.6 Figure 15.7 Figure 15.8 Figure 15.9	HIF Register Settings Consecutive Data Writing to HIFRAM Consecutive Data Reading from HIFRAM HIFDREQ Timing (When DMD = 0 and DPOL = 0)
Figure 15.6 Figure 15.7 Figure 15.8 Figure 15.9 Figure 15.10	HIF Register Settings Consecutive Data Writing to HIFRAM Consecutive Data Reading from HIFRAM HIFDREQ Timing (When DMD = 0 and DPOL = 0) HIFDREQ Timing (When DMD = 0 and DPOL = 1)

Rev. 6.00 Jun. 12, 2007 Page xxiv of xxxii

Figure 19.2	TAP Controller State Transitions
Figure 19.3	H-UDI Data Transfer Timing
Figure 19.4	H-UDI Reset
Section 21	Electrical Characteristics
Figure 21.1	External Clock Input Timing
Figure 21.2	CKIO and CK_PHY Clock Output Timings
Figure 21.3	Oscillation Settling Timing after Power-On
Figure 21.4	Oscillation Settling Timing after Standby Mode (By Reset)
Figure 21.5	Oscillation Settling Timing after Standby Mode (By NMI or IRQ)
Figure 21.6	PLL Synchronize Settling Timing By Reset or NMI
Figure 21.7	Reset Input Timing
Figure 21.8	Interrupt Input Timing
Figure 21.9	Pin Drive Timing in Standby Mode
Figure 21.10	Basic Bus Timing: No Wait Cycle
Figure 21.11	Basic Bus Timing: One Software Wait Cycle
Figure 21.12	Basic Bus Timing: One External Wait Cycle
Figure 21.13	Basic Bus Timing: One Software Wait Cycle, External Wait Enabled
	(WM Bit = 0), No Idle Cycle
Figure 21.14	Byte Control SRAM Timing: SW = 1 Cycle, HW = 1 Cycle,
	One Asynchronous External Wait Cycle, CSnWCR.BAS = 0
	(UB-/LB-Controlled Write Cycle)
Figure 21.15	Byte Control SRAM Timing: SW = 1 Cycle, HW = 1 Cycle,
	One Asynchronous External Wait Cycle, CSnWCR.BAS = 1
	(WE-Controlled Write Cycle)
Figure 21.16	5 Synchronous DRAM Single Read Bus Cycle
	(Auto-Precharge, CAS Latency = 2, WTRCD = 0 Cycle, WTRP = 0 Cycle
Figure 21.17	V Synchronous DRAM Single Read Bus Cycle
	(Auto-Precharge, CAS Latency = 2, WTRCD = 1 Cycle, WTRP = 1 Cyc

Rev. 6.00 Jun. 12, 2007 Page

RENESAS

(Auto-Precharge, WTRCD = 1 Cycle, TRWL = 1 Cycle)
Synchronous DRAM Burst Read Bus Cycle (Single Read × 4)
(Bank Active Mode: ACT + READ Commands, CAS Latency = 2,
WTRCD = 0 Cycle)
Synchronous DRAM Burst Read Bus Cycle (Single Read × 4)
(Bank Active Mode: READ Command, Same Row Address, CAS Latency
WTRCD = 0 Cycle)
Synchronous DRAM Burst Read Bus Cycle (Single Read × 4)
(Bank Active Mode: PRE + ACT + READ Commands, Different Row Ad
CAS Latency = 2, WTRCD = 0 Cycle)
Synchronous DRAM Burst Write Bus Cycle (Single Write \times 4)
(Bank Active Mode: ACT + WRITE Commands, WTRCD = 0 Cycle,
TRWL = 0 Cycle)
Synchronous DRAM Burst Write Bus Cycle (Single Write \times 4)
(Bank Active Mode: WRITE Command, Same Row Address, WTRCD =
TRWL = 0 Cycle)
Synchronous DRAM Burst Write Bus Cycle (Single Write \times 4)
(Bank Active Mode: PRE + ACT + WRITE Commands, Different Row A
WTRCD = 0 Cycle, TRWL = 0 Cycle)
Synchronous DRAM Auto-Refreshing Timing
(WTRP = 1 Cycle, WTRC = 3 Cycles)
Synchronous DRAM Self-Refreshing Timing (WTRP = 1 Cycle)
Synchronous DRAM Mode Register Write Timing (WTRP = 1 Cycle)
PCMCIA Memory Card Interface Bus Timing
PCMCIA Memory Card Interface Bus Timing (TED = 2.5 Cycles,
TEH = 1.5 Cycles, One Software Wait Cycle, One External Wait Cycle)
PCMCIA I/O Card Interface Bus Timing
PCMCIA I/O Card Interface Bus Timing (TED = 2.5 Cycles, TEH = 1.5 C
One Software Wait Cycle, One External Wait Cycle)

Rev. 6.00 Jun. 12, 2007 Page xxvi of xxxii

Figure 21.48	MDIO Output Timing
Figure 21.49	WOL Output Timing
Figure 21.50	EXOUT Output Timing
Figure 21.51	TCK Input Timing
Figure 21.52	TCK Input Timing in Reset Hold State
Figure 21.53	H-UDI Data Transmission Timing
-	Output Load Circuit
-	Load Capacitance versus Delay Time
Appendix	
Figure C.1 P	ackage Dimensions (BP-176)

Rev. 6.00 Jun. 12, 2007 Page

Rev. 6.00 Jun. 12, 2007 Page xxviii of xxxii

Table 2.4	I DIL
Table 2.5	Access to Immediate Data
Table 2.6	Access to Absolute Address
Table 2.7	Access with Displacement
Table 2.8	Addressing Modes and Effective Addresses
Table 2.9	Instruction Formats
Table 2.10	Instruction Types
Section 3	Cache
Table 3.1	LRU and Way to be Replaced
Table 3.2	Correspondence between Divided Areas and Cache
Section 5	Exception Handling
Table 5.1	Types of Exceptions and Priority
Table 5.2	Timing for Exception Detection and Start of Exception Handling
Table 5.3	Vector Numbers and Vector Table Address Offsets
Table 5.4	Calculating Exception Handling Vector Table Addresses
Table 5.5	Reset Status
Table 5.6	Bus Cycles and Address Errors
Table 5.7	Interrupt Sources
Table 5.8	Interrupt Priority
Table 5.9	Types of Exceptions Triggered by Instructions
Table 5.10	Delay Slot Instructions, Interrupt Disabled Instructions, and Exceptions
Table 5.11	Stack Status after Exception Handling Ends
Section 6	Interrupt Controller (INTC)
Table 6.1	Pin Configuration
Table 6.2	Interrupt Exception Handling Vectors and Priorities
Table 6.3	Interrupt Response Time
Section 7	Bus State Controller (BSC)
Table 7.1	Pin Configuration

Renesas

Rev. 6.00 Jun. 12, 2007 Page

Table 7.12	Relationship between Register Settings and Address Multiplex Output (3)
Table 7.13	Relationship between Register Settings and Address Multiplex Output (4)
Table 7.14	Relationship between Register Settings and Address Multiplex Output (5)
Table 7.15	Relationship between Register Settings and Address Multiplex Output (6)
Table 7.16	Relationship between Access Size and Number of Bursts
Table 7.17	Access Address for SDRAM Mode Register Write
Section 8	Clock Pulse Generator (CPG)
Table 8.1	Pin Configuration
Table 8.2	Mode Control Pins and Clock Operating Modes
Table 8.3	Possible Combination of Clock Modes and FRQCR Values
Section 10	Power-Down Modes
Table 10.1	States of Power-Down Modes
Table 10.2	Pin Configuration
Table 10.3	Register States in Software Standby Mode
Section 11	Ethernet Controller (EtherC)
Section 11 Table 11.1	Ethernet Controller (EtherC) Pin Configuration
Table 11.1	Pin Configuration
Table 11.1 Section 12	Pin Configuration Ethernet Controller Direct Memory Access Controller (E-DMAC)
Table 11.1 Section 12	Pin Configuration Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of
Table 11.1 Section 12 Table 12.1	Pin Configuration Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of Interrupt Sources in the Descriptor
Table 11.1 Section 12 Table 12.1 Table 12.2	Pin Configuration Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of Interrupt Sources in the Descriptor Reference Values for Maximum Specified Time
Table 11.1 Section 12 Table 12.1 Table 12.2 Section 14	Pin Configuration Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of Interrupt Sources in the Descriptor Reference Values for Maximum Specified Time Serial Communication Interface with FIFO (SCIF)
Table 11.1 Section 12 Table 12.1 Table 12.2 Section 14 Table 14.1	Pin Configuration. Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of Interrupt Sources in the Descriptor. Reference Values for Maximum Specified Time. Serial Communication Interface with FIFO (SCIF) SCIF Pins.
Table 11.1 Section 12 Table 12.1 Table 12.2 Section 14 Table 14.1 Table 14.2	Pin Configuration. Ethernet Controller Direct Memory Access Controller (E-DMAC) EESR Bits for which This Problem can Occur and Reflection of Interrupt Sources in the Descriptor. Reference Values for Maximum Specified Time. Serial Communication Interface with FIFO (SCIF) SCIF Pins. SCSMR Settings
Table 11.1 Section 12 Table 12.1 Table 12.2 Section 14 Table 14.1 Table 14.2 Table 14.3	Pin Configuration
Table 11.1 Section 12 Table 12.1 Table 12.2 Section 14 Table 14.1 Table 14.2 Table 14.3 Table 14.4	Pin Configuration

Rev. 6.00 Jun. 12, 2007 Page xxx of xxxii

1 auto 1 3.4	Consecutive while holedule to the KAW by External DWAC
Table 15.5	Consecutive Read Procedure from HIFRAM by External DMAC
Table 15.6	Input/Output Control for HIF Pins
Section 16	Pin Function Controller (PFC)
Table 16.1	List of Multiplexed Pins (Port A)
Table 16.2	List of Multiplexed Pins (Port B)
Table 16.3	List of Multiplexed Pins (Port C)
Table 16.4	List of Multiplexed Pins (Port D)
Table 16.5	List of Multiplexed Pins (Port E)
Table 16.6	Pin Functions in Each Operating Mode
Section 17	I/O Ports
Table 17.1	Port A Data Register H (PADRH) Read/Write Operation
Table 17.2	Port B Data Register L (PBDRL) Read/Write Operation
Table 17.3	Port C Data Registers H and L (PCDRH and PCDRL) Read/Write Opera
Table 17.4	Port D Data Register L (PDDRL) Read/Write Operation
Table 17.5	Port E Data Registers H, L (PEDRH, PEDRL) Read/Write Operation
Section 18	User Break Controller (UBC)
Table 18.1	Data Access Cycle Addresses and Operand Size Comparison Conditions
Section 19	User Debugging Interface (H-UDI)
Table 19.1	Pin Configuration
Table 19.2	H-UDI Commands
Table 19.3	External pins and Boundary Scan Register Bits
Table 19.4	Reset Configuration
Section 21	Electrical Characteristics
Table 21.1	Absolute Maximum Ratings
Table 21.2	Recommended Timing at Power-On
Table 21.3	Recommended Timing in Power-Off

Renesas

Rev. 6.00 Jun. 12, 2007 Page

Table 21.14	H-UDI Related Pin Timing
Appendix	
Table A.1	Port States in Each Pin State

Rev. 6.00 Jun. 12, 2007 Page xxxii of xxxii

could not previously be handled by microcontrollers because of their high-speed process requirements.

This LSI is equipped with a media access controller (MAC) conforming to the IEEE802 standard, and an Ethernet controller that includes a media independent interface (MII) st unit, enabling 10/100 Mbps LAN connection. Supporting functions necessary for system configuration are also provided, including cache memory, RAM, timers, a serial communiterface with FIFO (SCIF), host interface (HFI), interrupt controller (INTC), and I/O provided.

The external memory access support function of this LSI enables direct connection to vary types of memory, such as standard memory, SDRAM, and PCMCIA. This greatly reduct cost.

Rev. 6.00 Jun. 12, 2007 P REJ09

- Sixteen 52 on general registers
- Five-stage pipeline
- On-chip multiplier: Multiplication operations (32 bits × 32 bits → 64 bits) executed in five cycles
- C language-oriented 62 basic instructions
- Note: Some specifications on the slot illegal instruction differ from the conventional SF For details, see section 5.8, Usage Notes, in section 5, Exception Handling.

User break controller (UBC):

- Address, data value, access type, and data size are available for setting as break condi
- Supports the sequential break function
- Two break channels

U memory:

• 4 kbytes

Cache memory:

- Unified cache, mixture of instructions and data
- 4-way set associative type
- Selection of write-back or write-through mode
- 4 kbytes (SH7618), 16kbytes (SH7618A)

Rev. 6.00 Jun. 12, 2007 Page 2 of 610 REJ09B0131-0600

- Setting of idle wait cycles
- Specifying the memory to be connected to each area enables direct connection to SDRAM, and PCMCIA.
- Outputs chip select signals (CS0, CS3, CS4, CS5B, and CS6B) for corresponding
- SDRAM refresh function
 - Supports auto-refresh and self-refresh modes
- SDRAM burst access function
- PCMCIA access function
 - Conforms to the JEIDA Ver. 4.2 standard, two slots
- Selection of big or little endian mode (The mode of all the areas is switched collective mode pin.)

Interrupt controller (INTC):

- Supports nine external interrupt pins (NMI, IRQ7 to IRQ0)
- On-chip peripheral interrupt: Priority level is independently selected for each module
- Vector address: Specified vector address for each interrupt source

User debugging interface (H-UDI):

- Supports the JTAG interface emulator
- JTAG standard pins arranged

Clock pulse generator (CPG):

- Clock mode: Clock source selectable between an external supply and crystal resonat
- Three types of clocks generated:
 - CPU clock: 100 MHz (max.)
 - Bus clock: 50 MHz (max.)

RENESAS

- CSWA/CD link management (comsion prevention and comsion processing)
- CRC processing
- On-chip FIFOs (256 bytes (SH7618) and 512 bytes (SH7618A), each for transmit. operation)
- Full-duplex transmit/receive support
- Short frame/long frame detectable
- Conforms to the MII (Media Independent Interface) standard
 - Conversion from 8-bit stream data in MAC layer to MII nibble (4-bit) stream
 - Station management (STA function)
 - 18 TTL-level signals
 - 10/100 Mbps transfer rate adjustable
- Magic PacketTM* (WOL (Wake-On-LAN) output)

Ethernet controller DMAC (EDMAC):

- CPU load reduced with the descriptor management method
- For transferring from EtherC receive FIFO to receive buffer \times 1 channel
- For transferring from transmit buffer to EtherC transmit FIFO × 1 channel
- 16-byte burst transfer improves the efficiency of system bus
- Supports single frame and multiple buffer

Host interface (HIF):

- 1 kbyte × 2 banks: in total 2-kbyte buffer RAM
- The buffer RAM and the external device are connected in parallel via 16 data pins
- The buffer RAM and the CPU of this LSI are connected in parallel via internal bus

Rev. 6.00 Jun. 12, 2007 Page 4 of 610 REJ09B0131-0600

- 16-bit counter
- Generates compare match interrupts
- Two channels

Serial communication interface with FIFO (SCIF):

- Synchronous and asynchronous modes
- 16 bytes each for transmit/receive FIFO
- High-speed UART
- The UART supports FIFO stop and FIFO trigger
- Flow control enabled (channel 0 and channel 1 only)
- Three channels

I/O ports:

- 78 general input/output pins
- Input or output can be set per bit within the input/output common port

Package:

• BP1313-176 (0.8 pitch)

Power supply voltage:

• I/O: 3.0 to 3.6 V Internal: 1.5±0.1 V (Two power sources are externally provided.)

Note: * Magic Packet[™] is the registered trademark of Advance Micro Devices, Inc.

RENESAS

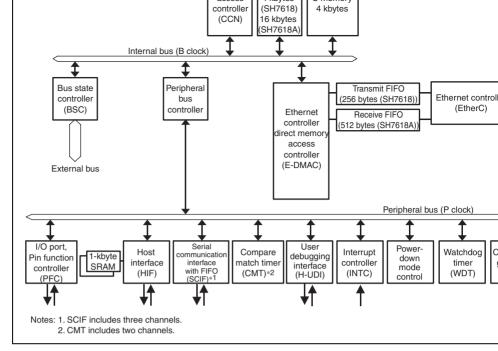


Figure 1.1 Block Diagram

Rev. 6.00 Jun. 12, 2007 Page 6 of 610 REJ09B0131-0600

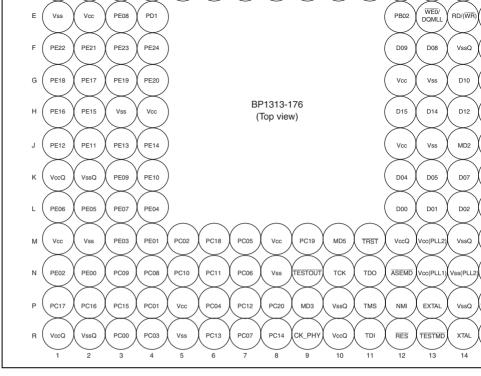


Figure 1.2 Pin Assignments

Renesas

VccQ	Input	Power Supply	Power supply for input/output pins. All the VccQ pi be connected to the system power supply. This LS operate correctly if there is a pin left open.
VssQ	Input	Ground	Ground pins. All the VssQ pins must be connected system power supply (0 V). This LSI does not ope correctly if there is a pin left open.
Vcc (PLL1)	Input	Power Supply for PLL1	Power supply pin for the on-chip PLL1 oscillator
Vss (PLL1)	Input	Ground for PLL1	Ground pin for the on-chip PLL1 oscillator
Vcc (PLL2)	Input	Power Supply for PLL2	Power supply pin for the on-chip PLL2 oscillator
Vss (PLL2)	Input	Ground for PLL2	Ground pin for the on-chip PLL2 oscillator
EXTAL	Input	External Clock	Connects to a crystal resonator. An external clock input on this pin. For details on connection of an e clock, see section 8, Clock Pulse Generator (CPG
XTAL	Output	Crystal	Connects to a crystal resonator.
CKIO	Output	System Clock	Supplies the system clock to external devices.
CK_PHY	Output	PHY Clock	Supplies the clock for external IEEE802.3-PHY.
MD5, MD3 to MD0	Input	Mode Setting	Sets operating mode. The signal levels of these pinot be changed during operation.
			Pins MD2 to MD0 are used for setting clock mode is for setting bus width mode for area 0, and pin M setting endian.
	VssQ Vcc (PLL1) Vss (PLL1) Vcc (PLL2) Vss (PLL2) EXTAL EXTAL CKIO CK_PHY MD5,	VssQInputVcc (PLL1)InputVss (PLL1)InputVcc (PLL2)InputVss (PLL2)InputEXTALInputXTALOutputCKIOOutputCK_PHYOutputMD5,Input	VssQInputGroundVcc (PLL1)InputPower Supply for PLL1Vss (PLL1)InputGround for PLL1Vcc (PLL2)InputGround for PLL2Vss (PLL2)InputGround for PLL2Vss (PLL2)InputGround for PLL2EXTALInputExternal ClockXTALOutputCrystalCKIOOutputSystem ClockMD5,InputMode Setting

Rev. 6.00 Jun. 12, 2007 Page 8 of 610 REJ09B0131-0600

	bus		-		
	Data bus	D15 to D0	Input/ output	Data Bus	16-bit bidirectional bus
	Bus control	$\frac{\overline{\text{CS0}}, \overline{\text{CS3}},}{\overline{\text{CS4}}, \overline{\text{CS5B}},}$ $\frac{\overline{\text{CS6B}}}{\overline{\text{CS6B}}}$	Output	Chip Select 0, 3, 4, 5B, 6B	Chip select signals for external memory and devi
		RD	Output	Read	Indicates that data is read from an external devic
		RD/WR	Output	Read/Write	Read/write signal
		BS	Output	Bus Cycle Start	Indicates start of a bus cycle.
		WE1	Output	Upper Side Write	Indicates that bits 15 to 8 of data of external men devices are written to.
		WE0	Output	Lower Side Write	Indicates that bits 7 to 0 of data of external memory devices are written to.
		WAIT	Input	Wait	Input pin used to insert wait cycles when accessi external space
		RAS	Output	RAS	Connects to the \overline{RAS} pin of SDRAM.
		CAS	Output	CAS	Connects to the \overline{CAS} pin of SDRAM.
		CKE	Output	Clock Enable	Connects to the CKE pin of SDRAM.
		DQMLU	Output	Upper Side Select	Selects bits 15 to 8 of SDRAM data bus.
_		DQMLL	Output	Lower Side Select	Selects bits 7 to 0 of SDRAM data bus.
		CE1A	Output	PCMCIA Card Select Lower Side	Chip enable for PCMCIA allocated to area 5

RENESAS

	ICIOWR	Output	PCMCIA I/O Write Strobe	Connects to the PCMCIA I/O write strobe pin.
	ICIORD	Output	PCMCIA I/O Read Strobe	Connects to the PCMCIA I/O read strobe pin.
	WE	Output	PCMCIA Memory Write Strobe	Connects to the PCMCIA memory write strobe.
	IOIS16	Input	PCMCIA Dynamic Bus Sizing	In little endian mode, this signal indicates 16-bit bu PCMCIA. In big endian mode, fix this pin low.
Ethernet controller	CRS	Input	Carrier Sense	Carrier sense pin
	COL	Input	Collision	Collision detect pin
	MII_TXD3 to MII_TXD0	Output	Transmit Data	4-bit transmit data pins
	TX_EN	Output	Transmit Enable	Indicates that transmit data is on pins MII_TXD3 to MII_TXD0.
	TX_CLK	Input	Transmit Clock	Timing reference input for the TX_EN, TX_ER, and MII_TXD3 to MII_TXD0 pins
	TX_ER	Output	Transmit Error	Informs PHY LSI of an error during transmission.
	MII_RXD3 to MII_RXD0	Input	Receive Data	4-bit receive data pins
	RX_DV	Input	Receive Data Valid	Indicates that valid receive data is on pins MII_RX MII_RXD0.
	RX_CLK	Input	Receive Clock	Timing reference input for the RX_DV, RX_ER, an MII_RXD3 to MII_RXD0 pins
	RX_ER	Input	Receive Error	Pin for detection of an error during reception

Rev. 6.00 Jun. 12, 2007 Page 10 of 610 REJ09B0131-0600

TXD2 to TXD0	Output	Transmit Data	Transmit data pins
RXD2 to RXD0	Input	Receive Data	Receive data pins
SCK2 to SCK0	Input/ output	Serial clock	Clock input pins
RTS1 and RTS0	Output	Transmit Request	Modem control pin. Supported only by SCIF0 and
$\overline{\text{CTS1}}$ and $\overline{\text{CTS0}}$	Input	Transmit Enable	Modem control pin. Supported only by SCIF0 and
HIFD15 to HIFD0	Input/ output	HIF Data Bus	Address, data, and command input/output pins for
HIFCS	Input	HIF Chip Select	Chip select input for the HIF
HIFRS	Input	HIF Register Select	Controls the access type switching for the HIF.
HIFWR	Input	HIF Write	Write strobe signal
HIFRD	Input	HIF Read	Read strobe signal
HIFINT	Output	HIF Interrupt	Interrupt request to external devices by the HIF
HIFMD	Input	HIF Mode	Specifies HIF boot mode.
HIFDREQ	Output	HIF DMAC Transfer Request	Requests DMAC transfer for the HIFRAM to extendevices.
HIFRDY	Output	HIF Boot Ready	Indicates that a reset of the HIF has been cleared and the HIF is ready for accesses to it.
HIFEBL	Input	HIF Pin Enable	HIF pins other than this pin are enabled by drivin high.
	TXD0 RXD2 to RXD0 SCK2 to SCK0 RTS1 and RTS0 CTS1 and CTS0 HIFD15 to HIFD15 to HIFD5 HIFRS HIFRS HIFRS HIFRR HIFRD HIFRD HIFRD HIFDREQ HIFDREQ	TXD0RXD2 to RXD0Input RXD0SCK2 to SCK0Input/ outputRTS1 and CTS1 and CTS0OutputIFD15 to HIFD15 to HIFCSInput/ outputHIFD15 to HIFCSInput/ outputHIFCSInputHIFRSInputHIFRSInputHIFRDInputHIFRDInputHIFRDOutputHIFRDInputHIFRDInputHIFRDOutput	TXD0RXD2 to RXD0Input Receive Data RXD0SCK2 to SCK0Input/ outputSerial clock outputRTS1 and RTS0Output Parameter Transmit EnableCTS1 and CTS0Input InputTransmit RequestHIFD15 to HIFD0Input/ Parameter SelectHIFRSInput InputHIF Chip SelectHIFRSInput InputHIF Register SelectHIFRDInput InputHIF Register SelectHIFRDInput InputHIF ReadHIFNTOutput InputHIF ReadHIFNDInput InputHIF NodeHIFNDInput InputHIF DMAC Transfer RequestHIFRDYOutput OutputHIF Boot ReadyHIFEBLInput InputHIF Pin

Renesas

i/O port	PA25 to PA16	output	General port	Pins for 10-bit general input/output port
	PB13 to PB00	Input/ output	General port	Pins for 14-bit general input/output port
	PC20 to PC00	Input/ output	General port	Pins for 21-bit general input/output port
	PD07 to PD00	Input/ output	General port	Pins for 8-bit general input/output port
	PE24 to PE00	Input/ output	General port	Pins for 25-bit general input/output port
Emulator	ASEMD	Input	ASE Mode	Specifies ASE mode.
interface				This LSI enters ASE mode when this signal goes I normal mode when this pin goes high. In ASE mod functions for the emulator are available.
Test Mode	TESTMD	Input	Test Mode	Specifies test mode.
				This LSI enters test mode when this signal goes lo signal high.
	TESTOUT	Output	Test Output	Output pin for testing. This pin should be open.
		.TM .		

Note: * Magic Packet[™] is the trademark of Advanced Micro Devices, Inc.

Rev. 6.00 Jun. 12, 2007 Page 12 of 610 REJ09B0131-0600

A8 F	PB05/ICIORD	IO/O
A9 F	RD	0
A10 A	A13	0
A11 \	V _{ss}	Power
A12 A	A09	0
A13 A	A06	0
A14 \	V _{ss} Q	Power
A15 \	V _{cc} Q	Power
B1 \	V _{ss} Q	Power
B2 F	PD7/IRQ7/SCK2	IO/I/IO
B3 F	PA24/A24	10/0
B4 \	V _{ss}	Power
B5 F	PA19/A19	10/0
B6 F	PA16/A16	10/0
B7 \	V _{ss} Q	Power
B8 F	PB06/ICIOWR	10/0
B9 F	PB11/CS4	10/0
B10 A	A14	0
B11 \	V _{cc}	Power
B12 A	A07	0
B13 A	A04	0
B14 A	A02	0
B15 A	A01	0

Rev. 6.00 Jun. 12, 2007 Pa

REJ09

RENESAS

C9	PB13/BS	10/0
C10	A12	0
C11	A10	0
C12	A05	0
C13	A03	0
C14	A00	0
C15	PB04/RAS	IO/O
D1	PD0/IRQ0	IO/I
D2	PD2/IRQ2/TxD1	IO/I/O
D3	PD4/IRQ4/SCK1	IO/I/IO
D4	PA23/A23	IO/O
D5	PA20/A20	IO/O
D6	PB10/(CS5B/CE1A)	10/0/0
D7	PB01/IOIS16	IO/I
D8	CSO	0
D9	A15	0
D10	A11	0
D11	A08	0
D12	PB12/CS3	IO/O
D13	PB03/CAS	IO/O
D14	V _{ss}	Power
D15	V _{cc}	Power
E1	V _{ss}	Power
E2	V _{cc}	Power

Rev. 6.00 Jun. 12, 2007 Page 14 of 610 REJ09B0131-0600

RENESAS

F3	PE23/HIFD14/RTS1	10/10/0
F4	PE24/HIFD15/CTS1	IO/IO/I
F12	D09	IO
F13	D08	IO
F14	V _{ss} Q	Power
F15	V _{cc} Q	Power
G1	PE18/HIFD09/TxD1	10/10/0
G2	PE17/HIFD08/SCK0	10/10/10
G3	PE19/HIFD10/RxD1	IO/IO/I
G4	PE20/HIFD11/SCK1	10/10/10
G12	V _{cc}	Power
G13	V _{ss}	Power
G14	D10	IO
G15	D11	IO
H1	PE16/HIFD07/RxD0	IO/IO/I
H2	PE15/HIFD06/TxD0	10/10/0
H3	V _{ss}	Power
H4	V _{cc}	Power
H12	D15	IO
H13	D14	IO
H14	D12	IO
H15	D13	IO
J1	PE12/HIFD03	IO/IO
J2	PE11/HIFD02	10/10

Rev. 6.00 Jun. 12, 2007 Pa

Renesas

2007 14

REJ09

K3	PE09/HIFD00	10/10
K4	PE10/HIFD01	IO/IO
K12	D04	Ю
K13	D05	IO
K14	D07	Ю
K15	D06	IO
L1	PE06/HIFWR	IO/I
L2	PE05/HIFRD	IO/I
L3	PE07/HIFRS	IO/I
L4	PE04/HIFINT	IO/O
L12	D00	IO
L13	D01	IO
L14	D02	IO
L15	D03	IO
M1	V _{cc}	Power
M2	V _{ss}	Power
M3	PE03/HIFMD	IO/I
M4	PE01/HIFRDY	IO/O
M5	PC02/MII_RXD2	IO/I
M6	PC18/LNKSTA	IO/I
M7	PC05/MII_TXD1	IO/O
M8	V _{cc}	Power
M9	PC19/EXOUT	IO/O
M10	MD5	I

Rev. 6.00 Jun. 12, 2007 Page 16 of 610 REJ09B0131-0600

RENESAS

N4	PC08/RX_DV	IO/I
N5	PC10/RX_CLK	IO/I
N6	PC11/TX_ER	IO/O
N7	PC06/MII_TXD2	IO/O
N8	V _{ss}	Power
N9	TESTOUT	0
N10	ТСК	I
N11	TDO	0
N12	ASEMD	I
N13	V _{cc} (PLL1)	Power
N14	V _{ss} (PLL2)	Power
N15	MD1	I
P1	PC17/MDC	IO/O
P2	PC16/MDIO	IO/IO
P3	PC15/CRS	IO/I
P4	PC01/MII_RXD1	IO/I
P5	V _{cc}	Power
P6	PC04/MII_TXD0	IO/O
P7	PC12/TX_EN	IO/O
P8	PC20/WOL	IO/O
P9	MD3	Ι
P10	V _{ss} Q	Power
P11	TMS	Ι
P12	NMI	I

Rev. 6.00 Jun. 12, 2007 Pa

Renesas

, 2007 Ta

REJ09

R6	PC13/TX_CLK	10/I
R7	PC07/MII_TXD3	10/0
R8	PC14/COL	IO/I
R9	CK_PHY	0
R10	V _{cc} Q	Power
R11	TDI	Ι
R12	RES	Ι
R13	TESTMD	Ι
R14	XTAL	0
R15	MD0	I

Rev. 6.00 Jun. 12, 2007 Page 18 of 610 REJ09B0131-0600

Post-increment register indirect (@Rn+) Pre-decrement register indirect (@-Rn) Register indirect with displacement (@disp:4, Rn) Index register indirect (@R0, Rn) GBR indirect with displacement (@disp:8, GBR) Index GBR indirect (@R0, GBR) PC relative with displacement (@disp:8, PC) PC relative (disp:8/disp:12/Rn) Immediate (#imm:8)

2.2 Register Configuration

There are three types of registers: general registers (32-bit \times 16), control registers (32-bit system registers (32-bit \times 4).

CPUS200C_000020020700

RENESAS

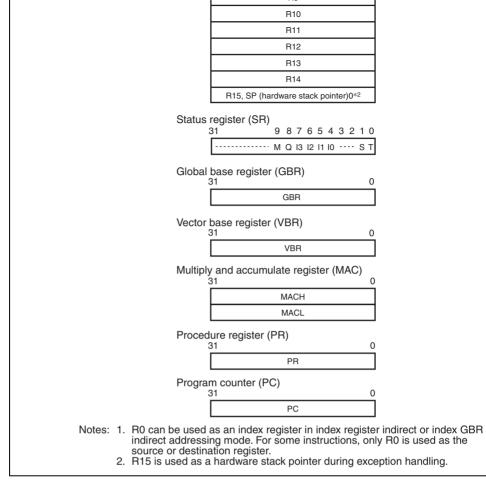


Figure 2.1 CPU Internal Register Configuration

Rev. 6.00 Jun. 12, 2007 Page 20 of 610 REJ09B0131-0600

and vector base register (VBR). SR indicates a processing state. GBR is used as a base a GBR indirect addressing mode for data transfer of on-chip peripheral module registers. Used as a base address of the exception handling (including interrupts) vector table.

• Status register (SR)

Bit	Bit name	Default	Read/ Write	Description
31 to 10		All 0	R/W	Reserved
				These bits are always read as 0. The write v should always be 0.
9	М	Undefined	R/W	Used by the DIV0U, DIV0S, and DIV1 instru
8	Q	Undefined	R/W	Used by the DIV0U, DIV0S, and DIV1 instru
7	13	1	R/W	Interrupt Mask
6	12	1	R/W	
5	11	1	R/W	
4	10	1	R/W	
3, 2		All 0	R/W	Reserved
				These bits are always read as 0. The write v should always be 0.
1	S	Undefined	R/W	S
				Used by the multiply and accumulate instruc

RENESAS

• Global-base register (GBR)

This register indicates a base address in GBR indirect addressing mode. The GBR ind addressing mode is used for data transfer of the on-chip peripheral module registers at operations.

• Vector-base register (VBR)

This register indicates the base address of the exception handling vector table.

2.2.3 System Registers

There are four 32-bit system registers, designated two multiply and accumulate registers and MACL), a procedure register (PR), and program counter (PC).

- Multiply and accumulate registers (MAC) This register stores the results of multiplication and multiply-and-accumulate operation
- Procedure register (PR) This register stores the return-destination address from subroutine procedures.
- Program counter (PC)

The PC indicates the point which is four bytes (two instructions) after the current executions instruction.

Rev. 6.00 Jun. 12, 2007 Page 22 of 610 REJ09B0131-0600

		neserved bits. 0
		Other bits: Undefined
	GBR	Undefined
	VBR	H'0000000
System register	MACH, MACL, PR	Undefined
	PC	PC value set in the exception handling vect

Renesas

ÿ

Figure 2.2 Register Data Format

2.3.2 Memory Data Formats

Memory data formats are classified into byte, word, and longword.

Byte data can be accessed from any address. If word data starting from boundary other the longword data starting from a boundary other than 4n is accessed, an address error will or such cases, the data accessed cannot be guaranteed. See figure 2.3.

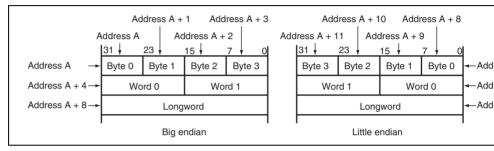



Figure 2.3 Memory Data Format

Either big endian and little endian formats can be selected according to the mode pin settireset. For details on mode pin settings, see section 7, Bus State Controller (BSC).

relative addressing mode with displacement.

2.4 Features of Instructions

2.4.1 RISC Type

The instructions are RISC-type instructions with the following features:

Fixed 16-Bit Length: All instructions have a fixed length of 16 bits. This improves progetficiency.

One Instruction per Cycle: Since pipelining is used, basic instructions can be executed cycle. One cycle is 25ns with 40 MHz operation.

Data Size: The basic data size for operations is longword. Byte, word, or longword can selected as the memory access size. Byte or word data in memory is sign-extended to long and then calculated. Immediate data is sign-extended to longword for arithmetic operation zero-extended to longword size for logical operations.

Table 2.2 Word Data Sign Extension

CPU in th	is LSI	Description	Example of Other O
MOV.W ADD	@(disp,PC),R1 R1,R0 	Sign-extended to 32 bits, R1 becomes H'00001234, and is then operated on by the ADD instruction.	ADD.W #H'1234,R(
.DATA.W	H'1234		
N. I.	1° 1 1 1 1		

Note: Immediate data is accessed by @(disp,PC).

RENESAS

CPU i	n this LSI	Description	Example	e of Oth
BRA	TRGET	ADD is executed before branch to TRGET.	ADD.W	R1,R0
ADD	R1,R0		BRA	TRGE

Multiply/Multiply-and-Accumulate Operations: A $16 \times 16 \rightarrow 32$ multiply operation is executed in one to two cycles, and a $16 \times 16 + 64 \rightarrow 64$ multiply-and-accumulate operation to three cycles. A $32 \times 32 \rightarrow 64$ multiply operation and a $32 \times 32 + 64 \rightarrow 64$ multiply-and-accumulate operation are each executed in two to four cycles.

T Bit: The result of a comparison is indicated by the T bit in SR, and a conditional branch performed according to whether the result is True or False. Processing speed has been im by keeping the number of instructions that modify the T bit to a minimum.

CPU in th	is LSI	Description	Exampl	e of Oth
CMP/GE	R1,R0	When $R0 \ge R1$, the T bit is set.	CMP.W	R1,R0
BT	TRGET0	When $R0 \ge R1$, a branch is made to TRGET0.	BGE	TRGET
BF	TRGET1	When $R0 < R1$, a branch is made to TRGET1.	BLT	TRGET
ADD	#–1,R0	The T bit is not changed by ADD.	SUB.W	#1,R0
CMP/EQ	#0,R0	When $R0 = 0$, the T bit is set.	BEQ	TRGET
BT	TRGET	A branch is made when $R0 = 0$.		

Table 2.4 T Bit

Rev. 6.00 Jun. 12, 2007 Page 26 of 610 REJ09B0131-0600

	.DATA.W H'1234	
32-bit immediate	MOV.L @(disp,PC),R0	MOV.L
		#111. R0
	.DATA.L H'12345678	110

Note: Immediate data is accessed by @(disp,PC).

Absolute Addresses: When data is accessed by absolute address, place the absolute address in a table in memory beforehand. The absolute address value is transferred to a register method whereby immediate data is loaded when an instruction is executed, and the data accessed using the register indirect addressing mode.

Table 2.6 Access to Absolute Address

Туре	CPU in t	his LSI	Exampl	e of Ot
Absolute address	MOV.L	@(disp,PC),R1	MOV.B	
	MOV.B	@R1,R0	R0	@H'1:
	.DATA.L	H'12345678		

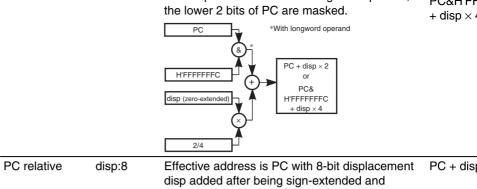
Note: Immediate data is referenced by @(disp,PC).

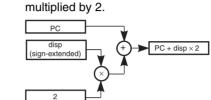
16-Bit/32-Bit Displacement: When data is accessed using the 16- or 32-bit displacement addressing mode, the displacement value is placed in a table in memory beforehand. Usi method whereby immediate data is loaded when an instruction is executed, this value is transferred to a register and the data is accessed using index register indirect addressing

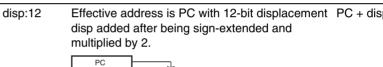
RENESAS

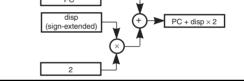
Table 2.8 lists addressing modes and effective address calculation methods.

Addressing Mode	Instruction Format	Effective Address Calculation Method	Calculat Formula
Register	Rn	Effective address is register Rn.	_
direct		(Operand is register Rn contents.)	
Register	@Rn	Effective address is register Rn contents.	Rn
indirect		Rn Rn	
Register	@Rn+	Effective address is register Rn contents. A	Rn
indirect with post-increment	constant is added to Rn after instruction execution: 1 for a byte operand, 2 for a word operand, 4 for a longword operand. Rn	After inst executior	
		Byte: Rn Rn	
			Word: Rr Rn
			Longwore $\rightarrow Rn$


 Table 2.8
 Addressing Modes and Effective Addresses


Rev. 6.00 Jun. 12, 2007 Page 28 of 610 REJ09B0131-0600




Register indirect with displacement	@(disp:4, Rn)	Effective address is register Rn contents with 4-bit displacement disp added. After disp is zero-extended, it is multiplied by 1 (byte), 2 (word), or 4 (longword), according to the operand size. \boxed{Rn} \underbrace{Rn} $\underbrace{disp}{(zero-extended)}$ \underbrace{Rn} \underbrace{Hn}	Byte: R Word: F 2 Longwo disp × 4
Index register indirect	@(R0, Rn)	Effective address is sum of register Rn and R0 contents.	Rn + R0
GBR indirect with displacement	@(disp:8, GBR)	Effective address is register GBR contents with 8-bit displacement disp added. After disp is zero-extended, it is multiplied by 1 (byte), 2 (word), or 4 (longword), according to the operand size.	Byte: G Word: C × 2 Longwc disp × 4

Renesas

Rev. 6.00 Jun. 12, 2007 Page 30 of 610 REJ09B0131-0600

2.4.3 Instruction Formats

This section describes the instruction formats, and the meaning of the source and destinat operands. The meaning of the operands depends on the instruction code. The following are used in the table.

- xxxx: Instruction code
- mmmm: Source register
- nnnn: Destination register
- iiii: Immediate data
- dddd: Displacement

	Control register or system register	nnnn: pre- decrement register indirect	STC.L SR,@-F
m type	mmmm: register direct	Control register or system register	LDC Rm,SR
xxxx mmmm xxxx	mmmm: post- increment register indirect	Control register or system register	LDC.L @Rm+,
	mmmm: register indirect		JMP @Rm
	PC relative using Rm		BRAF Rm

Rev. 6.00 Jun. 12, 2007 Page 32 of 610 REJ09B0131-0600

	nnnn: * post- increment register indirect (multiply- and-accumulate operation)			
	mmmm: post- increment register indirect	nnnn: register direct	MOV.L	@Rm-
	mmmm: register direct	nnnn: pre- decrement register indirect	MOV.L	Rm,@
	mmmm: register direct	nnnn: index register indirect	MOV.L	Rm,@
md type	mmmmdddd: register indirect with displacement	R0 (register direct)	MOV.B	@(dis
nd4 type	R0 (register direct)	nnnndddd: register indirect with displacement	MOV.B	R0,@
nmd type	mmmm: register direct	nnnndddd: register indirect with displacement	MOV.L	Rm,@
	mmmmdddd: register indirect with displacement	nnnn: register direct	MOV.L	@(dis

Renesas

	—	ddddddd: PC relative	BF label
d12 type	_	dddddddddd:	BRA label
15 0 xxxx dddd dddd dddd		PC relative	(label=disp+PC)
nd8 type	ddddddd: PC	nnnn: register	MOV.L @(disp
15 0 xxxx nnnn dddd dddd	relative with displacement	direct	
i type	iiiiiiii:	Index GBR indirect	
150	immediate		#imm,@(R0,GB
xxxx xxxx iiii iiii	iiiiiii: immediate	R0 (register direct)	AND #imm,R0
	iiiiiii: immediate	_	TRAPA #imm
ni type	iiiiiiii:	nnnn: register	ADD #imm,Rn
15 0 xxxx nnnn iiii iiii	immediate	direct	

Note: * In multiply and accumulate instructions, nnnn is the source register.

Rev. 6.00 Jun. 12, 2007 Page 34 of 610 REJ09B0131-0600

instructions			Immediate data transfer	
			Peripheral module data transfer	
			Structure data transfer	
		MOVA	Effective address transfer	-
		MOVT	T bit transfer	-
		SWAP	Upper/lower swap	-
		XTRCT	Extraction of middle of linked registers	
Arithmetic	21	ADD	Binary addition	33
operation instructions		ADDC	Binary addition with carry	-
monuclions		ADDV	Binary addition with overflow	-
		CMP/cond	Comparison	-
		DIV1	Division	
		DIV0S	Signed division initialization	-
		DIV0U	Unsigned division initialization	-
		DMULS	Signed double-precision multiplication	_
		DMULU	Unsigned double-precision multiplication	_
		DT	Decrement and test	-
		EXTS	Sign extension	-
		EXTU	Zero extension	-
		MAC	Multiply-and-accumulate, double- precision multiply-and-accumulate	_
		MUL	Double-precision multiplication	

Renesas

operation instructions	0		Logical Arte	17
		NOT	Bit inversion	
		OR	Logical OR	
		TAS	Memory test and bit setting	
		TST	T bit setting for logical AND	
		XOR	Exclusive logical OR	
Shift	10	ROTL	1-bit left shift	14
instructions		ROTR	1-bit right shift	
		ROTCL	1-bit left shift with T bit	
		ROTCR	1-bit right shift with T bit	
		SHAL	Arithmetic 1-bit left shift	
		SHAR	Arithmetic 1-bit right shift	
		SHLL	Logical 1-bit left shift	
		SHLLn	Logical n-bit left shift	
		SHLR	Logical 1-bit right shift	
		SHLRn	Logical n-bit right shift	

Rev. 6.00 Jun. 12, 2007 Page 36 of 610 REJ09B0131-0600

		JMP	Unconditional branch	
		JSR	Branch to subroutine procedure	
		RTS	Return from subroutine procedure	_
System control instructions	11	CLRT	T bit clear	31
		CLRMAC	MAC register clear	
		LDC	Load into control register	
		LDS	Load into system register	
		NOP	No operation	
		RTE	Return from exception handling	
		SETT	T bit setting	
		SLEEP	Transition to power-down mode	
		STC	Store from control register	
		STS	Store from system register	
		TRAPA	Trap exception handling	
Total:	62			14

RENESAS

OP: Operation code	nnnn: Destination	(xx): Memory operand
Sz: Size SRC: Source	register 0000: R0	M/Q/T: Flag bits in SR
DEST: Destination	0001: R1	&: Logical AND of each bit
Rm: Source register		: Logical OR of each bit
Rn: Destination	1111: R15	^: Exclusive logical OR of
register	iiii: Immediate data	each bit
imm: Immediate data	dddd: Displacement	-: Logical NOT of each bit
disp: Displacement*2		< <n: left="" n-bit="" shift<="" td=""></n:>
		>>n: n-bit right shift

Notes: 1. The table shows the minimum number of execution states. In practice, the nun instruction execution states will be increased in cases such as the following:

- When there is contention between an instruction fetch and a data access
- When the destination register of a load instruction (memory \rightarrow register) is by the following instruction
- 2. Scaled (\times 1, \times 2, or \times 4) according to the instruction operand size, etc. For details, see SH-1/SH-2/SH-DSP Software Manual.

Rev. 6.00 Jun. 12, 2007 Page 38 of 610 REJ09B0131-0600

				•
MOV.W	Rm,@Rn	$Rm \to (Rn)$	0010nnnnmmm0001	1
MOV.L	Rm,@Rn	Rm ightarrow (Rn)	Rm → (Rn) 0010nnnnmmm0010	
MOV.B	@Rm,Rn	$\begin{array}{l} (Rm) \to Sign \text{ extension} \\ \to Rn \end{array}$	0110nnnnmmm0000	1
MOV.W	@Rm,Rn	$\begin{array}{l} (Rm) \to Sign \text{ extension} \\ \to Rn \end{array}$	0110nnnnmmm0001	1
MOV.L	@Rm,Rn	$(Rm)\toRn$	0110nnnnmmm0010	1
MOV.B	Rm,@—Rn	$\text{Rn-1} \rightarrow \text{Rn}, \text{Rm} \rightarrow (\text{Rn})$	0010nnnnmmm0100	1
MOV.W	Rm,@-Rn	$\textbf{Rn-2} \rightarrow \textbf{Rn}, \textbf{Rm} \rightarrow (\textbf{Rn})$	0010nnnnmmm0101	1
MOV.L	Rm,@—Rn	$\textbf{Rn-}4 \rightarrow \textbf{Rn}, \textbf{Rm} \rightarrow (\textbf{Rn})$	0010nnnnmmm0110	1
MOV.B	@Rm+,Rn	$\begin{array}{l} (\text{Rm}) \rightarrow \text{Sign extension} \\ \rightarrow \text{Rn}, \text{Rm} + 1 \rightarrow \text{Rm} \end{array}$	0110nnnnmmm0100	1
MOV.W	@Rm+,Rn	$(Rm) \rightarrow Sign extension \rightarrow Rn, Rm + 2 \rightarrow Rm$	0110nnnnmmm0101	1
MOV.L	@Rm+,Rn	$(\text{Rm}) \rightarrow \text{Rn}, \text{Rm} + 4 \rightarrow \text{Rm}$	0110nnnnmmm0110	1
MOV.B	R0,@(disp,Rn)	$\text{R0} \rightarrow (\text{disp} + \text{Rn})$	10000000nnnndddd	1
MOV.W	R0,@(disp,Rn)	$\text{R0} \rightarrow (\text{disp} \times \text{2 + Rn})$	10000001nnnndddd	1
MOV.L	Rm,@(disp,Rn)	$\text{Rm} \rightarrow (\text{disp} \times 4 + \text{Rn})$	0001nnnnmmmdddd	1
MOV.B	@(disp,Rm),R0	$\begin{array}{l} (\text{disp + Rm}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$	10000100mmmmdddd	1
MOV.W	@(disp,Rm),R0	$\begin{array}{l} (\text{disp}\times 2+\text{Rm})\rightarrow \text{Sign} \\ \text{extension}\rightarrow \text{R0} \end{array}$	10000101mmmmdddd	1
MOV.L	@(disp,Rm),Rn	$(\text{disp}\times 4+\text{Rm})\rightarrow \text{Rn}$	0101nnnnmmmdddd	1
MOV.B	Rm,@(R0,Rn)	$\text{Rm} \rightarrow (\text{R0} + \text{Rn})$	0000nnnnmmm0100	1
MOV.W	Rm,@(R0,Rn)	$\text{Rm} \rightarrow (\text{R0} + \text{Rn})$	0000nnnnmmm0101	1

Renesas

MOV.L	R0,@(disp,GBR)	$R0 \rightarrow (disp \times 4 + GBR)$ 11000010ddddddd		1	
MOV.B	@(disp,GBR),R0	$\begin{array}{l} (\text{disp + GBR}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$	11000100ddddddd	1	
MOV.W	@(disp,GBR),R0	$\begin{array}{l} (\text{disp} \times \text{2 + GBR}) \rightarrow \\ \text{Sign extension} \rightarrow \text{R0} \end{array}$	11000101ddddddd	1	
MOV.L	@(disp,GBR),R0	$(\text{disp} \times \text{4} + \text{GBR}) \rightarrow \text{R0}$	11000110ddddddd	1	
MOVA	@(disp,PC),R0	$\text{disp} \times \text{4} + \text{PC} \rightarrow \text{R0}$	11000111ddddddd	1	
MOVT	Rn	$T\toRn$	0000nnnn00101001	1	
SWAP.B	Rm,Rn	$\label{eq:Rm} \begin{array}{l} Rm \to Swap \text{ lowest two} \\ bytes \to Rn \end{array}$	0110nnnnmmm1000	1	
SWAP.W	Rm,Rn	$\begin{array}{l} Rm \rightarrow Swap \ two \\ consecutive \ words \rightarrow Rn \end{array}$	0110nnnnmmm1001	1	
XTRCT	Rm,Rn	Rm: Middle 32 bits of $Rn \rightarrow Rn$	0010nnnnmmm1101	1	

Rev. 6.00 Jun. 12, 2007 Page 40 of 610 REJ09B0131-0600

				r
CMP/EQ Rm,Rn		If $Rn = Rm$, $1 \rightarrow T$	0011nnnnmmm00000	1 (r
CMP/HS Rm,Rn		If $Rn \ge Rm$ with unsigned data, $1 \rightarrow T$	0011nnnnmmm0010	1 (r
CMP/GE Rm,Rn		If $Rn \ge Rm$ with signed data, $1 \rightarrow T$	0011nnnnmmm0011	1 (r
CMP/HI Rm,Rn		If Rn > Rm with unsigned data, $1 \rightarrow T$	0011nnnnmmm0110	1 (r
CMP/GT Rm,Rn		If Rn > Rm with signed data, $1 \rightarrow T$	0011nnnnmmm0111	1 (r
CMP/PZ Rn		If $Rn \ge 0, 1 \rightarrow T$	0100nnnn00010001	1 (r
CMP/PL Rn		If Rn > 0, 1 \rightarrow T	0100nnnn00010101	1 (r
CMP/STRRm,Rn		If Rn and Rm have an equivalent byte, $1 \rightarrow T$	0010nnnnmmm1100	1 (r
DIV1 Rm,Rn		Single-step division (Rn/Rm)	0011nnnnmmm0100	1 (r
DIVOS Rm,Rn		$\begin{array}{l} \text{MSB of } \text{Rn} \rightarrow \text{Q}, \text{MSB} \\ \text{of } \text{Rm} \rightarrow \text{M}, \text{M}^{\wedge} \text{Q} \rightarrow \text{T} \end{array}$	0010nnnnmmm0111	1 (r
DIV0U		$0 \rightarrow M/Q/T$	000000000011001	1 (
DMULS.L	Rm,Rn	Signed operation of $Rn \times Rm \rightarrow MACH$, MACL $32 \times 32 \rightarrow 64$ bits	0011nnnnmmm1101	2 to 5* -

Renesas

EXTU.B Rm, Rn	A byte in Rm is zero-extended \rightarrow Rn	0110nnnnmmm1100	1	_
EXTU.W Rm, Rn	A word in Rm is zero-extended \rightarrow Rn	0110nnnnmmm1101	1	_
MAC.L @Rm+,@Rn+	Signed operation of (Rn) \times (Rm) + MAC \rightarrow MAC, 32×32 + 64 \rightarrow 64 bits	0000nnnnmmm1111	2 to 5*	
MAC.W @Rm+,@Rn+	Signed operation of (Rn) × (Rm) + MAC \rightarrow MAC, 16 × 16 + 64 \rightarrow 64 bits	0100nnnnmmm1111	2 to 4*	
MUL.L Rm,Rn	$\begin{array}{l} Rn \times Rm \to MACL \\ 32 \times 32 \to 32 \text{ bits} \end{array}$	0000nnnnmmm0111	2 to 5*	_
MULS.W Rm,Rn	Signed operation of Rn \times Rm \rightarrow MAC 16 \times 16 \rightarrow 32 bits	0010nnnnmmm1111	1 (3)*	
MULU.W Rm,Rn	Unsigned operation of Rn \times Rm \rightarrow MAC 16 \times 16 \rightarrow 32 bits	0010nnnnmmm1110	1 (3)*	
NEG Rm,Rn	$\text{0-Rm} \rightarrow \text{Rn}$	0110nnnnmmm1011	1	
NEGC Rm,Rn	$\begin{array}{l} \text{0-Rm-T} \rightarrow \text{Rn}, \\ \text{Borrow} \rightarrow \text{T} \end{array}$	0110nnnnmmm1010	1	В
SUB Rm,Rn	$\text{Rn-Rm} \rightarrow \text{Rn}$	0011nnnnmmm1000	1	

Rev. 6.00 Jun. 12, 2007 Page 42 of 610 REJ09B0131-0600

Instruc	ction	Operation	Code	Execution Cycles
AND	Rm,Rn	Rn & Rm \rightarrow Rn	0010nnnnmmm1001	1
AND	#imm,R0	R0 & imm \rightarrow R0	11001001iiiiiii	1
AND.B	#imm,@(R0,GBR)	(R0 + GBR) & imm \rightarrow (R0 + GBR)	11001101iiiiiii	3
NOT	Rm,Rn	${\sim}Rm \to Rn$	0110nnnnmmm0111	1
OR	Rm,Rn	$Rn \mid Rm \to Rn$	0010nnnnmmm1011	1
OR	#imm,R0	$R0 \mid imm \rightarrow R0$	11001011iiiiiii	1
OR.B	#imm,@(R0,GBR)	$(R0 + GBR) \mid imm \rightarrow$ (R0 + GBR)	11001111iiiiiii	3
TAS.B	@Rn	If (Rn) is 0, $1 \rightarrow T$; $1 \rightarrow MSB$ of (Rn)	0100nnnn00011011	4
TST	Rm,Rn	Rn & Rm; if the result is 0, $1 \rightarrow T$	0010nnnnmmm1000	1
TST	#imm,R0	R0 & imm; if the result is 0, $1 \rightarrow T$	11001000iiiiiiii	1
TST.B	#imm,@(R0,GBR)	(R0 + GBR) & imm; if the result is 0, $1 \rightarrow T$	11001100iiiiiiii	3
XOR	Rm,Rn	$Rn \wedge Rm \to Rn$	0010nnnnmmm1010	1
XOR	#imm,R0	R0 ^ imm \rightarrow R0	11001010iiiiiii	1
XOR.B	#imm,@(R0,GBR)	$(R0 + GBR) \wedge imm \rightarrow$ (R0 + GBR)	11001110iiiiiiii	3

RENESAS

SHLL	Rn	$T \gets Rn \gets 0$	0100nnnn00000000	1
SHLR	Rn	$0 \to Rn \to T$	0100nnnn00000001	1
SHLL2	Rn	$Rn \ll 2 \rightarrow Rn$	0100nnnn00001000	1 ·
SHLR2	Rn	$Rn >> 2 \rightarrow Rn$	0100nnnn00001001	1 ·
SHLL8	Rn	$Rn \ll 8 \rightarrow Rn$	0100nnnn00011000	1 ·
SHLR8	Rn	$Rn >> 8 \rightarrow Rn$	0100nnnn00011001	1 ·
SHLL16	Rn	$Rn \ll 16 \rightarrow Rn$	0100nnnn00101000	1 .
SHLR16	Rn	$Rn >> 16 \rightarrow Rn$	0100nnnn00101001	1 .

Branch Instructions

Instru	ction	Operation	Code	Execution Cycles
BF	label	If T = 0, disp \times 2 + PC \rightarrow PC; if T = 1, nop	10001011ddddddd	3/1* -
BF/S	label	Delayed branch, if T = 0, disp \times 2 + PC \rightarrow PC; if T = 1, nop	10001111ddddddd	2/1*
ВТ	label	If T = 1, disp \times 2 + PC \rightarrow PC; if T = 0, nop	10001001ddddddd	3/1* -
BT/S	label	Delayed branch, if T = 1, disp \times 2 + PC \rightarrow PC; if T = 0, nop	10001101ddddddd	2/1*
BRA	label	Delayed branch, disp \times 2 + PC \rightarrow PC	1010ddddddddddd	2

Rev. 6.00 Jun. 12, 2007 Page 44 of 610 REJ09B0131-0600

RENESAS

RTS	Delayed branch, $\text{PR} \rightarrow \text{PC}$	000000000001011	2

Note: * One cycle when the branch is not executed.

• System Control Instructions

Instruction	Operation	Code	Execution Cycles
CLRT	$0 \rightarrow T$	0000000000001000	1
CLRMAC	$0 \rightarrow \text{MACH}, \text{MACL}$	000000000101000	1
LDC Rm,SR	$\text{Rm} \rightarrow \text{SR}$	0100mmmm00001110	6
LDC Rm,GBR	$\text{Rm} \rightarrow \text{GBR}$	0100mmmm00011110	4
LDC Rm, VBR	$\text{Rm} \rightarrow \text{VBR}$	0100mmmm00101110	4
LDC.L@Rm+,SR	(Rm) \rightarrow SR, Rm + 4 \rightarrow Rm	0100mmmm00000111	8
LDC.L @Rm+,GBR	$(Rm) \rightarrow GBR, Rm + 4 \rightarrow Rm$	0100mmmm00010111	4
LDC.L @Rm+,VBR	$\begin{array}{l} (Rm) \rightarrow VBR, Rm + 4 \rightarrow \\ Rm \end{array}$	0100mmmm00100111	4
LDS Rm, MACH	$\text{Rm} \rightarrow \text{MACH}$	0100mmmm00001010	1
LDS Rm,MACL	$\text{Rm} \rightarrow \text{MACL}$	0100mmmm00011010	1
LDS Rm, PR	$Rm\toPR$	0100mmmm0010101010	1
LDS.L @Rm+,MACH	$\begin{array}{l} (Rm) \rightarrow MACH, Rm + 4 \rightarrow \\ Rm \end{array}$	0100mmmm00000110	1
LDS.L @Rm+,MACL	$\begin{array}{l} (Rm) \rightarrow MACL, Rm + 4 \rightarrow \\ Rm \end{array}$	0100mmmm00010110	1
LDS.L @Rm+,PR	$(Rm) \to PR, Rm + 4 \to Rm$	0100mmmm00100110	1

RENESAS

Rev. 6.00 Jun. 12, 2007 Pa

REJ09

STC.L SR,@-Rn	$\text{Rn-4} \rightarrow \text{Rn}, \text{SR} \rightarrow (\text{Rn})$	0100nnnn00000011	1	
STC.L GBR,@-Rn	$\text{Rn-4} \rightarrow \text{Rn, GBR} \rightarrow (\text{Rn})$	0100nnnn00010011	1	-
STC.L VBR,@-Rn	Rn–4 \rightarrow Rn, VBR \rightarrow (Rn)	0100nnnn00100011	1	-
STS MACH,Rn	$MACH \to Rn$	0000nnnn00001010	1	-
STS MACL, Rn	$MACL \to Rn$	0000nnnn00011010	1	
STS PR,Rn	$PR\toRn$	0000nnnn00101010	1	
STS.L MACH,@-Rn	Rn–4 \rightarrow Rn, MACH \rightarrow (Rn)	0100nnnn00000010	1	
STS.L MACL,@-Rn	$\text{Rn-4} \rightarrow \text{Rn}, \text{MACL} \rightarrow (\text{Rn})$	0100nnnn00010010	1	
STS.L PR,@-Rn	$\text{Rn-}4 \rightarrow \text{Rn}, \text{PR} \rightarrow (\text{Rn})$	0100nnnn00100010	1	-
TRAPA #imm	$PC/SR \rightarrow Stack area,$ (imm × 4 + VBR) $\rightarrow PC$	11000011iiiiiiii	8	-

Note: * Number of execution cycles until this LSI enters sleep mode. About the number of execution cycles:

The table lists the minimum number of execution cycles. In practice, the number execution cycles will be increased depending on the conditions such as:

- When there is a conflict between instruction fetch and data access
- When the destination register of a load instruction (memory → register) is all by the instruction immediately after the load instruction.

Rev. 6.00 Jun. 12, 2007 Page 46 of 610 REJ09B0131-0600

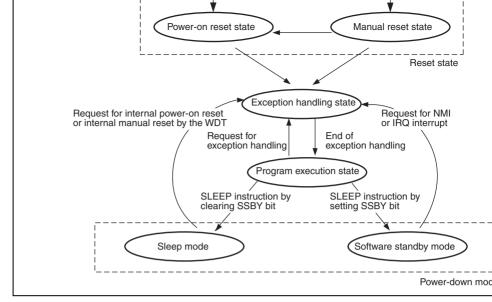


Figure 2.4 CPU State Transition

by SP. The start address of an exception handling routine is fetched from the exception handling vector table and a branch to the address is made to execute a program. Then the processing state enters the program execution state.

• Program execution state

The CPU executes programs sequentially.

• Power-down state

The CPU stops to reduce power consumption. The SLEEP instruction makes the CPU sleep mode or software standby mode.

Rev. 6.00 Jun. 12, 2007 Page 48 of 610 REJ09B0131-0600

Replacement method: Least-recently-used (LRU) algorithm

3.1.1 Cache Structure

The cache holds both instructions and data and employs a 4-way set associative system. composed of four ways (banks), and each of which is divided into an address section and section. Each of the address and data sections is divided into 64 entries (256 entries for t SH7618A). The data of an entry is called a line. Each line consists of 16 bytes (4 bytes > data capacity per way is 1 kbyte (16 bytes \times 64 entries) (4 kbytes (16 bytes \times 256 entries SH7618A), with a total of 4 kbytes (16 kbytes for the SH7618A) in the cache (4 ways).

Figure 3.1 shows the cache structure.

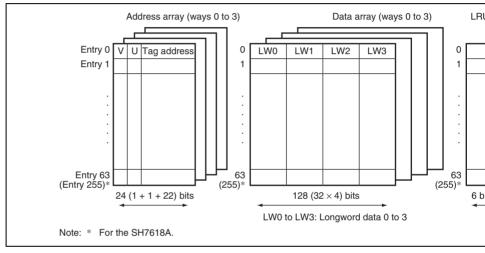


Figure 3.1 Cache Structure

CACH000C_000020030900

RENESAS

Data Array: Holds 16-byte instruction and data. Entries are registered in the cache in lin (16 bytes). The data array is not initialized by a power-on reset.

LRU: With the 4-way set associative system, up to four instructions or data with the sam address can be registered in the cache. When an entry is registered, LRU shows which of ways it is registered in. There are six LRU bits, controlled by hardware. The least-recentl (LRU) algorithm is used to select the way.

When a cache miss occurs, six LRU bits indicate the way to be replaced. If a bit pattern of those listed in table 3.1 is set in the LRU bits by software, the cache will not function corr. When changing the LRU bits by software, set one of the patterns listed in table 3.1.

The LRU bits are initialized to 000000 by a power-on reset.

Table 3.1	LRU and	Way to	be Replaced
-----------	---------	--------	-------------

LRU (Bits 5 to 0)	Way to be Replaced
000000, 000100, 010100, 100000, 110000, 110100	3
000001, 000011, 001011, 100001, 101001, 101011	2
000110, 000111, 001111, 010110, 011110, 011111	1
111000, 111001, 111011, 111100, 111110, 111111	0

Rev. 6.00 Jun. 12, 2007 Page 50 of 610 REJ09B0131-0600

H'80000000 to H'9FFFFFF	P1	Cacheable	CB bit in CCR1
H'A0000000 to H'BFFFFFF	P2	Non cacheable	_
H'C0000000 to H'DFFFFFF	P3	Cacheable	WT bit in CCR1
H'E0000000 to H'FFFFFFF	P4	Non cacheable (internal I/O)	

The cache is enabled or disabled by the CE bit in CCR1. CCR1 also has the CF bit (which invalidates all cache entries), and the WT and CB bits (which select either write-through write-back mode). Programs that change the contents of CCR1 should be placed in the ad space that is not cached.

Bit	Bit Name	Initial Value	R/W	Description
31 to 4		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
3	CF	0	R/W	Cache Flush
				Writing 1 flushes all cache entries meaning clears the V, U, and LRU bits of all cache e 0. This bit is always read as 0. Write-back t external memory is not performed when the flushed.
2	СВ	0	R/W	Write-Back
				Indicates the cache operating mode for H'8 to H'9FFFFFFF.
				0: Write-through mode
				1: Write-back mode
1	WT	0	R/W	Write-Through
				Indicates the cache operating mode for H'0 to H'7FFFFFFF and H'C0000000 to H'DFF
				0: Write-back mode
				1: Write-through mode

Rev. 6.00 Jun. 12, 2007 Page 52 of 610 REJ09B0131-0600

address space that is not cached.

Note: Supported only by the SH7618.

Bit	Bit Name	Initial Value	R/W	Description
31 to 17		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
16	CSIZE2	0	R/W	Cache Size
15	CSIZE1	0	R/W	Writing B'100 to these bits specifies the ca
14	CSIZE0	1	R/W	16 kbytes. Write B'100 before enabling the the CE bit in CCR1.
13 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

RENESAS

When the comparison shows a match and the selected entry is valid (V = 1), a cache hit of When the comparison does not show a match or the selected entry is not valid (V = 0), a c miss occurs. Figure 3.2 shows a hit on way 1.

Rev. 6.00 Jun. 12, 2007 Page 54 of 610 REJ09B0131-0600

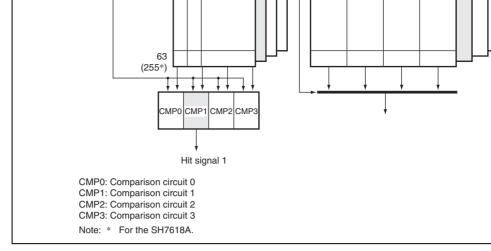


Figure 3.2 Cache Search Scheme

update cycle starts after the entry is transferred to the write-back buffer. After the cache c its update cycle, the write-back buffer writes the entry back to the memory. Transfer is in units.

3.3.3 Write Access

Write Hit: In a write access in write-back mode, the data is written to the cache and no e memory write cycle is generated. The U bit of the entry that has been written to is set to 1 LRU bits are updated to indicate that the hit way is the most recently hit way. In write-the mode, the data is written to the cache and an external memory write cycle is generated. T of the entry that has been written to is not updated, and the LRU bits are updated to indicate the hit way.

Write Miss: In write-back mode, an external write cycle starts when a write miss occurs, entry is updated. The way to be replaced is shown in table 3.1. When the U bit of the entries to be replaced by entry updating is 1, the cache-update cycle starts after the entry has be transferred to the write-back buffer. Data is written to the cache and the U bit and the V be to 1. The LRU bits are updated to indicate that the replaced way is the most recently update. After the cache has completed its update cycle, the write-back buffer writes the entry bac memory. Transfer is in 16-byte units. In write-through mode, no write to cache occurs in miss; the write is only to the external memory.

Rev. 6.00 Jun. 12, 2007 Page 56 of 610 REJ09B0131-0600

PA (31 to 4)	Longword 0	Longword 1	Longword 2	Longword 3	
PA (31 to 4): Longword 0 te	,	Il address to b e of cache da			

Figure 3.3 Write-Back Buffer Configuration

3.3.5 Coherency of Cache and External Memory

Coherency between the cache and the external memory must be ensured by software. W memory shared by this LSI and another device is allocated to a cacheable address space and write back the cache by accessing the memory-mapped cache, as required. Memory shared by the CPU and E-DMAC of this LSI should also be handled in this way.

specified. The address field specifies information for selecting the entry to be accessed; the field specifies the tag address, V bit, U bit, and LRU bits to be written to the address array

In the address field, specify the entry address for selecting the entry, W for selecting the for enabling or disabling the associative operation, and H'F0 for indicating address array As for W, 00 indicates way 0, 01 indicates way 1, 10 indicates way 2, and 11 indicates w

In the data field, specify the tag address, LRU bits, U bit, and V bit. Always clear the upp bits (bits 31 to 29) of the tag address to 0. Figure 3.4 shows the address and data formats. following three operations are available in the address array.

Address-Array Read: Read the tag address, LRU bits, U bit, and V bit for the entry that corresponds to the entry address and way specified by the address field of the read instruct reading, the associative operation is not performed, regardless of whether the associative bit) specified in the address is 1 or 0.

Address-Array Write (Non-Associative Operation): Write the tag address, LRU bits, V bit, specified by the data field of the write instruction, to the entry that corresponds to t address and way as specified by the address field of the write instruction. Ensure that the associative bit (A bit) in the address field is set to 0. When writing to a cache line for whi bit = 1 and the V bit =1, write the contents of the cache line back to memory, then write t address, LRU bits, U bit, and V bit specified by the data field of the write instruction. Written to the V bit, 0 must also be written to the U bit for that entry.

Address-Array Write (Associative Operation): When writing with the associative bit (the address field set to 1, the addresses in the four ways for the entry specified by the add of the write instruction are compared with the tag address that is specified by the data field write instruction. Write the U bit and the V bit specified by the data field of the write inst the entry of the way that has a hit. However, the tag address and LRU bits remain unchan When there is no way that has a hit, nothing is written and there is no operation. This fun

Rev. 6.00 Jun. 12, 2007 Page 58 of 610 REJ09B0131-0600

In the address field, specify the entry address for selecting the entry, L for indicating the position within the (16-byte) line, W for selecting the way, and H'F1 for indicating data access. As for L, 00 indicates longword 0, 01 indicates longword 1, 10 indicates longword and 11 indicates longword 3. As for W, 00 indicates way 0, 01 indicates way 1, 10 indicates way 2, and 11 indicates way 3.

Since access size of the data array is fixed at longword, bits 1 and 0 of the address field set to 00.

Figure 3.4 shows the address and data formats.

The following two operations on the data array are available. The information in the add is not affected by these operations.

Data-Array Read: Read the data specified by L of the address field, from the entry that corresponds to the entry address and the way that is specified by the address field.

Data-Array Write: Write the longword data specified by the data field, to the position by L of the address field, in the entry that corresponds to the entry address and the way s by the address field.

	ray access (both re	ead and write a	ccesses)			
. ,	dress specification	04.00		(14*)(13*)(12		4 0
Г	1111 0001	24 23	**	12 11 10	Entry address	4 3
(b) Dat	ta specification					
. ,	ta specification 31					

Figure 3.4 Specifying Address and Data for Memory-Mapped Cache Acces

Rev. 6.00 Jun. 12, 2007 Page 60 of 610 REJ09B0131-0600


```
; R1=H'F0000088; address array access, entry=B'001000
(entry=B'00001000 for the SH7618A), A=1
;
MOV.L R0,@R1
```

Reading Data of Specific Entry: The data section of a specific entry can be read from a memory-mapped cache access. The longword indicated in the data field of the data array figure 3.4 is read into the register. In the example shown below, R0 specifies the address shows what is read.

```
; R0=H'F100004C; data array access, entry=B'000100
(entry=B'00000100 for the SH7618A)
; Way = 0, longword address = 3
;
MOV.L @R0,R1 ; Longword 3 is read.
```


Rev. 6.00 Jun. 12, 2007 Page 62 of 610 REJ09B0131-0600

- Address H'E55FF000 to H'E55FFFFF
- Priority

The U memory can be accessed from the I bus by the E-DMAC and from the L bus I CPU. In the event of simultaneous accesses from different buses, the accesses are pracording to the priority. The priority is: I bus > L bus.

4.2 Usage Notes

In sleep mode, the U memory cannot be accessed by the E-DMAC.

RAM04K0A_000020030900

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 64 of 610 REJ09B0131-0600

Exception	Exception So	ource		
Reset	Power-on rese	ət		
	H-UDI reset			
Interrupt	User break (br	reak before instruction execution)		
Address error	CPU address	error (instruction fetch)		
Instruction General illegal instructions (undefined code)				
	Illegal slot instruction (undefined code placed immediately after a delayed branch instruction* ¹ or instruction that changes the PC value* ⁴			
	Trap instruction (TRAPA instruction)			
Address error	CPU address	error (data access)		
Interrupt	User break (break after instruction execution or operand break)			
	NMI			
	H-UDI			
	IRQ			
	On-chip	Watchdog timer (WDT)		
	peripheral modules:	Ether controller (EtherC and E-DMAC)		
	modules.	Compare match timer 0 and 1 (CMT0 and CMT1)		
		Serial communication interface with FIFO (SCIF0, SCIF1, and SCIF2)		
		Host interface (HIF)		
Notes: 1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, F				

Table 5.1 Types of Exceptions and Priority

Iotes: 1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, I BRAF.

2. Instructions that change the PC value: JMP, JSR, BRA, BSR, RTS, RTE, BT, TRAPA, BF/S, BT/S, BSRF, BRAF, LDC Rm,SR, LDC.L @Rm+,SR.

RENESAS

_		
Address error Interrupt		Detected during the instruction decode stage and started
		execution of the current instruction is completed.
Instruction	Trap instruction	Started by the execution of the TRAPA instruction.
	General illegal instructions	Started when an undefined code placed at other than a d (immediately after a delayed branch instruction) is decode
	Illegal slot instructions	Started when an undefined code placed at a delay slot (immediately after a delayed branch instruction) or an inst that changes the PC value is detected.

When exception handling starts, the CPU operates

Exception Handling Triggered by Reset: The initial values of the program counter (PC stack pointer (SP) are fetched from the exception handling vector table (PC from the address H'A0000000 and SP from the address H'A0000004). For details, see section 5.1.3, Excep Handling Vector Table. H'00000000 is then written to the vector base register (VBR), and (B'1111) is written to the interrupt mask bits (I3 to I0) in the status register (SR). The prostarts from the PC address fetched from the exception handling vector table.

Exception Handling Triggered by Address Error, Interrupt, and Instruction: SR and saved to the stack indicated by R15. For interrupt exception handling, the interrupt priorit written to the interrupt mask bits (I3 to I0) in SR. For address error and instruction except handling, bits I3 to I0 are not affected. The start address is then fetched from the exception handling vector table and the program starts from that address.

Rev. 6.00 Jun. 12, 2007 Page 66 of 610 REJ09B0131-0600

table 3.5 shows the vector numbers and vector table address offsets. Table 3.4 shows he table addresses are calculated.

Exception Handling Source		Vector Number	Vector Table Address Of
Power-on reset	PC	0	H'00000000 to H'0000000
H-UDI reset	SP	1	H'00000004 to H'0000000
(Reserved by syste	m)	2	H'0000008 to H'000000
		3	H'0000000C to H'0000000
General illegal instr	uction	4	H'00000010 to H'0000001
(Reserved by syste	m)	5	H'00000014 to H'0000001
Illegal slot instruction	วท	6	H'00000018 to H'0000001
(Reserved by syste	m)	7	H'0000001C to H'0000001
		8	H'00000020 to H'0000002
CPU address error		9	H'00000024 to H'0000002
(Reserved by syste	m)	10	H'00000028 to H'0000002
Interrupt	NMI	11	H'0000002C to H'0000002
	User break	12	H'00000030 to H'0000003
	H-UDI	13	H'00000034 to H'0000003
(Reserved by syste	m)	14	H'00000038 to H'0000003
		:	:
		31	H'0000007C to H'0000007

Table 5.3 Vector Numbers and Vector Table Address Offsets

Rev. 6.00 Jun. 12, 2007 Pa

RENESAS

	:	:
	79	H'0000013C to H'0000013F
IRQ4	80	H'00000140 to H'00000143
IRQ5	81	H'00000144 to H'00000147
IRQ6	82	H'00000148 to H'0000014B
IRQ7	83	H'0000014C to H'0000014F
On-chip peripheral module*	84	H'00000120 to H'00000124
	:	:
	255	H'000003FC to H'000003FF

Note: * For details on the vector numbers and vector table address offsets of on-chip module interrupts, see table 6.2, Interrupt Exception Handling Vectors and Prive section 6, Interrupt Controller (INTC).

Table 5.4 Calculating Exception Handling Vector Table Addresses

Exception Source	Vector Table Address Calculation				
Resets	Vector table address = H'A0000000 + (vector table address				
	= H'A0000000 + (vector number) \times 4				
Address errors, interrupts,	Vector table address = VBR + (vector table address offse				
instructions	= VBR + (vector number) \times 4				
Notes: 1. VBR: Vector base register					

2. Vector table address offset: See table 5.3.

3. Vector number: See table 5.3.

Rev. 6.00 Jun. 12, 2007 Page 68 of 610 REJ09B0131-0600

Туре	RES	WDT Overflow	H-UDI Command	CPU, INTC	On-Chip Peripheral Module	PFC
Power-on reset	Low	_	_	Initialized	Initialized	Initi
	High	Overflow	_	Initialized	Initialized	Initi
H-UDI reset	High	Not overflowed	Reset assert command	Initialized	Initialized	Initi

5.2.2 Power-On Reset

Power-On Reset by RES Pin: When the $\overline{\text{RES}}$ pin is driven low, this LSI enters the power reset state. To reliably reset this LSI, the $\overline{\text{RES}}$ pin should be kept low for at least the osc settling time when applying the power or when in standby mode (when the clock is halted least 20 tcyc when the clock is operating. During the power-on reset state, CPU internal all registers of on-chip peripheral modules are initialized.

In the power-on reset state, power-on reset exception handling starts when driving the \overline{R} high after driving the pin low for the given time. The CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from exception handling vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vec
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits of the status register (SR) are set to H'F (B'1111).
- 4. The values fetched from the exception handling vector table are set in PC and SP, th program starts.

Be certain to always perform power-on reset exception handling when turning the system on.

RENESAS

- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vect
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (of the status register (SR) are set to H'F (B'1111).
- 4. The values fetched from the exception handling vector table are set in the PC and SP, program starts.

5.2.3 H-UDI Reset

The H-UDI reset is generated by issuing the H-UDI reset assert command. The CPU oper described below. For details, see section 19, User Debugging Interface (H-UDI).

- 1. The initial value (execution start address) of the program counter (PC) is fetched from exception handling vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vector
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (in the status register (SR) are set to H'F (B'1111).
- 4. The values fetched from the exception handling vector table are set in PC and SP, the program starts.

Rev. 6.00 Jun. 12, 2007 Page 70 of 610 REJ09B0131-0600

Instruction fetch	CPU	Instruction fetched from even address	None (norma
		Instruction fetched from odd address	Address erro
Data	CPU	Word data accessed from even address	None (norma
read/write		Word data accessed from odd address	Address erro
		Longword data accessed from a longword boundary	None (norma
		Longword data accessed from other than a long-word boundary	Address erro

5.3.2 Address Error Exception Source

When an address error exception is generated, the bus cycle which caused the address er the current instruction finishes, and then the address error exception handling starts. The operates as follows:

- 1. The status register (SR) is saved to the stack.
- 2. The program counter (PC) is saved to the stack. The PC value to be saved is the start of the instruction which caused an address error exception. When the instruction that the exception is placed in the delay slot, the address of the delayed branch instruction placed immediately before the delay slot.
- 3. The start address of the exception handling routine is fetched from the exception han vector table that corresponds to the generated address error, and the program starts e from that address. This branch is not a delayed branch.

RENESAS

NMI	NMI pin (external input)	
User break	User break controller (UBC)	1
H-UDI	User debug interface (H-UDI)	
IRQ	IRQ0 to IRQ7 pins (external input)	8
On-chip peripheral module	Watchdog timer (WDT)	1
	Ether controller (EtherC and E-DMAC)	
	Compare match timer (CMT0 and CMT1)	2
	FIFO on-chip serial communication interface (SCIF0, SCIF1, and SCIF2)	12
	Host interface (HIF)	2

All interrupt sources are given different vector numbers and vector table address offsets. details on vector numbers and vector table address offsets, see table 6.2, Interrupt Except Handling Vectors and Priorities in section 6, Interrupt Controller (INTC).

Rev. 6.00 Jun. 12, 2007 Page 72 of 610 REJ09B0131-0600

set are 0 to 15. Level 16 cannot be set. For details on IPRA to IPRE, see section 6.3.4, In Priority Registers A to E (IPRA to IPRE).

Туре	Priority Level	Comment
NMI	16	Fixed priority level. Cannot be maske
User break	15	Fixed priority level. Can be masked.
H-UDI	15	Fixed priority level.
IRQ	0 to 15	Set with interrupt priority level setting A through E (IPRA to IPRE).
On-chip peripheral module		

Table 5.8Interrupt Priority

5.4.3 Interrupt Exception Handling

When an interrupt occurs, the interrupt controller (INTC) ascertains its priority level. No always accepted, but other interrupts are only accepted if they have a priority level high priority level set in the interrupt mask bits (I3 to I0) of the status register (SR).

When an interrupt is accepted, exception handling begins. In interrupt exception handlinc CPU saves SR and the program counter (PC) to the stack. The priority level of the accept interrupt is written to bits I3 to I0 in SR. Although the priority level of the NMI is 16, the in bits I3 to I0 is H'F (level 15). Next, the start address of the exception handling routine from the exception handling vector table for the accepted interrupt, and program execution branches to that address and the program starts. For details on the interrupt exception handling section 6.6, Interrupt Operation.

RENESAS

i (Illegal slot instructions*	Undefined code placed immediately after a delayed branch instruction (delay slot) or instructions that changes the PC value	Delayed branch instructions: JMP, or BRA, BSR, RTS, RTE, BF/S, BT/S, BRAF
			Instructions that changes the PC va JMP, JSR, BRA, BSR, RTS, RTE, E TRAPA, BF/S, BT/S, BSRF, BRAF, Rm,SR, LDC.L @Rm+,SR
	General illegal instructions*	Undefined code anywhere besides in a delay slot	_

Note: * The operation is not guaranteed when undefined instructions other than H'FCC H'FFFF are decoded.

5.5.2 Trap Instructions

When a TRAPA instruction is executed, the trap instruction exception handling starts. The operates as follows:

- 1. The status register (SR) is saved to the stack.
- 2. The program counter (PC) is saved to the stack. The PC value saved is the start address instruction to be executed after the TRAPA instruction.
- The CPU reads the start address of the exception handling routine from the exception vector table that corresponds to the vector number specified in the TRAPA instruction program execution branches to that address, and then the program starts. This branch delayed branch.

Rev. 6.00 Jun. 12, 2007 Page 74 of 610 REJ09B0131-0600

- rewrites the PC.
- 3. The start address of the exception handling routine is fetched from the exception har vector table that corresponds to the exception that occurred. Program execution bran that address and the program starts. This branch is not a delayed branch.

5.5.4 General Illegal Instructions

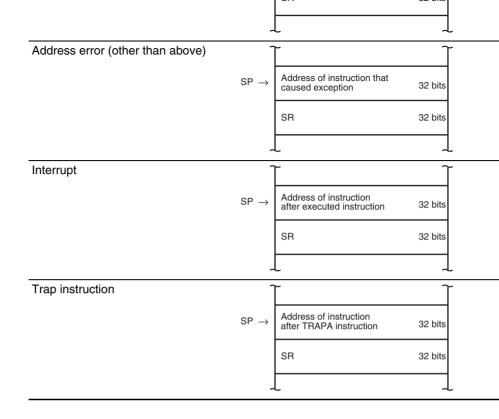
When an undefined code placed anywhere other than immediately after a delayed branch instruction (i.e., in a delay slot) is decoded, general illegal instruction exception handling. The CPU handles the general illegal instructions in the same procedures as in the illegal instructions. Unlike processing of illegal slot instructions, however, the program counter is stacked is the start address of the undefined code.

Occurrence Timing	Address Error	Illegal Instruction	Slot Illegal Instruction	Trap Instruction	Int
Instruction in delay slot	\times^{*^2}	_	X* ²	_	×*
Immediately after interrupt disabled instruction* ¹	\checkmark	\checkmark		\checkmark	X*

[Legend]

 $\sqrt{\cdot}$ Accepted

 \times : Not accepted


-: Does not occur

Notes: 1. Interrupt disabled instructions: LDC, LDC.L, STC, STC.L, LDS, LDS.L, STS, a

- An exception is accepted before the execution of a delayed branch instruction. However, when an address error or a slot illegal instruction exception occurs in delay slot of the RTE instruction, correct operation is not guaranteed.
- 3. An exception is accepted after a delayed branch (between instructions in the d and the branch destination).
- An exception is accepted after the execution of the next instruction of an interr disabled instruction (before the execution two instructions after an interrupt dis instruction).

Rev. 6.00 Jun. 12, 2007 Page 76 of 610 REJ09B0131-0600

RENESAS

	\neg
SR	32 bits

Rev. 6.00 Jun. 12, 2007 Page 78 of 610 REJ09B0131-0600

stack is accessed during exception handling.

5.8.3 Address Errors Caused by Stacking for Address Error Exception Handli

When the SP value is not a multiple of 4, an address error will occur when stacking for a handling (interrupts, etc.) and address error exception handling will start after the first e handling is ended. Address errors will also occur in the stacking for this address error exhandling. To ensure that address error exception handling does not go into an endless lo address errors are accepted at that point. This allows program control to be passed to the routine for address error exception and enables error processing.

When an address error occurs during exception handling stacking, the stacking bus cycle executed. When stacking the SR and PC values, the SP values for both are subtracted by therefore, the SP value is still not a multiple of 4 after the stacking. The address value of during stacking is the SP value whose lower two bits are cleared to 0. So the write data sundefined.

5.8.4 Notes on Slot Illegal Instruction Exception Handling

Some specifications on slot illegal instruction exception handling in this LSI differ from the conventional SH2.

- Conventional SH2: Instructions LDC Rm,SR and LDC.L @Rm+,SR are not subject illegal instructions.
- This LSI: Instructions LDC Rm,SR and LDC.L @Rm+,SR are subject to the slot ille instructions.

The supporting status on our software products regarding this note is as follows:

RENESAS

3. Others

The slot illegal instruction exception handling may be generated in this LSI in case w instruction is described in assembler or when the middleware of the object is introduc. Note that a check-up program (checker) to pick up this instruction is available on our Download and utilize this checker as needed.

Rev. 6.00 Jun. 12, 2007 Page 80 of 610 REJ09B0131-0600

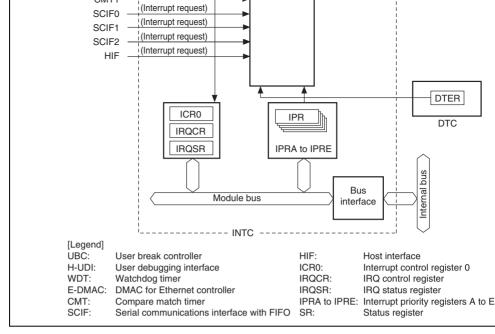


Figure 6.1 INTC Block Diagram

Rev. 6.00 Jun. 12, 2007 Page 82 of 610 REJ09B0131-0600

6.3 **Register Descriptions**

The interrupt controller has the following registers. For details on the addresses of these and the states of these registers in each processing state, see section 20, List of Registers

- Interrupt control register 0 (ICR0)
- IRQ control register (IRQCR)
- IRQ status register (IRQSR)
- Interrupt priority register A (IPRA)
- Interrupt priority register B (IPRB)
- Interrupt priority register C (IPRC)
- Interrupt priority register D (IPRD)
- Interrupt priority register E (IPRE)

				0: State of the NMI input is low
				1: State of the NMI input is high
14 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write v should always be 0.
8	NMIE	0	R/W	NMI Edge Select
				0: Interrupt request is detected on the falling the NMI input
				1: Interrupt request is detected on the rising the NMI input
7 to 0		All 0	R	Reserved
				These bits are always read as 0. The write v should always be 0.
-				

Rev. 6.00 Jun. 12, 2007 Page 84 of 610 REJ09B0131-0600

				pin IRQ7
				01: Interrupt request is detected at the fall of pin IRQ7
				10: Interrupt request is detected at the risi of pin IRQ7
				11: Interrupt request is detected at both th and rising edges of pin IRQ7
13	IRQ61S	0	R/W	IRQ6 Sense Select
12	IRQ60S	0	R/W	Set the interrupt request detection mode f IRQ6.
				00: Interrupt request is detected at the low pin IRQ6
				01: Interrupt request is detected at the fall of pin IRQ6
				10: Interrupt request is detected at the risi of pin IRQ6
				11: Interrupt request is detected at both th and rising edges of pin IRQ6

Renesas

				11: Interrupt request is detected at both the and rising edges of pin IRQ5
9	IRQ41S	0	R/W	IRQ4 Sense Select
8	IRQ40S	0	R/W	Set the interrupt request detection mode for IRQ4.
				00: Interrupt request is detected at the low pin IRQ4
				01: Interrupt request is detected at the fallin of pin IRQ4
				10: Interrupt request is detected at the risin of pin IRQ4
				11: Interrupt request is detected at both the and rising edges of pin IRQ4
7	IRQ31S	0	R/W	IRQ3 Sense Select
6	IRQ30S	0	R/W	Set the interrupt request detection mode for IRQ3.
				00: Interrupt request is detected at the low pin IRQ3
				01: Interrupt request is detected at the fallin of pin IRQ3
				10: Interrupt request is detected at the risin of pin IRQ3
				11: Interrupt request is detected at both the and rising edges of pin IRQ3

Rev. 6.00 Jun. 12, 2007 Page 86 of 610 REJ09B0131-0600

				11: Interrupt request is detected at both th and rising edges of pin IRQ2
3	IRQ11S	0	R/W	IRQ1 Sense Select
2	IRQ10S	0	R/W	Set the interrupt request detection mode f IRQ1.
				00: Interrupt request is detected at the low pin IRQ1
				01: Interrupt request is detected at the fall of pin IRQ1
				10: Interrupt request is detected at the risi of pin IRQ1
				11: Interrupt request is detected at both th and rising edges of pin IRQ1
1	IRQ01S	0	R/W	IRQ0 Sense Select
0	IRQ00S	0	R/W	Set the interrupt request detection mode f IRQ0.
				00: Interrupt request is detected at the low pin IRQ0
				01: Interrupt request is detected at the fall of pin IRQ0
				10: Interrupt request is detected at the risi of pin IRQ0
				11: Interrupt request is detected at both th and rising edges of pin IRQ0

Renesas

14	IRQ6L	0/1	R	Indicates the state of pin IRQ6.
				0: State of pin IRQ6 is low
				1: State of pin IRQ6 is high
13	IRQ5L	0/1	R	Indicates the state of pin IRQ5.
				0: State of pin IRQ5 is low
				1: State of pin IRQ5 is high
12	IRQ4L	0 or 1	R	Indicates the state of pin IRQ4.
				0: State of pin IRQ4 is low
				1: State of pin IRQ4 is high
11	IRQ3L	0 or 1	R	Indicates the state of pin IRQ3.
				0: State of pin IRQ3 is low
				1: State of pin IRQ3 is high
10	IRQ2L	0 or 1	R	Indicates the state of pin IRQ2.
				0: State of pin IRQ2 is low
				1: State of pin IRQ2 is high
9	IRQ1L	0 or 1	R	Indicates the state of pin IRQ1.
				0: State of pin IRQ1 is low
				1: State of pin IRQ1 is high
8	IRQ0L	0 or 1	R	Indicates the state of pin IRQ0.
				0: State of pin IRQ0 is low
				1: State of pin IRQ0 is high

Rev. 6.00 Jun. 12, 2007 Page 88 of 610 REJ09B0131-0600

				 When edge detection mode is selected
				0: An IRQ7 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ7F = 1
				 Accepting an IRQ7 interrupt
				1: An IRQ7 interrupt request has been dete
				[Setting condition]
				Detecting the specified edge of pin IRQ
6	IRQ6F	0	R/W	Indicates the status of an IRQ6 interrupt re-
				When level detection mode is selected
				0: An IRQ6 interrupt has not been detected
				[Clearing condition]
				Driving pin IRQ6 high
				1: An IRQ6 interrupt has been detected
				[Setting condition]
				Driving pin IRQ6 low
				When edge detection mode is selected
				0: An IRQ6 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ6F = 1
				 Accepting an IRQ6 interrupt
				1: An IRQ6 interrupt request has been dete
				[Setting condition]
				Detecting the specified edge of pin IRC

				When edge detection mode is selected
				0: An IRQ5 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ5F = 1
				 Accepting an IRQ5 interrupt
				1: An IRQ5 interrupt request has been detec
				[Setting condition]
				Detecting the specified edge of pin IRQ5
4	IRQ4F	0	R/W	Indicates the status of an IRQ4 interrupt req
				When level detection mode is selected
				0: An IRQ4 interrupt has not been detected
				[Clearing condition]
				Driving pin IRQ4 high
				1: An IRQ4 interrupt has been detected
				[Setting condition]
				Driving pin IRQ4 low
				When edge detection mode is selected
				0: An IRQ4 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ4F = 1
				 Accepting an IRQ4 interrupt
				1: An IRQ4 interrupt request has been detec
				[Setting condition]
				Detecting the specified edge of pin IRQ4

Rev. 6.00 Jun. 12, 2007 Page 90 of 610 REJ09B0131-0600

				When edge detection mode is selected
				0: An IRQ3 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ3F = 1
				 Accepting an IRQ3 interrupt
				1: An IRQ3 interrupt request has been dete
				[Setting condition]
				Detecting the specified edge of pin IRQ
2	IRQ2F	0	R/W	Indicates the status of an IRQ2 interrupt re-
				When level detection mode is selected
				0: An IRQ2 interrupt has not been detected
				[Clearing condition]
				Driving pin IRQ2 high
				1: An IRQ2 interrupt has been detected
				[Setting condition]
				Driving pin IRQ2 low
				When edge detection mode is selected
				0: An IRQ2 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ2F = 1
				 Accepting an IRQ2 interrupt
				1: An IRQ2 interrupt request has been dete
				[Setting condition]
				Detecting the specified edge of pin IRQ

				When edge detection mode is selected
				0: An IRQ1 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ1F = 1
				 Accepting an IRQ1 interrupt
				1: An IRQ1 interrupt request has been detec
				[Setting condition]
				Detecting the specified edge of pin IRQ1
0	IRQ0F	0	R/W	Indicates the status of an IRQ0 interrupt req
				When level detection mode is selected
				0: An IRQ0 interrupt has not been detected
				[Clearing condition]
				Driving pin IRQ0 high
				1: An IRQ0 interrupt has been detected
				[Setting condition]
				Driving pin IRQ0 low
				When edge detection mode is selected
				0: An IRQ0 interrupt has not been detected
				[Clearing conditions]
				— Writing 0 after reading IRQ0F = 1
				 Accepting an IRQ0 interrupt
				1: An IRQ0 interrupt request has been detec
				[Setting condition]
				Detecting the specified edge of pin IRQ0

Rev. 6.00 Jun. 12, 2007 Page 92 of 610 REJ09B0131-0600

RENESAS

15	IPR15	0	R/W	Set priority levels for the corresponding inte
14	IPR14	0	R/W	source.
13	IPR13	0	R/W	0000: Priority level 0 (lowest)
12	IPR12	0	R/W	0001: Priority level 1
12	11 11 12	0	10/00	0010: Priority level 2
				0011: Priority level 3
				0100: Priority level 4
				0101: Priority level 5
				0110: Priority level 6
				0111: Priority level 7
				1000: Priority level 8
				1001: Priority level 9
				1010: Priority level 10
				1011: Priority level 11
				1100: Priority level 12
				1101: Priority level 13
				1110: Priority level 14
				1111: Priority level 15 (highest)

RENESAS

				0111: Priority level 7
				1000: Priority level 8
				1001: Priority level 9
				1010: Priority level 10
				1011: Priority level 11
				1100: Priority level 12
				1101: Priority level 13
				1110: Priority level 14
				1111: Priority level 15 (highest)
7	IPR7	0	R/W	Set priority levels for the corresponding inter
6	IPR6	0	R/W	source.
5	IPR5	0	R/W	0000: Priority level 0 (lowest)
4	IPR4	0	R/W	0001: Priority level 1
4	IF N 4	U	Π/ ٧٧	0010: Priority level 2
				0011: Priority level 3
				0100: Priority level 4
				0101: Priority level 5
				0110: Priority level 6
				0111: Priority level 7
				1000: Priority level 8
				1001: Priority level 9
				1010: Priority level 10
				1011: Priority level 11
				1100: Priority level 12
				1101: Priority level 13
				1110: Priority level 14
				1111: Priority level 15 (highest)

Rev. 6.00 Jun. 12, 2007 Page 94 of 610 REJ09B0131-0600

0111: Priority level 7 1000: Priority level 8 1001: Priority level 9 1010: Priority level 10 1011: Priority level 11 1100: Priority level 12 1101: Priority level 13 1110: Priority level 14 1111: Priority level 15 (highest)

Note: Name in the tables above is represented by a general name. Name in the list of r on the other hand, represented by a module name.

6.4 Interrupt Sources

6.4.1 External Interrupts

There are five types of interrupt sources: User break, NMI, H-UDI, IRQ, and on-chip per modules. Individual interrupts are given priority levels (0 to 16, with 0 the lowest and 12 highest). Giving an interrupt a priority level of 0 masks it.

NMI Interrupt: The NMI interrupt is given a priority level of 16 and is always accepted interrupt is detected at the edge of the pins. Use the NMI edge select bit (NMIE) in inter control register 0 (ICR0) to select either the rising or falling edge. In the NMI interrupt of handler, the interrupt mask level bits (13 to I0) in the status register (SR) are set to level

RENESAS

the following change on the IRQ pin is detected, an interrupt request signal is sent to the IN the following change on the IRQ pin is detected: from high to low in falling edge detection from low to high in rising edge detection mode, and from low to high or from high to low edge detection mode. The IRQ interrupt request by detecting the change on the pin is held interrupt request is accepted. It is possible to confirm that an IRQ interrupt request has be detected by reading the IRQ flags (IRQ7F to IRQ0F) in the IRQ status register (IRQSR). interrupt request by detecting the change on the pin can be withdrawn by writing 0 to an 1 after reading 1.

In the IRQ interrupt exception handling, the interrupt mask bits (I3 to I0) in the status reg (SR) are set to the priority level value of the accepted IRQ interrupt. Figure 6.2 shows the diagram of the IRQ7 to IRQ0 interrupts.

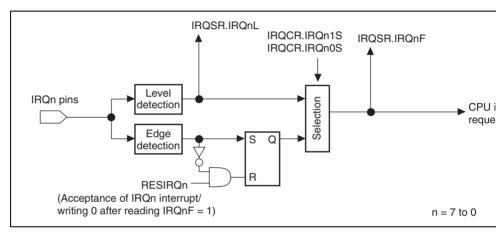
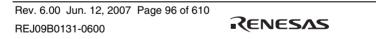



Figure 6.2 Block Diagram of IRQ7 to IRQ0 Interrupts Control

6.4.3 User Break Interrupt

A user break interrupt has a priority level of 15, and occurs when the break condition se user break controller (UBC) is satisfied. User break interrupt requests are detected by ed held until accepted. User break interrupt exception handling sets the interrupt mask leve I0) in the status register (SR) to level 15. For more details on the user break interrupt, se 18, User Break Controller (UBC).

6.4.4 H-UDI Interrupt

User debugging interface (H-UDI) interrupt has a priority level of 15, and occurs when a interrupt instruction is serially input. H-UDI interrupt requests are detected by edge and until accepted. H-UDI exception handling sets the interrupt mask level bits (I3-I0) in the register (SR) to level 15. For more details on the H-UDI interrupt, see section 19, User I Interface (H-UDI).

IRQ interrupts and on-chip peripheral module interrupt priorities can be set freely betwee and 15 for each pin or module by setting interrupt priority registers A to E (IPRA to IPRE However, when interrupt sources whose priority levels are allocated with the same IPR as requested, the interrupt of the smaller vector number has priority. This priority cannot be Priority levels of IRQ interrupts and on-chip peripheral module interrupts are initialized t at a power-on reset. If the same priority level is allocated to two or more interrupt sources interrupts from those sources occur simultaneously, they are processed by the default prior order shown in table 6.2.

Interrupt Source	Name	Vector No.	Vector Table Starting Address	IPR I
User break		12	H'0000030	— I
External pin	NMI	11	H'0000002C	
H-UDI		13	H'00000034	
External pin	IRQ0	64	H'00000100	IPRA15 to IPRA12
	IRQ1	65	H'00000104	IPRA11 to IPRA8
	IRQ2	66	H'00000108	IPRA7 to IPRA4
	IRQ3	67	H'0000010C	IPRA3 to IPRA0
	IRQ4	80	H'00000140	IPRB15 to IPRB12
	IRQ5	81	H'00000144	IPRB11 to IPRB8
	IRQ6	82	H'00000148	IPRB7 to IPRB4
	IRQ7	83	H'0000014C	IPRB3 to IPRB0
WDT	ITI	84	H'00000150	IPRC15 to IPRC12

 Table 6.2
 Interrupt Exception Handling Vectors and Priorities

Rev. 6.00 Jun. 12, 2007 Page 98 of 610 REJ09B0131-0600

	<u> </u>	52	1100000170	
	RXI_1	93	H'00000174	
	BRI_1	94	H'00000178	
	TXI_1	95	H'0000017C	
SCIF channel 2	ERI_2	96	H'00000180	IPRD7 to IPRD4
	RXI_2	97	H'00000184	
	BRI_2	98	H'00000188	
	TXI_2	99	H'0000018C	
HIF	HIFI	100	H'00000190	IPRE15 to IPRE12
	HIFBI	101	H'00000194	IPRE11 to IPRE8

Renesas

IPRE). Interrupts that have lower-priority than that of the selected interrupt are ignore interrupts that have the same priority level or interrupts within a same module occur simultaneously, the interrupt with the highest priority is selected according to the prior shown in table 6.2.

- 3. The interrupt controller compares the priority level of the selected interrupt request w interrupt mask bits (I3 to I0) in the status register (SR) of the CPU. If the priority level selected request is equal to or less than the level set in bits I3 to I0, the request is igno the priority level of the selected request is higher than the level in bits I3 to I0, the intercontroller accepts the request and sends an interrupt request signal to the CPU.
- 4. The CPU detects the interrupt request sent from the interrupt controller in the decode an instruction to be executed. Instead of executing the decoded instruction, the CPU s interrupt exception handling (see figure 6.5).
- 5. SR and PC are saved onto the stack.
- 6. The priority level of the accepted interrupt is copied to bits (I3 to I0) in SR.
- The CPU reads the start address of the exception handling routine from the exception table for the accepted interrupt, branches to that address, and starts executing the prog This branch is not a delayed branch.
- Note: * Interrupt requests that are designated as edge-detect type are held pending unt interrupt requests are accepted. IRQ interrupts, however, can be cancelled by the IRQ status register (IRQSR). Interrupts held pending due to edge detection cleared by a power-on reset or an H-UDI reset.

Rev. 6.00 Jun. 12, 2007 Page 100 of 610 REJ09B0131-0600

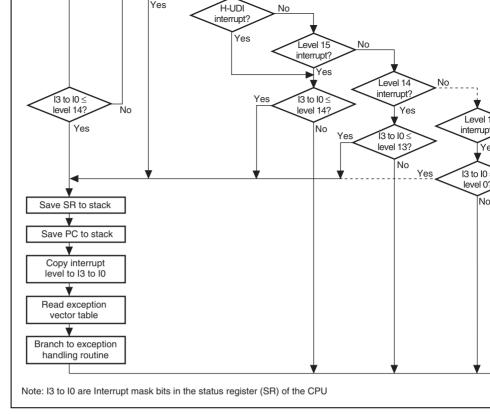


Figure 6.3 Interrupt Sequence Flowchart

RENESAS

- Notes: 1. PC is the start address of the next instruction (instruction at the return address) after the instruction.
 - 2. Always make sure that SP is a multiple of 4

Figure 6.4 Stack after Interrupt Exception Handling

6.7 Interrupt Response Time

Table 6.3 lists the interrupt response time, which is the time from the occurrence of an in request until the interrupt exception handling starts and fetching of the first instruction of interrupt handling routine begins. Figure 6.5 shows an example of the pipeline operation IRQ interrupt is accepted.

Rev. 6.00 Jun. 12, 2007 Page 102 of 610 REJ09B0131-0600

				7 × lcyc + m1 + m3 + m4). I interrupt-mas instruction fo however, the be even long
Time from start of interrupt exception handling until fetch of first instruction of exception handling routine starts		8 × lcyc + m1 + m2 + m3	8 × lcyc + m1 + m2 + m3	Performs the PC and SR, a address fetch
Interrupt response time	Total:	$\begin{array}{l} 9\times lcyc+2\times Pcyc\\ +\ m1+m2+m3\\ +\ X \end{array}$	$\begin{array}{l}9\times lcyc+3\times Pcyc\\+m1+m2+m3\\+X\end{array}$	
	Minimum*:	12 × Icyc + 2 × Pcyc	12 × Icyc + 3 × Pcyc	SR, PC, and table are all i RAM, or cach occurs (in wr mode).
	Maximum:	$\begin{array}{c} 16 \times \text{lcyc} + \\ 2 \times \text{Pcyc} + 2 \times \\ (\text{m1} + \text{m2} + \text{m3}) + \\ \text{m4} \end{array}$	$\begin{array}{c} 16 \times \text{lcyc} + \\ 3 \times \text{Pcyc} + 2 \times \\ (\text{m1} + \text{m2} + \text{m3}) + \\ \text{m4} \end{array}$	
	m1 to m4 are the m1: SR save (long m2: PC save (long m3: Vector addres	gword write)	ded for the following n	nemory accesse

Rev. 6.00 Jun. 12, 2007 Page 104 of 610 REJ09B0131-0600

- External address space
 - A maximum 32 or 64 Mbytes for each of the areas, CS0, CS3, CS4, CS5B, and C totally 256 Mbytes (divided into five areas)
 - A maximum 64 Mbytes for each of the six areas, CS0, CS3, CS4, CS5, and CS6, 320 Mbytes (divided into five areas)
 - Can specify the normal space interface, byte-selection SRAM, SDRAM, PCMCl address space
 - Can select the data bus width (8 or 16 bits) for each address space
 - Can control the insertion of wait cycles for each address space
 - Can control the insertion of wait cycles for each read access and write access
 - Can control the insertion of idle cycles in the consecutive access for five cases independently: read-write (in same space/different space), read-read (in same space/different space), or the first cycle is a write access
- Normal space interface
 - Supports the interface that can directly connect to the SRAM
- SDRAM interface
 - Can connect directly to SDRAM in area 3
 - Multiplex output for row address/column address
 - Efficient access by single read/single write
 - High-speed access by bank-active mode
 - Supports auto-refreshing and self-refreshing
- Byte-selection SRAM interface
 - Can connect directly to byte-selection SRAM

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 106 of 610 REJ09B0131-0600

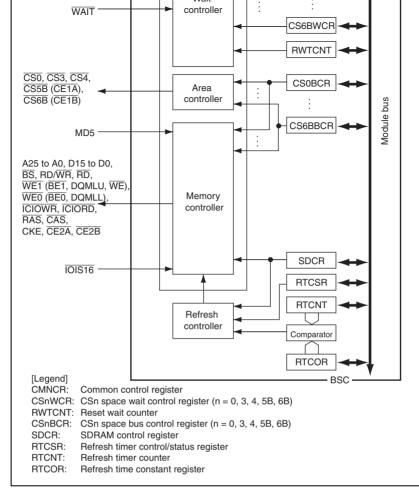


Figure 7.1 Block Diagram of BSC

		/asynchronous), or PCMCIA is accessed. Asserted at the same as CAS assertion in SDRAM access.
$\overline{\text{CS0}}, \overline{\text{CS3}}, \overline{\text{CS4}}$	Output	Chip Select
CS5B/CE1A	Output	Chip Select
		Chip enable for PCMCIA allocated to area 5 when PCMCIA is
CE2A	Output	Chip enable for PCMCIA allocated to area 5 when PCMCIA is
CS6B/CE1B	Output	Chip Select
		Chip enable for PCMCIA allocated to area 6 when PCMCIA is
CE2B	Output	Chip enable for PCMCIA allocated to area 6 when PCMCIA is
RD/WR	Output	Read/Write
		Connects to $\overline{\text{WE}}$ pins when SDRAM or byte-selection SRAM is
RD	Output	Read Pulse Signal (read data output enable signal)
		Strobe signal to indicate a memory read cycle when PCMCIA i
WE1(BE1)/WE	Output	Indicates that D15 to D8 are being written to.
		Connected to the byte select signal when byte-selection SRAM use.
		Strove signal to indicate a memory write cycle when PCMCIA i
WE0(BE0)	Output	Indicates that D7 to D0 are being written to.
		Connected to the byte select signal when a byte-selection SRA use.
RAS	Output	Connected to \overline{RAS} pin when SDRAM is in use.
CAS	Output	Connected to \overline{CAS} pin when SDRAM is in use.
CKE	Output	Connected to CKE pin when SDRAM is in use.

Rev. 6.00 Jun. 12, 2007 Page 108 of 610 REJ09B0131-0600

Note: * As pins A25 to A16 act as general I/O ports immediately after a power-on res or pull down these pins outside the LSI as needed.

7.3 Area Overview

7.3.1 Area Division

The architecture of this LSI has 32-bit address space. The upper three address bits divide into areas P0 to P4, and the cache access methods can be specified for each area. For det section 3, Cache. Each area indicated by the remaining 29 bits is divided into ten areas (are reserved) when address map 1 is selected or eight areas (three areas are reserved) when address map is selected by the MAP bit in CMNCR. The BSC co areas indicated by the 29 bits.

As listed in tables 7.2 and 7.3, memory can be connected directly to five physical areas and the chip select signals ($\overline{CS0}$, $\overline{CS3}$, $\overline{CS4}$, $\overline{CS5B}$, and $\overline{CS6B}$) are output for each area. asserted during area 0 access.

7.3.2 Shadow Area

Areas 0, 3, 4, 5B, and 6B are divided by decoding physical address bits A28 to A25, wh correspond to areas 000 to 111. Address bits 31 to 29 are ignored. This means that the ra area 0 addresses, for example, is H'00000000 to H'03FFFFFF, and its corresponding sha is the address space in P1 to P3 areas obtained by adding to it H'20000000 × n (n = 1 to

The address range for area 7 is H'1C000000 to H'1FFFFFFF. The address space H'1C00 H'20000000 × n to H'1FFFFFFF + H'20000000 × n (n = 0 to 6) corresponding to the are shadow spaces are reserved, so do not use it.

RENESAS

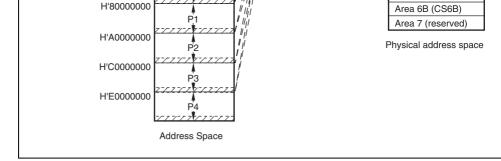


Figure 7.2 Address Space

7.3.3 Address Map

The external address space has a capacity of 256 Mbytes and is divided into five areas. The memory to be connected and the data bus width are specified for individual areas. The admap for the external address space is shown in table 7.2.

Table 7.2Address Map 1 (CMNCR.MAP = 0)

Physical Address	Area	Memory to be Connected	Capacity
H'00000000 to H'03FFFFF	Area 0	Normal memory	64 Mbyte
H'04000000 to H'07FFFFF	Area 1	Reserved area*	64 Mbyte
H'08000000 to H'0BFFFFF	Area 2	Reserved area*	64 Mbyte
H'0C000000 to H'0FFFFFF	Area 3	Normal memory	64 Mbyte
		Byte-selection SRAM	
		SDRAM	

Rev. 6.00 Jun. 12, 2007 Page 110 of 610 REJ09B0131-0600

HICOUDDUD TO HIFFFFFFF	Area 7	Reserved area*	64 MDy
------------------------	--------	----------------	--------

Note: * Do not access the reserved area. If the reserved area is accessed, the correct cannot be guaranteed.

Table 7.3Address Map 2 (CMNCR.MAP = 1)

Physical Address	Area	Memory to be Connected	Capacit
H'00000000 to H'03FFFFF	Area 0	Normal memory	64 Mbyt
H'04000000 to H'07FFFFF	Area 1	Reserved area*1	64 Mbyt
H'08000000 to H'0BFFFFFF	Area 2	Reserved area*1	64 Mbyt
H'0C000000 to H'0FFFFFF	Area 3	Normal memory	64 Mbyt
		Byte-selection SRAM	
		SDRAM	
H'10000000 to H'13FFFFFF	Area 4	Normal memory	64 Mbyt
		Byte-selection SRAM	
H'14000000 to H'17FFFFFF	Area 5* ²	Normal memory	64 Mbyt
		Byte-selection SRAM	
		PCMCIA	
H'18000000 to H'1BFFFFF	Area 6* ²	Normal memory	64 Mbyt
		Byte-selection SRAM	
		PCMCIA	
H'1C000000 to H'1FFFFFF	Area 7	Reserved area*1	64 Mby
Notes: 1. Do not access the r cannot be guarante		a. If the reserved area is accesse	ed, the correc

2. For area 5, CS5BBCR and CS5BWCR are enabled. For area 6, CS6BBCR and CS6BWCR are enabled.

RENESAS

1	Normal memory	8 bits
0	-	16 bits

7.3.5 Data Alignment

This LSI supports the big endian and little endian methods of data alignment. The data align specified using the external pin (MD5) at a power-on reset as shown in table 7.5.

Table 7.5 Correspondence between External Pin (MD5) and Endians

MD5	Endian
0	Big endian
1	Little endian

Rev. 6.00 Jun. 12, 2007 Page 112 of 610 REJ09B0131-0600

- CS5B space bus control register for area 5B (CS5BBCR)
- CS6B space bus control register for area 6B (CS6BBCR)
- CS0 space wait control register for area 0 (CS0WCR)
- CS3 space wait control register for area 3 (CS3WCR)
- CS4 space wait control register for area 4 (CS4WCR)
- CS5B space wait control register for area 5B (CS5BWCR)
- CS6B space wait control register for area 6B (CS6BWCR)
- SDRAM control register (SDCR)
- Refresh timer control/status register (RTCSR)
- Refresh timer counter (RTCNT)
- Refresh time constant register (RTCOR)

12		0	1 1/ V V	opuce opecification
				Selects the address map for the external addres The address maps to be selected are shown in t and 7.3.
				0: Selects address map 1
				1: Selects address map 2
11 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
4	_	1	R	Reserved
				This bit is always read as 1. The write value sho always be 1.
3	ENDIAN	0/1*	R	Endian Flag
				Fetches the external pin (MD5) state for specifyi endian at a power-on reset. The endian setting f address spaces are set by this bit. This is a read
				0: External pin (MD5) for specifying endian was low at a power-on reset. This LSI is operated endian.
				 External pin (MD5) for specifying endian was high at a power-on reset. This LSI is being op little endian.
2	_	1	R	Reserved
				This bit is always read as 1. The write value sho always be 1.

Rev. 6.00 Jun. 12, 2007 Page 114 of 610 REJ09B0131-0600

- 0: High impedance in standby mode
- 1: Driven in standby mode
- Note: * The external pin (MD5) state for specifying endian is sampled at a power-on when big endian is specified, this bit is read as 0 and when little endian is specified bit is read as 1.

7.4.2 CSn Space Bus Control Register (CSnBCR) (n = 0, 2, 3, 4, 5B, 6B)

CSnBCR specifies the type of memory connected to each space, data-bus width of each the number of wait cycles between access cycles.

Do not access external memory other than area 0 until setting CSnBCR is completed.

Bit	Bit Name	Initial Value	R/W	Description
31, 30	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
29	IWW1	1	R/W	Idle Cycles between Write-Read Cycles and W
28	IWW0	1	R/W	Cycles
				Specify the number of idle cycles to be inserted access to a memory that is connected to the ar write and read cycles or write and write cycles p consecutively are the target cycle.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted

RENESAS

				001: 1 idle cycles inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
24	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
23	IWRWS1	1	R/W	Idle Cycles for Read-Write in Same Space
22	IWRWS0	1	R/W	Specify the number of idle cycles to be inserted a access to a memory that is connected to the are read and write cycles which are performed conse and are accessed to the same area are the target
				000: No idle cycle inserted
				001: 1 idle cycles inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
21	—	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 116 of 610 REJ09B0131-0600

_				
18	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
17	IWRRS1	1	R/W	Idle Cycles for Read-Read in Same Space
16	IWRRS0	1	R/W	Specify the number of idle cycles to be inserted access to a memory that is connected to the ar read and read cycles which are performed cons and are accessed to the same area are the targ
				000: No idle cycle inserted
				001: 1 idle cycles inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted

			0110: Reserved (setting prohibited)
			0111: Reserved (setting prohibited)
			1000: Reserved (setting prohibited)
			1001: Reserved (setting prohibited)
			1010: Reserved (setting prohibited)
			1011: Reserved (setting prohibited)
			1100: Reserved (setting prohibited)
			1101: Reserved (setting prohibited)
			1110: Reserved (setting prohibited)
			1111: Reserved (setting prohibited)
			For details on memory type in each area, see tal and 7.3.
11	 0	R	Reserved
			This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 118 of 610 REJ09B0131-0600

				2.	When area 5 or 6 is specified as PC space, the bus width can be specifie either 8 bits or 16 bits.
				3.	If area 3 is specified as SDRAM sp bus width must be specified as 16 b
				4.	These bits must be specified to eith 11 before accessing to memory in a area 0.
8 to 0		All 0	R	Reserved	
				These bits always be	are always read as 0. The write valu 0.
Note:	* CS0BC reset.	R fetches th	ne exterr	nal pin state (N	MD3) that specify the bus width at a

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
12	SW1	0	R/W	Number of Delay Cycles from Address, CSn Ass
11	SW0	0	R/W	RD, WEn (BEn) Assertion
				Specify the number of delay cycles from address $\overline{\text{CSn}}$ assertion to $\overline{\text{RD}}$ and $\overline{\text{WEn}}$ (BEn) assertion.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles
				11: 3.5 cycles

Rev. 6.00 Jun. 12, 2007 Page 120 of 610 REJ09B0131-0600

				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input The specification by this bit is valid even when number of access wait cycle is 0.
				0: External wait is valid
				1: External wait is ignored
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
1	HW1	0	R/W	Number of Delay Cycles from RD, WEn (BEn)
0	HW0	0	R/W	Address, CSn negation
				Specify the number of delay cycles from $\overline{\text{RD}}$ ar (BEn) negation to address and $\overline{\text{CSn}}$ negation.
				00: 0.5 cycles
				01: 1.5 cycles
				01. 1.3 Cycles
				10: 2.5 cycles

Renesas

				(signal used as strobe) and asserts the RD/ \overline{W} during the write access cycle (signal used as
				1: Asserts the WEn (BEn) signal during the read access cycle (used as status) and asserts the signal at the write timing (used as strobe)
19 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
10	WR3	1	R/W	Number of Access Wait Cycles
9	WR2	0	R/W	Specify the number of wait cycles that are neces
8	WR1	1	R/W	read access.
7	7 WR0 0 R/V	R/W	0000: 0 cycle	
				0001: 1 cycle
				0010: 2 cycles
				0011: 3 cycles 0100: 4 cycles
				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)

Rev. 6.00 Jun. 12, 2007 Page 122 of 610 REJ09B0131-0600

always be 0.

• CS4WCR

Bit	Bit Name	Initial Value	R/W	Description
31 to 21	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
20	BAS	0	R/W	Byte Access Selection for Byte-Selection SRAN
				Specifies the $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) and RD/ $\overline{\text{WR}}$ signal tin the byte-selection SRAM interface is used.
				0: Asserts the WEn (BEn) signal at the read/wri (signal used as strobe) and asserts the RD/V during the write access cycle (signal used as
				1: Asserts the WEn (BEn) signal during the rea access cycle (signal used as status) and ass RD/WR signal at the write timing (signal used strobe)
19	—	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.

				101: 4 cycles
				110: 5 cycles
				111: 6 cycles
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
12	SW1	0	R/W	Number of Delay Cycles from Address, CSn As
11	SW0 0 R/W	R/W	RD, WEn (BEn) Assertion	
				Specify the number of delay cycles from address $\overline{\text{CSn}}$ assertion to $\overline{\text{RD}}$ and $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) assertion.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles
				11: 3.5 cycles

Rev. 6.00 Jun. 12, 2007 Page 124 of 610 REJ09B0131-0600

				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input The specification by this bit is valid even when number of access wait cycles is 0.
				0: External wait is valid
				1: External wait is ignored
5 to 2		All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
1	HW1	0	R/W	Number of Delay Cycles from RD, WEn (BEn)
1 0				
	HW0	0	R/W	Address, CSn negation
0	HW0	0	R/W	Address, CSn negation Specify the number of delay cycles from $\overline{\text{RD}}$ ar ($\overline{\text{BEn}}$) negation to address and $\overline{\text{CSn}}$ negation.
0	HW0	0	R/W	Specify the number of delay cycles from $\overline{\text{RD}}$ ar
0	HWO	0	R/W	Specify the number of delay cycles from $\overline{\text{RD}}$ ar ($\overline{\text{BEn}}$) negation to address and $\overline{\text{CSn}}$ negation.
0	HWO	0	R/W	Specify the number of delay cycles from RD ar (BEn) negation to address and CSn negation. 00: 0.5 cycles

Renesas

				(read access wait)
				001: 0 cycle
				010: 1 cycle
				011: 2 cycles
				100: 3 cycles
				101: 4 cycles
				110: 5 cycles
				111: 6 cycles
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
12	SW1	0	R/W	Number of Delay Cycles from Address, CSn Ass
11	SW0	0	R/W	RD, WEn (BEn) Assertion
				Specify the number of delay cycles from address $\overline{\text{CSn}}$ assertion to $\overline{\text{RD}}$ and $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) assertion.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles
				11: 3.5 cycles

Rev. 6.00 Jun. 12, 2007 Page 126 of 610 REJ09B0131-0600

				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specify whether or not the external wait input is specification by this bit is valid even when the r access wait cycle is 0.
				0: External wait is valid
				1: External wait is ignored
5 to 2		All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
1	HW1	0	R/W	Number of Delay Cycles from RD, WEn (BEn)
0	HW0	0	R/W	Address, CSn negation
0				Specify the number of delay cycles from \overline{RD} ar
				(BEn) negation to address and CSn negation.
				(BEn) negation to address and CSn negation.
				(BEn) negation to address and CSn negation. 00: 0.5 cycles

Renesas

				(signal used as strobe) and asserts the RD/ \overline{W} during the write access cycle (signal used as
				 Asserts the WEn (BEn) signal during the read access cycle (used as status) and asserts the signal at the write timing (used as strobe)
19 to 1	3 —	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
12	SW1	0	R/W	Number of Delay Cycles from Address, CSn Ass
11	SW0	0	R/W	RD, WEn (BEn) Assertion
				Specify the number of delay cycles from address $\overline{\text{CSn}}$ assertion to $\overline{\text{RD}}$ and $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) assertion.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles
				11: 3.5 cycles

Rev. 6.00 Jun. 12, 2007 Page 128 of 610 REJ09B0131-0600

				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input The specification by this bit is valid even when number of access wait cycle is 0.
				0: External wait is valid
				1: External wait is ignored
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
1	HW1	0	R/W	Number of Delay Cycles from RD, WEn (BEn)
0	HW0	0	R/W	Address, CSn negation
				Specify the number of delay cycles from $\overline{\text{RD}}$ ar (BEn) negation to address and $\overline{\text{CSn}}$ negation.
				00: 0.5 cycles
				01: 1.5 cycles
				01. 1.3 Cycles
				10: 2.5 cycles

Renesas

				wait for the completion of precharge in the follow cases.
				• From the start of auto-precharge to the issuir ACTV command for the same bank.
				 From the issuing of the PRE/PALL command issuing of the ACTV command for the same
				 From the issuing of the PALL command durin auto-refreshing to the issuing of the REF con
				 From the issuing of the PALL command durin self-refreshing to the issuing of the SELF cor
				00: 0 cycle (no wait cycle)
				01: 1 cycle
				10: 2 cycles
_		_	_	11: 3 cycles
12	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
11	WTRCD1	0	R/W	Wait Cycle Number from ACTV Command to
10	WTRCD0	1	R/W	READ(A)/WRIT(A) Command
				Specify the number of minimum wait cycles from the ACTV command to issuing the READ(A)/WF command.
				00: 0 cycle (no wait cycle)
				01: 1 cycle
				10: 2 cycles
				11: 3 cycles

Rev. 6.00 Jun. 12, 2007 Page 130 of 610 REJ09B0131-0600

				11: Reserved (setting prohibited)
6, 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
4	TRWL1	0	R/W	Wait Cycle Number for Precharge Start Wait
3	TRWL0	0	R/W	Specify the number of minimum wait cycles ins wait for the start of precharge in the following c
				• From the issuing of the WRITA command b
				to the start of the auto-precharge in the SDI
				The ACTV command for the same bank is in after issuing the WRITA command in non-bom ode.
				To confirm how many cycles should be nee SDRAM between receiving the WRITA com the auto-precharge start, refer to the data si each SDRAM. Set this bit so that the cycle that data sheets should not exceed the cycl set by this bit.
				• From the issuing of the WRIT command by the issuing of the PRE command.
				A different row address in the same bank is in bank active mode.
				00: 0 cycle (no wait cycle)
				01: 1 cycle
				10: 2 cycles
				11: 3 cycles

- From the self-refreshing release to the issuin ACTV/REF/MRS command.
 00: 2 cycles
 01: 3 cycles
 10: 5 cycles
 - 11: 8 cycles

PCMCIA:

• CS5BWCR, CS6BWCR

Bit	Bit Name	Initial Value	R/W	Description
31 to 22	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
21	SA1	0	R/W	Space Attribute Specification
20	SA0	0	R/W	Specify memory card interface or I/O card interface the PCMCIA interface is selected.
				• SA1
				0: Specifies memory card interface when A2
				1: Specifies I/O card interface when A25 = 1
				• SA0
				0: Specifies memory card interface when A2
				1: Specifies I/O card interface when $A25 = 0$

Rev. 6.00 Jun. 12, 2007 Page 132 of 610 REJ09B0131-0600

0011: 3.5 cycles 0100: 4.5 cycles 0101: 5.5 cycles 0110: 6.5 cycles 0111: 7.5 cycles 1000: Reserved (setting prohibited) 1001: Reserved (setting prohibited) 1010: Reserved (setting prohibited) 1011: Reserved (setting prohibited) 1100: Reserved (setting prohibited) 1101: Reserved (setting prohibited) 1101: Reserved (setting prohibited) 1111: Reserved (setting prohibited) 1111: Reserved (setting prohibited)

RENESAS

				0111: 26 cycles
				1000: 30 cycles
				1001: 33 cycles
				1010: 36 cycles
				1011: 38 cycles
				1100: 52 cycles
				1101: 60 cycles
				1110: 64 cycles
				1111: 80 cycles
6	WM	0	R/W	External Wait Mask Specification
				Specify whether or not the external wait input is specification by this bit is valid even when the nu access wait cycle is 0.
				0: External wait is valid
				1: External wait is ignored
5, 4		All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.

Rev. 6.00 Jun. 12, 2007 Page 134 of 610 REJ09B0131-0600

0110: 6.5 cycles
0111: 7.5 cycles
1000: 8.5 cycles
1001: 9.5 cycles
1010: 10.5 cycles
1011: 11.5 cycles
1100: 12.5 cycles
1101: 13.5 cycles
1110: 14.5 cycles
1111: 15.5 cycles

		0	11/1	
				Specifies whether or not the refreshing SDRAM performed.
				0: Refreshing is not performed
				1: Refreshing is performed
10	RMODE	0	R/W	Refresh Control
				Specifies whether to perform auto-refreshing or self-refreshing when the RFSH bit is 1. When the bit is 1 and this bit is 1, self-refreshing starts imm When the RFSH bit is 1 and this bit is 0, auto-ref starts according to the contents that are set in R RTCNT, and RTCOR.
				0: Auto-refreshing is performed
				1: Self-refreshing is performed
9	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	BACTV	0	R/W	Bank Active Mode
				Specifies whether to access in auto-precharge n (using READA and WRITA commands) or in bar mode (using READ and WRIT commands).
				0: Auto-precharge mode (using READA and WR commands)
				1. Dept. estive mede (using DEAD and MDIT as
				1: Bank active mode (using READ and WRIT co
7 to 5		All 0	R	Reserved
7 to 5	_	All 0	R	

Rev. 6.00 Jun. 12, 2007 Page 136 of 610 REJ09B0131-0600

				always be 0.
1	A3COL1	0	R/W	Number of Bits of Column Address for Area 3
0	A3COL0	0	R/W	Specify the number of bits of the column addres area 3.
				00: 8 bits
				01: 9 bits
				10: 10 bits
				11: Reserved (setting prohibited)

7.4.5 Refresh Timer Control/Status Register (RTCSR)

RTCSR specifies various items about refresh for SDRAM.

When RTCSR is written to, the upper 16 bits of the write data must be H'A55A to cance protection.

Bit	Bit Name	Initial Value	R/W	Description
31 to 8		All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.

RENESAS

6	—	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
5	CKS2	0	R/W	Clock Select
4	CKS1	0	R/W	Select the clock input to count-up the refresh tim
3	CKS0	0	R/W	counter (RTCNT).
				000: Stop the counting-up
				001: B¢/4
				010: Bø/16
				011: Bø/64
				100: Bø/256
				101: Bø/1024
				110: Bø/2048
				111: Bø/4096

Rev. 6.00 Jun. 12, 2007 Page 138 of 610 REJ09B0131-0600

010: 4 times
011: 6 times
100: 8 times
101: Reserved (setting prohibited)
110: Reserved (setting prohibited)
111: Reserved (setting prohibited)

7.4.6 Refresh Timer Counter (RTCNT)

RTCNT is an 8-bit counter that increments using the clock selected by bits CKS2 to CK RTCSR. When RTCNT matches RTCOR, RTCNT is cleared to 0. The value in RTCNT to 0 after counting up to 255. When RTCNT is written to, the upper 16 bits of the write be H'A55A to cancel write protection.

Bit	Bit Name	Initial Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
7 to 0		All 0	R/W	8-bit Counter

RENESAS

Bit	Bit Name	Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
7 to 0	_	All 0	R/W	8-bit Counter

Rev. 6.00 Jun. 12, 2007 Page 140 of 610 REJ09B0131-0600

SRAM. Only 16-bit data bus width is available for SDRAM. Two data bus widths (8 bits bits) are available for PCMCIA interface. Data alignment is performed in accordance with bus width of the device and endian. This also means that when longword data is read from byte-width device, the read operation must be done four times. In this LSI, data alignment conversion of data length is performed automatically between the respective interfaces.

Byte access a	at 2	_	—	Data 7 to 0	—	_	—	Assert
Byte access at 3		—	—	—	Data 7 to 0	—	—	
Word access	at 0		—	Data 15 to 8	Data 7 to 0		—	Assert
Word access	at 2	_	—	Data 15 to 8	Data 15 to 8	—	—	Assert
Longword access at 0	1st time at 0	—	—	Data 31 to 24	Data 23 to 16	—	—	Assert
	2nd time at 2	. —	_	Data 15 to 8	Data 7 to 0	_	_	Assert

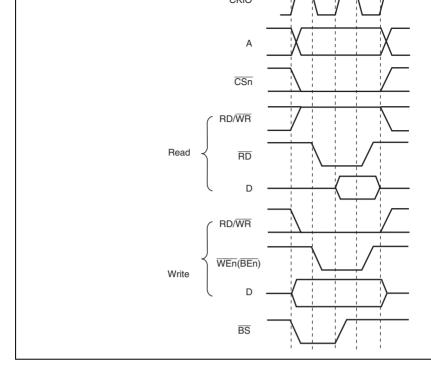
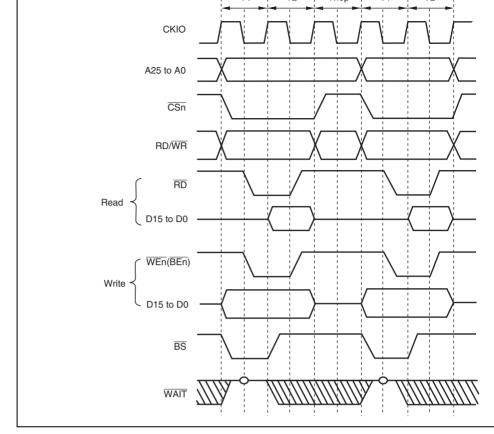
Rev. 6.00 Jun. 12, 2007 Page 142 of 610 REJ09B0131-0600

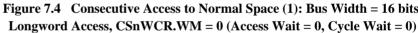
Byte access	at 3 —	—	—	Data 7 to 0	_	_	—
Word access at 0	1st time — at 0	—	_	Data 15 to 8	—	—	_
	2nd time — at 1	—	—	Data 7 to 0	—	—	—
Word access at 2	1st time — at 2	—	—	Data 15 to 8	—		—
	2nd time — at 3	—	—	Data 7 to 0	—	—	—
Longword access at 0	1st time — at 0	—	—	Data 31 to 24	—	_	—
	2nd time — at 1	—	—	Data 23 to 16	—		—
	3rd time — at 2	—	—	Data 15 to 8	_		_
	4th time — at 3	—	—	Data 7 to 0	_		_

Byte access a	at 3	—	—	Data 7 to 0	—	_	_	Assert
Word access	at 0	_	_	Data 15 to 8	Data 7 to 0	_	—	Assert
Word access	at 2	—	—	Data 15 to 8	Data 7 to 0	_	—	Assert
Longword access at 0	1st time at 0	_	—	Data 15 to 8	Data 7 to 0	—	—	Assert
	2nd time at 2	_	—	Data 31 to 24	Data 23 to 16	_	—	Assert

Rev. 6.00 Jun. 12, 2007 Page 144 of 610 REJ09B0131-0600

Byte access a	at 3 —	—	—	Data 7 to 0	_	—	_
Word access at 0	1st time — at 0	—	—	Data 7 to 0		—	—
	2nd time — at 1	—	—	Data 15 to 8	—	—	—
Word access at 2	1st time — at 2	—		Data 7 to 0	_	—	—
	2nd time — at 3	—		Data 15 to 8	_	—	_
Longword access at 0	1st time — at 0	_	_	Data 7 to 0	_	—	_
	2nd time — at 1	—		Data 15 to 8	_	—	_
	3rd time — at 2	—	—	Data 23 to 16	_	—	—
	4th time — at 3	_	_	Data 31 to 24	_	—	_


Figure 7.3 Normal Space Basic Access Timing (No-Wait Access)

There is no output signal which informs external devices of the access size when reading. Although the least significant bit of the address indicates the correct address when the access starts, 16-bit data is always read from a 16-bit device. When writing, only the $\overline{\text{WEn}}$ (BEn for the byte to be written to is asserted.

Rev. 6.00 Jun. 12, 2007 Page 146 of 610 REJ09B0131-0600

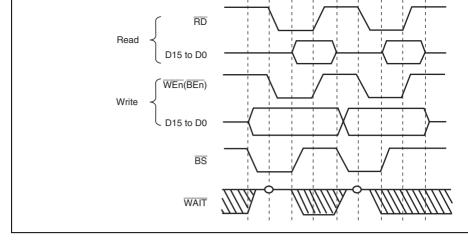


Figure 7.5 Consecutive Access to Normal Space (2): Bus Width = 16 bits, Longword Access, CSnWCR.WM = 1 (Access Wait = 0, Cycle Wait = 0)

Rev. 6.00 Jun. 12, 2007 Page 148 of 610 REJ09B0131-0600

Figure 7.6 Example of 16-Bit Data-Width SRAM Connection

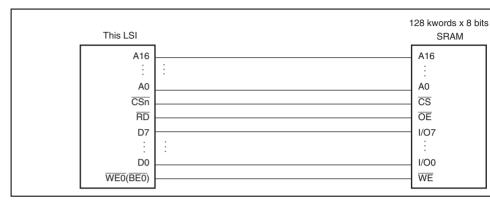


Figure 7.7 Example of 8-Bit Data-Width SRAM Connection

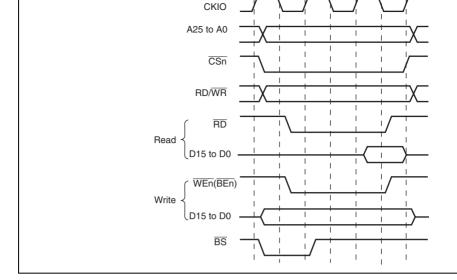


Figure 7.8 Wait Timing for Normal Space Access (Software Wait Only)

When the WM bit in CSnWCR is cleared to 0, the external wait signal (\overline{WAIT}) is also say. The \overline{WAIT} pin sampling is shown in figure 7.9. In this example, two wait cycles are insersoftware wait. The \overline{WAIT} signal is sampled at the falling edge of the CKIO signal in the immediately before the T2 cycle (T1 or Tw cycle).

Rev. 6.00 Jun. 12, 2007 Page 150 of 610 REJ09B0131-0600

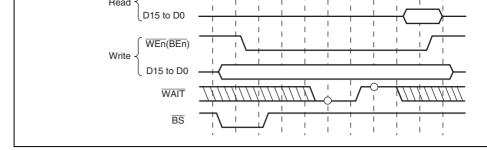


Figure 7.9 Wait Cycle Timing for Normal Space Access (Wait cycle Insertion usin

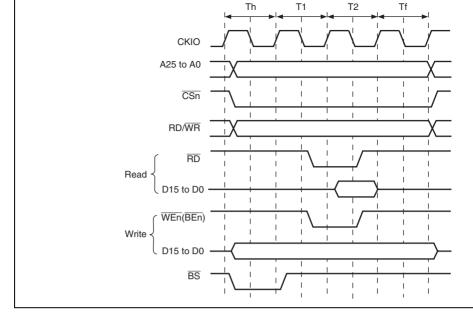


Figure 7.10 Example of Timing when CSn Assertion Period is Extended

Rev. 6.00 Jun. 12, 2007 Page 152 of 610 REJ09B0131-0600

the SDRAM operating mode.

Commands for SDRAM can be specified by \overline{RAS} , \overline{CAS} , $\overline{RD}/\overline{WR}$, and specific address s These commands are shown below.

- NOP
- Auto-refreshing (REF)
- Self-refreshing (SELF)
- All banks precharge (PALL)
- Specified bank precharge (PRE)
- Bank active (ACTV)
- Read (READ)
- Read with precharge (READA)
- Write (WRIT)
- Write with precharge (WRITA)
- Write mode register (MRS)

The byte to be accessed is specified by DQMLU and DQMLL. Reading or writing is perfor a byte whose corresponding DQMxx is low. For details on the relationship between and the byte to be accessed, refer to section 7.5.1, Endian/Access Size and Data Alignm

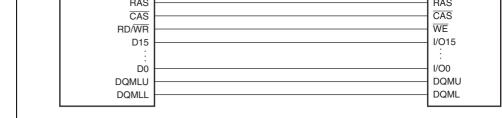


Figure 7.11 Example of 16-Bit Data-Width SDRAM Connection

Address Multiplexing: An address multiplexing is specified so that SDRAM can be con without external multiplexing circuitry according to the setting of bits BSZ1 and BSZ0 in CSnBCR, AnROW1 and AnROW0 and AnCOL1 AnCOL0 in SDCR. Tables 7.10 to 7.12 the relationship between those settings and the bits output on the address pins. Do not specthose bits in the manner other than this table, otherwise the operation of this LSI is not gu A25 to A18 are not multiplexed and the original values of address are always output on the

Pin A0 of SDRAM specifies a word address. Therefore, connect this A0 pin of SDRAM of this LSI; pin A1 pin of SDRAM to pin A2 of this LSI, and so on.

Rev. 6.00 Jun. 12, 2007 Page 154 of 610 REJ09B0131-0600

A14	A22	A14		
A13	A21	A21		
A12	A20* ²	A20* ²	A11 (BA0)	Specifies bank
A11	A19	L/H* ¹	A10/AP	Specifies address/precharg
A10	A18	A10	A9	Address
A9	A17	A9	A8	
A8	A16	A8	A7	
A7	A15	A7	A6	
A6	A14	A6	A5	
A5	A13	A5	A4	
A4	A12	A4	A3	
A3	A11	A3	A2	
A2	A10	A2	A1	
A1	A9	A1	A0	
A0	A8	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high accordin access mode.

2. Bank address specification

Renesas

A14	A22* ²	A22* ²	A13 (BA1)	Specifies bank
A13	A21* ²	A21* ²	A12 (BA0)	
A12	A20	A12	A11	Address
A11	A19	L/H* ¹	A10/AP	Specifies address/precharg
A10	A18	A10	A9	Address
A9	A17	A9	A8	
A8	A16	A8	A7	
A7	A15	A7	A6	
A6	A14	A6	A5	
A5	A13	A5	A4	
A4	A12	A4	A3	
A3	A11	A3	A2	
A2	A10	A2	A1	
A1	A9	A1	A0	
A0	A8	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high according access mode.

2. Bank address specification

Rev. 6.00 Jun. 12, 2007 Page 156 of 610 REJ09B0131-0600

A14	A23* ²	A23* ²	A13 (BA1)	Specifies bank
A13	A22* ²	A22* ²	A12 (BA0)	
A12	A21	A12	A11	Address
A11	A20	L/H* ¹	A10/AP	Specifies address/precharg
A10	A19	A10	A9	Address
A9	A18	A9	A8	
A8	A17	A8	A7	
A7	A16	A7	A6	
A6	A15	A6	A5	
A5	A14	A5	A4	
A4	A13	A4	A3	
A3	A12	A3	A2	
A2	A11	A2	A1	
A1	A10	A1	A0	
A0	A9	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high accordin access mode.

2. Bank address specification

RENESAS

A14	A24* ²	A24* ²	A13 (BA1)	Specifies bank
A13	A23* ²	A23* ²	A12 (BA0)	
A12	A22	A12	A11	Address
A11	A21	L/H* ¹	A10/AP	Specifies address/precharg
A10	A20	A10	A9	Address
A9	A19	A9	A8	
A8	A18	A8	A7	
A7	A17	A7	A6	
A6	A16	A6	A5	
A5	A15	A5	A4	
A4	A14	A4	A3	
A3	A13	A3	A2	
A2	A12	A2	A1	
A1	A11	A1	A0	
A0	A10	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high according access mode.

2. Bank address specification

Rev. 6.00 Jun. 12, 2007 Page 158 of 610 REJ09B0131-0600

A14	A23* ²	A23* ²	A13 (BA0)	
A13	A22	A13	A12	Address
A12	A21	A12	A11	
A11	A20	L/H ^{*1}	A10/AP	Specifies address/precharg
A10	A19	A10	A9	Address
A9	A18	A9	A8	
A8	A17	A8	A7	
A7	A16	A7	A6	
A6	A15	A6	A5	
A5	A14	A5	A4	
A4	A13	A4	A3	
A3	A12	A3	A2	
A2	A11	A2	A1	
A1	A10	A1	A0	
A0	A9	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high accordin access mode.

2. Bank address specification

RENESAS

A14	A24* ²	A24* ²	A13 (BA0)	
A13	A23	A13	A12	Address
A12	A22	A12	A11	
A11	A21	L/H* ¹	A10/AP	Specifies address/precharge
A10	A20	A10	A9	Address
A9	A19	A9	A8	
A8	A18	A8	A7	
A7	A17	A7	A6	
A6	A16	A6	A5	
A5	A15	A5	A4	
A4	A14	A4	A3	
A3	A13	A3	A2	
A2	A12	A2	A1	
A1	A11	A1	A0	
A0	A10	A0		Unused

Notes: 1. L/H is a bit used in the command specification; it is fixed low or high according access mode.

2. Bank address specification

Rev. 6.00 Jun. 12, 2007 Page 160 of 610 REJ09B0131-0600

Bus Width	Access Size	Number of Bursts
16 bits	8 bits	1
	16 bits	1
	32 bits	2
	16 bytes	8

Table 7.16 Relationship between Access Size and Number of Bursts

Figures 7.12 and 7.13 show timing charts in burst read. In burst read, the ACTV comma output in the Tr cycle, the READ command is issued in the Tc1, Tc2, and Tc3 cycles, th command is issued in the Tc4 cycle, and the read data is latched at the rising edge of the clock (CKIO) in the Td1 to Td4 cycles. The Tap cycle is used to wait for the completion auto-precharge induced by the READ command in the SDRAM. In the Tap cycle, a new command will not be issued to the same bank. However, other banks can be accessed. T of Tap cycles is specified by bits WTRP1 and WTRP0 in CS3WCR.

In this LSI, wait cycles can be inserted by specifying bits in CSnWCR to connect the SI with variable frequencies. Figure 7.15 shows an example in which wait cycles are insert number of cycles from the Tr cycle where the ACTV command is output to the Tc1 cycl the READA command is output can be specified using bits WTRCD1 and WTRCD0 in When bits WTRCD1 and WTRCD0 is set to one cycle or more, a Trw cycle where the N command is inserted between the Tr cycle and Tc1 cycle. The number of cycle Tc1 cycle where the READA command is output to the Td1 cycle. The number of cycle corresponds to the synchronous DRAM CAS latency. The CAS latency for the synchror DRAM is normally defined as up to three cycles. However, the CAS latency in this LSI specified as one to four cycles. This CAS latency can be achieved by connecting a latch between this LSI and the synchronous DRAM.

RENESAS

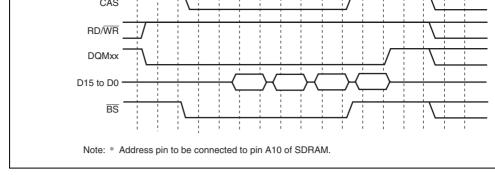


Figure 7.12 Burst Read Basic Timing (Auto Precharge)

Rev. 6.00 Jun. 12, 2007 Page 162 of 610 REJ09B0131-0600

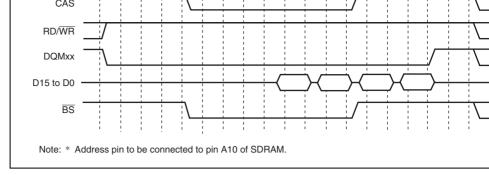


Figure 7.13 Burst Read Wait Specification Timing (Auto Precharge)

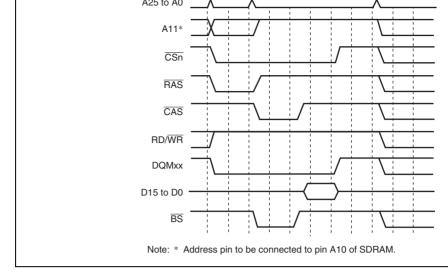


Figure 7.14 Basic Timing for Single Read (Auto Precharge)

Rev. 6.00 Jun. 12, 2007 Page 164 of 610 REJ09B0131-0600

Figure 7.15 shows a timing chart for burst writes. In burst write, the ACTV command is the Tr cycle, the WRIT command is issued in the Tc1, Tc2, and Tc3 cycles, and the WR command is issued to execute an auto-precharge in the Tc4 cycle. In the write cycle, the is output simultaneously with the write command. After the write command with the auto-precharge is output, the Trw1 cycle that waits for the auto-precharge initiation is for the Tap cycle that waits for completion of the auto-precharge induced by the WRITA co the SDRAM. In the Tap cycle, a new command will not be issued to the same bank. Ho other CS areas and other banks can be accessed. The number of Trw1 cycles is specified TRWL1 and TRWL0 in CS3WCR. The number of Tap cycles is specified by bits WTR WTRP0 in CS3WCR.

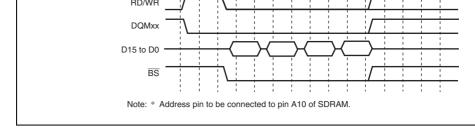


Figure 7.15 Basic Timing for Burst Write (Auto Precharge)

Rev. 6.00 Jun. 12, 2007 Page 166 of 610 REJ09B0131-0600

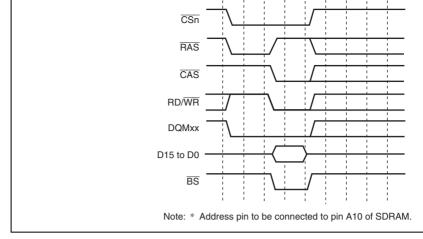


Figure 7.16 Basic Timing for Single Write (Auto-Precharge)

Bank Active: The synchronous DRAM bank function is used to support high-speed acc the same row address. When the BACTV bit in SDCR is 1, accesses are performed usin commands without auto-precharge (READ or WRIT). This function is called bank-activ

When a bank-active function is used, precharging is not performed when the access end accessing the same row address in the same bank, it is possible to issue the READ or W command immediately, without issuing an ACTV command. Since synchronous DRAM internally divided into several banks, it is possible to keep one row address in each bank If the next access is to a different row address, a PRE command is first issued to prechar relevant bank, then when precharging is completed, the access is performed by issuing a command followed by a READ or WRIT command. If this is followed by an access to a row address, the access time will be longer because of the precharging performed after t request is issued. The number of cycles between issuance of the PRE command and the command is determined by bits WTRP1 and WTRP0 in CSnWCR.

Renesas

Similarly, a single write cycle without auto-precharge is shown in figure 7.20, a single wr for the same row address in figure 7.21, and a single write cycle for different row address figure 7.21.

In figure 7.18, a Tnop cycle in which no operation is performed is inserted before the Tc issues the READ command. The Tnop cycle is inserted to secure two cycles of CAS later the DQMxx signal that specifies which byte data is read from SDRAM. If the CAS laterd specified as two cycles or more, the Tnop cycle is not inserted because the two cycles of can be secured even if the DQMxx signal is asserted after the Tc cycle.

When bank active mode is set, if only accesses to the respective banks in the area 3 are of as long as accesses to the same row address continue, the operation starts with the cycle i 7.17 or 7.20, followed by repetition of the cycle in figure 7.18 or 7.21. An access to a different during this time has no effect. When a different row address is accessed in the bank state, the bus cycle shown in figure 7.19 or 7.22 is executed instead of that in figure 7.18 In bank active mode, too, all banks become inactive after a refresh cycle.

Rev. 6.00 Jun. 12, 2007 Page 168 of 610 REJ09B0131-0600

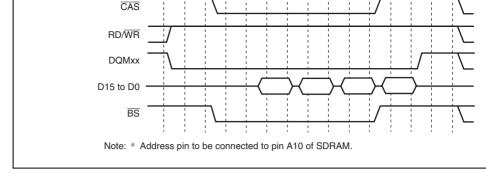


Figure 7.17 Burst Read Timing (No Auto Precharge)

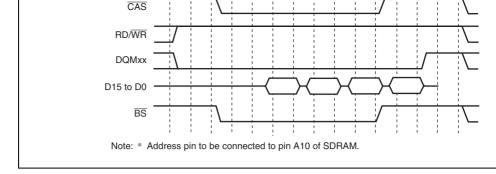


Figure 7.18 Burst Read Timing (Bank Active, Same Row Address)

Rev. 6.00 Jun. 12, 2007 Page 170 of 610 REJ09B0131-0600

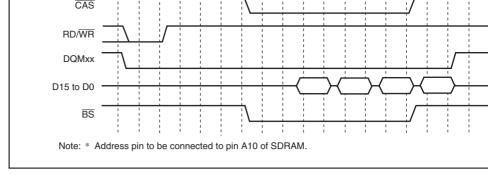


Figure 7.19 Burst Read Timing (Bank Active, Different Row Addresses)

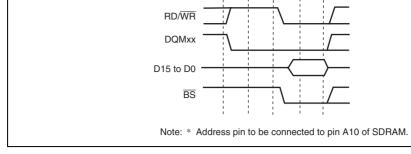


Figure 7.20 Single Write Timing (No Auto Precharge)

Rev. 6.00 Jun. 12, 2007 Page 172 of 610 REJ09B0131-0600

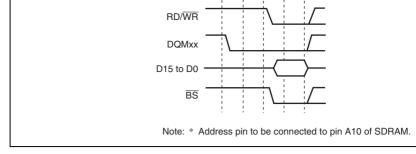


Figure 7.21 Single Write Timing (Bank Active, Same Row Address)

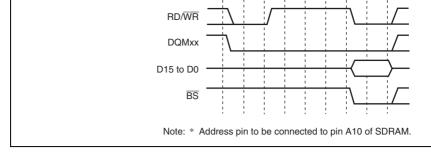


Figure 7.22 Single Write Timing (Bank Active, Different Row Addresses)

Refreshing: This LSI has a function for controlling synchronous DRAM refreshing. Auto-refreshing can be performed by clearing the RMODE bit to 0 and setting the RFSH in SDCR. A consecutive refreshing can be performed by setting bits RRC2 to RRC0 in R synchronous DRAM is not accessed for a long period, self-refreshing mode, in which the consumption for data retention is low, can be activated by setting both the RMODE bit ar RFSH bit to 1.

1. Auto-refreshing

Refreshing is performed at intervals determined by the input clock selected by bits CI CKS0 in RTCSR, and the value set by in RTCOR. The value of bits CKS[2:0] in RTC should be set so as to satisfy the given refresh interval for the synchronous DRAM us make the settings for RTCOR, RTCNT, and the RMODE, then make the CKS[2:0] at RRC[2:0] settings. When the clock is selected by bits CKS[2:0], RTCNT starts count from the value at that time. The RTCNT value is constantly compared with the RTCC and if the two values are the same, a refresh request is generated and an auto-refreshin performed for the number of times specified by the RRC[2:0]. At the same time, RTC cleared to 0 and the count-up is restarted.

Rev. 6.00 Jun. 12, 2007 Page 174 of 610 REJ09B0131-0600

RENESAS

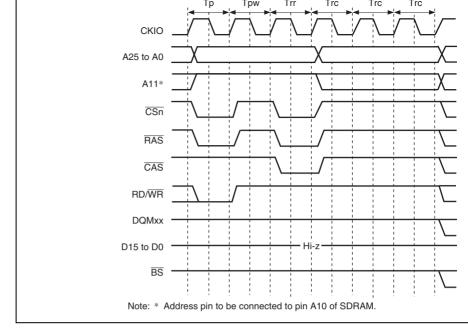


Figure 7.23 Auto-Refreshing Timing

clearing self-refreshing mode so that auto-refreshing is performed at the correct interv When self-refreshing is activated from the auto-refreshing mode, only clearing the RM to 1 resumes auto-refreshing mode. If it takes long time to start the auto-refreshing, se RTCNT to the value of RTCOR - 1 starts the auto-refreshing immediately.

After self-refreshing has been set, the self-refreshing mode continues even in standby and is maintained even after recovery from standby mode by an interrupt.

Since the BSC registers are initialized at a power-on reset, the self-refreshing mode is

Rev. 6.00 Jun. 12, 2007 Page 176 of 610 REJ09B0131-0600

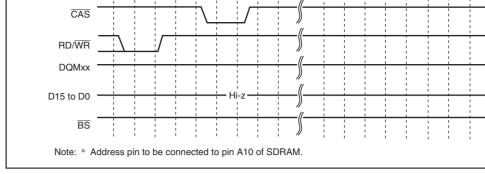


Figure 7.24 Self-Refreshing Timing

Relationship between Refresh Requests and Bus Cycles: If a refresh request occurs d cycle execution, the refresh cycle must wait for the bus cycle to be completed.

If a new refresh request occurs while the previous refresh request is not performed, the prefresh request is deleted. To refresh correctly, a bus cycle longer than the refresh interv bus busy must be prevented.

Power-On Sequence: In order to use synchronous DRAM, mode setting must first be p after turning the power on. To perform synchronous DRAM initialization correctly, the registers must first be set, followed by writing to the synchronous DRAM mode register writing to the synchronous DRAM mode register, the address signal value at that time is by a combination of the $\overline{\text{CSn}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, and RD/WR signals. If the value to be set is X the address of X + (H'F8FD5000) in words. In this operation, the data is ignored. To set read/single write, burst read/burst write, CAS latency 2 to 3, wrap type = sequential, and length 1 supported by the LSI, arbitrary data is written to the addresses shown in table 7 bytes. In this case, 0s are output at the external address pins of A12 or later.

RENESAS

16 bits	2	H'F8FD5040	H'0000040
	3	H'F8FD5060	H'0000060

Mode register setting timing is shown in figure 7.25. The PALL command (all bank precl command) is issued first. The REF command (auto-refreshing command) is then issued e times. The MRS command (mode register write command) is finally issued. Idle cycles, o number is specified by bits WTRP1 and WTRP0 in CSnWCR, are inserted between the P the first REF commands. Idle cycles, of which number is specified by bits WTRC1 and V in CSnWCR, are inserted between the REF and REF commands, and between the 8th RE MRS commands. In addition, one or more idle cycles are inserted between the MRS and command.

It is necessary to keep idle time of certain cycles for SDRAM before issuing the PALL co after turning the power on. Refer the manual of the SDRAM for the idle time to be neede the pulse width of the reset signal is longer then the idle time, mode register setting can b immediately after the reset, but care should be taken when the pulse width of the reset sig shorter than the idle time.

Rev. 6.00 Jun. 12, 2007 Page 178 of 610 REJ09B0131-0600

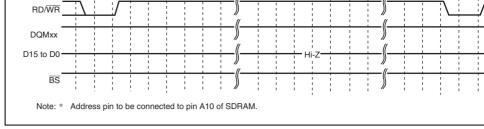


Figure 7.25 Write Timing for SDRAM Mode Register (Based on JEDEC

7.5.6 Byte-Selection SRAM Interface

The byte-selection SRAM interface is for access to SRAM which has a byte-selection $\overline{\text{pr}}(\overline{\text{BEn}})$). This interface is used to access to SRAM which has 16-bit data pins and upper a byte selection pins, such as UB and LB.

When the BAS bit in CSnWCR is cleared to 0 (initial value), the write access timing of byte-selection SRAM interface is the same as that for the normal space interface. While access of a byte-selection SRAM interface, the byte-selection signal is output from the \overline{N} (BEn) pin, which is different from that for the normal space interface. The basic access the shown in figure 7.26. In write access, data is written to the memory according to the time byte-selection pin (WEn (BEn)). For details, refer to the data sheet for the corresponding

If the BAS bit in CSnWCR is set to 1, the $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) pin and RD/ $\overline{\text{WR}}$ pin timings charabasic access timing is shown in figure 7.27. In write access, data is written to the memory according to the timing of the write enable pin (RD/ $\overline{\text{WR}}$). The data hold timing from RD negation to data write must be secured by setting bits HW1 to HW0 in CSnWCR. Figure shows the access timing when a software wait is specified.

RENESAS

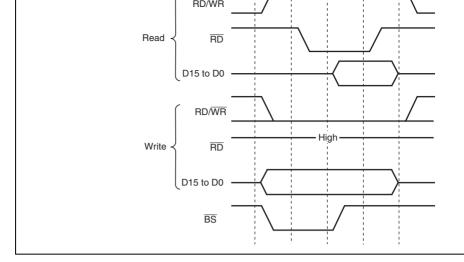


Figure 7.26 Basic Access Timing for Byte-Selection SRAM (BAS = 0)

Rev. 6.00 Jun. 12, 2007 Page 180 of 610 REJ09B0131-0600

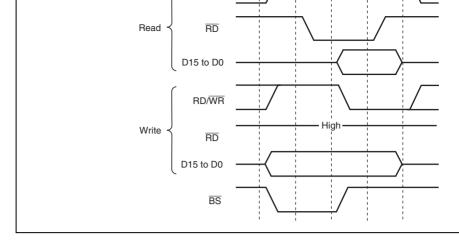


Figure 7.27 Basic Access Timing for Byte-Selection SRAM (BAS = 1)

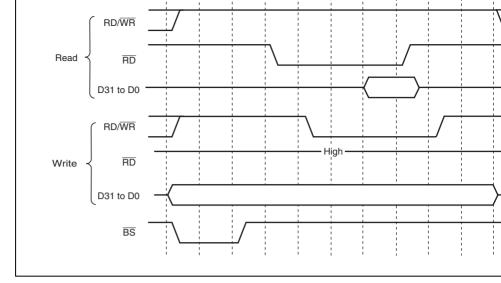


Figure 7.28 Wait Timing for Byte-Selection SRAM (BAS = 1) (Software Wait G

Rev. 6.00 Jun. 12, 2007 Page 182 of 610 REJ09B0131-0600

Figure 7.29 Example of Connection with 16-Bit Data-Width Byte-Selection S

7.5.7 PCMCIA Interface

With this LSI, if address map 2 is selected using the MAP bit in CMNCR, the PCMCIA can be specified in areas 5 and 6. Areas 5 and 6 in the physical space can be used for the memory card and I/O card interface defined in the JEIDA specifications version 4.2 (PC Rev. 2.1) by specifying bits TYPE3 to TYPE0 in CSnBCR (n = 5B and 6B) to B'0101. I bits SA1 and SA0 in CSnWCR (n = 5B and 6B) assign the upper or lower 32 Mbytes of to an IC memory card or I/O card interface. For example, if bits SA1 and SA0 in CS5BV set to 1 and cleared to 0, respectively, the upper 32 Mbytes and the lower 32 Mbytes of are used as an IC memory card interface and I/O card interface, respectively.

When the PCMCIA interface is used, the bus size must be specified as 8 bits or 16 bits u BSZ1 and BSZ0 in CS5BBCR or CS6BBCR.

Figure 7.30 shows an example of a connection between this LSI and the PCMCIA card. insertion and removal of the PCMCIA card with the system power turned on, tri-state bube connected between the LSI and the PCMCIA card.

In the JEIDA and PCMCIA standards, operation in big endian mode is not clearly define Consequently, the provided PCMCIA interface in big endian mode is available only for

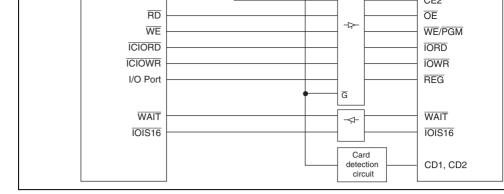


Figure 7.30 Example of PCMCIA Interface Connection

Rev. 6.00 Jun. 12, 2007 Page 184 of 610 REJ09B0131-0600

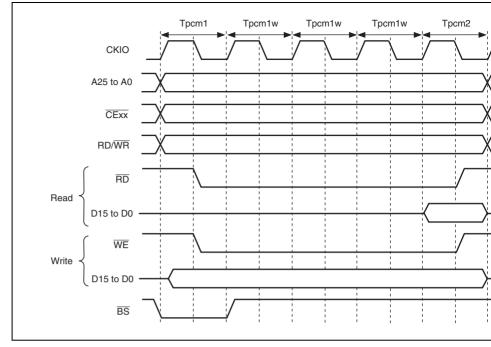


Figure 7.31 Basic Access Timing for PCMCIA Memory Card Interface

RENESAS

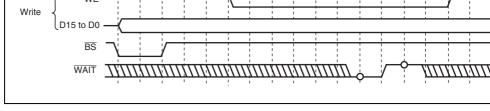


Figure 7.32 Wait Timing for PCMCIA Memory Card Interface (TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Wait = 1, Hardware Wait =

When 32 Mbytes of the memory space are used as an IC memory card interface, a port is generate the $\overline{\text{REG}}$ signal that switches between the common memory and attribute memory the memory space used for the IC memory card interface is 16 Mbytes or less, pin A24 caused as the $\overline{\text{REG}}$ signal by allocating a 16-Mbyte common memory space and a 16-Mbyte memory space alternatively.

Rev. 6.00 Jun. 12, 2007 Page 186 of 610 REJ09B0131-0600

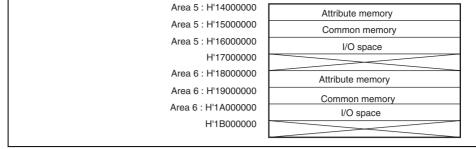


Figure 7.33 Example of PCMCIA Space Assignment (CS5BWCR.SA[1:0] = CS6BWCR.SA[1:0] = B'10)

Basic Timing for I/O Card Interface: Figures 7.34 and 7.35 show the basic timings for PCMCIA I/O card interface.

The I/O card and IC memory card interfaces are specified by an address to be accessed. area 5 of the physical space is specified as the PCMCIA and both bits SA1 and SA0 in C are set to 1, the I/O card interface can automatically be specified by accessing the physica addresses from H'16000000 to H'17FFFFFF and from H'14000000 to H'15FFFFFF. Wh of the physical space is specified as the PCMCIA and both bits SA1 and SA0 in CS6BW set to 1, the I/O card interface can automatically be specified by accessing the physical a from H'1A000000 to H'19FFFFFF and from H'18000000 to H'19FFFFFF.

Note that areas to be accessed as the PCMCIA I/O card must be non-cached (space P2).

If the PCMCIA card is accessed as an I/O card in little endian mode, dynamic bus sizing I/O bus can be achieved using the IOIS16 signal. If the IOIS16 signal is driven high in a I/O bus cycle while the bus width of area 6 is specified as 16 bits, the bus width is recog bits and data is accessed twice in units of eight bits in the I/O bus cycle to be executed.

RENESAS

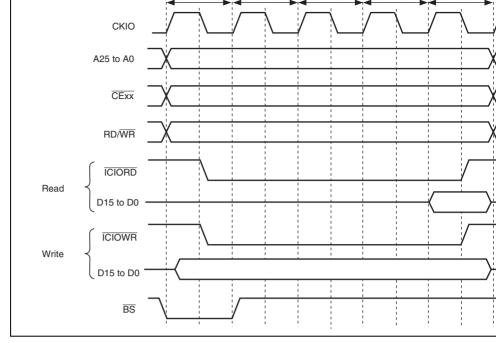


Figure 7.34 Basic Timing for PCMCIA I/O Card Interface

Rev. 6.00 Jun. 12, 2007 Page 188 of 610 REJ09B0131-0600

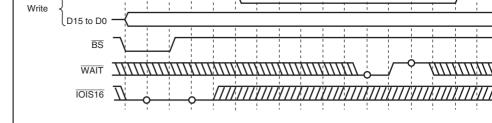


Figure 7.35 Wait Timing for PCMCIA I/O Card Interface (TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Wait = 1, Hardware Wait

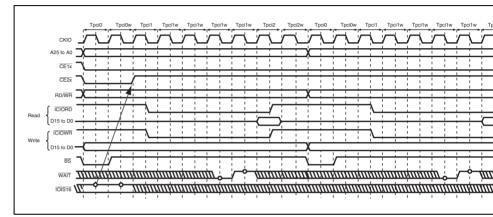


Figure 7.36 Timing for Dynamic Bus Sizing of PCMCIA I/O Card Interfa (TED[3:0] = B'0010, TEH[3:0] = B'0001, Software Waits = 3)

RENESAS

cycles (idle cycles) are shown below.

- 1. Consecutive accesses are write-read or write-write
- 2. Consecutive accesses are read-write for different areas
- 3. Consecutive accesses are read-write for the same area
- 4. Consecutive accesses are read-read for different areas
- 5. Consecutive accesses are read-read for the same area

7.5.9 Others

Reset: The bus state controller (BSC) can be initialized completely only by a power-on repower-on reset, all signals are negated and output buffers are turned off regardless of the state. All control registers are initialized. In standby mode and sleep mode, control register BSC are not initialized.

Some flash memories may stipulate a minimum time from reset release to the first access ensure this minimum time, the BSC supports a 7-bit counter (RWTCNT). At a power-on RWTCNT contents are cleared to 0. After a power-on reset, RWTCNT is counted up in synchronization with the CKIO signal and an external access will not be generated until F is counted up to H'007F.

Access from the Site of the LSI Internal Bus Master: There are three types of LSI interbuses: a cache bus, internal bus, and peripheral bus. The CPU and cache memory are conthe cache bus. Internal bus masters other than the CPU and BSC are connected to the inter-Low-speed peripheral modules are connected to the peripheral bus. Internal memory othe cache memory and debugging modules such as the UBC are connected to both the cache internal bus. Access from the cache bus to the internal bus is enabled but access from the bus to the cache bus is disabled. This gives rise to the following problems.

Rev. 6.00 Jun. 12, 2007 Page 190 of 610 REJ09B0131-0600

(4n + 2), the CPU performs four consecutive longword accesses to perform a cache fill of on the external interface. For a cache-through area, the CPU performs access according actual access addresses. For an instruction fetch to an even word boundary (4n), the CPU longword access. For an instruction fetch to an odd word boundary (4n + 2), the CPU per word access.

For a read cycle of a cache-through area or an on-chip peripheral module, the read cycle accepted and then read cycle is initiated. The read data is sent to the CPU via the cache

In a write cycle for the cache area, the write cycle operation differs according to the cach methods.

In write-back mode, the cache is first searched. If data is detected at the address correspondence the cache, the data is then re-written to the cache. In the actual memory, data will not be until data in the corresponding address is re-written. If data is not detected at the address corresponding to the cache, the cache is updated. In this case, data to be updated is first the internal buffer, 16-byte data including the data corresponding to the address is then a data in the corresponding access of the cache is finally updated. Following these operations write-back cycle for the saved 16-byte data is executed.

In write-through mode, the cache is first searched. If data is detected at the address correct to the cache, the data is re-written to the cache simultaneously with the actual write via the bus. If data is not detected at the address corresponding to the cache, the cache is not up an actual write is performed via the internal bus.

Since the BSC incorporates a 1-stage write buffer, the BSC can execute an access via th bus before the previous external bus cycle is completed in a write cycle. If the on-chip n read or written after the external low-speed memory is written, the on-chip module can be accessed before the completion of the external low-speed memory write cycle.

RENESAS

peripheral module clock ($P\phi$) cycles are required. Care must be taken in system design.

Rev. 6.00 Jun. 12, 2007 Page 192 of 610 REJ09B0131-0600

crystal resonator or external clock input is in use.

• Four clocks generated independently

An internal clock (I ϕ) for the CPU and cache; a peripheral clock (P ϕ) for the on-chip peripheral modules; a bus clock (B ϕ = CKIO) for the external bus interface; and a clofor the PHY-LSI.

• Frequency change function

Frequencies of the internal clock, peripheral clock, and clock for the PHY-LSI can be independently using the PLL circuit and divider circuit within the CPG. Frequencies changed by software using the frequency control register (FRQCR) and PHY-LSI cl frequency control register (MCLKCR) settings.

• Power-down mode control

The clock can be stopped in sleep mode and software standby mode and specific mobe stopped using the module standby function.

CPGS301C_000020030900

RENESAS

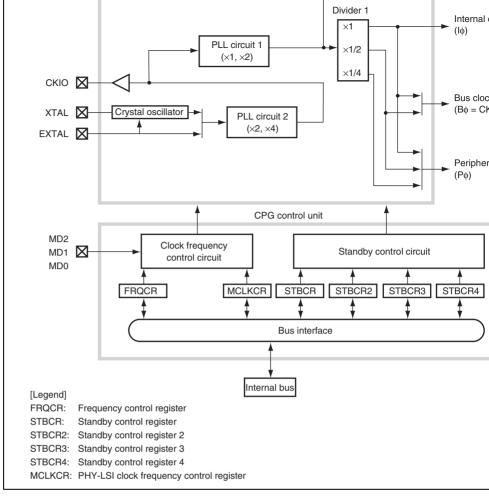


Figure 8.1 Block Diagram of CPG

Rev. 6.00 Jun. 12, 2007 Page 194 of 610 REJ09B0131-0600

RENESAS

connected to the XTAL and EXTAL pins. The crystal oscillator can be used by setting t operating mode.

Divider 1: Divider 1 generates clocks with the frequencies used by the internal clock, p clock, and bus clock. The frequency output as the internal clock is always the same as th devider1 output. The frequency output as the bus clock is automatically selected so that same as the frequency of the CKIO signal according to the multiplication ratio of PLL c The frequencies can be 1, 1/2, or 1/4 times the output frequency of PLL circuit 1, as lon stays at or above the frequency of the CKIO pin. The division ratio is set in the frequency register.

Divider 2: Divider 2 generates a clock that is supplied to the external PHY-LSI. Divide output 25-MHz frequency for the PHY-LSI that generally requires 25-MHz clock. The clock of divider 2 can be 1, 1/2, or 1/4 times the output frequency of PLL circuit 1. The ratio is set in the PHY-LSI clock frequency control register.

Clock Frequency Control Circuit: The clock frequency control circuit controls the cloc frequency using pins MD0, MD1, and MD2, the frequency control register, and PHY-L frequency control register.

Standby Control Circuit: The standby control circuit controls the state of the on-chip of circuit and other modules during clock switching and in software standby mode.

Frequency Control Register: The frequency control register has control bits assigned a following functions: clock output/non-output from the CKIO pin, the frequency multiple ratio of PLL circuit 1, and the frequency division ratio of the peripheral clock.

Standby Control Register: The standby control register has bits for controlling the pow modes. For details, see section 10, Power-Down Modes.

RENESAS

	MD1	Input	Set the clock operating mode.
	MD2	Input	Set the clock operating mode.
Clock input pins	XTAL	Output	Connects a crystal resonator.
	EXTAL	Input	Connects a crystal resonator or an external of
Clock output pin	CKIO	Output	Outputs an external clock.
PHY-LSI clock pin	CK_PHY	Output	Outputs a clock for an external PHY-LSI.

Note: * The values of these mode control pins are sampled only at a power-on reset o software standby with the MDCHG bit in STBCR to 1. This can prevent the error operation of this LSI.

8.3 Clock Operating Modes

Table 8.2 shows the relationship between the mode control pins (MD2 to MD0) combinate the clock operating modes. Table 8.3 shows the usable frequency ranges in the clock oper modes and the frequency range of the input clock.

Table 8.2 Mode Control Pins and Clock Operating Modes

Pir	n Valu	ies	Clock I/C)	_		
MD2	MD1	MD0	Source	Output	PLL2	PLL1	CKIO Freque
0	0	1	EXTAL	CKIO	ON (×4)	ON (×1, ×2)	(EXTAL) \times 4
0	1	0	Crystal resonator	CKIO	ON (×4)	ON (×1, ×2)	(Crystal reso
1	0	1	EXTAL	CKIO	ON (×2)	ON (×1, ×2)	(EXTAL) \times 2
1	1	0	Crystal resonator	CKIO	ON (×2)	ON (×1, ×2)	(Crystal reso
	MD2	MD2 MD1 0 0 0 1	0 1 0 1 0 1	MD2MD1MD0Source001EXTAL010Crystal resonator101EXTAL	MD2MD1MD0SourceOutput001EXTALCKIO010Crystal resonatorCKIO101EXTALCKIO	MD2MD1MD0SourceOutputPLL2001EXTALCKIOON (×4)010Crystal resonatorCKIOON (×4)101EXTALCKIOON (×2)	MD2 MD1 MD0 Source Output PLL2 PLL1 0 0 1 EXTAL CKIO ON (×4) ON (×1, ×2) 0 1 0 Crystal resonator CKIO ON (×4) ON (×1, ×2) 1 0 1 EXTAL CKIO ON (×2) ON (×1, ×2)

Rev. 6.00	Jun.	12, 2007	Page 196	of 610
REJ09B01	31-0	600		

RENESAS

Mode 6: The frequency of the on-chip crystal oscillator output is doubled by PLL circuit then the clock is supplied to the LSI. Since the crystal oscillation frequency ranging 10 I MHz can be used, the CKIO frequency ranges from 20 MHz to 50 MHz.

Mode	FRQCR Register Value	PLL Circuit 1	PLL Circuit 2	Clock Ratio* (I:B:P)	Input Clock Frequency Range	C Fi R
1 or 2	H'1000	ON (×1)	ON (×4)	4:4:4	10 MHz to	4
	H'1001	ON (×1)	ON (×4)	4:4:2	[–] 12.5 MHz	5
	H'1003	ON (×1)	ON (×4)	4:4:1	_	
	H'1101	ON (×2)	ON (×4)	8:4:4	_	
	H'1103	ON (×2)	ON (×4)	8:4:2	_	
5 or 6	H'1000	ON (×1)	ON (×2)	2:2:2	10 MHz to	2
	H'1001	ON (×1)	ON (×2)	2:2:1	[–] 25 MHz	5
	H'1003	ON (×1)	ON (×2)	2:2:1/2	_	
	H'1101	ON (×2)	ON (×2)	4:2:2	_	
	H'1103	ON (×2)	ON (×2)	4:2:1	_	

Table 8.3 Possible Combination of Clock Modes and FRQCR Values

Note: * Input clock is assumed to be 1.

RENESAS

- control register.
- 5. The division ratio of divider 2 is selected from $\times 1$, $\times 1/2$, or $\times 1/4$ can be used as Set th the PHY-LSI clock frequency control register.
- 6. The output frequency of PLL circuit 1 is the product of the frequency of the CKIO pin multiplication ratio of PLL circuit 1. It is set by the frequency control register.
- 7. The bus clock frequency is always set to be equal to the frequency of the CKIO pin.
- The clock mode, the FRQCR register value, and the frequency of the input clock shou decided to satisfy the range of operating frequency specified in section 21, Electrical Characteristics, with referring to table 8.3.

8.4 Register Descriptions

The CPG has the following registers.

For details on the addresses of these registers and the states of these registers in each prostate, see section 20, List of Registers.

- Frequency control register (FRQCR)
- PHY-LSI clock frequency control register (MCLKCR)

8.4.1 Frequency Control Register (FRQCR)

FRQCR is a 16-bit readable/writable register that specifies whether a clock is output from CKIO pin in standby mode, the frequency multiplication ratio of PLL circuit 1, and the fr division ratio of the peripheral clock. Only word access can be used on FRQCR.

FRQCR is initialized by a power-on reset due to the external input signal. However, it is initialized by a power-on reset due to a WDT overflow.

Rev. 6.00 Jun. 12, 2007 Page 198 of 610 REJ09B0131-0600

				unstable CKIO clock when leaving software mode can be prevented.
				 Output level of the CKIO signal is fixed lo software standby mode.
				 Clock input to the EXTAL pin is output to pin during software standby mode in cloc or 5. However, the output level of the CK fixed low for two cycles of P
11		0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	STC2	0	R/W	PLL Circuit 1 Frequency Multiplication Ratio
9	STC1	0	R/W	000: ×1
8	STC0	0	R/W	001: ×2
				Other values: Setting prohibited
7 to 3		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

8.4.2 PHY-LSI Clock Frequency Control Register (MCLKCR)

MCLKCR is an 8-bit readable/writable register. This register must be written to in words upper byte of the word data must be H'5A and the lower byte is the write data.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	FLSCS1	0	R/W	Source Clock Select
6	FLSCS0	1	R/W	Select the source clock.
				00: PLL1 output clock
				01: PLL1 output clock
				10: Setting prohibited
				11: Setting prohibited
5 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
2	FLDIVS2	0	R/W	Divider Select
1	FLDIVS1	1	R/W	Set the division ratio of PLL1 output.
0	FLDIVS0	1	R/W	000: ×1
				001:×1/2
				011:×1/4
				Other values: Setting prohibited

Rev. 6.00 Jun. 12, 2007 Page 200 of 610 REJ09B0131-0600

RENESAS

The on-chip wDT counts for preserving the PLL lock time.

- 1. In the initial state, the multiplication ratio of PLL circuit 1 is 1.
- 2. Set a value that satisfies the given PLL lock time in the WDT and stop the WDT. The following must be set.
 - TME bit in WTCSR = 0: WDT stops
 - Bits CKS2 to CKS0 in WTCSR: Division ratio of WDT count clock
 - WTCNT: Initial counter value
- 3. Set the desired value in bits STC2 to STC0 while the MDCHG bit in STBCR is 0. The ratio can also be set in bits PFC2 to PFC0.
- This LSI pauses internally and the WDT starts incrementing. The internal and peripher clocks both stop and only the WDT is supplied with the clock. The clock will continu output on the CKIO pin.
- 5. Supply of the specified clock starts at a WDT count overflow, and this LSI starts oper again. The WDT stops after it overflows.
- Notes: 1. When the MDCHG bit in STBCR is set to 1, changing the FRQCR value has a on the operation immediately. For details, see section 8.5.3, Changing Clock O Mode.
 - 2. The multiplication ratio should be changed after completion of the operation, a chip peripheral module is operating. The internal and peripheral clocks are stored during the multiplication ratio is changed. The communication error may occur peripheral module communicating to the external IC, and the time error may occur the timer unit (except the WDT). The edge detection of external interrupts (NI IRQ7 to IRQ0) cannot be performed.

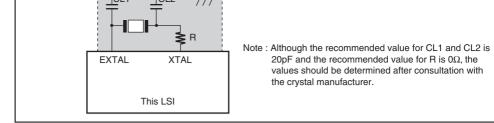
Rev. 6.00 Jun. 12, 2007 Page 202 of 610 REJ09B0131-0600

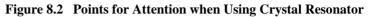
the operation immediately. For details, see section 8.5.3, Changing Clock Opera Mode.

8.5.3 Changing Clock Operating Mode

The values of the mode control pins (MD2 to MD0) that define a clock operating mode at a power-on reset and software standby while the MDCHG bit in STBCR is set to 1 re

Even if changing the FRQCR with the MDCHG bit set to 1, the clock mode cannot imm be changed to the specified clock mode. This change can be reflected as a multiplication division ratio after leaving software standby mode to change operating modes. Reducing settling time without changing again the multiplication ratio after the operating mode ch possible by the use of this.


The procedures for the mode change using software standby mode are described below.


- 1. Set bits MD2 to MD0 to the desired clock operating mode.
- 2. Set both the STBY and MDCHG bits in STBCR to 1.
- 3. Set the adequate value to the WDT so that the given oscillation settling time can be a Then stop the WDT.
- 4. Set FRQCR to the desired mode. Set bits STC2 to STC0 to the desired multiplication this time, a division ratio can be set in bits PFC2 to PFC0. During the operation befor mode change, the clock cannot be changed to the specified clock.
- 5. Enter software standby mode using the SLEEP instruction.
- 6. Leave software standby mode using an interrupt.
- 7. After leaving software standby mode, this LSI starts the operation with the value of I that has been set before the mode change.

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 204 of 610 REJ09B0131-0600

Bypass Capacitors: Insert a laminated ceramic capacitor as a bypass capacitor for each and $V_{cc}/V_{cc}Q$ pair. Mount the bypass capacitors to the power supply pins, and use comp with a frequency characteristic suitable for the operating frequency of the LSI, as well a capacitance value.

- Digital power supply pairs for internal logic
 A4-B4, B11-A11, D15-D14, E2-E1, G12-G13, H4-H3, J12-J13, M1-M2, M8-N8, P5
- Power supply pairs for input and output A1-B1, A7-B7, A15-A14, F15-F14, K1-K2, M12-P14, M15-M14, R1-R2, R10-P10
- Power supply pairs for PLL N13-N14, N13-P15

Rev. 6.00 Jun. 12, 2007 Page 206 of 610 REJ09B0131-0600

The WDT has the following features:

• Can be used to ensure the clock settling time.

The WDT can be used when leaving software standby mode and the temporary stand which occur when the clock frequency is changed.

- Can switch between watchdog timer mode and interval timer mode.
- Internal resets in watchdog timer mode Internal resets are generated when the counter overflows.
- Interrupts are generated in interval timer mode Interval timer interrupts are generated when the counter overflows.
- Choice of eight counter input clocks
 Eight clocks (×1 to ×1/4096) that are obtained by dividing the peripheral clock can be

WDTS300B_000020030900

RENESAS

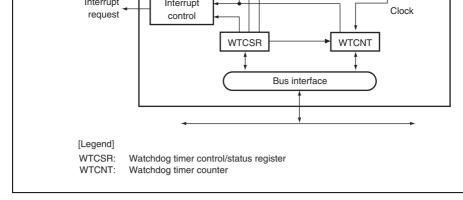


Figure 9.1 Block Diagram of WDT

Rev. 6.00 Jun. 12, 2007 Page 208 of 610 REJ09B0131-0600

overflow occurs, it generates a reset in watchdog timer mode and an interrupt in interval mode. WTCNT is not initialized by an internal power-on reset due to the WDT overflow is initialized to H'00 by a power-on reset input to the pin and an H-UDI reset.

Use a word access to write to WTCNT, with H'5A in the upper byte. Use a byte access t WTCNT.

Note: The writing method for WTCNT differs from other registers so that the WTCNT cannot be changed accidentally. For details, see section 9.2.3, Notes on Register

9.2.2 Watchdog Timer Control/Status Register (WTCSR)

WTCSR is an 8-bit readable/writable register composed of bits to select the clock used f counting, bits to select the timer mode and overflow flags, and enable bits.

WTCSR holds its value in the internal reset state due to the WDT overflow. WTCSR is to H'00 by a power-on reset input to the pin and an H-UDI reset. To use it for counting t settling time when leaving software standby mode, WTCSR holds its value after a count overflow.

Use a word access to write to WTCSR, with H'A5 in the upper byte. Use a byte access to WTCSR.

Note: The writing method for WTCNT differs from other registers so that the WTCNT cannot be changed accidentally. For details, see section 9.2.3, Notes on Register

RENESAS

				timer or an interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
				Note: If WT/IT is modified when the WDT operating, the up-count may not be performed correctly.
5	_	0	R	Reserved
				This bit is always red as 0. The write value a always be 0.
4	WOVF	0	R/W	Watchdog Timer Overflow
				Indicates that WTCNT has overflowed in wa timer mode. This bit is not set in interval tim
				0: No overflow
				1: WTCNT has overflowed in watchdog time
3	IOVF	0	R/W	Interval Timer Overflow
				Indicates that WTCNT has overflowed in int timer mode. This bit is not set in watchdog t mode.
				0: No overflow
				1: WTCNT has overflowed in interval timer

Rev. 6.00 Jun. 12, 2007 Page 210 of 610 REJ09B0131-0600

010: P	φ/16 (164 μs)
011: P	φ/32 (328 μs)
100: P	¢/64 (655 μs)
101: P	∮/256 (2.62 ms)
110: P	∲/1024 (10.49 ms)
111: P	∮/4096 (41.94 ms)
Note:	If bits CKS2 to CKS0 are modified WDT is operating, the up-count ma performed correctly. Ensure that th are modified only when the WDT is operating.

9.2.3 Notes on Register Access

The watchdog timer counter (WTCNT) and watchdog timer control/status register (WTC more difficult to write to than other registers. The procedure for writing to these register below.

Writing to WTCNT and WTCSR: These registers must be written by a word transfer instruction. They cannot be written by a byte or longword transfer instruction. When wr WTCNT, set the upper byte to H'5A and transfer the lower byte as the write data, as sho figure 9.2. When writing to WTCSR, set the upper byte to H'A5 and transfer the lower byte write data. This transfer procedure writes the lower byte data to WTCNT or WTCSR.

9.3.1 Canceling Software Standbys

The WDT can be used to cancel software standby mode with an NMI interrupt or external interrupt (IRQ). The procedure is described below. (The WDT does not run when resets a for canceling, so keep the $\overline{\text{RES}}$ pin low until the clock stabilizes.)

- 1. Before transition to software standby mode, always clear the TME bit in WTCSR to 0 the TME bit is 1, an erroneous reset or interval timer interrupt may be generated when count overflows.
- Set the type of count clock used in the CKS2 to CKS0 bits in WTCSR and the initial the counter in WTCNT. These values should ensure that the time till count overflow i than the clock oscillation settling time.
- 3. Move to software standby mode by executing a SLEEP instruction to stop the clock.
- 4. The WDT starts counting by detecting the change of input levels of the NMI or IRQ p
- 5. When the WDT count overflows, the CPG starts supplying the clock and the processor resumes operation. The WOVF flag in WTCSR is not set when this happens.
- 6. Since the WDT continues counting from H'00, set the STBY bit in STBCR to 0 in the processing program and this will stop the WDT to count. When the STBY bit remains LSI again enters software standby mode when the WDT has counted up to H'80. This standby mode can be canceled by a power-on reset.

Rev. 6.00 Jun. 12, 2007 Page 212 of 610 REJ09B0131-0600

- stops temporarily. The WDT starts counting.
- 4. When the WDT count overflows, the CPG resumes supplying the clock and the proc resumes operation. The WOVF flag in WTCSR is not set when this happens.
- 5. WTCNT stops at the value of H'00.
- 6. Before changing WTCNT after the execution of the frequency change instruction, al confirm that the value of WTCNT is H'00 by reading WTCNT.

9.3.3 Using Watchdog Timer Mode

- 1. Set the WT/IT bit in WTCSR to 1, set the type of count clock in bits CKS2 to CKS0 the initial value of the counter in WTCNT.
- 2. Set the TME bit in WTCSR to 1 to start the count in watchdog timer mode.
- 3. While operating in watchdog timer mode, rewrite the counter periodically to H'00 to the counter from overflowing.
- 4. When the counter overflows, the WDT sets the WOVF flag in WTCSR to 1 and gen power-on reset. WTCNT then resumes counting.

9.4 Usage Note

Note the following when using the WDT.

1. When using the WDT in interval mode, no overflow occurs by the H'00 immediately writing H'FF to WDTCNT. (IOVF in WTCSR is not set.) The overflow occurs at a pot the count reaches H'00 after one cycle.

This does not occur when the WDT is used in watchdog timer mode.

Rev. 6.00 Jun. 12, 2007 Page 214 of 610 REJ09B0131-0600

• =

This LSI has the following power-down modes.

- Sleep mode
- Software standby mode
- Module standby mode (cache, U-memory, UBC, H-UDI, and on-chip peripheral mod

Table 10.1 shows the methods to make a transition from the program execution state, as the CPU and peripheral module states in each mode and the procedures for canceling ea

Software standby	Execute SLEEP instruction with STBY bit in STBCR set to 1.	Halts	Halts	Held	Halts (contents remained)	Halt	Held	•
Module standby	Set MSTP bits in STBCR2 to STBCR4 to 1.	Runs	Runs	Held	Specified module halts (contents remained)	Specified module halts	Held	•

Rev. 6.00 Jun. 12, 2007 Page 216 of 610 REJ09B0131-0600

There are following registers used for the power-down modes. For details on the address these registers and the states of these registers in each processing state, see section 20, L Registers.

- Standby control register (STBCR)
- Standby control register 2 (STBCR2)
- Standby control register 3 (STBCR3)
- Standby control register 4 (STBCR4)

				software standby mode
6 to 4	—	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
3	MDCHG	0	R/W	MD2 to MD0 Pin Control
				Specifies whether or not the values of pins MD0 are reflected in software standby mod values of pins MD2 to MD0 are reflected at returning from software standby mode by a interrupt when the MDCHG bit has been se
				0: The values of pins MD2 to MO0 are not in software standby mode.
				1: The values of pins MD2 to MD0 are refle software standby mode.
2 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

Rev. 6.00 Jun. 12, 2007 Page 218 of 610 REJ09B0131-0600

				0. 11 001 0001000
				1: Clock supply to H-UDI halted
6	MSTP9	0	R/W	Module Stop Bit 9
				When this bit is set to 1, the supply of the the UBC is halted.
				0: UBC operates
				1: Clock supply to UBC halted
5 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
2	MSTP5	0	R/W	Module Stop Bit 5
				When this bit is set to 1, the supply of the the cache memory is halted.
				0: Cache memory operates
				1: Clock supply to cache memory halted
1	MSTP4	0	R/W	Module Stop Bit 4
				When this bit is set to 1, the supply of the the U memory is halted.
				0: U memory operates
				1: Clock supply to the U memory halted
0	_	0	R	Reserved
				This bit is always read as 0. The write val always be 0.

-	Morris	0	11/11	
				When this bit is set to 1, the supply of the clock CMT is halted.
				0: CMT operates
				1: Clock supply to CMT halted
3		0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
2	MSTP13	0	R/W	Module Stop Bit 13
				When this bit is set to 1, the supply of the clock SCIF2 is halted.
				0: SCIF2 operates
				1: Clock supply to SCIF2 halted
1	MSTP12	0	R/W	Module Stop Bit 12
				When this bit is set to 1, the supply of the clock SCIF1 is halted.
				0: SCIF1 operates
				1: Clock supply to SCIF1 halted
0	MSTP11	0	R/W	Module Stop Bit 11
				When this bit is set to 1, the supply of the clock SCIF0 is halted.
				0: SCIF0 operates
				1: Clock supply to SCIF0 halted

Rev. 6.00 Jun. 12, 2007 Page 220 of 610 REJ09B0131-0600

4	MOT1 20	0	11/1	
				When this bit is set to 1, the supply of the cloo HIF is halted.
				0: HIF operates
				1: Clock supply to HIF halted
3 to 1		All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
0	MSTP19	0	R/W	Module Stop Bit 19
				When this bit is set to 1, the supply of the cloo EtherC and E-DMAC is halted.
				0: EtherC and E-DMAC operate
				1: Clock supply to EtherC and E-DMAC halte

· ·

Sleep mode is canceled by an interrupt other than a user break (NMI, H-UDI, IRQ, and o peripheral module) or a reset.

Canceling with Interrupt: When a user-break, NMI, H-UDI, IRQ, or on-chip peripheral interrupt occurs, sleep mode is canceled and interrupt exception handling is executed. WI priority level of an IRQ or on-chip peripheral module interrupt is lower than the interrupt level set in the status register (SR) of the CPU, an interrupt request is not accepted preven sleep mode from being canceled.

Canceling with Reset: Sleep mode is canceled by a power-on reset or an H-UDI reset.

Rev. 6.00 Jun. 12, 2007 Page 222 of 610 REJ09B0131-0600

modules registers in software standby mode.

Module	Registers Initialized	Registers Reta Data
Interrupt controller (INTC)	_	All registers
Clock pulse generator (CPG)	_	All registers
User break controller (UBC)	—	All registers
Bus state controller (BSC)	—	All registers
Ethernet controller (EtherC)	—	All registers
Direct memory access controller for Ethernet controller (E-DMAC)	_	All registers
I/O port	—	All registers
User debugging interface (H-UDI)	_	All registers
Serial communication interface with FIFO (SCIF0 to SCIF2)	_	All registers
Compare match timer (CMT0 and CMT1)	All registers	_
Host interface (HIF)		All registers

Table 10.3 Register States in Software Standby Mode

Renesas

software standoy mode is canceled by menupis (1001, 100) of a reset.

Canceling with Interrupt: The WDT can be used for hot starts. When an NMI or IRQ in detected, the clock will be supplied to the entire LSI and software standby mode will be cafter the time set in the timer control/status register of the WDT has elapsed. Interrupt exchandling is then executed. After the branch to the interrupt handling routine, clear the ST STBCR. WTCNT stops automatically. If the STBY bit is not cleared, WTCNT continues operation and a transition is made to software standby mode* when it reaches H'80. This prevents data destruction due to the voltage rise by an unstable power supply voltage.

IRQ cancels the software standby mode when the input condition matches the specified d condition while the IRQn1S and IRQn0S bits in IRQCR are not B'00 (settings other than level detection). When the priority level of an IRQ interrupt is lower than the interrupt maset in the status register (SR) of the CPU, the execution of the instruction following the S instruction starts again after the cancellation of software standby mode. When the priority an IRQ interrupt is higher than the interrupt mask level set in the status register (SR) of the IRQ interrupt exception handling is executed after the cancellation of software standby mode.

Note: * This software standby mode can be canceled only by a power-on reset.

Rev. 6.00 Jun. 12, 2007 Page 224 of 610 REJ09B0131-0600

Figure 10.1 Canceling Standby Mode with STBY Bit in STBCR

Canceling with Reset: Software standby mode is canceled by a power-on reset. Keep th low until the clock oscillation settles. The internal clock will continue to be output to the pin.

10.6 Module Standby Mode

10.6.1 Transition to Module Standby Mode

Setting the MSTP bits in the standby control registers (STBCR2 to STBCR4) to 1 halts of clocks to the corresponding on-chip peripheral modules. This function can be used to power consumption in normal mode.

In module standby mode, the states of the external pins of the on-chip peripheral module depending on the on-chip peripheral module and port settings. Almost all of the register its previous state.

10.6.2 Canceling Module Standby Function

The module standby function can be canceled by clearing the MSTP bits in STBCR2 to to 0, or by a power-on reset.

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 226 of 610 REJ09B0131-0600

6

11.1 Features

- Transmission and reception of Ethernet/IEEE802.3 frames
- Supports 10/100 Mbps receive/transfer
- Supports full-duplex and half-duplex modes
- Conforms to IEEE802.3u standard MII (Media Independent Interface)
- Magic Packet detection and Wake-On-LAN (WOL) signal output
- Conforms to IEEE802.3x flow control

IFETH01C_000020030900

RENESAS

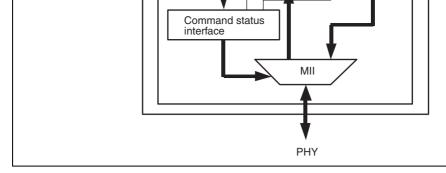


Figure 11.1 Configuration of EtherC

Rev. 6.00 Jun. 12, 2007 Page 228 of 610 REJ09B0131-0600

			Timing reference signal for the RX-DV, MII_RXD3 to M RX-ER signals
0	TX-EN*	Output	Transmit Enable
			Indicates that transmit data is ready on pins MII_TXD3 MII_TXD0.
0	MII_TXD3 to	Output	Transmit Data
	MII_TXD0*		4-bit transmit data
0	TX-ER*	Output	Transmit Error
			Notifies the PHY-LSI of error during transmission
0	RX-DV*	Input	Receive Data Valid
			Indicates that valid receive data is on pins MII_RXD3 to MII_RXD0.
0	MII_RXD3 to	Input	Receive Data
	MII_RXD0*		4-bit receive data
0	RX-ER*	Input	Receive Error
			Identifies error state occurred during data reception.
0	CRS	Input	Carrier Detection
			Carrier detection signal
0	COL	Input	Collision Detection
			Collision detection signal
0	MDC	Output	Management Data Clock
			Reference clock signal for information transfer via MDI

Note: * MII signal conforming to IEEE802.3u

Rev. 6.00 Jun. 12, 2007 Page 230 of 610 REJ09B0131-0600

- MAC address high register (MAHR)
- MAC address low register (MALR)
- Receive frame length register (RFLR)
- PHY status register (PSR)
- Transmit retry over counter register (TROCR)
- Delayed collision detect counter register (CDCR)
- Lost carrier counter register (LCCR)
- Carrier not detect counter register (CNDCR)
- CRC error frame counter register (CEFCR)
- Frame receive error counter register (FRECR)
- Too-short frame receive counter register (TSFRCR)
- Too-long frame receive counter register (TLFRCR)
- Residual-bit frame counter register (RFCR)
- Multicast address frame counter register (MAFCR)
- IPG register (IPGR)
- Automatic PAUSE frame set register (APR)
- Manual PAUSE frame set register (MPR)
- Automatic PAUSE frame retransfer count set register (TPAUSER)

Bit	Bit Name	Value	R/W	Description
31 to 20	—	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
19	ZPF	0	R/W	0 time parameter PAUSE Frame Use Enable
				 0: Disables PAUSE frame control in which the parameter is 0. The next frame is transmitted after the time indicated by the Timer value has elapsed. EtherC receives a PAUSE frame with the t indicated by the Timer value set to 0, the F frame is discarded.
				 Enables PAUSE frame control in which the parameter is 0. A PAUSE frame with the Timer value set to transmitted when the number of data in the FIFO is less than the FCFTR value before indicated by the Timer value has not elaps the EtherC receives a PAUSE frame with t indicated by the Timer value set to 0, the tr wait state is canceled.
18	PFR	0	R/W	PAUSE Frame Receive Mode
				0: PAUSE frame is not transferred to the E-D
				1: PAUSE frame is transferred to the E-DMA
17	RXF	0	R/W	Receive Flow Control Operating Mode
				0: PAUSE frame detection function is disable
				1: Receive flow control function is enabled

Rev. 6.00 Jun. 12, 2007 Page 232 of 610 REJ09B0131-0600

				with an error.
				 A frame with a CRC error is received as a without an error.
				For a frame with an error, a CRC error is ref ECSR of the E-DMAC and the status of the descriptor. For a frame without an error, the received as normal frame.
11, 10		All 0	R	Reserved
				These bits are always read as 0. The write w should always be 0.
9	MPDE	0	R/W	Magic Packet Detection Enable
				Enables or disables Magic Packet detection hardware to allow activation from the Ethern
				0: Magic Packet detection is not enabled
				1: Magic Packet detection is enabled
8, 7		All 0	R	Reserved
				These bits are always read as 0. The write w should always be 0.
6	RE	0	R/W	Reception Enable
				If a frame is being received when this bit is a from receive function enabled ($RE = 1$) to di- ($RE = 0$), the receive function will be enabled reception of the corresponding frame is com
				0: Receive function is disabled
				1: Receive function is enabled

				This bit is always read as 0. The write value s always be 0.
3	ILB	0	R/W	Internal Loop Back Mode
				Specifies loopback mode in the EtherC.
				0: Normal data transmission/reception is perfe
				1: When DM = 1, data loopback is performed the MAC in the EtherC.
2	ELB	0	R/W	External Loop Back Mode
				This bit value is output directly to this LSI's ge purpose external output pin (EXOUT). This bi for loopback mode directives, etc., in the LSI, the EXOUT pin. In order for LSI loopback to b implemented using this function, the LSI mus pin corresponding to the EXOUT pin.
				0: Low-level output from the EXOUT pin
				1: High-level output from the EXOUT pin
1	DM	0	R/W	Duplex Mode
				Specifies the EtherC transfer method.
				0: Half-duplex transfer is specified
				1: Full-duplex transfer is specified

Rev. 6.00 Jun. 12, 2007 Page 234 of 610 REJ09B0131-0600

11.3.2 EtherC Status Register (ECSR)

ECSR is a 32-bit readable/writable register and indicates the status in the EtherC. This s be notified to the CPU by interrupts. When 1 is written to the PSRTO, LCHNG, MPD, a the corresponding flags can be cleared. Writing 0 does not affect the flag. For bits that g interrupt, the interrupt can be enabled or disabled according to the corresponding bit in 1

Bit	Bit Name	Initial Value	R/W	Description
31 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
4	PSRTO	0	R/W	PAUSE Frame Retransfer Retry Over
				Indicates that during the retransfer of PAUS when the flow control is enabled, the numb retries has exceeded the upper limit set in t automatic PAUSE frame retransfer count se (TPAUSER).
				0: Number of PAUSE frame retransfers has exceeded the upper limit
				1: Number of PAUSE frame retransfers has exceeded the upper limit
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

The interrupts generated due to this status register are indicated in the ECI bit in EESR.

RENESAS

		0	11/44	Magio Facilie Detection
				Indicates that a Magic Packet has been dete the line.
				0: Magic Packet has not been detected
				1: Magic Packet has been detected
0	ICD	0	R/W	Illegal Carrier Detection
				Indicates that the PHY has detected an illeg on the line. If a change in the signal input fro PHY occurs before the software recognition the correct information may not be obtained. the timing specification for the PHY used.
				0: LSI has not detected an illegal carrier on t
				1: LSI has detected an illegal carrier on the I

Rev. 6.00 Jun. 12, 2007 Page 236 of 610 REJ09B0131-0600

-		0	11/00	Enable
				0: Interrupt notification by the PSRTO bit is
				1: Interrupt notification by the PSRTO bit is
3	—	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2	LCHNGIP	0	R/W	LINK Signal Changed Interrupt Enable
				0: Interrupt notification by the LCHNG bit is
				1: Interrupt notification by the LCHNG bit is
1	MPDIP	0	R/W	Magic Packet Detection Interrupt Enable
				0: Interrupt notification by the MPD bit is dis
				1: Interrupt notification by the MPD bit is en
0	ICDIP	0	R/W	Illegal Carrier Detection Interrupt Enable
				0: Interrupt notification by the ICD bit is disa
				1: Interrupt notification by the ICD bit is ena

				Indicates the level of the MDIO pin.
2	MDO	0	R/W	MII Management Data-Out
				Outputs the value set to this bit from the MDIO when the MMD bit is 1.
1	MMD	0	R/W	MII Management Mode
				Specifies the data read/write direction with resp the MII.
				0: Read direction is indicated
				1: Write direction is indicated
0	MDC	0	R/W	MII Management Data Clock
				Outputs the value set to this bit from the MDC supplies the MII with the management data clot the method of accessing the MII registers, see 11.4.4, Accessing MII Registers.

Rev. 6.00 Jun. 12, 2007 Page 238 of 610 REJ09B0131-0600

These bits are used to set the upper 32 bits o address. If the MAC address is 01-23-45-67-89-AB (bevadecimal), the value set in this register is

(hexadecimal), the value set in this register is H'01234567.

11.3.6 MAC Address Low Register (MALR)

MALR is a 32-bit readable/writable register that specifies the lower 16 bits of the 48-bit address. The settings in this register are normally made in the initialization process after The MAC address setting must not be changed while the transmitting and receiving functionabled. To switch the MAC address setting, return the EtherC and E-DMAC to their in by means of the SWR bit in EDMR before making settings again.

Bit	Bit Name	Initial Value	R/W	Description
31 to 16		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
15 to 0	MA15 to MA0	All 0	R/W	MAC Address Bits 15 to 0
				These bits are used to set the lower 16 bits MAC address.
				If the MAC address is 01-23-45-67-89-AB (hexadecimal), the value set in this register H'000089AB.

RENESAS

11 to 0 RFL11 to All 0 RFL0	All 0	R/W	Receive Frame Length 11 to 0	
			The frame length described here refers to all from the destination address up to and inclu- CRC data. Frame contents from the destinat address up to and including the data are act transferred to memory. CRC data is not inclu- the transfer.	
				When data that exceeds the specified value received, the part of the data that exceeds the specified value is discarded.
				H'000 to H'5EE: 1,518 bytes
				H'5EF: 1,519 bytes
				H'5F0: 1,520 bytes
				:
				:
				H'7FF: 2,047 bytes
				H'800 to H'FFF: 2,048 bytes

Rev. 6.00 Jun. 12, 2007 Page 240 of 610 REJ09B0131-0600

signal output from the PHY to the LNKSTA the polarity, refer to the PHY specifications connected.

11.3.9 Transmit Retry Over Counter Register (TROCR)

TROCR is a 32-bit counter that indicates the number of frames that were unable to be tr in 16 transmission attempts including the retransfer. When 16 transmission attempts hav TROCR is incremented by 1. When the value in this register reaches H'FFFFFFFF, the of halted. The counter value is cleared to 0 by a write to this register with any value.

unable to be transmitted in 16 transmiss	Bit	Bit Name	Initial Value	R/W	Description
unable to be transmitted in 16 transmiss	31 to 0		All 0	R/W	Transmit Retry Over Count
		TROC0			These bits indicate the number of frames the unable to be transmitted in 16 transmission including the retransfer.

11.3.11 Lost Carrier Counter Register (LCCR)

LCCR is a 32-bit counter that indicates the number of times the carrier was lost during dat transmission. When the value in this register reaches H'FFFFFFFF, the count is halted. T counter value is cleared to 0 by writing to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	LCC31 to	All 0	R/W	Lost Carrier Count
	LCC0			These bits indicate the number of times the was lost during data transmission.

11.3.12 Carrier Not Detect Counter Register (CNDCR)

CNDCR is a 32-bit counter that indicates the number of times the carrier could not be det while the preamble was being sent. When the value in this register reaches H'FFFFFFFF, is halted. The counter value is cleared to 0 by a write to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
••••••••••	All 0	R/W	Carrier Not Detect Count	
	CNDC0			These bits indicate the number of times the was not detected.

Rev. 6.00 Jun. 12, 2007 Page 242 of 610 REJ09B0131-0600

11.3.14 Frame Receive Error Counter Register (FRECR)

FRECR is a 32-bit counter that indicates the number of frames input from the PHY for v receive error was indicated by the RX-ER pin. FRECR is incremented each time the RX becomes active. When the value in this register reaches H'FFFFFFFF, the count is halted counter value is cleared to 0 by a write to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0 FREC		All 0	R/W	Frame Receive Error Count
	FREC0			These bits indicate the count of errors durin reception.

11.3.15 Too-Short Frame Receive Counter Register (TSFRCR)

TSFRCR is a 32-bit counter that indicates the number of frames of fewer than 64 bytes t been received. When the value in this register reaches H'FFFFFFFF, the count is halted. counter value is cleared to 0 by a write to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	TSFC31 to	All 0	R/W	Too-Short Frame Receive Count
	TSFC0			These bits indicate the count of frames record a length of less than 64 bytes.

RENESAS

31 to 0	TLFC31 to TLFC0	All 0 R/	R/W	Too-Long Frame Receive Count
				These bits indicate the count of frames recei
				a length exceeding the value in RFLR.

11.3.17 Residual-Bit Frame Counter Register (RFCR)

RFCR is a 32-bit counter that indicates the number of frames received containing residua (less than an 8-bit unit). When the value in this register reaches H'FFFFFFFF, the count is The counter value is cleared to 0 by a write to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	RFC31 to	All 0	R/W	Residual-Bit Frame Count
	RFC0			These bits indicate the count of frames receir containing residual bits.

11.3.18 Multicast Address Frame Counter Register (MAFCR)

MAFCR is a 32-bit counter that indicates the number of frames received with a specified address. When the value in this register reaches H'FFFFFFFF, the count is halted. The co value is cleared to 0 by a write to this register with any value.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0 N	MAFC31 to	All 0	R/W	Multicast Address Frame Count
	MAFC0			These bits indicate the count of multicast fra received.

Rev. 6.00 Jun. 12, 2007 Page 244 of 610 REJ09B0131-0600

RENESAS

4 to 0	IPG4 to IPG0	H'13	R/W	Inter Packet Gap
				Sets the IPG value every 4-bit time.
				H'00: 20-bit time
				H'01: 24-bit time
				: :
				H'13: 96-bit time (Initial value)
				: :
				H'1F: 144-bit time

11.3.20 Automatic PAUSE Frame Set Register (APR)

.

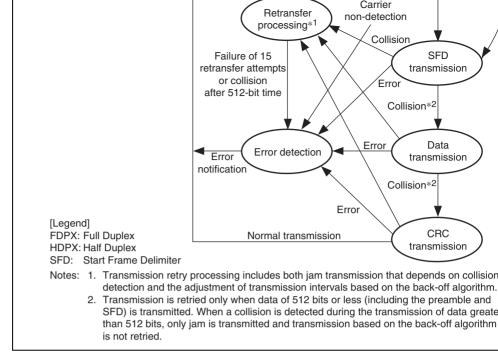
APR sets the TIME parameter value of the automatic PAUSE frame. When transmitting automatic PAUSE frame, the value set in this register is used as the TIME parameter of PAUSE frame.

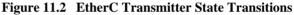
Bit	Bit Name	Initial Value	R/W	Description
31 to 16	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
15 to 0	AP15 to AP0	All 0	R/W	Automatic PAUSE
				Sets the TIME parameter value of the autor PAUSE frame. At this time, 1 bit means 512

RENESAS

Sets the TIME parameter value of the manu PAUSE frame. At this time, 1 bit means 512 Read values are undefined.

11.3.22 Automatic PAUSE Frame Retransfer Count Set Register (TPAUSER)


TPAUSER sets the upper limit of the number of times of the PAUSE frame retransfer. The must not be changed while the transmitting function is enabled.


	Bit	Bit Name	Initial Value	R/W	Description
	31 to 16	_	All 0	R	Reserved
					These bits are always read as 0. The write v should always be 0.
	15 to 0	TPAUSE15 to TPAUSE0	All 0	R/W	Upper Limit of the Number of Times of PAUS Frame Retransfer
					H'0000: Unlimited number of times of retrans
					H'0001: Retransfer once
					: :
					H'FFFF: Number of times of retransfer is 655

Rev. 6.00 Jun. 12, 2007 Page 246 of 610 REJ09B0131-0600

- 1. When the transmit enable (TE) bit is set, the transmitter enters the transmit idle state.
- 2. When a transmit request is issued by the transmit E-DMAC, the EtherC sends the prea after a transmission delay equivalent to the frame interval time. If full-duplex transfer selected, which does not require carrier detection, the preamble is sent as soon as a transmission by the E-DMAC.

Rev. 6.00 Jun. 12, 2007 Page 248 of 610 REJ09B0131-0600

the E-DMAC. Figure 11.3 shows the state transitions of the EtherC receiver.

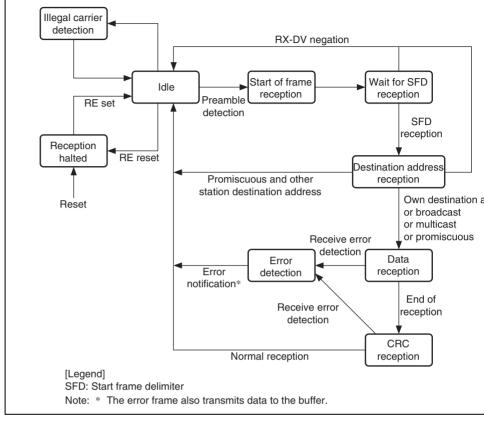


Figure 11.3 EtherC Receiver State Transmissions

RENESAS

11.4.3 MII Frame Timing

Each MII Frame timing is shown in figure 11.4.

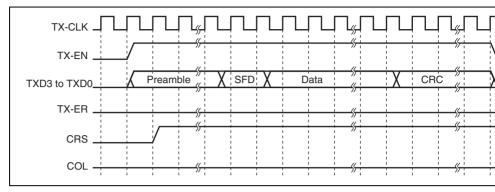


Figure 11.4 (1) MII Frame Transmit Timing (Normal Transmission)

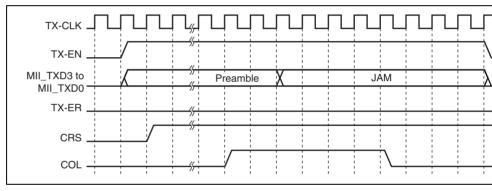


Figure 11.4 (2) MII Frame Transmit Timing (Collision)

Rev. 6.00 Jun. 12, 2007 Page 250 of 610 REJ09B0131-0600

Figure 11.4 (3) MIII Frame Transmit Timing (Transmit Error)

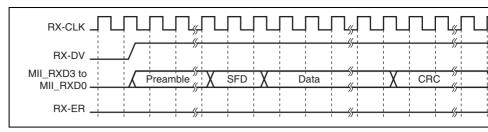


Figure 11.4 (4) MII Frame Receive Timing (Normal Reception)

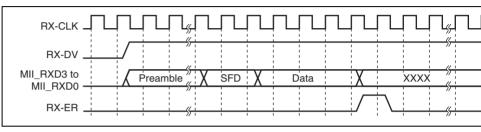


Figure 11.4 (5) MII Frame Receive Timing (Reception Error (1))

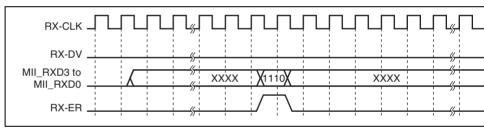


Figure 11.4 (6) MII Fame Receive Timing (Reception Error (2))

RENESAS

Item	PRE	ST	OP	PHYAD	REGAD	TA	DATA						
Number of	bits 32	2	2	5	5	2	16						
Read	11	01	10	00001	RRRRR	Z0	DD						
Write	11	01	01	00001	RRRRR	10	DD						
ST: W OP: W PHYAD: W TREGAD: W TA: Ti (a (a (b DATA: 16 (a (b) (b) DLE: W	 PRE: 32 consecutive 1s ST: Write of 01 indicating start of frame DP: Write of code indicating access type PHYAD: Write of 0001 if the PHY address is 1 (sequential write starting with the MSB). This bit changes depending on the PHY address. REGAD: Write of 0001 if the register address is 1 (sequential write starting with the MSB). This bit changes depending on the PHY address. REGAD: Write of 0001 if the register address is 1 (sequential write starting with the MSB). This bit changes depending on the PHY register address. TA: Time for switching data transmission source on MII interface (a) Write: 10 written (b) Read: Bus release (notation: Z0) performed DATA: 16-bit data. Sequential write or read from MSB (a) Write: 16-bit data write (b) Read: 16-bit data read 												

Figure 11.5 MII Management Frame Format

Rev. 6.00 Jun. 12, 2007 Page 252 of 610 REJ09B0131-0600

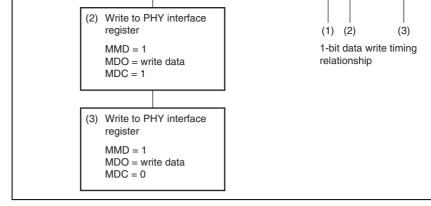
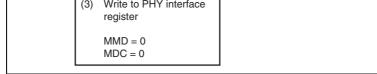
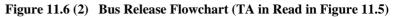




Figure 11.6 (1) 1-Bit Data Write Flowchart

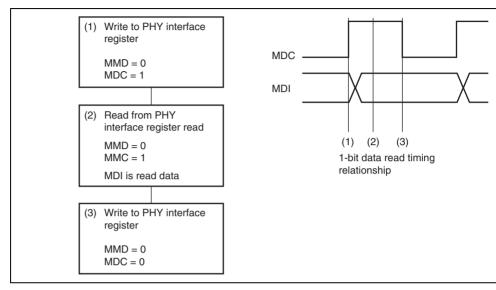


Figure 11.6 (3) 1-Bit Data Read Flowchart

Figure 11.0 (4) Independent bus Kelease Flowchart (IDLE in Write in Figure

11.4.5 Magic Packet Detection

The EtherC has a Magic Packet detection function. This function provides a Wake-On-I (WOL) facility that activates various peripheral devices connected to a LAN from the hose or other source. This makes it possible to construct a system in which a peripheral device a Magic Packet sent from the host device or other source, and activates itself. When the Packet is detected, data is stored in the FIFO of the E-DMAC by the broadcast packet the received data previously and the EtherC is notified of the receiving status. To return to reperation from the interrupt processing, initialize the EtherC and E-DMAC by using the in the E-DMAC mode register (EDMR).

With a Magic Packet, reception is performed regardless of the destination address. As a function is valid, and the WOL pin enabled, only in the case of a match with the destina address specified by the format in the Magic Packet. Further information on Magic Pack found in the technical documentation published by AMD Corporation.

The procedure for using the WOL function with this LSI is as follows.

- 1. Disable interrupt source output by means of the various interrupt enable/mask register
- 2. Set the Magic Packet detection enable bit (MPDE) in the EtherC mode register (ECM
- 3. Set the Magic Packet detection interrupt enable bit (MPDIP) in the EtherC interrupt register (ECSIPR) to the enable setting.
- 4. If necessary, set the CPU operating mode to sleep mode or set supporting functions t standby mode.
- 5. When a Magic Packet is detected, an interrupt is sent to the CPU. The WOL pin noti peripheral LSIs that the Magic Packet has been detected.

RENESAS

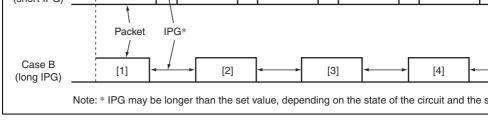


Figure 11.7 Changing IPG and Transmission Efficiency

11.4.7 Flow Control

The EtherC supports flow control functions conforming to IEEE802.3x in full-duplex op Flow control can be applied to both receive and transmit operations. The methods for tran PAUSE frames when controlling flow are as follows:

Automatic PAUSE Frame Transmission: For receive frames, PAUSE frames are autom transmitted when the number of data in the receive FIFO (included in E-DMAC) reaches set in the flow control FIFO threshold register (FCFTR) of the E-DMAC. The TIME para included in the PAUSE frame at this time is set by the automatic PAUSE frame setting re (APR). The automatic PAUSE frame transmission is repeated until the number of data in receive FIFO becomes less than the FCFTR setting as the receive data is read from the FI

The upper limit of the number of retransfers of the PAUSE frame can also be set by the a PAUSE frame retransfer count set register (TPAUSER). In this case, PAUSE frame trans is repeated until the number of data becomes FCFTR value set or below, or the number of transmits reaches the value set by TPAUSER. The automatic PAUSE frame transmission enabled when the TXF bit in the EtherC mode register (ECMR) is 1.

Rev. 6.00 Jun. 12, 2007 Page 256 of 610 REJ09B0131-0600

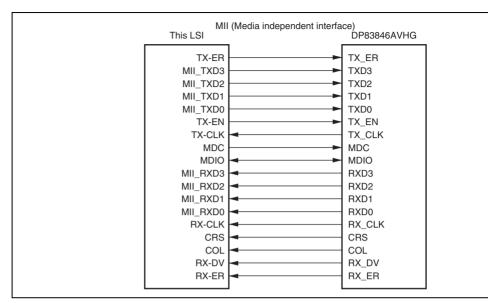


Figure 11.8 shows an example of connection to a DP83846AVHG (National Semicondu Corporation).

Figure 11.8 Example of Connection to DP83846AVHG

RENESAS

- enanged interrupt decidentary.
- Flow Control Defect 1

Once a PAUSE frame is received while the receiving flow control is enabled in full-d mode (the RXF bit in ECMR = 1), each time when the local station receives a normal frame (non-PAUSE frame without a CRC error), the TIME parameter specified by the frame that has been previously received is incorrectly applied. As a result, unnecessar time is generated to slow down the transmission throughput. The TIME parameter val maintained until another PAUSE frame is received.

This defect can be prevented if the destination station supports the function to transmittime PAUSE frame as the same as this LSI does. Enable the use of 0 time PAUSE frame LSI (the ZPF bit in ECMR = 1) before the 0 time PAUSE frame is received from the destination station. This clears the TIME parameter incorrectly maintained in the Ether prevents the unnecessary waiting time for transmission to be generated.

• Flow Control Defect 2

When a PAUSE period is generated while the transmitting/receiving flow control is end full-duplex mode (the TXF/RXF bit in ECMR = 1), non-PAUSE frames are waited for transmission (this is a normal operation) whereas PAUSE frames are incorrectly waited transmission. The transmission of non-PAUSE frames in a PAUSE period is prohibited though the transmission of PAUSE frames is enabled in IEEE802.3.

When a PAUSE period is generated by the request from the destination station (that is PAUSE frame is received from the destination station), the load of the destination station high and that of the local station is not so high. Therefore, the transmission of PAUSE during this period is less likely to happen. The ratio that this defect actually affects the operation in this LSI is rather low.

Rev. 6.00 Jun. 12, 2007 Page 258 of 610 REJ09B0131-0600

12.1 Features

The E-DMAC has the following features:

- The load on the CPU is reduced by means of a descriptor management system
- Transmit/receive frame status information is indicated in descriptors
- Achieves efficient system bus utilization through the use of block transfer (16-byte u
- Supports single-frame/multi-buffer operation

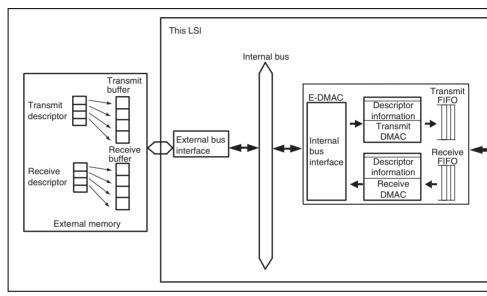


Figure 12.1 Configuration of E-DMAC, and Descriptors and Buffers

EDMAS20C_000020030900

RENESAS

- EllerC/E-DWAC status register (EESK)
- EtherC/E-DMAC status interrupt permission register (EESIPR)
- Transmit/receive status copy enable register (TRSCER)
- Receive missed-frame counter register (RMFCR)
- Transmit FIFO threshold register (TFTR)
- FIFO depth register (FDR)
- Receiving method control register (RMCR)
- E-DMAC operation control register (EDOCR)
- Receive buffer write address register (RBWAR)
- Receive descriptor fetch address register (RDFAR)
- Transmit buffer read address register (TBRAR)
- Transmit descriptor fetch address register (TDFAR)
- Flow control FIFO threshold register (FCFTR)
- Transmit interrupt register (TRIMD)

Rev. 6.00 Jun. 12, 2007 Page 260 of 610 REJ09B0131-0600

the internal bus clock by has elapsed.

Bit	Bit Name	Initial value	R/W	Description
31 to 7	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
6	DE	0	R/W	E-DMAC Data Endian Convert
				Selects whether or not the endian format is on data transfer by the E-DMAC. However, endian format of the descriptors and E-DM/ values are not converted regardless of this
				0: Endian format not converted (big endian)
				1: Endian format converted (little endian)
5	DL1	0	R/W	Descriptor Length
4	DL0	0	R/W	These bits specify the descriptor length.
				00: 16 bytes
				01: 32 bytes
				10: 64 bytes
				11: Reserved (setting prohibited)
3 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
				,

Renesas

This bit is always read as 0.
0: Writing 0 is ignored (E-DMAC operation is n affected)
1: Writing 1 resets the EtherC and E-DMAC an automatically cleared

12.2.2 E-DMAC Transmit Request Register (EDTRR)

The EDTRR is a 32-bit readable/writable register that issues transmit directives to the E-I When transmission of one frame is completed, the next descriptor is read. If the transmit descriptor active bit in this descriptor has the "active" setting, transmission is continued. I transmit descriptor active bit has the "inactive" setting, the TR bit is cleared and operation transmit DMAC is halted.

Bit	Bit Name	Initial value	R/W	Description
31 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
0	TR	0	R/W	Transmit Request
				0: Transmission-halted state. Writing 0 does no transmission. Termination of transmission is controlled by the active bit in the transmit de
				1: Start of transmission. The relevant descripto and a frame is sent with the transmit active I 1

Rev. 6.00 Jun. 12, 2007 Page 262 of 610 REJ09B0131-0600

RENESAS

Bit	Bit Name	value	R/W	Description
31 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
0	RR	0	R/W	Receive Request
				0: The receive function is disabled*
				 A receive descriptor is read and the E-DN ready to receive

Note: * If the receive function is disabled during frame reception, write-back is not pe successfully to the receive descriptor. Following pointers to read a receive de become abnormal and the E-DMAC cannot operate successfully. In this case the E-DMAC reception enabled again, execute a software reset by the SWR EDMR. To make the E-DMAC reception disabled without executing a softwar set the RE bit in ECMR. Next, after the E_DMAC has completed the received write-back to the receive descriptor has been confirmed, disable the receive f this register.

TDLA0	The lower bits are set as follows according to specified descriptor length.
	16-byte boundary: TDLA3 to TDLA0 = 0000
	32-byte boundary: TDLA4 to TDLA0 = 00000
	64-byte boundary: TDLA5 to TDLA0 = 00000

12.2.5 Receive Descriptor List Address Register (RDLAR)

RDLAR is a 32-bit readable/writable register that specifies the start address of the received descriptor list. Descriptors have a boundary configuration in accordance with the descript indicated by the DL bit in EDMR. This register must not be written to during reception. Modifications to this register should only be made while reception is disabled by the RR in the E-DMAC Receive Request Register (EDRRR).

		Initial		
Bit	Bit Name	value	R/W	Description
31 to 0	RDLA31 to	All 0	R/W	Receive Descriptor Start Address
	RDLA0			The lower bits are set as follows according to specified descriptor length.
				16-byte boundary: RDLA3 to RDLA0 = 0000
				32-byte boundary: RDLA4 to RDLA0 = 00000
				64-byte boundary: RDLA5 to RDLA0 = 00000

Rev. 6.00 Jun. 12, 2007 Page 264 of 610 REJ09B0131-0600

Bit	Bit Name	Initial value	R/W	Description
31	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
30	TWB	0	R/W	Write-Back Complete
				Indicates that write-back from the E-DMAC corresponding descriptor has completed. The operation is enabled when the TIS bit in TR to 1.
				0: Write-back has not completed, or no tran directive
				1: Write-back has completed
29 to 27	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
26	TABT	0	R/W	Transmit Abort Detection
				Indicates that the EtherC aborts transmitting because of failures during transmitting the f
				0: Frame transmission has not been aborted transmit directive
				1: Frame transmit has been aborted

				overnowed.
				0: Receive frame counter has not overflowed
				1: Receive frame counter overflows
23	ADE	0	R/W	Address Error
				Indicates that the memory address that the E tried to transfer is found illegal.
				0: Illegal memory address not detected (norn operation)
				1: Illegal memory address detected
				Note: When an address error is detected, the E-DMAC halts transmitting/receiving. T resume the operation, set the E-DMAC after software reset by means of the SV EDMR.
22	ECI	0	R	EtherC Status Register Interrupt Source
				This bit is a read-only bit. When the source o ECSR interrupt in the EtherC is cleared, this also cleared.
				0: EtherC status interrupt source has not bee detected
				1: EtherC status interrupt source has been d

Rev. 6.00 Jun. 12, 2007 Page 266 of 610 REJ09B0131-0600

				transmission, the E-DMAC writes the transr status back to the descriptor.
				0: Transfer not complete, or no transfer dire
				1: Transfer complete
20	TDE	0	R/W	Transmit Descriptor Empty
				Indicates that the transmission descriptor va (TACT) in the descriptor is not set when the reads the transmission descriptor when the descriptor is not the last one of the frame for buffer frame processing. As a result, an inco- frame may be transmitted.
				0: Transmit descriptor active bit TACT = 1 c
				1: Transmit descriptor active bit TACT = 0 c
				When transmission descriptor empty (TDE occurs, execute a software reset and initiat transmission. In this case, the address that in the transmit descriptor list address regist (TDLAR) is transmitted first.
19	TFUF	0	R/W	Transmit FIFO Underflow
				Indicates that underflow has occurred in the FIFO during frame transmission. Incomplete sent onto the line.
				0: Underflow has not occurred
				1: Underflow has occurred

				receive descriptor and initiating receiving.
				0: Receive descriptor active bit RACT = 1 no detected
				1: Receive descriptor active bit RACT = 0 de
16	RFOF	0	R/W	Receive FIFO Overflow
				Indicates that the receive FIFO has overflow frame reception.
				0: Overflow has not occurred
				1: Overflow has occurred
15 to 12	_	All 0	R	Reserved
				These bits are always read as 0. The write version should always be 0.
11	CND	0	R/W	Carrier Not Detect
				Indicates the carrier detection status.
				0: A carrier is detected when transmission st
				1: A carrier is not detected when transmissio
10	DLC	0	R/W	Detect Loss of Carrier
				Indicates that loss of the carrier has been de during frame transmission.
				0: Loss of carrier not detected
				1: Loss of carrier detected
9	CD	0	R/W	Delayed Collision Detect
				Indicates that a delayed collision has been d during frame transmission.
				0: Delayed collision not detected
				1: Delayed collision detected

Rev. 6.00 Jun. 12, 2007 Page 268 of 610 REJ09B0131-0600

				0: Multicast address frame has not been re
				1: Multicast address frame has been receiv
6, 5		All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
4	RRF	0	R/W	Receive Residual-Bit Frame
				0: Residual-bit frame has not been received
				1: Residual-bit frame has been received
3	RTLF	0	R/W	Receive Too-Long Frame
				Indicates that the frame more than the num receive frame length upper limit set by RFL EtherC has been received.
				0: Too-long frame has not been received
				1: Too-long frame has been received
2	RTSF	0	R/W	Receive Too-Short Frame
				Indicates that a frame of fewer than 64 byte been received.
				0: Too-short frame has not been received
				1: Too-short frame has been received
1	PRE	0	R/W	PHY Receive Error
				0: PHY receive error not detected
				1: PHY receive error detected
0	CERF	0	R/W	CRC Error on Received Frame
				0: CRC error not detected
				1: CRC error detected

30	TWBIP	0	R/W	Write-Back Complete Interrupt Permission
				0: Write-back complete interrupt is disabled
				1: Write-back complete interrupt is enabled
29 to 27	_	All 0	R	Reserved
				These bits are always read as 0. The write val should always be 0.
26	TABTIP	0	R/W	Transmit Abort Detection Interrupt Permission
				0: Transmit abort detection interrupt is disable
				1: Transmit abort detection interrupt is enabled
25	RABTIP	0	R/W	Receive Abort Detection Interrupt Permission
				0: Receive abort detection interrupt is disabled
				1: Receive abort detection interrupt is enabled
24	RFCOFIP	0	R/W	Receive Frame Counter Overflow Interrupt Pe
				0: Receive frame counter overflow interrupt is
				1: Receive frame counter overflow interrupt is

Rev. 6.00 Jun. 12, 2007 Page 270 of 610 REJ09B0131-0600

				1: Frame transmit complete interrupt is enabl
20	TDEIP	0	R/W	Transmit Descriptor Empty Interrupt Permissi
				0: Transmit descriptor empty interrupt is disal
				1: Transmit descriptor empty interrupt is enab
19	TFUFIP	0	R/W	Transmit FIFO Underflow Interrupt Permissio
				0: Underflow interrupt is disabled
				1: Underflow interrupt is enabled
18	FRIP	0	R/W	Frame Received Interrupt Permission
				0: Frame received interrupt is disabled
				1: Frame received interrupt is enabled
17	RDEIP	0	R/W	Receive Descriptor Empty Interrupt Permission
				0: Receive descriptor empty interrupt is disab
				1: Receive descriptor empty interrupt is enab
16	RFOFIP	0	R/W	Receive FIFO Overflow Interrupt Permission
				0: Receive FIFO overflow interrupt is disable
				1: Receive FIFO overflow interrupt is enabled
15 to 12	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
11	CNDIP	0	R/W	Carrier Not Detect Interrupt Permission
				0: Carrier not detect interrupt is disabled
				1: Carrier not detect interrupt is enabled

.

				· · ·
				1: Transmit retry over interrupt is enabled
7	RMAFIP	0	R/W	Receive Multicast Address Frame Interrupt Pe
				0: Receive multicast address frame interrupt is
				1: Receive multicast address frame interrupt is
6, 5	_	All 0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
4	RRFIP	0	R/W	Receive Residual-Bit Frame Interrupt Permiss
				0: Receive residual-bit frame interrupt is disab
				1: Receive residual-bit frame interrupt is enabl
3	RTLFIP	0	R/W	Receive Too-Long Frame Interrupt Permission
				0: Receive too-long frame interrupt is disabled
				1: Receive too-long frame interrupt is enabled
2	RTSFIP	0	R/W	Receive Too-Short Frame Interrupt Permission
				0: Receive too-short frame interrupt is disable
				1: Receive too-short frame interrupt is enabled
1	PREIP	0	R/W	PHY-LSI Receive Error Interrupt Permission
				0: PHY-LSI receive error interrupt is disabled
				1: PHY-LSI receive error interrupt is enabled
0	CERFIP	0	R/W	CRC Error on Received Frame
				0: CRC error on received frame interrupt is dis
				1: CRC error on received frame interrupt is en

Rev. 6.00 Jun. 12, 2007 Page 272 of 610 REJ09B0131-0600

Bit	Bit Name	Initial value	R/W	Description
31 to 12		All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
11	CNDCE	0	R/W	CND Bit Copy Directive
				 Indicates the CND bit state in bit TFS3 in t transmit descriptor
				1: Occurrence of the corresponding interrupt indicated in bit TFS3 of the transmit descr
10	DLCCE	0	R/W	DLC Bit Copy Directive
				 Indicates the DLC bit state in bit TFS2 of t transmit descriptor
				1: Occurrence of the corresponding interrupt indicated in bit TFS2 of the transmit descr
9	CDCE	0	R/W	CD Bit Copy Directive
				 Indicates the CD bit state in bit TFS1 of th descriptor
				1: Occurrence of the corresponding interrupt indicated in bit TFS1 of the transmit descr
8	TROCE	0	R/W	TRO Bit Copy Directive
				 Indicates the TRO bit state in bit TFS0 of t descriptor
				1: Occurrence of the corresponding interrupt indicated in bit TFS0 of the receive description of the receive description of the received by t

-		0	11/99	
				 Indicates the RRF bit state in bit RFS4 of the receive descriptor
				1: Occurrence of the corresponding interrupt i indicated in bit RFS4 of the receive descrip
3	RTLFCE	0	R/W	RTLF Bit Copy Directive
				0: Indicates the RTLF bit state in bit RFS3 of t receive descriptor
				 Occurrence of the corresponding interrupt indicated in bit RFS3 of the receive description
2	RTSFCE	0	R/W	RTSF Bit Copy Directive
				0: Indicates the RTSF bit state in bit RFS2 of receive descriptor
				 Occurrence of the corresponding interrupt i indicated in bit RFS2 of the receive description
1	PRECE	0	R/W	PRE Bit Copy Directive
				 Indicates the PRF bit state in bit RFS1 of th descriptor
				1: Occurrence of the corresponding interrupt indicated in bit RFS1 of the receive descrip
0	CERFCE	0	R/W	CERF Bit Copy Directive
				0: Indicates the CERF bit state in bit RFS0 of receive descriptor
				1: Occurrence of the corresponding interrupt is indicated in bit RFS0 of the receive description

Rev. 6.00 Jun. 12, 2007 Page 274 of 610 REJ09B0131-0600

				These bits are always read as 0. The write should always be 0.
15 to 0 MFC15 to	All 0 R	R	Missed-Frame Counter	
	MFC0			Indicate the number of frames that are discand not transferred to the receive buffer during r

12.2.10 Transmit FIFO Threshold Register (TFTR)

TFTR is a 32-bit readable/writable register that specifies the transmit FIFO threshold at first transmission is started. The actual threshold is 4 times the set value. The EtherC stat transmission when the amount of data in the transmit FIFO exceeds the number of bytes by this register, when the transmit FIFO is full, or when 1-frame write is executed. Whet this register, do so in the transmission-halt state.

Bit	Bit Name	Initial value	R/W	Description
31 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

: :
H'1F: 124 bytes
H'20: 128 bytes
: :
H'3F: 252 bytes
H'40: 256 bytes
H'41: 260 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
H'42: 264 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
: :
H'7F: 508 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
H'80: 512 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
H'81 to H'200: Setting prohibited

Note: When starting transmission before one frame of data write has completed, take ca generation of the underflow.

Rev. 6.00 Jun. 12, 2007 Page 276 of 610 REJ09B0131-0600

10100		0000		Hanomit III O Oapaony
	TFD0			Specify the capacity of transmit FIFO. The s should not be changed after the transmit/re operation is started.
				000: 256 bytes
				001: 512 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
				Other than above: Setting prohibited
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
2 to 0	RFD2 to	B'000	R	Receive FIFO Capacity
	RFD0			Specify the capacity of receive FIFO. The s should not be changed after the transmit/recorrection is started.
				000: 256 bytes
				001: 512 bytes (Setting prohibited in SH761 setting enabled in SH7618A)
				Other than above: Setting prohibited

0	1110	0	10,44	
				0: When reception of one frame is completed DMAC writes the receive status into the d and clears the RR bit in EDRRR
				1: When reception of one frame is completed

DMAC writes the receive status into the d reads the next descriptor, and prepares to the next frame

Rev. 6.00 Jun. 12, 2007 Page 278 of 610 REJ09B0131-0600

-	1 20	0	10/00	
				Specifies E-DMAC operation when transmit underflow or receive FIFO overflow occurs.
				0: E-DMAC operation continues when under overflow occurs
				 E-DMAC operation halts when underflow overflow occurs
2	AEC	0	R/W	Address Error Control
				Indicates detection of an illegal memory add attempted E-DMAC transfer.
				0: Illegal memory address not detected (no operation)
				 E-DMAC stops its operation due to illega address detection
				Note: To resume the operation, set the E-D again after software reset by means o SWR bit in EDMR.
1	EDH	0	R/W	E-DMAC Halted
				0: The E-DMAC is operating normally
				 The E-DMAC has been halted by NMI pi assertion. E-DMAC operation is restarted writing 0
0	—	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

12.2.15 Receiving-Descriptor Fetch Address Register (RDFAR)

RDFAR stores the descriptor start address that is required when the E-DMAC fetches desinformation from the receiving descriptor. Which receiving descriptor information is used processing by the E-DMAC can be recognized by monitoring addresses displayed in this The address from which the E-DMAC is actually fetching a descriptor may be different fively value read from this register.

Bit	Bit Name	Initial value	R/W	Description
31 to 0		All 0	R	Receiving-Descriptor Fetch Address
	RDFA0			These bits can only be read. Writing is prohil

12.2.16 Transmission-Buffer Read Address Register (TBRAR)

TBRAR stores the address of the transmission buffer when the E-DMAC reads data from transmission buffer. Which addresses in the transmission buffer are processed by the E-D can be recognized by monitoring addresses displayed in this register. The address from w E-DMAC is actually reading in the buffer may be different from the value read from this

Bit	Bit Name	Initial value	R/W	Description
31 to 0	TBRA31 to	All 0	R	Transmission-Buffer Read Address
	TBRA0			These bits can only be read. Writing is prohil

Rev. 6.00 Jun. 12, 2007 Page 280 of 610 REJ09B0131-0600

RENESAS

12.2.18 Flow Control FIFO Threshold Register (FCFTR)

FCFTR is a 32-bit readable/writable register that sets the flow control of the EtherC (set threshold on automatic PAUSE transmission). The threshold can be specified by the depreceive FIFO data (RFD2 to RFD0) and the number of receive frames (RFF2 to RFF0). condition to start the flow control is decided by taking OR operation on the two threshold Therefore, the flow control by the two thresholds is independently started.

When flow control is performed according to the RFD bits setting, if the setting is the sadepth of the receive FIFO specified by the FIFO depth register (FDR), flow control is st the remaining FIFO is (FIFO data depth – 64) bytes. For instance, when RFD in FDR = RFD in FCFTR = 0, flow control is started when (256 - 64) bytes of data is stored in the FIFO. The value set in the RFD bits in this register should be equal to or less than those

Bit	Bit Name	Initial value	R/W	Description
31 to 19	—	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

RENESAS

_				the receive FIFO
15 to 3	—	All 0	—	Reserved
				These bits are always read as 0. The write va should always be 0.
2	RFD2	0	R	Receive Byte Flow Control Threshold
1	RFD1	0	R	000: When ($256 - 64$) bytes of data is stored
0	RFD0	0	R	receive FIFO
				001: When (512 – 64) bytes of data is stored receive FIFO (Setting prohibited in SH7 setting enabled in SH7618A)
				Other than above: Setting prohibited

12.2.19 Transmit Interrupt Register (TRIMD)

TRIMD is a 32-bit readable/writable register that specifies whether or not to notify writecompletion for each frame using the TWB bit in EESR and an interrupt on transmit opera

		Initial		
Bit	Bit Name	value	R/W	Description
31 to 1	—	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
0	TIS	0	R/W	Transmit Interrupt Setting
				 Write-back completion for each frame is n notified
				 Write-backed completion for each frame u TWB bit in EESR is notified

Rev. 6.00 Jun. 12, 2007 Page 282 of 610 REJ09B0131-0600

RENESAS

Before starting transmission/reception, the communication program creates transmit and descriptor lists in memory. The start addresses of these lists are then set in the transmit a descriptor list start address registers.

The descriptor start address must be aligned so that it matches the address boundary acc the descriptor length set by the E-DMAC mode register (EDMR). The transmit buffer st can be aligned with a byte, a word, and a longword boundary.

(1) Transmit Descriptor

Figure 12.2 shows the relationship between a transmit descriptor and the transmit buffer According to the specification in this descriptor, the relationship between the transmit fr transmit buffer can be defined as one frame/one buffer or one frame/multi-buffer.

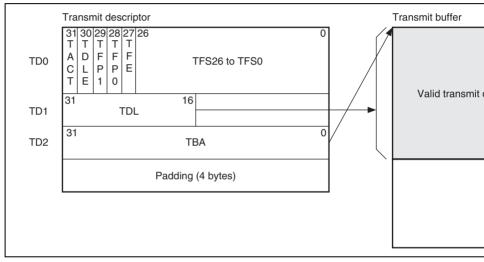


Figure 12.2 Relationship between Transmit Descriptor and Transmit Buf

				is suspended.
				0: The transmit descriptor is invalid.
				Indicates that valid data has not been writ this bit by the CPU, or this bit has been re write-back operation on termination of E-I frame transfer processing (completion or suspension of transmission)
				If this state is recognized in an E-DMAC or read, the E-DMAC terminates transmit pro and transmit operations cannot be continu restart is necessary)
				1: The transmit descriptor is valid.
				Indicates that valid data has been written transmit buffer by the CPU and frame trar processing has not yet been executed, or frame transfer is in progress
				When this state is recognized in an E-DM descriptor read, the E-DMAC continues w transmit operation
30	TDLE	0	R/W	Transmit Descriptor List End
				After completion of the corresponding buffer the E-DMAC references the first descriptor. specification is used to set a ring configuration transmit descriptors.
				0: This is not the last transmit descriptor list
				1: This is the last transmit descriptor list

Rev. 6.00 Jun. 12, 2007 Page 284 of 610 REJ09B0131-0600

				contains end of frame (frame is conclude
				10: Transmit buffer indicated by this descrip of frame (frame is not concluded)
				 Contents of transmit buffer indicated by descriptor are equivalent to one frame frame/one buffer)
27	TFE	0	R/W	Transmit Frame Error
				Indicates that one or other bit of the transm status indicated by bits 26 to 0 is set. Whet the transmit frame status information is cop this bit is specified by the transmit/receive s enable register.
				0: No error during transmission
				1: An error occurred during transmission
26 to 0	TFS26 to	All 0	R/W	Transmit Frame Status
	TFS0			TFS26 to TFS4: Reserved (The write value always be 0.)
				TFS3: Carrier Not Detect (corresponds to C EESR)
				TFS2: Detect Loss of Carrier (corresponds in EESR)
				TFS1: Delayed collision Detect (correspond bit in EESR)
				TFS0: Transmit Retry Over (corresponds to in EESR)

				can be set in byte units.
15 to 0	—	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.

(c) Transmit Descriptor 2 (TD2)

TD2 specifies the 32-bit transmit buffer start address. The transmit buffer start address se be aligned with a byte, a word, or a longword boundary.

Rev. 6.00 Jun. 12, 2007 Page 286 of 610 REJ09B0131-0600

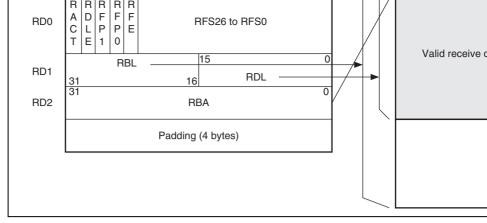


Figure 12.3 Relationship between Receive Descriptor and Receive Buffe

				reception.
				0: The receive descriptor is invalid.
				Indicates that the receive buffer is not rea (access disabled by E-DMAC), or this bit reset by a write-back operation on termina E-DMAC frame transfer processing (comp suspension of reception).
				If this state is recognized in an E-DMAC or read, the E-DMAC terminates receive pro and receive operations cannot be continu
				Reception can be restarted by setting RA and executing receive initiation.
				1: The receive descriptor is valid
				Indicates that the receive buffer is ready (enabled) and processing for frame transfe the FIFO has not been executed, or that f transfer is in progress.
				When this state is recognized in an E-DM descriptor read, the E-DMAC continues w receive operation.
30	RDLE	0	R/W	Receive Descriptor List Last
				After completion of the corresponding buffer the E-DMAC references the first receive dese This specification is used to set a ring config for the receive descriptors.
				0: This is not the last receive descriptor list
u				1: This is the last receive descriptor list

Rev. 6.00 Jun. 12, 2007 Page 288 of 610 REJ09B0131-0600

				 Contents of receive buffer indicated by t descriptor are equivalent to one frame (frame/one buffer)
27	RFE	0	R/W	Receive Frame Error
				Indicates that one or other bit of the receive status indicated by bits 26 to 0 is set. Wheth the receive frame status information is copie bit is specified by the transmit/receive status enable register.
				0: No error during reception
				1: A certain kind of error occurred during re

RFS	Multicast address frame rece (corresponds to RMAF bit in	
RFS	CAM entry unregistered fram (corresponds to the RUAF b	
RSF	Reserved (The write value s be 0.)	hould alv
RFS	Receive residual-bit frame e to RRF bit in EESR)	rror (corr
RFS	Receive too-long frame error RTLF bit in EESR)	r (corresp
RFS	Receive too-short frame error RTSF bit in EESR)	or (corres
RFS	PHY-LSI receive error (correbit in EESR)	sponds t
RFS	CRC error on received frame CERF bit in EESR)	e (corres

Rev. 6.00 Jun. 12, 2007 Page 290 of 610 REJ09B0131-0600

				1,514 bytes, excluding the CRC data. There the receive buffer length specification, a val 1,520 bytes (H'05F0) that takes account of boundary is set as the maximum receive fra length.
15 to 0	RDL	All 0	R/W	Receive Data Length
				These bits specify the data length of a recein stored in the receive buffer.
				The receive data transferred to the receive does not include the 4-byte CRC data at the the frame. The receive frame length is repo number of words (valid data bytes) not inclu CRC data.

(c) Receive Descriptor 2 (RD2)

RD2 specifies the 32-bit receive buffer start address. The receive buffer start address mu aligned with a longword boundary. However, when SDRAM is connected, it must be all a 16-byte boundary.

12.3.2 Transmission

When the transmit function is enabled and the transmit request bit (TR) is set in the E-D transmit request register (EDTRR), the E-DMAC reads the descriptor used last time from transmit descriptor list (in the initial state, the descriptor indicated by the transmission d start address register (TDLAR)). If the setting of the TACT bit in the read descriptor is a E-DMAC reads transmit frame data sequentially from the transmit buffer start address s by TD2, and transfers it to the EtherC. The EtherC creates a transmit frame and starts trate to the MII. After DMA transfer of data equivalent to the buffer length specified in the det the following processing is carried out according to the TFP value.

Renesas

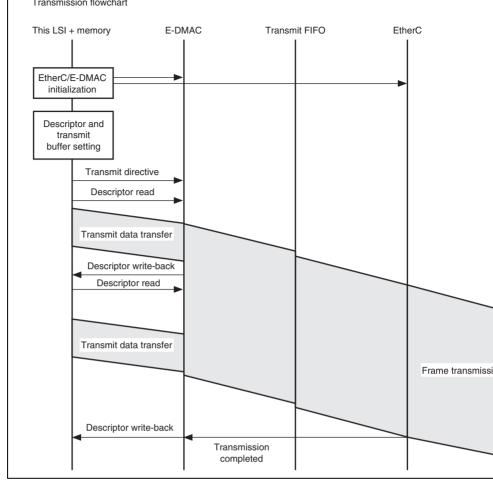


Figure 12.4 Sample Transmission Flowchart

Rev. 6.00 Jun. 12, 2007 Page 292 of 610 REJ09B0131-0600

frame reception is completed, or if frame reception is suspended because of a certain kir the E-DMAC performs write-back to the relevant descriptor (RFP = 11 or 01), and then receive processing. The E-DMAC then reads the next descriptor and enters the receive-s state again.

To receive frames continuously, the receive enable control bit (RNC) must be set to 1 in receive control register (RCR). After initialization, this bit is cleared to 0.

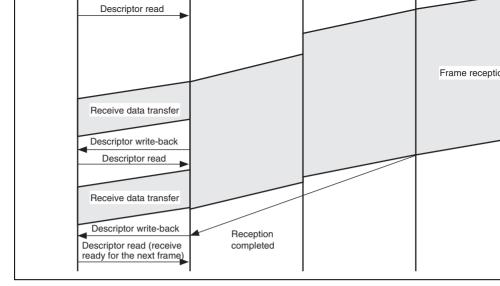


Figure 12.5 Sample Reception Flowchart

Rev. 6.00 Jun. 12, 2007 Page 294 of 610 REJ09B0131-0600

bit cleared to 0, immediately. The next descriptor is then read, and the position within the frame is determined on the basis of bits TFP1 and TFP0 (continuing [B'00] or end [B'01] case of a continuing descriptor, the TACT bit is cleared to 0, only, and the next descriptor immediately. If the descriptor is the final descriptor, not only is the TACT bit cleared to write-back is also performed to the TFE and TFS bits at the same time. Data in the buff transmitted between the occurrence of an error and write-back to the final descriptor. If interrupts are enabled in the EtherC/E-DMAC status interrupt permission register (EESI interrupt is generated immediately after the final descriptor write-back.

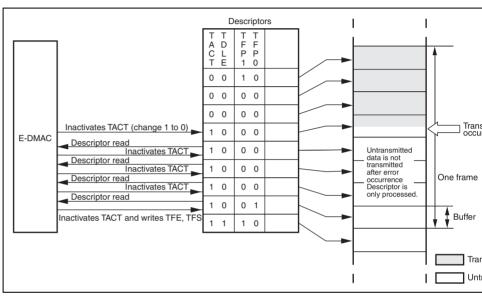


Figure 12.6 E-DMAC Operation after Transmit Error

RENESAS

(EESIPR), an interrupt is generated immediately after the write-back. If there is a new fr receive request, reception is continued from the buffer after that in which the error occurr

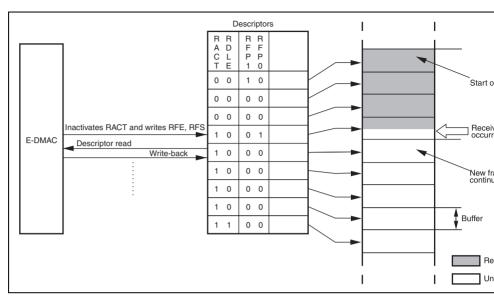


Figure 12.7 E-DMAC Operation after Receive Error

Rev. 6.00 Jun. 12, 2007 Page 296 of 610 REJ09B0131-0600

- used. Firstly, reception interrupt source A from the EtherC or E-DMAC sets bit A in an interrupt is generated.
- (b) The interrupt handler writes 1 to bit A to clear it.
- (c) If clearing of bit A by writing of a 1 and generation of the transmission-interrupt sour signal by the EtherC or E-DMAC take place simultaneously, bit A will be cleared by status bit for transmission-interrupt source B in EESR might not be set.



Figure 12.8 Timing of the Case where Setting of the Interrupt Source Bit in EESF DMAC Fails

30	TWB	Write-back complete	Yes		Т
29		Reserved			
28	_	Reserved	_		_
27	_	Reserved		—	_
26	TABT	Transmit abort detected	Yes	Reflected in TD0 bit8 (TFS8)	Т
25	RABT	Receive abort detected	No	Reflected in RD0 bit8 (RFS8)	F
24	RFCOF	Receive frame counter overflow	Yes	—	F
23	ADE	Address error	No	—	С
22	ECI	EtherC status register interrupt source	No	—	С
21	TC	Frame transmission complete	Yes	Reflected in TD0 bit31 (TACT)	Т
20	TDE	Transmit descriptor empty	No	—	Т
19	TFUF	Transmit FIFO underflow	Yes	—	Т
18	FR	Frame received	No	Reflected in RD0 bit31 (RACT)	F
17	RDE	Receive descriptor empty	No	_	F
16	RFOF	Receive FIFO overflow	Yes	Reflected in RD0 bit9 (RFS9)	P
				(RFS9)	

Rev. 6.00 Jun. 12, 2007 Page 298 of 610 REJ09B0131-0600

RENESAS

-				
10	DLC	Loss of carrier detected	Yes	Reflected in TD0 bit2 (TFS2)
9	CD	Delayed collision detected	Yes	Reflected in TD0 bit1 (TFS1)
8	TRO	Transmit retry over	Yes	Reflected in TD0 bit0 (TFS0)
7	RMAF	Multicast address frame received	No	Reflected in RD0 bit7 (RFS7)
6	_	Reserved	_	
5	_	Receive frame discard request asserted	No	Reflected in RD0 bit5 (RFS5)
4	RRF	Residual-bit frame received	No	Reflected in RD0 bit4 (RFS4)
3	RTLF	Overly long frame received	No	Reflected in RD0 bit3 (RFS3)
2	RTSF	Overly short frame received	No	Reflected in RD0 bit2 (RFS2)
1	PRE	PHY receive error	No	Reflected in RD0 bit1 (RFS1)

Check the TACT bit in the transmit descriptor. TACT = 0 indicates that the transmiss complete.

- Bit 26 (TABT): Transmit abort detection interrupt source bit in EESR may not be set. Since the state of the interrupt source is written back to the relevant descriptor, check transmit descriptor (TD0) to confirm the error status.
- Bit 24 (RFCOF): Receive frame counter overflow interrupt source bit in EESR may n However, even if the software is not notified of the interrupt despite the frame counte overflowed, the upper layer (e.g. TCP/IP) can recognize the error because this LSI dis frame. After departure from the overflow state, storage in the receive FIFO proceeds n from the head of the next frame. Therefore, no problem with the system arises.
- Bit 21 (TC): Frame transmission complete interrupt source bit in EESR may not be see For transmission-related processing, either procedure (a) or (b) given below is effective.
 - (a) Transmission processing without interrupt handling of the frame transmission con interrupt
 - 1. Prepare multiple transmit descriptors so that multiple frames can be transmitte
 - 2. After setting the transmit descriptors, set bit 0 (TR) in the E-DMAC transmit register (EDTRR) to start transmission.
 - 3. Before setting the next frame for transmission in the descriptor (when a transmission task arises), check the TACT bit of the corresponding transmit descriptor.
 - If the TACT bit is clear, set the frame for transmission in the corresponding tr descriptor and set the TR bit in EDTRR to start transmission. If the TACT bit 1, do not set the transmit descriptor until the next timing.
 - (b) For systems where completion of the transmission of each frame must be confirmed is, set frame for transmission → initiate transmission → complete frame transmission set the next frame for transmission → ...)
 - 1. Check the TACT bit in the last descriptor of the frame for transmission and co that TACT = 0, which means that the transmission was completed.

Rev. 6.00 Jun. 12, 2007 Page 300 of 610 REJ09B0131-0600

RENESAS

check the transmit descriptor (TD0) to confirm the error status.

(2) Example of a countermeasure when the software configuration is based on the transmit complete interrupt

The following descriptions are of sample countermeasures for cases when software proc based on the frame transmit complete interrupt (bit 21 (TC) in EESR).

If the TC interrupt source bit (bit 21) in EESR is not set on completion of transmission, will continue to wait for the TC interrupt, leading to stoppage of transmission. This situat when the interrupt handler writes a 1 to clear the bit. The sample method given as case (takes the above possibility into account and avoids the problem by monitoring the transmisted descriptor in interrupt processing for interrupts other than the TC interrupt.

The sample method given as case (b) below avoids the above problem by setting a time for retry processing when multiple transmit descriptors are in use.

Note: The countermeasure should be the one that best suits the structure of your driver software.

transmission task arises), check the TACT bit in the corresponding transmit descriptor

5. If the TACT bit is clear, set the frame for transmission in the corresponding transmit of and start transmission by setting the TR bit in EDTRR. If the TACT bit is set to 1, tur condition flag and make an OS service call (e.g. to acquire the semaphore) to place the transmission task in the waiting state.

Note: Before setting the TR bit in EDTRR, always read the TR bit and make sure that T

- 6. Wait until the transmission task leaves the waiting state. There are two conditions for the OS service call (e.g. returning the semaphore) from the interrupt handler to take th out of the waiting state.
 - Generation of a TC interrupt
 - Generation of an interrupt other than the TC interrupt while the condition flag is o TACT = 0. Elimination of unwanted processing by checking the TACT bit is only when the condition flag is on. The condition flag should be turned off after the tas the waiting state.
- 7. When the transmission task has left the waiting state and entered execution, set the tra frame in the corresponding transmit descriptor and then set the TR bit in EDTRR to su transmission.

Rev. 6.00 Jun. 12, 2007 Page 302 of 610 REJ09B0131-0600

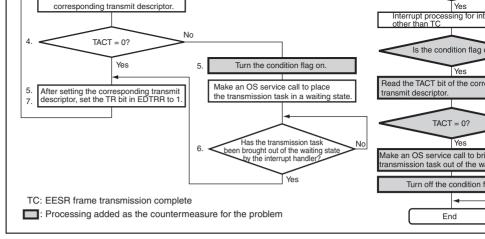


Figure 12.9 Countermeasure by Monitoring the Transmit Descriptor in Process Interrupts Other than the Frame Transmit Complete (TC) Interrupt

Note: Before setting the TR bit in EDTRR, always read the TR bit and make sure that T

- 5. When the transmission task has left the waiting state and entered the execution state w time limit, set the frame for transmission in the corresponding transmit descriptor and the TR bit in EDTRR to start transmission. Taking the transmission task out of the wa state should be done by the interrupt handler when the TC interrupt is generated.
- 6. When the timeout limit is reached, check the TACT bit in the corresponding transmit descriptor. If the TACT bit is clear, set the frame for transmission in the correspondin transmit descriptor and set the TR bit in EDTRR to start transmission. If the TACT bit 1, place the transmission task in a waiting state by making an OS service call of a rour a timeout function, or execute a software reset to initialize all of the modules associate Ethernet functionality.

Rev. 6.00 Jun. 12, 2007 Page 304 of 610 REJ09B0131-0600

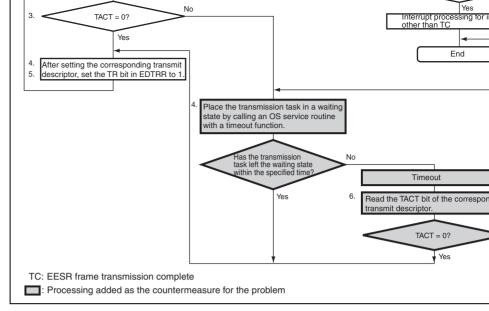


Figure 12.10 Method of Adding Timeout Processing

length of the remaining frame data and the value of the transmit FIFO pointer.

The relationship between the stoppage of E-DMAC operation and the state of the transmisshown below.

The data for transmission, which are placed in external memory (transmit buffer), are DM transferred by the E-DMAC to the transmit FIFO and output from the MII pin via the Eth module. The transmit FIFO write pointer (WP) is used when the E-DMAC writes the data transmission to the transmit FIFO, and the transmit FIFO read pointer (RP) is used when EtherC module reads the data for transmission from the transmit FIFO.

- 1. After a software reset, the transmit FIFO will have been initialized, and WP and RP w the minimum and maximum values, respectively, of the transmit FIFO capacity.
- 2. When the E-DMAC starts DMA transfer, WP is incremented when the data for transmare written to the transmit FIFO. On the other hand, RP is incremented when the data to the transmit FIFO are read out by the EtherC module.
- Note: The transmit FIFO only stores the data of a single frame that is being processed. In not store data extending over multiple frames. This means that the E-DMAC does transfer the next frame to the transmit FIFO until the data of the frame being proceread from the transmit FIFO.
- 3. If the E-DMAC fails to get the bus mastership for a system-related reason, the DMA to does not proceed and a transmit underflow occurs (WP = RP < frame length). Read at the transmit FIFO by the EtherC is then terminated and RP is initialized (to the maxim value of the size of the transmit FIFO).
- 4. On again acquiring the bus mastership, the E-DMAC resumes DMA transfer of the re data of the frame. However, if the transmit FIFO becomes full despite a failure to writ the remaining frame data from the point when the transmit FIFO underflowed, the E-I waits for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transmit FIFO to become empty before transferring further remaining data for the transferring further remaining for the transferring further remaining data for the transferring data for the transferring data for the

Rev. 6.00 Jun. 12, 2007 Page 306 of 610 REJ09B0131-0600

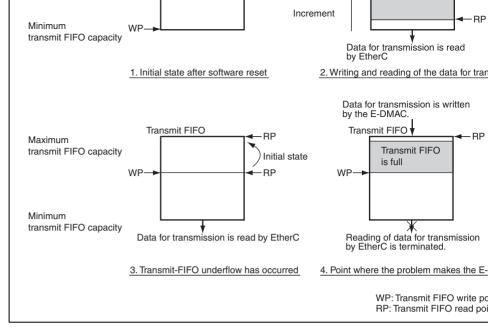


Figure 12.11 Operation when E-DMAC Stops and the Transmit FIFO

with a maximum specified time as the timeout limit, and are based on the countermeasure explained in section 12.4.1, Usage Notes on SH-Ether EtherC/E-DMAC Status Register (

The constant specified time corresponds to the timeout limit stated in section 12.4.1, Usa on SH-Ether EtherC/E-DMAC Status Register (EESR). The maximum specified time she set with reference to the maximum times taking retry processing into consideration, as gi table 12.2. Derive n, the number of repetitions of the constant specified time, from this m specified time. If transfer takes more than the maximum specified time, this indicates tha DMAC has stopped due to a transmission underflow. In this case, execute a software rese initialize the EtherC and E-DMAC modules. Since the receiving side will also be initialize software reset, the receiving side may require processing in a higher-level layer (e.g. TCH

Note: The countermeasure should be the one that best suits the structure of your driver a software.

(2) Countermeasure for the case where the software handles transmission without of TC interrupts

The countermeasure described under (a), Processing transmission without handling of the transmission complete (TC) interrupt, below, is based on the method explained in the des of bit 21 in (1) of section 12.4.1, Usage Notes on SH-Ether EtherC/E-DMAC Status Regi (EESR).

Rev. 6.00 Jun. 12, 2007 Page 308 of 610 REJ09B0131-0600

- to 0 (counter i is the variable that indicates the number of repetitions of the timer oper measure the specified constant period).
- 6. Start counting by the timer.
- 7. When the specified constant period has elapsed, stop the timer counter and check the in the corresponding transmit descriptor.
- 8. If the TACT bit is clear, set the frame for transmission in the corresponding transmit and set the TR bit in EDTRR to start transmission. If the TACT bit is set to 1, increm counter i.
- 9. While the TACT bit is found to be 1 in step 8 and the value of counter i is less than n steps 6 to 8 until the maximum specified time is reached (the maximum specified time be set with reference to the maximum times in consideration of retry processing give 12.2, and from this maximum specified time, determine n, the number of repetitions specified constant period; n is determined by the user with reference to table 12.2). If counter i reaches or exceeds n, the maximum specified time has elapsed and we can that the E-DMAC has stopped due to a transmit underflow. Initialize the EtherC and modules by setting the software-reset bit SWR in the E-DMAC mode register (EDM re-making initial settings for the Ethernet module, initialize the transmit/receive descent and transmit/receive buffers.

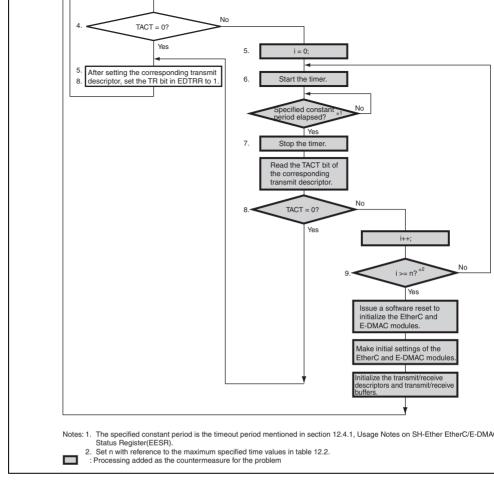


Figure 12.12 Processing Transmission without Handling of the TC Interrup

Rev. 6.00 Jun. 12, 2007 Page 310 of 610 REJ09B0131-0600

- maximum specified time
- 1. Prepare multiple transmit descriptors so that multiple frames can be transmitted.
- 2. After setting the transmit descriptors, start transmission by setting bit 0 (TR) in the E transmit request register (EDTRR).
- 3. Before setting the next frame for transmission in the transmit descriptor (when a tran task arises), check the TACT bit in the transmit descriptor.
- 4. If the TACT bit is clear, set the frame for transmission in the corresponding transmit and start transmission by setting the TR bit in EDTRR. If the TACT bit is set to 1, set to 0 (counter i is the variable that indicates the number of calls of the OS service rou timeout function). Then, place the transmission task in a waiting state by calling the (e.g. acquire a semaphore that has a timeout limit).

Note: Before setting the TR bit in EDTRR, always read the TR bit and make sure that

- 5. When the transmission task has left the waiting state and entered the execution state specified constant period, set the frame for transmission in the corresponding transmission descriptor and then set the TR bit in EDTRR to start transmission. The transmission should be taken out of the waiting state by the interrupt handler initiated by generation TC interrupt.
- 6. If the transmission task has not left the waiting state within the specified constant pe increment counter i. Then, if i < n, check the TACT bit in the corresponding transmi descriptor. The value for counting, n, is determined by the user with reference to tab</p>
- 7. If the TACT bit is clear, set the frame for transmission in the corresponding transmit and set the TR bit in EDTRR to start transmission. If the TACT bit is set to 1, return transmission task to the waiting state by calling an OS service routine that has a time function, and then repeat steps 5 and 6.

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 312 of 610 REJ09B0131-0600

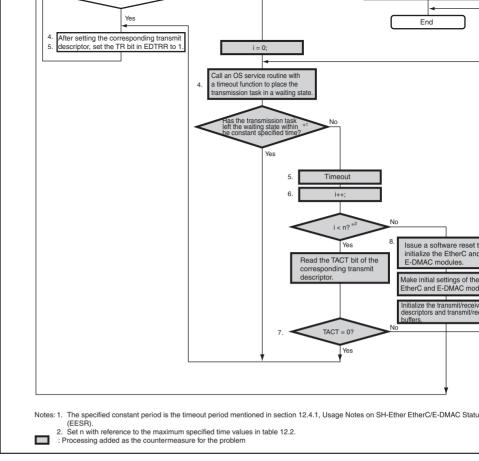


Figure 12.13 Countermeasure for the Case with TC Interrupt-Driven Software: A Timeout Processing within the Limit Imposed by the Maximum Specified T

Rev. 6.00 Jun. 1

Rev. 6.00 Jun. 12, 2007 Page 314 of 610 REJ09B0131-0600

- Any of four internal clocks ($P\phi/8$, $P\phi/32$, $P\phi/128$, and $P\phi/512$) can be selected indeperfor each channel.
- Interrupt request on compare match
- When not in use, CMT can be stopped by halting its clock supply to reduce power consumption.

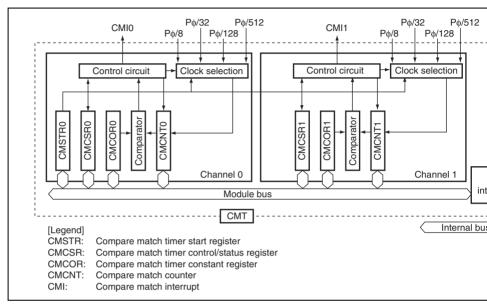


Figure 13.1 shows a block diagram of CMT.

Figure 13.1 Block Diagram of Compare Match Timer

TIMCMT3A_000020030900

RENESAS

- Compare match counter_1 (CMCNT_1)
- Compare match constant register_1 (CMCOR_1)

13.2.1 Compare Match Timer Start Register (CMSTR)

CMSTR is a 16-bit register that selects whether compare match counter (CMCNT) operations stopped.

CMSTR is initialized to H'0000 by a power-on reset and a transition to standby mode.

Bit	Bit Name	Initial value	R/W	Description
15 to 2		All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
1	STR1	0	R/W	Count Start 1
				Specifies whether compare match counter 1 op or is stopped.
				0: CMCNT_1 count is stopped
				1: CMCNT_1 count is started
0	STR0	0	R/W	Count Start 0
				Specifies whether compare match counter 0 op or is stopped.
				0: CMCNT_0 count is stopped
				1: CMCNT_0 count is started

Rev. 6.00 Jun. 12, 2007 Page 316 of 610 REJ09B0131-0600

				always be 0.
7	CMF	0	R/(W)*	Compare Match Flag
				Indicates whether or not the values of CMCN CMCOR match.
				0: CMCNT and CMCOR values do not match
				[Clearing condition]
				When 0 is written to this bit
				1: CMCNT and CMCOR values match
6	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables compare match interrupt generation when CMCNT and CMCOR value (CMF=1).
				0: Compare match interrupt (CMI) disabled
				1: Compare match interrupt (CMI) enabled
5 to 2		All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.

Note: * Only 0 can be written, to clear the flag.

13.2.3 Compare Match Counter (CMCNT)

CMCNT is a 16-bit register used as an up-counter. When the counter input clock is select bits CKS1 and CKS0 in CMCSR and the STR bit in CMSTR is set to 1, CMCNT starts c using the selected clock.

When the value in CMCNT and the value in compare match constant register (CMCOR) CMCNT is cleared to H'0000 and the CMF flag in CMCSR is set to 1.

CMCNT is initialized to H'0000 by a power-on reset and a transition to standby mode.

13.2.4 Compare Match Constant Register (CMCOR)

CMCOR is a 16-bit register that sets the interval up to a compare match with CMCNT.

CMCOR is initialized to H'FFFF by a power-on reset and is initialized to H'FFFF in stand mode.

Rev. 6.00 Jun. 12, 2007 Page 318 of 610 REJ09B0131-0600

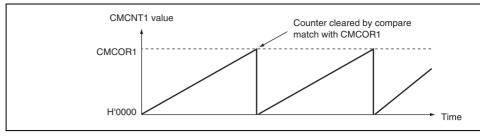


Figure 13.2 Counter Operation

13.3.2 CMCNT Count Timing

One of four internal clocks ($P\phi/8$, $P\phi/32$, $P\phi/128$, and $P\phi/512$) obtained by dividing the l can be selected with bits CKS1 and CKS0 in CMCSR. Figure 13.3 shows the timing.

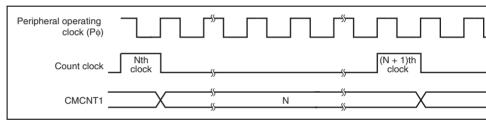


Figure 13.3 Count Timing

13.4.2 Timing of Setting Compare Match Flag

When CMCOR and CMCNT match, a compare match signal is generated and the CMF b CMCSR is set to 1. The compare match signal is generated in the last cycle in which the match (when the CMCNT value is updated to H'0000). That is, after a match between CM and CMCNT, the compare match signal is not generated until the next CMCNT counter of input. Figure 13.4 shows the timing of CMF bit setting.

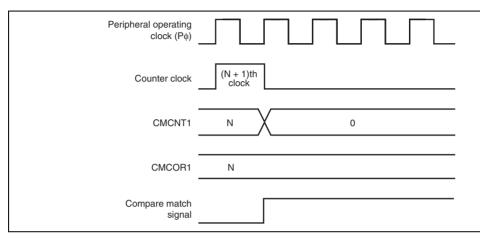


Figure 13.4 Timing of CMF Setting

13.4.3 Timing of Clearing Compare Match Flag

The CMF bit in CMCSR is cleared by reading 1 from this bit, then writing 0.

Rev. 6.00 Jun. 12, 2007 Page 320 of 610 REJ09B0131-0600

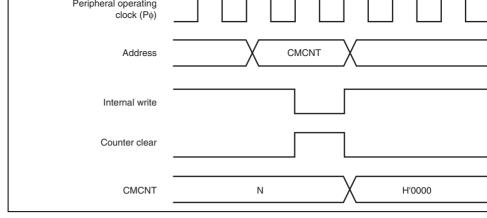


Figure 13.5 Conflict between Write and Compare-Match Processes of CMC

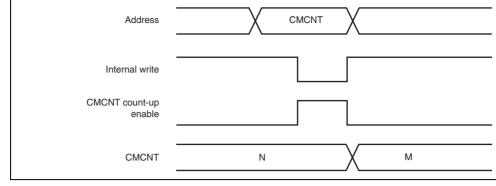


Figure 13.6 Conflict between Word-Write and Count-Up Processes of CMC

Rev. 6.00 Jun. 12, 2007 Page 322 of 610 REJ09B0131-0600

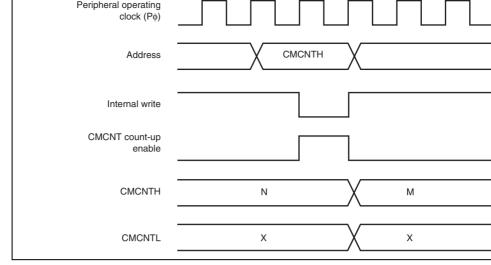


Figure 13.7 Conflict between Byte-Write and Count-Up Processes of CMC

13.5.4 Conflict between Write Processes to CMCNT with the Counting Stopped CMCOR

Writing the same value to CMCNT with the counting stopped and CMCOR is prohibited written, the CMF flag in CMCSR is set to 1 and CMCNT is cleared to H'0000.

Rev. 6.00 Jun. 12, 2007 Page 324 of 610 REJ09B0131-0600

14.1.1 Features

- Asynchronous serial communication:
 - Serial data communication is performed by start-stop in character units. The SCI communicate with a universal asynchronous receiver/transmitter (UART), an asy communication interface adapter (ACIA), or any other communications chip that a standard asynchronous serial system. There are eight selectable serial data communication formats.
 - Data length: 7 or 8 bits
 - Stop bit length: 1 or 2 bits
 - Parity: Even, odd, or none
 - Receive error detection: Parity, framing, and overrun errors
 - Break detection: Break is detected when a framing error is followed by at least of the space 0 level (low level). It is also detected by reading the RxD level directly port data register when a framing error occurs.
- Synchronous mode:
 - Serial data communication is synchronized with a clock signal. The SCIF can co with other chips having a synchronous communication function. There is one ser communication format.
 - Data length: 8 bits
 - Receive error detection: Overrun errors
- Full duplex communication: The transmitting and receiving sections are independen SCIF can transmit and receive simultaneously. Both sections use 16-stage FIFO buff high-speed continuous data transfer is possible in both the transmit and receive direct

SCIS3C4A_000020030900

RENESAS

- of the receive data in the receive FIFO register can be ascertained.
- A time-out error (DR) can be detected when receiving in asynchronous mode.

Rev. 6.00 Jun. 12, 2007 Page 326 of 610 REJ09B0131-0600

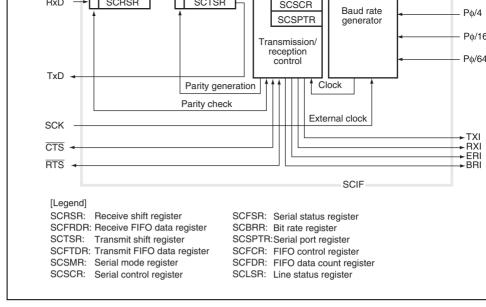


Figure 14.1 Block Diagram of SCIF

	Request to send pin	RISU	1/0	Request to send
	Clear to send pin	CTS0	I/O	Clear to send
1	Serial clock pin	SCK1	I/O	Clock I/O
	Receive data pin	RxD1	Input	Receive data input
	Transmit data pin	TxD1	Output	Transmit data output
	Request to send	RTS1	Output	Request to send
	Clear to send pin	CTS1	Input	Clear to send
2	Serial clock pin	SCK2	I/O	Clock I/O
	Receive data pin	RxD2	Input	Receive data input
	Transmit data pin	TxD2	Output	Transmit data output

Rev. 6.00 Jun. 12, 2007 Page 328 of 610 REJ09B0131-0600

- Bit rate register_0 (SCBRR_0)
- FIFO control register_0 (SCFCR_0)
- FIFO data count register_0 (SCFDR_0)
- Serial port register_0 (SCSPTR_0)
- Line status register_0 (SCLSR_0)
- Receive FIFO data register_1 (SCFRDR_1)
- Transmit FIFO data register_1 (SCFTDR_1)
- Serial mode register_1 (SCSMR_1)
- Serial control register_1 (SCSCR_1)
- Serial status register_1 (SCFSR_1)
- Bit rate register_1 (SCBRR_1)
- FIFO control register_1 (SCFCR_1)
- FIFO data count register_1 (SCFDR_1)
- Serial port register_1 (SCSPTR_1)
- Line status register_1 (SCLSR_1)
- Receive FIFO data register_2 (SCFRDR_2)
- Transmit FIFO data register_2 (SCFTDR_2)
- Serial mode register_2 (SCSMR_2)
- Serial control register_2 (SCSCR_2)
- Serial status register_2 (SCFSR_2)
- Bit rate register_2 (SCBRR_2)
- FIFO control register_2 (SCFCR_2)
- FIFO data count register_2 (SCFDR_2)
- Serial port register_2 (SCSPTR_2)
- Line status register_2 (SCLSR_2)

RENESAS

(SCRSR) into SCFRDR for storage. Continuous reception is possible until 16 bytes are st

The CPU can read but not write to SCFRDR. If data is read when there is no receive data SCFRDR, the value is undefined. When this register is full of receive data, subsequent se is lost.

SCFRDR is initialized to undefined value by a power-on reset.

Bit	Bit Name	Initial value	R/W	Description
7 to 0	_	Undefined	R	FIFO for transmits serial data

14.3.3 Transmit Shift Register (SCTSR)

SCTSR transmits serial data. The SCIF loads transmit data from the transmit FIFO data r (SCFTDR) into SCTSR, then transmits the data serially from the TxD pin, LSB (bit 0) fin transmitting one data byte, the SCIF automatically loads the next transmit data from SCF SCTSR and starts transmitting again. The CPU cannot read or write to SCTSR directly.

Rev. 6.00 Jun. 12, 2007 Page 330 of 610 REJ09B0131-0600

Bit	Bit Name	Initial value	R/W	Description
7 to 0	_	Undefined	W	FIFO for transmits serial data

14.3.5 Serial Mode Register (SCSMR)

SCSMR is a 16-bit register that specifies the SCIF serial communication format and sele clock source for the baud rate generator.

The CPU can always read and write to SCSMR. SCSMR is initialized to H'0000 by a por reset.

		Initial		
Bit	Bit Name	value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
7	C/A	0	R/W	Communication Mode
				Selects whether the SCIF operates in asynch synchronous mode.
				0: Asynchronous mode
				1: Synchronous mode

RENESAS

				check the synchrone	whether to add a parity bit to transmit data e parity of receive data, in asynchronous r ous mode, a parity bit is neither added no regardless of the PE setting.
				0: Parity b	pit not added or checked
				1: Parity b	pit added and checked*
				a n	When PE is set to 1, an even or odd parity added to transmit data, depending on the node (O/\overline{E}) setting. Receive data parity is according to the even/odd (O/\overline{E}) mode set
4	O/Ē	0	R/W	Parity mo	de
				checked. mode and enable pa ignored in	ven or odd parity when parity bits are add The O/\overline{E} setting is used only in asynchro d only when the parity enable bit (PE) is s arity addition and checking. The O/\overline{E} settin n synchronous mode, or in asynchronous ity addition and checking is disabled. arity ^{*1}
				1: Odd pa	,
				•	If even parity is selected, the parity bit is to transmit data to make an even number the transmitted character and parity bit combined. Receive data is checked to so has an even number of 1s in the receive character and parity bit combined.
				2.	If odd parity is selected, the parity bit is a transmit data to make an odd number of transmitted character and parity bit com Receive data is checked to see if it has a number of 1s in the received character a bit combined.

Rev. 6.00 Jun. 12, 2007 Page 332 of 610 REJ09B0131-0600

				0: One stop bit When transmitting, a single 1-bit is added a of each transmitted character.
				1: Two stop bits When transmitting, two 1 bits are added at each transmitted character.
2		0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
1	CKS1	0	R/W	Clock Select 1 and 0
0	CKS0	0	R/W	Select the internal clock source of the on-chip generator. Four clock sources are available. P $\phi/16$ and P $\phi/64$. For further information on the source, bit rate register settings, and baud rate section 14.3.8, Bit Rate Register (SCBRR).
				00: Pø
				01: Pø/4
				10: Pø/16
				11: Pø/64
				Note: Po: Peripheral clock

7	TIE	0	R/W	Transmit Interrupt Enable
				Enables or disables the transmit-FIFO-data-en interrupt (TXI).
				Serial transmit data in the transmit FIFO data r (SCFTDR) is send to the transmit shift register (SCTSR). Then, the TDFE flag in the serial sta register (SCFSR) is set to1 when the number of SCFTDR becomes less than the number of transmission triggers. At this time, a TXI is requ
				0: Transmit-FIFO-data-empty interrupt request disabled*
				1: Transmit-FIFO-data-empty interrupt request enabled
				Note: * The TXI interrupt request can be clear writing a greater number of transmit da the specified transmission trigger num SCFTDR and by clearing the TDFE bit after reading 1 from the TDFE bit, or c cleared by clearing this bit to 0.

Rev. 6.00 Jun. 12, 2007 Page 334 of 610 REJ09B0131-0600

				are disabled*
				1: Receive-data-full interrupt (RXI), receive-en interrupt (ERI), and break interrupt (BRI) re are enabled
				Note: * RXI interrupt requests can be cleared reading the DR or RDF flag after it has set to 1, then clearing the flag to 0, o clearing RIE to 0. ERI or BRI interrup can be cleared by reading the ER, BI ORER flag after it has been set to 1, clearing the flag to 0, or by clearing F REIE to 0.
5	TE	0	R/W	Transmit Enable
				Enables or disables the SCIF serial transmitte
				0: Transmitter disabled
				1: Transmitter enabled*
				Note: * Serial transmission starts after writing transmit data into SCFTDR. Select th format in SCSMR and SCFCR and re transmit FIFO before setting TE to 1.

				detected in asynchronous mode, or synchronous clock input is detected synchronous mode. Select the recei in SCSMR and SCFCR and reset the FIFO before setting RE to 1.
3	REIE	0	R	Receive Error Interrupt Enable
				Enables or disables the receive-error (ERI) inte and break (BRI) interrupts. The setting of REIE valid only when RIE bit is set to 0.
				0: Receive-error interrupt (ERI) and break inter (BRI) requests are disabled*
				1: Receive-error interrupt (ERI) and break inter (BRI) requests are enabled
				Note: * ERI or BRI interrupt requests can be of by reading the ER, BR or ORER flag a has been set to 1, then clearing the fla by clearing RIE and REIE to 0. Even it set to 0, when REIE is set to 1, ERI or interrupt requests are enabled.
2	—	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.

Rev. 6.00 Jun. 12, 2007 Page 336 of 610 REJ09B0131-0600

(SCSMR), then set CKE1 and CKE0.

- Asynchronous mode
- 00: Internal clock, SCK pin used for input pin signal is ignored. The state of the SCK pir on both the SCKIO and SCKDT bits.)
- 01: Internal clock, SCK pin used for clock out (The output clock frequency is 16 times th
- External clock, SCK pin used for clock inp (The input clock frequency is 16 times the
- 11: Setting prohibited
- Synchronous mode
- 00: Internal clock, SCK pin used for serial clo
- 01: Internal clock, SCK pin used for serial clo
- 10: External clock, SCK pin used for serial clo
- 11: Setting prohibited

Bit	Bit Name	value	R/W	Description
15	PER3	0	R	Number of Parity Errors
14	PER2	0	R	Indicate the number of data including a parity
13	PER1	0	R	the receive data stored in the receive FIFO d register (SCFRDR). The value indicated by b
12	PER0	0	R	12 represents the number of parity errors in SCFRDR. When parity errors have occurred byte receive data in SCFRDR, PER3 to PER 0.
11	FER3	0	R	Number of Framing Errors
10	FER2	0	R	Indicate the number of data including a frami
9	FER1	0	R	in the receive data stored in SCFRDR. The v indicated by bits 11 to 8 represents the numb
8	FER0	0	R	framing errors in SCFRDR. When framing er occurred in all 16-byte receive data in SCFRI FER3 to FER0 show 0.

Rev. 6.00 Jun. 12, 2007 Page 338 of 610 REJ09B0131-0600

1: A framing error or parity error has occurre [Setting conditions]

- ER is set to 1 when the stop bit is 0 after whether or not the last stop bit of the red data is 1 at the end of one data receive operation*²
- ER is set to 1 when the total number of receive data plus parity bit does not mat even/odd parity specified by the O/E bit SCSMR
- Notes: 1. Clearing the RE bit to 0 in SCSCI affect the ER bit, which retains its value. Even if a receive error occ receive data is transferred to SCF the receive operation is continued or not the data read from SCRDF a receive error can be detected b and PER bits in SCFSR.
 - In two stop bits mode, only the fir is checked; the second stop bit is checked.

1: End of transmission

[Setting conditions]

- TEND is set to 1 when the chip is a power reset
- TEND is set to 1 when TE is cleared to 0 serial control register (SCSCR)
- TEND is set to 1 when SCFTDR does no receive data when the last bit of a one-by character is transmitted

Rev. 6.00 Jun. 12, 2007 Page 340 of 610 REJ09B0131-0600

number

[Clearing conditions]

- TDFE is cleared to 0 when data exceeding specified transmission trigger number is SCFTDR after 1 is read from the TDFE then 0 is written
- TDFE is cleared to 0 when DMAC write exceeding the specified transmission trig number to SCFTDR
- 1: The number of transmit data in SCFTDR or less than the specified transmission tri number*

[Setting conditions]

- TDFE is set to 1 by a power-on reset
- TDFE is set to 1 when the number of tra data in SCFTDR has become equal to o than the specified transmission trigger n a result of transmission
- Note: * Since SCFTDR is a 16-byte FIFO r the maximum number of data that o written when TDFE is 1 is "16 minu specified transmission trigger numb attempt is made to write additional data is ignored. The number of data SCFTDR is indicated by the upper SCFDR.

RENESAS

				after it has been set to 1, then writes 0 to
				1: Break signal received*
				[Setting condition]
				 BRK is set to 1 when data including a fra error is received, and a framing error occ space 0 in the subsequent receive data
				Note: * When a break is detected, transfer or receive data (H'00) to SCFRDR stop detection. When the break ends and receive signal becomes mark 1, the of receive data resumes.
3	FER	0	R	Framing Error
				Indicates a framing error in the data read from next receive FIFO data register (SCFRDR) ir asynchronous mode.
				0: No receive framing error occurred in the nor read from SCFRDR
				[Clearing conditions]
				 FER is cleared to 0 when the chip undergover-on reset
				 FER is cleared to 0 when no framing error present in the next data read from SCFR
				1: A receive framing error occurred in the nex read from SCFRDR.
				[Setting condition]
				 FER is set to 1 when a framing error is pr the next data read from SCFRDR
				the next data read from SCFRDR

Rev. 6.00 Jun. 12, 2007 Page 342 of 610 REJ09B0131-0600

 PER is cleared to 0 when no parity error present in the next data read from SCFF
 1: A receive parity error occurred in the data from SCFRDR
 [Setting condition]
 PER is set to 1 when a parity error is pre the next data read from SCFRDR

[Clearing conditions]

- RDF is cleared to 0 by a power-on reset
- RDF is cleared to 0 when the SCFRDR is until the number of receive data in SCFR becomes less than the specified receive to number after 1 is read from RDF and then written
- 1: The number of receive data in SCFRDR is than the specified receive trigger number

[Setting condition]

- RDF is set to 1 when a number of receive more than the specified receive trigger nu stored in SCFRDR*
- Note: * SCFTDR is a 16-byte FIFO register. RDF is 1, the specified receive triggen number of data can be read at the m If an attempt is made to read after al in SCFRDR has been read, the data undefined. The number of receive da SCFRDR is indicated by the lower 8 SCFDR.

Rev. 6.00 Jun. 12, 2007 Page 344 of 610 REJ09B0131-0600

[Clearing conditions]

- DR is cleared to 0 when the chip underg power-on reset
- DR is cleared to 0 when all receive data after 1 is read from DR and then 0 is wri

1: Next receive data has not been received [Setting conditions]

 DR is set to 1 when SCFRDR contains I than the specified receive trigger number next data has not yet been received after elapse of 15 ETU from the last stop bit.³

Note: * This is equivalent to 1.5 frames with 1-stop-bit format. (ETU: elementary

Note: * The only value that can be written is 0 to clear the flag.

• Asynchronous mode:

$$N = \frac{P\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

• Synchronous mode:

$$N = \frac{P\varphi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

- B: Bit rate (bits/s)
- N: SCBRR setting for baud rate generator (0 \le N \le 255) (The setting value should satisfy the electrical characteristics.)
- Po: Operating frequency for peripheral modules (MHz)
- n: Baud rate generator clock source (n = 0, 1, 2, 3) (for the clock sources and v n, see table 14.2.)

Rev. 6.00 Jun. 12, 2007 Page 346 of 610 REJ09B0131-0600

$$\left((N+1) \times B \times 64^{2n-1} \times 2^{-1} \right)^{-1}$$

Table 14.3 lists examples of SCBRR settings in asynchronous mode, and table 14.4 lists of SCBRR settings in synchronous mode.

	Pφ (MHz)								
					6	6.14			
Bit Rate (bits/s)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	
110	2	88	-0.25	2	106	-0.44	2	108	
150	2	64	0.16	2	77	0.16	2	79	
300	1	129	0.16	1	155	0.16	1	159	
600	1	64	0.16	1	77	0.16	1	79	
1200	0	129	0.16	0	155	0.16	0	159	
2400	0	64	0.16	0	77	0.16	0	79	
4800	0	32	-1.36	0	38	0.16	0	39	
9600	0	15	1.73	0	19	-2.34	0	19	
19200	0	7	1.73	0	9	-2.34	0	9	
31250	0	4	0.00	0	5	0.00	0	5	
38400	0	3	1.73	0	4	-2.34	0	4	

 Table 14.3
 Bit Rates and SCBRR Settings in Asynchronous Mode

RENESAS

4800	0	47	0.00	0	51	0.16	0	63	(
9600	0	23	0.00	0	25	0.16	0	31	(
19200	0	11	0.00	0	12	0.16	0	15	(
31250	0	6	5.33	0	7	0.00	0	9	-
38400	0	5	0.00	0	6	-6.99	0	7	(

						Ρφ (MHz	:)			
		10			12			12.28	8		14.7
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N
110	2	177	-0.25	2	212	0.03	2	217	0.08	3	64
150	2	129	0.16	2	155	0.16	2	159	0.00	2	191
300	2	64	0.16	2	77	0.16	2	79	0.00	2	95
600	1	129	0.16	1	155	0.16	1	159	0.00	1	191
1200	1	64	0.16	1	77	0.16	1	79	0.00	1	95
2400	0	129	0.16	0	155	0.16	0	159	0.00	0	191
4800	0	64	0.16	0	77	0.16	0	79	0.00	0	95
9600	0	32	-1.36	0	38	0.16	0	39	0.00	0	47
19200	0	15	1.73	0	19	0.16	0	19	0.00	0	23
31250	0	9	0.00	0	11	0.00	0	11	2.40	0	14
38400	0	7	1.73	0	9	-2.34	0	9	0.00	0	11

Rev. 6.00 Jun. 12, 2007 Page 348 of 610 REJ09B0131-0600

RENESAS

9600 0 51 0.16 0 63 0.00 0 64 0.16 0 19200 0 25 0.16 0 31 0.00 0 32 -1.36 0 31250 0 15 0.00 0 19 -1.70 0 19 0.00 0	2400	0	207	0.10	0	200	0.00	1	04	0.10	I	
19200 0 25 0.16 0 31 0.00 0 32 -1.36 0 31250 0 15 0.00 0 19 -1.70 0 19 0.00 0	4800	0	103	0.16	0	127	0.00	0	129	0.16	0	158
31250 0 15 0.00 0 19 -1.70 0 19 0.00 0	9600	0	51	0.16	0	63	0.00	0	64	0.16	0	77
	19200	0	25	0.16	0	31	0.00	0	32	-1.36	0	38
38400 0 12 0.16 0 15 0.00 0 15 1.73 0	31250	0	15	0.00	0	19	-1.70	0	19	0.00	0	23
	38400	0	12	0.16	0	15	0.00	0	15	1.73	0	19

	Ρφ (MHz)												
		24.57	6		28.7	•		30					
Bit Rate (bits/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N		
110	3	108	0.08	3	126	0.31	3	132	0.13	3	14		
150	3	79	0.00	3	92	0.46	3	97	-0.35	3	100		
300	2	159	0.00	2	186	-0.08	2	194	0.16	2	214		
600	2	79	0.00	2	92	0.46	2	97	-0.35	2	106		
1200	1	159	0.00	1	186	-0.08	1	194	0.16	1	214		
2400	1	79	0.00	1	92	0.46	1	97	-0.35	1	100		
4800	0	159	0.00	0	186	-0.08	0	194	-1.36	0	214		
9600	0	79	0.00	0	92	0.46	0	97	-0.35	0	100		
19200	0	39	0.00	0	46	-0.61	0	48	-0.35	0	53		
31250	0	24	-1.70	0	28	-1.03	0	29	0.00	0	32		
38400	0	19	0.00	0	22	1.55	0	23	1.73	0	26		

Note: Settings with an error of 1% or less are recommended.

Renesas

5K	0	249	1	99	1	199	2	89	2	93	2
10k	0	124	0	199	1	99	1	178	1	187	1
25k	0	49	0	79	0	159	1	71	1	74	1
50k	0	24	0	39	0	79	0	143	0	149	0
100k	_	_	0	19	0	39	0	71	0	74	0
250k	0	4	0	7	0	15	_	_	0	29	0
500k	_	_	0	3	0	7	_	_	0	14	0
1M	_	_	0	1	0	3	_	_	_	_	0
2M			0	0*	0	1	_	_	_	_	_

[Legend]

Blank: No setting possible

--: Setting possible, but error occurs

*: Continuous transmission/reception is disabled.

Note: Settings with an error of 1% or less are recommended.

Rev. 6.00 Jun. 12, 2007 Page 350 of 610 REJ09B0131-0600

9.8304	307200	0	0
12	375000	0	0
14.7456	460800	0	0
16	500000	0	0
19.6608	614400	0	0
20	625000	0	0
24	750000	0	0
24.576	768000	0	0
28.7	896875	0	0
30	937500	0	0
33	1031250	0	0

19.6608	4.9152	307200
20	5.0000	312500
24	6.0000	375000
24.576	6.1440	384000
28.7	7.1750	448436
30	7.5000	468750
33	8.25	515625

Table 14.7 Maximum Bit Rates with External Clock Input (Synchronous Mode)

Pφ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bi
5	0.8333	833333.3
8	1.3333	1333333.3
16	2.6667	2666666.7
24	4.0000	400000.0
28.7	4.7833	4783333.3
30	5.0000	500000.0
33	5.5000	5500000.0

Rev. 6.00 Jun. 12, 2007 Page 352 of 610 REJ09B0131-0600

10	RSTRG2	0	R/W	RTS Output Active Trigger
9	RSTRG1	0	R/W	When the number of receive data in the recei
8	RSTRG0	0	R/W	register (SCFRDR) becomes more than the n shown below, the RTS signal is set to high.
				These bits are available only in SCFCR_0 an SCFCR_1. In SCFCR_2, these bits are reser initial value is 0 and the write value should alv
				000: 15
				001: 1
				010: 4
				011: 6
				100: 8
				101: 10
				110: 12
				111: 14

				10: 8
				11: 14
				Synchronous mode
				00: 1
				01: 2
				10: 8
				11: 14
5	TTRG1	0	R/W	Transmit FIFO Data Trigger 1 and 0
4	TTRG0	0	R/W	Set the specified transmit trigger number. The FIFO data register empty (TDFE) flag in the set status register (SCFSR) is set when the number transmit data in the transmit FIFO data register (SCFTDR) becomes less than the specified trig number shown below. 00: 8 (8)* 01: 4 (12)* 10: 2 (14)* 11: 0 (16)* Note: * Values in parentheses mean the number remaining bytes in SCFTDR when the flag is set to 1.

Rev. 6.00 Jun. 12, 2007 Page 354 of 610 REJ09B0131-0600

				the input value, and the $\overline{\text{RTS}}$ signal i fixed 0.
2	TFRST	0	R/W	Transmit FIFO Data Register Reset
				Disables the transmit data in the transmit FIF register and resets the data to the empty stat
				0: Reset operation disabled*
				1: Reset operation enabled
				Note: * Reset operation is executed by a powreset.
1	RFRST	0	R/W	Receive FIFO Data Register Reset
				Disables the receive data in the receive FIFO register and resets the data to the empty state
				0: Reset operation disabled*
				1: Reset operation enabled
				Note: * Reset operation is executed by a powreset.
0	LOOP	0	R/W	Loop-Back Test
				Internally connects the transmit output pin (To receive input pin (RxD) and enables loop-bac
				0: Loop back test disabled
				1: Loop back test enabled

Renesas

				These bits are always read as 0. The write valu always be 0.
12	T4	0	R	Indicate the number of non-transmitted data st
11	Т3	0	R	SCFTDR. H'00 means no transmit data, and H means that SCFTDR is full of transmit data.
10	T2	0	R	means that SOT TENTIS full Of transmit data.
9	T1	0	R	
8	Т0	0	R	
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
4	R4	0	R	Indicate the number of receive data stored in S
3	R3	0	R	H'00 means no receive data, and H'10 means SCFRDR full of receive data.
2	R2	0	R	Sof fibri fuil of federice data.
1	R1	0	R	

Rev. 6.00 Jun. 12, 2007 Page 356 of 610 REJ09B0131-0600

• 1

		Initial						
Bit	Bit Name	value	R/W	Description				
15 to 8	_	All 0	R	Reserved				
					e bits are s be 0.	always r	ead as 0. The write va	
7	RTSIO	0	R/W	RTS I	Port Inpu	t/Output	Control	
				Controls the $\overline{\text{RTS}}$ pin in combination with the in this register and the MCE bit in SCFCR.				
							CPTR_2 of SCIF char loes not support the flo	
6	RTSDT	*	R/W	RTS Port Data				
				Controls the RTS pin in combination with the in this register and the MCE bit in SCFCR. S RTS pin function in the PFC (pin function corbeforehand.				
				MCE	RTSIO	RTSDT	: RTS pin state	
				0	0	×:	Input (initial state)	
				0	1	0:	Low level output	
				0	1	1:	High level output	
				1	×	×:	Sequence output acc modem control logic	
				×: Do	n't care			
				value	. This bit e SCIF o	is reserv	ad from this bit instead ed in SCPTR_2 of SC does not support the	

				beforehand.			
				MCE	CTSIO	CTSDT:	CTS pin state
				0	0	×:	Input (initial state)
				0	1	0:	Low level output
				0	1	1:	High level output
				1	×	×:	Input to modem cor
				×: Don'	t care		
				value.	This bit is SCIF cha	reserved	from this bit instead in SCPTR_2 of SCIF es not support the fl
3	SCKIO	0	R/W	SCK P	ort Input/C	Output Co	ntrol
				Controls the SCK pin in combination with the bit in this register, the C/A bit in SCSMR, and and CKE0 in SCSCR.			

Rev. 6.00 Jun. 12, 2007 Page 358 of 610 REJ09B0131-0600

									according to logic
				0	1	0	×	×:	External cloo serial core lo
				0	1	1	×	×:	Setting prohi
				1	0	0	×	×:	Internal clock according to logic
				1	0	1	×	×:	Internal cloc according to logic
				1	1	0	×	×:	External cloo serial core lo
				1	1	1	×	×:	Setting prohi
				×:	Don't	care			
					e SCł t value		tate is r	ead from	this bit instead
1	SPBIO	0	R/W	Se	rial Po	ort Bre	ak Inpu	t/Output	Control
				Controls the TxD pin in combination with the in this register and the TE bit in SCSCR.					

to serial core logic

×: Don't care

The RxD pin state is read from this bit instead value.

Note: * This bit is read as an undefined value and the setting value is 0.

Rev. 6.00 Jun. 12, 2007 Page 360 of 610 REJ09B0131-0600

0	ORER	0	R/(W)*	Overrun Error
				Indicates the occurrence of an overrun error
				0: Receiving is in progress or has ended no
				[Clearing conditions]
				 ORER is cleared to 0 when the chip is a reset
				• ORER is cleared to 0 when 0 is written a read from ORER.
				1: An overrun error has occurred *2
				[Setting condition]
				• ORER is set to 1 when the next serial re
				finished while receive FIFO data are full
				Notes: 1. Clearing the RE bit to 0 in SCS0 not affect the ORER bit, which r previous value.
				 The receive FIFO data register hold the data before an overrun occurred, and the next receive of extinguished. When ORER is se SCIF can not continue the next receiving.

Note: * The only value that can be written is 0 to clear the flag.

selected by the combination of the CKE1 and CKE0 bits in the serial control register (SC

Asynchronous Mode:

- Data length is selectable: 7 or 8 bits.
- Parity bit is selectable. So is the stop bit length (1 or 2 bits). The combination of the p selections constitutes the communication format and character length.
- In receiving, it is possible to detect framing errors, parity errors, receive FIFO data fu overrun errors, receive data ready, and breaks.
- The number of stored data bytes is indicated for both the transmit and receive FIFO re
- An internal or external clock can be selected as the SCIF clock source.
 - When an internal clock is selected, the SCIF operates using the on-chip baud rate generator.
 - When an external clock is selected, the external clock input must have a frequency the bit rate. (The on-chip baud rate generator is not used.)

Synchronous Mode:

- The transmission/reception format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors (ORER).
- An internal or external clock can be selected as the SCIF clock source.
 - When an internal clock is selected, the SCIF operates using the on-chip baud rate generator, and outputs a serial clock signal to external devices.
 - When an external clock is selected, the SCIF operates on the input serial clock. The chip baud rate generator is not used.

Rev. 6.00 Jun. 12, 2007 Page 362 of 610 REJ09B0131-0600

NI I	.1.						
1	*	*	*	Synchronous	8-bit	Not set	None
			1				2 bits
		1	0			Set	1 bit
			1				2 bits

Note: * : Don't care

Table 14.9 SCSMR and SCSCR Settings and SCIF Clock Source Selection

SCSMR	SCSCR	Settings			SCIF Transmit/Receive Clock
Bit 7 C/Ā	Bit 1 CKE1	Bit 0 CKE0	- Mode	Clock Source	SCK Pin Function
0	0	0	Asynchronous	Internal	SCIF does not use the SCK pin. of the SCK pin depends on both SCKIO and SCKDT bits.
		1	-		Clock with a frequency 16 times is output.
	1	0	-	External	Input a clock with frequency 16 ti bit rate.
		1	-		Setting prohibited.
1	0	*	Synchronous	Internal	Serial clock is output.
	1	0	_	External	Input the serial clock.
		1		_	Setting prohibited.

Note: * : Don't care

Renesas

serial communication, the communication line is normally held in the mark (high) state. T monitors the line and starts serial communication when the line goes to the space (low) st indicating a start bit. One serial character consists of a start bit (low), data (LSB first), par (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCIF synchronizes at the falling edge of the s The SCIF samples each data bit on the eighth pulse of a clock with a frequency 16 times rate. Receive data is latched at the center of each bit.

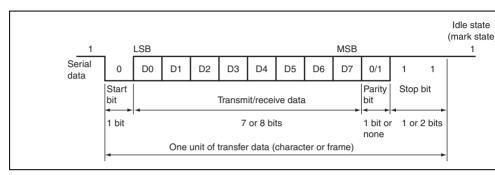


Figure 14.2 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)

Rev. 6.00 Jun. 12, 2007 Page 364 of 610 REJ09B0131-0600

0	1	0	START	8-bit data	Р	SI
0	1	1	START	8-bit data	Р	S
1	0	0	START	7-bit data STOP]	
1	0	1	START	7-bit data STOP	STOP	
1	1	0	START	7-bit data P	STOP	
1	1	1	START	7-bit data P	STOP	SI

[Legend] START: Start bit STOP: Stop bit P: Parity bit

Clock: An internal clock generated by the on-chip baud rate generator or an external cloc from the SCK pin can be selected as the SCIF transmit/receive clock. The clock source is by the C/\overline{A} bit in the serial mode register (SCSMR) and bits CKE1 and CKE0 in the serier register (SCSCR) (table 14.9).

When an external clock is input at the SCK pin, it must have a frequency equal to 16 tin desired bit rate.

When the SCIF operates on an internal clock, it can output a clock signal at the SCK pir frequency of this output clock is equal to 16 times the desired bit rate.

RENESAS

and reset SCFTDR before TE is set again to start transmission.

When an external clock is used, the clock should not be stopped during initialization or stopperation. SCIF operation becomes unreliable if the clock is stopped.

Rev. 6.00 Jun. 12, 2007 Page 366 of 610 REJ09B0131-0600

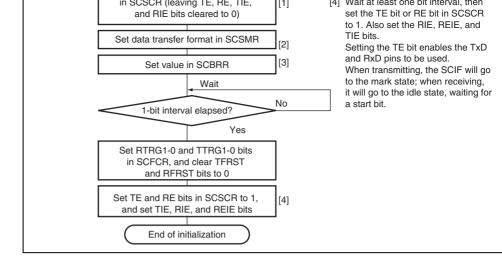
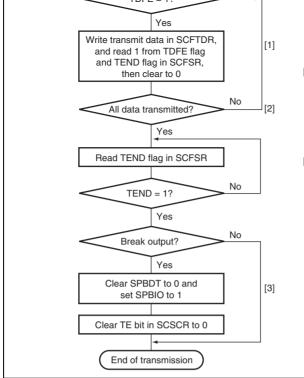



Figure 14.3 Sample Flowchart for SCIF Initialization

from the TDFE and TEND flags, then clear to 0.

The number of transmit data bytes that can be written is 16 - (transmit trigger set number).

[2] Serial transmission continuation procedure:

To continue serial transmission, read 1 from the TDFE flag to confirm that writing is possible, then write data to SCFTDR, and then clear the TDFE flag to 0.

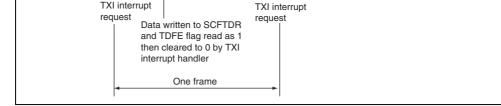
[3] Break output at the end of serial transmission:

To output a break in serial transmission, clear the SPBDT bit to 0 and set the SPBIO bit to 1 in SCSPTR, then clear the TE bit in SCSCR to 0.

In [1] and [2], it is possible to ascertain the number of data bytes that can be written from the number of transmit data bytes in SCFTDR indicated by the upper 8 bits of SCFDR.

Figure 14.4 Sample Flowchart for Transmitting Serial Data

Rev. 6.00 Jun. 12, 2007 Page 368 of 610 REJ09B0131-0600



generated.

The serial transmit data is sent from the TxD pin in the following order.

- A. Start bit: One-bit 0 is output.
- B. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
- C. Parity bit: One parity bit (even or odd parity) is output. (A format in which a parinot output can also be selected.)
- D. Stop bit(s): One or two 1 bits (stop bits) are output.
- E. Mark state: 1 is output continuously until the start bit that starts the next transmis sent.
- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the stop bit. If present, the data is transferred from SCFTDR to SCTSR, the stop bit is sent, and the transmission of the next frame is started. If there is no transmit data, the TEND flag is set to 1, the stop bit is sent, and then the line goes to the mark state in which 1 is o continuously.

Figure 14.5 Example of Transmit Operation (8-Bit Data, Parity, One Stop Bit)

4. When modem control is enabled, transmission can be stopped and restarted in accordation the CTS input value. When CTS is set to 1, if transmission is in progress, the line goe mark state after transmission of one frame. When CTS is set to 0, the next transmit date output starting from the start bit.

Figure 14.6 shows an example of the operation when modem control is used (only for channel 0).

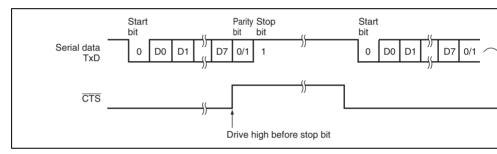
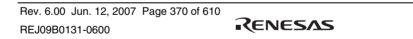
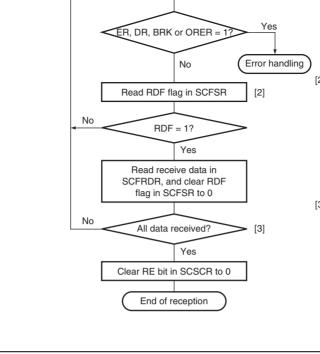
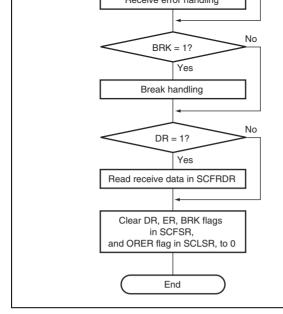
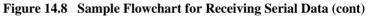




Figure 14.6 Example of Operation Using Modem Control (CTS)

then clear the DR, ER, BRK, and ORER flags to 0. In the case of a framing error, a break can also be detected by reading the value of the RxD pin.

[2] SCIF status check and receive data read:


Read SCFSR and check that RDF = 1, then read the receive data in SCFRDR, read 1 from the RDF flag, and then clear the RDF flag to 0. The transition of the RDF flag from 0 to 1 can also be identified by an RXI interrupt.

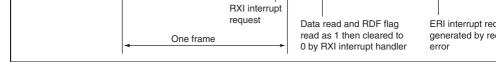

[3] Serial reception continuation procedure:

To continue serial reception, read at least the receive trigger set number of receive data bytes from SCFRDR, read 1 from the RDF flag, then clear the RDF flag to 0. The number of receive data bytes in SCFRDR can be ascertained by reading from SCRFDR.

Figure 14.7 Sample Flowchart for Receiving Serial Data

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 372 of 610 REJ09B0131-0600


- (BERGR) to BELIER.
- C. Overrun check: The SCIF checks that the ORER flag is 0, indicating that the over has not occurred.
- D. Break check: The SCIF checks that the BRK flag is 0, indicating that the break set.

If all the above checks are passed, the receive data is stored in SCFRDR.

Note: When a parity error or a framing error occurs, reception is not suspended.

4. If the RIE bit in SCSCR is set to 1 when the RDF or DR flag changes to 1, a receive data-full interrupt (RXI) request is generated. If the RIE bit or the REIE bit in SCSC 1 when the ER flag changes to 1, a receive-error interrupt (ERI) request is generated RIE bit or the REIE bit in SCSCR is set to 1 when the BRK or ORER flag changes to break reception interrupt (BRI) request is generated.

Figure 14.9 Example of SCIF Receive Operation (8-Bit Data, Parity, One Stop Bit)

5. When modem control is enabled, the $\overline{\text{RTS}}$ signal is output depending on the empty sta SCFRDR. When $\overline{\text{RTS}}$ is 0, reception is possible. When $\overline{\text{RTS}}$ is 1, this indicates that the SCFRDR is full and no extra data can be received. (Only for channel 0 and channel 1 Figure 14.10 shows an example of the operation when modem control is used.

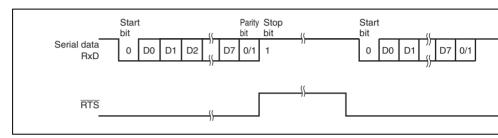
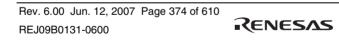



Figure 14.10 Example of Operation Using Modem Control (RTS)

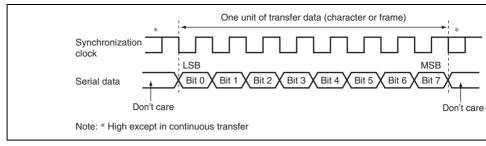
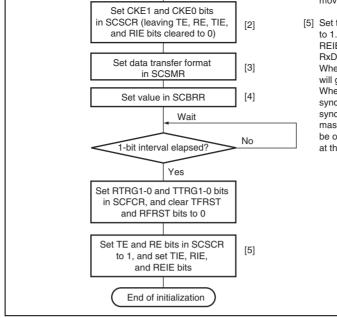


Figure 14.11 Data Format in Synchronous Communication

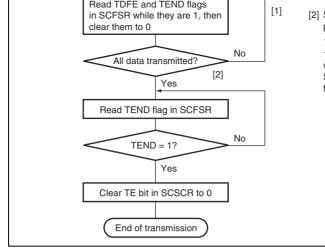
In synchronous serial communication, each data bit is output on the communication line falling edge of the serial clock to the next. Data is guaranteed valid at the rising edge of clock. In each character, the serial data bits are transmitted in order from the LSB (first) MSB (last). After output of the MSB, the communication line remains in the state of the synchronous mode, the SCIF transmits data by synchronizing with the falling edge of the clock, and receives data by synchronizing with the rising edge of the serial clock.


simultaneously with the transmission of n characters of dummy data.

Transmitting and Receiving Data SCIF Initialization (Synchronous Mode): Before transmitting, receiving, or changing the mode or communication format, the software mu the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the SCIF. C TE to 0 initializes the transmit shift register (SCTSR). Clearing RE to 0, however, does n initialize the RDF, PER, FER, and ORER flags and receive data register (SCRDR), which their previous contents.

Figure 14.12 shows a sample flowchart for initializing the SCIF. The procedure for initial SCIF is:

Rev. 6.00 Jun. 12, 2007 Page 376 of 610 REJ09B0131-0600



moving to the next step.

[5] Set the TE or RE bit in SCSCR to 1. Also set the TEI, RIE, and REIE bits to enable the TXD, RxD, and SCK pins to be used. When transmitting, the TxD pin will go to the mark state. When receiving in clocked synchronous mode with the synchronization clock output (clock master) selected, a clock starts to be output from the SCIF_CLK pin at this point.

Figure 14.12 Sample Flowchart for SCIF Initialization

[2] Serial transmission continuation procedeure:

To continue serial transmission, read 1 from the TDFE flag to confirm that writing is possible, them write data to SCFTDR, and then clear the TDFE flag to 0.

Figure 14.13 Sample Flowchart for Transmitting Serial Data

Rev. 6.00 Jun. 12, 2007 Page 378 of 610 REJ09B0131-0600

generated.

If clock output mode is selected, the SCIF outputs eight synchronous clock pulses. If external clock source is selected, the SCIF outputs data in synchronization with the i clock. Data is output from the TxD pin in order from the LSB (bit 0) to the MSB (bit

- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the MSB (bit 7 is present, the data is transferred from SCFTDR to SCTSR, the MSB (bit 7) is sent, a serial transmission of the next frame is started. If there is no transmit data, the TENE SCFSR is set to 1, the MSB (bit 7) is sent, and then the TxD pin holds the states.
- 4. After the end of serial transmission, the SCK pin is held in the high state.

Figure 14.14 shows an example of SCIF transmit operation.

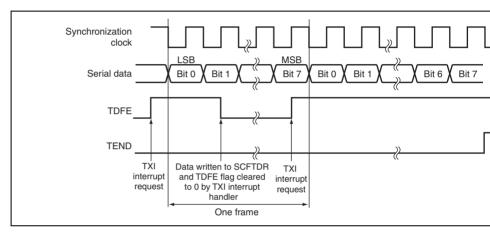
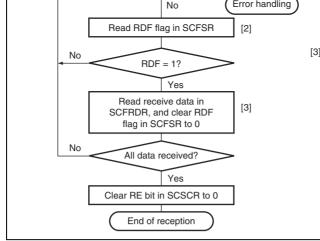



Figure 14.14 Example of SCIF Transmit Operation

Renesas

and clear the RDF flag to 0. The transition of the RDF flag from 0 to 1 can also be identified by an RXI interrupt.

[3] Serial reception continuation procedure:

To continue serial reception, read at least the receive trigger set number of receive data bytes from SCFRDR, read 1 from th RDF flag, then clear the RDF flag to 0. The number of receive data bytes in SCFRDR can be ascertained by reading SCFRDR.

Figure 14.15 Sample Flowchart for Receiving Serial Data (1)

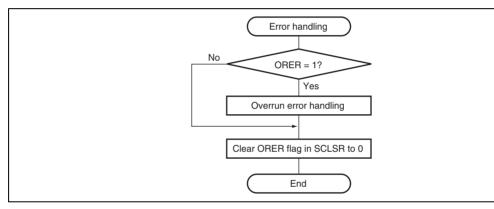
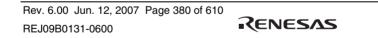



Figure 14.16 Sample Flowchart for Receiving Serial Data (2)

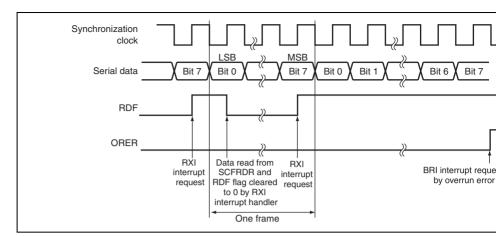


Figure 14.17 shows an example of SCIF receive operation.

Figure 14.17 Example of SCIF Receive Operation

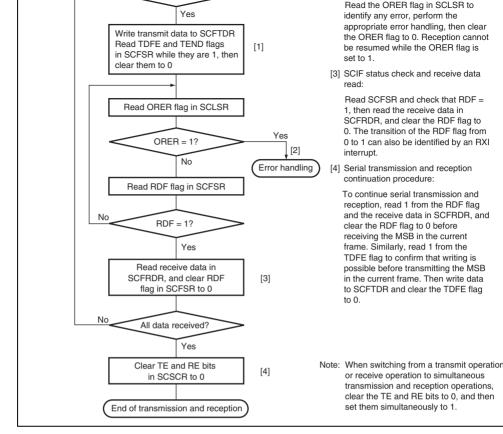


Figure 14.18 Sample Flowchart for Transmitting/Receiving Serial Data

Rev. 6.00 Jun. 12, 2007 Page 382 of 610 REJ09B0131-0600

When RXI request is enabled by RIE bit and the RDF or DR flag in SCFSR is set to 1, a interrupt request is generated. The RXI interrupt request caused by DR flag is generated asynchronous mode.

When BRI request is enabled by RIE bit or REIE bit and the BRK flag in SCFSR or OR SCLSR is set to 1, a BRI interrupt request is generated.

When ERI request is enabled by RIE bit or REIE bit and the ER flag in SCFCR is set to interrupt request is generated.

When the RIE bit is set to 0 and the REIE bit is set to 1, SCIF request ERI interrupt and interrupt without requesting RXI interrupt.

The TXI interrupt indicates that transmit data can be written, and the RXI interrupt indicates there is receive data in SCFRDR.

Table 14.11 SCIF Interrupt Sources

Interrupt Source	Description	Interrupt Enable Bit	Priorit Reset
ERI	Interrupt initiated by receive error (ER)	RIE or REIE	High
RXI	Interrupt initiated by receive data FIFO full (RDF) or data ready (DR)	RIE	
BRI	Interrupt initiated by break (BRK) or overrun error (ORER)	RIE or REIE	∎ ∎
ТХІ	Interrupt initiated by transmit FIFO data empty (TDFE)	TIE	Low

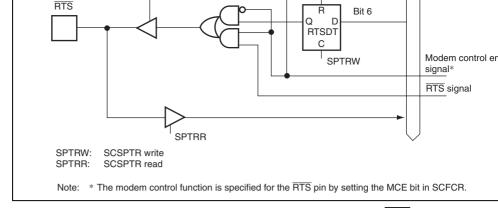


Figure 14.19 RTSIO Bit, RTSDT bit, and $\overline{\text{RTS}}$ Pin

Rev. 6.00 Jun. 12, 2007 Page 384 of 610 REJ09B0131-0600

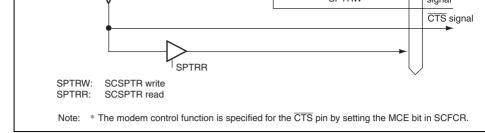


Figure 14.20 CTSIO Bit, CTSDT bit, and CTS Pin

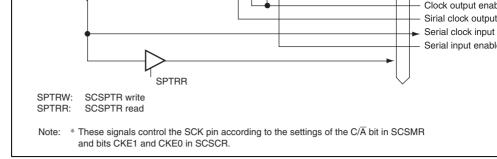


Figure 14.21 SCKIO Bit, SCKDT bit, and SCK Pin

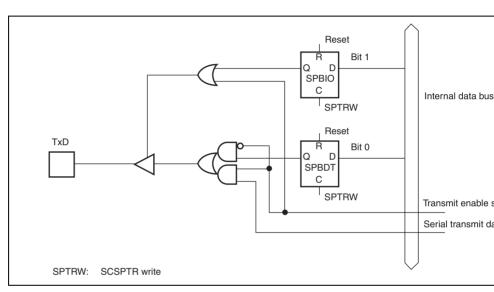


Figure 14.22 SPBIO Bit, SPBDT bit, and TxD Pin

 Rev. 6.00 Jun. 12, 2007 Page 386 of 610

 REJ09B0131-0600

riguit 14.25 SI DD I bit and KAD I m

trigger number, the TDFE flag will be set to 1 again after being read as 1 and cleared TDFE clearing should therefore be carried out when SCFTDR contains more than the trigger number of transmit data bytes.

The number of transmit data bytes in SCFTDR can be found from the upper 8 bits of data count register (SCFDR).

2. SCFRDR Reading and RDF Flag

The RDF flag in the serial status register (SCFSR) is set when the number of receive in the receive FIFO data register (SCFRDR) has become equal to or greater than the receive number set by bits RTRG1 and RTRG0 in the FIFO control register (SCFCR) RDF is set, receive data equivalent to the trigger number can be read from SCFRDR, efficient continuous reception.

However, if the number of data bytes in SCFRDR is equal to or greater than the trigg number, the RDF flag will be set to 1 again if it is cleared to 0. RDF should therefore cleared to 0 after being read as 1 after all the receive data has been read.

The number of receive data bytes in SCFRDR can be found from the lower 8 bits of the data count register (SCFDR).

3. Break Detection and Processing

Break signals can be detected by reading the RxD pin directly when a framing error (I detected. In the break state the input from the RxD pin consists of all 0s, so the FER f and the parity error flag (PER) may also be set. Note that, although transfer of receiver SCFRDR is halted in the break state, the SCIF receiver continues to operate.

Rev. 6.00 Jun. 12, 2007 Page 388 of 610 REJ09B0131-0600

5. Receive Data Sampling Timing and Receive Margin (Asynchronous Mode)

The SCIF operates on a base clock with a frequency of 16 times the transfer rate. In the SCIF synchronizes internally with the fall of the start bit, which it samples on the clock. Receive data is latched at the rising edge of the eighth base clock pulse. The tilt shown in figure 14.24.

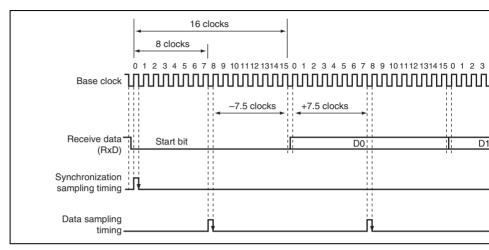


Figure 14.24 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be expressed as shown in ea

From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equ**Equation 2:**

When D = 0.5 and F = 0: M = $(0.5 - 1/(2 \times 16)) \times 100\%$ = 46.875%

This is a theoretical value. A reasonable margin to allow in system designs is 20% to

6. Prohibited Multiple Pin Allocation for Channel 1

Although signal SCK1, RxD1, or TxD1 can be assigned to pin PD4 or PE20, either of must be selected. For example, if signal SCK1 is assigned to both pins PD4 and PE20 operation of the SCIF is not guaranteed. Similarly, signal SCK1, RxD1, or TxD1 can assigned to pin PD3 or PE19 and pin PD2 or PE18, respectively. However if these sig assigned to both corresponding pins, correct operation of the SCIF is not guaranteed.

- 7. States of the TxD and RTS Pins When the TE Bit is Cleared
 - The TxDi (i = 0, 1, 2) and RTSj (j = 0, 1) pins usually function as output pins during s communication. However, even if these functions are selected by the pin function com (PFC), these pins are in the high impedance state as long as the TE bit in SCSCRi (i = is cleared. To make these pins always function as output pins (regardless of the value bit), set SCPTRi (i = 0, 1, 2) and PFC in the following order.
 - a. Set the SPBIO and SPBDT bits in SCPTRi (i = 0, 1, 2). Set the RTSIO and RTSD SCPTRj (j = 0, 1).
 - b. Select the TxDi (i = 0, 1, 2) and RTSj (j = 0, 1) pins by the PFC.
- 8. Interval from when the TE bit in SCSCR is Set to 1 until a Start Bit is Transmitted in Asynchronous Mode

In the SCIF included in former products, a start bit is transmitted after the internal equation to one frame. In the SCIF included in this product, however, a start bit is transmitted or after the TE bit is set to 1.

Rev. 6.00 Jun. 12, 2007 Page 390 of 610 REJ09B0131-0600

Using HIFRAM, the HIF also supports HIF boot mode allowing this LSI to be booted.

15.1 Features

The HIF has the following features.

- An external device can read from or write to HIFRAM in 32-bit units via the HIF pin in 8-bit or 16-bit units not allowed). The on-chip CPU can read from or write to HIF bit, 16-bit, or 32-bit units, via the internal peripheral bus. The HIFRAM access mode specified as bank mode or non-bank mode.
- When an external device accesses HIFRAM via the HIF pins, automatic increment of addresses and the endian can be specified with the HIF internal registers.
- By writing to specific bits in the HIF internal registers from an external device, or by the end address of HIFRAM from the external device, interrupts (internal interrupts) issued to the on-chip CPU. Conversely, by writing to specific bits in the HIF internal from the on-chip CPU, interrupts (external interrupts) or DMAC transfer requests can from the on-chip CPU to the external device.
- There are seven interrupt source bits each for internal interrupts and external interrup Accordingly, software control of 128 different interrupts is possible, enabling high-s transfer using interrupts.
- In HIF boot mode, this LSI can be booted from HIFRAM by an external device stori instruction code in HIFRAM.

IFHIF00A_000020030900

RENESAS

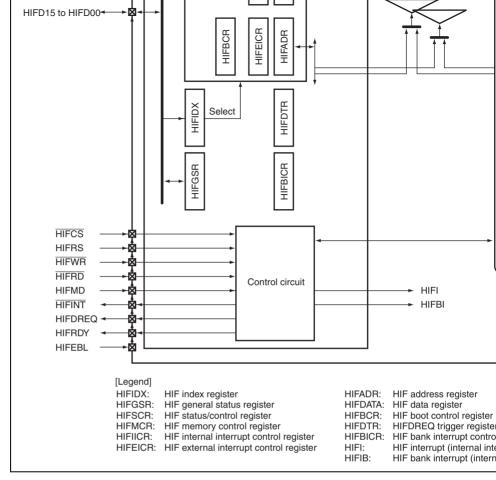


Figure 15.1 Block Diagram of HIF

Rev. 6.00 Jun. 12, 2007 Page 392 of 610 REJ09B0131-0600

			· · ·
			0: Normal access (other than below)
			1: Index register write or status regis
HIF write	HIFWR	Input	Write strobe signal. Low level is input external device writes data to the HII
HIF read	HIFRD	Input	Read strobe signal. Low level is input external device reads data from the
HIF interrupt	HIFINT	Output	Interrupt request to an external device the HIF
HIF mode	HIFMD	Input	Selects whether or not this LSI is sta HIF boot mode. If a power-on reset i canceled when high level is input, th started up in HIF boot mode.
HIFDMAC transfer request	HIFDREQ	Output	To an external device, DMAC transfe with HIFRAM as the destination
HIF boot ready	HIFRDY	Output	Indicates that the HIF reset is cance LSI and access from an external dev HIF can be accepted.
			After 10 clock cycles (max.) of the per clock following negate of the reset in this LSI, this pin is asserted.
HIF pin enable	HIFEBL	Input	All HIF pins other than this pin are a high-level input.

-				
0	×	0	0	Setting prohibited
0	×	1	1	No operation (NOP)
0	1	0	1	Write to index register (HIFIDX[7:0])
0	1	1	0	Read from status register (HIFGSR[7:0
0	0	0	1	Write to register specified by HIFIDX[7:
0	0	1	0	Read from register specified by HIFIDX

[Legend]

×: Don't care

15.3.2 Connection Method

When connecting the HIF to an external device, a method like that shown in figure 15.2 s used.

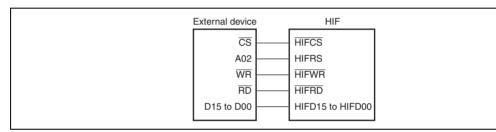
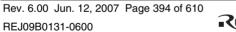



Figure 15.2 HIF Connection Example

- HIF address register (HIFADR)
- HIF data register (HIFDATA)
- HIF boot control register (HIFBCR)
- HIFDREQ trigger register (HIFDTR)
- HIF bank interrupt control register (HIFBICR)

15.4.1 HIF Index Register (HIFIDX)

HIFIDX is a 32-bit register used to specify the register read from or written to by an ext device when the HIFRS pin is held low. HIFIDX can be only read by the on-chip CPU. can be only written to by an external device while the HIFRS pin is driven high.

Bit	Bit Name	Initial Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.

000100: HIFEICR 000101: HIFADR 000110: HIFDATA 001111: HIFBCR Other than above: Setting prohibited

Rev. 6.00 Jun. 12, 2007 Page 396 of 610 REJ09B0131-0600

10. Dito 10 to 0 in 10giotor

11: Setting prohibited

• When HIFSCR.BO = 1

00: Bits 15 to 0 in register

01: Setting prohibited

10: Bits 31 to 16 in register

11: Setting prohibited

However, when HIFDATA is selected using bits REG0, each time reading or writing of HIFDATA these bits change according to the following rul

 $00 \rightarrow 10 \rightarrow 00 \rightarrow 10...$ repeated

Note: * This bit can be only written to by an external device while the HIFRS pin is he cannot be written to by the on-chip CPU.

01 to 16		All 0	Р	Deserved
31 to 16	_	All U	R	Reserved
				These bits are always read as 0. The write should always be 0.
15 to 0	STATUS15 to	All 0	R/W	General Status
	STATUS0			This register can be read from and written t external device connected to the HIF, and I on-chip CPU. These bits are initialized only power-on reset.

15.4.3 HIF Status/Control Register (HIFSCR)

HIFSCR is a 32-bit register used to control the HIFRAM access mode and endian setting HIFSCR can be read from and written to by the on-chip CPU. Access to HIFSCR by an edvice should be performed with HIFSCR specified by bits REG5 to REG0 in HIFIDX a HIFRS pin low.

Bit	Bit Name	Initial Value	R/W	Description
31 to 12	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.

Rev. 6.00 Jun. 12, 2007 Page 398 of 610 REJ09B0131-0600

				high level is generated at the HIFDREQ default for the HIFDREQ pin is low-level
				10: For a DMAC transfer request to an exter falling edge is generated at the HIFDRE default for the HIFDREQ pin is high-leve
				11: For a DMAC transfer request to an exter rising edge is generated at the HIFDREC default for the HIFDREQ pin is low-level
9	BMD	0	R/W	HIFRAM Bank Mode
8	BSEL	0	R/W	HIFRAM Bank Select
				Controls the HIFRAM access mode.
				00: Both an external device and the on-chip access bank 0. When access by both of conflict, even though the access address access by the external device is process access by the on-chip CPU. Bank 1 cann accessed.
				01: Both an external device and the on-chip access bank 1. When access by both of conflict, even though the access address access by the external device is process access by the on-chip CPU. Bank 0 can accessed.
				10: An external device can access only bank the on-chip CPU can access only bank 1
				11: An external device can access only bank the on-chip CPU can access only bank 0

Renesas

				of the HIFMD pin sampled at a power-on rese
				0: Started up in non-HIF boot mode (booted fr memory connected to area 0)
				1: Started up in HIF boot mode (booted from H
4 to 2	—	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
1	EDN	0	R/W	Endian for HIFRAM Access
				Specifies the byte order when HIFRAM is acc the on-chip CPU.
				0: Big endian (MSB first)
				1: Little endian (LSB first)
0	BO	0	R/W	Byte Order for Access of All HIF Registers Inc HIFDATA
				Specifies the byte order when an external dev accesses all HIF registers including HIFDATA
				0: Big endian (MSB first)
				1: Little endian (LSB first)

Rev. 6.00 Jun. 12, 2007 Page 400 of 610 REJ09B0131-0600

7	LOCK	0	R/W*	Lock
		·		This bit is used to lock the access direction (rea for consecutive access of HIFRAM by an exter via HIFDATA. When this bit is set to 1, the valu RD and WT bits set at the same time are held bit is next cleared to 0. When the RD bit and th simultaneously set to 1, consecutive read mod entered. When the WT bit and this bit are simul set to 1, consecutive write mode is entered. Bo and WT bits should not be set to 1 simultaneously
6	—	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
5	WT	0	R/W*	Write
				When this bit is set to 1, the HIFDATA value is the HIFRAM position corresponding to HIFADF
				If this bit and the LOCK bit are set to 1 simultar HIFRAM consecutive write mode is entered, ar speed data transfer becomes possible. This mo maintained until this bit is next cleared to 0, or LOCK bit is cleared to 0.
				If the LOCK bit is not simultaneously set to 1 w writing to HIFRAM is performed only once. The the value of this bit is automatically cleared to 0
4	—	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.

_				the value of this bit is automatically cleared to 0.
2, 1	—	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
0	AI/AD	0	R/W*	Address Auto-Increment/Decrement
				This bit is valid only when the LOCK bit is 1. The HIFADR is automatically incremented by 4 or decremented by 4 according to the setting of this time reading or writing of HIFRAM is performed.
				0: Auto-increment mode (+4)
				1: Auto-decrement mode (-4)
Note:	cannot	be written	to by the c	o by an external device when the HIFRS pin is low on-chip CPU. Changing the HIFRAM banks access g the BMD and BSEL bits in HIFSCR does not affe

Rev. 6.00 Jun. 12, 2007 Page 402 of 610 REJ09B0131-0600

setting of this bit.

_				•
7	IIC6	0	R/W	Internal Interrupt Source
6	IIC5	0	R/W	These bits specify the source for interrupts gen
5	IIC4	0	R/W	the IIR bit. These bits can be written to from bo external device and the on-chip CPU. By using
4	IIC3	0	R/W	bits, fast execution of interrupt exception handli
3	IIC2	0	R/W	possible. These bits are completely under softw
2	IIC1	0	R/W	control, and their values have no effect on the o of this LSI.
1	IIC0	0	R/W	
0	IIR	0	R/W	Internal Interrupt Request
				While this bit is 1, an interrupt request (HIFI) is the on-chip CPU.

15.4.6 HIF External Interrupt Control Register (HIFEICR)

HIFEICR is a 32-bit register used to issue interrupts to an external device connected to t from this LSI. Access to HIFEICR by an external device should be performed with HIF specified by bits REG5 to REG0 in HIFIDX and the HIFRS pin low.

Bit	Bit Name	Initial Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.

RENESAS

15.4.7 HIF Address Register (HIFADR)

HIFADR is a 32-bit register which indicates the address in HIFRAM to be accessed by an device. When using the LOCK bit setting in HIFMCR to specify consecutive access of H auto-increment (+4) or auto-decrement (-4) of the address, according to the AI/AD bit set HIFMCR, is performed automatically, and HIFADR is updated. HIFADR can be only rea on-chip CPU. Access to HIFADR by an external device should be performed with HIFAI specified by bits REG5 to REG0 in HIFIDX and the HIFRS pin low.

Bit	Bit Name	Initial Value	R/W	Description
31 to 10	—	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
9 to 2	A9 to A2	All 0	R/W*	HIFRAM Address Specification
				These bits specify the address of HIFRAM to b accessed by an external device, with 32-bit bo
1, 0	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
Note: *	This bit ca cannot be	-		by an external device when the HIFRS pin is low chip CPU.

Rev. 6.00 Jun. 12, 2007 Page 404 of 610 REJ09B0131-0600

|--|

15.4.9 HIF Boot Control Register (HIFBCR)

HIFBCR is a 32-bit register for exclusive control of an external device and the on-chip of regarding access of HIFRAM. HIFBCR can be only read by the on-chip CPU. Access to by an external device should be performed with HIFBCR specified by bits REG5 to REG HIFIDX and the HIFRS pin low.

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
7 to 1	—	All 0	R/W	AC-Bit Writing Assistance
				These bits should be used to write the bit path needed to set the AC bit to 1. These bits are a read as 0.

execution of the instruction is naited until thi cleared to 0. When booted in non-HIF boot mode, the initial this bit is 0. When booted in HIF boot mode, the initial valu bit is 1. After an external device writes a boot p to HIFRAM via the HIF, clearing this bit to 0 bo on-chip CPU from HIFRAM. When 1 is written to this bit by an external dev should be written to bits 7 to 0 to prevent error writing.

15.4.10 HIFDREQ Trigger Register (HIFDTR)

HIFDTR is a 32-bit register. Writing to HIFDTR by the on-chip CPU asserts the HIFDR HIFDTR cannot be accessed by an external device.

Bit	Bit Name	Initial Value	R/W	Description
31 to 1	_	All 0	R^{*^1}	Reserved
				These bits are always read as 0. The write va should always be 0.

Rev. 6.00 Jun. 12, 2007 Page 406 of 610 REJ09B0131-0600

the on-chip CPU, make sure this bit is clear before setting this bit to 1 by the on-chip CP

- Notes: 1. This bit cannot be accessed by an external device. It can be accessed only b chip CPU.
 - 2. Writing 0 to this bit by the on-chip CPU is ignored.

15.4.11 HIF Bank Interrupt Control Register (HIFBICR)

HIFBICR is a 32-bit register that controls HIF bank interrupts. HIFBICR cannot be accelerated external device.

Bit	Bit Name	Initial Value	R/W	Description
ы	Bit Name	value	R/W	Description
31 to 2	_	All 0	R^{*^1}	Reserved
				These bits are always read as 0. The write should always be 0.
1	BIE	0	R/W* ¹	Bank Interrupt Enable
				Enables or disables a bank interrupt reques issued to the on-chip CPU.
				0: HIFBI disabled
				1: HIFBI enabled

RENESAS

this bit is automatically set to 1 when an exter device has completed access to the 32-bit da start address of HIFRAM and the HIFCS pin negated.

Though this bit can be cleared to 0 by the on CPU, it cannot be set to 1.

Make sure setting of this bit by HIFRAM acce an external device and clearing of this bit by chip CPU do not conflict using software.

- Notes: 1. This bit cannot be accessed by an external device. It can only be accessed by chip CPU.
 - 2. Writing 1 to this bit by the on-chip CPU is ignored.

Rev. 6.00 Jun. 12, 2007 Page 408 of 610 REJ09B0131-0600

- addresses are common between the banks.
- 2. Note that in HIF boot mode, bank 0 is selected, and the first 1 kbyte in each of following address ranges are also mapped: H'00000000 to H'01FFFFFF (first Mbytes of area 0 in the P0 area), H'20000000 to H'21FFFFFF (first-half 32 M area 0 in the P0 area), H'40000000 to H'41FFFFFF (first-half 32 Mbytes of are 0 in the P0 area), H'60000000 to H'61FFFFFF (first-half 32 Mbytes of area 0 in the P1 area), H'80000000 to H'81FFFFFF (first-half 32 Mbytes of area 0 in the P1 area), H' to H'A1FFFFFF (first-half 32 Mbytes of area 0 in the P2 area), and H'C000000 H'C1FFFFFF (first-half 32 Mbytes of area 0 in the P3 area).

If an external device modifies HIFRAM when HIFRAM is accessed from the F P3 area with the cache enabled, coherency may not be ensured. When the ca enabled, accessing HIFRAM from the P2 area is recommended.

In HIF boot mode, among the first-half 32 Mbytes of each area 0, access to the which HIFRAM is not mapped is inhibited.

Even in HIF boot mode, the second-half 32 Mbytes of area 0, area 3, area 4, area 5, area 6B, and area 6 are mapped to the external memory as normally.

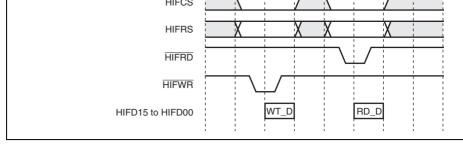


Figure 15.3 Basic Timing for HIF Interface

Rev. 6.00 Jun. 12, 2007 Page 410 of 610 REJ09B0131-0600

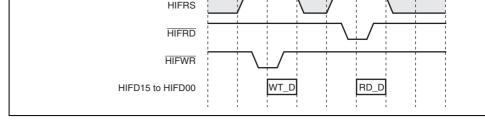


Figure 15.4 HIFIDX Write and HIFGSR Read

15.7.2 Reading/Writing of HIF Registers other than HIFIDX and HIFGSR

As shown in figure 15.5, in reading and writing of HIF internal registers other than HIF HIFGSR, first HIFRS is held high and HIFIDX is written to in order to select the register accessed and the byte location. Then HIFRS is held low, and reading or writing of the reselected by HIFIDX is performed.



Figure 15.5 HIF Register Settings

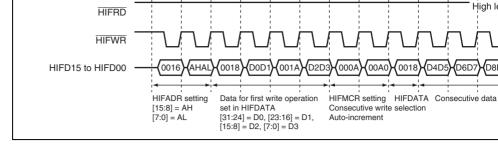


Figure 15.6 Consecutive Data Writing to HIFRAM

15.7.4 Consecutive Data Reading from HIFRAM to External Device

Figure 15.7 shows the timing chart for consecutive data reading from HIFRAM to an extra device. As this timing chart indicates, by setting the start address, data can subsequently bout consecutively.

Rev. 6.00 Jun. 12, 2007 Page 412 of 610 REJ09B0131-0600

15.8 External DMAC Interface

Figures 15.8 to 15.11 show the HIFDREQ output timing. The start of the HIFDREQ ass synchronizes with the DTRG bit in HIFDTR being set to 1. The HIFDREQ negate timin assert level are determined by the DMD and DPOL bits in HIFSCR, respectively.

When the external DMAC is specified to detect low level of the HIFDREQ signal, set D and DPOL = 0. After writing 1 to the DTRG bit, the HIFDREQ signal remains low until is detected for both the $\overline{\text{HIFCS}}$ and HIFRS signals.

In this case, when the HIFDREQ signal is used, make sure that the setup time (HIFCS a HIFRS settling) and the hold time (HIFRS hold to HIFCS negate) are satisfied. If t_{HIFAS} a stipulated in section 21.4.9, HIF Timing, are not satisfied, the HIFDREQ signal may be unintentionally.

DTRG bit		ļ. ļ.	1
DPOL bit			
	Asserted in synchronization with the DTRG bit being set by the on-chip CPU.	The DTRG bit is cleared simultaneously with	
HIFDREQ		HIFDREQ negate.	Τ
		HIFCS = HIFRS = low level. (c (peripheral clock cycle) × 3 cyc or less.	
HIFCS			
HIFRS		j_	

Figure 15.8 HIFDREQ Timing (When DMD = 0 and DPOL = 0)

Rev. 6.00 Jun. 12, 2007 Pag

REJ09

	_			
with the	I in synchronization DPOL bit being set n-chip CPU.	Asserted in synchronization with the DTRG bit being set by the on-chip CPU.	The DTRG bit is cleared simultaneously with HIFDREQ negate.	
HIFDREQ			/	\square
			ed when \overline{HIFCS} = HIFRS = low level. y is the the term of ter	
HIFCS				Ļ
HIFRS				[

Figure 15.9 HIFDREQ Timing (When DMD = 0 and DPOL = 1)

When the external DMAC is specified to detect the falling edge of the HIFDREQ signal, = 1 and DPOL = 0. After writing 1 to the DTRG bit, a low pulse of 32 peripheral clock cy generated at the HIFDREQ pin.

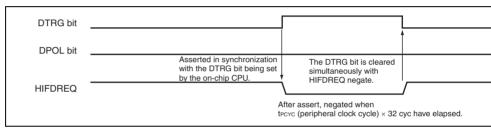


Figure 15.10 HIFDREQ Timing (When DMD = 1 and DPOL = 0)

tPCYC (peripheral clock cycle) × 32 cyc have elapsed.

Figure 15.11 HIFDREQ Timing (When DMD = 1 and DPOL = 1)

When the external DMAC supports intermittent operating mode (block transfer mode), of data transfer can be implemented by using the HIFRAM consecutive access and bank further the transfer can be implemented by using the the transfer can be implemented by using the the transfer can be implemented by using the transfer can be accessed as the transfer can be implemented by using the transfer can be accessed as the

write dummy data (4 bytes) to HIFDATA interrupt occurs by HIF bank int handler (extern accesses bank chip CPU acce bank 0) 7 Activate DMAC ← Assert HIFDREQ ← Set DTRG bit t 8 Consecutive data write to bank 1 in HIFRAM ← Set DTRG bit t 9 Write to end address of bank 1 in HIFRAM occurs → HIF bank interrupt occurs → HIFRAM bank by HIF bank int handler (extern accesses bank chip CPU acce bank 1) 10 Re-activate DMAC ← Assert HIFDREQ ← Set DTRG bit t		bytes) to HIFDATA			
write dummy data (4 bytes) to HIFDATA interrupt occurs by HIF bank inthandler (extern accesses bank chip CPU acce bank 0) 7 Activate DMAC ← Assert HIFDREQ ← Set DTRG bit t 8 Consecutive data write to bank 1 in HIFRAM ← Set DTRG bit t 9 Write to end address of bank 1 in HIFRAM → HIF bank interrupt occurs → HIFRAM bank by HIF bank inthandler (extern accesses bank chip CPU acce bank 1) 10 Re-activate DMAC ← Assert HIFDREQ ← Set DTRG bit t 11 Consecutive data write to bank 0 in ← Set DTRG bit t	5	consecutive write with address increment in			
8 Consecutive data write to bank 1 in HIFRAM 9 Write to end address of bank 1 in HIFRAM operation halts 10 Re-activate DMAC 11 Consecutive data write to bank 0 in	6	write dummy data (4	→	interrupt	→ HIFRAM bank s by HIF bank inte handler (externa accesses bank chip CPU acces bank 0)
data write to bank 1 in HIFRAM 9 Write to end address of bank interrupt completes and operation halts → HIF bank by HIF bank interrupt occurs completes and operation halts → HIFRAM bank by HIF bank interrupt occurs completes and operation halts 10 Re-activate DMAC ← Assert HIFDREQ ← Set DTRG bit to the HIFDREQ 11 Consecutive data write to bank 0 in Read data from HIFRAM	7		Activate DMAC		\leftarrow Set DTRG bit to
address of bank 1 in HIFRAM occurs interrupt occurs by HIF bank int handler (extern accesses bank operation halts 10 Re-activate DMAC ← Assert HIFDREQ ← Set DTRG bit t HIFDREQ 11 Consecutive data write to bank 0 in Read data from HIFRAM	8		data write to bank 1 in		
DMAC HIFDREQ 11 Consecutive data write to bank 0 in Read data from HIFRAM	9		address of bank 1 in HIFRAM completes and	interrupt	→ HIFRAM bank s by HIF bank inter handler (externa accesses bank of chip CPU acces bank 1)
data write to HIFRAM bank 0 in	10				\leftarrow Set DTRG bit to
	11		data write to bank 0 in		Read data from HIFRAM

Rev. 6.00 Jun. 12, 2007 Page 416 of 610 REJ09B0131-0600

RENESAS

that HIFGSR read with HIFRS = low), HIFRAM consecutive write is interrupted, and No. need to be done again.

	External Device			This LSI
No.	CPU	DMAC	HIF	CPU
1	HIF initial setting			HIF initial settir
2	DMAC initial setting			
3	Set HIFADR to HIFRAM start address			
4	Set HIFRAM consecutive read with address increment in HIFMCR			
5	Select HIFDATA			
6				Write data to b HIFRAM
7				After writing da address of ban HIFRAM, perfo HIFRAM bank (external devic accesses bank chip CPU acce bank 0)
8		Activate DMAC	← Assert HIFDREQ	\leftarrow Set DTRG bit t

 Table 15.5
 Consecutive Read Procedure from HIFRAM by External DMAC

					barne i j
11	Re-activate DMAC	\leftarrow	Assert HIFDREQ	\leftarrow	Set DTRG bit to
12	Consecutive data read from bank 0 in HIFRAM				Write data to ba HIFRAM
13	Read from end address of bank 0 in HIFRAM completes and operation halts		HIF bank interrupt occurs	\rightarrow	HIFRAM bank so by HIF bank inter handler (externa accesses bank to chip CPU access bank 0)
14	Re-activate DMAC	\leftarrow	Assert HIFDREQ	\leftarrow	Set DTRG bit to
Hereafter No. 12 to 14 are repeat that HIFGSR read with HIFRS = need to be done again.	-				

Rev. 6.00 Jun. 12, 2007 Page 418 of 610 REJ09B0131-0600

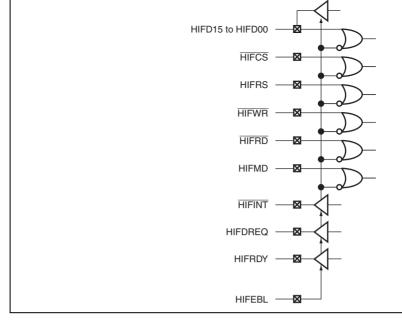


Figure 15.12 Image of High-Impedance Control of HIF Pins by HIFEBL I

input level	Low	High	by the signal input on this pin.	Low	High	General input po initial state *1
HIFRDY output control	Output buffer: On (Low output)	Output buffer: On (Low output)	General input port	Output buffer: Off	Output buffer: On (Sequence output)	General input port initial state* ²
HIFINT output control	Output buffer: Off	Output buffer: Off	General input port	Output buffer: Off	Output buffer: On (Sequence output)	General input port initial state* ²
HIFDREQ output control	Output buffer: Off	Output buffer: Off	General input port	Output buffer: Off	Output buffer: On (Sequence output)	General input port initial state* ²
HIFD 15 to HIFD0 I/O control	I/O buffer: Off	I/O buffer: Off	General input port	I/O buffer: Off	I/O buffer controlled according to states of HIFCS, HIFWR, and HIFRD	General input port initial state* ²
HIFCS input control	Input buffer: Off	Input buffer: Off	General input port	Input buffer: Off	Input buffer: On	General input port initial state* ²
HIFRS input control	Input buffer: Off	Input buffer: Off	General input port	Input buffer: Off	Input buffer: On	General input port initial state* ²

Rev. 6.00 Jun. 12, 2007 Page 420 of 610 REJ09B0131-0600

HIFWR input control	Input buffer: Off	Input buffer: Off	General input port	Input buffer: Off	Input buffer: On	General input port at tl state* ²
HIFRD input control	Input buffer: Off	Input buffer: Off	General input port	Input buffer: Off	Input buffer: On	General input port at tl state* ²

Notes: 1. The pin also functions as an HIFEBL pin by setting the PFC registers.

2. The pin also functions as an HIF pin by setting the PFC registers.

When the HIF pin function is selected for the HIFEBL pin and this pin by settin registers, the input and/or output buffers are controlled according to the HIFE state.

When the HIF pin function is not selected for the HIFEBL pin and is selected to by setting the PFC registers, the input and/or output buffers are always turned setting is prohibited.

Rev. 6.00 Jun. 12, 2007 Page 422 of 610 REJ09B0131-0600

PA17 input/output (port)	A17 output (BSC)	—	
PA18 input/output (port)	A18 output (BSC)	—	
PA19 input/output (port)	A19 output (BSC)	—	
PA20 input/output (port)	A20 output (BSC)	—	
PA21 input/output (port)	A21 output (BSC)	_	
PA22 input/output (port)	A22 output (BSC)	—	_
PA23 input/output (port)	A23 output (BSC)	—	
PA24 input/output (port)	A24 output (BSC)		
PA25 input/output (port)	A25 output (BSC)	—	_

Table 16.2 List of Multiplexed Pins (Port B)

Port	Function 1 (Related Module)	Function 2 (Related Module)			Function 3 (Related Module)	Fu (R Mo
В	PB00 input/output (port)	WAIT input (BSC)				
	PB01 input/output (port)			IOIS16 input (BSC)	_	
	PB02 input/output (port)		CKE output (BSC)		_	

RENESAS

(port)				
PB06 input/output (port)		ICIOWR output (BSC)	_	
PB07 input/output (port)		CE2B output (BSC)	—	_
PB08 input/output (port)	CS6B output (BSC)	CE1B output (BSC)	_	_
PB09 input/output (port)		CE2A output (BSC)	_	_
PB10 input/output (port)	CS5B output (BSC)	CE1A output (BSC)	_	_
PB11 input/output (port)	CS4 output (BSC)		—	_
PB12 input/output (port)	CS3 output (BSC)		—	_
PB13 input/output (port)	BS output (BSC)			_

Rev. 6.00 Jun. 12, 2007 Page 424 of 610 REJ09B0131-0600

)		
PC07 input/output (port)	MII_TXD3 output (EtherC)	—	
PC08 input/output (port)	RX_DV input (EtherC)	—	
PC09 input/output (port)	RX_ER input (EtherC)	_	_
PC10 input/output (port)	RX_CLK input (EtherC)	_	_
PC11 input/output (port)	TX_ER output (EtherC)	_	_
PC12 input/output (port)	TX_EN output (EtherC)	—	_
PC13 input/output (port)	TX_CLK input (EtherC)	_	_
PC14 input/output (port)	COL input (EtherC)	_	_
PC15 input/output (port)	CRS input (EtherC)	—	_
PC16 input/output (port)	MDIO input/output (EtherC)	_	_
PC17 input/output (port)	MDC output (EtherC)	—	_
PC18 input/output (port)	LNKSTA input (EtherC)	_	_
PC19 input/output (port)	EXOUT output (EtherC)	_	_
PC20 input/output (port)	WOL output (EtherC)	_	_

Table 16.4 List of Multiplexed Pins (Port D)

Port	Function 1 (Related Module)	Function 2 (Related Module)	Function 3 (Related Module)	Function 4 (Related M
D	PD0 input/output (port)	IRQ0 input (INTC)		_
	PD1 input/output (port)	IRQ1 input (INTC)	—	—
	PD2 input/output (port)	IRQ2 input (INTC)	TxD1 output (SCIF)	_
	PD3 input/output (port)	IRQ3 input (INTC)	RxD1 input (SCIF)	—
	PD4 input/output (port)	IRQ4 input (INTC)	SCK1 input/output (SCIF)	_
	PD5 input/output (port)	IRQ5 input (INTC)	TxD2 output (SCIF)	_

RENESAS

		חוראט ז סענפענ (חור)		
	PE02 input/output (port)	HIFDREQ output (HIF)	_	—
	PE03 input/output (port)	HIFMD input (HIF)	_	_
	PE04 input/output (port)	HIFINT output (HIF)	_	_
	PE05 input/output (port)	HIFRD input (HIF)	—	_
	PE06 input/output (port)	HIFWR input (HIF)	_	_
	PE07 input/output (port)	HIFRS input (HIF)	_	_
	PE08 input/output (port)	HIFCS input (HIF)	_	_
	PE09 input/output (port)	HIFD00 input/output (HIF)	—	_
	PE10 input/output (port)	HIFD01 input/output (HIF)	—	_
	PE11 input/output (port)	HIFD02 input/output (HIF)	—	_
	PE12 input/output (port)	HIFD03 input/output (HIF)	_	_
	PE13 input/output (port)	HIFD04 input/output (HIF)	_	_
	PE14 input/output (port)	HIFD05 input/output (HIF)	—	_
	PE15 input/output (port)	HIFD06 input/output (HIF)	TxD0 output (SCIF)	_
	PE16 input/output (port)	HIFD07 input/output (HIF)	RxD0 input (SCIF)	_
	PE17 input/output (port)	HIFD08 input/output (HIF)	SCK0 input/output (SCIF)	_
	PE18 input/output (port)	HIFD09 input/output (HIF)	TxD1 output (SCIF)	_
	PE19 input/output (port)	HIFD10 input/output (HIF)	RxD1 input (SCIF)	_
	PE20 input/output (port)	HIFD11 input/output (HIF)	SCK1 input/output (SCIF)	_
	PE21 input/output (port)	HIFD12 input/output (HIF)	RTS0 output (SCIF)	_
	PE22 input/output (port)	HIFD13 input/output (HIF)	CTS0 input (SCIF)	_
	PE23 input/output (port)	HIFD14 input/output (HIF)	RTS1 output (SCIF)	_
	PE24 input/output (port)	HIFD15 input/output (HIF)	CTS1 input (SCIF)	_
_				

Rev. 6.00 Jun. 12, 2007 Page 426 of 610 REJ09B0131-0600

RENESAS

C12	A05		A05	
A13	A06	_	A06	_
B12	A07	_	A07	_
D11	A08	_	A08	_
A12	A09	_	A09	_
C11	A10		A10	_
D10	A11		A11	_
C10	A12		A12	
A10	A13		A13	_
B10	A14		A14	_
D9	A15		A15	—
B6	PA16	PA16/A16	PA16	PA16/A16
C5	PA17	PA17/A17	PA17	PA17/A17
A5	PA18	PA18/A18	PA18	PA18/A18
B5	PA19	PA19/A19	PA19	PA19/A19
D5	PA20	PA20/A20	PA20	PA20/A20
C4	PA21	PA21/A21	PA21	PA21/A21
A3	PA22	PA22/A22	PA22	PA22/A22
D4	PA23	PA23/A23	PA23	PA23/A23
B3	PA24	PA24/A24	PA24	PA24/A24
A2	PA25	PA25/A25	PA25	PA25/A25
C8	PB00	PB00/WAIT	PB00	PB00/WAIT
D7	PB01	PB01/IOIS16	PB01	PB01/IOIS16

DO	1 000		1 000	
A9	RD	_	RD	
E14	RDWR	_	RDWR	_
C6	PB07	PB07/CE2B	PB07	PB07/CE2B
A6	PB08	PB08/(CS6B/CE1B)	PB08	PB08/(CS6B/CE
C7	PB09	PB09/CE2A	PB09	PB09/CE2A
D6	PB10	PB10/(CS5B/CE1A)	PB10	PB10/(CS5B/CE
B9	PB11	PB11/CS4	PB11	PB11/CS4
D12	PB12	PB12/CS3	PB12	PB12/CS3
D8	CS0	_	CS0	_
C9	PB13	PB13/BS	PB13	PB13/BS
R3	PC00	PC00/MII_RXD0	PC00	PC00/MII_RXD0
P4	PC01	PC01/MII_RXD1	PC01	PC01/MII_RXD1
M5	PC02	PC02/MII_RXD2	PC02	PC02/MII_RXD2
R4	PC03	PC03/MII_RXD3	PC03	PC03/MII_RXD3
P6	PC04	PC04/MII_TXD0	PC04	PC04/MII_TXD0
M7	PC05	PC05/MII_TXD1	PC05	PC05/MII_TXD1
N7	PC06	PC06/MII_TXD2	PC06	PC06/MII_TXD2
R7	PC07	PC07/MII_TXD3	PC07	PC07/MII_TXD3
N4	PC08	PC08/RX_DV	PC08	PC08/RX_DV
N3	PC09	PC09/RX_ER	PC09	PC09/RX_ER
N5	PC10	PC10/RX_CLK	PC10	PC10/RX_CLK
N6	PC11	PC11/TX_ER	PC11	PC11/TX_ER

Rev. 6.00 Jun. 12, 2007 Page 428 of 610 REJ09B0131-0600

RENESAS

NIO	1010		1010	
M9	PC19	PC19/EXOUT	PC19	PC19/EXOUT
P8	PC20	PC20/WOL	PC20	PC20/WOL
D1	PD0	PD0/IRQ0	PD0	PD0/IRQ0
E4	PD1	PD1/IRQ1	PD1	PD1/IRQ1
D2	PD2	PD2/IRQ2/TxD1	PD2	PD2/IRQ2/TxD
C1	PD3	PD3/IRQ3/RxD1	PD3	PD3/IRQ3/RxD
D3	PD4	PD4/IRQ4/SCK1	PD4	PD4/IRQ4/SCH
C2	PD5	PD5/IRQ5/TxD2	PD5	PD5/IRQ5/TxD
C3	PD6	PD6/IRQ6/RxD2	PD6	PD6/IRQ6/RxD
B2	PD7	PD7/IRQ7/SCK2	PD7	PD7/IRQ7/SC
N2	PE00	PE00/HIFEBL	HIFEBL	PE00/HIFEBL
M4	PE01	PE01/HIFRDY	HIFRDY	PE01/HIFRDY
N1	PE02	PE02/HIFDREQ	HIFDREQ	PE02/HIFDRE
М3	HIFMD	PE03/HIFMD	HIFMD	PE03/HIFMD
L4	PE04	PE04/HIFINT	HIFINT	PE04/HIFINT
L2	PE05	PE05/HIFRD	HIFRD	PE05/HIFRD
L1	PE06	PE06/HIFWR	HIFWR	PE06/HIFWR
L3	PE07	PE07/HIFRS	HIFRS	PE07/HIFRS
E3	PE08	PE08/HIFCS	HIFCS	PE08/HIFCS
K3	PE09	PE09/HIFD00	HIFD00	PE09/HIFD00
K4	PE10	PE10/HIFD01	HIFD01	PE10/HIFD01
J2	PE11	PE11/HIFD02	HIFD02	PE11/HIFD02

u				
G3	PE19	PE19/HIFD10/RxD1	HIFD10	PE19/HIFD10/R
G4	PE20	PE20/HIFD11/SCK1	HIFD11	PE20/HIFD11/S
F2	PE21	PE21/HIFD12/RTS0	HIFD12	PE21/HIFD12/R
F1	PE22	PE22/HIFD13/CTS0	HIFD13	PE22/HIFD13/C
F3	PE23	PE23/HIFD14/RTS1	HIFD14	PE23/HIFD14/R
F4	PE24	PE24/HIFD15/CTS1	HIFD15	PE24/HIFD15/C
L12	D00	—	D00	—
L13	D01	—	D01	—
L14	D02	—	D02	_
L15	D03	—	D03	_
K12	D04	—	D04	_
K13	D05	—	D05	_
K15	D06	—	D06	_
K14	D07	—	D07	_
F13	D08	_	D08	
F12	D09	_	D09	
G14	D10	_	D10	
G15	D11		D11	
H14	D12	_	D12	
H15	D13	_	D13	
H13	D14	_	D14	
H12	D15	_	D15	
-				

Rev. 6.00 Jun. 12, 2007 Page 430 of 610 REJ09B0131-0600

RENESAS

1114				
J15	CKIO output	—	CKIO output	—
R9	CK_PHY output	—	CK_PHY output	_
N12	ASEMD input	—	ASEMD input	—
R13	TESTMD input	—	TESTMD input	_
P9	MD3 input	—	MD3 input	_
J14	MD2 input	—	MD2 input	—
N15	MD1 input	—	MD1 input	_
R15	MD0 input	—	MD0 input	_
R12	RES input	—	RES input	_
P12	NMI input	_	NMI input	_
M10	MD5 input	_	MD5 input	_
N9	TESTOUT output	_	TESTOUT output	_

- Port B control register L2 (PBCRL2)
- Port C IO register H (PCIORH)
- Port C IO register L (PCIORL)
- Port C control register H2 (PCCRH2)
- Port C control register L1 (PCCRL1)
- Port C control register L2 (PCCRL2)
- Port D IO register L (PDIORL)
- Port D control register L2 (PDCRL2)
- Port E IO register H (PEIORH)
- Port E IO register L (PEIORL)
- Port E control register H1 (PECRH1)
- Port E control register H2 (PECRH2)
- Port E control register L1 (PECRL1)
- Port E control register L2 (PECRL2)

Rev. 6.00 Jun. 12, 2007 Page 432 of 610 REJ09B0131-0600

always be 0.

The initial value of PAIORH is H'0000.

16.1.2 Port A Control Register H1 and H2 (PACRH1 and PACRH2)

PACRH1 and PACRH2 are 16-bit readable/writable registers that select the pin function multiplexed port A pins.

• PACRH1

Bit	Bit Name	Initial Value	R/W	Description
	Bit Name		-	•
15 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
2	PA25MD0	0	R/W	PA25 Mode
				Selects the function of pin PA25/A25.
				0: PA25 input/output (port)
				1: A25 output (BSC)
1	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
0	PA24MD0	0	R/W	PA24 Mode
				Selects the function of pin PA24/A24.
				0: PA24 input/output (port)
				1: A24 output (BSC)

Renesas

				1. A23 Output (B3C)
13	—	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
12	PA22MD0	0	R/W	PA22 Mode
				Selects the function of pin PA22/A22.
				0: PA22 input/output (port)
				1: A22 output (BSC)
11		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
10	PA21MD0	0	R/W	PA21 Mode
				Selects the function of pin PA21/A21.
				0: PA21 input/output (port)
				1: A21 output (BSC)
9	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	PA20MD0	0	R/W	PA20 Mode
				Selects the function of pin PA20/A20.
				0: PA20 input/output (port)
				1: A20 output (BSC)
7	—	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 434 of 610 REJ09B0131-0600

				Selects the function of pin PA18/A18.
				0: PA18 input/output (port)
				1: A18 output (BSC)
3	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
2	PA17MD0	0	R/W	PA17 Mode
				Selects the function of pin PA17/A17.
				0: PA17 input/output (port)
				1: A17 output (BSC)
1	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
0	PA16MD0	0	R/W	PA16 Mode
				Selects the function of pin PA16/A16.
				0: PA16 input/output (port)
				1: A16 output (BSC)

always be 0.

The initial value of PAIBRL is H'0000.

16.1.4 Port B Control Register L1 and L2 (PBCRL1 and PBCRL2)

PBCRL1 and PBCRL2 are 16-bit readable/writable registers that select the pin functions multiplexed port B pins.

• PBCRL1

-	5 4 1	Initial		
Bit	Bit Name	Value	R/W	Description
15 to 11	—	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
10	PB13MD0	0	R/W	PB13 Mode
				Selects the function of pin PB13/BS.
				0: PB13 input/output (port)
				1: BS output (BSC)
9	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	PB12MD0	0	R/W	PB12 Mode
				Selects the function of pin PB12/CS3.
				0: PB12 input/output (port)
				1: CS3 output (BSC)

Rev. 6.00 Jun. 12, 2007 Page 436 of 610 REJ09B0131-0600

				This bit is always read as 0. The write value sh always be 0.
4	PB10MD0	0	R/W	PB10 Mode
				Selects the function of pin PB10/CS5B/CE1A.
				0: PB10 input/output (port)
				1: CS5B/CE1A output (BSC)
3	_	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
2	PB9MD0	0	R/W	PB9 Mode
				Selects the function of pin PB09/CE2A.
				0: PB09 input/output (port)
				1: CE2A output (BSC)
1		0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
0	PB8MD0	0	R/W	PB8 Mode
				Selects the function of pin PB08/CS6B/CE1B.
				0: PB13 input/output (port)
				1: CS6B/CE1B output (BSC)

13	—	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
12	PB6MD0	0	R/W	PB6 Mode
				Selects the function of pin PB06/ICIOWR.
				0: PB06 input/output (port)
				1: ICIOWR output (BSC)
11		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
10	PB5MD0	0	R/W	PB5 Mode
				Selects the function of pin PB05/ICIORD.
				0: PB05 input/output (port)
				1: ICIORD output (BSC)
9		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	PB4MD0	0	R/W	PB4 Mode
				Selects the function of pin PB04/RAS.
				0: PB04 input/output (port)
				1: RAS output (BSC)
7	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 438 of 610 REJ09B0131-0600

				Selects the function of pin PB02/CKE.
				0: PB02 input/output (port)
				1: CKE output (BSC)
3		0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
2	PB1MD0	0	R/W	PB1 Mode
				Selects the function of pin PB01/IOIS16.
				0: PB01 input/output (port)
				1: IOIS16 input (BSC)
1		0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
0	PB0MD0	0	R/W	PB0 Mode
				Selects the function of pin PB00/WAIT.
				0: PB00 input/output (port)
				1: WAIT input (BSC)

Bits 15 to 5 in PCIORH are reserved. These bits are always read as 0. The write value she always be 0.

The initial values of PCIORH and PCIORL are H'0000.

16.1.6 Port C Control Register H2, L1, and L2 (PCCRH2, PCCRL1, and PCCRL

PCCRH2, PCCRL1, and PCCRL2 are 16-bit readable/writable registers that select the pin functions for the multiplexed port C pins.

• PCCRH2

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
8	PC20MD0	0	R/W	PC20 Mode
				Selects the function of pin PC20/WOL.
				0: PC20 input/output (port)
				1: WOL output (EtherC)
7	_	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.

Rev. 6.00 Jun. 12, 2007 Page 440 of 610 REJ09B0131-0600

				Selects the function of pin PC18/LNKSTA.
				0: PC18 input/output (port)
				1: LNKSTA input (EtherC)
3	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
2	PC17MD0	0	R/W	PC17 Mode
				Selects the function of pin PC17/MDC.
				0: PC17 input/output (port)
				1: MDC output (EtherC)
1		0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
0	PC16MD0	0	R/W	PC16 Mode
				Selects the function of pin PC16/MDIO.
				0: PC16 input/output (port)
				1: MDIO input/output (EtherC)

13		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
12	PC14MD0	0	R/W	PC14 Mode
				Selects the function of pin PC14/COL.
				0: PC14 input/output (port)
				1: COL input (EtherC)
11		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
10	PC13MD0	0	R/W	PC13 Mode
				Selects the function of pin PC13/TX_CLK.
				0: PC13 input/output (port)
				1: TX_CLK input (EtherC)
9		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	PC12MD0	0	R/W	PC12 Mode
				Selects the function of pin PC12/TX_EN.
				0: PC12 input/output (port)
				1: TX_EN output (EtherC)
7	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 442 of 610 REJ09B0131-0600

				Selects the function of pin PC10/RX_CLK.
				0: PC10 input/output (port)
				1: RX_CLK input (EtherC)
3	—	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
2	PC9MD0	0	R/W	PC9 Mode
				Selects the function of pin PC09/RX_ER.
				0: PC09 input/output (port)
				1: RX_ER input (EtherC)
1	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
0	PC8MD0	0	R/W	PC8 Mode
				Selects the function of pin PC08/RX_DV.
				0: PC08 input/output (port)
_				1: RX_DV input (EtherC)

13	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
12	PC6MD0	0	R/W	PC6 Mode
				Selects the function of pin PC06/MII_TXD2.
				0: PC06 input/output (port)
				1: MII_TXD2 output (EtherC)
11		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
10	PC5MD0	0	R/W	PC5 Mode
				Selects the function of pin PC05/MII_TXD1.
				0: PC05 input/output (port)
				1: MII_TXD1 output (EtherC)
9		0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.
8	PC4MD0	0	R/W	PC4 Mode
				Selects the function of pin PC04/MII_TXD0.
				0: PC04 input/output (port)
				1: MII_TXD0 output (EtherC)
7	_	0	R	Reserved
				This bit is always read as 0. The write value sho always be 0.

Rev. 6.00 Jun. 12, 2007 Page 444 of 610 REJ09B0131-0600

				Selects the function of pin PC02/MII_RXD2.
				0: PC02 input/output (port)
				1: MII_RXD2 input (EtherC)
3	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
2	PC1MD0	0	R/W	PC1 Mode
				Selects the function of pin PC01/MII_RXD1.
				0: PC01 input/output (port)
				1: MII_RXD1 input (EtherC)
1	_	0	R	Reserved
				This bit is always read as 0. The write value she always be 0.
0	PC0MD0	0	R/W	PC0 Mode
				Selects the function of pin PC00/MII_RXD0.
				0: PC00 input/output (port)
				1: MII_RXD0 input (EtherC)

16.1.7 Port D IO Register L (PDIORL)

PDIORL is a 16-bit readable/writable register that selects the input/output directions of pins. Bits PD7IOR to PD0IOR correspond to pins PD7 to PD0 (the pin name abbreviation multiplexed functions are omitted). PDIORL is enabled when a port C pin functions as a input/output (PD7 to PD0), otherwise, disabled.

RENESAS

port B pins.

• PDCRL2

Bit	Bit Name	Initial Value	R/W	Description
15	PD7MD1	0	R/W	PD7 Mode
14	PD7MD0	0	R/W	Selects the function of pin PD7/IRQ7/SCK2.
				00: PD7 input/output (port)
				01: IRQ7 input (INTC)
				10: SCK2 input/output (SCIF)
_				11: Setting prohibited
13	PD6MD1	0	R/W	PD6 Mode
12	PD6MD0	0	R/W	Selects the function of pin PD6/IRQ6/RxD2.
				00: PD6 input/output (port)
				01: IRQ6 input (INTC)
				10: RxD2 input (SCIF)
				11: Setting prohibited
11	PD5MD1	0	R/W	PD5 Mode
10	PD5MD0	0	R/W	Selects the function of pin PD5/IRQ5/TxD2.
				00: PD5 input/output (port)
				01: IRQ5 input (INTC)
				10: TxD2 output (SCIF)
				11: Setting prohibited

Rev. 6.00 Jun. 12, 2007 Page 446 of 610 REJ09B0131-0600

				00: PD3 input/output (port)
				01: IRQ3 input (INTC)
				10: RxD1 input (SCIF)
				11: Setting prohibited
5	PD2MD1	0	R/W	PD2 Mode
4	PD2MD0	0	R/W	Selects the function of pin PD2/IRQ2/TxD1.
				00: PD2 input/output (port)
				01: IRQ2 input (INTC)
				10: TxD1 output (SCIF)
				11: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
2	PD1MD0	0	R/W	PD1 Mode
				Selects the function of pin PD1/IRQ1.
				0: PD1 input/output (port)
				1: IRQ1 input (INTC)
1		0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
0	PD0MD0	0	R/W	PD0 Mode
				Selects the function of pin PD0/IRQ0.
				0: PD0 input/output (port)
				1: IRQ0 input (INTC)

always be 0.

The initial values of PEIORH and PEIORL are H'0000.

16.1.10 Port E Control Register H1, H2, L1, and L2 (PECRH1, PECRH2, PECRL PECRL2)

PECRH1, PECRH2, PECRL1, and PECRL2 are 16-bit readable/writable registers that see pin functions for the multiplexed port E pins.

• PECRH1

Bit	Bit Name	Initial Value	R/W	Description
15 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
1	PE24MD1	0	R/W	PE24 Mode
0	PE24MD0	0	R/W	Selects the function of pin PE24/HIFD15/0
		(non-HIF		00: PE24 input/output (port)
		boot mode)		01: HIFD15 input/output (HIF)
		0		10: CTS1 input (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		

Rev. 6.00 Jun. 12, 2007 Page 448 of 610 REJ09B0131-0600

		mode)		
13	PE22MD1	0	R/W	PE22 Mode
12	PE22MD0	0	R/W	Selects the function of pin PE22/HIFD1
		(non-HIF boot		00: PE22 input/output (port)
		mode)		01: HIFD13 input/output (HIF)
		0		10: CTS0 input (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		
11	PE21MD1	0	R/W	PE21 Mode
10	PE21MD0	0	R/W	Selects the function of pin PE21/HIFD1
		(non-HIF boot		00: PE21 input/output (port)
		mode)		01: HIFD12 input/output (HIF)
		0		10: RTS0 output (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		
9	PE20MD1	0	R/W	PE20 Mode
8	PE20MD0	0	R/W	Selects the function of pin PE20/HIFD1
		(non-HIF boot		00: PE20 input/output (port)
		mode)		01: HIFD11 input/output (HIF)
		0		10: SCK1 input/output (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		

4	PE18MD0	0 (non-HIF boot mode) 0 1	R/W	Selects the function of pin PE18/HIFD09/ 00: PE18 input/output (port) 01: HIFD09 input/output (HIF) 10: TxD1 output (SCIF) 11: Setting prohibited
		(HIF boot mode)		
3	PE17MD1	0	R/W	PE17 Mode
2	PE17MD0	0	R/W	Selects the function of pin PE17/HIFD08/S
		(non-HIF boot		00: PE17 input/output (port)
		mode)		01: HIFD08 input/output (HIF)
		0		10: SCK0 input/output (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		
1	PE16MD1	0	R/W	PE16 Mode
0	PE16MD0	0	R/W	Selects the function of pin PE16/HIFD07/F
		(non-HIF boot		00: PE16 input/output (port)
		mode)		01: HIFD07 input/output (HIF)
		0		10: RxD0 input (SCIF)
		1		11: Setting prohibited
		(HIF boot mode)		

Rev. 6.00 Jun. 12, 2007 Page 450 of 610 REJ09B0131-0600

		mode)		
13	—	0	R	Reserved
				This bit is always read as 0. The write v should always be 0.
12	PE14MD0	0	R/W	PE14 Mode
		(non-HIF boot		Selects the function of pin PE14/HIFD0
		mode)		0: PE14 input/output (port)
		1		1: HIFD05 input/output (HIF)
		(HIF boot mode)		
11	—	0	R	Reserved
				This bit is always read as 0. The write v should always be 0.
10	PE13MD0	0	R/W	PE13 Mode
		(non-HIF boot		Selects the function of pin PE13/HIFD0
		mode)		0: PE13 input/output (port)
		1		1: HIFD04 input/output (HIF)
		(HIF boot mode)		
9		0	R	Reserved
				This bit is always read as 0. The write v should always be 0.

6	PE11MD0	0 (non-HIF boot mode) 1 (HIF boot mode)	R/W	PE11 Mode Selects the function of pin PE11/HIFD02. 0: PE11 input/output (port) 1: HIFD02 input/output (HIF)
5	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
4	PE10MD0	0	R/W	PE10 Mode
		(non-HIF boot		Selects the function of pin PE10/HIFD01.
		mode)		0: PE10 input/output (port)
		1		1: HIFD01 input/output (HIF)
		(HIF boot mode)		
3		0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
2	PE9MD0	0	R/W	PE9 Mode
		(non-HIF boot		Selects the function of pin PE09/HIFD00.
		mode)		0: PE09 input/output (port)
		1		1: HIFD00 input/output (HIF)
		(HIF boot mode)		

Rev. 6.00 Jun. 12, 2007 Page 452 of 610 REJ09B0131-0600

• PECRL2

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write va always be 0.
14	PE7MD0	0	R/W	PE7 Mode
		(non-HIF boot		Selects the function of pin PE07/HIFRS.
		mode)		0: PE07 input/output (port)
		1		1: HIFRS input (HIF)
		(HIF boot mode)		
13	_	0	R	Reserved
				This bit is always read as 0. The write va always be 0.
12	PE6MD0	0	R/W	PE6 Mode
		(non-HIF boot		Selects the function of pin PE06/HIFWR.
		mode)		0: PE06 input/output (port)
		1		1: HIFWR input (HIF)
		(HIF boot mode)		
11	_	0	R	Reserved
				This bit is always read as 0. The write va always be 0.

RENESAS

8	PE4MD0	0	R/W	PE4 Mode
		(non-HIF boot		Selects the function of pin PE04/HIFINT.
		mode)		0: PE04 input/output (port)
		1		1: HIFINT output (HIF)
		(HIF boot mode)		
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6	PE3MD0	1	R/W	PE3 Mode
				Selects the function of pin PE03/HIFMD.
				0: PE03 input/output (port)
				1: HIFMD input (HIF)
5	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
4	PE2MD0	0	R/W	PE2 Mode
		(non-HIF boot		Selects the function of pin PE02/HIFDREQ
		mode)		0: PE02 input/output (port)
		1		1: HIFDREQ output (HIF)
		(HIF boot mode)		

Rev. 6.00 Jun. 12, 2007 Page 454 of 610 REJ09B0131-0600

1	—	0	R	Reserved
				This bit is always read as 0. The write va always be 0.
0	PE0MD0	0	R/W	PE0 Mode
		(non-HIF boot		Selects the function of pin PE00/HIFEBL
		mode)		0: PE00 input/output (port)
		1		1: HIFEBL input (HIF)
		(HIF boot mode)		

Rev. 6.00 Jun. 12, 2007 Page 456 of 610 REJ09B0131-0600

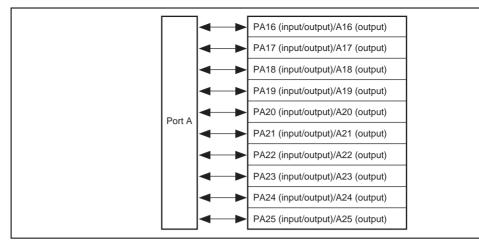


Figure 17.1 Port A

17.1.1 Register Description

Port A is a 10-bit I/O port that has a following register. For details on the address of this and the states of this register in each processing state, see section 20, List of Registers.

• Port A data register H (PADRH)

17.1.2 Port A Data Register H (PADRH)

PADRH is a 16-bit readable/writable register which stores data for port A. Bits PA25DI PA16DR correspond to pins PA25 to PA16. (Description of multiplexed functions is on

Renesas

always be 0. R/W See table 17.1. 9 PA25DR 0 8 PA24DR R/W 0 7 R/W PA23DR 0 R/W 6 PA22DR 0 5 R/W PA21DR 0 4 PA20DR R/W 0 3 PA19DR 0 R/W 2 R/W PA18DR 0 1 PA17DR 0 R/W 0 PA16DR R/W 0

These bits are always read as 0. The write value

Table 17.1 Port A Data Register H (PADRH) Read/Write Operation

• Bits 9 to 0 in PADRH

Pin Function	PAIORH	Read	Write
General input	0	Pin state	Data can be written to PADRH but no e the pin state.
General output	1	PADRH value	Written value is output from the pin.
Other functions	*	PADRH value	Data can be written to PADRH but no e the pin state.

Rev. 6.00 Jun. 12, 2007 Page 458 of 610 REJ09B0131-0600

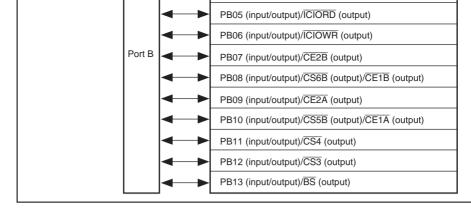


Figure 17.2 Port B

17.2.1 Register Description

Port B is a 14-bit I/O port that has a following register. For details on the address of this and the states of this register in each processing state, see section 20, List of Registers.

• Port B data register L (PBDRL)

17.2.2 Port B Data Register L (PBDRL)

PBDRL is a 16-bit readable/writable register which stores data for port B. Bits PB13DR PB0DR correspond to pins PB13 to PB00. (Description of multiplexed functions is omit

When the pin function is general output port, if the value is written to PBDRL, the value from the pin; if PBDRL is read, the value written to the register is directly read regardle pin state.

RENESAS

11	PB11DR	0	R/W
10	PB10DR	0	R/W
9	PB9DR	0	R/W
8	PB8DR	0	R/W
7	PB7DR	0	R/W
6	PB6DR	0	R/W
5	PB5DR	0	R/W
4	PB4DR	0	R/W
3	PB3DR	0	R/W
2	PB2DR	0	R/W
1	PB1DR	0	R/W
0	PB0DR	0	R/W

Table 17.2 Port B Data Register L (PBDRL) Read/Write Operation

• Bits 13 to 0 in PBDRL

Pin Function	PBIORL	Read	Write
General input	0	Pin state	Data can be written to PBDRL but no ef the pin state.
General output	1	PBDRL value	Written value is output from the pin.
Other functions	*	PBDRL value	Data can be written to PBDRL but no ef the pin state.

Rev. 6.00 Jun. 12, 2007 Page 460 of 610 REJ09B0131-0600

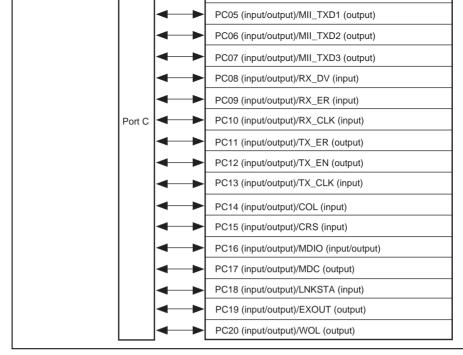


Figure 17.3 Port C

PC20DR to PC0DR correspond to pins PC20 to PC00. (Description of multiplexed function omitted.)

When the pin function is general output port, if the value is written to PCDRH or PCDRI value is output from the pin; if PCDRH or PCDRL is read, the value written to the register directly read regardless of the pin state.

When the pin function is general input port, not the value of register but pin state is direct PCDRH or PCDRL is read. Data can be written to PCDRH or PCDRL but no effect on the state. Table 17.3 shows the reading/writing function of the port C data registers H and L.

- Initial Bit **Bit Name** Value R/W Description Reserved 15 to 5 — All 0 R These bits are always read as 0. The write value always be 0. 4 PC20DR 0 R/W See table 17.3. 3 R/W PC19DR 0 2 PC18DR 0 R/W 1 PC17DR 0 R/W 0 PC16DR R/W 0
- PCDRH

Rev. 6.00 Jun. 12, 2007 Page 462 of 610 REJ09B0131-0600

9	PC9DR	0	R/W
8	PC8DR	0	R/W
7	PC7DR	0	R/W
6	PC6DR	0	R/W
5	PC5DR	0	R/W
4	PC4DR	0	R/W
3	PC3DR	0	R/W
2	PC2DR	0	R/W
1	PC1DR	0	R/W
0	PC0DR	0	R/W

Table 17.3 Port C Data Registers H and L (PCDRH and PCDRL) Read/Write Op

• Bits 4 to 0 in PCDRH and Bits 15 to 0 in PCDRL

Pin Function	PBIORL	Read	Write
General input	0	Pin state	Data can be written to PCDRH or PCD effect on the pin state.
General output	1	PCDRH or PCDRL value	Written value is output from the pin.
Other functions	*	PCDRH or PCDRL value	Data can be written to PCDRH or PCD effect on the pin state.

RENESAS

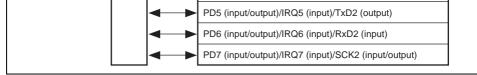


Figure 17.4 Port D

17.4.1 Register Description

Port D is an 8-bit I/O port that has a following register. For details on the address of this rand the states of this register in each processing state, see section 20, List of Registers.

• Port D data register L (PDDRL)

17.4.2 Port D Data Register L (PDDRL)

PDDRL is a 16-bit readable/writable register which stores data for port D. Bits PD7DR to correspond to pins PD7 to PD0. (Description of multiplexed functions is omitted.)

When the pin function is general output port, if the value is written to PDDRL, the value from the pin; if PDDRL is read, the value written to the register is directly read regardless pin state.

When the pin function is general input port, not the value of register but pin state is direct PDDRL is read. Data can be written to PDDRL but no effect on the pin state. Table 17.4 the reading/writing function of the port D data register L.

Rev. 6.00 Jun. 12, 2007 Page 464 of 610 REJ09B0131-0600

2	PD2DR	0	R/W
1	PD1DR	0	R/W
0	PD0DR	0	R/W

Table 17.4 Port D Data Register L (PDDRL) Read/Write Operation

• Bits 7 to 0 in PDDRL

Pin Function	PBIORL	Read	Write
General input	0	Pin state	Data can be written to PDDRL but no the pin state.
General output	1	PDDRL value	Written value is output from the pin.
Other functions	*	PDDRL value	Data can be written to PDDRL but no the pin state.

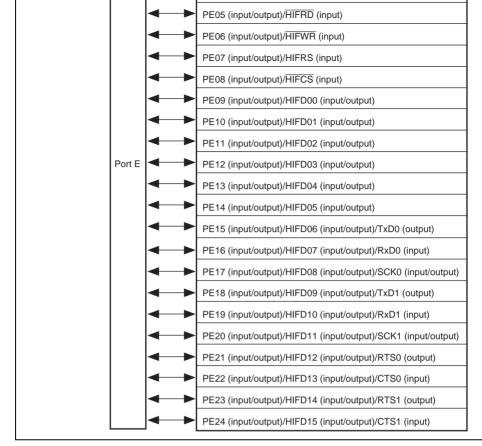


Figure 17.5 Port E

Rev. 6.00 Jun. 12, 2007 Page 466 of 610 REJ09B0131-0600

to PE0DR correspond to pins PE24 to PE00. (Description of multiplexed functions is or

When the pin function is general output port, if the value is written to PEDRH or PEDR value is output from the pin; if PEDRH or PEDRL is read, the value written to the regist directly read regardless of the pin state.

When the pin function is general input port, not the value of register but pin state is direct PEDRH or PEDRL is read. Data can be written to PEDRH or PEDRL but no effect on the state. Table 17.5 shows the reading/writing function of the port E data registers H and L

	D // N	Initial		-
Bit	Bit Name	Value	R/W	Description
15 to 9 —		All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
8	PE24DR	0	R/W	See table 17.5.
7	PE23DR	0	R/W	-
6	PE22DR	0	R/W	
5	PE21DR	0	R/W	-
4	PE20DR	0	R/W	
3	PE19DR	0	R/W	
2	PE18DR	0	R/W	_
1	PE17DR	0	R/W	_
0	PE16DR	0	R/W	_

• PEDRH

RENESAS

9	PE9DR	0	R/W
8	PE8DR	0	R/W
7	PE7DR	0	R/W
6	PE6DR	0	R/W
5	PE5DR	0	R/W
4	PE4DR	0	R/W
3	PE3DR	0	R/W
2	PE2DR	0	R/W
1	PE1DR	0	R/W
0	PE0DR	0	R/W

Table 17.5 Port E Data Registers H, L (PEDRH, PEDRL) Read/Write Operation

• Bits 8 to 0 in PEDRH and Bits 15 to 0 in PEDRL

Pin Function	PBIORL	Read	Write
General input	0	Pin state	Data can be written to PEDRH or PEDR effect on the pin state.
General output	1	PEDRH or PEDRL value	Written value is output from the pin.
Other functions	*	PEDRH or PEDRL value	Data can be written to PEDRH or PEDR effect on the pin state.

Rev. 6.00 Jun. 12, 2007 Page 468 of 610 REJ09B0131-0600

- or down externally to fix its state.
- 3. When using a multiplexed pin with a function not selected with its initial value (for using the PB12/CS3 pin, the initial function of which is PB12, as the CS3 pin), the pulled up or down externally at least after a reset until its pin function is selected by to fix its state.

Rev. 6.00 Jun. 12, 2007 Page 470 of 610 REJ09B0131-0600

The UBC has the following features:

• The following break comparison conditions can be set.

Number of break channels: two channels (channels A and B)

User break can be requested as either the independent or sequential condition on cha and B (sequential break: when channel A and channel B match with break condition different bus cycles in that order, a break condition is satisfied).

— Address (Compares addresses 32 bits):

Comparison bits are maskable in 1-bit units; user can mask addresses at lower 12 page), lower 10 bits (1-k page), or any size of page, etc.

One of the two address buses (L-bus address (LAB) and I-bus address (IAB)) can selected.

— Data (only on channel B, 32-bit maskable)

One of the two data buses (logic data bus (LDB) and internal data bus (IDB)) can selected.

- Bus cycle: Instruction fetch or data access
- Read/write
- Operand size: Byte, word, or longword
- User break interrupt is generated upon satisfying break conditions. A user-designed condition interrupt exception processing routine can be run.
- In an instruction fetch cycle, it can be selected that a break is set before or after an in is executed.
- Maximum repeat times for the break condition (only for channel B): $2^{12} 1$ times.
- Four pairs of branch source/destination buffers.

UBCS300C_0000200309000

RENESAS

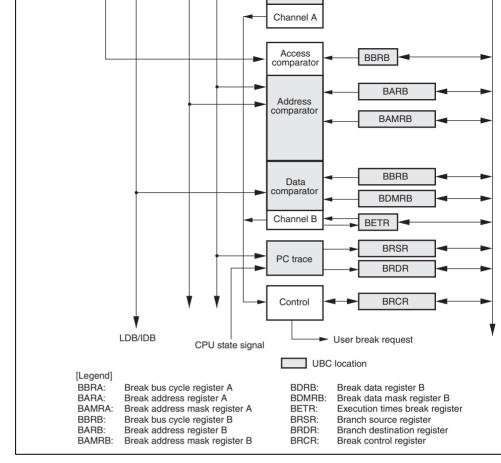


Figure 18.1 Block Diagram of UBC

Rev. 6.00 Jun. 12, 2007 Page 472 of 610 REJ09B0131-0600

RENESAS

- Dieak dus cycle legister D (DDKD)
- Break data register B (BDRB)
- Break data mask register B (BDMRB)
- Break control register (BRCR)
- Execution times break register (BETR)
- Branch source register (BRSR)
- Branch destination register (BRDR)

18.2.1 Break Address Register A (BARA)

BARA is a 32-bit readable/writable register. BARA specifies the address used for a brea condition in channel A.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BAA31 to	All 0	R/W	Break Address A
	BAA 0			Store the address on the LAB or IAB specifyin conditions of channel A.

RENESAS

- the break condition
- 1: Break address bit BAAn of channel A is ma is not included in the break condition

Note: n = 31 to 0

18.2.3 Break Bus Cycle Register A (BBRA)

Break bus cycle register A (BBRA) is a 16-bit readable/writable register, which specifies cycle or I bus cycle, (2) instruction fetch or data access, (3) read or write, and (4) operand the break conditions of channel A.

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write value s always be 0.
7	CDA1	0	R/W	L Bus Cycle/I Bus Cycle Select A
6	CDA0	0	R/W	Select the L bus cycle or I bus cycle as the bus cy channel A break condition.
				00: Condition comparison is not performed
				01: The break condition is the L bus cycle
				10: The break condition is the I bus cycle
				11: The break condition is the L bus cycle

Rev. 6.00 Jun. 12, 2007 Page 474 of 610 REJ09B0131-0600

3	RWA1	0	R/W	Read/Write Select A
2	RWA0	0	R/W	Select the read cycle or write cycle as the bus cy channel A break condition.
				00: Condition comparison is not performed
				01: The break condition is the read cycle
				10: The break condition is the write cycle
				11: The break condition is the read cycle or write
1	SZA1	0	R/W	Operand Size Select A
0	SZA0	0	R/W	Select the operand size of the bus cycle for the c break condition.
				00: The break condition does not include operan
				01: The break condition is byte access
				10: The break condition is word access
				11: The break condition is longword access

18.2.4 Break Address Register B (BARB)

BARB is a 32-bit readable/writable register. BARB specifies the address used for a brea condition in channel B.

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BAB31 to	All 0	R/W	Break Address B
	BAB 0			Stores an address of LAB or IAB which specifies condition in channel B.

RENESAS

break condition

1: Break address BABn of channel B is masked not included in the break condition

Note: n = 31 to 0

18.2.6 Break Data Register B (BDRB)

BDRB is a 32-bit readable/writable register. BDBR selects data used for a break conditio channel B.

Bit Name	Initial Value	R/W	Description
BDB31 to	All 0	R/W	Break Data Bit B
BDB 0			Stores data which specifies a break condition i channel B.
			BDRB specifies the break data on LDB or IDB.
	BDB31 to	Bit NameValueBDB31 toAll 0	Bit NameValueR/WBDB31 toAll 0R/W

Notes: 1. Specify an operand size when including the value of the data bus in the break

2. When the byte size is selected as a break condition, the same byte data must bits 15 to 8 and 7 to 0 in BDRB as the break data.

Rev. 6.00 Jun. 12, 2007 Page 476 of 610 REJ09B0131-0600

- break condition
- 1: Break data BDBn of channel B is masked included in the break condition

Note: n = 31 to 0

Notes: 1. Specify an operand size when including the value of the data bus in the breat

2. When the byte size is selected as a break condition, the same byte data mus bits 15–8 and 7–0 in BDMRB as the break mask data.

18.2.8 Break Bus Cycle Register B (BBRB)

Break bus cycle register B (BBRB) is a 16-bit readable/writable register, which specifie cycle or I bus cycle, (2) instruction fetch or data access, (3) read or write, and (4) operar the break conditions of channel B.

Bit	Bit Name	Initial Value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.

4	IDB0	0	R/W	Select the instruction fetch cycle or data access cy the bus cycle of the channel B break condition.
				00: Condition comparison is not performed
				01: The break condition is the instruction fetch cyc
				10: The break condition is the data access cycle
				11: The break condition is the instruction fetch cyc data access cycle
3	RWB1	0	R/W	Read/Write Select B
2	RWB0	0	R/W	Select the read cycle or write cycle as the bus cycl channel B break condition.
				00: Condition comparison is not performed
				01: The break condition is the read cycle
				10: The break condition is the write cycle
				11: The break condition is the read cycle or write of
1	SZB1	0	R/W	Operand Size Select B
0	SZB0	0	R/W	Select the operand size of the bus cycle for the chabreak condition.
				00: The break condition does not include operand
				01: The break condition is byte access
				10: The break condition is word access
				11: The break condition is longword access

Rev. 6.00 Jun. 12, 2007 Page 478 of 610 REJ09B0131-0600

• Enable PC trace.

The break control register (BRCR) is a 32-bit readable/writable register that has break comatch flags and bits for setting a variety of break conditions.

Bit	Bit Name	Initial Value	R/W	Description
31 to 16	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
15	SCMFCA	0	R/W	L Bus Cycle Condition Match Flag A
				When the L bus cycle condition in the break co set for channel A is satisfied, this flag is set to cleared to 0). In order to clear this flag, write 0 into this
				0: The L bus cycle condition for channel A does match
				1: The L bus cycle condition for channel A mate
14	SCMFCB	0	R/W	L Bus Cycle Condition Match Flag B
				When the L bus cycle condition in the break co set for channel B is satisfied, this flag is set to cleared to 0). In order to clear this flag, write 0 into this
				0: The L bus cycle condition for channel B does match
				1: The L bus cycle condition for channel B mate

RENESAS

			When the I bus cycle condition in the break cond set for channel B is satisfied, this flag is set to 1 cleared to 0). In order to clear this flag, write 0 into this b
			0: The I bus cycle condition for channel B does match
			1: The I bus cycle condition for channel B match
PCTE	0	R/W	PC Trace Enable
			0: Disables PC trace
			1: Enables PC trace
PCBA	0	R/W	PC Break Select A
			Selects the break timing of the instruction fetch of channel A as before or after instruction executio
			0: PC break of channel A is set before instruction
			1: PC break of channel A is set after instruction execution
_	All 0	R	Reserved
			These bits are always read as 0. The write value always be 0.
DBEB	0	R/W	Data Break Enable B
			Selects whether or not the data bus condition is in the break condition of channel B.
			0: No data bus condition is included in the cond channel B
			1: The data bus condition is included in the con- channel B
	PCBA	PCBA 0 — All 0	PCBA 0 R/W

Rev. 6.00 Jun. 12, 2007 Page 480 of 610 REJ09B0131-0600

RENESAS

				always be 0.
3	SEQ	0	R/W	Sequence Condition Select
				Selects two conditions of channels A and B as independent or sequential conditions.
				0: Channels A and B are compared under inde conditions
				1: Channels A and B are compared under sequences of the conditions (channel A, then channel B)
2, 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
0	ETBE	0	R/W	Number of Execution Times Break Enable
				Enables the execution-times break condition or channel B. If this bit is 1 (break enable), a user issued when the number of break conditions m with the number of execution times that is spec BETR.
				0: The execution-times break condition is disal channel B
				1: The execution-times break condition is enab channel B

				These bits are always read as 0. The write value always be 0.
11 to 0	BET11 to BET0	All 0	R/W	Number of Execution Times

18.2.11 Branch Source Register (BRSR)

BRSR is a 32-bit read-only register. BRSR stores bits 27 to 0 in the address of the branch instruction. BRSR has the flag bit that is set to 1 when a branch occurs. This flag bit is cle when BRSR is read, the setting to enable PC trace is made, or BRSR is initialized by a por reset. Other bits are not initialized by a power-on reset. The four BRSR registers have a q structure and a stored register is shifted at every branch.

		Initial		
Bit	Bit Name	Value	R/W	Description
31	SVF	0	R	BRSR Valid Flag
				Indicates whether or not the branch source a stored. When a branch is made, this flag is s This flag is cleared to 0 by one of the followir conditions: when this flag is read from this re when PC trace is enabled, and when a powe reset is generated.
				0: The value of BRSR register is invalid
				1: The value of BRSR register is valid

Rev. 6.00 Jun. 12, 2007 Page 482 of 610 REJ09B0131-0600

BRDR is a 32-bit read-only register. BRDR stores bits 27 to 0 in the address of the bran destination instruction. BRDR has the flag bit that is set to 1 when a branch occurs. This cleared to 0 when BRDR is read, the setting to enable PC trace is made, or BRDR is init a power-on reset. Other bits are not initialized by a power-on reset. The four BRDR register a queue structure and a stored register is shifted at every branch.

	Initial		
Bit Name	Value	R/W	Description
DVF	0	R	BRDR Valid Flag
			Indicates whether or not the branch source a stored. When a branch is made, this flag is s This flag is cleared to 0 by one of the followin conditions: when this flag is read from this re when PC trace is enabled, and when a powe is generated.
			0: The value of BRDR register is invalid
			1: The value of BRDR register is valid
_	All 0	R	Reserved
			These bits are always read as 0. The write v should always be 0.
BDA27 to	Undefined	R	Branch Destination Address
BDA0			Store bits 27 to 0 of the branch destination a
	DVF — BDA27 to	Bit NameValueDVF0-All 0BDA27 toUndefined	Bit NameValueR/WDVF0R-All 0RBDA27 toUndefinedR

RENESAS

- bus cycle or I-bus cycle, bits to select instruction fetch or data access, and bits to select write. No user break will be generated if one of these combinations is set to B'00. The respective conditions are set in the bits of the break control register (BRCR). Make su all registers related to breaks before setting BBRA/BBRB.
- 2. When the break conditions are satisfied, the UBC sends a user break request to the CI sets the L bus condition match flag (SCMFCA or SCMFCB) and the I bus condition n flag (SCMFDA or SCMFDB) for the appropriate channel.
- 3. The appropriate condition match flags (SCMFCA, SCMFDA, SCMFCB, and SCMFI be used to check if the set conditions match or not. The matching of the conditions se Reset the flags by writing 0 before they are used again.
- 4. There is a chance that the data access break and its following instruction fetch break of around the same time, there will be only one break request to the CPU, but these two is channel match flags could be both set.

Rev. 6.00 Jun. 12, 2007 Page 484 of 610 REJ09B0131-0600

- or during an interrupt transition, but not to be executed). When this kind of break is a delay slot of a delayed branch instruction, the break is generated immediately before execution of the instruction that first accepts the break. Meanwhile, a break before the execution of the instruction in a delay slot and a break after the execution of the SLE instruction are also prohibited.
- 3. When a break after execution is selected, the instruction that matches the break cond executed and then the break is generated prior to the execution of the next instruction a break before execution, this cannot be used with overrun fetch instructions. When of break is set for a delayed branch instruction, a break is not generated until the first instruction at which breaks are accepted.
- 4. When an instruction fetch cycle is set for channel B, the break data register B (BDR ignored. There is thus no need to set break data for the break of the instruction fetch

18.3.3 Break on Data Access Cycle

- The bus cycles in which L bus data access breaks occur are from instructions.
- The relationship between the data access cycle address and the comparison condition operand size is listed in table 18.1.

Table 18.1 Data Access Cycle Addresses and Operand Size Comparison Conditio

Access Size	Address Compared
Longword	Compares break address register bits 31 to 2 to address bus bits
Word	Compares break address register bits 31 to 1 to address bus bits
Byte	Compares break address register bits 31 to 0 to address bus bits

RENESAS

byte data for this case, set the same data in two bytes at bits 15 to 8 and bits 7 to 0 of 1 data register B (BDRB) and break data mask register B (BDMRB). When word or byte bits 31 to 16 of BDRB and BDMRB are ignored.

18.3.4 Sequential Break

- By setting the SEQ bit in BRCR to 1, the sequential break is issued when a channel B condition matches after a channel A break condition matches. A user break is not gen even if a channel B break condition matches before a channel A break condition matches When channels A and B break conditions match at the same time, the sequential break issued. To clear the channel A condition match when a channel A condition match has occurred but a channel B condition match has not yet occurred in a sequential break specification, clear the SEQ bit in BRCR to 0.
- In sequential break specification, the L- or I-bus can be selected and the execution time condition can be also specified. For example, when the execution times break condition specified, the break is generated when a channel B condition matches with BETR = H after a channel A condition has matched.

18.3.5 Value of Saved Program Counter (PC)

When a break occurs, PC is saved onto the stack. The PC value saved is as follows depent the type of break.

• When a break before execution is selected:

The value of the program counter (PC) saved is the address of the instruction that mat break condition. The fetched instruction is not executed, and a break occurs before it.

Rev. 6.00 Jun. 12, 2007 Page 486 of 610 REJ09B0131-0600

when break processing started. When a data value is added to the break conditions, t will occur before the execution of an instruction that is within two instructions of the instruction that matched the break condition. Therefore, where the break will occur of specified exactly.

18.3.6 PC Trace

- Setting PCTE in BRCR to 1 enables PC traces. When branch (branch instruction, an interrupt) is generated, the branch source address and branch destination address are BRSR and BRDR, respectively.
- The branch source address has different values due to the kind of branch.
 - Branch instruction

The branch instruction address.

- Interrupt and exception

The address of the instruction in which the interrupt or exception was accepted. Taddress is equal to the return address saved onto the stack.

The start address of the interrupt or exception handling routine is stored in BRDI The TRAPA instruction belongs to interrupt and exception above.

• BRSR and BRDR have four pairs of queue structures. The top of queues is read first address stored in the PC trace register is read. BRSR and BRDR share the read point BRSR and BRDR in order, the queue only shifts after BRDR is read. After switching PCTE bit (in BRCR) off and on, the values in the queues are invalid.

Address: H'00000404, Address mask: H'00000000

Bus cycle: L bus/instruction fetch (after instruction execution)/read (operand size included in the condition)

— Channel B

Address: H'00008010, Address mask: H'00000006

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read (operand size included in the condition)

A user break occurs after an instruction of address H'00000404 is executed or before instructions of addresses H'00008010 to H'00008016 are executed.

• Register specifications

BARA = H'00037226, BAMRA = H'0000000, BBRA = H'0056, BARB = H'000372 BAMRB = H'0000000, BBRB = H'0056, BDRB = H'0000000, BDMRB = H'00000 BRCR = H'00000008

Specified conditions: Channel A/channel B sequential mode

— Channel A

Address: H'00037226, Address mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/word

- Channel B

Address: H'0003722E, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/word

After address H'00037226 is executed, a user break occurs before an instruction of ad H'0003722E is executed.

Rev. 6.00 Jun. 12, 2007 Page 488 of 610 REJ09B0131-0600

Address: H'00031415, Address mask: H'00000000

Data: H'0000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read (operand si included in the condition)

On channel A, no user break occurs since instruction fetch is not a write cycle. On ch no user break occurs since instruction fetch is performed for an even address.

• Register specifications

BARA = H'00037226, BAMRA = H'00000000, BBRA = H'005A, BARB = H'00037 BAMRB = H'00000000, BBRB = H'0056, BDRB = H'00000000, BDMRB = H'0000 BRCR = H'00000008

Specified conditions: Channel A/channel B sequential mode

— Channel A

Address: H'00037226, Address mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/write/word

— Channel B

Address: H'0003722E, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/word

Since instruction fetch is not a write cycle on channel A, a sequential condition does match. Therefore, no user break occurs.

Address: H'00001000, Address mask: H'00000000

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read/longword

The number of execution-times break enable (5 times)

On channel A, a user break occurs before an instruction of address H'00000500 is exe On channel B, a user break occurs after the instruction of address H'00001000 are exe four times and before the fifth time.

• Register specifications

BARA = H'00008404, BAMRA = H'00000FFF, BBRA = H'0054, BARB = H'000080 BAMRB = H'00000006, BBRB = H'0054, BDRB = H'00000000, BDMRB = H'00000 BRCR = H'00000400

Specified conditions: Channel A/channel B independent mode

— Channel A

Address: H'00008404, Address mask: H'00000FFF

Bus cycle: L bus/instruction fetch (after instruction execution)/read (operand size included in the condition)

— Channel B

Address: H'00008010, Address mask: H'00000006

Data: H'00000000, Data mask: H'00000000

Bus cycle: L bus/instruction fetch (before instruction execution)/read (operand siz included in the condition)

A user break occurs after an instruction of addresses H'00008000 to H'00008FFE is ex or before an instruction of addresses H'00008010 to H'00008016 is executed.

Rev. 6.00 Jun. 12, 2007 Page 490 of 610 REJ09B0131-0600

— Channel B

Address: H'000ABCDE, Address mask: H'000000FF Data: H'0000A512, Data mask: H'00000000 Bus cycle: L bus/data access/write/word

On channel A, a user break occurs with longword read from address H'00123454, we from address H'00123456, or byte read from address H'00123456. On channel B, a u occurs when word H'A512 is written in addresses H'000ABC00 to H'000ABCFE.

Break Condition Specified for I Bus Data Access Cycle:

• Register specifications:

BARA = H'00314156, BAMRA = H'00000000, BBRA = H'0094, BARB = H'00055 BAMRB = H'00000000, BBRB = H'00A9, BDRB = H'00007878, BDMRB = H'000 BRCR = H'00000080

Specified conditions: Channel A/channel B independent mode

— Channel A

Address: H'00314156, Address mask: H'00000000, ASID = H'80

Bus cycle: I bus/instruction fetch/read (operand size is not included in the condition

— Channel B

Address: H'00055555, Address mask: H'00000000, ASID = H'70

Data: H'00000078, Data mask: H'0000000F

Bus cycle: I bus/data access/write/byte

On channel A, a user break occurs when instruction fetch is performed for address H in the memory space.

On channel B, a user break occurs when the I bus writes byte data H'7* in address H'00055555.

RENESAS

if a bus cycle, in which an A-channel match and a B-channel match occur simultaneous set.

- 4. When a user break and another exception occur at the same instruction, which has hig priority is determined according to the priority levels defined in table 5.1 in section 5. Exception Handling. If an exception with higher priority occurs, the user break is not generated.
 - Pre-execution break has the highest priority.
 - When a post-execution break or data access break occurs simultaneously with a ree execution-type exception (including pre-execution break) that has higher priority, execution-type exception is accepted, and the condition match flag is not set (see t exception in the following note). The break will occur and the condition match fla set only after the exception source of the re-execution-type exception has been cle the exception handling routine and re-execution of the same instruction has ended
 - When a post-execution break or data access break occurs simultaneously with a completion-type exception (TRAPA) that has higher priority, though a break does occur, the condition match flag is set.
- 5. Note the following exception for the above note.

If a post-execution break or data access break is satisfied by an instruction that general CPU address error by data access, the CPU address error is given priority over the breat that the UBC condition match flag is set in this case.

- Note the following when a break occurs in a delay slot.
 If a pre-execution break is set at the delay slot instruction of the RTE instruction, the l does not occur until the branch destination of the RTE instruction.
- 7. User breaks are disabled during UBC module standby mode. Do not read from or wri UBC registers during UBC module standby mode; the values are not guaranteed.

Rev. 6.00 Jun. 12, 2007 Page 492 of 610 REJ09B0131-0600

Standard 1149.1 and IEEE Standard Test Access Port and Boundary-Scan Architecture) specifications.

The H-UDI in this LSI supports a boundary scan function, and is also used for emulator connection.

When using an emulator, H-UDI functions should not be used. Refer to the emulator mathematication the method of connecting the emulator.

HUD0301A_000020030900

RENESAS

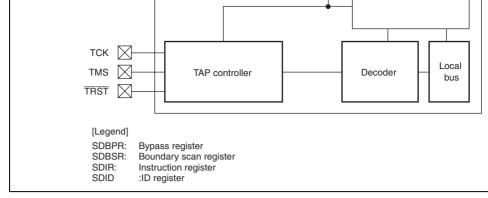


Figure 19.1 Block Diagram of H-UDI

Rev. 6.00 Jun. 12, 2007 Page 494 of 610 REJ09B0131-0600

this signal in synchronization with TCK. The protocol to the JTAG standard (IEEE Std.1149.1).TRSTInputReset Input PinInput is accepted asynchronously with respect to TCH when low, the H-UDI is reset. TRST must be low for t period when the power is turned on regardless of usi UDI function. This is different from the JTAG standard For details on resets, see section 19.4.2, Reset ConfTDIInputSerial Data Input Pin Data transfer to the H-UDI is executed by changing the in synchronization with TCK.TDOOutputSerial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see section Instruction Register (SDIR).ASEMDInputASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode entered; if a high level is input, normal mode is entered mode, the emulator functions can be used. The input	TMS	Input	Mode Select Input Pin
InputInput is accepted asynchronously with respect to TCI when low, the H-UDI is reset. TRST must be low for t period when the power is turned on regardless of usi UDI function. This is different from the JTAG standard For details on resets, see section 19.4.2, Reset ConfTDIInputSerial Data Input Pin Data transfer to the H-UDI is executed by changing th in synchronization with TCK.TDOOutputSerial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see secti Instruction Register (SDIR).ASEMDInputASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode entered; if a high level is input, normal mode is entered mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due			The state of the TAP control circuit is determined by c this signal in synchronization with TCK. The protocol to the JTAG standard (IEEE Std.1149.1).
when low, the H-UDI is reset. TRST must be low for the period when the power is turned on regardless of using UDI function. This is different from the JTAG standard For details on resets, see section 19.4.2, Reset ConferenceTDIInputSerial Data Input Pin Data transfer to the H-UDI is executed by changing the in synchronization with TCK.TDOOutputSerial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see section Instruction Register (SDIR).ASEMDInputASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due	TRST	Input	Reset Input Pin
TDI Input Serial Data Input Pin Data transfer to the H-UDI is executed by changing the in synchronization with TCK. TDO Output Serial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see section Instruction Register (SDIR). ASEMD Input ASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due			Input is accepted asynchronously with respect to TCM when low, the H-UDI is reset. TRST must be low for t period when the power is turned on regardless of usin UDI function. This is different from the JTAG standard
Data transfer to the H-UDI is executed by changing the in synchronization with TCK. TDO Output Serial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see sectionstruction Register (SDIR). ASEMD Input ASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due			For details on resets, see section 19.4.2, Reset Confi
in synchronization with TCK. TDO Output Serial Data Output Pin Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see sectionstruction Register (SDIR). ASEMD Input ASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due	TDI	Input	Serial Data Input Pin
Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see sectionstruction Register (SDIR). ASEMD Input ASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode entered; if a high level is input, normal mode is entered; if a high level is input, normal mode is entered the ASEMD pin should be held unchanged except due			Data transfer to the H-UDI is executed by changing th in synchronization with TCK.
synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see section Instruction Register (SDIR). ASEMD Input ASE Mode Select Pin When a low level is input to the ASEMD pin, ASE mode entered; if a high level is input, normal mode is entered mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except due	TDO	Output	Serial Data Output Pin
When a low level is input to the $\overline{\text{ASEMD}}$ pin, ASE more entered; if a high level is input, normal mode is entered mode, the emulator functions can be used. The input the $\overline{\text{ASEMD}}$ pin should be held unchanged except due			Data read from the H-UDI is executed by reading this synchronization with TCK. The data output timing dep the command type set in SDIR. For details, see section Instruction Register (SDIR).
entered; if a high level is input, normal mode is entere mode, the emulator functions can be used. The input the ASEMD pin should be held unchanged except du	ASEMD	Input	ASE Mode Select Pin
			When a low level is input to the $\overline{\text{ASEMD}}$ pin, ASE mo entered; if a high level is input, normal mode is entere mode, the emulator functions can be used. The input the $\overline{\text{ASEMD}}$ pin should be held unchanged except du $\overline{\text{RES}}$ pin assertion period.

19.3.1 Bypass Register (SDBPR)

SDBPR is a 1-bit register that cannot be accessed by the CPU. When SDIR is set to the b mode, SDBPR is connected between H-UDI pins (TDI and TDO). The initial value is und

19.3.2 Instruction Register (SDIR)

SDIR is a 16-bit read-only register. This register is in JTAG IDCODE in its initial state. I initialized by $\overline{\text{TRST}}$ assertion or in the TAP test-logic-reset state, and can be written to by UDI irrespective of the CPU mode. Operation is not guaranteed if a reserved command is this register.

Bit	Bit Name	Initial Value	R/W	Description
15 to 13	TI7 to TI5	All 1	R	Test Instruction 7 to 0
12	TI4	0	R	The H-UDI instruction is transferred to SDIR
11 to 8	TI3 to TI0	All 1	R	serial input from TDI.
				For commands, see table 19.2.
7 to 2		All 1	R	Reserved
				These bits are always read as 1.
1		0	R	Reserved
				This bit is always read as 0.
0		1	R	Reserved
				This bit is always read as 1.

Rev. 6.00 Jun. 12, 2007 Page 496 of 610 REJ09B0131-0600

1	0	1			_	—	_	H-UDI interrupt
1	1	1	0	_	_	_	_	JTAG IDCODE (Ini
1	1	1	1	_	_		—	JTAG BYPASS
Othe	r than ab	ove						Reserved

19.3.3 Boundary Scan Register (SDBSR)

SDBSR is a 333-bit shift register, located on the PAD, for controlling the input/output p LSI. The initial value is undefined. This register cannot be accessed by the CPU.

Using the EXTEST, SAMPLE/PRELOAD, CLAMP, and HIGHZ commands, a boundatest conforming to the JTAG standard can be carried out. Table 19.3 shows the correspondence of the LSI's pins and boundary scan register bits.

326	PD00/IRQ0/-/-	IN	296	PD04/IRQ4/SCK1/-
325	PE08/HIFCS	IN	295	PD03/IRQ3/RxD1/-
324	PE24/HIFD15/CTS1/-	IN	294	PD02/IRQ2/TxD1/-
323	PE23/HIFD14/RTS1/-	IN	293	PD01/IRQ1/-/-
322	PE22/HIFD13/CTS0/-	IN	292	PD00/IRQ0/-/-
321	PE21/HIFD12/RTS0/-	IN	291	PE08/HIFCS
320	PE20/HIFD11/SCK1/-	IN	290	PE24/HIFD15/CTS1/-
319	PE19/HIFD10/RxD1/-	IN	289	PE23/HIFD14/RTS1/-
318	PE18/HIFD09/TxD1/-	IN	288	PE22/HIFD13/CTS0/-
317	PE17/HIFD08/SCK0/-	IN	287	PE21/HIFD12/RTS0/-
316	PE16/HIFD07/RxD0/-	IN	286	PE20/HIFD11/SCK1/-
315	PE15/HIFD06/TxD0/-	IN	285	PE19/HIFD10/RxD1/-
314	PE14/HIFD05	IN	284	PE18/HIFD09/TxD1/-
313	PE13/HIFD04	IN	283	PE17/HIFD08/SCK0/-
312	PE12/HIFD03	IN	282	PE16/HIFD07/RxD0/-
311	PE11/HIFD02	IN	281	PE15/HIFD06/TxD0/-
310	PE10/HIFD01	IN	280	PE14/HIFD05
309	PE09/HIFD00	IN	279	PE13/HIFD04
308	PE07/HIFRS	IN	278	PE12/HIFD03
307	PE06/HIFWR	IN	277	PE11/HIFD02
306	PE05/HIFRD	IN	276	PE10/HIFD01
305	PE04/HIFINT	IN	275	PE09/HIFD00
304	PE03/HIFMD	IN	274	PE07/HIFRS

Rev. 6.00 Jun. 12, 2007 Page 498 of 610 REJ09B0131-0600

RENESAS

265	PC16/MDIO/-/-	OUT	233	PE00/HIFEBL
264	PD06/IRQ6/RxD2/-	Control	232	PC17/MDC/-/-
263	PD05/IRQ5/TxD2/-	Control	231	PC16/MDIO/-/-
262	PD04/IRQ4/SCK1/-	Control	230	PC09/RX_ER/
261	PD03/IRQ3/RxD1/-	Control	229	PC15/CRS/
260	PD02/IRQ2/TxD1/-	Control	228	PC08/RX_DV/
259	PD01/IRQ1/-/-	Control	227	PC00/MIIRXD0/
258	PD00/IRQ0/-/-	Control	226	PC01/MIIRXD1/
257	PE08/HIFCS	Control	225	PC02/MIIRXD2/
256	PE24/HIFD15/CTS1/-	Control	224	PC03/MIIRXD3/-/-
255	PE23/HIFD14/RTS1/-	Control	223	PC10/RX_CLK/-/-
254	PE22/HIFD13/CTS0/-	Control	222	PC18/LNKSTA
253	PE21/HIFD12/RTS0/-	Control	221	PC11/TX_ER/-/-
252	PE20/HIFD11/SCK1/-	Control	220	PC13/TX_CLK/-/-
251	PE19/HIFD10/RxD1/-	Control	219	PC04/MIITXD0/-/-
250	PE18/HIFD09/TxD1/-	Control	218	PC05/MIITXD1/-/-
249	PE17/HIFD08/SCK0/-	Control	217	PC06/MIITXD2/-/-
248	PE16/HIFD07/RxD0/-	Control	216	PC07/MIITXD3/-/-
247	PE15/HIFD06/TxD0/-	Control	215	PC12/TX_EN/-/-
246	PE14/HIFD05	Control	214	PC14/COL/-/-
245	PE13/HIFD04	Control	213	PC20/WOL
244	PE12/HIFD03	Control	212	PC19/EXOUT
243	PE11/HIFD02	Control	211	MD3
242	PE10/HIFD01	Control	210	MD5

Renesas

200 PC10/RX_CLK/-/- OUT 168 TESTOUT 199 PC18/LNKSTA OUT 167 MD0 198 PC11/TX_ER/-/- OUT 166 MD1 197 PC13/TX_CLK/-/- OUT 165 D00 196 PC04/MIITXD0/-/- OUT 164 D01 195 PC05/MIITXD1/-/- OUT 163 D02 194 PC06/MIITXD2/-/- OUT 161 D04 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC19/CRS/-/- Control 152 D11 184 PC00/MIIRXD0/-/- Control 151 D10	201	PC03/MIIRXD3/-/-	OUT	169	PC19/EXOUT
198 PC11/TX_ER/-/- OUT 166 MD1 197 PC13/TX_CLK/-/- OUT 165 D00 196 PC04/MIITXD0/-/- OUT 164 D01 195 PC05/MIITXD1/-/- OUT 163 D02 194 PC06/MIITXD2/-/- OUT 162 D03 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 199 PC19/EXOUT OUT 156 D15 189 PC19/EXOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 151 D10 183 PC01/MIIRXD1/-/- Control 151 D10	200	PC10/RX_CLK/-/-	OUT	168	TESTOUT
197 PC13/TX_CLK/-/- OUT 165 D00 196 PC04/MIITXD0/-/- OUT 164 D01 195 PC05/MIITXD1/-/- OUT 163 D02 194 PC06/MIITXD2/-/- OUT 162 D03 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 152 D11 184 PC00/MIIRXD0/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09	199	PC18/LNKSTA	OUT	167	MD0
196 PC04/MIITXD0/-/- OUT 164 D01 195 PC05/MIITXD1/-/- OUT 163 D02 194 PC06/MIITXD2/-/- OUT 162 D03 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 151 D10 182 PC02/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/C	198	PC11/TX_ER/-/-	OUT	166	MD1
195 PC05/MIITXD1/-/- OUT 163 D02 194 PC06/MIITXD2/-/- OUT 162 D03 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 <t< td=""><td>197</td><td>PC13/TX_CLK/-/-</td><td>OUT</td><td>165</td><td>D00</td></t<>	197	PC13/TX_CLK/-/-	OUT	165	D00
194 PC06/MIITXD2/-/- OUT 162 D03 193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 153 D12 184 PC00/MIIRXD1/-/- Control 151 D10 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CK	196	PC04/MIITXD0/-/-	OUT	164	D01
193 PC07/MIITXD3/-/- OUT 161 D04 192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	195	PC05/MIITXD1/-/-	OUT	163	D02
192 PC12/TX_EN/-/- OUT 160 D05 191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	194	PC06/MIITXD2/-/-	OUT	162	D03
191 PC14/COL/-/- OUT 159 D06 190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 153 D12 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	193	PC07/MIITXD3/-/-	OUT	161	D04
190 PC20/WOL OUT 158 D07 189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 154 D13 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	192	PC12/TX_EN/-/-	OUT	160	D05
189 PC19/EXOUT OUT 157 MD2 188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 154 D13 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	191	PC14/COL/-/-	OUT	159	D06
188 TESTOUT OUT 156 D15 187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 154 D13 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 148 PB02/CKE 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	190	PC20/WOL	OUT	158	D07
187 PC09/RX_ER/-/- Control 155 D14 186 PC15/CRS/-/- Control 154 D13 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	189	PC19/EXOUT	OUT	157	MD2
186 PC15/CRS/-/- Control 154 D13 185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	188	TESTOUT	OUT	156	D15
185 PC08/RX_DV/-/- Control 153 D12 184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	187	PC09/RX_ER/-/-	Control	155	D14
184 PC00/MIIRXD0/-/- Control 152 D11 183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	186	PC15/CRS/-/-	Control	154	D13
183 PC01/MIIRXD1/-/- Control 151 D10 182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	185	PC08/RX_DV/-/-	Control	153	D12
182 PC02/MIIRXD2/-/- Control 150 D09 181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	184	PC00/MIIRXD0/-/-	Control	152	D11
181 PC03/MIIRXD3/-/- Control 149 D08 180 PC10/RX_CLK/-/- Control 148 PB02/CKE	183	PC01/MIIRXD1/-/-	Control	151	D10
180 PC10/RX_CLK/-/- Control 148 PB02/CKE	182	PC02/MIIRXD2/-/-	Control	150	D09
	181	PC03/MIIRXD3/-/-	Control	149	D08
179 PC18/LNKSTA Control 147 PB03/CAS	180	PC10/RX_CLK/-/-	Control	148	PB02/CKE
	179	PC18/LNKSTA	Control	147	PB03/CAS
178 PC11/TX_ER/-/- Control 146 PB04/RAS	178	PC11/TX_ER/-/-	Control	146	PB04/RAS

Rev. 6.00 Jun. 12, 2007 Page 500 of 610 REJ09B0131-0600

RENESAS

137	D07	OUT	105	D10
136	D15	OUT	104	D09
135	D14	OUT	103	D08
134	D13	OUT	102	WEO, DQMLL
133	D12	OUT	101	WE1, DQMLU, WE
132	D11	OUT	100	RDWR
131	D10	OUT	99	PB02/CKE
130	D09	OUT	98	PB03/CAS
129	D08	OUT	97	PB04/RAS
128	WEO, DQMLL	OUT	96	PB12/CS3
127	WE1, DQMLU, WE	OUT	95	A00
126	RDWR	OUT	94	A01
125	PB02/CKE	OUT	93	A02
124	PB03/CAS	OUT	92	PB13/BS
123	PB04/RAS	OUT	91	PB11/CS4
122	PB12/CS3	OUT	90	PB00/WAIT
121	A00	OUT	89	PB05/ICIORD
120	A01	OUT	88	PB06/ICIOWR
119	A02	OUT	87	PB01/IOIS16
118	D00	Control	86	PB09/CE2A
117	D01	Control	85	PB10/CS5B, CE1A
116	D02	Control	84	PB07/CE2B
115	D03	Control	83	PB08/CS6B, CE1B
114	D04	Control	82	PA16/A16

Renesas

73	PA25/A25	IN	41	PA21/A21
72	PD07/IRQ7/SCK2/-	IN	40	PA22/A22
71	A03	OUT	39	PA23/A23
70	A04	OUT	38	PA24/A24
69	A05	OUT	37	PA25/A25
68	A06	OUT	36	PD07/IRQ7/SCK2/-
67	A07	OUT	35	A03
66	A08	OUT	34	A04
65	A09	OUT	33	A05
64	A10	OUT	32	A06
63	A11	OUT	31	A07
62	A12	OUT	30	A08
61	A13	OUT	29	A09
60	A14	OUT	28	A10
59	A15	OUT	27	A11
58	PB13/BS	OUT	26	A12
57	CSO	OUT	25	A13
56	PB11/CS4	OUT	24	A14
55	RD	OUT	23	A15
54	PB00/WAIT	OUT	22	PB13/BS
53	PB05/ICIORD	OUT	21	CSO
52	PB06/ICIOWR	OUT	20	PB11/CS4
51	PB01/IOIS16	OUT	19	RD
50	PB09/CE2A	OUT	18	PB00/WAIT

Rev. 6.00 Jun. 12, 2007 Page 502 of 610 REJ09B0131-0600

RENESAS

NI I	* 0 1 1		
8	PA18/A18	Control	
9	PA17/A17	Control	To TDO

Note: * Control means a low active signal.

The corresponding pin is driven with an OUT value when the Control is driver

19.3.4 ID Register (SDID)

SDID is a 32-bit read-only register in which SDIDH and SDIDL are connected. Each register that can be read by the CPU.

To read this register by the H-UDI side, the contents can be read via the TDO pin when IDCODE command is set and the TAP state is Shift-DR. Writing is disabled.

D:4	Dit Nome	Initial		Description
Bit	Bit Name	Value	R/W	Description
31 to 0	DID31 to	Refer to	R	Device ID 31 to Device ID 0
	DID0	description	١	ID register that is stipulated by JTAG. H'002B (initial value) for this LSI. Upper four bits may changed according to the LSI version.
				SDIDH corresponds to bits 31 to 16.
				SDIDL corresponds to bits 15 to 0.

RENESAS

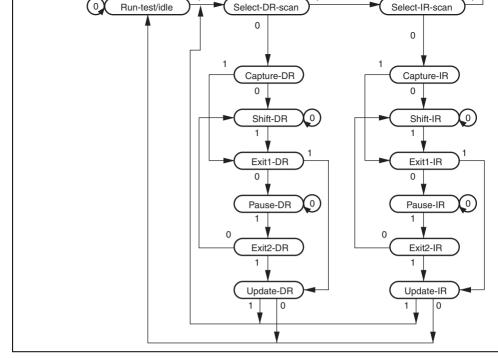


Figure 19.2 TAP Controller State Transitions

Note: The transition condition is the TMS value at the rising edge of the TCK signal. The value is sampled at the rising edge of the TCK signal and is shifted at the falling of the TCK signal. For details on change timing of the TDO value, see section 19.4. Output Timing. The TDO pin is high impedance, except in the shift-DR and shift states. A transition to the Test-Logic-Reset state is made asynchronously with TC driving the TRST signal 0.

Rev. 6.00 Jun. 12, 2007 Page 504 of 610 REJ09B0131-0600

			High	Normal reset
		High	Low	H-UDI reset only
			High	Normal operation
Notes:	1.	Selects to normal mode or ASE mode.		
		ASEMD0 = high: normal mode		
		ASEMD0 = low: ASE mode		
	2.	In ASE mode, the reset hold state is entered by driving the $\overline{\text{RES}}$ and $\overline{\text{TRST}}$ pi the given time. In this state, the CPU does not start up, even if the $\overline{\text{RES}}$ pin is high. After that, when the $\overline{\text{TRST}}$ pin is driven high, H-UDI operation is enable CPU does not start up. The reset hold state is canceled by the following: and		

assert (power-on reset) or TRST reassert.

19.4.3 TDO Output Timing

The timing of data output from the TDO differs according to the command type set in Si timing changes at the TCK falling edge when JTAG commands (EXTEST, CLAMP, HI SAMPLE/PRELOAD, IDCODE, and BYPASS) are set. This is a timing of the JTAG st When the H-UDI commands (H-UDI reset negate, H-UDI reset assert, and H-UDI interset, the TDO signal is output at the TCK rising edge earlier than the JTAG standard by a cycle.

19.4.4 H-UDI Reset

An H-UDI reset is generated by setting the H-UDI reset assert command in SDIR. An His of the same kind as a power-on reset. An H-UDI reset is released by inputting the H-UD negate command. The required time between the H-UDI reset assert command and H-UD negate command is the same as time for keeping the RESETP pin low to apply a power-or

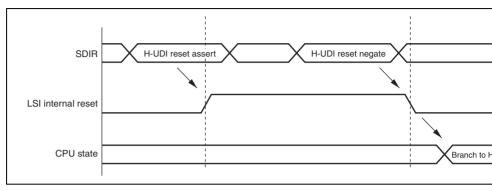


Figure 19.4 H-UDI Reset

19.4.5 H-UDI Interrupt

The H-UDI interrupt function generates an interrupt by setting an H-UDI command in SE H-UDI interrupt is an interrupt of general exceptions, resulting in a branch to an address I the VBR value plus offset, and with return by the RTE instruction. This interrupt request fixed priority level of 15.

H-UDI interrupts are accepted in sleep mode, but not in standby mode.

Rev. 6.00 Jun. 12, 2007 Page 506 of 610 REJ09B0131-0600

BYPASS: The BYPASS instruction is a mandatory instruction that operates the bypass This instruction shortens the shift path to speed up serial data transfer involving other ch printed circuit board. While this instruction is executing, the test circuit has no effect on system circuits. The upper four bits of the instruction code are 1111.

SAMPLE/PRELOAD: The SAMPLE/PRELOAD instruction inputs data from this LSD circuitry to the boundary scan register, outputs data from the scan path, and loads data o scan path. While this instruction is executed, signals input to this LSI pins are transmitted to the internal circuitry, and internal circuit outputs are directly output externally from the pins. This LSI's system circuits are not affected by execution of this instruction. The upp bits of the instruction code are 0100.

In a SAMPLE operation, a snapshot of a value to be transferred from an input pin to the circuitry, or a value to be transferred from the internal circuitry to an output pin, is latch boundary scan register and read from the scan path. Snapshot latching is performed in synchronization with the rising edge of the TCK signal in the Capture-DR state. Snapshot does not affect normal operation of this LSI.

In a PRELOAD operation, an initial value is set in the parallel output latch of the bound register from the scan path prior to the EXTEST instruction. Without a PRELOAD oper when the EXTEST instruction was executed an undefined value would be output from t pin until completion of the initial scan sequence (transfer to the output latch) (with the E instruction, the parallel output latch value is constantly output to the output pin).

EXTEST: This instruction is provided to test external circuitry when this LSI is mounted printed circuit board. When this instruction is executed, output pins are used to output tee (previously set by the SAMPLE/PRELOAD instruction) from the boundary scan registed printed circuit board, and input pins are used to latch test results into the boundary scan from the printed circuit board. If testing is carried out by using the EXTEST instruction the Nth test data is scanned-in when test data (N-1) is scanned out.

Renesas

19.5.2 Points for Attention

- Boundary scan mode does not cover clock-related signals (EXTAL, XTAL, CKIO, ar CK_PHY).
- Boundary scan mode does not cover system- and E10A-related signals (RES and ASE
- Boundary scan mode does not cover H-UDI-related signals (TCK, TDI, TDO, TMS, a TRST).
- When the EXTEST, CLAMP, and HIGHZ commands are set, fix the $\overline{\text{RES}}$ pin low.
- When a boundary scan test for other than BYPASS and IDCODE is carried out, fix th ASEMD pin high.

19.6 Usage Notes

- An H-UDI command, once set, will not be modified as long as another command is n
 issued from the H-UDI. If the same command is given continuously, the command mu
 after a command (BYPASS, etc.) that does not affect LSI operations is once set.
- Because LSI operations are suspended in standby mode, H-UDI commands are not ac To hold the state of the TAP before and after standby mode, the TCK signal must be l during standby mode transition.
- The H-UDI is used for emulator connection. Therefore, H-UDI functions cannot be us using an emulator.

Rev. 6.00 Jun. 12, 2007 Page 508 of 610 REJ09B0131-0600

- When registers consist of 16 or 32 bits, the addresses of the MSBs are given.
- Registers are classified according to functional modules.
- The numbers of Access Cycles are given.
- 2. Register bits
- Bit configurations of the registers are listed in the same order as the register addresse
- Reserved bits are indicated by in the bit name column.
- Space in the bit name field indicates that the entire register is allocated to either the o data.
- For the registers of 16 or 32 bits, the MSB is listed first.
- 3. Register states in each operating mode
- Register states are listed in the same order as the register addresses.
- The register states shown here are for the basic operating modes. If there is a specific an on-chip peripheral module, refer to the section on that on-chip peripheral module

Cache Control Register 3	CCR3* ²	32	H'F80000B4	Cache	32
Port A data register H	PADRH	16	H'F8050000	I/O	8/16
Port A IO register H	PAIORH	16	H'F8050004	I/O	8/16
Port A control register H1	PACRH1	16	H'F8050008	I/O	8/16
Port A control register H2	PACRH2	16	H'F805000A	I/O	8/16
Port B data register L	PBDRL	16	H'F8050012	I/O	8/16
Port B IO register L	PBIORL	16	H'F8050016	I/O	8/16
Port B control register L1	PBCRL1	16	H'F805001C	I/O	8/16
Port B control register L2	PBCRL2	16	H'F805001E	I/O	8/16
Port C data register H	PCDRH	16	H'F8050020	I/O	8/16
Port C data register L	PCDRL	16	H'F8050022	I/O	8/16
Port C IO register H	PCIORH	16	H'F8050024	I/O	8/16
Port C IO register L	PCIORL	16	H'F8050026	I/O	8/16
Port C control register H2	PCCRH2	16	H'F805002A	I/O	8/16
Port C control register L1	PCCRL1	16	H'F805002C	I/O	8/16
Port C control register L2	PCCRL2	16	H'F805002E	I/O	8/16
Port D data register L	PDDRL	16	H'F8050032	I/O	8/16
Port D IO register L	PDIORL	16	H'F8050036	I/O	8/16
Port D control register L2	PDCRL2	16	H'F805003E	I/O	8/16
Port E data register H	PEDRH	16	H'F8050040	I/O	8/16
Port E data register L	PEDRL	16	H'F8050042	I/O	8/16
Port E IO register H	PEIORH	16	H'F8050044	I/O	8/16
Port E IO register L	PEIORL	16	H'F8050046	I/O	8/16
Port E control register H1	PECRH1	16	H'F8050048	I/O	8/16

Rev. 6.00 Jun. 12, 2007 Page 510 of 610 REJ09B0131-0600

RENESAS

Standby control register 4	STBCR4	8	H'F80A0004	Power- down mode	8
PHY-LSI clock frequency control register	MCLKCR	8	H'F80A000C	CPG	8/16
Instruction register	SDIR	16	H'F8100200	H-UDI	16
ID register	SDID	32	H'F8100214	H-UDI	16/3
Interrupt control register 0	ICR0	16	H'F8140000	INTC	8/16
IRQ control register	IRQCR	16	H'F8140002	INTC	8/16
IRQ status register	IRQSR	16	H'F8140004	INTC	8/16
Interrupt priority register A	IPRA	16	H'F8140006	INTC	8/16
Interrupt priority register B	IPRB	16	H'F8140008	INTC	8/16
Frequency control register	FRQCR	16	H'F815FF80	CPG	16
Standby control register	STBCR	8	H'F815FF82	Power- down mode	8
Watch dog timer counter	WTCNT	8	H'F815FF84	WDT	8/16
Watch dog timer control/status register	WTCSR	8	H'F815FF86	WDT	8/16
Standby control register 2	STBCR2	8	H'F815FF88	Power- down mode	8
Serial mode register_0	SCSMR_0	16	H'F8400000	SCIF_0	16
Bit rate register_0	SCBRR_0	8	H'F8400004	SCIF_0	8
Serial control register_0	SCSCR_0	16	H'F8400008	SCIF_0	16
Transmit FIFO data register_0	SCFTDR_0	8	H'F840000C	SCIF_0	8

Renesas

Serial control register_1	SCSCR_1	16	H'F8410008	SCIF_1	16
Transmit FIFO data register_1	SCFTDR_1	8	H'F841000C	SCIF_1	8
Serial status register_1	SCFSR_1	16	H'F8410010	SCIF_1	16
Receive FIFO data register_1	SCFRDR_1	8	H'F8410014	SCIF_1	8
FIFO control register_1	SCFCR_1	16	H'F8410018	SCIF_1	16
FIFO data count register_1	SCFDR_1	16	H'F841001C	SCIF_1	16
Serial Port register_1	SCSPTR_1	16	H'F8410020	SCIF_1	16
Line status register_1	SCLSR_1	16	H'F8410024	SCIF_1	16
Serial mode register_2	SCSMR_2	16	H'F8420000	SCIF_2	16
Bit rate register_2	SCBRR_2	8	H'F8420004	SCIF_2	8
Serial control register_2	SCSCR_2	16	H'F8420008	SCIF_2	16
Transmit FIFO data register_2	SCFTDR_2	8	H'F842000C	SCIF_2	8
Serial status register_2	SCFSR_2	16	H'F8420010	SCIF_2	16
Receive FIFO data register_2	SCFRDR_2	8	H'F8420014	SCIF_2	8
FIFO control register_2	SCFCR_2	16	H'F8420018	SCIF_2	16
FIFO data count register_2	SCFDR_2	16	H'F842001C	SCIF_2	16
Serial Port register_2	SCSPTR_2	16	H'F8420020	SCIF_2	16
Line status register_2	SCLSR_2	16	H'F8420024	SCIF_2	16
Compare match timer start register	CMSTR	16	H'F84A0070	CMT	8/16
Compare match timer control/status register_0	CMCSR_0	16	H'F84A0072	CMT	8/16
Compare match counter_0	CMCNT_0	16	H'F84A0074	CMT	8/16
Compare match timer constant register_0	CMCOR_0	16	H'F84A0076	CMT	8/16

Rev. 6.00 Jun. 12, 2007 Page 512 of 610 REJ09B0131-0600

HIF internal Interrupt control register	HIFIICR	32	H'F84D0010	HIF	32
HIF external Interrupt control register	HIFEICR	32	H'F84D0014	HIF	32
HIF address register	HIFADR	32	H'F84D0018	HIF	32
HIF data register	HIFDATA	32	H'F84D001C	HIF	32
HIFDREQ trigger register	HIFDTR	32	H'F84D0020	HIF	32
HIF bank Interrupt control register	HIFBICR	32	H'F84D0024	HIF	32
HIF boot control register	HIFBCR	32	H'F84D0040	HIF	32
Common control register	CMNCR	32	H'F8FD0000	BSC	32
Bus control register for area 0	CS0BCR	32	H'F8FD0004	BSC	32
Bus control register for area 3	CS3BCR	32	H'F8FD000C	BSC	32
Bus control register for area 4	CS4BCR	32	H'F8FD0010	BSC	32
Bus control register for area 5B	CS5BBCR	32	H'F8FD0018	BSC	32
Bus control register for area 6B	CS6BBCR	32	H'F8FD0020	BSC	32
Wait control register for area 0	CS0WCR	32	H'F8FD0024	BSC	32
Wait control register for area 3	CS3WCR	32	H'F8FD002C	BSC	32
Wait control register for area 4	CS4WCR	32	H'F8FD0030	BSC	32
Wait control register for area 5B	CS5BWCR	32	H'F8FD0038	BSC	32
Wait control register for area 6B	CS6BWCR	32	H'F8FD0040	BSC	32
SDRAM control register	SDCR	32	H'F8FD0044	BSC	32
Refresh timer control/status register	RTCSR	32	H'F8FD0048	BSC	32
Refresh timer counter	RTCNT	32	H'F8FD004C	BSC	32
Refresh time constant register	RTCOR	32	H'F8FD0050	BSC	32
E-DMAC mode register	EDMR	32	H'FB000000	E-DMAC	32
E-DMAC transmit request register	EDTRR	32	H'FB000004	E-DMAC	32

Renesas

register					
Receive missed-frame counter register	RMFCR	32	H'FB000020	E-DMAC	32
Transmit FIFO threshold register	TFTR	32	H'FB000024	E-DMAC	32
FIFO depth register	FDR	32	H'FB000028	E-DMAC	32
Receiving method control register	RMCR	32	H'FB00002C	E-DMAC	32
E-DMAC operation control register	EDOCR	32	H'FB000030	E-DMAC	32
Flow control FIFO threshold register	FCFTR	32	H'FB000034	E-DMAC	32
Transmit Interrupt setting register	TRIMD	32	H'FB00003C	E-DMAC	32
Receive buffer write address register	RBWAR	32	H'FB000040	E-DMAC	32
Receive descriptor fetch address register	RDFAR	32	H'FB000044	E-DMAC	32
Transmit buffer read address register	TBRAR	32	H'FB00004C	E-DMAC	32
Transmit descriptor fetch address register	TDFAR	32	H'FB000050	E-DMAC	32
EtherC mode register	ECMR	32	H'FB000160	EtherC	32
EtherC status register	ECSR	32	H'FB000164	EtherC	32
EtherC interrupt permission register	ECSIPR	32	H'FB000168	EtherC	32
PHY interface register	PIR	32	H'FB00016C	EtherC	32
MAC address high register	MAHR	32	H'FB000170	EtherC	32
MAC address low register	MALR	32	H'FB000174	EtherC	32
Receive frame length register	RFLR	32	H'FB000178	EtherC	32
PHY status register	PSR	32	H'FB00017C	EtherC	32
Transmit retry over counter register	TROCR	32	H'FB000180	EtherC	32

Rev. 6.00 Jun. 12, 2007 Page 514 of 610 REJ09B0131-0600

TLFRCR	32	H'FB0001A0	EtherC	32
RFCR	32	H'FB0001A4	EtherC	32
MAFCR	32	H'FB0001A8	EtherC	32
IPGR	32	H'FB0001B4	EtherC	32
APR	32	H'FB0001B8	EtherC	32
MPR	32	H'FB0001BC	EtherC	32
TPAUSER	32	H'FB0001C4	EtherC	32
BDRB	32	H'FFFFFF90	UBC	32
BDMRB	32	H'FFFFFF94	UBC	32
BRCR	32	H'FFFFF98	UBC	32
BETR	16	H'FFFFFF9C	UBC	16
BARB	32	H'FFFFFFA0	UBC	32
BAMRB	32	H'FFFFFFA4	UBC	32
BBRB	16	H'FFFFFFA8	UBC	16
BRSR	32	H'FFFFFFAC	UBC	32
BARA	32	H'FFFFFB0	UBC	32
BAMRA	32	H'FFFFFB4	UBC	32
BBRA	16	H'FFFFFB8	UBC	16
BRDR	32	H'FFFFFBC	UBC	32
CCR1	32	H'FFFFFFEC	Cache	32
	RFCR MAFCR IPGR APR MPR TPAUSER BDRB BDMRB BRCR BARR BARR BARR BARR BARR BARR BA	RFCR32MAFCR32IPGR32APR32MPR32TPAUSER32BDRB32BDRRB32BRCR32BETR16BARB32BRSR32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32BARA32	RFCR32H'FB0001A4MAFCR32H'FB0001A8IPGR32H'FB0001B4APR32H'FB0001B8MPR32H'FB0001BCTPAUSER32H'FB0001C4BDRB32H'FFFFFF90BDMRB32H'FFFFFF94BRCR32H'FFFFFF94BETR16H'FFFFFF9CBARB32H'FFFFFFA4BBRB16H'FFFFFFA4BRSR32H'FFFFFFA6BARA32H'FFFFFFA6BARA32H'FFFFFFB6BARA32H'FFFFFFB8BRAA16H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8BRDR32H'FFFFFFB8	RFCR32H'FB0001A4EtherCMAFCR32H'FB0001A8EtherCIPGR32H'FB0001B4EtherCAPR32H'FB0001B8EtherCMPR32H'FB0001BCEtherCTPAUSER32H'FB0001C4EtherCBDRB32H'FFFFF90UBCBDRB32H'FFFFF94UBCBDRB32H'FFFFF94UBCBRCR32H'FFFFF94UBCBARB32H'FFFFF94UBCBARB32H'FFFFFFA4UBCBBRB16H'FFFFFA4UBCBARA32H'FFFFFFA4UBCBARA32H'FFFFFFA4UBCBARA32H'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Notes: 1. The numbers of access cycles are eight bits when reading and 16 bits when y 2. Supported only by the SH7618A.

Renesas

		OOIZEO						
	_	_	—	_	—	—	_	
PADRH		_	_	_	_	_	PA25DR	PA24DR
	PA23DR	PA22DR	PA21DR	PA20DR	PA19DR	PA18DR	PA17DR	PA16DR
PAIORH	_	_	_	_	_	_	PA25IOR	PA24IOF
	PA23IOR	PA22IOR	PA21IOR	PA20IOR	PA19IOR	PA18IOR	PA17IOR	PA16IOF
PACRH1	_	_	_	_	_	_	_	
	_	_	_	_	_	PA25MD0	_	PA24MD
PACRH2	_	PA23MD0	_	PA22MD0	_	PA21MD0	_	PA20MD
	_	PA19MD0	_	PA18MD0	_	PA17MD0	_	PA16MD
PBDRL	_	_	PB13DR	PB12DR	PB11DR	PB10DR	PB9DR	PB8DR
	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR
PBIORL	_	_	PB13IOR	PB12IOR	PB11IOR	PB10IOR	PB9IOR	PB8IOR
	PB7IOR	PB6IOR	PB5IOR	PB4IOR	PB3IOR	PB2IOR	PB1IOR	PB0IOR
PBCRL1	_	_	_	_	_	PB13MD0	_	PB12MD
	_	PB11MD0	_	PB10MD0	_	PB9MD0	_	PB8MD0
PBCRL2	_	PB7MD0	_	PB6MD0	_	PB5MD0	_	PB4MD0
	_	PB3MD0	_	PB2MD0	_	PB1MD0	_	PB0MD0
PCDRH	_	_	_	_	_	_	_	_
	_	_	_	PC20DR	PC19DR	PC18DR	PC17DR	PC16DR
PCDRL	PC15DR	PC14DR	PC13DR	PC12DR	PC11DR	PC10DR	PC9DR	PC8DR
	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR
PCIORH	_	_	_	_	_	_	_	_
	_	_	_	PC20IOR	PC19IOR	PC18IOR	PC17IOR	PC16IOF
-								

Rev. 6.00 Jun. 12, 2007 Page 516 of 610 REJ09B0131-0600

RENESAS

				I OZINDO		TOTMDO		
PDDRL			_				_	_
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR
PDIORL			_				_	
	PD7IOR	PD6IOR	PD5IOR	PD4IOR	PD3IOR	PD2IOR	PD1IOR	PD0IOF
PDCRL2	PD7MD1	PD7MD0	PD6MD1	PD6MD0	PD5MD1	PD5MD0	PD4MD1	PD4MD
	PD3MD1	PD3MD0	PD2MD1	PD2MD0	_	PD1MD0	_	PD0MD
PEDRH	_	_		_	_	_	_	PE24DI
	PE23DR	PE22DR	PE21DR	PE20DR	PE19DR	PE18DR	PE17DR	PE16DI
PEDRL	PE15DR	PE14DR	PE13DR	PE12DR	PE11DR	PE10DR	PE9DR	PE8DR
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR
PEIORH	_			_	_	_	_	PE24IC
	PE23IOR	PE22IOR	PE21IOR	PE20IOR	PE19IOR	PE18IOR	PE17IOR	PE16IC
PEIORL	PE15IOR	PE14IOR	PE13IOR	PE12IOR	PE11IOR	PE10IOR	PE9IOR	PE8IOF
	PE7IOR	PE6IOR	PE5IOR	PE4IOR	PE3IOR	PE2IOR	PE1IOR	PE0IOF
PECRH1	_		_				_	—
	_	_	_	_	_	_	PE24MD1	PE24M
PECRH2	PE23MD1	PE23MD0	PE22MD1	PE22MD0	PE21MD1	PE21MD0	PE20MD1	PE20M
	PE19MD1	PE19MD0	PE18MD1	PE18MD0	PE17MD1	PE17MD0	PE16MD1	PE16M
PECRL1	PE15MD1	PE15MD0	_	PE14MD0		PE13MD0	_	PE12M
		PE11MD0	_	PE10MD0	_	PE9MD0	_	PE8MD
PECRL2	_	PE7MD0	_	PE6MD0	_	PE5MD0	_	PE4MD
	_	PE3MD0	_	PE2MD0	_	PE1MD0	_	PE0MD

010014				MOT1 20				MOTT 13
MCLKCR	FLSCS1	FLSCS0	_	_	_	FLDIVS2	FLDIVS1	FLDIVSC
SDIR	TI7	TI6	TI5	TI4	TI3	TI2	TI1	TIO
	—	_		_		_	_	—
SDID	DID31	DID30	DID29	DID28	DID27	DID26	DID25	DID24
	DID23	DID22	DID21	DID20	DID19	DID18	DID17	DID16
	DID15	DID14	DID13	DID12	DID11	DID10	DID9	DID8
	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0
ICR0	NMIL	_		_	_	_	_	NMIE
	_	_	_	_	_	_	_	_
IRQCR	IRQ71S	IRQ70S	IRQ61S	IRQ60S	IRQ51S	IRQ50S	IRQ41S	IRQ40S
	IRQ31S	IRQ30S	IRQ21S	IRQ20S	IRQ11S	IRQ10S	IRQ01S	IRQ00S
IRQSR	IRQ7L	IRQ6L	IRQ5L	IRQ4L	IRQ3L	IRQ2L	IRQ1L	IRQ0L
	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
IPRA	IPRA15	IPRA14	IPRA13	IPRA12	IPRA11	IPRA10	IPRA9	IPRA8
	IPRA7	IPRA6	IPRA5	IPRA4	IPRA3	IPRA2	IPRA1	IPRA0
IPRB	IPRB15	IPRB14	IPRB13	IPRB12	IPRB11	IPRB10	IPRB9	IPRB8
	IPRB7	IPRB6	IPRB5	IPRB4	IPRB3	IPRB2	IPRB1	IPRB0
FRQCR	_	_		CKOEN	_	STC2	STC1	STC0
	_		_		_	PFC2	PFC1	PFC0
STBCR	STBY	_	_	_	MDCHG	_	_	_

Rev. 6.00 Jun. 12, 2007 Page 518 of 610 REJ09B0131-0600

SCSCR_0	_	_	_	_	_	_	_	
	TIE	RIE	TE	RE	REIE	_	CKE1	CKE0
SCFTDR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCFSR_0	PER3	PER2	PER1	PER0	FER3	FER2	FER1	FER0
	ER	TEND	TDFE	BRK	FER	PER	RDF	DR
SCFRDR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCFCR_0	—	_	_	_	_	RSTRG2	RSTRG1	RSTRG
	RTRG1	RTRG0	TTRG1	TTRG0	MCE	TFRST	RFRST	LOOP
SCFDR_0	—	_	_	T4	Т3	T2	T1	Т0
	_	_	_	R4	R3	R2	R1	R0
SCSPTR_0	_	_	_	_	_	_	_	_
	RTSIO	RTSDT	CTSIO	CTSDT	SCKIO	SCKDT	SPBIO	SPBDT
SCLSR_0	—	_	_	_	_	_	_	
	_	_	_	_	_	_	_	ORER
SCSMR_1	_	_	_	_	_	_	_	_
	C/A	CHR	PE	O/E	STOP	_	CKS1	CKS0
SCBRR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCSCR_1	_	_	_	_	_	_	_	_
	TIE	RIE	TE	RE	REIE	_	CKE1	CKE0
SCFTDR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCFSR_1	PER3	PER2	PER1	PER0	FER3	FER2	FER1	FER0
	ER	TEND	TDFE	BRK	FER	PER	RDF	DR
SCFRDR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

-								OHEN
SCSMR_2	_	_	_	_	_	_	_	—
	C/A	CHR	PE	O/E	STOP	_	CKS1	CKS0
SCBRR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCSCR_2	_	_	_	_	_			—
	TIE	RIE	TE	RE	REIE		CKE1	CKE0
SCFTDR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCFSR_2	PER3	PER2	PER1	PER0	FER3	FER2	FER1	FER0
	ER	TEND	TDFE	BRK	FER	PER	RDF	DR
SCFRDR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCFCR_2	_	_	_	_	_	RSTRG2	RSTRG1	RSTRGO
	RTRG1	RTRG0	TTRG1	TTRG0	MCE	TFRST	RFRST	LOOP
SCFDR_2	_	_	_	T4	Т3	T2	T1	Т0
	_	_	_	R4	R3	R2	R1	R0
SCSPTR_2	_	_	_	_	_	_	_	_
	(Reserved)	(Reserved)	(Reserved)	(Reserved)	SCKIO	SCKDT	SPBIO	SPBDT
SCLSR_2	_	_	_	_	_			_
		_	_	_		_	_	ORER
CMSTR	_	_	_	_	_	_	_	_
	_	_	_	—	_	_	STR1	STR0
CMCSR_0	_	_	_	_	_	_	_	_
	CMF	CMIE	_	_		_	CKS1	CKS0

Rev. 6.00 Jun. 12, 2007 Page 520 of 610 REJ09B0131-0600

		Dit 0	Dit J		Dit O		DICI	Dit U
CMCOR_1	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HIFIDX	_	_	_	_	_		_	—
				_				_
	_	_	_	_	_		_	—
	REG5	REG4	REG3	REG2	REG1	REG0	BYTE1	BYTE0
HIFGSR				_				_
	_			_		_	_	—
	STATUS15	STATUS14	STATUS13	STATUS12	STATUS11	STATUS10	STATUS9	STATU
	STATUS7	STATUS6	STATUS5	STATUS4	STATUS3	STATUS2	STATUS1	STATU
HIFSCR	_			_			_	—
	_	_	_	_			_	—
	_			_	DMD	DPOL	BMD	BSEL
	_	_	MD1	_			EDN	во
HIFMCR	_	_	_	_			_	—
	_	_	_	_		_	_	—
	_	_	_	_			_	—
	LOCK	_	WT	_	RD		_	AI/AD
HIFIICR	_	_	_	_			_	_
	_	_	_	_		_	_	_
	_	_	_	_	_	_	_	_
	IIC6	IIC5	IIC4	IIC3	IIC2	IIC1	IIC0	IIR

	Π,	AU	70	77	A0			
HIFDATA	D31	D30	D29	D28	D27	D26	D25	D24
	D23	D22	D21	D20	D19	D18	D17	D16
	D15	D14	D13	D12	D11	D10	D9	D8
	D7	D6	D5	D4	D3	D2	D1	D0
HIFDTR		_	—	_	—		_	—
			_	_	_	_	_	
	_	_	_	_	_	_	_	_
		_	—	_	—		_	DTRG
HIFBICR			_	_	_	_	_	
	_	_	_	_	_	_	_	_
	_	_	—	_	—		_	—
			_	_	_	_	BIE	BIF
HIFBCR	_	—	_	_	_	_	—	
	_	_	—	_	—		_	—
	_	_	—	_	—		_	—
	_	—	_	_	_	_	—	AC
CMNCR	_	—	—	—	—	—	_	
	_	—	—	_	_	_	_	_
		_	_	MAP	_	_	_	_
	_	_	_	_	ENDIAN	_	HIZMEM	HIZCNT

Rev. 6.00 Jun. 12, 2007 Page 522 of 610 REJ09B0131-0600

	_							
CS4BCR	_	_	IWW1	IWW0	_	IWRWD1	IWRWD0	—
	IWRWS1	IWRWS0	—	IWRRD1	IWRRD0	—	IWRRS1	IWRRS
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	—
	_	_	—	—	_	_	—	_
CS5BBCR	—	_	IWW1	IWW0	_	IWRWD1	IWRWD0	_
	IWRWS1	IWRWS0	—	IWRRD1	IWRRD0	_	IWRRS1	IWRRS
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_
	_	_	_	_	_	_	_	_
CS6BBCR	_	_	IWW1	IWW0	_	IWRWD1	IWRWD0	_
	IWRWS1	IWRWS0	_	IWRRD1	IWRRD0	_	IWRRS1	IWRRS
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_
	_	_	_	_	_	_	_	_
CS0WCR	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	SW1	SW0	WR3	WR2	WR1
	WR0	WM			_	_	HW1	HW0
CS3WCR								—
				BAS	_	_		_
						WR3	WR2	WR1
	WR0	WM	_	_	—	—	—	_

	WHO	****						11000
CS5BWCR			_	_	_		_	_
	_		_	—		WW2	WW1	WW0
	_		_	SW1	SW0	WR3	WR2	WR1
	WR0	WM	—	_		_	HW1	HW0
CS5BWCR	_	_	—	—		_	_	_
(when PCMCIA	_		SA1	SA0			_	—
is in use)	_	TED3	TED2	TED1	TED0	PCW3	PCW2	PCW1
	PCW0	WM	—	_	THE3	THE2	THE1	THE0
CS6BWCR	_	_	—	_		_	_	_
	_	_	—	BAS		_	_	_
	_	_	_	SW1	SW0	WR3	WR2	WR1
	WR0	WM	_	_	_	_	HW1	HW0
CS6BWCR	_	_	_	_	_	_	_	_
(when PCMCIA	_	_	SA1	SA0	_	_	_	_
is in use)	_	TED3	TED2	TED1	TED0	PCW3	PCW2	PCW1
	PCW0	WM	_	_	THE3	THE2	THE1	THE0
SDCR	_		_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	_	RFSH	RMODE	_	BACTV
	_		_	A3ROW1	A3ROW0	_	A3COL1	A3COL0

Rev. 6.00 Jun. 12, 2007 Page 524 of 610 REJ09B0131-0600

	Dit 7	Dit O	Dit J		Dit G		Dit i	Dit U
RTCOR	_	_	_	_	_	_	_	_
			_	_	_	_		—
	_		_	_	_	—	_	—
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EDMR	_					_		—
			_	_	_	_		—
	_	_	_	_	_	_	_	_
	_	DE	DL1	DL0		_		SWR
EDTRR			_	_	_	_		—
	_	_	_	_	_	_	_	_
	_					_		—
	_		_	_	_	_		TR
EDRRR	_		_	_	_	_	_	—
	_	_	_	_	_	—	_	—
	_	_	_	_	_	—	_	—
	_		_	_	_	_	_	RR
TDLAR	TDLA31	TDLA30	TDLA29	TDLA28	TDLA27	TDLA26	TDLA25	TDLA24
	TDLA23	TDLA22	TDLA21	TDLA20	TDLA19	TDLA18	TDLA17	TDLA1
	TDLA15	TDLA14	TDLA13	TDLA12	TDLA11	TDLA10	TDLA9	TDLA8
	TDLA7	TDLA6	TDLA5	TDLA4	TDLA3	TDLA2	TDLA1	TDLA0

						nio	C	0Lm
EESIPR		TWBIP	_	_	_	TABTIP	RABTIP	RFCOFI
	ADEIP	ECIIP	TCIP	TDEIP	TFUFIP	FRIP	RDEIP	RFOFIP
	_	—	_	—	CNDIP	DLCIP	CDIP	TROIP
	RMAFIP	—	—	RRFIP	RTLFIP	RTSFIP	PREIP	CERFIP
TRSCER	—	_	_	_	—	_	_	—
	_	_	_	_	—	_	_	—
	_	_	_	_	CNDCE	DLCCE	CDCE	TROCE
	RMAFCE	_	_	RRFCE	RTLFCE	RTSFCE	PRECE	CERFCE
RMFCR	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	MFC15	MFC14	MFC13	MFC12	MFC11	MFC10	MFC9	MFC8
	MFC7	MFC6	MFC5	MFC4	MFC3	MFC2	MFC1	MFC0
TFTR	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	_	_	TFT10	TFT9	TFT8
	TFT7	TFT6	TFT5	TFT4	TFT3	TFT2	TFT1	TFT0
FDR	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_	_	_	_	_	TFD2	TFD1	TFD0
	_	_	_	_	_	RFD2	RFD1	RFD0

Rev. 6.00 Jun. 12, 2007 Page 526 of 610 REJ09B0131-0600

						ALO	LDH	
FCFTR	_	_		_			_	—
	_	_				RFF2	RFF1	RFF0
	_	_					_	—
	—					RFD2	RFD1	RFD0
TRIMD	_			_	_			—
	—						_	—
	—						_	—
	_			_	_			TIS
RBWAR	RBWA31	RBWA30	RBWA29	RBWA28	RBWA27	RBWA26	RBWA25	RBWA
	RBWA23	RBWA22	RBWA21	RBWA20	RBWA19	RBWA18	RBWA17	RBWA ⁻
	RBWA15	RBWA14	RBWA13	RBWA12	RBWA11	RBWA10	RBWA9	RBWA
	RBWA7	RBWA6	RBWA5	RBWA4	RBWA3	RBWA2	RBWA1	RBWA
RDFAR	RDFA31	RDFA30	RDFA29	RDFA28	RDFA27	RDFA26	RDFA25	RDFA2
	RDFA23	RDFA22	RDFA21	RDFA20	RDFA19	RDFA18	RDFA17	RDFA1
	RDFA15	RDFA14	RDFA13	RDFA12	RDFA11	RDFA10	RDFA9	RDFA8
	RDFA7	RDFA6	RDFA5	RDFA4	RDFA3	RDFA2	RDFA1	RDFA0
TBRAR	TBRA31	TBRA30	TBRA29	TBRA28	TBRA27	TBRA26	TBRA25	TBRA2
	TBRA23	TBRA22	TBRA21	TBRA20	TBRA19	TBRA18	TBRA17	TBRA1
	TBRA15	TBRA14	TBRA13	TBRA12	TBRA11	TBRA10	TBRA9	TBRA8
	TBRA7	TBRA6	TBRA5	TBRA4	TBRA3	TBRA2	TBRA1	TBRA0
TDFAR	TDFA31	TDFA30	TDFA29	TDFA28	TDFA27	TDFA26	TDFA25	TDFA2
	TDFA23	TDFA22	TDFA21	TDFA20	TDFA19	TDFA18	TDFA17	TDFA1
	TDFA15	TDFA14	TDFA13	TDFA12	TDFA11	TDFA10	TDFA9	TDFA8
	TDFA7	TDFA6	TDFA5	TDFA4	TDFA3	TDFA2	TDFA1	TDFA0

Renesas

REJ09

				10110		LOTING		100
ECSIPR	_	_	_	_	_	_	_	
		_	_	_	_		—	_
	—	—	—	—	_	_	—	
	—	—	—	PSRTOI	>	LCHNGIP	MPDIP	ICDIP
PIR	_	—	—	—	_	_	—	
	—	—	—	_	_	_	—	_
	_	—	—	—	—	_	—	—
	_	—	—	—	MDI	MDO	MMD	MDC
MAHR	MA47	MA46	MA45	MA44	MA43	MA42	MA41	MA40
	MA39	MA38	MA37	MA36	MA35	MA34	MA33	MA32
	MA31	MA30	MA29	MA28	MA27	MA26	MA25	MA24
	MA23	MA22	MA21	MA20	MA19	MA18	MA17	MA16
MALR	_	—	—	—	—	_	—	—
	_	—	—	—	—	—	_	—
	MA15	MA14	MA13	MA12	MA11	MA10	MA9	MA8
	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
RFLR	_	_	_	_	_	_	_	
	_	_	_	_	_	_	_	
	_	_	_	_	RFL11	RFL10	RFL9	RFL8
	RFL7	RFL6	RFL5	RFL4	RFL3	RFL2	RFL1	RFL0

Rev. 6.00 Jun. 12, 2007 Page 528 of 610 REJ09B0131-0600

	moor	11000	11005	11004	11005	11002	moor	mood
CDCR	COSDC31	COSDC30	COSDC29	COSDC28	COSDC27	COSDC26	COSDC25	COSDO
	COSDC23	COSDC22	COSDC21	COSDC20	COSDC19	COSDC18	COSDC17	COSDO
	COSDC15	COSDC14	COSDC13	COSDC12	COSDC11	COSDC10	COSDC9	COSDO
	COSDC7	COSDC6	COSDC5	COSDC4	COSDC3	COSDC2	COSDC1	COSDO
LCCR	LCC 31	LCC30	LCC29	LCC28	LCC27	LCC26	LCC25	LCC24
	LCC23	LCC22	LCC21	LCC20	LCC19	LCC18	LCC17	LCC16
	LCC15	LCC14	LCC13	LCC12	LCC11	LCC10	LCC9	LCC8
	LCC7	LCC6	LCC5	LCC4	LCC3	LCC2	LCC1	LCC0
CNDCR	CNDC31	CNDC30	CNDC29	CNDC28	CNDC27	CNDC26	CNDC25	CNDC2
	CNDC23	CNDC22	CNDC21	CNDC20	CNDC19	CNDC18	CNDC17	CNDC1
	CNDC15	CNDC14	CNDC13	CNDC12	CNDC11	CNDC10	CNDC9	CNDC8
	CNDC7	CNDC6	CNDC5	CNDC4	CNDC3	CNDC2	CNDC1	CNDC
CEFCR	CEFC31	CEFC30	CEFC29	CEFC28	CEFC27	CEFC26	CEFC25	CEFC2
	CEFC23	CEFC22	CEFC21	CEFC20	CEFC19	CEFC18	CEFC17	CEFC1
	CEFC15	CEFC14	CEFC13	CEFC12	CEFC11	CEFC10	CEFC9	CEFC8
	CEFC7	CEFC6	CEFC5	CEFC4	CEFC3	CEFC2	CEFC1	CEFC0
FRECR	FREC31	FREC30	FREC29	FREC28	FREC27	FREC26	FREC25	FREC2
	FREC23	FREC22	FREC21	FREC20	FREC19	FREC18	FREC17	FREC1
	FREC15	FREC14	FREC13	FREC12	FREC11	FREC10	FREC9	FREC8
	FREC7	FREC6	FREC5	FREC4	FREC3	FREC2	FREC1	FRECO

			161 05					
RFCR	RFC31	RFC30	RFC29	RFC28	RFC27	RFC26	RFC25	RFC24
	RFC23	RFC22	RFC21	RFC20	RFC19	RFC18	RFC17	RFC16
	RFC15	RFC14	RFC13	RFC12	RFC11	RFC10	RFC9	RFC8
	RFC7	RFC6	RFC5	RFC4	RFC3	RFC2	RFC1	RFC0
MAFCR	MAFC31	MAFC30	MAFC29	MAFC28	MAFC27	MAFC26	MAFC25	MAFC24
	MAFC23	MAFC22	MAFC21	MAFC20	MAFC19	MAFC18	MAFC17	MAFC16
	MAFC15	MAFC14	MAFC13	MAFC12	MAFC11	MAFC10	MAFC9	MAFC8
	MAFC7	MAFC6	MAFC5	MAFC4	MAFC3	MAFC2	MAFC1	MAFC0
IPGR	_				_	—	—	—
	—		_	_	—	—	—	—
	_	—	_	_	_	_	_	_
	—			IPG4	IPG3	IPG2	IPG1	IPG0
APR	—		_	_	—	—	—	—
	_	—	_	_	_	_	_	_
	AP15	AP14	AP13	AP12	AP11	AP10	AP9	AP8
	AP7	AP6	AP5	AP4	AP3	AP2	AP1	AP0
MPR		_	_	_	_	_	_	_
	_		_	_	_	_	_	_
	MP15	MP14	MP13	MP12	MP11	MP10	MP9	MP8
	MP7	MP6	MP5	MP4	MP3	MP2	MP1	MP0

Rev. 6.00 Jun. 12, 2007 Page 530 of 610 REJ09B0131-0600

	BDB7	BDB6	BDB5	BDB4	BDB3	BDB2	BDB1	BDB0
BDMRB	BDMB31	BDMB30	BDMB29	BDMB28	BDMB27	BDMB26	BDMB25	BDMB2
	BDMB23	BDMB22	BDMB21	BDMB20	BDMB19	BDMB18	BDMB17	BDMB1
	BDMB15	BDMB14	BDMB13	BDMB12	BDMB11	BDMB10	BDMB9	BDMB8
	BDMB7	BDMB6	BDMB5	BDMB4	BDMB3	BDMB2	BDMB1	BDMBC
BRCR								_
								_
	SCMFCA	SCMFCB	SCMFDA	SCMFDB	PCTE	PCBA		_
	DBEB	PCBB			SEQ			ETBE
BETR	_							_
								—
					BET11	BET10	BET9	BET8
	BET7	BET6	BET5	BET4	BET3	BET2	BET1	BET0
BARB	BAB31	BAB30	BAB29	BAB28	BAB27	BAB26	BAB25	BAB24
	BAB23	BAB22	BAB21	BAB20	BAB19	BAB18	BAB17	BAB16
	BAB15	BAB14	BAB13	BAB12	BAB11	BAB10	BAB9	BAB8
	BAB7	BAB6	BAB5	BAB4	BAB3	BAB2	BAB1	BAB0
BAMRB	BAMB31	BAMB30	BAMB29	BAMB28	BAMB27	BAMB26	BAMB25	BAMB2
	BAMB23	BAMB22	BAMB21	BAMB20	BAMB19	BAMB18	BAMB17	BAMB1
	BAMB15	BAMB14	BAMB13	BAMB12	BAMB11	BAMB10	BAMB9	BAMB8
	BAMB7	BAMB6	BAMB5	BAMB4	BAMB3	BAMB2	BAMB1	BAMB0
								· · · · · ·

	DOAT	DOAU	DOAD	0044	DOAD	DOAL	DOAT	DORU
BARA	BAA31	BAA30	BAA29	BAA28	BAA27	BAA26	BAA25	BAA24
	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16
	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8
	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0
BAMRA	BAMA31	BAMA30	BAMA29	BAMA28	BAMA27	BAMA26	BAMA25	BAMA24
	BAMA23	BAMA22	BAMA21	BAMA20	BAMA19	BAMA18	BAMA17	BAMA16
	BAMA15	BAMA14	BAMA13	BAMA12	BAMA11	BAMA10	BAMA9	BAMA8
	BAMA7	BAMA6	BAMA5	BAMA4	BAMA3	BAMA2	BAMA1	BAMA0
BBRA	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	—
	_	_	_	_	_	_	_	_
	CDA1	CDA0	IDA1	IDA0	RWA1	RWA0	SZA1	SZA0
BRDR	DVF	_	_	_	BDA27	BDA26	BDA25	BDA24
	BDA23	BDA22	BDA21	BDA20	BDA19	BDA18	BDA17	BDA16
	BDA15	BDA14	BDA13	BDA12	BDA11	BDA10	BDA9	BDA8
	BDA7	BDA6	BDA5	BDA4	BDA3	BDA2	BDA1	BDA0
CCR1	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
	_		_					_
	_	_	_	_	CF	СВ	WT	CE

Note: * Supported only by the SH7618A.

Rev. 6.00 Jun. 12, 2007 Page 532 of 610 REJ09B0131-0600

RENESAS

PBIORL	H'F8050016	Initialized	Retained	* ³
PBCRL1	H'F805001C	Initialized	Retained	* ³
PBCRL2	H'F805001E	Initialized	Retained	*3
PCDRH	H'F8050020	Initialized	Retained	*3
PCDRL	H'F8050022	Initialized	Retained	* ³
PCIORH	H'F8050024	Initialized	Retained	*3
PCIORL	H'F8050026	Initialized	Retained	* ³
PCCRH2	H'F805002A	Initialized	Retained	* ³
PCCRL1	H'F805002C	Initialized	Retained	* ³
PCCRL2	H'F805002E	Initialized	Retained	* ³
PDDRL	H'F8050032	Initialized	Retained	* ³
PDIORL	H'F8050036	Initialized	Retained	*3
PDCRL2	H'F805003E	Initialized	Retained	* ³
PEDRH	H'F8050040	Initialized	Retained	* ³
PEDRL	H'F8050042	Initialized	Retained	*3
PEIORH	H'F8050044	Initialized	Retained	* ³
PEIORL	H'F8050046	Initialized	Retained	* ³
PECRH1	H'F8050048	Initialized	Retained	*3
PECRH2	H'F805004A	Initialized	Retained	<u>*</u> *3
PECRL1	H'F805004C	Initialized	Retained	* ³
PECRL2	H'F805004E	Initialized	Retained	* ³

	000	111 0100214	netameu	retained	rietaineu	п
INTC	ICR0	H'F8140000	Initialized*1	Retained	* ³	R
	IRQCR	H'F8140002	Initialized	Retained	* ³	R
	IRQSR	H'F8140004	Initialized*1	Retained	* ³	R
	IPRA	H'F8140006	Initialized	Retained	* ³	R
	IPRB	H'F8140008	Initialized	Retained	* ³	R
CPG	FRQCR	H'F815FF80	Initialized*2	Retained	* ³	R
Power-down mode	STBCR	H'F815FF82	Initialized	Retained	* ³	R
WDT	WTCNT	H'F815FF84	Initialized*2	Retained	* ³	R
	WTCSR	H'F815FF86	Initialized*2	Retained	* ³	R
Power-down mode	STBCR2	H'F815FF88	Initialized	Retained	* ³	R
SCIF_0	SCSMR_0	H'F8400000	Initialized	Retained	Retained	R
	SCBRR_0	H'F8400004	Initialized	Retained	Retained	R
	SCSCR_0	H'F8400008	Initialized	Retained	Retained	R
	SCFTDR_0	H'F840000C	Undefined	Retained	Retained	R
	SCFSR_0	H'F8400010	Initialized	Retained	Retained	R
	SCFRDR_0	H'F8400014	Undefined	Retained	Retained	R
	SCFCR_0	H'F8400018	Initialized	Retained	Retained	R
	SCFDR_0	H'F840001C	Initialized	Retained	Retained	R
	SCSPTR_0	H'F8400020	Initialized*1	Retained	Retained	R
	SCLSR_0	H'F8400024	Initialized	Retained	Retained	R
SCIF_1	SCSMR_1	H'F8410000	Initialized	Retained	Retained	R
	SCBRR_1	H'F8410004	Initialized	Retained	Retained	R
	SCSCR_1	H'F8410008	Initialized	Retained	Retained	R

Rev. 6.00 Jun. 12, 2007 Page 534 of 610 REJ09B0131-0600

RENESAS

50m_2	000mn_2	1110420000	milaizeu	rietaineu	rietaineu
	SCBRR_2	H'F8420004	Initialized	Retained	Retained
	SCSCR_2	H'F8420008	Initialized	Retained	Retained
	SCFTDR_2	H'F842000C	Undefined	Retained	Retained
	SCFSR_2	H'F8420010	Initialized	Retained	Retained
	SCFRDR_2	H'F8420014	Undefined	Retained	Retained
	SCFCR_2	H'F8420018	Initialized	Retained	Retained
	SCFDR_2	H'F842001C	Initialized	Retained	Retained
	SCSPTR_2	H'F8420020	Initialized*1	Retained	Retained
	SCLSR_2	H'F8420024	Initialized	Retained	Retained
CMT	CMSTR	H'F84A0070	Initialized	Initialized	Retained
	CMCSR_0	H'F84A0072	Initialized	Initialized	Retained
	CMCNT_0	H'F84A0074	Initialized	Initialized	Retained
	CMCOR_0	H'F84A0076	Initialized	Initialized	Retained
	CMCSR_1	H'F84A0078	Initialized	Initialized	Retained
	CMCNT_1	H'F84A007A	Initialized	Initialized	Retained
	CMCOR_1	H'F84A007C	Initialized	Initialized	Retained
HIF	HIFIDX	H'F84D0000	Initialized	Retained	Retained
	HIFGSR	H'F84D0004	Initialized	Retained	Retained
	HIFSCR	H'F84D0008	Initialized*1	Retained	Retained
	HIFMCR	H'F84D000C	Initialized	Retained	Retained

000			millanzeu	rietaineu		
	CS0BCR	H'F8FD0004	Initialized	Retained	* ³	R
	CS3BCR	H'F8FD000C	Initialized	Retained	* ³	R
	CS4BCR	H'F8FD0010	Initialized	Retained	* ³	R
	CS5BBCR	H'F8FD0018	Initialized	Retained	<u>*</u> * ³	R
	CS6BBCR	H'F8FD0020	Initialized	Retained	* ³	R
	CS0WCR	H'F8FD0024	Initialized	Retained	<u>*</u> * ³	R
	CS3WCR	H'F8FD002C	Initialized	Retained	<u>*</u> * ³	R
	CS3WCR	H'F8FD002C	Initialized	Retained	* ³	R
	(SDRAM in use)					
	CS4WCR	H'F8FD0030	Initialized	Retained	<u>*</u> * ³	R
	CS5BWCR	H'F8FD0038	Initialized	Retained	<u>*</u> * ³	R
	CS5BWCR	H'F8FD0038	Initialized	Retained	* ³	R
	(PCMCIA in use)					
	CS6BWCR	H'F8FD0040	Initialized	Retained	* ³	R
	CS6BWCR	H'F8FD0040	Initialized	Retained	* ³	R
	(PCMCIA in use)					
	SDCR	H'F8FD0044	Initialized	Retained	* ³	R
	RTCSR	H'F8FD0048	Initialized	Retained	* ³	R
	RTCNT	H'F8FD004C	Initialized	Retained	* ³	R
	RTCOR	H'F8FD0050	Initialized	Retained	* ³	R
E-DMAC	EDMR	H'FB000000	Initialized	Retained	Retained	R
	EDTRR	H'FB000004	Initialized	Retained	Retained	R
	EDRRR	H'FB000008	Initialized	Retained	Retained	R

Rev. 6.00 Jun. 12, 2007 Page 536 of 610 REJ09B0131-0600

RENESAS

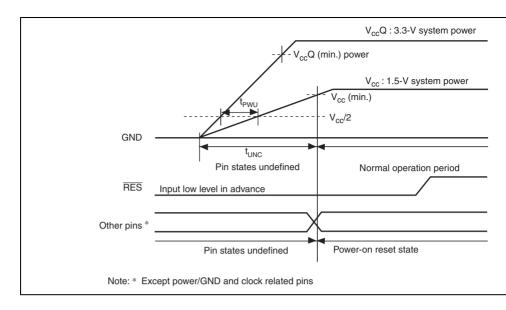
		111 0000020	milanzeu	rietaineu	rietairieu
	RMCR	H'FB00002C	Initialized	Retained	Retained
	EDOCR	H'FB000030	Initialized	Retained	Retained
	FCFTR	H'FB000034	Initialized	Retained	Retained
	TRIMD	H'FB00003C	Initialized	Retained	Retained
	RBWAR	H'FB000040	Initialized	Retained	Retained
	RDFAR	H'FB000044	Initialized	Retained	Retained
	TBRAR	H'FB00004C	Initialized	Retained	Retained
	TDFAR	H'FB000050	Initialized	Retained	Retained
EtherC	ECMR	H'FB000160	Initialized	Retained	Retained
	ECSR	H'FB000164	Initialized	Retained	Retained
	ECSIPR	H'FB000168	Initialized	Retained	Retained
	PIR	H'FB00016C	Initialized*1	Retained	Retained
	MAHR	H'FB000170	Initialized	Retained	Retained
	MALR	H'FB000174	Initialized	Retained	Retained
	RFLR	H'FB000178	Initialized	Retained	Retained
	PSR	H'FB00017C	Initialized*1	Retained	Retained
	TROCR	H'FB000180	Initialized	Retained	Retained
	CDCR	H'FB000184	Initialized	Retained	Retained
	LCCR	H'FB000188	Initialized	Retained	Retained
	CNDCR	H'FB00018C	Initialized	Retained	Retained
	CEFCR	H'FB000194	Initialized	Retained	Retained
	FRECR	H'FB000198	Initialized	Retained	Retained
	TSFRCR	H'FB00019C	Initialized	Retained	Retained
-					

000		11111130	milanzeu	rietaineu	rietaineu	
	BDMRB	H'FFFFF94	Initialized	Retained	Retained	F
	BRCR	H'FFFFF98	Initialized	Retained	Retained	F
	BETR	H'FFFFFF9C	Initialized	Retained	Retained	F
	BARB	H'FFFFFFA0	Initialized	Retained	Retained	F
	BAMRB	H'FFFFFFA4	Initialized	Retained	Retained	F
	BBRB	H'FFFFFFA8	Initialized	Retained	Retained	F
	BRSR	H'FFFFFFAC	Initialized*1	Retained	Retained	F
	BARA	H'FFFFFB0	Initialized	Retained	Retained	F
	BAMRA	H'FFFFFB4	Initialized	Retained	Retained	F
	BBRA	H'FFFFFB8	Initialized	Retained	Retained	F
	BRDR	H'FFFFFBC	Initialized*1	Retained	Retained	P
Cache	CCR1	H'FFFFFFEC	Initialized	Retained	Retained	F

Notes: 1. Some bits are not initialized.

- 2. Not initialized by a power-on reset caused by the WDT.
- 3. This module does not enter the module standby mode.
- 4. Supported only by the SH7618A.

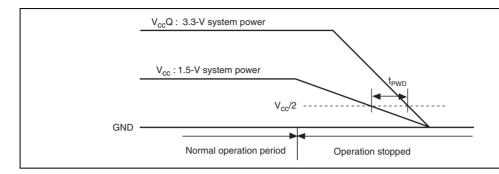
Rev. 6.00 Jun. 12, 2007 Page 538 of 610 REJ09B0131-0600



Power supply voltage (ir	nternal)	V _{cc} , V _{cc} (PLL1), V _{cc} (PLL2)	–0.3 to +2.5
Input voltage		V_{in}	–0.3 to $V_{\rm cc}$ Q + 0.3
Operating temperature	Regular specifications	T_{opr}	–20 to +75
	Wide-range specifications	_	-40 to +85
Storage temperature		T _{stg}	-55 to +125

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exce

Waveforms at power-on are shown in the following figure.


Table 21.2 Recommended Timing at Power-On

Item	Symbol	Maximum Value
Time difference between turning on $V_{\rm cc}Q$ and $V_{\rm cc}$	t _{PWU}	1
Time over which the internal state is undefined	t _{unc}	100
Note: * The values shown in table 21.2 are recommer rather than strict requirements.	nded values	, so they represent g

Rev. 6.00 Jun. 12, 2007 Page 540 of 610 REJ09B0131-0600

- cause erroneous system operation.
- Pin states are undefined while only the 1.5-V system power is turned off. The system generation of the system of the system

Table 21.3 Recommended Timing in Power-Off

Item			Symbol	Maximum Value
Time	diffe	rence between turning off $V_{\rm cc} Q$ and $V_{\rm cc}$	t _{PWD}	10
Note:	*	The table shown above is recommended we than strict requirements.	values, so they	represent guidelines

RENESAS

consumption	Normal operation	I _{cc}	_	100	140	ΜA	$V_{cc} = V_{cc}Q$
		$I_{cc}Q$		30	50	mA	lφ = 1 Bφ = 5
	Standby mode	I stby		500	700	μA	$T_a = 2$ $V_{cc} =$ $V_{cc}Q =$
	Sleep mode	sleep		40	60	mA	V _{cc} =
		I sleepQ	—	30	50	mA	V _{cc} Q = Β φ =
Input leakage current	All pins	_{in}	_	_	1.0	μA	$V_{in} = 0$ $V_{cc}Q = 0$
Tri-state leakage current	I/O pins, all output pins (off state)	_{sti}			1.0	μA	$V_{in} = 0$ $V_{cc}Q - 0$
Input capacitance	All pins	С		_	10	pF	

Rev. 6.00 Jun. 12, 2007 Page 542 of 610 REJ09B0131-0600

voltage	to IRQ0, MD5, MD3 to MD0, ASEMD, TESTMD, HIFMD, TRST	V _{IH}	V _{cc} Q × 0.9		V _{cc} Q + 0.3	v	
	EXTAL	_	$V_{\rm cc}Q - 0.3$	_	$V_{cc}Q + 0.3$	_	
	Other input pins	-	2.0	—	$V_{cc}Q + 0.3$	-	
Input low voltage	RES, NMI, IRQ7 to IRQ0, MD5, MD3 to MD0, ASEMD, TESTMD, HIFMD, TRST	V _{IL}	-0.3		$V_{cc}Q \times 0.1$	V	
	EXTAL	-	-0.3	—	$V_{cc}Q imes 0.2$	-	
	Other input pins	-	-0.3	_	$V_{cc}Q imes 0.2$	-	
Output high voltage	All output pins	V _{oh}	2.4			V	V _{сс} І _{он} =
			2.0			-	V _{сс} І _{он} =
Output low voltage	All output pins	V _{ol}	_		0.55	V	V _{cc} I _{oL} =

Notes: 1. The V_{cc} and V_{ss} pins must be connected to the V_{cc} and V_{ss} .

2. Current consumption values are for V_{H} min. = $V_{cc}Q - 0.5$ V and V_{L} max. = 0.5 output pins unloaded.

RENESAS

Caution: To protect the LSI's reliability, do not exceed the output current values in table

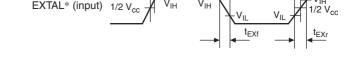
21.4 AC Characteristics

Signals input to this LSI are basically handled as signals synchronized with the clock. Un otherwise noted, setup and hold times for individual signals must be followed.

Table 21.6 Maximum Operating Frequency

Conditions: $V_{cc}Q = 3.0 \text{ V}$ to 3.6 V, $V_{cc} = 1.4 \text{ V}$ to 1.6 V, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

ltem		Symbol	Min.	Тур.	Max.	Unit	Con
Operating frequency	CPU, cache (Iø)	f	20	_	100	MHz	
	External bus (Bø)	-	20	—	50		
	On-chip peripheral module (Pø)	_	5	_	50		


T - - 4

Rev. 6.00 Jun. 12, 2007 Page 544 of 610 REJ09B0131-0600

EXTAL clock input cycle time	$t_{\scriptscriptstyle Excyc}$	40	100	ns	-
EXTAL clock input low pulse width	t _{exL}	10	—	ns	-
EXTAL clock input high pulse width	t _{exH}	10		ns	-
EXTAL clock rising time	t _{Exr}		4	ns	-
EXTAL clock falling time	\mathbf{t}_{Exf}		4	ns	
CKIO clock output frequency	f _{op}	20	50	MHz	Figure 21.2
CKIO clock output cycle time	t _{cyc}	20	50	ns	-
CKIO clock low pulse width	t _{скоь}	5		ns	-
CKIO clock high pulse width	t _{скон}	5		ns	-
CKIO clock rising time	t _{ског}		5	ns	-
CKIO clock falling time	t _{скоf}		5	ns	-
CK_PHY clock low pulse width	t _{ckphyl}	12		ns	-
CK_PHY clock high pulse width	t _{скрнун}	12		ns	-
CK_PHY clock rising time	t _{CKPHYr}		6	ns	-
CK_PHY clock falling time	t _{CKPHYf}		6	ns	
Oscillation settling time (power-on)	t _{osc1}	10		ms	Figure 21.3
RES setup time	t _{ress}	25		ns	Figures 21.3 a
RES assert time	t _{resw}	20		t _{bcyc} *	-
Oscillation settling time 1 (leaving standby mode)	t _{osc2}	10		ms	Figure 21.4

Renesas

Note: * When the clock is input to the EXTAL pin

Figure 21.1 External Clock Input Timing

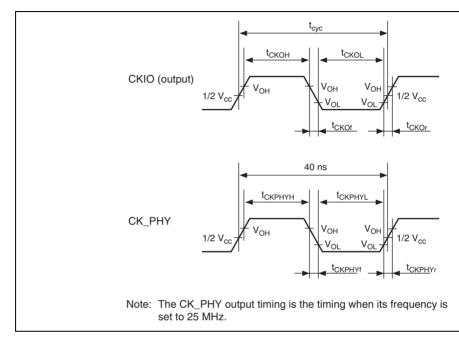


Figure 21.2 CKIO and CK_PHY Clock Output Timings

Rev. 6.00 Jun. 12, 2007 Page 546 of 610 REJ09B0131-0600

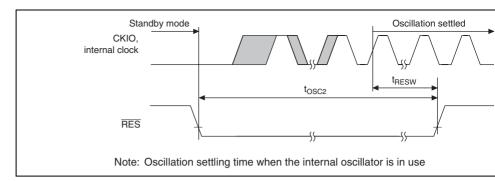


Figure 21.4 Oscillation Settling Timing after Standby Mode (By Reset)

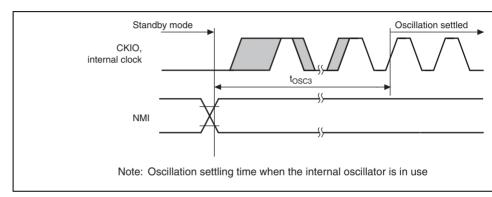


Figure 21.5 Oscillation Settling Timing after Standby Mode (By NMI or IF

Figure 21.6 PLL Synchronize Settling Timing By Reset or NMI

Rev. 6.00 Jun. 12, 2007 Page 548 of 610 REJ09B0131-0600

RES setup time*	RESS	25		ns	
RES hold time	t _{resh}	15	—	ns	
NMI setup time*1	t _{NMIS}	12	_	ns	Figure 2
NMI hold time	t _{nmin}	10	—	ns	
IRQ7 to IRQ0 setup time*1	t _{iRQS}	12	—	ns	
IRQ7 to IRQ0 hold time	t _{iRQH}	10	—	ns	
Bus tri-state delay time 1	t _{BOFF1}	—	20	ns	Figure 2
Bus tri-state delay time 2	$t_{_{BOFF2}}$	—	20	ns	
Bus buffer on time 1	t _{BON1}	_	20	ns	
Bus buffer on time 2	t _{BON2}	_	20	ns	

Notes: 1. The RES, NMI, and IRQ7 to IRQ0 signals are asynchronous signals. When the time is satisfied, a signal change is detected at the rising edge of the clock signal the setup time is not satisfied, a signal change may be delayed to the next rise.

- 2. In standby mode, $t_{_{RESW}}$ = $t_{_{OSC2}}$ (10 ms). When changing the clock multiplication (100 $\mu s).$
- 3. $t_{_{bcyc}}$ indicates the period of the external bus clock (B ϕ).

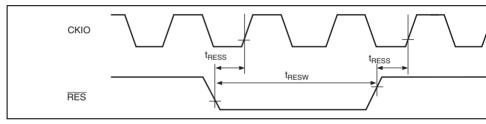
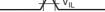



Figure 21.7 Reset Input Timing

RENESAS

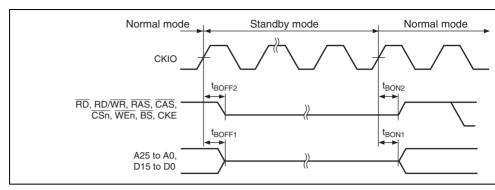


Figure 21.9 Pin Drive Timing in Standby Mode

Rev. 6.00 Jun. 12, 2007 Page 550 of 610 REJ09B0131-0600

· · ·	AO				•
Address hold time	t _{an}	3	_	ns	Figures 21.10
BS delay time	$\mathbf{t}_{\scriptscriptstyle BSD}$	0	14	ns	Figures 21.10 and 21.33 to 2
CS delay time 1	t _{CSD1}	1	14	ns	Figures 21.10
Read write delay time	t _{rwD}	1	14	ns	Figures 21.10
Write strobe delay time	t _{RWD2}	_	14	ns	Figure 21.15
Read strobe time	t _{rsd}	$1/2 imes t_{_{bcyc}}$	$1/2 imes t_{\scriptscriptstyle bcyc} + 13$	ns	Figures 21.10 21.33, and 21
Read data setup time 1	t _{RDS1}	$1/2 imes t_{_{bcyc}} + 10$		ns	Figures 21.10 and 21.33 to 2
Read data setup time 2	t _{RDS2}	12		ns	Figures 21.16 and 21.24 to 2
Read data hold time 1	t _{RDH1}	0		ns	Figures 21.10 and 21.33 to 2
Read data hold time 2	$t_{_{RDH2}}$	2		ns	Figures 21.16 and 21.24 to 2
Write enable delay time 1	\mathbf{t}_{WED1}	$1/2 imes t_{_{bcyc}}$	$1/2 imes t_{\scriptscriptstyle bcyc} + 13$	ns	Figures 21.10 21.33, and 21
Write enable delay time 2	t _{wed2}	_	13	ns	Figure 21.15
Write data delay time 1	t _{wDD1}	—	18	ns	Figures 21.10 and 21.33 to 2
Write data delay time 2	$\mathbf{t}_{_{WDD2}}$	_	17	ns	Figures 21.20 and 21.27 to 2
Write data hold time 1	t _{wDH1}	2	_	ns	Figures 21.10 and 21.33 to 2

CAS delay lime	CASD	I	15	ns	Figures 21.16 t
DQM delay time	t _{dqmd}	1	15	ns	Figures 21.16 to
CKE delay time	$\mathbf{t}_{_{\mathrm{CKED}}}$		14	ns	Figure 21.31
ICIORD delay time	$t_{_{ICRSD}}$	$1/2 imes t_{_{bcyc}}$	$1/2 \times t_{_{bcyc}}$	_+15 ns	Figures 21.35 a
ICIOWR delay time	$\mathbf{t}_{\text{ICWSD}}$	$1/2 imes t_{_{bcyc}}$	$1/2 imes t_{_{bcyc}}$, + 15 ns	Figures 21.35 a
IOIS16 setup time	t _{IO16S}	$1/2 imes t_{_{bcyc}} +$	11 —	ns	Figure 21.36
IOIS16 hold time	t _{IO16H}	$1/2 imes t_{_{bcyc}} +$	10 —	ns	Figure 21.36

Rev. 6.00 Jun. 12, 2007 Page 552 of 610 REJ09B0131-0600

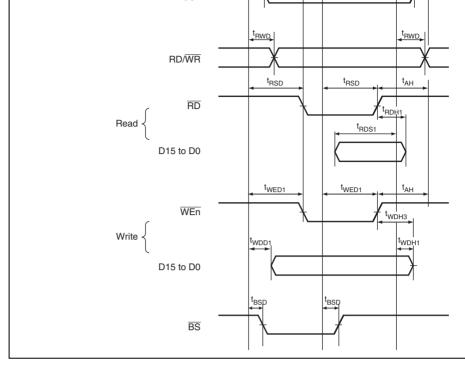


Figure 21.10 Basic Bus Timing: No Wait Cycle

Renesas

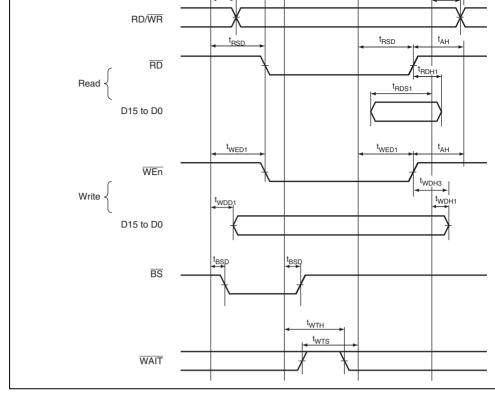


Figure 21.11 Basic Bus Timing: One Software Wait Cycle

Rev. 6.00 Jun. 12, 2007 Page 554 of 610 REJ09B0131-0600

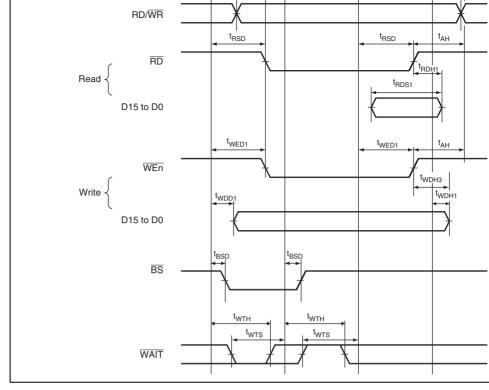


Figure 21.12 Basic Bus Timing: One External Wait Cycle

Renesas

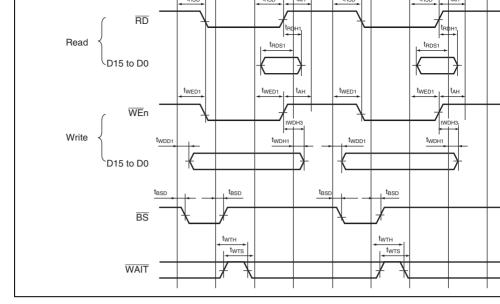
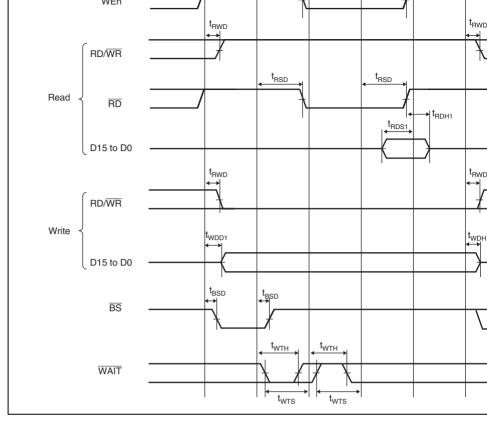
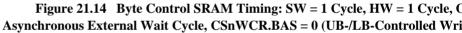




Figure 21.13 Basic Bus Timing: One Software Wait Cycle, External Wait Enabled (WM Bit = 0), No Idle Cycle

Rev. 6.00 Jun. 12, 2007 Page 556 of 610 REJ09B0131-0600

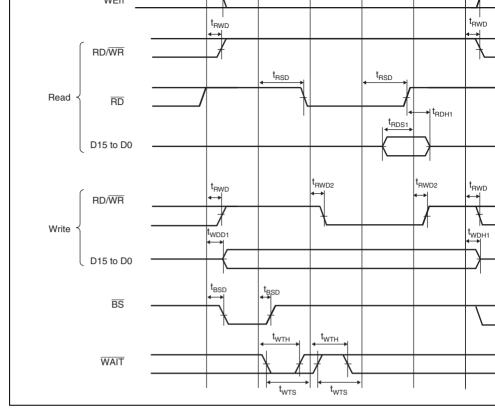


Figure 21.15 Byte Control SRAM Timing: SW = 1 Cycle, HW = 1 Cycle, Or Asynchronous External Wait Cycle, CSnWCR.BAS = 1 (WE-Controlled Write O

Rev. 6.00 Jun. 12, 2007 Page 558 of 610 REJ09B0131-0600

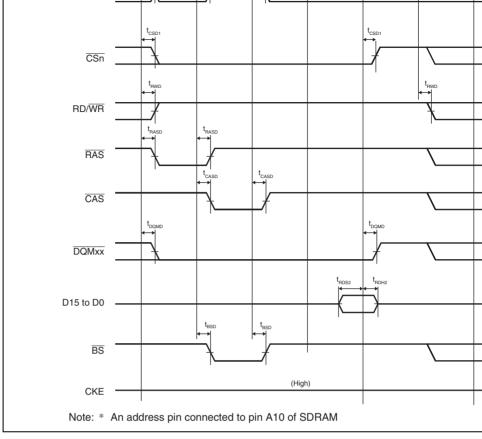


Figure 21.16 Synchronous DRAM Single Read Bus Cycle (Auto-Precharg CAS Latency = 2, WTRCD = 0 Cycle, WTRP = 0 Cycle)

RENESAS

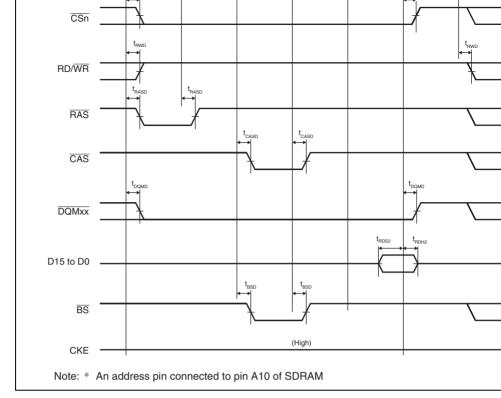


Figure 21.17 Synchronous DRAM Single Read Bus Cycle (Auto-Precharge CAS Latency = 2, WTRCD = 1 Cycle, WTRP = 1 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 560 of 610 REJ09B0131-0600

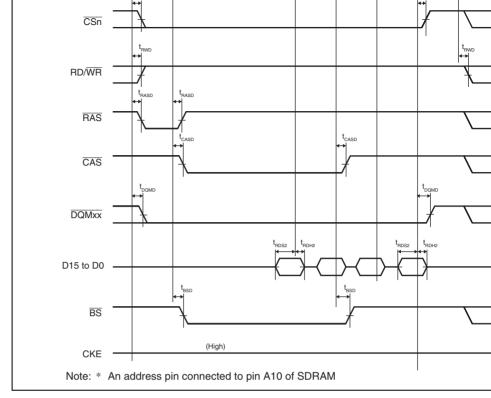


Figure 21.18 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4 (Auto-Precharge, CAS Latency = 2, WTRCD = 0 Cycle, WTRP = 1 Cycle

Rev. 6.00 Jun. 12, 2007 Pag RENESAS

REJ09

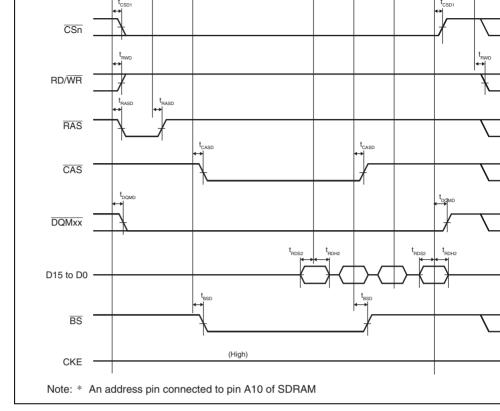


Figure 21.19 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4 (Auto-Precharge, CAS Latency = 2, WTRCD = 1 Cycle, WTRP = 0 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 562 of 610 REJ09B0131-0600

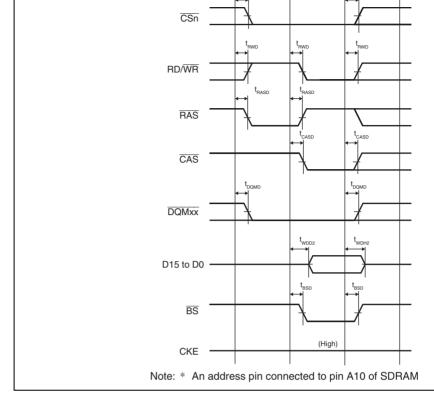
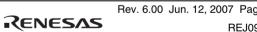



Figure 21.20 Synchronous DRAM Single Write Bus Cycle (Auto-Precharge, TRWL = 1 Cycle)

REJ09

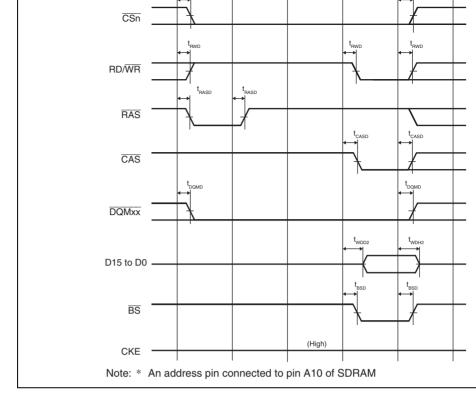


Figure 21.21 Synchronous DRAM Single Write Bus Cycle (Auto-Precharge, WTRCD = 2 Cycles, TRWL = 1 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 564 of 610 REJ09B0131-0600

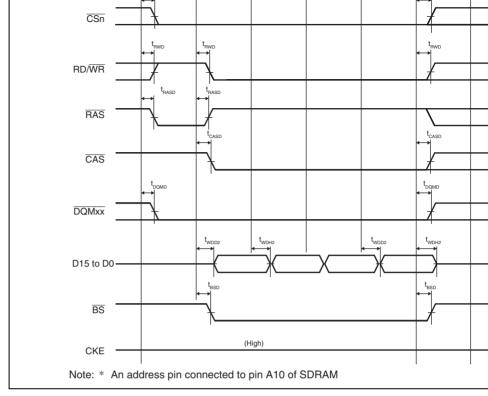


Figure 21.22 Synchronous DRAM Burst Write Bus Cycle (Single Write × (Auto-Precharge, WTRCD = 0 Cycle, TRWL = 1 Cycle)

Rev. 6.00 Ju

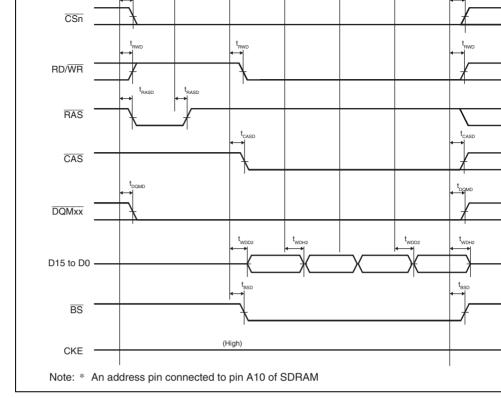


Figure 21.23 Synchronous DRAM Burst Write Bus Cycle (Single Write × 4 (Auto-Precharge, WTRCD = 1 Cycle, TRWL = 1 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 566 of 610 REJ09B0131-0600

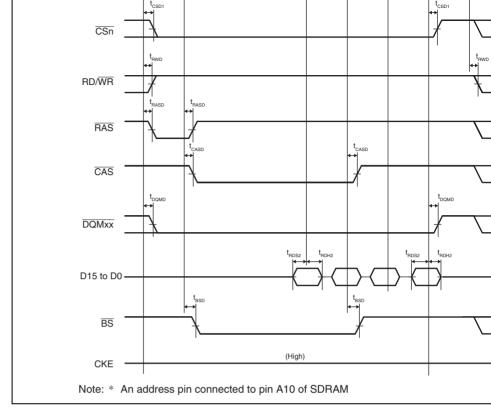


Figure 21.24 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4 (Bank Active Mode: ACT + READ Commands, CAS Latency = 2, WTRCD = 0

Rev. 6.00

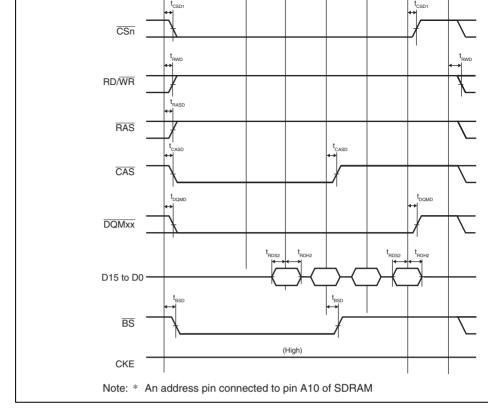


Figure 21.25 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4 (Bank Active Mode: READ Command, Same Row Address, CAS Latency = WTRCD = 0 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 568 of 610 REJ09B0131-0600

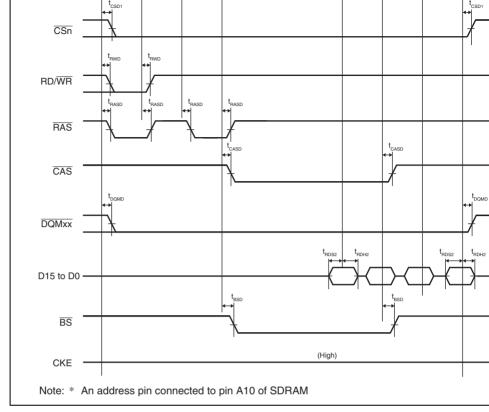


Figure 21.26 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4 (Bank Active Mode: PRE + ACT + READ Commands, Different Row Addre CAS Latency = 2, WTRCD = 0 Cycle)

Renesas

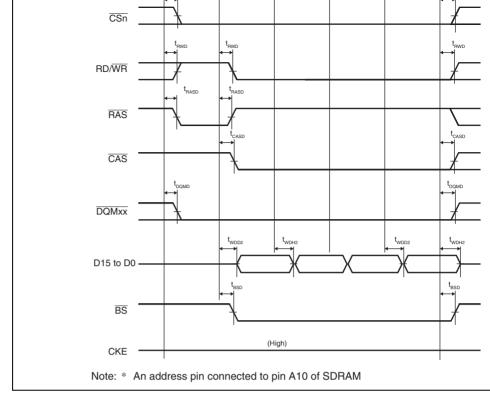


Figure 21.27 Synchronous DRAM Burst Write Bus Cycle (Single Write × 4 (Bank Active Mode: ACT + WRITE Commands, WTRCD = 0 Cycle, TRWL = 0 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 570 of 610 REJ09B0131-0600

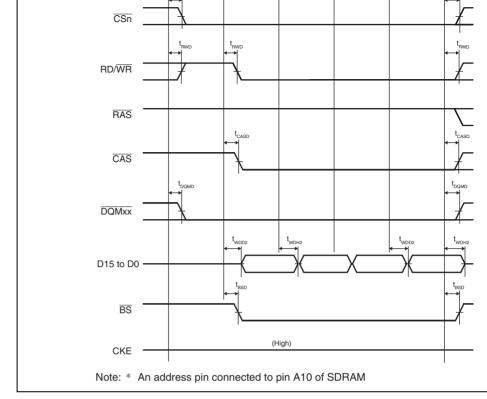


Figure 21.28 Synchronous DRAM Burst Write Bus Cycle (Single Write × (Bank Active Mode: WRITE Command, Same Row Address, WTRCD = 0 C TRWL = 0 Cycle)

RENESAS

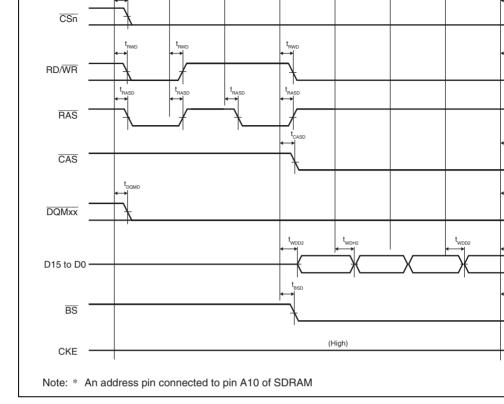


Figure 21.29 Synchronous DRAM Burst Write Bus Cycle (Single Write × 4 (Bank Active Mode: PRE + ACT + WRITE Commands, Different Row Addres WTRCD = 0 Cycle, TRWL = 0 Cycle)

Rev. 6.00 Jun. 12, 2007 Page 572 of 610 REJ09B0131-0600

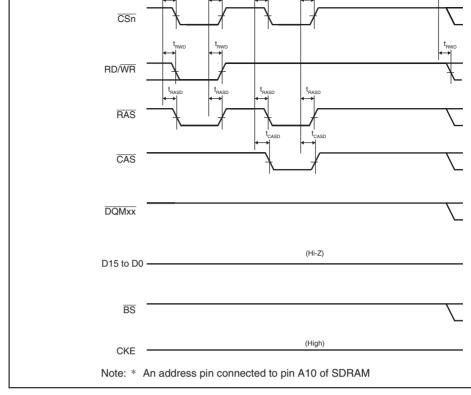


Figure 21.30 Synchronous DRAM Auto-Refreshing Timing (WTRP = 1 Cycle, WTRC = 3 Cycles)

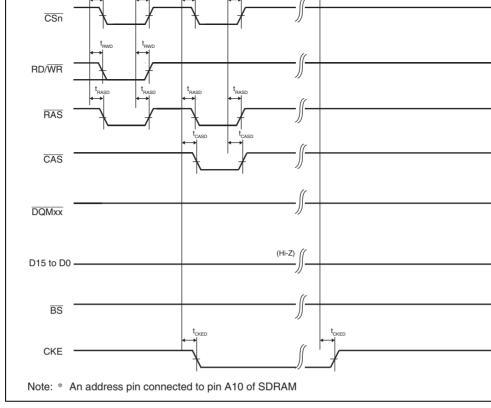


Figure 21.31 Synchronous DRAM Self-Refreshing Timing (WTRP = 1 Cycl

Rev. 6.00 Jun. 12, 2007 Page 574 of 610 REJ09B0131-0600

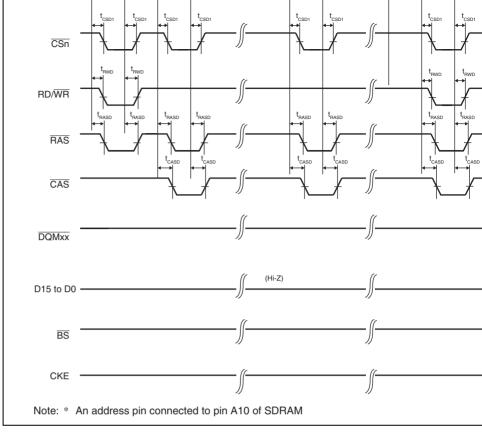
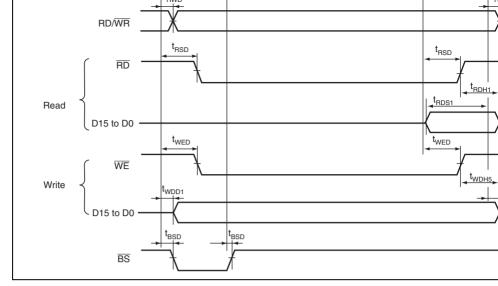



Figure 21.32 Synchronous DRAM Mode Register Write Timing (WTRP = 1

Rev. 6.00 Jun. 12, 2007 Page 576 of 610 REJ09B0131-0600

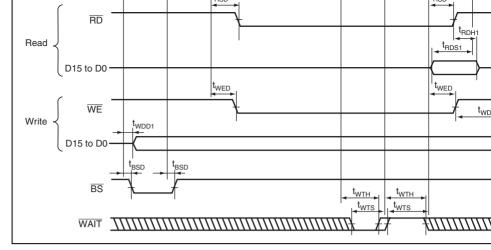


Figure 21.34 PCMCIA Memory Card Interface Bus Timing (TED = 2.5 Cycles, T Cycles, One Software Wait Cycle, One External Wait Cycle)

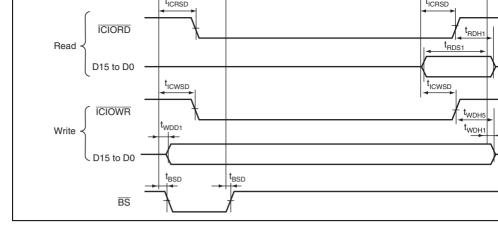


Figure 21.35 PCMCIA I/O Card Interface Bus Timing

Rev. 6.00 Jun. 12, 2007 Page 578 of 610 REJ09B0131-0600

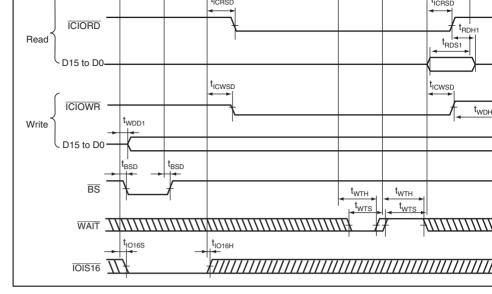


Figure 21.36 PCMCIA I/O Card Interface Bus Timing (TED = 2.5 Cycles, TEL Cycles, One Software Wait Cycle, One External Wait Cycle)

Asynchronous		4	_	t _{pcyc}	
Input clock rising time	t _{sckr}		0.8	t _{pcyc}	Figure 21.37
Input clock falling time	t _{sckf}	_	0.8	t _{pcyc}	_
Input clock pulse width	t _{scкw}	0.4	0.6	t _{scyc}	_
Transmit data delay time	t _{TXD}		$3 imes t_{ m pcyc}^{st} + 50$	ns	Figure 21.38
Receive data setup time (clocked synchronous)	t _{rxs}	3	_	$t_{_{pcyc}}$	_
Receive data hold time (clocked synchronous)	t _{RXH}	3	_	$\mathbf{t}_{_{\mathrm{pcyc}}}$	_
RTS delay time	t _{rtsd}		100	ns	_
CTS setup time (clocked synchronous)	t _{ctss}	100	_	ns	_
CTS hold time (clocked synchronous)	t _{стsн}	100	_	ns	_

Note: * t_{prove} indicates the period of the peripheral module clock (P ϕ).

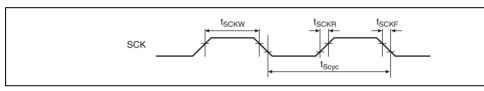


Figure 21.37 SCK Input Clock Timing

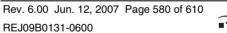


Figure 21.38 SCI Input/Output Timing in Clocked Synchronous Mode

21.4.8 Port Timing

Table 21.11 Port Timing

Conditions: $V_{cc}Q = 3.0 \text{ V}$ to 3.6 V, $V_{cc} = 1.4 \text{ V}$ to 1.6 V, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item	Symbol	Min.	Max.	Unit	Reference Fig
Output data delay time	t _{PORTD}		20	ns	Figure 21.39
Input data setup time	t _{PORTS}	16	_	ns	
Input data hold time	t _{PORTH}	10	_	ns	

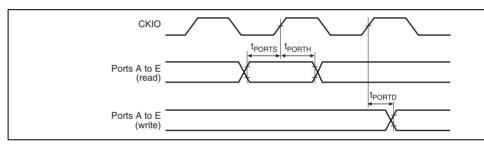


Figure 21.39 I/O Port Timing

•				p0)0	_
Address setup time (HIFSCR.DMD = 0)	$\mathbf{t}_{\text{HIFAS}}$	10		ns	
Address setup time (HIFSCR.DMD = 1)	t _{HIFAS}	0	_	ns	-
Address hold time (HIFSCR.DMD = 0)	t _{hifah}	10	_	ns	-
Address hold time (HIFSCR.DMD = 1)	t _{hifah}	0	_	ns	_
Read low width (read)	t _{HIFWRL}	2.5		t _{pcyc}	-
Write low width (write)	t _{HIFWWL}	2.5		t _{pcyc}	_
Read/write high width	t _{HIFWRWH}	2.0	_	t _{pcyc}	_
Read data delay time	t _{HIFRDD}		$2 \times t_{_{pcyc}} + 16$	ns	_
Read data hold time	t _{HIFRDH}	0		ns	_
Write data setup time	$\mathbf{t}_{_{\text{HIFWDS}}}$	t _{pcyc} + 10	_	ns	-
Write data hold time	t _{HIFWDH}	10		ns	
HIFINT output delay time	t _{HIFITD}		20	ns	Figure 21.4
HIFRDY output delay time	t _{HIFRYD}		10	t _{pcyc}	Figure 21.4
HIFDREQ output delay time	t _{HIFDQD}		20	ns	Figure 21.4
HIF pin enable delay time	t _{HIFEBD}		20	ns	Figure 21.4
HIF pin disable delay time	t _{HIFDBD}		20	ns	

Notes: 1. t_{neve} indicates the period of the peripheral module clock (P ϕ).

 t_{HIFAS} is given from the start of the time over which both the HIFCS and HIFRD (HIFWR) signals are low levels.

- 3. t_{HIFAH} is given from the end of the time over which both the HIFCS and HIFRD (HIFWR) signals are low levels.
- 4. t_{HEWRI} is given as the time over which both the HIFCS and HIFRD signals are lo
- 5. t_{HIEWWI} is given as the time over which both the HIFCS and HIFWR signals are I
- 6. When reading the register specified by bits REG5 to REG0 after writing to the register (HIFIDX), $t_{HIFWRWH}$ (min.) = 2 × t_{pcyc} + 5 ns.

Rev. 6.00 Jun. 12, 2007 Page 582 of 610 REJ09B0131-0600

RENESAS

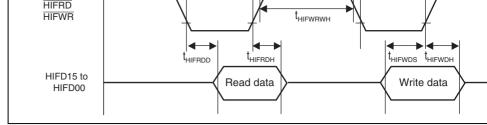


Figure 21.40 HIF Access Timing

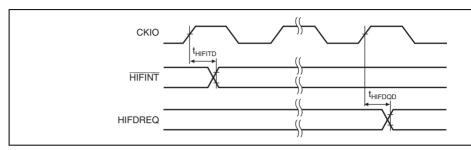


Figure 21.41 HIFINT and HIFDREQ Timing

RENESAS

Rev. 6.00 Jun. 12, 2007 Page 584 of 610 REJ09B0131-0600

· · ·	I EINU				-
MII_TXD[3:0] output delay time	$\mathbf{t}_{_{MTDd}}$	1	20	ns	
CRS setup time	$t_{_{CRSs}}$	10	_	ns	
CRS hold time	$t_{_{CRSh}}$	10	_	ns	
COL setup time	t _{cols}	10	—	ns	Figure 21.44
COL hold time	$t_{_{COLh}}$	10	—	ns	
RX-CLK cycle time	t _{Rcyc}	40	_	ns	
RX-DV setup time	$t_{_{RDVs}}$	10	—	ns	Figure 21.45
RX-DV hold time	$t_{_{RDVh}}$	10	—	ns	
MII_RXD[3:0] setup time	t _{mRDs}	10	—	ns	
MII_RXD[3:0] hold time	$t_{_{MRDh}}$	10	_	ns	
RX-ER setup time	t _{RERs}	10	_	ns	Figure 21.46
RX-ER hold time	t _{RERh}	10	_	ns	
MDIO setup time	t _{MDIOs}	10	_	ns	Figure 21.47
MDIO hold time	t _{MDIOh}	10	—	ns	
MDIO output data hold time	t _{MDIOdh}	5	18	ns	Figure 21.48
WOL output delay time	$\mathbf{t}_{_{\mathrm{WOLd}}}$	1	20	ns	Figure 21.49
EXOUT output delay time	$\mathbf{t}_{_{EXOUTd}}$	1	20	ns	Figure 21.50

Figure 21.43 MII Transmission Timing (Normal Operation)

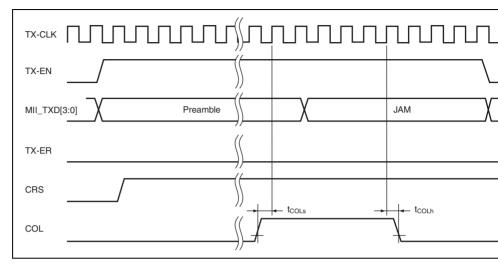
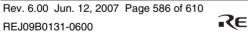



Figure 21.44 MII Transmission Timing (Collision Occurred)

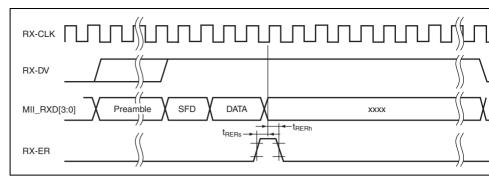


Figure 21.46 MII Reception Timing (Error Occurred)

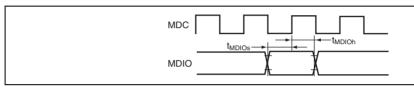


Figure 21.47 MDIO Input Timing

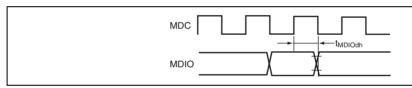


Figure 21.48 MDIO Output Timing

Figure 21.50 EXOUT Output Timing

21.4.11 H-UDI Related Pin Timing

Table 21.14 H-UDI Related Pin Timing

Conditions: $V_{cc}Q = 3.0 \text{ V}$ to 3.6 V, $V_{cc} = 1.4 \text{ V}$ to 1.6 V, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

Item	Symbol	Min.	Max.	Unit	Reference F
TCK cycle time	t _{TCKcyc}	50		ns	Figure 21.51
TCK high pulse width	t _{тскн}	19		ns	
TCK low pulse width	t _{tckl}	19		ns	
TCK rising/falling time	t _{TCKrf}	_	4	ns	
TRST setup time	t _{TRSTS}	10		t _{bcyc} *	Figure 21.52
TRST hold time	t _{rrsth}	50	_	t _{bcyc} *	
TDI setup time	t _{TDIS}	10	_	ns	Figure 21.53
TDI hold time	t _{tdih}	10	_	ns	
TMS setup time	t _{mss}	10	_	ns	
TMS hold time	t _{тмsн}	10	_	ns	
TDO delay time	t _{tdod}		19	ns	

Note: * t_{bcvc} indicates the period of the external bus clock (B ϕ).

Rev. 6.00 Jun. 12, 2007 Page 588 of 610 REJ09B0131-0600

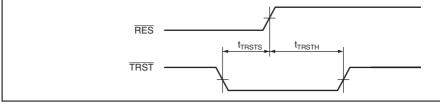


Figure 21.52 TCK Input Timing in Reset Hold State

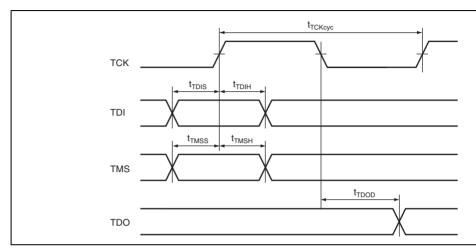


Figure 21.53 H-UDI Data Transmission Timing

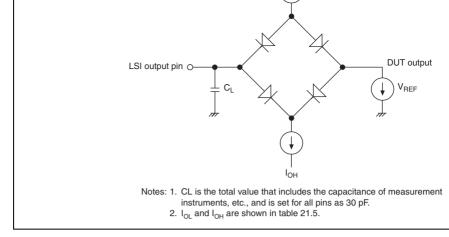


Figure 21.54 Output Load Circuit

Rev. 6.00 Jun. 12, 2007 Page 590 of 610 REJ09B0131-0600

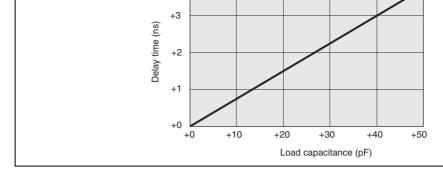


Figure 21.55 Load Capacitance versus Delay Time

Rev. 6.00 Jun. 12, 2007 Page 592 of 610 REJ09B0131-0600

Clock	EXTAL	I	I	I	I	
	XTAL	O* ¹	O*1	O*1	O*1	O* ¹
	CKIO	O* ¹	O*1	ZO* ⁵	O*1	O* ¹
	CK_PHY	0	0	Н	0	0
System control	RES	I	I	I	I	Ι
Operating mode control	MD5, MD3 to MD0	I	I	I	I	-
Interrupt	NMI	1	Ι	Ι	Ι	I
	IRQ4 to IRQ0	_	_	Ι	Ι	I
Address	A25 to A16	_	_	ZHL* ⁴	0	0
bus	A15 to A0	0	0	ZHL* ⁴	0	0
Data bus	D15 to D0	Z	Z	Z	Ю	Ю
Bus	WAIT	_	_	Z	Ι	Ι
control	IOIS16	_	_	Z	Ι	Ι
	CKE	_	_	ZO* ²	0	0
	$\overline{CAS}, \overline{RAS}$	_	_	ZO* ²	0	0
	WE0/DQMLL	Н	Н	ZH* ⁴	0	0
	WE1/DQMLU/ WE	Н	Н	ZH* ⁴	0	0
	ICIORD	_	_	ZH* ⁴	0	0
	ICIOWR		_	ZH* ⁴	0	0
	RD	Н	Н	ZH* ⁴	0	0

	BS		_	ZH* ⁴	0	0
Ethernet controller	MII_RXD3 to MII_RXD0	—	_	l	I	I
	MII_TXD3 to MII_TXD0	—	—	0	0	0
	RX_DV	_	—	I	I	I
	RX_ER	_			I	I
	RX_CLK	_	_	I	Ι	I
	TX_ER	_	_	0	0	0
	TX_EN	_		0	0	0
	TX_CLK	_		I	I	I
	COL	_	_	1	1	I
	CRS	_		I	1	I
	MDIO	_	_	IO	Ю	IO
	MDC	_	_	0	0	0
	LNKSTA	_	_	Z	Ι	I
	EXOUT	_	_	Z	0	0
	WOL	_	_	Z	0	0
SCIF	TXD2 to TXD0	_	_	Z	0	0
	RXD2 to RXD0	_	_	Z	I	I
	SCK2, SCK1	_	_	Z	0	0
	SCK0	_	_	Z	1	I
	RTS1, RTS0			Z	0	0

Rev. 6.00 Jun. 12, 2007 Page 594 of 610 REJ09B0131-0600

RENESAS

	HIFRD	_	Z	Z	 * ³	I * ³
	HIFWR	_	Z	Z	 * ³	 * ³
	HIFRS	_	Z	Z	 * ³	 * ³
	HIFCS	_	Z	Z	* ³	 * ³
	HIFD15 to HIFD0	_	Z	Z	10* ³	10* ³
User	TRST	I	I	I	I	I
debugging interface	ТСК	I	I	I	I	I
(H-UDI)	TMS	I	I		1	I
	TDI	I	I	1	1	I
	TDO	Z	Z	ZO* ⁶	ZO* ⁶	Z
	ASEMD	I	I		I	I
I/O port	PA25 to PA16	Z	Z	Z	Ρ	I/O
	PB13 to PB00	Z	Z	Z	Ρ	I/O
	PC20 to PC00	Z	Z	Z	Ρ	I/O
	PD07 to PD00	Z	Z	Z	Ρ	I/O
	PE24 to PE04, PE02 to PE00	Z		Z	Р	I/O
	PE03	_	_	Z	Р	I/O
Test mode	TESTMD	I	I	I	I	I
	TESTOUT	0	0	0	0	0
[Logond]						

[Legend]

—: This pin function is not selected as an initial state.

I: Input

O: Output

RENESAS

impedance state when the pin is not output state.

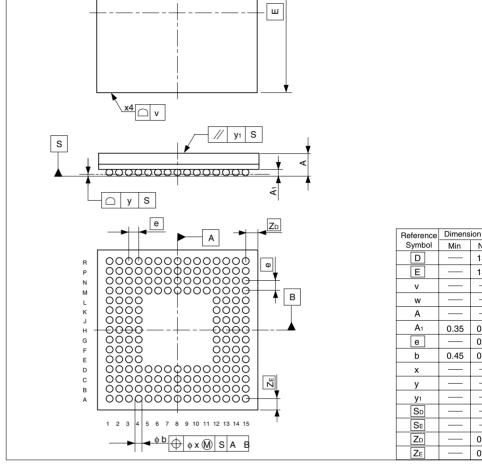
Rev. 6.00 Jun. 12, 2007 Page 596 of 610 REJ09B0131-0600

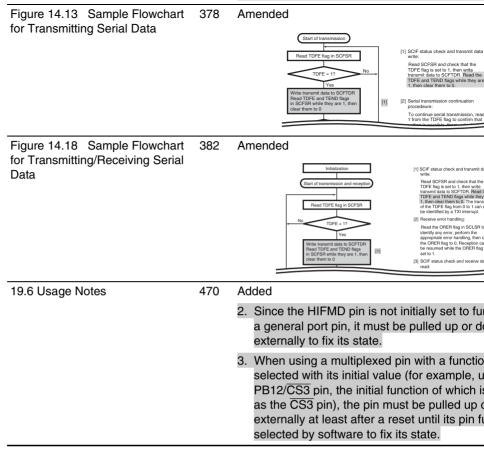
D17618RBG100	HD6417618R BG100	–20 to 75°C	Non-Pb-free
D17618RBGN100	HD6417618R BGN100	–20 to 75°C	Non-Pb-free
D17618RBGW100	HD6417618R BGW100	–40 to 85°C	Non-Pb-free

• SH7618A

Product Code	Catalogue Code	Operating Temperature	Solder Ball	Pack
D17618ABG100V	HD6417618A BG100V	–20 to 75°C	Pb-free	PLBG A
D17618ABGN100V	HD6417618A BGN100V	–20 to 75°C	Pb-free	-
D17618ABGW100V	HD6417618A BGW100V	–40 to 85°C	Pb-free	-
D17618ABG100	HD6417618A BG100	–20 to 75°C	Non-Pb-free	-
D17618ABGN100	HD6417618A BGN100	–20 to 75°C	Non-Pb-free	-
D17618ABGW100	HD6417618A BGW100	–40 to 85°C	Non-Pb-free	-

RENESAS

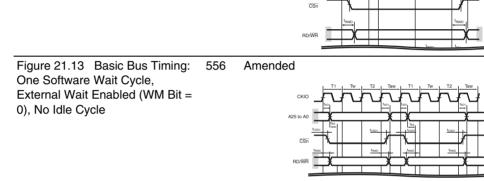



Figure C.1 Package Dimensions (BP-176)

Rev. 6.00 Jun. 12, 2007 Page 598 of 610 REJ09B0131-0600

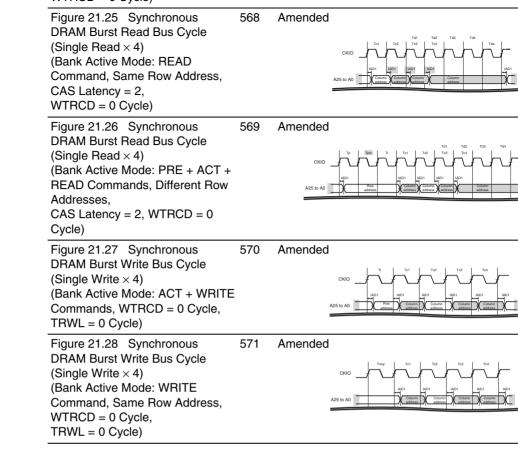
RENESAS

14.3.7 Serial Status Register (SCFSR)	341	Ameno	nded		
		Mode	Description		
		5	Transmit FIFO Data Empty		
			Indicates that data has been transferred from the tran data register (SCFTDR) to the transmit shift register (quantity of data in SCFTDR has become less than the trigger number specified by the TTRG1 and TTRG0 b control register (SCFCR), and writing of transmit data enabled.		
			0: The quantity of transmit data written to SCFTDR is the specified transmission trigger number		
			[Clearing conditions]		
			 TDFE is cleared to 0 when data exceeding the s transmission trigger number is written to SCFTD read from TDFE and then 0 is written 		
			 TDFE is cleared to 0 when DMAC write data exists specified transmission trigger number to SCFTE 		
			1: The quantity of transmit data in SCFTDR is equal to the specified transmission trigger number*		
			[Setting conditions]		
			TDFE is set to 1 by a power-on reset		
			 TDFE is set to 1 when the quantity of transmit d SCFTDR has become equal to or less than the transmission trigger number as a result of transmission 		
			Note: * Since SCFTDR is a 16-byte FIFO regist maximum quantity of data that can be written when T minus the specified transmission trigger number". If a made to write additional data, the data is ignored. The		
			data in SCFTDR is indicated by the upper 8 bits of SC		

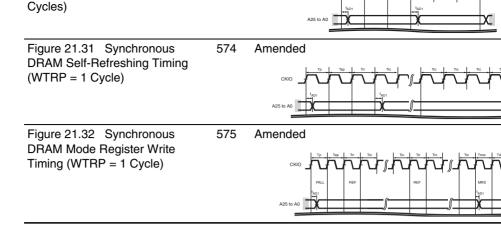


Rev. 6.00 Jun. 12, 2007 Page 600 of 610 REJ09B0131-0600

A25 to A0



RENESAS


Figure 21.18 Synchronous DRAM Burst Read Bus Cycle (Single Read × 4) (Auto-Precharge, CAS Latency = 2, WTRCD = 0 Cycle, WTRP = 1 Cycle)	561	Amended
Figure 21.19 Synchronous DRAM Burst Read Bus Cycle (Single Read \times 4) (Auto-Precharge, CAS Latency = 2, WTRCD = 1 Cycle, WTRP = 0 Cycle)	562	Amended $\underbrace{\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
Figure 21.20 Synchronous DRAM Single Write Bus Cycle (Auto-Precharge, TRWL = 1 Cycle)	563	Amended
Figure 21.21 Synchronous DRAM Single Write Bus Cycle (Auto-Precharge, WTRCD = 2 Cycles, TRWL = 1 Cycle)	564	Amended
Figure 21.22 Synchronous DRAM Burst Write Bus Cycle (Single Write \times 4) (Auto-Precharge, WTRCD = 0 Cycle, TRWL = 1 Cycle)	565	Amended

Rev. 6.00 Jun. 12, 2007 Page 602 of 610 REJ09B0131-0600

RENESAS

Renesas

Rev. 6.00 Jun. 12, 2007 Page 604 of 610 REJ09B0131-0600

Arithmetic operation instructions	41
Asynchronous Mode	362
Auto-refreshing	174

B

Bank active
Basic timing
Basic timing for I/O card interface 187
Basic timing for memory card interface . 185
Bit rate
Boundary scan 507
Branch instructions
Burst read161
Burst write 165
Bus state controller (BSC) 105
Byte-selection SRAM interface 179

С

Cache	49
Cache structure	49
Cases when exceptions are accepted	76
Changing clock operating mode	203
Changing division ratio	203
Changing frequency	202
Changing multiplication ratio	202
Clock operating modes	196
Clock Pulse Generator (CPG)	193

D

E

—
Endian/access size and data align
EtherC receiver
EtherC transmitter
Ethernet controller (EtherC)
Ethernet controller direct memory
access controller (E-DMAC)
Exception handling
Exception handling operations
Exception handling vector table
Extension of chip select (\overline{CSn})
assertion period
-

F

Features of instructions
Flow control

G

RENESAS

General illegal instructions General registers (Rn)

0	
Instruction formats	31
Instruction set	35
Interrupt controller (INTC)	81
Interrupt exception handling	73
Interrupt exception handling	
vector table	98
Interrupt priority	73
Interrupt response time	. 102
Interrupt sequence	. 100
Interrupt sources	72
IRQ7 to IRQ0 Interrupts	96

L

Logic operation	instructions 43
-----------------	-----------------

Μ

Magic Packet detection	255
Memory data formats	24
Memory-mapped cache	58
MII frame timing	250
Module standby mode	225
Multi-buffer frame transmit/receive	
processing	295
multiplexed pin	423

Rev. 6.00 Jun. 12, 2007 Page 606 of 610 REJ09B0131-0600

RENESAS

Pin function controller (PFC)
Pin functions
Power-down modes
Power-on reset
Power-on sequence

R

Ν
Read access
Receive descriptor 0 (RD0)
Receive descriptor 1 (RD1)
Receive descriptor 2 (RD2)
Receiving serial data
(asynchronous mode)
Receiving serial data
(synchronous mode)
Refreshing
Register
APR
BAMRA 474, 515
BAMRB 476, 515
BARA 473, 515
BARB 475, 515
BBRA 474, 515
BBRB 477, 515
BDMRB 477, 515
BDRB 476, 515
BETR 482, 515
BRCR 479, 515

CMCOR_1	513, 521, 535	HIFIICR	
CMCSR		HIFMCR	
_	512, 520, 535	HIFSCR	
CMCSR_1	513, 521, 535	ICR0	
CMNCR	114, 513, 522, 536	IPGR	
CMSTR	316, 512, 520, 535	IPR	
CNDCR	242, 515, 529, 537	IPRA	
CS0BCR	513, 523, 536	IPRB	
CS0WCR	120, 513, 523, 536	IPRC	
CS3BCR	513, 523, 536	IPRD	
CS3WCR122,	130, 513, 523, 524, 536	IPRE	
CS4BCR	513, 523, 536	IRQCR	
CS4WCR	123, 513, 524, 536	IRQSR	
CS5BBCR	513, 523, 536	LCCR	
CS5BWCR	126, 132, 513, 524, 536	MAFCR	
CS6BBCR	513, 523, 536	MAHR	
CS6BWCR	128, 132, 513, 524, 536	MALR	
CSnBCR		MCLKCR	
CSnWCR		MPR	
ECMR	232, 514, 528, 537	PACRH1	
ECSIPR	237, 514, 528, 537	PACRH2	
ECSR	235, 514, 528, 537	PADRH	
EDMR	261, 513, 525, 536	PAIORH	
EDOCR	279, 514, 527, 537	PBCRL1	
EDRRR	263, 514, 525, 536	PBCRL2	
EDTRR	262, 513, 525, 536	PBDRL	
EESIPR	270, 514, 526, 537	PBIORL	
EESR	265, 514, 526, 537	PCCRH2	
FCFTR	281, 514, 527, 537	PCCRL1	

PECRL2		SCFTDR_2	
PEDRH		SCLSR	
PEDRL		SCLSR_0	
PEIORH		SCLSR_1	
PEIORL		SCLSR_2	
PIR		SCRSR	
PSR		SCSCR	
RBWAR		SCSCR_0	
RDFAR		SCSCR_1	
RDLAR		SCSCR_2	
RFCR		SCSMR	
		SCSMR_0	
RMCR		SCSMR_1	
		SCSMR_2	
RTCNT		SCSPTR	
RTCOR		SCSPTR_0	
RTCSR		SCSPTR_1	
SCBRR		SCSPTR_2	
SCBRR_0	511, 519, 534	SCTSR	
SCBRR_1	512, 519, 534	SDBPR	
SCBRR_2	512, 520, 535	SDBSR	
SCFCR		SDCR	136, 513,
SCFCR_0	512, 519, 534	SDID	503, 511,
SCFCR_1	512, 520, 535	SDIR	496, 511,
SCFCR_2	512, 520, 535	STBCR	218, 511,
SCFDR		STBCR2	219, 511,
_	512, 519, 534	STBCR3	220, 511,
SCFDR_1	512, 520, 535	STBCR4	221, 511,
SCFDR_2	512, 520, 535	TBRAR	280, 514,

Rev. 6.00 Jun. 12, 2007 Page 608 of 610 REJ09B0131-0600

RENESAS

Register data format	24
Relationship between refresh requests a	and
bus cycles	177
Reset	69
RISC-type	25

S

SCIF Initialization (Asynchronous Mode)		
SCIF initialization (synchronous mode). 376		
SDRAM direct connection1		
SDRAM interface 153		
Searching cache		
Self-refreshing 176		
Serial communication interface with FIFO		
(SCIF)		
Shift instructions		
Single read 164		
Single Write		
Sleep mode		
Software standby mode		
Stack states after exception handling		
ends		
State transition		
Synchronous mode		

Transmitting serial data		
(asynchronous mode)		
Transmitting serial data		
(synchronous mode)		
Trap instructions		
Types of exception handling and		
priority		
Types of exceptions triggered by		
instructions		
Types of power-down modes		

U

e
U memory
User break controller (UBC)
User break interrupt
User debugging interface (H-UDI
User break interrupt

W

Wait between access cycles
Watchdog timer (WDT)
Write access
Write-back buffer

Rev. 6.00 Jun. 12, 2007 Page 610 of 610 REJ09B0131-0600

Renesas 32-Bit RISC Microcomputer Hardware Manual SH7618 Group

Rev.1.00, Feb. 18, 2004
Rev.6.00, Jun. 12, 2007
Sales Strategic Planning Div.
Renesas Technology Corp.
Customer Support Department
Global Strategic Communication Div.
Renesas Solutions Corp.

© 2007. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, J

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: ≺86≻ (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <655 < 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82- (2) 796-3115, Fax: <82- (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Tel: <603> 7955-9300, Fax: <603> 7955-9510

SH7618 Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0131-0600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for renesas manufacturer:

Other Similar products are found below :

EL4511CUZ-T7 PYB15-Q24-S5-H-U PQA30-D24-S24-DH PQA30-D48-S12-TH PYB30-Q24-T312-H-U PYB15-Q24-S5-H-T PYB15-Q24-S12-H-T V7815-500-SMT PYB20-Q48-S12-H-T PQZ6-Q24-S15-D PYB20-Q48-S5-H-T PYB20-Q24-S12-H-T VGS-75-12 PYB15-Q24-S12-H-U VGS-50-15 VGS-50-24 VGS-25-24 R5F100GFAFB#V0 VGS-50-5 VGS-100-12 M30620FCAFP#U3 ETSA120500UD-P5P-SZ PDQ2-D24-S12-S PDS1-S12-D12-M PDS1-S12-D15-M PYB15-Q24-S12-T PYB15-Q24-S24 PYB20-Q24-S24-DIN PYB20-Q48-S12 R0K33062PS000BE R0K505220S000BE R0K561664S000BE R0K570865S000BE HC55185AIMZ R5F52108CDFP#30 R5F72145BDFA#V1 R5S72631P200FP R7S721001VCBGAC0 EPSA050250UB-P5P-EJ HS0005PUU01H IS82C55A-5 ISL29035EVAL1Z ISL55110IVZ ISL6730AEVAL1Z ISL68200DEMO1Z ISL78235EVAL2Z ISL78268EVAL1Z ISL91107IRA-EVZ ISL9220IRTZEVAL1Z ISL95870BIRZ