#### Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

#### Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



32

# SH7709S Group

Hardware Manual

Renesas 32-Bit RISC Microcomputer SuperH<sup>™</sup> RISC engine Family/ SH7700 Series

Renesas Electronics

Rev.5.00 2003.09

Renesas 32-Bit RISC Microcomputer SuperH<sup>™</sup> RISC engine Family/SH7700 S

## SH7709S Group

## Hardware Manual



REJ09B00

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of Renesas Technology Corp. product best suited to the customer's application; they do convey any license under any intellectual property rights, or any other rights, belong Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringence third-party's rights, originating in the use of any product data, diagrams, charts, progalgorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, char programs and algorithms represents information on products at the time of publicati materials, and are subject to change by Renesas Technology Corp. without notice di product improvements or other reasons. It is therefore recommended that customer Renesas Technology Corp. or an authorized Renesas Technology Corp. product dist the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical Renesas Technology Corp. assumes no responsibility for any damage, liability, or or rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including prodiagrams, charts, programs, and algorithms, please be sure to evaluate all informatis system before making a final decision on the applicability of the information and programs. Technology Corp. assumes no responsibility for any damage, liability or or resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for us device or system that is used under circumstances in which human life is potentially Please contact Renesas Technology Corp. or an authorized Renesas Technology Co distributor when considering the use of a product contained herein for any specific p such as apparatus or systems for transportation, vehicular, medical, aerospace, nucle undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or r whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restriction must be exported under a license from the Japanese government and cannot be imporcountry other than the approved destination.
  - Any diversion or reexport contrary to the export control laws and regulations of Jap the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the contained therein.

Rev. 5.00, 09/03, page iv of xliv

- 2. Treatment of Unused Input Pins
- Note: Fix all unused input pins to high or low level.

Generally, the input pins of CMOS products are high-impedance input pins. If are in their open states, intermediate levels are induced by noise in the vicinity through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied throug chip and a low level is input on the reset pin. During the period where the state undefined, the register settings and the output state of each pin are also undefi your system so that it does not malfunction because of processing while it is in undefined state. For those products which have a reset function, reset the LSI after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Note: Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test may have been be allocated to these addresses. Do not access these registers; to operation is not guaranteed if they are accessed.

Rev. 5.00, 09/03,

- 5. Overview
- 6. Description of Functional Modules
  - CPU and System-Control Modules
  - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. E includes notes in relation to the descriptions given, and usage notes are given, as require final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ver This does not include all of the revised contents. For details, see the actual locations in manual.

11. Index

Rev. 5.00, 09/03, page vi of xliv

This LSI can be used as a microcomputer for devices that require both high speed and consumption.

**Target Readers:** This manual is designed for use by people who design application s the SH7709S.

To use this manual, basic knowledge of electric circuits, logic circuits and microcomp required.

**Purpose:** This manual provides the information of the hardware functions and electric characteristics of the SH7709S.

The SH3, SH-3E, SH3-DSP Programming Manual contains detailed information of exinstructions. Please read the Programming Manual together with this manual.

#### How to Use the Book:

- To understand general functions
  - Read the manual from the beginning.

The manual explains the CPU, system control functions, peripheral functions a characteristics in that order.

- To understanding CPU functions
  - Refer to the separate SH3, SH-3E, SH3-DSP Programming Manual.

Explanatory Note: Bit sequence: upper bit at left, and lower bit at right

List of Related Documents: The latest documents are available on our Web site. Ple sure that you have the latest version. (http://www.renesas.com/eng/)

• User manuals for SH7709S

| Name of Document                       | Document I  |
|----------------------------------------|-------------|
| SH7709S Group Hardware Manual          | This manual |
| SH3, SH-3E, SH3-DSP Programming Manual | ADE-602-15  |

Rev. 5.00, 09/03, p

#### Renesas

Rev. 5.00, 09/03, page viii of xliv

|                              | CPG/WDT                                                                                                                                                                                                                                                                                                                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | interface                                                                                                                                                                                                                                                                                                                      |
|                              | ASERAM deleted from legend                                                                                                                                                                                                                                                                                                     |
| 2.5.1 Processor States 53    | Description amended                                                                                                                                                                                                                                                                                                            |
|                              | In the power-on reset state, the internal states of the<br>on-chip supporting module registers are initialized. In<br>reset state, the internal states of the CPU and registe<br>supporting modules other than the bus state controlle<br>initialized.<br>the register configurations in the relevant sections for<br>details. |
| 5.4 Memory-Mapped 113        | Description amended                                                                                                                                                                                                                                                                                                            |
| Cache<br>5.4.1 Address Array | This operation is used to invalidate the address speci<br>cache. Write back will take place when the U bit of the<br>received a hit is 1. Note that, when a 0 is written to the<br>should always be written to the U bit of the same entr                                                                                      |

Renesas

Rev. 5.0, 09/03, J

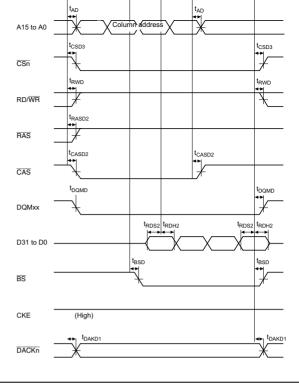
| Rev. 5.0, 09/03, page x o                                                       | of vliv |                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |         | Before switching the RTC to module standby, access a<br>among the registers RTC, SCI, and TMU.                                                                                                              |
| Negisiei (STDUR)                                                                |         | Bit 1—Module Standby 1 (MSTP1)                                                                                                                                                                              |
| 8.2.1 Standby Control Register (STBCR)                                          | 184     | Description added                                                                                                                                                                                           |
| (IRR0)                                                                          |         | When clearing an IRQ5R–IRQ0R bit to 0, read the bit to 1, and then write 0. In this case, 0 should be written bits to be cleared and 1 to the other bits. The contents to which 1 is written do not change. |
| 6.3.6 Interrupt<br>Request Register 0                                           | 138     | Description amended                                                                                                                                                                                         |
| Table 6.4 Interrupt<br>Exception Handling<br>Sources and Priority<br>(IRQ Mode) |         |                                                                                                                                                                                                             |
| Exception Handling and<br>Priority                                              |         | $(Before)IPRB(3-0) \rightarrow (After)IPRB(7-4)$                                                                                                                                                            |
| 6.2.6 Interrupt                                                                 | 127     | IPR (bit numbers) for SCI amended                                                                                                                                                                           |
|                                                                                 |         | ;<br>MOV.L R0, @R1 ; Longword 3 is read.                                                                                                                                                                    |
|                                                                                 |         | ; Way = 0, Longword address = 3                                                                                                                                                                             |
|                                                                                 |         | ; R0 = H'F100 004C; Data array access, Entry                                                                                                                                                                |
|                                                                                 |         | Description amended                                                                                                                                                                                         |
|                                                                                 |         | (3) Reading Data from a Specific Entry                                                                                                                                                                      |
|                                                                                 |         | (2) Invalidating a Specific Address<br>Newly added                                                                                                                                                          |
|                                                                                 |         | The above operation should be performed using a non-cach                                                                                                                                                    |
|                                                                                 |         | This involves a total of 1,024 writes.                                                                                                                                                                      |
|                                                                                 |         | F000 0000<br>F000 0010<br>F000 0020<br>F000 3FF0                                                                                                                                                            |
|                                                                                 |         | Addresses                                                                                                                                                                                                   |
|                                                                                 |         | MOV.L R0, @R1<br>To invalidate all entries and ways, write 0 to the following a                                                                                                                             |
|                                                                                 |         | ;                                                                                                                                                                                                           |
|                                                                                 |         | ; R0 = H'0000 0000 LRU = H'000, U = 0, V = 0<br>; R1 = H'F000 1080, Way = 1, Entry = H'08, A                                                                                                                |

### Renesas

| 9.5 Clock Operating<br>Modes                                             | 210         | 2. under cautions amended                                                                                                                                                                                                                                                          |  |  |  |
|--------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Table 9.4 Available<br>Combinations of Clock<br>Mode and FRQCR<br>Values |             | The peripheral clock frequency should not be set high<br>frequency of the CKIO pin, higher than <u>33.34</u> MHz.                                                                                                                                                                  |  |  |  |
| 9.5.1 Changing the                                                       | 213         | Description added                                                                                                                                                                                                                                                                  |  |  |  |
| Multiplication Rate                                                      |             | 5.Supply of the clock that has been set begins at WD overflow, and the processor begins operating again stops after it overflows.                                                                                                                                                  |  |  |  |
|                                                                          |             | When the following three conditions are all met, FRQ not be changed while a DMAC transfer is in progress                                                                                                                                                                           |  |  |  |
|                                                                          |             | <ul> <li>Bits IFC2 to IFC0 are changed.</li> <li>STC2 to STC0 are not changed.</li> <li>The clock ratio of lφ (on-chip clock) to Bφ (bus cloc change is other than 1:1.</li> </ul>                                                                                                 |  |  |  |
| 9.8.2 Changing the                                                       | 218,<br>219 | Description added                                                                                                                                                                                                                                                                  |  |  |  |
| Frequency                                                                |             | 5. The counter stops at a value of H'00 or H'01. The st depends on the clock ratio.                                                                                                                                                                                                |  |  |  |
|                                                                          |             | When the following three conditions are all met, FRQ not be changed while a DMAC transfer is in progress                                                                                                                                                                           |  |  |  |
|                                                                          |             | <ul><li>Bits IFC2 to IFC0 are changed.</li><li>STC2 to STC0 are not changed.</li></ul>                                                                                                                                                                                             |  |  |  |
|                                                                          |             | <ul> <li>The clock ratio of Iφ (on-chip clock) to Bφ (bus cloc<br/>change is other than 1:1.</li> </ul>                                                                                                                                                                            |  |  |  |
| 10.1.1 Features                                                          | 223         | Refresh function description deleted                                                                                                                                                                                                                                               |  |  |  |
| 10.2.5 Individual                                                        | 246         | Description added                                                                                                                                                                                                                                                                  |  |  |  |
| Memory Control<br>Register (MCR)                                         |             | <b>Bit 7—Synchronous DRAM Bank Active (RASD):</b> S whether synchronous DRAM is used in bank active m precharge mode. Set auto-precharge mode when are are both designated as synchronous DRAM space. The bank active mode should not be used unless the for all areas is 32 bits. |  |  |  |
|                                                                          |             |                                                                                                                                                                                                                                                                                    |  |  |  |

Rev. 5.0, 09/03,

|                                                                  |     | The bank active mode should not be used unless the b for all areas is 32 bits.                                                                                                                                                             |
|------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.3.6 PCMCIA                                                    | 310 | Figure amended                                                                                                                                                                                                                             |
| Interface                                                        |     | D15 to D0                                                                                                                                                                                                                                  |
| Figure 10.32 Basic<br>Timing for PCMCIA<br>Memory Card Interface |     | (Write)                                                                                                                                                                                                                                    |
| 10.3.7 Waits between Access Cycles                               | 320 | Figure amended                                                                                                                                                                                                                             |
| Figure 10.40 Waits between Access Cycles                         |     |                                                                                                                                                                                                                                            |
|                                                                  | _   | A25 to A0                                                                                                                                                                                                                                  |
| 10.3.10 MCS[0] to                                                | 323 | Description amended                                                                                                                                                                                                                        |
| MCS[7] Pin Control                                               |     | This enables 32-, 64-, 128-, or 256-Mbit memory to be to area 0 or area 2. However, only $CS2/0 = 0$ (area 0) s used for MCSCR0. Table 10.15 shows MCSCR0–MCS settings and $\overline{MCS[0]}$ – $\overline{MCS[7]}$ assertion conditions. |
| 11.6 Usage Notes                                                 | 387 | Description added                                                                                                                                                                                                                          |
|                                                                  |     | <ol> <li>DMAC transfers should not be performed in the slounder conditions other than when the clock ratio o chip clock) to B</li></ol>                                                                                                    |
|                                                                  |     | <ol> <li>When the following three conditions are all met, th<br/>frequency control register (FRQCR) should not be<br/>while a DMAC transfer is in progress.</li> </ol>                                                                     |
|                                                                  |     | Bits IFC2 to IFC0 are changed.                                                                                                                                                                                                             |
|                                                                  |     | <ul> <li>STC2 to STC0 in FRQCR are not changed.</li> </ul>                                                                                                                                                                                 |
|                                                                  | _   | <ul> <li>The clock ratio of Iφ (on-chip clock) to Bφ (bus of<br/>the change is other than 1:1.</li> </ul>                                                                                                                                  |
| 13.4.3 Precautions<br>when Using RTC<br>Module Standby           | 426 | Newly added                                                                                                                                                                                                                                |
|                                                                  |     |                                                                                                                                                                                                                                            |


Rev. 5.0, 09/03, page xii of xliv

|                                          |     | When the RDF flag in SCSSR is set to 1, an RXI interis generated. The DMAC can be activated and data to performed when the RDF flag in SCSSR is set to 1. In receive data less than the receive trigger number is receive data register (SCFRDR) by the DMAC, 1 is recRDF flag, after which 0 is written to it to clear it.  |
|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.5 Usage Notes                         | 551 | Description amended                                                                                                                                                                                                                                                                                                          |
|                                          |     | 1. SCFTDR Writing and TDFE Flag:<br>However, if the number of data bytes written to SCFT<br>to or less than the transmit trigger number, the TDFE<br>set to 1 again even after having been cleared to 0. TI<br>should therefore be carried out after data exceeding t<br>transmit trigger number has been written to SCFTDR. |
|                                          |     | 2. SCFRDR Reading and RDF Flag:                                                                                                                                                                                                                                                                                              |
|                                          |     | However, if the number of data bytes in SCFRDR exc<br>trigger number, the RDF flag will be set to 1 again eve<br>having been cleared to 0. RDF should therefore be cl<br>after being read as 1 after all the receive data has be                                                                                             |
| 19.13.2 SC Port Data<br>Register (SCPDR) | 610 | Title Amended                                                                                                                                                                                                                                                                                                                |
|                                          |     |                                                                                                                                                                                                                                                                                                                              |

Rev. 5.0, 09/03, pa

|                                        |      |                                                          |                                                       |                                                          |                                            | ADDRr<br>[H'AA                                    |                                                 | ADDRn L<br>[H'40]                                                                                      |
|----------------------------------------|------|----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                        |      | Lower byte                                               | e read                                                |                                                          | _                                          |                                                   |                                                 |                                                                                                        |
|                                        |      | CPU<br>receives                                          | - <b>-</b> -                                          | Bus                                                      |                                            | <u>د</u>                                          |                                                 | Module interna                                                                                         |
|                                        |      | data H'40                                                |                                                       | interfa                                                  | ce                                         |                                                   |                                                 |                                                                                                        |
|                                        |      |                                                          |                                                       |                                                          |                                            |                                                   |                                                 | TEMP<br>[H'40]                                                                                         |
|                                        |      |                                                          |                                                       |                                                          |                                            |                                                   |                                                 |                                                                                                        |
|                                        |      |                                                          |                                                       |                                                          |                                            | ADDRr<br>[H'AA                                    |                                                 | ADDRn L<br>[H'40]                                                                                      |
| 23.1 Absolute<br>Maximum Ratings       | 657  | Caution                                                  | added                                                 |                                                          |                                            |                                                   |                                                 |                                                                                                        |
| Table 23.1 Absolute<br>Maximum Ratings |      | at the R<br>clock cy<br>are also<br>undefine<br>Note tha | ESETP pir<br>cles, interr<br>undefined<br>ed states d | n, and (<br>nal circu<br>d. The s<br>do not c<br>ETP piu | CKIO<br>uits re<br>systen<br>ause<br>n can | has op<br>emain u<br>n desig<br>errone<br>not rec | perate<br>unsett<br>gn mus<br>eous s<br>ceive a | lies, a low le<br>d for a maxi<br>ded, and so<br>st ensure th<br>system opera<br>a low level s<br>bin. |
| 23.2 DC                                | 659, | Test cor                                                 | nditions for                                          | in slee                                                  | p mo                                       | de am                                             | ended                                           | ł                                                                                                      |
| Characteristics<br>Table 23.2 DC       | 662  | ltem                                                     | Symbol                                                | Min                                                      | Тур                                        | Мах                                               | Unit                                            | t Test Cor                                                                                             |
| Characteristics                        |      | Sleep                                                    | lcc                                                   |                                                          | 15                                         | 30                                                |                                                 | * <sup>1</sup> : When                                                                                  |
|                                        |      | mode <sup>*1</sup>                                       | lccQ                                                  | _                                                        | 10                                         | 20                                                |                                                 | other ext<br>cycle oth<br>refresh c                                                                    |
|                                        |      |                                                          |                                                       |                                                          |                                            |                                                   |                                                 | Vcc = 1.9<br>VccQ = 3                                                                                  |
|                                        |      |                                                          |                                                       |                                                          |                                            |                                                   |                                                 | Bφ = 33N                                                                                               |
|                                        |      | Note * a                                                 |                                                       | PI S int                                                 | errun                                      | te are                                            | head                                            | the minimu                                                                                             |
|                                        |      |                                                          |                                                       |                                                          | enup                                       | 15 010                                            | useu,                                           |                                                                                                        |

Rev. 5.0, 09/03, page xiv of xliv



Renesas

Rev. 5.0, 09/03, p

|                                                            |          | V <sub>cc</sub> –<br>PLL1<br>V <sub>cc</sub> –<br>PLL2 | 145<br>150                                                                    | F16,<br>E17                                                | Power<br>supply | PLL power su<br>(2.0/1.9/1.8/1  |  |
|------------------------------------------------------------|----------|--------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|-----------------|---------------------------------|--|
|                                                            |          | V <sub>cc</sub>                                        | 29, 81,<br>134, 154,<br>175                                                   | L3, L4,<br>U11, T11,<br>J17, J16,<br>E18, C19,<br>C12, D12 | Power<br>supply | Internal powe<br>(2.0/1.9/1.8/1 |  |
| A.3 Treatment of                                           | 724      | "Whei                                                  | n RTC is not                                                                  | used" and "                                                | When PL         | L2 is not used"                 |  |
| Unused Pins                                                |          | (Befor                                                 | re) (1.9/1.8                                                                  | V) $\rightarrow$ (After)                                   | (2.0/1.9        | 9/1.8/1.7V)                     |  |
| A.4 Pin States in<br>Access to Each                        | 726 to   | Note                                                   | 2 amended                                                                     |                                                            |                 |                                 |  |
| Address Space                                              | 738 Note | Note:                                                  | Note: 2. Unused data pins should be switched to the p function, or pulled up. |                                                            |                 |                                 |  |
| Table A.3 Pin States<br>(Ordinary Memory/Little<br>Endian) |          |                                                        | Tunction,                                                                     | or puned up.                                               |                 |                                 |  |
| Table A.4 Pin States<br>(Ordinary Memory/Big<br>Endian)    |          |                                                        |                                                                               |                                                            |                 |                                 |  |
| Table A.5 Pin States<br>(Burst ROM/Little<br>Endian)       |          |                                                        |                                                                               |                                                            |                 |                                 |  |
| Table A.6 Pin States<br>(Burst ROM/Big<br>Endian)          |          |                                                        |                                                                               |                                                            |                 |                                 |  |
| Table A.9 Pin States (PCMCIA/Little Endian)                |          |                                                        |                                                                               |                                                            |                 |                                 |  |
| Table A.10 Pin States<br>(PCMCIA/Big Endian)               |          |                                                        |                                                                               |                                                            |                 |                                 |  |

Rev. 5.0, 09/03, page xvi of xliv

|            | 1.3.2   |                                        |
|------------|---------|----------------------------------------|
| Sect       | ion 2   | CPU                                    |
| 2.1        | Registe | er Configuration                       |
|            | 2.1.1   | Privileged Mode and Banks              |
|            | 2.1.2   | General Registers                      |
|            | 2.1.3   | System Registers                       |
|            | 2.1.4   | Control Registers                      |
| 2.2        | Data F  | ormats                                 |
|            | 2.2.1   | Data Format in Registers               |
|            | 2.2.2   | Data Format in Memory                  |
| 2.3        | Instruc | tion Features                          |
|            | 2.3.1   | Execution Environment                  |
|            | 2.3.2   | Addressing Modes                       |
|            | 2.3.3   | Instruction Formats                    |
| 2.4        | Instruc | tion Set                               |
|            | 2.4.1   | Instruction Set Classified by Function |
|            | 2.4.2   | Instruction Code Map                   |
| 2.5        | Proces  | sor States and Processor Modes         |
|            | 2.5.1   | Processor States                       |
|            | 2.5.2   | Processor Modes                        |
| <b>G</b> . |         |                                        |
|            |         | Memory Management Unit (MMU)           |
| 3.1        |         | ew                                     |
|            | 3.1.1   | Features                               |
|            | 3.1.2   | Role of MMU                            |
|            | 3.1.3   | SH7709S MMU                            |
|            | 3.1.4   | Register Configuration                 |
| 3.2        | 0       | er Description                         |
| 3.3        |         | unctions                               |
|            | 3.3.1   | Configuration of the TLB               |
|            | 3.3.2   | TLB Indexing                           |
|            | 3.3.3   | TLB Address Comparison                 |
|            | 3.3.4   | Page Management Information            |
|            |         |                                        |

Rev. 5.00, 09/03, pa

|      | 3.5.4    | Initial Page Write Exception                                    |
|------|----------|-----------------------------------------------------------------|
|      | 3.5.5    | Processing Flow in Event of MMU Exception (Same Processing Flow |
|      |          | for Address Error)                                              |
| 3.6  | Config   | uration of Memory-Mapped TLB                                    |
|      | 3.6.1    | Address Array                                                   |
|      | 3.6.2    | Data Array                                                      |
|      | 3.6.3    | Usage Examples                                                  |
| 3.7  | Usage    | Note                                                            |
|      | -        |                                                                 |
| Sect | ion 4    | Exception Handling                                              |
| 4.1  | Overvi   | ew                                                              |
|      | 4.1.1    | Features                                                        |
|      | 4.1.2    | Register Configuration                                          |
| 4.2  | Except   | ion Handling Function                                           |
|      | 4.2.1    | Exception Handling Flow                                         |
|      | 4.2.2    | Exception Vector Addresses                                      |
|      | 4.2.3    | Acceptance of Exceptions                                        |
|      | 4.2.4    | Exception Codes                                                 |
|      | 4.2.5    | Exception Request Masks                                         |
|      | 4.2.6    | Returning from Exception Handling                               |
| 4.3  | Regist   | er Descriptions                                                 |
| 4.4  | Except   | ion Handling Operation                                          |
|      | 4.4.1    | Reset                                                           |
|      | 4.4.2    | Interrupts                                                      |
|      | 4.4.3    | General Exceptions                                              |
| 4.5  | Individ  | lual Exception Operations                                       |
|      | 4.5.1    | Resets                                                          |
|      | 4.5.2    | General Exceptions                                              |
|      | 4.5.3    | Interrupts                                                      |
| 4.6  |          | ns                                                              |
|      |          |                                                                 |
| Sect | ion 5    | Cache                                                           |
| 5.1  | Overvi   | ew                                                              |
|      | 5.1.1    | Features                                                        |
| Pov  | 5 00 00  |                                                                 |
| Rev. | 5.00, 09 | /03, page xviii of xliv                                         |
|      |          | - (                                                             |

|     | 5.3.4   | Write Access                                    |
|-----|---------|-------------------------------------------------|
|     | 5.3.5   | Write-Back Buffer                               |
|     | 5.3.6   | Coherency of Cache and External Memory          |
| 5.4 | Memo    | ry-Mapped Cache                                 |
|     | 5.4.1   | Address Array                                   |
|     | 5.4.2   | Data Array                                      |
|     | 5.4.3   | Examples of Usage                               |
|     |         |                                                 |
|     |         | Interrupt Controller (INTC)                     |
| 6.1 |         | ew                                              |
|     | 6.1.1   | Features                                        |
|     | 6.1.2   | Block Diagram                                   |
|     | 6.1.3   | Pin Configuration                               |
|     | 6.1.4   | Register Configuration                          |
| 6.2 | Interru | pt Sources                                      |
|     | 6.2.1   | NMI Interrupt                                   |
|     | 6.2.2   | IRQ Interrupts                                  |
|     | 6.2.3   | IRL Interrupts                                  |
|     | 6.2.4   | PINT Interrupts                                 |
|     | 6.2.5   | On-Chip Peripheral Module Interrupts            |
|     | 6.2.6   | Interrupt Exception Handling and Priority       |
| 6.3 | INTC    | Registers                                       |
|     | 6.3.1   | Interrupt Priority Registers A to E (IPRA-IPRE) |
|     | 6.3.2   | Interrupt Control Register 0 (ICR0)             |
|     | 6.3.3   | Interrupt Control Register 1 (ICR1)             |
|     | 6.3.4   | Interrupt Control Register 2 (ICR2)             |
|     | 6.3.5   | PINT Interrupt Enable Register (PINTER)         |
|     | 6.3.6   | Interrupt Request Register 0 (IRR0)             |
|     | 6.3.7   | Interrupt Request Register 1 (IRR1)             |
|     | 6.3.8   | Interrupt Request Register 2 (IRR2)             |
| 6.4 | INTC    | Operation                                       |
|     | 6.4.1   | Interrupt Sequence                              |
|     | 6.4.2   | Multiple Interrupts                             |
| 6.5 | Interru | pt Response Time                                |
|     |         | Rev 5.00.09/03.p                                |

### Renesas

Rev. 5.00, 09/03, p

| 7.2.4     | Break Address Register B (BARB)         |
|-----------|-----------------------------------------|
| 7.2.5     | 5 Break Address Mask Register B (BAMRB) |
| 7.2.6     | 5 Break Data Register B (BDRB)          |
| 7.2.7     | 7 Break Data Mask Register B (BDMRB)    |
| 7.2.8     | Break Bus Cycle Register B (BBRB)       |
| 7.2.9     | Break Control Register (BRCR)           |
| 7.2.1     | 0 Execution Times Break Register (BETR) |
| 7.2.1     |                                         |
| 7.2.1     | · · · · · · · · · · · · · · · · · · ·   |
| 7.2.1     | 3 Break ASID Register A (BASRA)         |
| 7.2.1     |                                         |
| 7.3 Ope   | ration Description                      |
| 7.3.1     |                                         |
| 7.3.2     |                                         |
| 7.3.3     | -                                       |
| 7.3.4     |                                         |
| 7.3.5     | -                                       |
| 7.3.6     | 5 PC Trace                              |
| 7.3.7     | 7 Usage Examples                        |
| 7.3.8     |                                         |
|           |                                         |
| Section 8 | Power-Down Modes                        |
| 8.1 Ove   | rview                                   |
| 8.1.1     | Power-Down Modes                        |
| 8.1.2     | 2 Pin Configuration                     |
| 8.1.3     |                                         |
| 8.2 Regi  | ster Descriptions                       |
| 8.2.1     | Standby Control Register (STBCR)        |
| 8.2.2     | 2 Standby Control Register 2 (STBCR2)   |
| 8.3 Slee  | p Mode                                  |
| 8.3.1     | Transition to Sleep Mode                |
| 8.3.2     | 2 Canceling Sleep Mode                  |
| 8.3.3     |                                         |
| 8.4 Stan  | dby Mode                                |
| Rev 5.00  | 09/03, page xx of xliv                  |
| 1.00.000, | RENESAS                                 |

|     |       | 8.6.3     | Timing for Canceling Sleep Mode                |
|-----|-------|-----------|------------------------------------------------|
| 8.7 |       | Hardwa    | are Standby Mode                               |
|     |       | 8.7.1     | Transition to Hardware Standby Mode            |
|     |       | 8.7.2     | Canceling Hardware Standby Mode                |
|     |       | 8.7.3     | Hardware Standby Mode Timing                   |
|     |       |           |                                                |
|     | Secti | on 9      | On-Chip Oscillation Circuits                   |
|     | 9.1   | Overvi    | ew                                             |
|     |       | 9.1.1     | Features                                       |
|     | 9.2   | Overvi    | ew of CPG                                      |
|     |       | 9.2.1     | CPG Block Diagram                              |
|     |       | 9.2.2     | -                                              |
|     |       | 9.2.3     | CPG Register Configuration                     |
|     |       | Clock (   | Operating Modes                                |
|     | 9.4   |           | Pr Descriptions                                |
|     |       | 9.4.1     | Frequency Control Register (FRQCR)             |
|     | 9.5   | Changi    | ng the Frequency                               |
|     |       | 9.5.1     | Changing the Multiplication Rate               |
|     |       | 9.5.2     | Changing the Division Ratio                    |
|     | 9.6   | Overvi    | ew of WDT                                      |
|     |       | 9.6.1     | Block Diagram of WDT                           |
|     |       | 9.6.2     | Register Configuration                         |
|     |       | Registers |                                                |
|     |       | 9.7.1     | Watchdog Timer Counter (WTCNT)                 |
|     |       | 9.7.2     | Watchdog Timer Control/Status Register (WTCSR) |
|     |       | 9.7.3     | Notes on Register Access                       |
|     | 9.8   | Using t   | he WDT                                         |
|     |       | 9.8.1     | Canceling Standby                              |
|     |       | 9.8.2     | Changing the Frequency                         |
|     |       | 9.8.3     | Using Watchdog Timer Mode                      |
|     |       | 9.8.4     | Using Interval Timer Mode                      |
|     | 9.9   | Notes of  | on Board Design                                |
|     |       | $\sigma$  |                                                |

Rev. 5.00, 09/03, p

Renesas

|       | 10.2.1  | Bus Control Register 1 (BCR1)                           |
|-------|---------|---------------------------------------------------------|
|       | 10.2.2  | Bus Control Register 2 (BCR2)                           |
|       | 10.2.3  | Wait State Control Register 1 (WCR1)                    |
|       | 10.2.4  | Wait State Control Register 2 (WCR2)                    |
|       | 10.2.5  | Individual Memory Control Register (MCR)                |
|       | 10.2.6  | PCMCIA Control Register (PCR)                           |
|       | 10.2.7  | Synchronous DRAM Mode Register (SDMR)                   |
|       | 10.2.8  | Refresh Timer Control/Status Register (RTCSR)           |
|       | 10.2.9  | Refresh Timer Counter (RTCNT)                           |
|       | 10.2.10 | Refresh Time Constant Register (RTCOR)                  |
|       | 10.2.11 | Refresh Count Register (RFCR)                           |
|       | 10.2.12 | Cautions on Accessing Refresh Control Related Registers |
|       | 10.2.13 | MCS0 Control Register (MCSCR0)                          |
|       | 10.2.14 | MCS1 Control Register (MCSCR1)                          |
|       | 10.2.15 | MCS2 Control Register (MCSCR2)                          |
|       | 10.2.16 | MCS3 Control Register (MCSCR3)                          |
|       | 10.2.17 | MCS4 Control Register (MCSCR4)                          |
|       | 10.2.18 | MCS5 Control Register (MCSCR5)                          |
|       | 10.2.19 | MCS6 Control Register (MCSCR6)                          |
|       |         | MCS7 Control Register (MCSCR7)                          |
| 10.3  |         | peration                                                |
|       | 10.3.1  | Endian/Access Size and Data Alignment                   |
|       | 10.3.2  | Description of Areas                                    |
|       | 10.3.3  | Basic Interface                                         |
|       | 10.3.4  | Synchronous DRAM Interface                              |
|       | 10.3.5  | Burst ROM Interface                                     |
|       | 10.3.6  | PCMCIA Interface                                        |
|       | 10.3.7  | Waits between Access Cycles                             |
|       | 10.3.8  | Bus Arbitration                                         |
|       | 10.3.9  | Bus Pull-Up                                             |
|       | 10.3.10 | MCS[0] to MCS[7] Pin Control                            |
| Secti | on 11   | Direct Memory Access Controller (DMAC)                  |
| 11.1  |         | 2W                                                      |
|       |         |                                                         |

Rev. 5.00, 09/03, page xxii of xliv

|       | 11.2.5  | DMA Operation Register (DMAOR)                                 |
|-------|---------|----------------------------------------------------------------|
| 11.3  | Operati | ion                                                            |
|       | 11.3.1  | DMA Transfer Flow                                              |
|       | 11.3.2  | DMA Transfer Requests                                          |
|       | 11.3.3  | Channel Priority                                               |
|       | 11.3.4  | DMA Transfer Types                                             |
|       | 11.3.5  | Number of Bus Cycle States and DREQ Pin Sampling Timing        |
|       | 11.3.6  |                                                                |
|       | 11.3.7  | DMA Transfer Ending Conditions                                 |
| 11.4  | Compa   | re Match Timer (CMT)                                           |
|       | 11.4.1  | Overview                                                       |
|       | 11.4.2  | Register Descriptions                                          |
|       | 11.4.3  | Operation                                                      |
|       | 11.4.4  | Compare Match                                                  |
| 11.5  | Examp   | les of Use                                                     |
|       | 11.5.1  | Example of DMA Transfer between On-Chip IrDA and External Memo |
|       | 11.5.2  | Example of DMA Transfer between A/D Converter and External Mem |
|       | 11.5.3  | Example of DMA Transfer between External Memory and SCIF Trans |
|       |         | (Indirect Address On)                                          |
| 11.6  | Usage I | Notes                                                          |
|       |         |                                                                |
| Secti |         | Timer (TMU)                                                    |
| 12.1  | Overvi  | ew                                                             |
|       | 12.1.1  | Features                                                       |
|       |         | Block Diagram                                                  |
|       |         | Pin Configuration                                              |
|       | 12.1.4  | Register Configuration                                         |
| 12.2  | TMU F   | Registers                                                      |
|       | 12.2.1  | Timer Output Control Register (TOCR)                           |
|       | 12.2.2  | Timer Start Register (TSTR)                                    |
|       | 12.2.3  | Timer Control Registers (TCR)                                  |
|       | 12.2.4  | $\mathcal{O}$                                                  |
|       | 12.2.5  | Timer Counters (TCNT)                                          |
|       | 12.2.6  | Input Capture Register (TCPR2)                                 |
|       |         | Rev. 5.00, 09/03, pa                                           |
|       |         |                                                                |

|            | 12.5.2    | Reading Registers                               |
|------------|-----------|-------------------------------------------------|
| Section 13 |           | Realtime Clock (RTC)                            |
| 13.1       | Overvie   | ew                                              |
|            | 13.1.1    | Features                                        |
|            | 13.1.2    | Block Diagram                                   |
|            | 13.1.3    | Pin Configuration                               |
|            |           | RTC Register Configuration                      |
| 13.2       |           | egisters                                        |
|            | 13.2.1    | 64-Hz Counter (R64CNT)                          |
|            | 13.2.2    | Second Counter (RSECCNT)                        |
|            | 13.2.3    | Minute Counter (RMINCNT)                        |
|            | 13.2.4    | Hour Counter (RHRCNT)                           |
|            | 13.2.5    | Day of Week Counter (RWKCNT)                    |
|            | 13.2.6    | Date Counter (RDAYCNT)                          |
|            | 13.2.7    | Month Counter (RMONCNT)                         |
|            | 13.2.8    | Year Counter (RYRCNT)                           |
|            | 13.2.9    | Second Alarm Register (RSECAR)                  |
|            | 13.2.10   | Minute Alarm Register (RMINAR)                  |
|            | 13.2.11   | Hour Alarm Register (RHRAR)                     |
|            | 13.2.12   | Day of Week Alarm Register (RWKAR)              |
|            | 13.2.13   | Date Alarm Register (RDAYAR)                    |
|            | 13.2.14   | Month Alarm Register (RMONAR)                   |
|            | 13.2.15   | RTC Control Register 1 (RCR1)                   |
|            | 13.2.16   | RTC Control Register 2 (RCR2)                   |
| 13.3       |           | peration                                        |
|            | 13.3.1    | Initial Settings of Registers after Power-On    |
|            | 13.3.2    | 8                                               |
|            | 13.3.3    | Reading the Time                                |
|            | 13.3.4    | Alarm Function                                  |
|            | 13.3.5    | Crystal Oscillator Circuit                      |
| 13.4       | 0         | Notes                                           |
|            | 13.4.1    | Register Writing during RTC Count               |
|            | 13.4.2    | Use of Realtime Clock (RTC) Periodic Interrupts |
| Rev.       | 5.00, 09/ | 03, page xxiv of xliv                           |
|            | ,         | RENESAS                                         |

|       | 14.2.1  | Receive Shift Register (SCRSR)    |
|-------|---------|-----------------------------------|
|       | 14.2.2  | Receive Data Register (SCRDR)     |
|       | 14.2.3  | Transmit Shift Register (SCTSR)   |
|       | 14.2.4  | Transmit Data Register (SCTDR)    |
|       |         | Serial Mode Register (SCSMR)      |
|       |         | Serial Control Register (SCSCR)   |
|       | 14.2.7  | Serial Status Register (SCSSR)    |
|       | 14.2.8  |                                   |
|       | 14.2.9  | Bit Rate Register (SCBRR)         |
| 14.3  | Operati | on                                |
|       | 14.3.1  | Overview                          |
|       | 14.3.2  | Operation in Asynchronous Mode    |
|       | 14.3.3  | Multiprocessor Communication      |
|       | 14.3.4  | Synchronous Operation             |
| 14.4  |         | errupts                           |
| 14.5  | Usage l | Notes                             |
|       |         |                                   |
| Secti | ion 15  | Smart Card Interface              |
| 15.1  | Overvie | ew                                |
|       | 15.1.1  | Features                          |
|       | 15.1.2  | Block Diagram                     |
|       | 15.1.3  | Pin Configuration                 |
|       | 15.1.4  | Smart Card Interface Registers    |
| 15.2  | Registe | r Descriptions                    |
|       | 15.2.1  | Smart Card Mode Register (SCSCMR) |
|       | 15.2.2  | Serial Status Register (SCSSR)    |
| 15.3  | Operati | on                                |
|       | 15.3.1  | Overview                          |
|       | 15.3.2  | Pin Connections                   |
|       | 15.3.3  | Data Format                       |
|       | 15.3.4  | Register Settings                 |
|       | 15.3.5  | Clock                             |
|       | 15.3.6  | Data Transmission and Reception   |
| 15.4  | Usage l | Notes                             |
|       |         | Rev. 5.00, 09/03, pa              |
|       |         | RENESAS                           |

| 16.2          |                                     |                                      |  |
|---------------|-------------------------------------|--------------------------------------|--|
|               | 16.2.1                              | Receive Shift Register (SCRSR)       |  |
|               | 16.2.2                              | Receive FIFO Data Register (SCFRDR)  |  |
|               | 16.2.3                              | Transmit Shift Register (SCTSR)      |  |
|               | 16.2.4                              | Transmit FIFO Data Register (SCFTDR) |  |
|               | 16.2.5                              | Serial Mode Register (SCSMR)         |  |
|               | 16.2.6                              | Serial Control Register (SCSCR)      |  |
|               | 16.2.7                              | Serial Status Register (SCSSR)       |  |
|               | 16.2.8                              | Bit Rate Register (SCBRR)            |  |
|               | 16.2.9                              | FIFO Control Register (SCFCR)        |  |
|               | 16.2.10                             | FIFO Data Count Register (SCFDR)     |  |
| 16.3          | Operati                             | ion                                  |  |
|               | 16.3.1                              | Overview                             |  |
|               | 16.3.2                              | Serial Operation                     |  |
| 16.4          | SCIF II                             | nterrupts                            |  |
| 16.5          | Usage I                             | Notes                                |  |
|               |                                     |                                      |  |
| Sect          | ion 17                              | IrDA                                 |  |
| 17.1 Overview |                                     | ew                                   |  |
|               | 17.1.1                              | Features                             |  |
|               | 17.1.2                              | Block Diagram                        |  |
|               |                                     | Pin Configuration                    |  |
|               | 17.1.4                              | Register Configuration               |  |
| 17.2          | Registe                             | r Description                        |  |
|               | 17.2.1                              |                                      |  |
| 17.3          | Operati                             | ion Description                      |  |
|               | 17.3.1                              | Overview                             |  |
|               | 17.3.2                              | Transmitting                         |  |
|               | 17.3.3                              | Receiving                            |  |
|               |                                     |                                      |  |
| Sect          |                                     | Pin Function Controller              |  |
| 18.1          |                                     | ew                                   |  |
| 18.2          | -                                   | r Configuration                      |  |
| 18.3          | Registe                             | er Descriptions                      |  |
| Rev.          | Rev. 5.00, 09/03, page xxvi of xliv |                                      |  |
|               | , -0,                               | RENESAS                              |  |
|               |                                     |                                      |  |

|       | 18.3.10 Port K Control Register (PKCR)   |
|-------|------------------------------------------|
|       | 18.3.11 Port L Control Register (PLCR)   |
|       | 18.3.12 SC Port Control Register (SCPCR) |
|       |                                          |
| Secti | on 19 I/O Ports                          |
| 19.1  | Overview                                 |
| 19.2  | Port A                                   |
|       | 19.2.1 Register Description              |
|       | 19.2.2 Port A Data Register (PADR)       |
| 19.3  | Port B                                   |
|       | 19.3.1 Register Description              |
|       | 19.3.2 Port B Data Register (PBDR)       |
| 19.4  | Port C                                   |
|       | 19.4.1 Register Description              |
|       | 19.4.2 Port C Data Register (PCDR)       |
| 19.5  | Port D                                   |
|       | 19.5.1 Register Description              |
|       | 19.5.2 Port D Data Register (PDDR)       |
| 19.6  | Port E                                   |
|       | 19.6.1 Register Description              |
|       | 19.6.2 Port E Data Register (PEDR)       |
| 19.7  | Port F                                   |
|       | 19.7.1 Register Description              |
|       | 19.7.2 Port F Data Register (PFDR)       |
| 19.8  | Port G                                   |
|       | 19.8.1 Register Description              |
|       | 19.8.2 Port G Data Register (PGDR)       |
| 19.9  | Port H                                   |
|       | 19.9.1 Register Description              |
|       | 19.9.2 Port H Data Register (PHDR)       |
| 19.10 | Port J                                   |
|       | 19.10.1 Register Description             |
|       | 19.10.2 Port J Data Register (PJDR)      |
| 19.11 | Port K                                   |
| .,,,1 |                                          |
|       | Rev. 5.00, 09/03, pa                     |

### Renesas

| Secti                                 | 100  on  20                                                                                                                                                           | A/D Converter                                        |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
| 20.1 Overview                         |                                                                                                                                                                       |                                                      |  |  |
|                                       | 20.1.1                                                                                                                                                                | Features                                             |  |  |
|                                       | 20.1.2                                                                                                                                                                | Block Diagram                                        |  |  |
|                                       | 20.1.3                                                                                                                                                                | Input Pins                                           |  |  |
|                                       | 20.1.4                                                                                                                                                                | Register Configuration                               |  |  |
| 20.2                                  | Registe                                                                                                                                                               | er Descriptions                                      |  |  |
|                                       | 20.2.1                                                                                                                                                                | A/D Data Registers A to D (ADDRA to ADDRD)           |  |  |
|                                       | 20.2.2                                                                                                                                                                | A/D Control/Status Register (ADCSR)                  |  |  |
|                                       | 20.2.3                                                                                                                                                                | A/D Control Register (ADCR)                          |  |  |
| 20.3                                  | Bus Ma                                                                                                                                                                | aster Interface                                      |  |  |
| 20.4                                  | Operati                                                                                                                                                               | on                                                   |  |  |
|                                       | 20.4.1                                                                                                                                                                | Single Mode (MULTI = 0)                              |  |  |
|                                       | 20.4.2                                                                                                                                                                | Multi Mode (MULTI = 1, SCN = 0)                      |  |  |
|                                       | 20.4.3                                                                                                                                                                | Scan Mode (MULTI = 1, SCN = 1)                       |  |  |
|                                       | 20.4.4                                                                                                                                                                | Input Sampling and A/D Conversion Time               |  |  |
|                                       | 20.4.5                                                                                                                                                                | External Trigger Input Timing                        |  |  |
| 20.5                                  |                                                                                                                                                                       | pts                                                  |  |  |
| 20.6                                  | Definit                                                                                                                                                               | ions of A/D Conversion Accuracy                      |  |  |
| 20.7 Usage Notes                      |                                                                                                                                                                       | Notes                                                |  |  |
|                                       | 20.7.1                                                                                                                                                                | Setting Analog Input Voltage                         |  |  |
|                                       | 20.7.2                                                                                                                                                                | Processing of Analog Input Pins                      |  |  |
|                                       | 20.7.3                                                                                                                                                                | Access Size and Read Data                            |  |  |
|                                       |                                                                                                                                                                       |                                                      |  |  |
| Secti                                 |                                                                                                                                                                       | D/A Converter                                        |  |  |
| 21.1                                  | Overvie                                                                                                                                                               | ew                                                   |  |  |
|                                       | 21.1.1                                                                                                                                                                | Features                                             |  |  |
|                                       | 21.1.2                                                                                                                                                                | Block Diagram                                        |  |  |
|                                       | 21.1.3                                                                                                                                                                | I/O Pins                                             |  |  |
|                                       | 21.1.4                                                                                                                                                                | Register Configuration                               |  |  |
| 21.2                                  | Registe                                                                                                                                                               | er Descriptions                                      |  |  |
|                                       | 21.2.1                                                                                                                                                                | D/A Data Registers 0 and 1 (DADR0/1)                 |  |  |
|                                       | 21.2.2                                                                                                                                                                | D/A Control Register (DACR)                          |  |  |
| 21.3                                  | 21.3 Operation                                                                                                                                                        |                                                      |  |  |
| Rev. 5.00, 09/03, page xxviii of xliv |                                                                                                                                                                       |                                                      |  |  |
| RENESAS                               |                                                                                                                                                                       |                                                      |  |  |
|                                       | <ul> <li>20.1</li> <li>20.2</li> <li>20.3</li> <li>20.4</li> <li>20.5</li> <li>20.6</li> <li>20.7</li> <li>Secti</li> <li>21.1</li> <li>21.2</li> <li>21.3</li> </ul> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |  |

|     |       | 23.3.10 | AC Characteristics Measurement Conditions |  |
|-----|-------|---------|-------------------------------------------|--|
|     |       |         | UDI-Related Pin Timing                    |  |
|     |       |         | Peripheral Module Signal Timing           |  |
|     |       | 23.3.7  | 6                                         |  |
|     |       | 23.3.6  | - ,                                       |  |
|     |       | 23.3.5  | 6                                         |  |
|     |       | 23.3.4  | 6                                         |  |
|     |       | 23.3.3  | 6                                         |  |
|     |       | 23.3.2  | 6 6                                       |  |
|     |       |         | Clock Timing                              |  |
| 2   | 23.3  |         | aracteristics                             |  |
|     | 23.2  |         | aracteristics                             |  |
|     | 23.1  |         | te Maximum Ratings                        |  |
|     |       |         | Electrical Characteristics                |  |
| ¢   | Soot: | on 22   | Electrical Characteristics                |  |
| 2   | 22.7  | Advanc  | ced User Debugger (AUD)                   |  |
|     | 22.6  | -       | Notes                                     |  |
| _   |       |         | Points for Attention                      |  |
|     |       | 22.5.1  | Supported Instructions                    |  |
| 2   | 22.5  |         | ary Scan                                  |  |
|     |       |         | Using UDI to Recover from Sleep Mode      |  |
|     |       |         | Bypass                                    |  |
|     |       |         | UDI Interrupt                             |  |
|     |       |         | UDI Reset                                 |  |
|     |       |         | Reset Configuration                       |  |
|     |       | 22.4.1  |                                           |  |
| 2   | 22.4  |         |                                           |  |
| - 2 | 22.4  | UDI O   | peration                                  |  |

| Appendix D | Package Di | imensions |
|------------|------------|-----------|
|------------|------------|-----------|

Rev. 5.00, 09/03, page xxx of xliv

| Figure 2.5  | Register Set Overview, Control Registers                      |
|-------------|---------------------------------------------------------------|
| Figure 2.6  | Longword                                                      |
| Figure 2.7  | Data Format in Memory                                         |
| Figure 2.8  | Processor State Transitions                                   |
| Figure 3.1  | MMU Functions                                                 |
| Figure 3.2  | Virtual Address Space Mapping                                 |
| Figure 3.3  | MMU Register Contents                                         |
| Figure 3.4  | Overall Configuration of the TLB                              |
| Figure 3.5  | Virtual Address and TLB Structure                             |
| Figure 3.6  | TLB Indexing (IX = 1)                                         |
| Figure 3.7  | TLB Indexing $(IX = 0)$                                       |
| Figure 3.8  | Objects of Address Comparison                                 |
| Figure 3.9  | Operation of LDTLB Instruction                                |
| Figure 3.10 | Synonym Problem                                               |
| Figure 3.11 | MMU Exception Generation Flowchart                            |
| Figure 3.12 | MMU Exception Signals in Instruction Fetch                    |
| Figure 3.13 | MMU Exception Signals in Data Access                          |
| Figure 3.14 | Specifying Address and Data for Memory-Mapped TLB Access      |
| Figure 4.1  | Vector Table                                                  |
| Figure 4.2  | Example of Acceptance Order of General Exceptions             |
| Figure 4.3  | Bit Configurations of EXPEVT, INTEVT, INTEVT2, and TRA Regist |
| Figure 5.1  | Cache Structure                                               |
| Figure 5.2  | CCR Register Configuration                                    |
| Figure 5.3  | CCR2 Register Configuration                                   |
| Figure 5.4  | Cache Search Scheme (Normal Mode)                             |
| Figure 5.5  | Write-Back Buffer Configuration                               |
| Figure 5.6  | Specifying Address and Data for Memory-Mapped Cache Access    |
| Figure 6.1  | Block Diagram of INTC                                         |
| Figure 6.2  | Example of IRL Interrupt Connection                           |
| Figure 6.3  | Interrupt Operation Flowchart                                 |
| Figure 6.4  | Example of Pipeline Operations when IRL Interrupt is Accepted |
| Figure 7.1  | Block Diagram of User Break Controller                        |
| Figure 8.1  | Canceling Standby Mode with STBCR.STBY                        |
| Figure 8.2  | Power-On Reset (Clock Modes 0, 1, 2, and 7) STATUS Output     |
|             |                                                               |

Rev. 5.00, 09/03, pa

|                                      | on Standby Mode Cancellation)                                         |  |
|--------------------------------------|-----------------------------------------------------------------------|--|
| Figure 9.1                           | Block Diagram of Clock Pulse Generator                                |  |
| Figure 9.2                           | Block Diagram of WDT                                                  |  |
| Figure 9.3                           | Writing to WTCNT and WTCSR                                            |  |
| Figure 9.4                           | Points for Attention when Using Crystal Resonator                     |  |
| Figure 9.5                           | Points for Attention when Using PLL Oscillator Circuit                |  |
| Figure 10.1                          | Block Diagram of Bus State Controller                                 |  |
| Figure 10.2                          | Correspondence between Logical Address Space and Physical Address     |  |
| Figure 10.3                          | Physical Space Allocation                                             |  |
| Figure 10.4                          | PCMCIA Space Allocation                                               |  |
| Figure 10.5                          | Writing to RFCR, RTCSR, RTCNT, and RTCOR                              |  |
| Figure 10.6                          | Basic Timing of Basic Interface                                       |  |
| Figure 10.7                          | Example of 32-Bit Data-Width Static RAM Connection                    |  |
| Figure 10.8                          | Example of 16-Bit Data-Width Static RAM Connection                    |  |
| Figure 10.9                          | Example of 8-Bit Data-Width Static RAM Connection                     |  |
| Figure 10.10                         | Basic Interface Wait Timing (Software Wait Only)                      |  |
| Figure 10.11                         | Basic Interface Wait State Timing (Wait State Insertion by WAIT Signa |  |
| -                                    | WAITSEL = 1)                                                          |  |
| Figure 10.12                         | Example of 64-Mbit Synchronous DRAM Connection (32-Bit Bus Wid        |  |
| Figure 10.13                         | Example of 64-Mbit Synchronous DRAM Connection (16-Bit Bus Wid        |  |
| Figure 10.14                         | Basic Timing for Synchronous DRAM Burst Read                          |  |
| Figure 10.15                         | Synchronous DRAM Burst Read Wait Specification Timing                 |  |
| Figure 10.16                         | Basic Timing for Synchronous DRAM Single Read                         |  |
| Figure 10.17                         | Basic Timing for Synchronous DRAM Burst Write                         |  |
| Figure 10.18                         | Basic Timing for Synchronous DRAM Single Write                        |  |
| Figure 10.19                         | Burst Read Timing (No Precharge)                                      |  |
| Figure 10.20                         | Burst Read Timing (Same Row Address)                                  |  |
| Figure 10.21                         | Burst Read Timing (Different Row Addresses)                           |  |
| Figure 10.22                         | Burst Write Timing (No Precharge)                                     |  |
| Figure 10.23                         | Burst Write Timing (Same Row Address)                                 |  |
| Figure 10.24                         | Burst Write Timing (Different Row Addresses)                          |  |
| Figure 10.25                         | Auto-Refresh Operation                                                |  |
| Figure 10.26                         | Synchronous DRAM Auto-Refresh Timing                                  |  |
| Figure 10.27                         | Synchronous DRAM Self-Refresh Timing                                  |  |
| Rev. 5.00, 09/03, page xxxii of xliv |                                                                       |  |

| Figure 10.37 | Basic Timing for PCMCIA I/O Card Interface                                 |
|--------------|----------------------------------------------------------------------------|
| Figure 10.38 | Wait Timing for PCMCIA I/O Card Interface                                  |
| Figure 10.39 | Dynamic Bus Sizing Timing for PCMCIA I/O Card Interface                    |
| Figure 10.40 | Waits between Access Cycles                                                |
| Figure 10.41 | Pull-Up Timing for Pins A25 to A0                                          |
| Figure 10.42 | Pull-Up Timing for Pins D31 to D0 (Read Cycle)                             |
| Figure 10.43 | Pull-Up Timing for Pins D31 to D0 (Write Cycle)                            |
| Figure 11.1  | Block Diagram of DMAC                                                      |
| Figure 11.2  | DMAC Transfer Flowchart                                                    |
| Figure 11.3  | Round-Robin Mode                                                           |
| Figure 11.4  | Changes in Channel Priority in Round-Robin Mode                            |
| Figure 11.5  | Operation of Direct Address Mode in Dual Address Mode                      |
| Figure 11.6  | Example of DMA Transfer Timing in the Direct Address Mode in Dua           |
|              | (Transfer Source: Ordinary Memory, Transfer Destination: Ordinary M        |
| Figure 11.7  | Indirect Address Operation in Dual Address Mode (When External Me          |
|              | Space has a 16-Bit Width)                                                  |
| Figure 11.8  | Example of Transfer Timing in the Indirect Address Mode in Dual Add        |
|              | Mode                                                                       |
| Figure 11.9  | Data Flow in Single Address Mode                                           |
| Figure 11.10 | Example of DMA Transfer Timing in Single Address Mode                      |
| Figure 11.11 | Example of DMA Transfer Timing in Single Address Mode (16-byte T           |
|              | External Memory Space (Ordinary Memory) $\rightarrow$ External Device with |
| Figure 11.12 | Example of DMA Transfer in Cycle-Steal Mode                                |
| Figure 11.13 | Example of Transfer in Burst Mode                                          |
| Figure 11.14 | Bus State when Multiple Channels Are Operating                             |
| Figure 11.15 | Cycle-Steal Mode, Level Input (CPU Access: 2 Cycles)                       |
| Figure 11.16 | Cycle-Steal Mode, Level Input (CPU Access: 3 Cycles)                       |
| Figure 11.17 | Cycle-Steal Mode, Level input (CPU Access: 2 Cycles, DMA RD Acc            |
|              | 4 Cycles)                                                                  |
| Figure 11.18 | Cycle-Steal Mode, Level input (CPU Access: 2 Cycles, DREQ Input D          |
| Figure 11.19 | Cycle-Steal Mode, Edge input (CPU Access: 2 Cycles)                        |
| Figure 11.20 | Burst Mode, Level Input                                                    |
| Figure 11.21 | Burst Mode, Edge Input                                                     |
| Figure 11.22 | Source Address Reload Function Diagram                                     |
|              | $P_{01} = 5.00, 00/03, p_{02}$                                             |

Rev. 5.00, 09/03, pag

| Figure 12.4  | Count Timing when Operating on Internal Clock                        |
|--------------|----------------------------------------------------------------------|
| Figure 12.5  | Count Timing when Operating on External Clock (Both Edges Detected   |
| Figure 12.6  | Count Timing when Operating on On-Chip RTC Clock                     |
| Figure 12.7  | Operation Timing when Using Input Capture Function (Using TCLK Ri    |
|              | Edge)                                                                |
| Figure 12.8  | UNF Setting Timing                                                   |
| Figure 12.9  | Status Flag Clearing Timing                                          |
| Figure 13.1  | Block Diagram of RTC                                                 |
| Figure 13.2  | Setting the Time                                                     |
| Figure 13.3  | Reading the Time                                                     |
| Figure 13.4  | Using the Alarm Function                                             |
| Figure 13.5  | Example of Crystal Oscillator Circuit Connection                     |
| Figure 13.6  | Using Periodic Interrupt Function                                    |
| Figure 14.1  | Block Diagram of SCI                                                 |
| Figure 14.2  | SCPT[1]/SCK0 Pin                                                     |
| Figure 14.3  | SCPT[0]/TxD0 Pin                                                     |
| Figure 14.4  | SCPT[0]/RxD0 Pin                                                     |
| Figure 14.5  | Example of Data Format in Asynchronous Communication (8-Bit Data     |
|              | with Parity and Two Stop Bits)                                       |
| Figure 14.6  | Output Clock and Serial Data Timing (Asynchronous Mode)              |
| Figure 14.7  | Sample Flowchart for SCI Initialization                              |
| Figure 14.8  | Sample Flowchart for Transmitting Serial Data                        |
| Figure 14.9  | Example of SCI Transmit Operation in Asynchronous Mode (8-Bit Data   |
|              | with Parity and One Stop Bit)                                        |
| Figure 14.10 | Sample Flowchart for Receiving Serial Data                           |
| Figure 14.11 | Example of SCI Receive Operation (8-Bit Data with Parity and One Sto |
| Figure 14.12 | Communication Among Processors Using Multiprocessor Format           |
|              | (Sending Data H'AA to Receiving Processor A)                         |
| Figure 14.13 | Sample Flowchart for Transmitting Multiprocessor Serial Data         |
| Figure 14.14 | Example of SCI Multiprocessor Transmit Operation (8-Bit Data with    |
|              | Multiprocessor Bit and One Stop Bit)                                 |
| Figure 14.15 | Sample Flowchart for Receiving Multiprocessor Serial Data            |
| Figure 14.16 | Example of SCI Receive Operation (8-Bit Data with Multiprocessor Bit |
|              | One Stop Bit)                                                        |
|              |                                                                      |

Rev. 5.00, 09/03, page xxxiv of xliv

| Figure 15.2  | Pin Connection Diagram for Smart Card Interface                      |
|--------------|----------------------------------------------------------------------|
| Figure 15.3  | Data Format for Smart Card Interface                                 |
| Figure 15.4  | Waveform of Start Character                                          |
| Figure 15.5  | Initialization Flowchart (Example)                                   |
| Figure 15.6  | Transmission Flowchart                                               |
| Figure 15.7  | Reception Flowchart (Example)                                        |
| Figure 15.8  | Receive Data Sampling Timing in Smart Card Mode                      |
| Figure 15.9  | Retransmission in SCI Receive Mode                                   |
| Figure 15.10 | Retransmission in SCI Transmit Mode                                  |
| Figure 16.1  | Block Diagram of SCIF                                                |
| Figure 16.2  | SCPT[5]/SCK2 Pin                                                     |
| Figure 16.3  | SCPT[4]/TxD2 Pin                                                     |
| Figure 16.4  | SCPT[4]/RxD2 Pin                                                     |
| Figure 16.5  | Sample Flowchart for SCIF Initialization                             |
| Figure 16.6  | Sample Flowchart for Transmitting Serial Data                        |
| Figure 16.7  | Example of Transmit Operation (8-Bit Data, Parity, One Stop Bit)     |
| Figure 16.8  | Example of Operation Using Modem Control (CTS)                       |
| Figure 16.9  | Sample Flowchart for Receiving Serial Data                           |
| Figure 16.10 | Sample Flowchart for Receiving Serial Data (cont)                    |
| Figure 16.11 | Example of SCIF Receive Operation (8-Bit Data, Parity, One Stop Bit) |
| Figure 16.12 | Example of Operation Using Modem Control (RTS)                       |
| Figure 16.13 | Receive Data Sampling Timing in Asynchronous Mode                    |
| Figure 17.1  | Block Diagram of IrDA                                                |
| Figure 17.2  | SCPT[3]/SCK1 Pin                                                     |
| Figure 17.3  | SCPT[2]/TxD1 Pin                                                     |
| Figure 17.4  | SCPT[2]/RxD1 Pin                                                     |
| Figure 17.5  | Transmit/Receive Operation                                           |
| Figure 19.1  | Port A                                                               |
| Figure 19.2  | Port B                                                               |
| Figure 19.3  | Port C                                                               |
| Figure 19.4  | Port D                                                               |
| Figure 19.5  | Port E                                                               |
| Figure 19.6  | Port F                                                               |
| Figure 19.7  | Port G                                                               |
|              |                                                                      |

RENESAS

Rev. 5.00, 09/03, pag

|                | Selected)                                                            |
|----------------|----------------------------------------------------------------------|
| Figure 20.5    | Example of A/D Converter Operation (Scan Mode, Channels AN0 to A     |
| -              | Selected)                                                            |
| Figure 20.6    | A/D Conversion Timing                                                |
| Figure 20.7    | External Trigger Input Timing                                        |
| Figure 20.8    | Definitions of A/D Conversion Accuracy                               |
| Figure 20.9    | Example of Analog Input Protection Circuit                           |
| Figure 20.10   | Analog Input Pin Equivalent Circuit                                  |
| Figure 21.1    | Block Diagram of D/A Converter                                       |
| Figure 21.2    | Example of D/A Converter Operation                                   |
| Figure 22.1    | Block Diagram of UDI                                                 |
| Figure 22.2    | TAP Controller State Transitions                                     |
| Figure 22.3    | UDI Reset                                                            |
| Figure 23.1    | EXTAL Clock Input Timing                                             |
| Figure 23.2    | CKIO Clock Input Timing                                              |
| Figure 23.3    | CKIO Clock Output Timing                                             |
| Figure 23.4    | Power-on Oscillation Settling Time                                   |
| Figure 23.5    | Oscillation Settling Time at Standby Return (Return by Reset)        |
| Figure 23.6    | Oscillation Settling Time at Standby Return (Return by NMI)          |
| Figure 23.7    | Oscillation Settling Time at Standby Return (Return by IRQ4 to IRQ0, |
| -              | PINTO/1, IRL3 to IRL0)                                               |
| Figure 23.8    | PLL Synchronization Settling Time during Standby Recovery (Reset or  |
| Figure 23.9    | PLL Synchronization Settling Time during Standby Recovery (IRQ/IRI   |
|                | PINT0/PINT1 Interrupt)                                               |
| Figure 23.10   | PLL Synchronization Settling Time when Frequency Multiplication Rat  |
|                | Modified                                                             |
| Figure 23.11   | Reset Input Timing                                                   |
| Figure 23.12   | Interrupt Signal Input Timing                                        |
| Figure 23.13   | IRQOUT Timing                                                        |
| Figure 23.14   | Bus Release Timing                                                   |
| Figure 23.15   | Pin Drive Timing at Standby                                          |
| Figure 23.16   | Basic Bus Cycle (No Wait)                                            |
| Figure 23.17   | Basic Bus Cycle (One Wait)                                           |
| Figure 23.18   | Basic Bus Cycle (External Wait, WAITSEL = 1)                         |
| Rev. 5.00, 09/ | 03, page xxxvi of xliv                                               |

| Figure 23.26 | Synchronous DRAM Write Bus Cycle ( $RCD = 0$ , $TPC = 0$ , $TRWL = 0$  |
|--------------|------------------------------------------------------------------------|
| Figure 23.27 | Synchronous DRAM Write Bus Cycle (RCD = 2, TPC = 1, TRWL = 1           |
| Figure 23.28 | Synchronous DRAM Write Bus Cycle (Burst Mode (Single Write $\times$ 4) |
|              | RCD = 0, TPC = 1, TRWL = 0)                                            |
| Figure 23.29 | Synchronous DRAM Write Bus Cycle (Burst Mode (Single Write $\times$ 4) |
|              | RCD = 1, TPC = 0, TRWL = 0)                                            |
| Figure 23.30 | Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row              |
|              | Address, CAS Latency = 1)                                              |
| Figure 23.31 | Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row              |
|              | Address, CAS Latency = 2)                                              |
| Figure 23.32 | Synchronous DRAM Burst Read Bus Cycle (RAS Down, Different Ro          |
|              | Address, TPC = 0, RCD = 0, CAS Latency = 1)                            |
| Figure 23.33 | Synchronous DRAM Burst Read Bus Cycle (RAS Down, Different Ro          |
|              | Address, TPC = 1, RCD = 0, CAS Latency = 1)                            |
| Figure 23.34 | Synchronous DRAM Burst Write Bus Cycle (RAS Down, Same Row             |
|              | Address)                                                               |
| Figure 23.35 | Synchronous DRAM Burst Write Bus Cycle (RAS Down, Different Ro         |
|              | Address, $TPC = 0$ , $RCD = 0$ )                                       |
| Figure 23.36 | Synchronous DRAM Burst Write Bus Cycle (RAS Down, Different Ro         |
|              | Address, TPC = 1, RCD = 1)                                             |
| Figure 23.37 | Synchronous DRAM Auto-Refresh Timing (TRAS = 1, TPC = 1)               |
| Figure 23.38 | Synchronous DRAM Self-Refresh Cycle (TRAS = 1, TPC = 1)                |
| Figure 23.39 | Synchronous DRAM Mode Register Write Cycle                             |
| Figure 23.40 | PCMCIA Memory Bus Cycle (TED = 0, TEH = 0, No Wait)                    |
| Figure 23.41 | PCMCIA Memory Bus Cycle (TED = 2, TEH = 1, One Wait, External          |
|              | WAITSEL = 1)                                                           |
| Figure 23.42 | PCMCIA Memory Bus Cycle (Burst Read, $TED = 0$ , $TEH = 0$ , No Wa     |
| Figure 23.43 | PCMCIA Memory Bus Cycle (Burst Read, TED = 1, TEH = 1, Two W           |
|              | Burst Pitch = 3, WAITSEL = 1)                                          |
| Figure 23.44 | PCMCIA I/O Bus Cycle (TED = 0, TEH = 0, No Wait)                       |
| Figure 23.45 | PCMCIA I/O Bus Cycle (TED = 2, TEH = 1, One Wait, External Wait        |
|              | WAITSEL = 1)                                                           |
| Figure 23.46 | PCMCIA I/O Bus Cycle (TED = 1, TEH = 1, One Wait, Bus Sizing,          |
|              | WAITSEL = 1)                                                           |
|              |                                                                        |

### RENESAS

Rev. 5.00, 09/03, page

| Figure 23.56 | TRST Input Timing (Reset Hold)  |
|--------------|---------------------------------|
| Figure 23.57 | UDI Data Transfer Timing        |
| Figure 23.58 | ASEMD0 Input Timing             |
|              | Output Load Circuit             |
| Figure 23.60 | Load Capacitance vs. Delay Time |
| Figure D.1   | Package Dimensions (FP-208C)    |
| Figure D.2   | Package Dimensions (FP-208E)    |
| Figure D.3   | Package Dimensions (BP-240A)    |
|              |                                 |

Rev. 5.00, 09/03, page xxxviii of xliv

| Table 2.5  | Instruction Code Format                                             |
|------------|---------------------------------------------------------------------|
| Table 2.6  | Data Transfer Instructions                                          |
| Table 2.7  | Arithmetic Instructions                                             |
| Table 2.8  | Logic Operation Instructions                                        |
| Table 2.9  | Shift Instructions                                                  |
| Table 2.10 | Branch Instructions                                                 |
| Table 2.11 | System Control Instructions                                         |
| Table 2.12 | Instruction Code Map                                                |
| Table 3.1  | Register Configuration                                              |
| Table 3.2  | Access States Designated by D, C, and PR Bits                       |
| Table 4.1  | Register Configuration                                              |
| Table 4.2  | Exception Event Vectors                                             |
| Table 4.3  | Exception Codes                                                     |
| Table 4.4  | Types of Reset                                                      |
| Table 5.1  | Cache Specifications                                                |
| Table 5.2  | LRU and Way Replacement (When the cache lock function is not used)  |
| Table 5.3  | Register Configuration                                              |
| Table 5.4  | Way Replacement when PREF Instruction Ended Up in a Cache Miss      |
| Table 5.5  | Way Replacement when Instructions Except for PREF Instruction Ended |
|            | in a Cache Miss                                                     |
| Table 5.6  | LRU and Way Replacement (when W2LOCK=1)                             |
| Table 5.7  | LRU and Way Replacement (when W3LOCK=1)                             |
| Table 5.8  | LRU and Way Replacement (when W2LOCK=1 and W3LOCK=1)                |
| Table 6.1  | INTC Pins                                                           |
| Table 6.2  | INTC Registers                                                      |
| Table 6.3  | IRL3–IRL0/IRLS3–IRLS0 Pins and Interrupt Levels                     |
| Table 6.4  | Interrupt Exception Handling Sources and Priority (IRQ Mode)        |
| Table 6.5  | Interrupt Exception Handling Sources and Priority (IRL Mode)        |
| Table 6.6  | Interrupt Levels and INTEVT Codes                                   |
| Table 6.7  | Interrupt Request Sources and IPRA-IPRE                             |
| Table 6.8  | Interrupt Response Time                                             |
| Table 7.1  | Register Configuration                                              |
| Table 7.2  | Data Access Cycle Addresses and Operand Size Comparison Conditions  |
| Table 8.1  | Power-Down Modes                                                    |
|            |                                                                     |

### Renesas

Rev. 5.00, 09/03, pag

| Table 10.2    | BSC Registers                                                           |
|---------------|-------------------------------------------------------------------------|
| Table 10.3    | Physical Address Space Map                                              |
| Table 10.4    | Correspondence between External Pins (MD4 and MD3) and Memory Siz       |
| Table 10.5    | PCMCIA Interface Characteristics                                        |
| Table 10.6    | PCMCIA Support Interface                                                |
| Table 10.7    | 32-Bit External Device/Big-Endian Access and Data Alignment             |
| Table 10.8    | 16-Bit External Device/Big-Endian Access and Data Alignment             |
| Table 10.9    | 8-Bit External Device/Big-Endian Access and Data Alignment              |
| Table 10.10   | 32-Bit External Device/Little-Endian Access and Data Alignment          |
| Table 10.11   | 16-Bit External Device/Little-Endian Access and Data Alignment          |
| Table 10.12   | 8-Bit External Device/Little-Endian Access and Data Alignment           |
| Table 10.13   | Relationship between Bus Width, AMX Bits, and Address Multiplex Outp    |
| Table 10.14   | Example of Correspondence between SH7709S and Synchronous DRAM          |
|               | Address Pins (AMX [3:0] = 0100 (32-Bit Bus Width))                      |
| Table 10.15   | MCSCRx Settings and $\overline{MCS[x]}$ Assertion Conditions (x: 0–7)   |
| Table 11.1    | DMAC Pins                                                               |
| Table 11.2    | DMAC Registers                                                          |
| Table 11.3    | Selecting External Request Modes with RS Bits                           |
| Table 11.4    | Selecting On-Chip Peripheral Module Request Modes with RS3-0 Bits       |
| Table 11.5    | Supported DMA Transfers                                                 |
| Table 11.6    | Relationship between Request Modes and Bus Modes by DMA Transfer        |
|               | Category                                                                |
| Table 11.7    | Register Configuration                                                  |
| Table 11.8    | Transfer Conditions and Register Settings for Transfer between On-Chip  |
|               | and External Memory                                                     |
| Table 11.9    | Transfer Conditions and Register Settings for Transfer between On-Chip  |
|               | Converter and External Memory                                           |
| Table 11.10   | Values in DMAC after End of Fourth Transfer                             |
| Table 11.11   | Transfer Conditions and Register Settings for Transfer between External |
|               | Memory and SCIF Transmitter                                             |
| Table 12.1    | TMU Pin                                                                 |
| Table 12.2    | TMU Registers                                                           |
| Table 12.3    | TMU Interrupt Sources                                                   |
| Table 13.1    | RTC Pins                                                                |
| Rev. 5.00. 09 | 9/03, page xl of xliv                                                   |
| , -           | RENESAS                                                                 |

| Table 14.6  | Maximum Bit Rates for Various Frequencies with Baud Rate Generator |
|-------------|--------------------------------------------------------------------|
|             | (Asynchronous Mode)                                                |
| Table 14.7  | Maximum Bit Rates with External Clock Input (Asynchronous Mode)    |
| Table 14.8  | Maximum Bit Rates with External Clock Input (Synchronous Mode)     |
| Table 14.9  | Serial Mode Register Settings and SCI Communication Formats        |
| Table 14.10 | SCSMR and SCSCR Settings and SCI Clock Source Selection            |
| Table 14.11 | Serial Communication Formats (Asynchronous Mode)                   |
| Table 14.12 | Receive Error Conditions and SCI Operation                         |
| Table 14.13 | SCI Interrupt Sources                                              |
| Table 14.14 | SCSSR Status Flags and Transfer of Receive Data                    |
| Table 15.1  | Smart Card Interface Pins                                          |
| Table 15.2  | Registers                                                          |
| Table 15.3  | Register Settings for Smart Card Interface                         |
| Table 15.4  | Relationship of n to CKS1 and CKS0                                 |
| Table 15.5  | Examples of Bit Rate B (Bits/s) for SCBRR Settings (n = 0)         |
| Table 15.6  | Examples of SCBRR Settings for Bit Rate B (Bits/s) (n = 0)         |
| Table 15.7  | Maximum Bit Rates for Frequencies (Smart Card Interface Mode)      |
| Table 15.8  | Register Set Values and SCK Pin                                    |
| Table 15.9  | Smart Card Mode Operating State and Interrupt Sources              |
| Table 16.1  | SCIF Pins                                                          |
| Table 16.2  | SCIF Registers                                                     |
| Table 16.3  | SCSMR Settings                                                     |
| Table 16.4  | Bit Rates and SCBRR Settings                                       |
| Table 16.5  | Maximum Bit Rates for Various Frequencies with Baud Rate Generator |
|             | (Asynchronous Mode)                                                |
| Table 16.6  | Maximum Bit Rates with External Clock Input (Asynchronous Mode)    |
| Table 16.7  | SCSMR Settings and SCIF Communication Formats                      |
| Table 16.8  | SCSCR Settings and SCIF Clock Source Selection                     |
| Table 16.9  | Serial Communication Formats                                       |
| Table 16.10 | SCIF Interrupt Sources                                             |
| Table 17.1  | IrDA Pins                                                          |
| Table 17.2  | IrDA Registers                                                     |
| Table 18.1  | List of Multiplexed Pins                                           |
| Table 18.2  | Pin Function Controller Registers                                  |
|             | Rev. 5.00. 09/03. r                                                |
|             |                                                                    |

## RENESAS

0, 09/03, p

| Table 19.10   | Port E Data Register (PEDR) Read/Write Operations         |
|---------------|-----------------------------------------------------------|
|               | Port F Register                                           |
| Table 19.12   | Port F Data Register (PFDR) Read/Write Operations         |
| Table 19.13   | Port G Register                                           |
| Table 19.14   | Port G Data Register (PGDR) Read/Write Operations         |
| Table 19.15   | Port H Register                                           |
| Table 19.16   | Port H Data Register (PHDR) Read/Write Operations         |
| Table 19.17   | Port J Register                                           |
| Table 19.18   | Port J Data Register (PJDR) Read/Write Operations         |
| Table 19.19   | Port K Register                                           |
| Table 19.20   | Port K Data Register (PKDR) Read/Write Operations         |
| Table 19.21   | Port L Register                                           |
| Table 19.22   | Port L Data Register (PLDR) Read/Write Operation          |
| Table 19.23   | SC Port Register                                          |
| Table 19.24   | Read/Write Operation of the SC Port Data Register (SCPDR) |
| Table 20.1    | A/D Converter Pins                                        |
| Table 20.2    | A/D Converter Registers                                   |
| Table 20.3    | Analog Input Channels and A/D Data Registers              |
| Table 20.4    | A/D Conversion Time (Single Mode)                         |
| Table 20.5    | Analog Input Pin Ratings                                  |
| Table 20.6    | Relationship between Access Size and Read Data            |
| Table 21.1    | D/A Converter Pins                                        |
| Table 21.2    | D/A Converter Registers                                   |
| Table 22.1    | UDI Registers                                             |
| Table 22.2    | UDI Commands                                              |
| Table 22.3    | Pins of this LSI and Boundary Scan Register Bits          |
| Table 22.4    | Reset Configuration                                       |
| Table 23.1    | Absolute Maximum Ratings                                  |
| Table 23.2    | DC Characteristics                                        |
| Table 23.3    | Permitted Output Current Values                           |
| Table 23.4    | Operating Frequency Range                                 |
| Table 23.5    | Clock Timing                                              |
| Table 23.6    | Control Signal Timing                                     |
| Table 23.7    | Bus Timing                                                |
| Rev. 5.00, 09 | 9/03, page xlii of xliv                                   |

| Table A.6 | Pin States (Burst ROM/Big Endian)           |
|-----------|---------------------------------------------|
|           | Pin States (Synchronous DRAM/Little Endian) |
|           | Pin States (Synchronous DRAM/Big Endian)    |
|           | Pin States (PCMCIA/Little Endian).          |
|           | Pin States (PCMCIA/Big Endian)              |
|           | Memory-Mapped Control Registers             |
| Table B.2 | Register Bits                               |
|           | SH7709S Models                              |
|           |                                             |

### Renesas

Rev. 5.00, 09/03, pa

Rev. 5.00, 09/03, page xliv of xliv

interface. This LSI includes data protection, virtual memory, and other functions provincorporating an MMU into a SuperH Series microprocessor (SH-1 or SH-2).

High-speed data transfers can be performed by an on-chip direct memory access contr (DMAC) and an external memory access support function enables direct connection to types of memory. The SH7709S microprocessor also supports an infrared communica function, an A/D converter, and a D/A converter.

A powerful built-in power management function keeps power consumption low, even speed operation. This LSI can run at six times the frequency of the system bus operati making it optimum for electrical devices such as PDAs that require both high speed at power.

The features of this LSI is listed in table 1.1. The specifications are shown in table 1.2

Note: SuperH is a trademark of Renesas Technology, Corp.

RENESAS

Rev. 5.00, 09/03, p

|                          | — Four 32-bit system registers                                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------|
|                          | RISC-type instruction set                                                                       |
|                          | <ul> <li>Instruction length: 16-bit fixed length for improved code efficient</li> </ul>         |
|                          | <ul> <li>Load-store architecture</li> </ul>                                                     |
|                          | <ul> <li>Delayed branch instructions</li> </ul>                                                 |
|                          | <ul> <li>Instruction set based on C language</li> </ul>                                         |
|                          | Instruction execution time: one instruction/cycle for basic instruct                            |
|                          | Logical address space: 4 Gbytes                                                                 |
|                          | Space identifier ASID: 8 bits, 256 logical address space                                        |
|                          | Five-stage pipeline                                                                             |
| Clock pulse              | Clock mode: An input clock can be selected from the external input                              |
| generator (CPG)          | or CKIO) or crystal oscillator.                                                                 |
|                          | Three types of clocks generated:                                                                |
|                          | <ul> <li>CPU clock: 1–24 times the input clock, maximum 200 MHz</li> </ul>                      |
|                          | <ul> <li>Bus clock: 1–4 times the input clock, maximum 66.67 MHz</li> </ul>                     |
|                          | <ul> <li>Peripheral clock: 1/4–4 times the input clock, maximum 33.3-</li> </ul>                |
|                          | Power-down modes:                                                                               |
|                          | — Sleep mode                                                                                    |
|                          | — Standby mode                                                                                  |
|                          | — Module standby mode                                                                           |
|                          | One-channel watchdog timer                                                                      |
| Memory                   | • 4 Gbytes of address space, 256 address spaces (ASID 8 bits)                                   |
| management<br>unit (MMU) | Page unit sharing                                                                               |
|                          | Supports multiple page sizes: 1, 4 kbytes                                                       |
|                          | 128-entry, 4-way set associative TLB                                                            |
|                          | <ul> <li>Supports software selection of replacement method and random<br/>algorithms</li> </ul> |
|                          |                                                                                                 |

Rev. 5.00, 09/03, page 2 of 760

| User break                 | 2 break channels                                                                                                                                                                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| controller (UBC)           | Addresses, data values, type of access, and data size can all b conditions                                                                                                              |
|                            | Supports a sequential break function                                                                                                                                                    |
| Bus state controller (BSC) | <ul> <li>Physical address space divided into six areas (area 0, areas 2 maximum of 64 Mbytes, with the following features settable for</li> <li>Bus size (8, 16, or 32 bits)</li> </ul> |
|                            | <ul> <li>Number of wait cycles (also supports a hardware wait function)</li> </ul>                                                                                                      |
|                            | <ul> <li>Setting the type of space enables direct connection to SRAN<br/>Synchronous DRAM, and burst ROM</li> </ul>                                                                     |
|                            | <ul> <li>Supports PCMCIA interface (2 channels)</li> </ul>                                                                                                                              |
|                            | <ul> <li>Outputs chip select signal (CS0, CS2–CS6) for correspondi</li> </ul>                                                                                                           |
|                            | Synchronous DRAM refresh function                                                                                                                                                       |
|                            | — Programmable refresh interval                                                                                                                                                         |
|                            | <ul> <li>— Support self-refresh mode</li> </ul>                                                                                                                                         |
|                            | Synchronous DRAM burst access function                                                                                                                                                  |
|                            | Usable as either big or little endian machine                                                                                                                                           |
| User-debugging             | E10A emulator support                                                                                                                                                                   |
| Interface (UDI)            | JTAG-compliant                                                                                                                                                                          |
|                            | Realtime branch address trace                                                                                                                                                           |
|                            | 1-kB on-chip RAM for fast emulation program execution                                                                                                                                   |
| Timer (TMU)                | 3-channel auto-reload-type 32-bit timer                                                                                                                                                 |
|                            | Input capture function                                                                                                                                                                  |
|                            | 6 types of counter input clocks can be selected                                                                                                                                         |
|                            | Maximum resolution: 2 MHz                                                                                                                                                               |
| Realtime clock             | Built-in clock, calendar functions, and alarm functions                                                                                                                                 |
| (RTC)                      | <ul> <li>On-chip 32-kHz crystal oscillator circuit with a maximum resolut<br/>cycle) of 1/256 second</li> </ul>                                                                         |

Renesas

Rev. 5.00, 09/03, p

| cation interface 2 (SCI2/SCIF)               | • DN                            | /A can be tra                     | nsferred                                                            |                                            |                                                                                                |                                                                        |  |
|----------------------------------------------|---------------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| (SCI2/SCIF)                                  | • Ha                            | ardware flow o                    | control                                                             |                                            |                                                                                                |                                                                        |  |
| Direct memory<br>access controller<br>(DMAC) | • 4 0                           | channels                          |                                                                     |                                            |                                                                                                |                                                                        |  |
|                                              | Burst mode and cycle-steal mode |                                   |                                                                     |                                            |                                                                                                |                                                                        |  |
|                                              | • Da                            | ata transfer siz                  | ze: 8-/16-/32                                                       | 2-bit and 16-                              | -byte                                                                                          |                                                                        |  |
| I/O port                                     | • Tw                            | Twelve 8-bit ports                |                                                                     |                                            |                                                                                                |                                                                        |  |
| A/D converter                                | • 10                            | bits ± 4 LSB,                     | , 8 channels                                                        |                                            |                                                                                                |                                                                        |  |
| (ADC)                                        | • Cc                            | onversion time                    | e: 16 µs                                                            |                                            |                                                                                                |                                                                        |  |
|                                              | • Inp                           | out range: 0-/                    | AVcc (max. 3                                                        | 3.6 V)                                     |                                                                                                |                                                                        |  |
| D/A converter                                | • 8 k                           | oits ± 4 LSB, 2                   | 2 channels                                                          |                                            |                                                                                                |                                                                        |  |
| (DAC)                                        | • Co                            | onversion time                    | ə: 10 µs                                                            |                                            |                                                                                                |                                                                        |  |
|                                              | • Ou                            | utput range: 0                    | ⊢AVcc (max                                                          | . 3.6 V)                                   |                                                                                                |                                                                        |  |
| Product lineup                               |                                 | Power Supply Voltage<br>Operating |                                                                     |                                            |                                                                                                |                                                                        |  |
|                                              |                                 |                                   |                                                                     |                                            |                                                                                                |                                                                        |  |
|                                              | Abbr.                           | I/O                               | Internal                                                            |                                            | Model Name                                                                                     | Pac                                                                    |  |
|                                              |                                 | <b>I/O</b><br>9S 3.3±0.3 V        |                                                                     |                                            | Model Name<br>HD6417709SHF200B                                                                 | <b>Pac</b><br>208<br>HQ                                                |  |
|                                              |                                 |                                   |                                                                     | Frequency                                  |                                                                                                | 208                                                                    |  |
|                                              |                                 |                                   | 2.0±0.15 V*                                                         | Frequency<br>200 MHz                       | HD6417709SHF200B                                                                               | 208<br>HQ<br>208                                                       |  |
|                                              |                                 |                                   | 2.0±0.15 V*                                                         | Frequency<br>200 MHz                       | HD6417709SHF200B<br>HD6417709SF167B                                                            | 208<br>HQ<br>208<br>LQ<br>240                                          |  |
|                                              |                                 |                                   | 2.0±0.15 V*<br>1.9±0.15 V<br>1.8+0.25 V                             | Frequency<br>200 MHz<br>167 MHz            | HD6417709SHF200B<br>HD6417709SF167B<br>HD6417709SBP167B                                        | 208<br>HQ<br>208<br>LQ<br>240<br>(BF<br>208                            |  |
|                                              |                                 |                                   | 2.0±0.15 V*<br>1.9±0.15 V<br>1.8+0.25 V                             | Frequency<br>200 MHz<br>167 MHz            | HD6417709SHF200B<br>HD6417709SF167B<br>HD6417709SBP167B<br>HD6417709SF133B                     | 208<br>HQ<br>208<br>LQ<br>240<br>(BF<br>208<br>LQ<br>240               |  |
|                                              |                                 |                                   | 2.0±0.15 V*<br>1.9±0.15 V<br>1.8+0.25 V<br>1.8-0.15 V<br>1.7+0.25 V | Frequency<br>200 MHz<br>167 MHz<br>133 MHz | HD6417709SHF200B<br>HD6417709SF167B<br>HD6417709SBP167B<br>HD6417709SF133B<br>HD6417709SBP133B | 208<br>HQ<br>208<br>LQ<br>240<br>(BF<br>208<br>LQ<br>240<br>(BF<br>208 |  |

Rev. 5.00, 09/03, page 4 of 760

model); external frequency: maximum 66.67 MHz

Process • 0.25-µm CMOS/5-layer metal

Note: \* 2.0 (+0.15, -0.1) V when an IRL or IRLS interrupt is used.

RENESAS

Rev. 5.00, 09/03, p

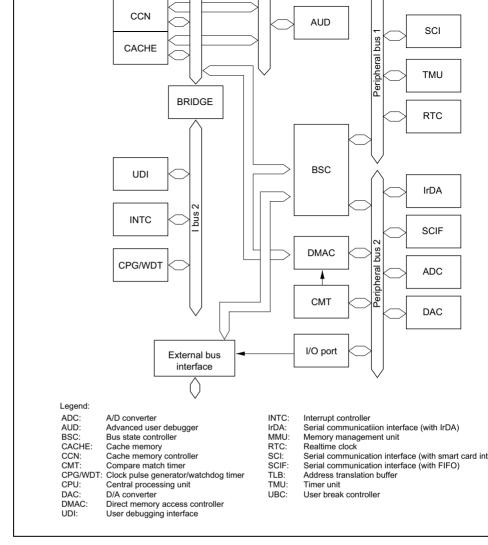



Figure 1.1 Block Diagram

Rev. 5.00, 09/03, page 6 of 760

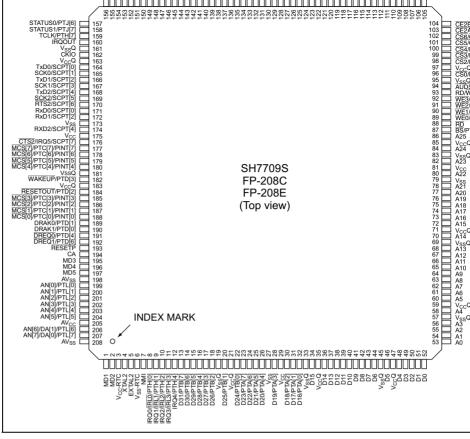



Figure 1.2 Pin Assignment (FP-208C, FP-208E)

Rev. 5.00, 09/03, p

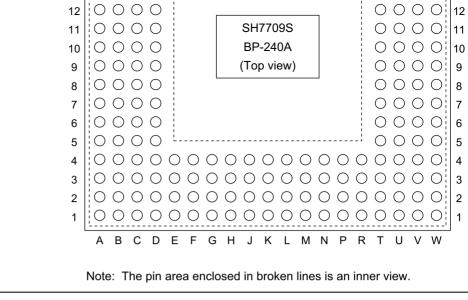



Figure 1.3 Pin Assignment (BP-240A)

Rev. 5.00, 09/03, page 8 of 760

| 3  | E2 | Vcc-RTC <sup>*1</sup> | _   | RTC power supply (**                       |
|----|----|-----------------------|-----|--------------------------------------------|
| 4  | D1 | XTAL2                 | 0   | On-chip RTC crystal of                     |
| 5  | D3 | EXTAL2                | I   | On-chip RTC crystal o<br>pin <sup>*6</sup> |
| 6  | E1 | Vss-RTC <sup>*1</sup> | _   | RTC power supply (0                        |
| 7  | C3 | NMI                   | I   | Nonmaskable interrup                       |
| 8  | E3 | IRQ0/IRL0/PTH[0]      | I   | External interrupt request port H          |
| 9  | E4 | IRQ1/IRL1/PTH[1]      | I   | External interrupt required port H         |
| 10 | F1 | IRQ2/IRL2/PTH[2]      | I   | External interrupt required port H         |
| 11 | F2 | IRQ3/IRL3/PTH[3]      | I   | External interrupt required port H         |
| 12 | F3 | IRQ4/PTH[4]           | I   | External interrupt required port H         |
| 13 | F4 | D31/PTB[7]            | I/O | Data bus / input/outpu                     |
| 14 | G1 | D30/PTB[6]            | I/O | Data bus / input/outpu                     |
| 15 | G2 | D29/PTB[5]            | I/O | Data bus / input/outpu                     |
| 16 | G3 | D28/PTB[4]            | I/O | Data bus / input/outpu                     |
| 17 | G4 | D27/PTB[3]            | I/O | Data bus / input/outpu                     |
| 18 | H1 | D26/PTB[2]            | I/O | Data bus / input/outpu                     |
| 19 | H2 | VssQ                  | —   | Input/output power su                      |
| 20 | H3 | D25/PTB[1]            | I/O | Data bus / input/outpu                     |
| 21 | H4 | VccQ                  | —   | Input/output power su                      |
| 22 | J1 | D24/PTB[0]            | I/O | Data bus / input/outpu                     |
| 23 | J2 | D23/PTA[7]            | I/O | Data bus / input/outpu                     |
| 24 | J4 | D22/PTA[6]            | I/O | Data bus / input/outpu                     |
| 25 | J3 | D21/PTA[5]            | I/O | Data bus / input/outpu                     |
| 26 | K2 | D20/PTA[4]            | I/O | Data bus / input/outpu                     |

Rev. 5.00, 09/03, p

| —  | L4 | Vcc        | —   | Power supply ( <sup>*3</sup> ) |
|----|----|------------|-----|--------------------------------|
| 30 | L2 | D18/PTA[2] | I/O | Data bus / input/output        |
| 31 | L1 | D17/PTA[1] | I/O | Data bus / input/output        |
| 32 | M4 | D16/PTA[0] | I/O | Data bus / input/output        |
| 33 | M3 | VssQ       | _   | Input/output power sup         |
| 34 | M2 | D15        | I/O | Data bus                       |
| 35 | M1 | VccQ       | —   | Input/output power sup         |
| 36 | N4 | D14        | I/O | Data bus                       |
| 37 | N3 | D13        | I/O | Data bus                       |
| 38 | N2 | D12        | I/O | Data bus                       |
| 39 | N1 | D11        | I/O | Data bus                       |
| 40 | P4 | D10        | I/O | Data bus                       |
| 41 | P3 | D9         | I/O | Data bus                       |
| 42 | P2 | D8         | I/O | Data bus                       |
| 43 | P1 | D7         | I/O | Data bus                       |
| 44 | R4 | D6         | I/O | Data bus                       |
| 45 | R3 | VssQ       | —   | Input/output power sup         |
| 46 | T4 | D5         | I/O | Data bus                       |
| 47 | R1 | VccQ       | _   | Input/output power sup         |
| 48 | Т3 | D4         | I/O | Data bus                       |
| 49 | T1 | D3         | I/O | Data bus                       |
| 50 | R2 | D2         | I/O | Data bus                       |
| 51 | U2 | D1         | I/O | Data bus                       |
| 52 | T2 | D0         | I/O | Data bus                       |
| 53 | V4 | A0         | 0   | Address bus                    |
| 54 | V3 | A1         | 0   | Address bus                    |
| 55 | V5 | A2         | 0   | Address bus                    |
| 56 | W4 | A3         | 0   | Address bus                    |
|    |    |            |     |                                |

Rev. 5.00, 09/03, page 10 of 760

| 62 | W6  | A7   | 0 | Address bus           |
|----|-----|------|---|-----------------------|
| 63 | V6  | A8   | 0 | Address bus           |
| 64 | U6  | A9   | 0 | Address bus           |
| 65 | T6  | A10  | 0 | Address bus           |
| 66 | W7  | A11  | 0 | Address bus           |
| 67 | V7  | A12  | 0 | Address bus           |
| 68 | U7  | A13  | 0 | Address bus           |
| 69 | T7  | VssQ | _ | Input/output power su |
| 70 | W8  | A14  | 0 | Address bus           |
| 71 | V8  | VccQ | _ | Input/output power su |
| 72 | U8  | A15  | 0 | Address bus           |
| 73 | Т8  | A16  | 0 | Address bus           |
| 74 | W9  | A17  | 0 | Address bus           |
| 75 | V9  | A18  | 0 | Address bus           |
| 76 | Т9  | A19  | 0 | Address bus           |
| 77 | U9  | A20  | 0 | Address bus           |
| 78 | V10 | A21  | 0 | Address bus           |
| 79 | U10 | Vss  | _ | Power supply (0 V)    |
| _  | T10 | Vss  | 0 | Power supply (0 V)    |
| 80 | W10 | A22  | 0 | Address bus           |
| 81 | U11 | Vcc  | _ | Power supply (*3)     |
| _  | T11 | Vcc  | _ | Power supply (*3)     |
| 82 | V11 | A23  | 0 | Address bus           |
| 83 | W11 | VssQ |   | Input/output power su |
| 84 | T12 | A24  | 0 | Address bus           |
| 85 | U12 | VccQ |   | Input/output power su |
| 86 | V12 | A25  | 0 | Address bus           |
| -  |     | -    |   |                       |

Rev. 5.00, 09/03, pa

| W13 | WE2/DQMUL/ICIORD/<br>PTK[6]                                                      | 0 / I/O                                                                                                                                                                                                                                                                                     | D23–D16 select signal                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                  |                                                                                                                                                                                                                                                                                             | (SDRAM) / PCMCIA I/<br>input/output port K                                                                                                                                                                                                                                                                                                                                                                             |
| T14 | WE3/DQMUU/ICIOWR/<br>PTK[7]                                                      | 0 / 1/0                                                                                                                                                                                                                                                                                     | D31–D24 select signal<br>(SDRAM) / PCMCIA I/<br>input/output port K                                                                                                                                                                                                                                                                                                                                                    |
| U14 | RD/WR                                                                            | 0                                                                                                                                                                                                                                                                                           | Read/write                                                                                                                                                                                                                                                                                                                                                                                                             |
| V14 | AUDSYNC/PTE[7]                                                                   | 0 / I/O                                                                                                                                                                                                                                                                                     | AUD synchronous / inp<br>port E                                                                                                                                                                                                                                                                                                                                                                                        |
| W14 | VssQ                                                                             | _                                                                                                                                                                                                                                                                                           | Input/output power sup                                                                                                                                                                                                                                                                                                                                                                                                 |
| T15 | CS0/MCS[0]                                                                       | 0                                                                                                                                                                                                                                                                                           | Chip select 0/mask RC select 0                                                                                                                                                                                                                                                                                                                                                                                         |
| U15 | VccQ                                                                             | _                                                                                                                                                                                                                                                                                           | Input/output power sup                                                                                                                                                                                                                                                                                                                                                                                                 |
| T16 | CS2/PTK[0]                                                                       | 0 / I/O                                                                                                                                                                                                                                                                                     | Chip select 2 / input/ou                                                                                                                                                                                                                                                                                                                                                                                               |
| W15 | CS3/PTK[1]                                                                       | 0 / I/O                                                                                                                                                                                                                                                                                     | Chip select 3 / input/ou                                                                                                                                                                                                                                                                                                                                                                                               |
| U16 | CS4/PTK[2]                                                                       | 0 / I/O                                                                                                                                                                                                                                                                                     | Chip select 4 / input/ou                                                                                                                                                                                                                                                                                                                                                                                               |
| W16 | CS5/CE1A/PTK[3]                                                                  | 0 / I/O                                                                                                                                                                                                                                                                                     | Chip select 5/CE1 (are PCMCIA) / input/outpu                                                                                                                                                                                                                                                                                                                                                                           |
| V15 | CS6/CE1B                                                                         | 0                                                                                                                                                                                                                                                                                           | Chip select 6/CE1 (are PCMCIA)                                                                                                                                                                                                                                                                                                                                                                                         |
| V17 | CE2A/PTE[4]                                                                      | 0 / I/O                                                                                                                                                                                                                                                                                     | CE2 (area 5 PCMCIA)<br>input/output port E                                                                                                                                                                                                                                                                                                                                                                             |
| V16 | CE2B/PTE[5]                                                                      | 0 / I/O                                                                                                                                                                                                                                                                                     | CE2 (area 6 PCMCIA)<br>input/output port E                                                                                                                                                                                                                                                                                                                                                                             |
| T18 | CKE/PTK[5]                                                                       | 0 / I/O                                                                                                                                                                                                                                                                                     | CK enable (SDRAM) / port K                                                                                                                                                                                                                                                                                                                                                                                             |
|     | V14<br>W14<br>T15<br>U15<br>T16<br>W15<br>U16<br>W16<br>V15<br>V17<br>V17<br>V16 | PTK[7]         U14       RD/WR         V14       AUDSYNC/PTE[7]         W14       VssQ         T15       CS0/MCS[0]         U15       VccQ         T16       CS2/PTK[0]         W16       CS4/PTK[2]         W16       CS6/CE1B         V17       CE2A/PTE[4]         V16       CE2B/PTE[5] | PTK[7]         U14       RD/WR       O         V14       AUDSYNC/PTE[7]       O / I/O         W14       VssQ       —         T15       CS0/MCS[0]       O         U15       VccQ       —         T16       CS2/PTK[0]       O / I/O         W16       CS3/PTK[1]       O / I/O         W16       CS5/CE1A/PTK[3]       O / I/O         V17       CE2A/PTE[4]       O / I/O         V16       CE2B/PTE[5]       O / I/O |

Rev. 5.00, 09/03, page 12 of 760

| 100 | 110 | 1000            |         |                                                 |
|-----|-----|-----------------|---------|-------------------------------------------------|
| 110 | T17 | CASU/PTJ[3]     | 0 / I/O | Lower 32 Mbytes add<br>(SDRAM) CAS / inpu       |
| 111 | R19 | VccQ            | _       | Input/output power su                           |
| 112 | U17 | PTJ[4]          | I/O     | Input/output port J                             |
| 113 | R17 | PTJ[5]          | I/O     | Input/output port J                             |
| 114 | R16 | DACK0/PTD[5]    | 0 / I/O | DMA acknowledge 0                               |
| 115 | P19 | DACK1/PTD[7]    | 0 / I/O | DMA acknowledge 1<br>port D                     |
| 116 | P18 | PTE[6]          | I/O     | Input/output port E                             |
| 117 | P17 | PTE[3]          | I/O     | Input/output port E                             |
| 118 | P16 | RAS3U/PTE[2]    | 0 / I/O | Upper 32 Mbytes add<br>(SDRAM) RAS / input<br>E |
| 119 | N19 | PTE[1]          | I/O     | Input/output port E                             |
| 120 | N18 | TDO/PTE[0]      | 0 / I/O | Test data output / inp<br>port E                |
| 121 | N17 | BACK            | 0       | Bus acknowledge                                 |
| 122 | N16 | BREQ            | I       | Bus request                                     |
| 123 | M19 | WAIT            | Ι       | Hardware wait reques                            |
| 124 | M18 | RESETM          | I       | Manual reset request                            |
| 125 | M17 | ADTRG/PTH[5]    | I       | Analog trigger / input                          |
| 126 | M16 | IOIS16/PTG[7]   | I       | IOIS16 (PCMCIA) / in                            |
| 127 | L19 | ASEMD0/PTG[6]   | I       | ASE mode <sup>*4</sup> / input p                |
| 128 | L18 | ASEBRKAK/PTG[5] | O/I     | ASE break acknowled port G                      |
| 129 | L16 | PTG[4]/CK102    | Ι       | Input port G / clock or                         |
|     |     |                 |         |                                                 |

Renesas

Rev. 5.00, 09/03, pa

| interrupt137H16TMS/PTF[6]/PINT[14]ITest mode switch / input<br>port interrupt138H17TDI/PTF[5]/PINT[13]ITest data input / input<br>interrupt139H18TCK/PTF[4]/PNT[12]ITest clock / input port F<br>interrupt140H19IRLS3/PTF[3]/<br>PINT[11]IExternal interrupt reque<br>port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt reque<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2-PLL1 power supply (*3)146F17CAP1-PLL1 power supply (0)148F19Vss-PLL2*2-PLL2 power supply (0)149E16CAP2-PLL2 external capacital                                 | 134 | J17 | Vcc                    | _       | Power supply ( <sup>*3</sup> ) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------------------|---------|--------------------------------|
| 136J19TRST/PTF[7]/PINT[15]ITest reset / input port F<br>interrupt137H16TMS/PTF[6]/PINT[14]ITest mode switch / input<br>port interrupt138H17TDI/PTF[5]/PINT[13]ITest data input / input port f<br>interrupt139H18TCK/PTF[4]/PNT[12]ITest clock / input port f<br>interrupt140H19IRLS3/PTF[3]/<br>PINT[11]IExternal interrupt reque<br>port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt reque<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (************************************                                         | _   | J16 | Vcc                    | _       | Power supply (*3)              |
| interrupt137H16TMS/PTF[6]/PINT[14]ITest mode switch / inp<br>port interrupt138H17TDI/PTF[5]/PINT[13]ITest data input / input /<br>interrupt139H18TCK/PTF[4]/PNT[12]ITest clock / input port f<br>interrupt140H19IRLS3/PTF[3]/<br>PINT[11]IExternal interrupt requ<br>port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt requ<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt requ<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt requ<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3146F17CAP1—PLL1 power supply (0148F19Vss-PLL2*2—PLL2 power supply (0149E16CAP2—PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port | 135 | J18 | AUDATA[0]/PTG[0]       | I/O / I | AUD data / input port G        |
| port interrupt138H17TDI/PTF[5]/PINT[13]ITest data input / input interrupt139H18TCK/PTF[4]/PNT[12]ITest clock / input port f140H19IRLS3/PTF[3]/IExternal interrupt reque<br>port F / port interrupt141G16IRLS2/PTF[2]/IExternal interrupt reque<br>port F / port interrupt142G17IRLS3/PTF[0]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3146F17CAP1—PLL1 power supply (0148F19Vss-PLL2*2—PLL2 power supply (0149E16CAP2—PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port                                                                                                    | 136 | J19 | TRST/PTF[7]/PINT[15]   | I       |                                |
| interrupt139H18TCK/PTF[4]/PNT[12]ITest clock / input port f<br>interrupt140H19IRLS3/PTF[3]/<br>PINT[11]IExternal interrupt reque<br>port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt reque<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3)146F17CAP1—PLL1 power supply (0)148F19Vss-PLL2*2—PLL2 power supply (0)149E16CAP2—PLL2 power supply (*3)150E17Vcc-PLL2*2—PLL2 power supply (*3)151D16AUDCK/PTH[6]IAUD clock / input port                                                                                    | 137 | H16 | TMS/PTF[6]/PINT[14]    | I       |                                |
| interrupt140H19IRLS3/PTF[3]/<br>PINT[11]IExternal interrupt reque<br>port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt reque<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3)146F17CAP1—PLL1 power supply (0)148F19Vss-PLL2*2—PLL2 power supply (0)149E16CAP2—PLL2 power supply (*3)150E17Vcc-PLL2*2—PLL2 power supply (*3)151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                       | 138 | H17 | TDI/PTF[5]/PINT[13]    | I       |                                |
| PINT[11]port F / port interrupt141G16IRLS2/PTF[2]/<br>PINT[10]IExternal interrupt reque<br>port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]IExternal interrupt reque<br>port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]IExternal interrupt reque<br>port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3146F17CAP1—PLL1 external capacita147F18Vss-PLL1*2—PLL2 power supply (0148F19Vss-PLL2*2—PLL2 power supply (0149E16CAP2—PLL2 power supply (*3150E17Vcc-PLL2*2—PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                  | 139 | H18 | TCK/PTF[4]/PNT[12]     | I       |                                |
| PINT[10]port F / port interrupt142G17IRLS1/PTF[1]/PINT[9]I143G18IRLS0/PTF[0]/PINT[8]I143G18IRLS0/PTF[0]/PINT[8]I144G19MD0I145F16Vcc-PLL1*2—146F17CAP1—147F18Vss-PLL1*2—148F19Vss-PLL2*2—149E16CAP2—149E16CAP2—150E17Vcc-PLL2*2—151D16AUDCK/PTH[6]IAUD clock / input portIAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                             | 140 | H19 |                        | I       |                                |
| port F / port interrupt143G18IRLS0/PTF[0]/PINT[8]I144G19MD0I145F16Vcc-PLL1*2—146F17CAP1—147F18Vss-PLL1*2—148F19Vss-PLL2*2—149E16CAP2—150E17Vcc-PLL2*2—151D16AUDCK/PTH[6]IAUD clock / input portI152E19VssVssPPower supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141 | G16 |                        | I       |                                |
| port F / port interrupt144G19MD0IClock mode setting145F16Vcc-PLL1*2—PLL1 power supply (*3)146F17CAP1—PLL1 external capacita147F18Vss-PLL1*2—PLL1 power supply (0)148F19Vss-PLL2*2—PLL2 power supply (0)149E16CAP2—PLL2 external capacita150E17Vcc-PLL2*2—PLL2 power supply (*3)151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                    | 142 | G17 | IRLS1/PTF[1]/PINT[9]   | I       |                                |
| 145F16Vcc-PLL1*2—PLL1 power supply (*3)146F17CAP1—PLL1 external capacita147F18Vss-PLL1*2—PLL1 power supply (0)148F19Vss-PLL2*2—PLL2 power supply (0)149E16CAP2—PLL2 external capacita150E17Vcc-PLL2*2—PLL2 power supply (*3)151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 143 | G18 | IRLS0/PTF[0]/PINT[8]   | I       |                                |
| 146F17CAP1PLL1 external capacita147F18Vss-PLL1*2PLL1 power supply (0148F19Vss-PLL2*2PLL2 power supply (0149E16CAP2PLL2 external capacita150E17Vcc-PLL2*2PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port152E19VssPower supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144 | G19 | MD0                    | I       | Clock mode setting             |
| 147F18Vss-PLL1*2—PLL1 power supply (0148F19Vss-PLL2*2—PLL2 power supply (0149E16CAP2—PLL2 external capacita150E17Vcc-PLL2*2—PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 145 | F16 | Vcc-PLL1*2             | _       | PLL1 power supply (*3          |
| 148F19Vss-PLL2*2—PLL2 power supply (0149E16CAP2—PLL2 external capacita150E17Vcc-PLL2*2—PLL2 power supply (*3151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 146 | F17 |                        | _       | PLL1 external capacita         |
| 149E16CAP2—PLL2 external capacita150E17Vcc-PLL2*2—PLL2 power supply (*3)151D16AUDCK/PTH[6]IAUD clock / input port152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 147 | F18 | Vss-PLL1*2             | _       | PLL1 power supply (0           |
| 150         E17         Vcc-PLL2*2         —         PLL2 power supply (*3           151         D16         AUDCK/PTH[6]         I         AUD clock / input port           152         E19         Vss         —         Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148 | F19 | Vss-PLL2 <sup>*2</sup> | _       | PLL2 power supply (0           |
| 151D16AUDCK/PTH[6]IAUD clock / input port152E19VssPower supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 149 | E16 | CAP2                   | _       | PLL2 external capacita         |
| 152E19Vss—Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 | E17 | Vcc-PLL2 <sup>*2</sup> | _       | PLL2 power supply (*3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151 | D16 | AUDCK/PTH[6]           | Ι       | AUD clock / input port         |
| 153         D17         Vss         —         Power supply (0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 152 | E19 | Vss                    | —       | Power supply (0 V)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 153 | D17 | Vss                    |         | Power supply (0 V)             |

Rev. 5.00, 09/03, page 14 of 760

|     |     |                |         | pin                                         |
|-----|-----|----------------|---------|---------------------------------------------|
| 157 | B16 | STATUS0/PTJ[6] | 0 / I/O | Processor status / inp<br>port J            |
| 158 | B17 | STATUS1/PTJ[7] | 0 / I/O | Processor status / inp<br>port J            |
| 159 | B15 | TCLK/PTH[7]    | I/O     | TMU or RTC clock in<br>input/output port H  |
| 160 | A16 | IRQOUT         | 0       | Interrupt request notif                     |
| 161 | C16 | VssQ           | —       | Input/output power su                       |
| 162 | A15 | CKIO           | I/O     | System clock input/or                       |
| 163 | C17 | VccQ           | _       | Power supply (3.3 V)                        |
| 164 | C15 | TxD0/SCPT[0]   | 0       | Transmit data 0 / SCI                       |
| 165 | D15 | SCK0/SCPT[1]   | I/O     | Serial clock 0 / SCI in<br>port             |
| 166 | A14 | TxD1/SCPT[2]   | 0       | Transmit data 1 / SCI                       |
| 167 | B14 | SCK1/SCPT[3]   | I/O     | Serial clock 1 / SCI in<br>port             |
| 168 | C14 | TxD2/SCPT[4]   | 0       | Transmit data 2 / SCI                       |
| 169 | D14 | SCK2/SCPT[5]   | I/O     | Serial clock 2 / SCI in<br>port             |
| 170 | A13 | RTS2/SCPT[6]   | 0 / I/O | Transmit request 2 / S<br>input/output port |
| 171 | B13 | RxD0/SCPT[0]   | I       | Transmit data 0 / SCI                       |
| 172 | C13 | RxD1/SCPT[2]   | l       | Transmit data 1 / SCI                       |
| 173 | D13 | Vss            | _       | Power supply (0 V)                          |
| _   | A12 | Vss            | —       | Power supply (0 V)                          |
| 174 | B12 | RxD2/SCPT[4]   | l       | Transmit data 2 / SCI                       |
| 175 | C12 | Vcc            | _       | Power supply (*3)                           |
| _   | D12 | Vcc            | —       | Power supply (*3)                           |
| -   |     |                |         |                                             |

Rev. 5.00, 09/03, pa

| 179 | C11 | MCS[5]/PTC[5]/PINT[5] | 0/1/0/1     | Mask ROM chip select                            |
|-----|-----|-----------------------|-------------|-------------------------------------------------|
|     |     |                       |             | input/output port C / po                        |
| 180 | B10 | MCS[4]/PTC[4]/PINT[4] | 0 / 1/0 / 1 | Mask ROM chip select input/output port C / po   |
| 181 | C10 | VssQ                  | _           | Input/output power sup                          |
| 182 | D10 | WAKEUP/PTD[3]         | 0 / I/O     | Standby mode interrup notification / input/outp |
| 183 | A10 | VccQ                  | _           | Input/output power sup                          |
| 184 | C9  | RESETOUT/PTD[2]       | 0 / I/O     | Reset output / input/ou                         |
| 185 | D9  | MCS[3]/PTC[3]/PINT[3] | 0 / 1/0 / 1 | Mask ROM chip select input/output port C / po   |
| 186 | B9  | MCS[2]/PTC[2]/PINT[2] | 0 / 1/0 / 1 | Mask ROM chip select input/output port C / po   |
| 187 | A9  | MCS[1]/PTC[1]/PINT[1] | 0 / 1/0 / 1 | Mask ROM chip select input/output port C / po   |
| 188 | D8  | MCS[0]/PTC[0]/PINT[0] | 0 / 1/0 / 1 | Mask ROM chip select input/output port C / po   |
| 189 | C8  | DRAK0/PTD[1]          | 0 / I/O     | DMA request acknowle<br>input/output port D     |
| 190 | B8  | DRAK1/PTD[0]          | 0 / I/O     | DMA request acknowle<br>input/output port D     |
| 191 | A8  | DREQ0/PTD[4]          | I           | DMA request / input po                          |
| 192 | D7  | DREQ1/PTD[6]          | I           | DMA request / input po                          |
| 193 | C7  | RESETP                | I           | Power-on reset reques                           |
| 194 | B7  | CA                    | I           | Chip activate (hardwar request signal)          |
| 195 | A7  | MD3                   | I           | Area 0 bus width settin                         |
| 196 | D6  | MD4                   | I           | Area 0 bus width settin                         |
| 197 | C6  | MD5                   | I           | Endian setting                                  |
|     |     |                       |             |                                                 |

Rev. 5.00, 09/03, page 16 of 760

| 203 | A5 | AN[4]/PTL[4]       | I | A/D converter input /                         |
|-----|----|--------------------|---|-----------------------------------------------|
| 204 | C4 | AN[5]/PTL[5]       | I | A/D converter input /                         |
| 205 | A4 | AVcc               | _ | Analog power supply                           |
| 206 | B5 | AN[6]/DA[1]/PTL[6] | I | A/D converter input /<br>D/A converter output |
| 207 | B3 | AN[7]/DA[0]/PTL[7] | I | A/D converter input /<br>D/A converter output |
| 208 | B4 | AVss               |   | Analog power supply                           |

Notes: 1. Must be connected to the power supply even when the RTC is not used.

- 2. Except in hardware standby mode, all of the power supply pins must be control the system power supply. (Supply power constantly.) In hardware standby must be supplied at least to  $V_{CC}$  –RTC and  $V_{SS}$  –RTC. If power is not being any of the power supply pins other than  $V_{CC}$  –RTC and  $V_{SS}$  –RTC, hold the
  - 2.0 V for the 200 MHz model, 1.9 V for the 167 MHz model, 1.8 V for the 13 model, 1.7 V for the 100 MHz model.
  - When this LSI is used on the user system alone, without an emulator and the this pin at high level. When this pin is low or open, <u>RESETP</u> may be masked section 22, User Debugging Interface (UDI)).
  - B2, B1, C1, U1, V1, W1, V2, W2, W3, W17, W18, W19, V18, V19, B19, A1 A17, A3, A2, and A1 are NC pins. Do not connect anything to these pins.
  - 6. If EXTAL2 is not used, pull this pin up to the Vcc-RTC level.

Renesas

Rev. 5.00, 09/03, pa

Rev. 5.00, 09/03, page 18 of 760

or an interrupt is accepted. There are three kinds of registers—general registers, system and control registers—and the registers that can be accessed differ in the two processo

**General Registers:** There are 16 general registers, designated R0 to R15. General reg R7 are banked registers which are switched by a processor mode change. In privileged register bank bit (RB) in the status register (SR) defines which banked register set is a general registers, and which set is accessed only through the load control register (LDC control register (STC) instructions.

When the RB bit is 1, the 16 registers comprising BANK1 general registers R0\_BAN R7\_BANK1 and non-banked general registers R8–R15 function as the general register the 8 registers comprising BANK0 general registers R0\_BANK0–R7\_BANK0 access the LDC/STC instructions.

When the RB bit is 0, BANK0 general registers R0\_BANK0–R7\_BANK0 and nonbar registers R8–R15 function as the general register set, with BANK1 general registers R R7\_BANK1 accessed only by the LDC/STC instructions. In user mode, the 16 registe comprising bank 0 general registers R0\_BANK0–R7\_BANK0 and non-banked register can be accessed as general registers R0–R15, and bank 1 general registers R0\_BANK R7\_BANK1 cannot be accessed.

**Control Registers:** Control registers comprise the global base register (GBR) and stat (SR) which can be accessed in both processor modes, and the saved status register (SS program counter (SPC), and vector base register (VBR) which can only be accessed in mode. Some bits of the status register (such as the RB bit) can only be accessed in privile.

**System Registers:** System registers comprise the multiply and accumulate registers (MACL/MACH), the procedure register (PR), and the program counter (PC). Access the registers does not depend on the processor mode.

The register configuration in each mode is shown in figures 2.1 and 2.2.

Switching between user mode and privileged mode is controlled by the processor mode in the status register.

Rev. 5.00, 09/03, pa

| R10                                                                  |         |
|----------------------------------------------------------------------|---------|
| R11                                                                  |         |
| R12                                                                  |         |
| R13                                                                  |         |
| R14                                                                  |         |
| R15                                                                  |         |
|                                                                      |         |
| SR                                                                   |         |
| GBR                                                                  |         |
| MACH                                                                 |         |
| MACL                                                                 |         |
| PR                                                                   |         |
| PC                                                                   |         |
|                                                                      |         |
| User mode register configuration                                     |         |
|                                                                      |         |
|                                                                      |         |
|                                                                      |         |
| 1. R0 functions as an index register in the indexed register-indirec | t addre |

- mode and indexed GBR-indirect addressing mode.
  - 2. Banked register.

Notes:



Rev. 5.00, 09/03, page 20 of 760

| R8                                                  | R8                                                               |           |                                               |
|-----------------------------------------------------|------------------------------------------------------------------|-----------|-----------------------------------------------|
| R9                                                  | R9                                                               |           |                                               |
| R10                                                 | R10                                                              |           |                                               |
| R11                                                 | R11                                                              |           |                                               |
| R12                                                 | R12                                                              |           |                                               |
| R13                                                 | R13                                                              |           |                                               |
| R14                                                 | R14                                                              |           |                                               |
| R15                                                 | R15                                                              |           |                                               |
| 0.0                                                 |                                                                  | ]         |                                               |
| SR                                                  | SR                                                               |           |                                               |
| SSR                                                 | SSR                                                              | Notes: 1. | R0 functions as an i                          |
| GBR                                                 | GBR                                                              |           | register in the index                         |
| MACH                                                | MACH                                                             |           | register-indirect add                         |
| MACL                                                | MACL                                                             |           | mode and indexed (                            |
| PR                                                  | PR                                                               |           | indirect addressing                           |
| VBR                                                 | VBR                                                              | 2.        | Banked register                               |
|                                                     |                                                                  | 1         | When the RB bit of                            |
| PC                                                  | PC                                                               |           | register is 1, the reg                        |
| SPC                                                 | SPC                                                              |           | be accessed for ger<br>When the RB bit is 0   |
|                                                     |                                                                  | 1         | only be accessed w                            |
| R0_BANK0 <sup>*1 *3</sup><br>R1 BANK0 <sup>*3</sup> | R0_BANK1*1*2                                                     |           | LDC/STC instruction                           |
| R2 BANK0*3                                          | R1_BANK1*2                                                       |           |                                               |
|                                                     | R2_BANK1*2                                                       | 3.        | Banked register                               |
| R3_BANK0*3                                          | R3_BANK1*2                                                       |           | When the RB bit of                            |
| R4_BANK0*3                                          | R4_BANK1*2                                                       |           | register is 0, the reg<br>be accessed for ger |
| R5_BANK0*3                                          | R5_BANK1*2                                                       |           | When the RB bit is                            |
| R6_BANK0*3                                          | R6_BANK1*2                                                       |           | only be accessed w                            |
| R7_BANK0 <sup>*3</sup>                              | R7_BANK1 <sup>*2</sup>                                           |           | LDC/STC instruction                           |
| a. Privileged mode<br>register configuration        | <ul> <li>b. Privileged mode<br/>register configuratio</li> </ul> | n         |                                               |
| (RB = 1)                                            | (RB = 0)                                                         |           |                                               |
|                                                     |                                                                  |           |                                               |

Figure 2.2 Privileged Mode Register Configuration

Rev. 5.00, 09/03, pa

|                  | GBR, 33R, 3FC  | Undermed  |
|------------------|----------------|-----------|
|                  | VBR            | H'0000000 |
| System registers | MACH, MACL, PR | Undefined |
|                  | PC             | H'A000000 |
|                  |                |           |

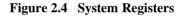
Note: \* Register values are initialized at power-on reset or manual reset.

### 2.1.2 General Registers

There are 16 general registers, designated R0 to R15 (figure 2.3). General registers R0 banked registers, with a different R0–R7 register bank (R0\_BANK0–R7\_BANK0 or R0\_BANK1–R7\_BANK1) being accessed according to the processor mode. For details figures 2.1 and 2.2.

The general register configuration is shown in figure 2.3.

| 31 0                                                                                                                                                                                  | General Registers                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R0*1 *2         R1*2         R2*2         R3*2         R4*2         R5*2         R6*2         R7*2         R8         R10         R11         R12         R13         R14         R15 | <ol> <li>Notes:</li> <li>R0 functions as an index register in the indexed register-indirect addressing mode and indexed GBR-indirect addressing mode. In some instruct only R0 can be used as the source register or destination register.</li> <li>R0–R7 are banked registers.<br/>In privileged mode, SR.RB specifies which bank registers are accessed as general registers (R0_BANK0–R7_BANK0 or R0_BANK1–R7_BA</li> </ol> |


Figure 2.3 General Registers

Rev. 5.00, 09/03, page 22 of 760

- Procedure register (PR)
- Program counter (PC)

The system register configuration is shown in figure 2.4.

| 31 0<br>MACH<br>MACL | System Registers<br>Multiply and Accumulate High and Low Registe<br>(MACH/L)<br>Store the results of multiply-and-accumulate op                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 0<br>PR           | Procedure Register (PR)<br>Stores the return address for exiting a subroutir<br>procedure.                                                                 |
| 31 0<br>PC           | Program Counter (PC)<br>Indicates the address four addresses (two instr<br>ahead of the currently executing instruction. Init<br>to H'A0000000 by a reset. |



### 2.1.4 Control Registers

Control registers can be accessed in privileged mode using the LDC and STC instructi GBR register can also be accessed in user mode. There are five control registers, as fo

- Status register (SR)
- Saved status register (SSR)
- Saved program counter (SPC)
- Global base register (GBR)
- Vector base register (VBR)

Rev. 5.00, 09/03, pa

| GBR                                                                                                                                            | addressing mode. The GBR-indirect addressing<br>is used for on-chip supporting module register a<br>data transfers and logic operations.<br>The GBR register can also be accessed in user<br>Its contents are undefined after a reset. |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 0<br>VBR                                                                                                                                    | Vector Base Register (VBR)<br>Stores base address of exception handling vec<br>Initialized to H'0000000 by a reset.                                                                                                                    |
| 31 30 29 28 27                                                                                                                                 | 13 12 11 10 9 8 7 3 1 0 S                                                                                                                                                                                                              |
| 0 MD RB BL 0                                                                                                                                   | 0 CL 0 0 M Q I3 I2 I1 I0 0 0 S T (S                                                                                                                                                                                                    |
| MD =1: Privileged mode; MD                                                                                                                     | t: Indicates the processor operation mode as follows:<br>= 0: User mode                                                                                                                                                                |
| RB: Register bank bit: Determine<br>RB = 1: R0_BANK1-R7_BAI<br>R7_BANK0 can be accessed<br>RB = 0: R0_BANK0-R7_BAI<br>R7_BANK1 can be accessed | NK0 and R8–R15 are general registers, and R0_BANK<br>I by LDC/STC instructions.                                                                                                                                                        |
| BL: Block bit<br>BL = 1: Exceptions and intern<br>Handling, for details.<br>BL = 0: Exceptions and intern                                      | of an exception or interrupt , and is initialized to 1 by a<br>rupts are suppressed. See section 4, Exception<br>rupts are accepted.<br>of an exception or interrupt , and is initialized to 1 by a                                    |
| CL: Cache lock bit                                                                                                                             |                                                                                                                                                                                                                                        |
|                                                                                                                                                | V1 instructions.<br>I indicating the interrupt request mask level.<br>terrupt acceptance level when an interrupt is generated<br>et.                                                                                                   |
| T bit: Used by the MOVT, CMP/co<br>indicate true (1) or false (0).<br>Used by the ADDV/C, SUBV<br>ROTCR/L instructions to indi                 | nd, TAS, TST, BT, BF, SETT, CLRT, and DT instructio<br>/C, DIV0U/S, DIV1, NEGC, SHAR/L, SHLR/L, ROTR/L<br>cate a carry, borrow, overflow, or underflow.<br>d the write value should always be 0.                                       |
|                                                                                                                                                | r cleared by special instructions in user mode.<br>set. All other bits can be read or written in privileged m                                                                                                                          |

# Figure 2.5 Register Set Overview, Control Registers

Rev. 5.00, 09/03, page 24 of 760

| Lor | ngword |   |
|-----|--------|---|
|     | ngwora | 1 |

#### Figure 2.6 Longword

### 2.2.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be 8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits sign-extended before being stored in a register.

A word operand must be accessed starting from a word boundary (even address of a 2 address 2n), and a longword operand starting from a longword boundary (even address unit: address 4n). An address error will result if this rule is not observed. A byte opera accessed from any address.

Big-endian or little-endian byte order can be selected for the data format. The endian n be set with the MD5 external pin in a power-on reset. Big-endian mode is selected wh pin is low, and little-endian when high. The endian mode cannot be changed dynamics positions are numbered left to right from most-significant to least-significant. Thus, in longword, the leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0 significant bit.

The data format in memory is shown in figure 2.7.

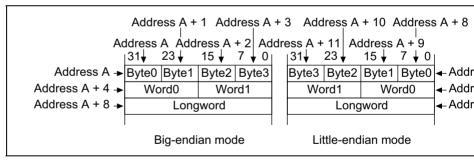



Figure 2.7 Data Format in Memory

Rev. 5.00, 09/03, pa

zero-extended in logical operations (TST, AND, OR, and XOR instructions).

**Load/Store Architecture:** The SH7709S features a load-store architecture in which bas operations are executed in registers. Operations requiring memory access are executed following register loading, except for bit-manipulation operations such as logical AND which are executed directly in memory.

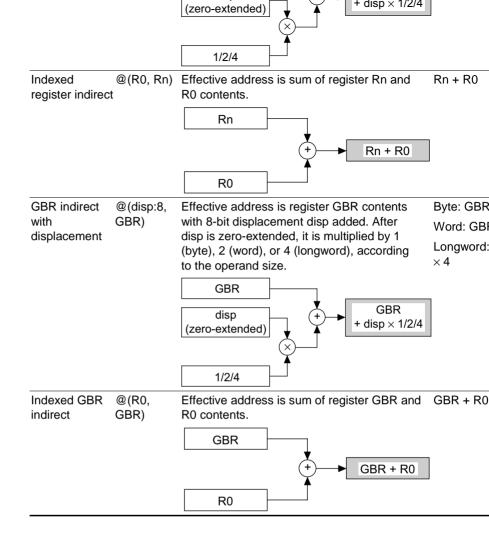
**Delayed Branching:** Unconditional branching is implemented as delayed branch opera Pipeline disruptions due to branching are minimized by the execution of the instruction the delayed branch instruction prior to branching. Conditional branch instructions are o kinds, delayed and normal.

| BRA | TRGET  |                                              |
|-----|--------|----------------------------------------------|
| ADD | R1, R0 | ;ADD is executed prior to branching to TRGET |

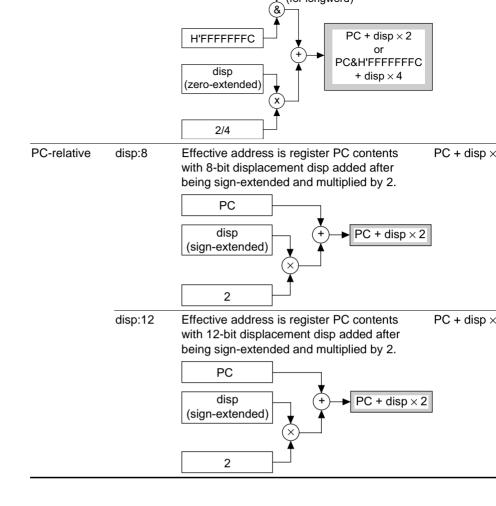
Rev. 5.00, 09/03, page 26 of 760

**Literals:** Byte-length literals are inserted directly into the instruction code as immedia maintain the 16-bit fixed-length instruction code, word or longword literals are stored main memory rather than inserted directly into the instruction code. The memory table by the MOV instruction using PC-relative addressing with displacement, as follows:

MOV.W @(disp, PC), R0


**Absolute Addresses:** As with word and longword literals, absolute addresses must als in a table in main memory. The value of the absolute address is transferred to a register operand access is specified by indexed register-indirect addressing, with the absolute a loaded (like word and longword immediate data) during instruction execution.

**16-Bit and 32-Bit Displacements:** In the same way, 16-bit and 32-bit displacements a stored in a table in main memory. Exactly like absolute addresses, the displacement vartansferred to a register and the operand access is specified by indexed register-indirect loading the displacement (like word and longword immediate data) during instruction


Renesas

| Register<br>indirect                        | @Rn  | Effective address is register Rn contents.                                                                                                                                                                           | Rn                                                                                        |
|---------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                             |      | Rn Rn                                                                                                                                                                                                                |                                                                                           |
| Register<br>indirect with<br>post-increment | @Rn+ | Effective address is register Rn contents. A constant is added to Rn after instruction execution: 1 for a byte operand, 2 for a word operand, 4 for a longword operand.<br>Rn $Rn$ $Rn$ $Rn$ $Rn$ $Rn$ $Rn$ $Rn$ $R$ | Rn<br>After instruct<br>execution<br>Byte: Rn +<br>Word: Rn +<br>Longword: I              |
| Register<br>indirect with<br>pre-decrement  | @-Rn | Effective address is register Rn contents,<br>decremented by a constant beforehand: 1 for<br>a byte operand, 2 for a word operand, 4 for a<br>longword operand.<br>Rn<br>Rn<br>Rn<br>1/2/4<br>1/2/4                  | Byte: Rn – 7<br>Word: Rn –<br>Longword: I<br>(Instruction<br>with Rn afte<br>calculation) |





Renesas





| Immediate | #imm:8 | 8-bit immediate data imm of TST, AND, OR, or XOR instruction is zero-extended.            | _ |
|-----------|--------|-------------------------------------------------------------------------------------------|---|
|           | #imm:8 | 8-bit immediate data imm of MOV, ADD, or CMP/EQ instruction is sign-extended.             | _ |
|           | #imm:8 | 8-bit immediate data imm of TRAPA<br>instruction is zero-extended and multiplied by<br>4. |   |

Note: For the addressing modes below that use a displacement (disp), the assembler in this manual show the value before scaling (×1, ×2, or ×4) is performed accord operand size. This is done to clarify the operation of the IC. Refer to the relevant notation rules for the actual assembler descriptions.

- @ (disp:4, Rn) ; Register indirect with displacement
- @ (disp:8, Rn) ; GBR indirect with displacement
- @ (disp:8, PC) ; PC-relative with displacement

disp:8, disp:12; PC-relative



dddd: Displacement

### Table 2.3Instruction Formats

| Instruction Format                   | Source<br>Operand                                  | Destination<br>Operand                           | In<br>Ex |
|--------------------------------------|----------------------------------------------------|--------------------------------------------------|----------|
| 0 format 15 0<br>xxxx xxxx xxxx xxxx | _                                                  |                                                  | N        |
| n format 15 0<br>xxxx nnnn xxxx xxxx | _                                                  | nnnn: register<br>direct                         | M        |
|                                      | Control register or system register                | nnnn: register<br>direct                         | S<br>M   |
|                                      | Control register or system register                | nnnn: register<br>indirect with<br>pre-decrement | S<br>SI  |
| m format 15 0<br>xxxx mmmm xxxx xxxx | mmmm: register<br>direct                           | Control register<br>or system<br>register        | L[<br>Ri |
|                                      | mmmm: register<br>indirect with post-<br>increment | Control register<br>or system<br>register        | LI<br>@  |
|                                      | mmmm: register<br>indirect                         | _                                                | JI       |
|                                      | mmmm: PC-<br>relative using Rm                     | _                                                | В        |

Rev. 5.00, 09/03, page 32 of 760

|                       | (multiply-and-<br>accumulate<br>operation)<br>nnnn: * register<br>indirect with post-<br>increment<br>(multiply-and-<br>accumulate<br>operation) |                                                  |        |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|
|                       | mmmm: register<br>indirect with post-<br>increment                                                                                               | nnnn: register<br>direct                         | N<br>@ |
|                       | mmmm: register<br>direct                                                                                                                         | nnnn: register<br>indirect with<br>pre-decrement | N<br>R |
|                       | mmmm: register<br>direct                                                                                                                         | nnnn: indexed<br>register indirect               | N<br>R |
| md format 15          | 0 mmmmdddd:                                                                                                                                      | R0 (register                                     | N      |
| xxxx xxxx mmmm ddd    | register indirect<br>with displacement                                                                                                           | direct)                                          | 0      |
| nd4 format 1 <u>5</u> | 0 R0 (register                                                                                                                                   | nnnndddd:                                        | N      |
| xxxx xxxx nnnn ddo    | direct)                                                                                                                                          | register indirect<br>with<br>displacement        | R      |

Renesas

| u ionnai   | 1 <u>5</u> |      |      | Ų    | uuuuuuuu. GBR                                | RU (Tegister                                     | IVIO           |
|------------|------------|------|------|------|----------------------------------------------|--------------------------------------------------|----------------|
|            | хххх       | XXXX | dddd | dddd | indirect with<br>displacement                | direct)                                          | @(d<br>0       |
|            |            |      |      |      | R0 (register<br>direct)                      | ddddddd:<br>GBR indirect<br>with<br>displacement | MO<br>R0,<br>) |
|            |            |      |      |      | ddddddd:<br>PC-relative with<br>displacement | R0 (register direct)                             | MO<br>@(c      |
|            |            |      |      |      | ddddddd:<br>PC-relative                      | —                                                | BF             |
| d12 format | 1 <u>5</u> |      |      | 0    | dddddddddd:                                  | _                                                | BRA            |
|            | xxxx       | dddd | dddd | dddd | PC-relative                                  |                                                  | (lab<br>PC)    |
| nd8 format | 1 <u>5</u> | _    |      | 0    | ddddddd:                                     | nnnn: register                                   | MO             |
|            | xxxx       | nnnn | dddd | dddd | PC-relative with<br>displacement             | direct                                           | @(0            |
| i format   | 15         |      |      | 0    | iiiiiiii: immediate                          | Indexed GBR                                      | AN             |
|            | xxxx       | XXXX | iiii | 1111 |                                              | indirect                                         | #im<br>@(F     |
|            |            |      |      |      | iiiiiiii: immediate                          | R0 (register direct)                             | ANI<br>#im     |
|            |            |      |      |      | iiiiiiii: immediate                          | —                                                | TRA            |
| ni format  | 1 <u>5</u> |      |      | 0    | iiiiiiii: immediate                          | nnnn: register                                   | ADI            |
|            | xxxx       | nnnn | iiii | iiii |                                              | direct                                           | #im            |
|            |            |      |      |      |                                              |                                                  |                |

Note: \* In a multiply-and-accumulate instruction, nnnn is the source register.

Rev. 5.00, 09/03, page 34 of 760

| Types | oode     | 1 unotion                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5     | MOV      | Data transfer                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | MOVA     | Effective address transfer                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | MOVT     | T bit transfer                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | SWAP     | Swap of upper and lower bytes                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | XTRCT    | Extraction of middle of linked registers                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21    | ADD      | Binary addition                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | ADDC     | Binary addition with carry                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | ADDV     | Binary addition with overflow check                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | CMP/cond | Comparison                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DIV1     | Division                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DIV0S    | Initialization of signed division                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DIV0U    | Initialization of unsigned division                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DMULS    | Signed double-precision multiplication                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DMULU    | Unsigned double-precision multiplication                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | DT       | Decrement and test                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | EXTS     | Sign extension                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | EXTU     | Zero extension                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | MAC      | Multiply-and-accumulate operation,<br>double-precision multiply-and-accumulate<br>operation                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 5        | 5 MOV<br>MOVA<br>MOVA<br>MOVT<br>SWAP<br>XTRCT<br>21 ADD<br>ADDC<br>ADDV<br>CMP/cond<br>DIV1<br>DIV0S<br>DIV0U<br>DMULS<br>DMULU<br>DT<br>EXTS<br>EXTU | 5MOVData transferMOVAEffective address transferMOVTT bit transferSWAPSwap of upper and lower bytesXTRCTExtraction of middle of linked registers21ADDADDCBinary addition with carryADDCBinary addition with overflow checkCMP/condComparisonDIV1DivisionDIV0SInitialization of signed divisionDIV0UInitialization of unsigned divisionDMULSSigned double-precision multiplicationDMULUUnsigned double-precision multiplicationDTDecrement and testEXTUZero extensionMACMultiply-and-accumulate operation, double-precision multiply-and-accumulate |

Renesas

|            |    | SOB   | Binary subtraction                      |    |
|------------|----|-------|-----------------------------------------|----|
|            |    | SUBC  | Binary subtraction with borrow          |    |
|            |    | SUBV  | Binary subtraction with underflow check |    |
| Logic      | 6  | AND   | Logical AND                             | 14 |
| operations |    | NOT   | Bit inversion                           |    |
|            |    | OR    | Logical OR                              |    |
|            |    | TAS   | Memory test and bit set                 |    |
|            |    | TST   | Logical AND and T bit set               |    |
|            |    | XOR   | Exclusive OR                            |    |
| Shift      | 12 | ROTL  | One-bit left rotation                   | 16 |
|            |    | ROTR  | One-bit right rotation                  |    |
|            |    | ROTCL | One-bit left rotation with T bit        |    |
|            |    | ROTCR | One-bit right rotation with T bit       |    |
|            |    | SHAL  | One-bit arithmetic left shift           |    |
|            |    | SHAR  | One-bit arithmetic right shift          |    |
|            |    | SHLL  | One-bit logical left shift              |    |
|            |    | SHLLn | n-bit logical left shift                |    |
|            |    | SHLR  | One-bit logical right shift             |    |
|            |    | SHLRn | n-bit logical right shift               |    |
|            |    | SHAD  | Dynamic arithmetic shift                |    |
|            |    | SHLD  | Dynamic logical shift                   |    |

Rev. 5.00, 09/03, page 36 of 760

|         |          |        | <u> </u>                         | _ |
|---------|----------|--------|----------------------------------|---|
|         |          | BSRF   | Branch to subroutine procedure   | _ |
|         |          | JMP    | Unconditional branch             | - |
|         |          | JSR    | Branch to subroutine procedure   | - |
|         |          | RTS    | Return from subroutine procedure | - |
| System  | 15       | CLRMAC | MAC register clear               | 7 |
| control |          | CLRT   | Clear T bit                      | - |
|         |          | CLRS   | Clear S bit                      |   |
|         |          | LDC    | Load to control register         | - |
|         |          | LDS    | Load to system register          | - |
|         |          | LDTLB  | Load PTE to TLB                  | - |
|         |          | NOP    | No operation                     | - |
|         |          | PREF   | Prefetch data to cache           | - |
|         |          | RTE    | Return from exception handling   | - |
|         |          | SETS   | Set S bit                        | - |
|         |          | SETT   | Set T bit                        | - |
|         |          | SLEEP  | Shift to power-down mode         | - |
|         |          | STC    | Store from control register      | - |
|         |          | STS    | Store from system register       | - |
|         |          | TRAPA  | Trap exception handling          | - |
| Tc      | otal: 68 |        |                                  |   |
|         |          |        |                                  | _ |

Renesas

|                      |                                                               | Rn: Destination register<br>imm: Immediate data<br>disp: Displacement                                                                                                                 |
|----------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction<br>code  | $MSB \leftrightarrow LSB$                                     | mmmm: Source register<br>nnnn: Destination register<br>0000: R0<br>0001: R1                                                                                                           |
|                      |                                                               | <br>1111: R15<br>iiii: Immediate data<br>dddd: Displacement <sup>*</sup>                                                                                                              |
| Operation<br>summary | →, ←<br>(xx)<br>M/Q/T<br>&<br> <br>^<br>~<br>< <n,>&gt;n</n,> | Direction of transfer<br>Memory operand<br>Flag bits in SR<br>Logical AND of each bit<br>Logical OR of each bit<br>Exclusive OR of each bit<br>Logical NOT of each bit<br>n-bit shift |
| Privileged mode      |                                                               | Indicates whether privileged mode applies                                                                                                                                             |
| Execution            |                                                               | Value when no wait states are inserted                                                                                                                                                |
| cycles               |                                                               | The execution cycles listed in the table are minim<br>actual number of cycles may be increased in cas<br>the followsing:                                                              |
|                      |                                                               | <ol> <li>When contention occurs between instruction<br/>data access</li> </ol>                                                                                                        |
|                      |                                                               | <ol> <li>When the destination register of the load instruction (memory → register) and the register used by instruction are the same</li> </ol>                                       |
| T bit                |                                                               | Value of T bit after instruction is executed                                                                                                                                          |
|                      |                                                               | —: No change                                                                                                                                                                          |

Rev. 5.00, 09/03, page 38 of 760

| -     |               |                                                                                                                                     |                  |   |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|---|
| MOV.L | @(disp,PC),Rn | $(\text{disp}\times \textbf{4}+\text{PC})\rightarrow \text{Rn}$                                                                     | 1101nnnnddddddd  | — |
| MOV   | Rm,Rn         | $Rm \to Rn$                                                                                                                         | 0110nnnnmmm0011  | _ |
| MOV.B | Rm,@Rn        | $\text{Rm} \rightarrow (\text{Rn})$                                                                                                 | 0010nnnnmmm0000  |   |
| MOV.W | Rm,@Rn        | $\text{Rm} \rightarrow (\text{Rn})$                                                                                                 | 0010nnnnmmm0001  |   |
| MOV.L | Rm,@Rn        | $\text{Rm} \rightarrow (\text{Rn})$                                                                                                 | 0010nnnnmmm0010  | - |
| MOV.B | @Rm,Rn        | $\begin{array}{l} (Rm) \to Sign \text{ extension} \\ \to Rn \end{array}$                                                            | 0110nnnnmmm0000  |   |
| MOV.W | @Rm,Rn        | $\begin{array}{l} (Rm) \to Sign \text{ extension} \\ \to Rn \end{array}$                                                            | 0110nnnnmmm0001  | _ |
| MOV.L | @Rm,Rn        | $(Rm)\toRn$                                                                                                                         | 0110nnnnmmm0010  | _ |
| MOV.B | Rm,@-Rn       | $Rn1 \rightarrow Rn, Rm \rightarrow (Rn)$                                                                                           | 0010nnnnmmm0100  |   |
| MOV.W | Rm,@-Rn       | $Rn-2 \rightarrow Rn, Rm \rightarrow (Rn)$                                                                                          | 0010nnnnmmm0101  | _ |
| MOV.L | Rm,@-Rn       | Rn–4 $\rightarrow$ Rn, Rm $\rightarrow$ (Rn)                                                                                        | 0010nnnnmmm0110  | _ |
| MOV.B | @Rm+,Rn       | $(Rm) \rightarrow Sign extension \rightarrow Rn, Rm + 1 \rightarrow Rm$                                                             | 0110nnnnmmm0100  | _ |
| MOV.W | @Rm+,Rn       | $(Rm) \rightarrow Sign extension$<br>$\rightarrow Rn, Rm + 2 \rightarrow Rm$                                                        | 0110nnnnmmm0101  | _ |
| MOV.L | @Rm+,Rn       | $(Rm) \to Rn, Rm + 4 \to Rm$                                                                                                        | 0110nnnnmmm0110  | _ |
| MOV.B | R0,@(disp,Rn) | $\text{R0} \rightarrow (\text{disp} + \text{Rn})$                                                                                   | 10000000nnnndddd | _ |
| MOV.W | R0,@(disp,Rn) | $\text{R0} \rightarrow (\text{disp} \times \text{2 + Rn})$                                                                          | 10000001nnnndddd | _ |
| MOV.L | Rm,@(disp,Rn) | $\text{Rm} \rightarrow (\text{disp} \times \text{4 + Rn})$                                                                          | 0001nnnnmmmdddd  |   |
| MOV.B | @(disp,Rm),R0 | $\begin{array}{l} (\text{disp + Rm}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$                 | 10000100mmmmdddd | _ |
| MOV.W | @(disp,Rm),R0 | $\begin{array}{l} (\text{disp} \times 2 + \text{Rm}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$ | 10000101mmmmdddd | — |
| MOV.L | @(disp,Rm),Rn | $(\text{disp} \times 4 + \text{Rm}) \rightarrow \text{Rn}$                                                                          | 0101nnnnmmmdddd  | _ |
| MOV.B | Rm,@(R0,Rn)   | $Rm \rightarrow (R0 + Rn)$                                                                                                          | 0000nnnnmmm0100  | _ |
|       |               |                                                                                                                                     |                  |   |

Rev. 5.00, 09/03, pa

|        | 0(10)1111      |                                                                                                                               |                  |   |   |
|--------|----------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|---|---|
| MOV.B  | R0,@(disp,GBR) | $\text{R0} \rightarrow (\text{disp} + \text{GBR})$                                                                            | 11000000ddddddd  | — | 1 |
| MOV.W  | R0,@(disp,GBR) | $\text{R0} \rightarrow (\text{disp} \times \text{2 + GBR})$                                                                   | 11000001ddddddd  | _ | 1 |
| MOV.L  | R0,@(disp,GBR) | $\text{R0} \rightarrow (\text{disp} \times \text{4 + GBR})$                                                                   | 11000010ddddddd  | _ | 1 |
| MOV.B  | @(disp,GBR),R0 | $\begin{array}{l} (\text{disp + GBR}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$          | 11000100ddddddd  | — | 1 |
| MOV.W  | @(disp,GBR),R0 | $\begin{array}{l} (\text{disp} \times 2 + \text{GBR}) \rightarrow \\ \text{Sign extension} \rightarrow \text{R0} \end{array}$ | 11000101ddddddd  | — | 1 |
| MOV.L  | @(disp,GBR),R0 | $(disp \times 4 + GBR) \to R0$                                                                                                | 11000110ddddddd  | _ | 1 |
| MOVA   | @(disp,PC),R0  | $\text{disp} \times \text{4} + \text{PC} \rightarrow \text{R0}$                                                               | 11000111ddddddd  | _ | 1 |
| MOVT   | Rn             | $T\toRn$                                                                                                                      | 0000nnnn00101001 | — | 1 |
| SWAP.B | Rm,Rn          | $Rm \rightarrow Swap$ the bottom two bytes $\rightarrow Rn$                                                                   | 0110nnnnmmm1000  | — | 1 |
| SWAP.W | Rm,Rn          | $Rm \rightarrow Swap two$ consecutive words $\rightarrow Rn$                                                                  | 0110nnnnmmm1001  | — | 1 |
| XTRCT  | Rm,Rn          | Rm: Middle 32 bits of $Rn \rightarrow Rn$                                                                                     | 0010nnnnmmm1101  | _ | 1 |

Rev. 5.00, 09/03, page 40 of 760

|         |         | Carry $\rightarrow$ 1                                                                                                                                                                  |                  |   |   |
|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|---|
| ADDV    | Rm,Rn   | $\begin{array}{l} Rn + Rm \to Rn, \\ Overflow \to T \end{array}$                                                                                                                       | 0011nnnnmmm1111  | _ | 1 |
| CMP/EQ  | #imm,R0 | If R0 = imm, 1 $\rightarrow$ T                                                                                                                                                         | 10001000iiiiiiii | _ | 1 |
| CMP/EQ  | Rm,Rn   | If Rn = Rm, $1 \rightarrow T$                                                                                                                                                          | 0011nnnnmmm00000 | _ | 1 |
| CMP/HS  | Rm,Rn   | If $Rn \ge Rm$ with unsigned data, $1 \rightarrow T$                                                                                                                                   | 0011nnnnmmm0010  | _ | 1 |
| CMP/GE  | Rm,Rn   | If $Rn \ge Rm$ with signed data, $1 \rightarrow T$                                                                                                                                     | 0011nnnmmmm0011  | — | 1 |
| CMP/HI  | Rm,Rn   | If Rn > Rm with unsigned data, $1 \rightarrow T$                                                                                                                                       | 0011nnnnmmm0110  | — | 1 |
| CMP/GT  | Rm,Rn   | If Rn > Rm with signed data, $1 \rightarrow T$                                                                                                                                         | 0011nnnnmmm0111  | — | 1 |
| CMP/PZ  | Rn      | If $Rn \ge 0, 1 \rightarrow T$                                                                                                                                                         | 0100nnnn00010001 | — | 1 |
| CMP/PL  | Rn      | If Rn > 0, 1 $\rightarrow$ T                                                                                                                                                           | 0100nnnn00010101 | _ | 1 |
| CMP/STR | Rm,Rn   | If Rn and Rm have an equivalent byte, $1 \rightarrow T$                                                                                                                                | 0010nnnnmmm1100  | _ | 1 |
| DIV1    | Rm,Rn   | Single-step division<br>(Rn/Rm)                                                                                                                                                        | 0011nnnnmmm0100  | _ | 1 |
| DIV0S   | Rm,Rn   | $\begin{array}{l} \text{MSB of } \text{Rn} \rightarrow \text{Q},  \text{MSB} \\ \text{of } \text{Rm} \rightarrow \text{M},  \text{M} \wedge \text{Q} \rightarrow \text{T} \end{array}$ | 0010nnnnmmm0111  | _ | 1 |
| DIV0U   |         | $0 \rightarrow M/Q/T$                                                                                                                                                                  | 000000000011001  | _ | 1 |
|         |         |                                                                                                                                                                                        |                  |   |   |

RENESAS

|        |           | $0, T \rightarrow T, else 0 \rightarrow T$                                                                                                                              |                  |   |          |
|--------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|----------|
| EXTS.B | Rm,Rn     | A byte in Rm is sign-extended $\rightarrow$ Rn                                                                                                                          | 0110nnnnmmm1110  | — | 1        |
| EXTS.W | Rm,Rn     | A word in Rm is sign-extended $\rightarrow$ Rn                                                                                                                          | 0110nnnnmmm1111  | — | 1        |
| EXTU.B | Rm,Rn     | A byte in Rm is zero-extended $\rightarrow$ Rn                                                                                                                          | 0110nnnnmmm1100  | — | 1        |
| EXTU.W | Rm,Rn     | A word in Rm is zero-<br>extended $\rightarrow$ Rn                                                                                                                      | 0110nnnnmmm1101  | — | 1        |
| MAC.L  | @Rm+,@Rn+ | Signed operation of (Rn)<br>$\times$ (Rm) + MAC $\rightarrow$ MAC,<br>Rn + 4 $\rightarrow$ Rn,<br>Rm + 4 $\rightarrow$ Rm,<br>32 $\times$ 32 + 64 $\rightarrow$ 64 bits | 0000nnnnmmm1111  | _ | 2(to 5)* |
| MAC.W  | @Rm+,@Rn+ | Signed operation of (Rn)<br>$\times$ (Rm) + MAC $\rightarrow$ MAC,<br>Rn + 2 $\rightarrow$ Rn,<br>Rm + 2 $\rightarrow$ Rm,<br>16 $\times$ 16 + 64 $\rightarrow$ 64 bits | 0100nnnnmmmm1111 | _ | 2(to 5)* |
| MUL.L  | Rm,Rn     | $\begin{array}{l} Rn \times Rm \to MACL, \\ 32 \times 32 \to 32 \text{ bits} \end{array}$                                                                               | 0000nnnnmmm0111  | _ | 2(to 5)* |
| MULS.W | Rm,Rn     | Signed operation of Rn<br>$\times$ Rm $\rightarrow$ MACL,<br>$16 \times 16 \rightarrow 32$ bits                                                                         | 0010nnnnmmm1111  |   | 1(to 3)* |
| MULU.W | Rm,Rn     | Unsigned operation of<br>Rn $\times$ Rm $\rightarrow$ MACL,<br>16 $\times$ 16 $\rightarrow$ 32 bits                                                                     | 0010nnnnmmm1110  | _ | 1(to 3)* |

Rev. 5.00, 09/03, page 42 of 760

| 0001 | 1000/1011 |  |
|------|-----------|--|
|      |           |  |

Underflow  $\rightarrow$  T

Note: \* The normal number of execution cycles is shown. The value in parentheses is of cycles required in case of contention with the preceding or following instruct

RENESAS

|       |                | (R0 + GBR)                                                       |                  |   |   |
|-------|----------------|------------------------------------------------------------------|------------------|---|---|
| NOT   | Rm,Rn          | $\sim Rm \rightarrow Rn$                                         | 0110nnnnmmm0111  | — | 1 |
| OR    | Rm,Rn          | $Rn   Rm \to Rn$                                                 | 0010nnnnmmm1011  | — | 1 |
| OR    | #imm,R0        | $\text{R0} \mid \text{imm} \rightarrow \text{R0}$                | 11001011iiiiiii  | _ | 1 |
| OR.B  | #imm,@(R0,GBR) | $(R0 + GBR) \mid imm \rightarrow$<br>(R0 + GBR)                  | 11001111iiiiiii  | — | 3 |
| TAS.B | @Rn            | If (Rn) is 0, $1 \rightarrow T$ ;<br>1 $\rightarrow$ MSB of (Rn) | 0100nnnn00011011 | — | 3 |
| TST   | Rm,Rn          | Rn & Rm; if the result is 0, $1 \rightarrow T$                   | 0010nnnnmmm1000  | — | 1 |
| TST   | #imm,R0        | R0 & imm; if the result is 0, $1 \rightarrow T$                  | 11001000iiiiiiii | — | 1 |
| TST.B | #imm,@(R0,GBR) | (R0 + GBR) & imm; if the result is 0, 1 $\rightarrow$ T          | 11001100iiiiiiii | _ | 3 |
| XOR   | Rm,Rn          | $Rn \wedge Rm \rightarrow Rn$                                    | 0010nnnnmmm1010  |   | 1 |
| XOR   | #imm,R0        | R0 ^ imm $\rightarrow$ R0                                        | 11001010iiiiiii  | — | 1 |
| XOR.B | #imm,@(R0,GBR) | (R0 + GBR) ^ imm $\rightarrow$ (R0 + GBR)                        | 11001110iiiiiiii | _ | 3 |

Rev. 5.00, 09/03, page 44 of 760

| ROTCR  | Rn    | $T \to Rn \to T$                                                                                                                                        | 0100nnnn00100101 | _ | 1 |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|---|
| SHAD   | Rm,Rn | $Rn \ge 0$ : $Rn \iff Rm \rightarrow Rn$<br>$Rn < 0$ : $Rn >> Rm \rightarrow$<br>[MSB $\rightarrow$ $Rn$ ]                                              | 0100nnnmmm1100   | _ | 1 |
| SHAL   | Rn    | $T \leftarrow Rn \leftarrow 0$                                                                                                                          | 0100nnnn00100000 | _ | 1 |
| SHAR   | Rn    | $\text{MSB} \rightarrow \text{Rn} \rightarrow \text{T}$                                                                                                 | 0100nnnn00100001 | _ | 1 |
| SHLD   | Rm,Rn | $\label{eq:Rn} \begin{array}{l} Rn \geq 0 \text{: } Rn << Rm \rightarrow Rn \\ Rn < 0 \text{: } Rn >> Rm \rightarrow \\ [0 \rightarrow Rn] \end{array}$ | 0100nnnnmmm1101  | _ | 1 |
| SHLL   | Rn    | $T \leftarrow Rn \leftarrow 0$                                                                                                                          | 0100nnnn00000000 | _ | 1 |
| SHLR   | Rn    | $0 \to Rn \to T$                                                                                                                                        | 0100nnnn00000001 | — | 1 |
| SHLL2  | Rn    | $Rn \ll 2 \rightarrow Rn$                                                                                                                               | 0100nnnn00001000 | _ | 1 |
| SHLR2  | Rn    | $Rn >> 2 \rightarrow Rn$                                                                                                                                | 0100nnnn00001001 | _ | 1 |
| SHLL8  | Rn    | $Rn \ll 8 \rightarrow Rn$                                                                                                                               | 0100nnnn00011000 | _ | 1 |
| SHLR8  | Rn    | $Rn >> 8 \rightarrow Rn$                                                                                                                                | 0100nnnn00011001 | _ | 1 |
| SHLL16 | Rn    | $Rn \ll 16 \rightarrow Rn$                                                                                                                              | 0100nnnn00101000 | _ | 1 |
| SHLR16 | Rn    | $Rn >> 16 \rightarrow Rn$                                                                                                                               | 0100nnnn00101001 | _ | 1 |

RENESAS

|      |       | if T = 1, nop                                                                                                         |                  |   |     |
|------|-------|-----------------------------------------------------------------------------------------------------------------------|------------------|---|-----|
| BT   | label | $ \begin{array}{l} \mbox{if } T=1, \\ \mbox{disp}\times 2 + PC \rightarrow PC; \\ \mbox{if } T=0, \ nop \end{array} $ | 10001001ddddddd  | _ | 3/1 |
| BT/S | label | Delayed branch,<br>If T = 1, disp $\times$ 2 + PC $\rightarrow$ PC;<br>if T = 0, nop                                  | 10001101ddddddd  | _ | 2/1 |
| BRA  | label | Delayed branch, disp $\times$ 2 + PC $\rightarrow$ PC                                                                 | 1010ddddddddddd  | _ | 2   |
| BRAF | Rm    | Delayed branch, $Rm + PC \rightarrow PC$                                                                              | 0000mmmm00100011 | - | 2   |
| BSR  | label | Delayed branch, PC $\rightarrow$ PR,<br>disp $\times$ 2 + PC $\rightarrow$ PC                                         | 1011ddddddddddd  | - | 2   |
| BSRF | Rm    | Delayed branch, PC $\rightarrow$ PR, Rm + PC $\rightarrow$ PC                                                         | 0000mmmm00000011 | - | 2   |
| JMP  | @Rm   | Delayed branch, $\text{Rm} \rightarrow \text{PC}$                                                                     | 0100mmmm00101011 | _ | 2   |
| JSR  | @Rm   | Delayed branch, PC $\rightarrow$ PR, Rm $\rightarrow$ PC                                                              | 0100mmmm00001011 | _ | 2   |
| RTS  |       | Delayed branch, $\text{PR} \rightarrow \text{PC}$                                                                     | 000000000001011  | _ | 2   |

Note: \* One state when there is no branch.

Rev. 5.00, 09/03, page 46 of 760

| LDC   | Rm,SR            | $Rm\toSR$                                               | 0100mmmm00001110 |              |
|-------|------------------|---------------------------------------------------------|------------------|--------------|
| LDC   | Rm,GBR           | $Rm\toGBR$                                              | 0100mmmm00011110 |              |
| LDC   | Rm,VBR           | $Rm \rightarrow VBR$                                    | 0100mmmm00101110 | $\checkmark$ |
| LDC   | Rm,SSR           | $Rm\toSSR$                                              | 0100mmmm00111110 | $\checkmark$ |
| LDC   | Rm,SPC           | $Rm\toSPC$                                              | 0100mmmm01001110 | $\checkmark$ |
| LDC   | Rm,R0_BANK       | $\text{Rm} \rightarrow \text{R0}\_\text{BANK}$          | 0100mmmm10001110 | $\checkmark$ |
| LDC   | Rm,R1_BANK       | $Rm \rightarrow R1\_BANK$                               | 0100mmmm10011110 | $\checkmark$ |
| LDC   | Rm,R2_BANK       | $Rm \rightarrow R2\_BANK$                               | 0100mmmm10101110 | $\checkmark$ |
| LDC   | Rm,R3_BANK       | $\text{Rm} \rightarrow \text{R3}\_\text{BANK}$          | 0100mmmm10111110 | $\checkmark$ |
| LDC   | Rm,R4_BANK       | $Rm \rightarrow R4\_BANK$                               | 0100mmmm11001110 | $\checkmark$ |
| LDC   | Rm,R5_BANK       | $Rm \rightarrow R5\_BANK$                               | 0100mmmm11011110 | $\checkmark$ |
| LDC   | Rm,R6_BANK       | $\text{Rm} \rightarrow \text{R6}\_\text{BANK}$          | 0100mmmm11101110 | $\checkmark$ |
| LDC   | Rm, R7_BANK      | $Rm \rightarrow R7\_BANK$                               | 0100mmmm11111110 | $\checkmark$ |
| LDC.L | @Rm+,SR          | $(Rm) \rightarrow SR,  Rm + 4 \rightarrow Rm$           | 0100mmmm00000111 | $\checkmark$ |
| LDC.L | @Rm+,GBR         | $(Rm) \to GBR,  Rm + 4 \to Rm$                          | 0100mmmm00010111 |              |
| LDC.L | @Rm+,VBR         | $(Rm) \rightarrow VBR,  Rm + 4 \rightarrow Rm$          | 0100mmmm00100111 | $\checkmark$ |
| LDC.L | @Rm+,SSR         | $(Rm) \rightarrow SSR,  Rm + 4 \rightarrow Rm$          | 0100mmmm00110111 | $\checkmark$ |
| LDC.L | @Rm+,SPC         | $(Rm) \rightarrow SPC,  Rm + 4 \rightarrow Rm$          | 0100mmmm01000111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R0_BANK | $(Rm) \rightarrow R0_BANK,$<br>$Rm + 4 \rightarrow Rm$  | 0100mmmm10000111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R1_BANK | $(Rm) \rightarrow R1\_BANK,$<br>$Rm + 4 \rightarrow Rm$ | 0100mmmm10010111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R2_BANK | $(Rm) \rightarrow R2\_BANK,$<br>$Rm + 4 \rightarrow Rm$ | 0100mmmm10100111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R3_BANK | $(Rm) \rightarrow R3\_BANK,$<br>Rm + 4 $\rightarrow$ Rm | 0100mmmm10110111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R4_BANK | $(Rm) \rightarrow R4\_BANK,$<br>Rm + 4 $\rightarrow$ Rm | 0100mmmm11000111 | $\checkmark$ |
| LDC.L | @Rm+,<br>R5_BANK | $(Rm) \rightarrow R5\_BANK,$<br>Rm + 4 $\rightarrow$ Rm | 0100mmmm11010111 |              |
|       |                  |                                                         |                  |              |

| 200   | ,           |                                                                                 |                  |     |
|-------|-------------|---------------------------------------------------------------------------------|------------------|-----|
| LDS.L | @Rm+,MACH   | $(Rm) \to MACH,  Rm + 4 \to Rm$                                                 | 0100mmmm00000110 | — 1 |
| LDS.L | @Rm+,MACL   | $(Rm) \to MACL,  Rm + 4 \to Rm$                                                 | 0100mmmm00010110 | — 1 |
| LDS.L | @Rm+,PR     | (Rm) $\rightarrow$ PR, Rm + 4 $\rightarrow$ Rm                                  | 0100mmmm00100110 | — 1 |
| LDTLB |             | $PTEH/PTEL \to TLB$                                                             | 000000000111000  | √ 1 |
| NOP   |             | No operation                                                                    | 000000000001001  | — 1 |
| PREF  | @Rm         | $(Rm) \rightarrow cache$                                                        | 0000mmmm10000011 | — 2 |
| RTE   |             | Delayed branch, SSR $\rightarrow$ SR, SPC $\rightarrow$ PC                      | 0000000000101011 | √ 4 |
| SETS  |             | $1 \rightarrow S$                                                               | 000000001011000  | — 1 |
| SETT  |             | $1 \rightarrow T$                                                               | 000000000011000  | — 1 |
| SLEEP |             | Sleep                                                                           | 000000000011011  | √ 4 |
| STC   | SR , Rn     | $SR \to Rn$                                                                     | 0000nnnn00000010 | √ 1 |
| STC   | GBR, Rn     | $GBR\toRn$                                                                      | 0000nnnn00010010 | — 1 |
| STC   | VBR,Rn      | $VBR\toRn$                                                                      | 0000nnnn00100010 | √ 1 |
| STC   | SSR,Rn      | $\text{SSR} \to \text{Rn}$                                                      | 0000nnnn00110010 | √ 1 |
| STC   | SPC,Rn      | $\text{SPC} \to \text{Rn}$                                                      | 0000nnnn01000010 | √ 1 |
| STC   | R0_BANK,Rn  | $R0\_BANK \rightarrow Rn$                                                       | 0000nnnn10000010 | √ 1 |
| STC   | R1_BANK,Rn  | $R1\_BANK \rightarrow Rn$                                                       | 0000nnnn10010010 | √ 1 |
| STC   | R2_BANK,Rn  | $R2\_BANK \rightarrow Rn$                                                       | 0000nnnn10100010 | √ 1 |
| STC   | R3_BANK,Rn  | $R3\_BANK \rightarrow Rn$                                                       | 0000nnnn10110010 | √ 1 |
| STC   | R4_BANK,Rn  | $R4\_BANK \rightarrow Rn$                                                       | 0000nnnn11000010 | √ 1 |
| STC   | R5_BANK, Rn | $R5\_BANK \rightarrow Rn$                                                       | 0000nnnn11010010 | √ 1 |
| STC   | R6_BANK,Rn  | $R6_BANK \rightarrow Rn$                                                        | 0000nnnn11100010 | √ 1 |
| STC   | R7_BANK,Rn  | $R7\_BANK \rightarrow Rn$                                                       | 0000nnnn11110010 | √ 1 |
| STC.L | SR,@-Rn     | $\textbf{Rn-}4 \rightarrow \textbf{Rn},  \textbf{SR} \rightarrow (\textbf{Rn})$ | 0100nnnn00000011 | √ 2 |
| STC.L | GBR,@-Rn    | $\text{Rn-4} \rightarrow \text{Rn, GBR} \rightarrow (\text{Rn})$                | 0100nnnn00010011 | - 2 |
| STC.L | VBR,@-Rn    | Rn–4 $\rightarrow$ Rn, VBR $\rightarrow$ (Rn)                                   | 0100nnnn00100011 | √ 2 |
|       |             |                                                                                 |                  |     |

Note: \* The number of cycles until the sleep state is entered.

Rev. 5.00, 09/03, page 48 of 760

|       | @—Rn             | ····· / ····/ ···· / (····/                                                                    |                  |              |
|-------|------------------|------------------------------------------------------------------------------------------------|------------------|--------------|
| STC.L | R3_BANK,<br>@-Rn | $Rn-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                   | 0100nnnn10110011 | $\checkmark$ |
| STC.L | R4_BANK,<br>@-Rn | $Rn4 \to Rn,  R4BANK \to (Rn)$                                                                 | 0100nnnn11000011 | $\checkmark$ |
| STC.L | R5_BANK,<br>@-Rn | $Rn4 \to Rn,  R5BANK \to (Rn)$                                                                 | 0100nnnn11010011 |              |
| STC.L | R6_BANK,<br>@-Rn | $Rn-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                   | 0100nnnn11100011 | $\checkmark$ |
| STC.L | R7_BANK,<br>@-Rn | $Rn-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                   | 0100nnnn11110011 | $\checkmark$ |
| STS   | MACH,Rn          | $MACH \to Rn$                                                                                  | 0000nnnn00001010 | _            |
| STS   | MACL,Rn          | $MACL \to Rn$                                                                                  | 0000nnnn00011010 | _            |
| STS   | PR,Rn            | $PR\toRn$                                                                                      | 0000nnnn00101010 |              |
| STS.L | MACH,@-Rn        | $\text{Rn-4} \rightarrow \text{Rn},  \text{MACH} \rightarrow (\text{Rn})$                      | 0100nnnn00000010 | _            |
| STS.L | MACL,@-Rn        | $\textbf{Rn-4} \rightarrow \textbf{Rn},  \textbf{MACL} \rightarrow \textbf{(Rn)}$              | 0100nnnn00010010 | _            |
| STS.L | PR,@-Rn          | Rn–4 $\rightarrow$ Rn, PR $\rightarrow$ (Rn)                                                   | 0100nnnn00100010 |              |
| TRAPA | #imm             | $\begin{array}{l} PC \rightarrow SPC,  SR \rightarrow SSR, \\ imm \rightarrow TRA \end{array}$ | 11000011iiiiiiii | _            |

Notes: 1. The table shows the minimum number of execution cycles. The actual num instruction execution cycles will increase in cases such as the following:

- When there is contention between an instruction fetch and data access
- When the destination register in a load (memory-to-register) instruction i by the next instruction
- With the addressing modes using displacement (disp) listed below, the ass descriptions in this manual show the value before scaling (×1, ×2, or ×4) is This is done to clarify the operation of the chip. For the actual assembler de refer to the individual assembler notation rules.
  - @ (disp:4, Rn) ; Register-indirect with displacement
  - @ (disp:8, Rn) ; GBR-indirect with displacement
  - @ (disp:8, PC) ; PC-relative with displacement

disp:8, disp:12 ; PC-relative

Rev. 5.00, 09/03, pa

| 0000 | NII  | 1 ×  | 0001 |         |                |         |             |         |             | 1      |
|------|------|------|------|---------|----------------|---------|-------------|---------|-------------|--------|
| 0000 | Rn   | 00MD | 0010 | STC     | SR,Rn          | STC GBI | R,Rn        | STC VBF | R,Rn        | STC SS |
| 0000 | Rn   | 01MD | 0010 | STC     | SPC,Rn         |         |             |         |             |        |
| 0000 | Rn   | 10MD | 0010 | STC     | R0_BANK,Rn     | STC     | R1_BANK,Rn  | STC     | R2_BANK,Rn  | STC    |
| 0000 | Rn   | 11MD | 0010 | STC     | R4_BANK,Rn     | STC     | R5_BANK,Rn  | STC     | R6_BANK,Rn  | STC    |
| 0000 | Rm   | 00MD | 0011 | BSRF    | Rm             |         |             | BRAF    | Rm          |        |
| 0000 | Rn   | 10MD | 0011 | PREF    | @Rn            |         |             |         |             |        |
| 0000 | Rn   | Rm   | 01MD | MOV.B   | Rm,@(R0,Rn)    | MOV.W   | Rm,@(R0,Rn) | MOV.L   | Rm,@(R0,Rn) | MUL.L  |
| 0000 | 0000 | 00MD | 1000 | CLRT    |                | SETT    |             | CLRMAC  | ;           | LDTLB  |
| 0000 | 0000 | 01MD | 1000 | CLRS    |                | SETS    |             |         |             |        |
| 0000 | 0000 | Fx   | 1001 | NOP     |                | DIV0U   |             |         |             |        |
| 0000 | 0000 | Fx   | 1010 |         |                |         |             |         |             |        |
| 0000 | 0000 | Fx   | 1011 | RTS     |                | SLEEP   |             | RTE     |             |        |
| 0000 | Rn   | Fx   | 1000 |         |                |         |             |         |             |        |
| 0000 | Rn   | Fx   | 1001 |         |                |         |             | MOVT    | Rn          |        |
| 0000 | Rn   | Fx   | 1010 | STS     | MACH,Rn        | STS     | MACL,Rn     | STS     | PR,Rn       |        |
| 0000 | Rn   | Fx   | 1011 |         |                |         |             |         |             |        |
| 0000 | Rn   | Rm   | 11MD | MOV.B   | @(R0,Rm),Rn    | MOV.W   | @(R0,Rm),Rn | MOV.L   | @(R0,Rm),Rn | MAC.L  |
| 0001 | Rn   | Rm   | disp | MOV.L   | Rm,@(disp:4,Ri | n)      |             |         |             |        |
| 0010 | Rn   | Rm   | 00MD | MOV.B   | Rm,@Rn         | MOV.W   | Rm,@Rn      | MOV.L   | Rm,@Rn      |        |
| 0010 | Rn   | Rm   | 01MD | MOV.B   | Rm,@-Rn        | MOV.W   | Rm,@-Rn     | MOV.L   | Rm,@-Rn     | DIV0S  |
| 0010 | Rn   | Rm   | 10MD | TST     | Rm,Rn          | AND     | Rm,Rn       | XOR     | Rm,Rn       | OR     |
| 0010 | Rn   | Rm   | 11MD | CMP/STF | R Rm,Rn        | XTRCT   | Rm,Rn       | MULU.W  | Rm,Rn       | MULSV  |
| 0011 | Rn   | Rm   | 00MD | CMP/EQ  | Rm,Rn          |         |             | CMP/HS  | Rm,Rn       | CMP/G  |
| 0011 | Rn   | Rm   | 01MD | DIV1    | Rm,Rn          | DMULU.I | LRm,Rn      | CMP/HI  | Rm,Rn       | CMP/G  |
| 0011 | Rn   | Rm   | 10MD | SUB     | Rm,Rn          |         |             | SUBC    | Rm,Rn       | SUBV   |
| 0011 | Rn   | Rm   | 11MD | ADD     | Rm,Rn          | DMULS.I | _Rm,Rn      | ADDC    | Rm,Rn       | ADDV   |
|      |      |      |      |         |                |         |             | •       |             |        |

Rev. 5.00, 09/03, page 50 of 760

| 0100 | Rn        | 11MD | 0011 | STC.L  | R4_BANK,@-Rn  | STC.L  | R5_BANK,@-Rn | STC.L  | R6_BANK,@-Rn | STC.  |
|------|-----------|------|------|--------|---------------|--------|--------------|--------|--------------|-------|
| 0100 | Rn        | Fx   | 0100 | ROTL   | Rn            |        |              | ROTCL  | Rn           |       |
| 0100 | Rn        | Fx   | 0101 | ROTR   | Rn            | CMP/PL | Rn           | ROTCR  | Rn           |       |
| 0100 | Rm        | Fx   | 0110 | LDS.L  | @Rm+,MACH     | LDS.L  | @Rm+,MACL    | LDS.L  | @Rm+,PR      |       |
| 0100 | Rm        | 00MD | 0111 | LDC.L  | @Rm+,SR       | LDC.L  | @Rm+,GBR     | LDC.L  | @Rm+,VBR     | LDC.I |
| 0100 | Rm        | 01MD | 0111 | LDC.L  | @Rm+,SPC      |        |              |        |              |       |
| 0100 | Rm        | 10MD | 0111 | LDC.L  | @Rm+,R0_BANK  | LDC.L  | @Rm+,R1_BANK | LDC.L  | @Rm+,R2_BANK | LDC.L |
| 0100 | Rm        | 11MD | 0111 | LDC.L  | @Rm+,R4_BANK  | LDC.L  | @Rm+,R5_BANK | LDC.L  | @Rm+,R6_BANK | LDC.L |
| 0100 | Rn        | Fx   | 1000 | SHLL2  | Rn            | SHLL8  | Rn           | SHLL16 | Rn           |       |
| 0100 | Rn        | Fx   | 1001 | SHLR2  | Rn            | SHLR8  | Rn           | SHLR16 | Rn           |       |
| 0100 | Rm        | Fx   | 1010 | LDS    | Rm,MACH       | LDS    | Rm,MACL      | LDS    | Rm,PR        |       |
| 0100 | Rm/<br>Rn | Fx   | 1011 | JSR    | @Rm           | TAS.B  | @Rn          | JMP    | @Rm          |       |
| 0100 | Rn        | Rm   | 1100 | SHAD   | Rm,Rn         |        |              |        |              |       |
| 0100 | Rn        | Rm   | 1101 | SHLD   | Rm,Rn         |        |              |        |              |       |
| 0100 | Rm        | 00MD | 1110 | LDC    | Rm,SR         | LDC    | Rm,GBR       | LDC    | Rm,VBR       | LDC   |
| 0100 | Rm        | 01MD | 1110 | LDC    | Rm,SPC        |        |              |        |              |       |
| 0100 | Rm        | 10MD | 1110 | LDC    | Rm,R0_BANK    | LDC    | Rm,R1_BANK   | LDC    | Rm,R2_BANK   | LDC   |
| 0100 | Rm        | 11MD | 1110 | LDC    | Rm,R4_BANK    | LDC    | Rm,R5_BANK   | LDC    | Rm,R6_BANK   | LDC   |
| 0100 | Rn        | Rm   | 1111 | MAC.W  | @Rm+,@Rn+     |        |              |        |              |       |
| 0101 | Rn        | Rm   | disp | MOV.L  | @(disp:4,Rm), | Rn     |              |        |              |       |
| 0110 | Rn        | Rm   | 00MD | MOV.B  | @Rm,Rn        | MOV.W  | @Rm,Rn       | MOV.L  | @Rm,Rn       | MOV   |
| 0110 | Rn        | Rm   | 01MD | MOV.B  | @Rm+,Rn       | MOV.W  | @Rm+,Rn      | MOV.L  | @Rm+,Rn      | NOT   |
| 0110 | Rn        | Rm   | 10MD | SWAP.B | Rm,Rn         | SWAP.W | Rm,Rn        | NEGC   | Rm,Rn        | NEG   |
| 0110 | Rn        | Rm   | 11MD | EXTU.B | Rm,Rn         | EXTU.W | Rm,Rn        | EXTS.B | Rm,Rn        | EXTS  |
| 0111 | Rn        | im   | m    | ADD    | #imm:8,Rn     |        |              |        |              |       |
|      |           |      |      |        | -             | -      |              |        |              |       |

Renesas

| 1010 |      | disp     | BRA               | label:12       |                 |             |                 |             |               |
|------|------|----------|-------------------|----------------|-----------------|-------------|-----------------|-------------|---------------|
| 1011 |      | disp     | BSR               | label:12       |                 |             |                 |             |               |
| 1100 | 00MD | imm/disp | MOV.B<br>R0,@(di  | isp:8,GBR)     | MOV.W<br>R0,@(  | disp:8,GBR) | MOV.L<br>R0,@(c | lisp:8,GBR) | TRAPA         |
| 1100 | 01MD | disp     | MOV.B<br>@(disp:8 | 8,GBR),R0      | MOV.W<br>@(disp | :8,GBR),R0  | MOV.L<br>@(disp | :8,GBR),R0  | MOVA<br>@(dis |
| 1100 | 10MD | imm      | TST               | #imm:8,R0      | AND             | #imm:8,R0   | XOR             | #imm:8,R0   | OR            |
| 1100 | 11MD | imm      | TST.B<br>#imm:8,  | @(R0,GBR)      | AND.B<br>#imm:8 | 3,@(R0,GBR) | XOR.B<br>#imm:8 | ,@(R0,GBR)  | OR.B<br>#imm: |
| 1101 | Rn   | disp     | MOV.L             | @(disp:8,PC),R | n               |             |                 |             |               |
| 1110 | Rn   | imm      | MOV               | #imm:8,Rn      |                 |             |                 |             |               |
| 1111 | ***  | ****     | -                 |                |                 |             |                 |             |               |

Note: See the SH-3/SH-3E/SH3-DSP Programming Manual for details.

Rev. 5.00, 09/03, page 52 of 760

for more information on resets.

In the power-on reset state, the internal states of the CPU and the on-chip supporting negisters are initialized. In the manual reset state, the internal states of the CPU and re chip supporting modules other than the bus state controller (BSC) are initialized. Referegister configurations in the relevant sections for further details.

**Exception-Handling State:** This is a transient state during which the CPU's processor is altered by a reset, general exception, or interrupt exception handling.

In the case of a reset, the CPU branches to address H'A0000000 and starts executing to coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents are a saved program counter (SPC) and the status register (SR) contents are saved in the save register (SSR). The CPU branches to the start address of the user-coded exception ser found from the sum of the contents of the vector base address and the vector offset. See Exception Processing, for more information on resets, general exceptions, and interrupt

Program Execution State: In this state the CPU executes program instructions in seq

**Power-Down State:** In the power-down state, CPU operation halts and power consum reduced. There are two modes in the power-down state: sleep mode, and standby mode section 8, Power-Down Modes, for more information.

Bus-Released State: In this state the CPU has released the bus to a device that reques

Transitions between the states are shown in figure 2.8.

Rev. 5.00, 09/03, pa

Renesas

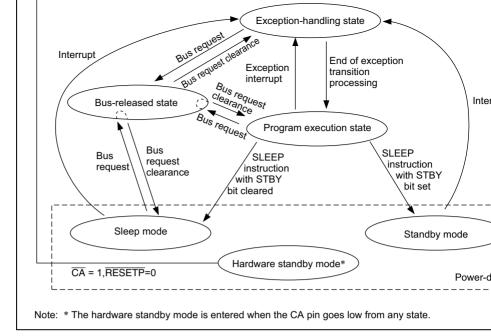



Figure 2.8 Processor State Transitions

#### 2.5.2 Processor Modes

There are two processor modes: privileged mode and user mode. The processor mode is determined by the processor mode bit (MD) in the status register (SR). User mode is see when the MD bit is 0, and privileged mode when the MD bit is 1. When the reset state of exception state is entered, the MD bit is set to 1. When exception handling ends, the MD cleared to 0 and user mode is entered. There are certain registers and bits which can onl accessed in privileged mode.

Rev. 5.00, 09/03, page 54 of 760

information for user-created address translation tables located in external memory. It espeed translation of virtual addresses into physical addresses. Address translation uses system and supports two page sizes (1 kbytes and 4 kbytes). The access right to virtua space can be set for privileged and user modes to provide memory protection.

#### 3.1.2 Role of MMU

The MMU is a feature designed to make efficient use of physical memory. As shown if a process is smaller in size than the physical memory, the entire process can be map physical memory. However, if the process increases in size to the extent that it no long physical memory, it becomes necessary to partition the process and to map those parts execution onto memory as occasion demands ((1)). Having the process itself consider mapping onto physical memory would impose a large burden on the process. To lighted burden, the idea of virtual memory was born as a means of performing en bloc mapping physical memory ((2)). In a virtual memory system, substantially more virtual memory physical memory is provided, and the process is mapped onto this virtual memory. Th only has to consider operation in virtual memory. Mapping from virtual memory to physical memory to allow the virtual memory required by a process to be mapping physical memory in a smooth fashion. Switching of physical memory is carried out virtual storage, etc.

The virtual memory system that came into being in this way is particularly effective in sharing system (TSS) in which a number of processes are running simultaneously ((3) processes running in a TSS had to take mapping onto virtual memory into consideration running, it would not be possible to increase efficiency. Virtual memory is thus used to load on the individual processes and so improve efficiency ((4)). In the virtual memory virtual memory is allocated to each process. The task of the MMU is to perform efficiency for these virtual memory areas onto physical memory. It also has a memory protection prevents one process from inadvertently accessing another process's physical memory.

When address translation from virtual memory to physical memory is performed using it may occur that the relevant translation information is not recorded in the MMU, wit that one process may inadvertently access the virtual memory allocated to another pro

Rev. 5.00, 09/03, pa

### Renesas

address translation information is normally performed by software. This makes it possil memory management to be performed flexibly by software.

The MMU has two methods of mapping from virtual memory to physical memory: a pa method using fixed-length address translation, and a segment method using variable-len address translation. With the paging method, the unit of translation is a fixed-size addres (usually of 1 to 64 kbytes) called a page. This LSI uses the paging method.

In the following text, the SH7709S address space in virtual memory is referred to as vir address space, and address space in physical memory as physical memory space.

Rev. 5.00, 09/03, page 56 of 760

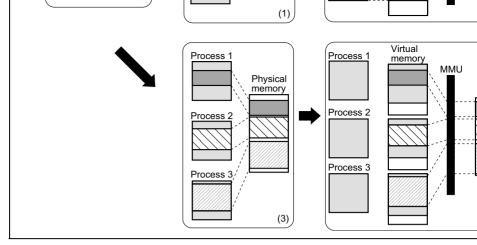



Figure 3.1 MMU Functions

RENESAS

(CCR) setting.

Mapping of the P1 area is fixed in physical address space (H'00000000 to H'1FFFF the P1 area, setting a virtual address MSB (bit 31) to 0 generates the corresponding address. P1 area accesses can be cached, and the cache control register (CCR) is se whether to cache or not. Write-back or write-through mode can be selected.

Mapping of the P2 area is fixed in physical address space (H'00000000 to H'1FFFF) P2 area, setting the top three virtual address bits (bits 31, 30, and 29) to 0 generates corresponding physical address. P2 area access cannot be cached.

The P1 and P2 areas are not mapped by the address translation table, so the TLB is and no exceptions such as TLB misses occur. Initialization of MMU control register exception handling routines, and the like should be located in the P1 and P2 areas. If that require high-speed processing should be placed in the P1 area, since it can be ca Some peripheral module control registers are located in area 1 of the physical addres When the physical address space is not used for address translation, these registers are located in the P2 area. When address translation is to be used, set no caching.

The P4 area is used for mapping peripheral module register addresses, etc.

• User Mode

In user mode, 2 Gbytes of the virtual address space from H'00000000 to H'7FFFFFF U0) can be accessed. U0 is mapped onto physical address space in page units, in acc with address translation table information.

Rev. 5.00, 09/03, page 58 of 760

| H'80000000              | 0.5-Gbyte fixed physical<br>space, cacheable<br>(write-back/write-through) | H'80000000<br>Area P1 |               |
|-------------------------|----------------------------------------------------------------------------|-----------------------|---------------|
| H'A0000000              | 0.5-Gbyte fixed<br>physical space,<br>non-cacheable                        | Area P2               | Address error |
| H'C0000000              | 0.5-Gbyte virtual space,<br>cacheable<br>(write-back/write-through)        | Area P3               |               |
| H'E0000000<br>H'FFFFFFF | 0.5-Gbyte control space,<br>non-cacheable                                  | Area P4<br>H'FFFFFFF  |               |
|                         | Privileged mode                                                            |                       | User mode     |

Figure 3.2 Virtual Address Space Mapping

**Physical Address Space:** The SH7709S supports a 32-bit physical address space, but bits are actually ignored and treated as a shadow. See section 10, Bus State Controlle details.

Address Translation: When the MMU is enabled, the virtual address space is divided called pages. Physical addresses are translated in page units. Address translation tables memory hold information such as the physical address that corresponds to the virtual a memory protection codes. When an access to an area other than P4 occurs, if the access address belongs to area P1 or P2 there is no TLB access and the physical address is un defined. If it belongs to area P0, P3, or U0, the TLB is searched by virtual address and virtual address is registered in the TLB, the access hits the TLB. The corresponding pl address and the page control information are read from the TLB and the physical address determined.

Rev. 5.00, 09/03, pa

### Renesas

SH7709S supports a 29-bit address space as the physical address space, the top 3 bits of physical address are ignored, and constitute a shadow space (see section 10, Bus State 0 (BSC)). For example, addresses H'00001000 in the P0 area, H'80001000 in the P1 area, H'A0001000 in the P2 area, and H'C0001000 in the P3 area are all mapped onto the sar address. When access to these addresses is performed with the cache enabled, an address top 3 bits of the physical address masked to 0 is stored in the cache address array to ens congruity.

**Single Virtual Memory Mode and Multiple Virtual Memory Mode:** There are two memory modes: single virtual memory mode and multiple virtual memory mode. In simemory mode, multiple processes run in parallel using the virtual address space excluse the physical address corresponding to a given virtual address is specified uniquely. In minimum virtual memory mode, multiple processes run in parallel sharing the virtual address space given virtual address may be translated into different physical addresses depending on the Single or multiple virtual mode is selected by a value set in the MMU control register (In terms of operation, the only difference between single virtual memory mode and multiple virtual memory mode is in the TLB address comparison method (see section 3.3.3, TLE Comparison).

Address Space Identifier (ASID): In multiple virtual memory mode, the address space (ASID) is used to differentiate between processes running in parallel and sharing virtual space. The ASID is 8 bits in length and can be set by software setting of the ASID of the running process in the page table entry register high (PTEH) within the MMU. When the is switched using the ASID, the TLB does not have to be purged.

In single virtual memory mode, the ASID is used to provide memory protection for pro running simultaneously and using the virtual address space exclusively (see section 3.4 Software Management).

Rev. 5.00, 09/03, page 60 of 760

|                                 |       |     | 3 3 4    |           |   |
|---------------------------------|-------|-----|----------|-----------|---|
| Page table entry register low   | PTEL  | R/W | Longword | Undefined | ŀ |
| Translation table base register | TTB   | R/W | Longword | Undefined | ŀ |
| TLB exception address register  | TEA   | R/W | Longword | Undefined | H |
| MMU control register            | MMUCR | R/W | Longword | *2        | ŀ |

Notes: 1. Initialized by a power-on reset or manual reset.

2. SV bit: undefined Other bits: 0

# **3.2** Register Description

There are five registers for MMU processing. These registers are located in address sp and can only be accessed from privileged mode by specifying the address.

- The page table entry register high (PTEH) register residing at address H'FFFFFFF consists of a virtual page number (VPN) and ASID. The VPN set is the VPN of the address at which the exception is generated in case of an MMU exception or addre exception. When the page size is 4 kbytes, the VPN is the upper 20 bits of the virtu but in this case the upper 22 bits of the virtual address are set. The VPN can also b by software. As the ASID, software sets the number of the currently executing pro VPN and ASID are recorded in the TLB by the LDTLB instruction.
- The page table entry register low (PTEL) register residing at address H'FFFFFF4 store the physical page number and page management information to be recorded by the LDTLB instruction. The contents of this register are only modified in respo software command. (Refer to section 3.4.3, MMU Instruction (LDTLB), and section MMU Exceptions.)
- The translation table base register (TTB) residing at address H'FFFFFF8, which p base address of the current page table. The hardware does not set any value in TTF automatically. TTB is available to software for general purposes.
- The TLB exception address register (TEA) residing at address H'FFFFFFC, whic virtual address corresponding to a TLB or address error exception. This value remauntil the next exception or interrupt.

Rev. 5.00, 09/03, pa

### Renesas

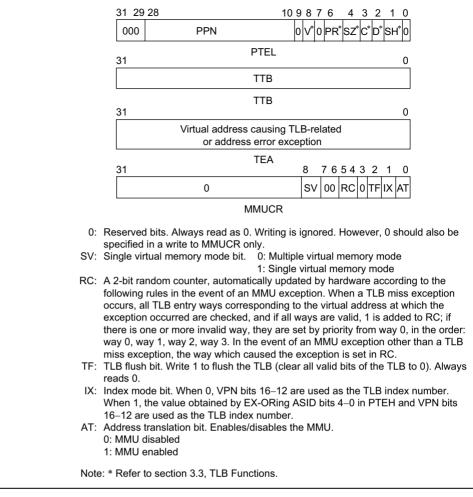



Figure 3.3 MMU Register Contents

Rev. 5.00, 09/03, page 62 of 760

#### 

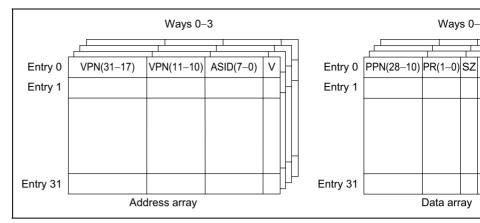



Figure 3.4 Overall Configuration of the TLB

RENESAS

Rev. 5.00, 09/03, pa

|        | т                                                                                                                                                                                                             | LB entry                                         |                     |              |           |      |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|--------------|-----------|------|
| Legend |                                                                                                                                                                                                               | ,                                                |                     |              |           |      |
| VPN:   | Virtual page number. Top 22 bits of virtual address for a 4-kbyte page. S are not stored in the TLB entry.                                                                                                    |                                                  |                     |              |           | they |
| ASID:  | Address space identifier. Indicates<br>virtual memory mode and user mode<br>the address is compared with the A                                                                                                | le, or in multiple                               | e virtual memory mo | de, if the S | SH bit is |      |
| SH:    | Share status bit<br>0 = Page not shared between process<br>1 = Page shared between processe                                                                                                                   |                                                  |                     |              |           |      |
| SZ:    | Page-size bit<br>0 = 1-kbyte page<br>1 = 4-kbyte page                                                                                                                                                         |                                                  |                     |              |           |      |
| V:     | Valid bit. Indicates whether entry is<br>0 = Invalid<br>1 = Valid<br>Cleared to 0 by a power-on reset. N                                                                                                      |                                                  | a manual reset      |              |           |      |
| PPN:   | Physical page number. Top 29 bits<br>of a 4-kbyte page. Attention must b<br>(see section 3.4.4, Avoiding Synony                                                                                               | of physical add<br>e paid to the sy              | ress. PPN bits 11-1 |              |           |      |
| PR:    | Set the most significant bit to 0.<br>Protection key field. 2-bit field enco<br>00: Reading only is possible in privi<br>01: Reading/writing is possible in privi<br>10: Reading/writing is possible in privi | leged mode.<br>rivileged mode.<br>leged/user moo | le.                 | ne page.     |           |      |
| C:     | Cacheable bit. Indicates whether th<br>0: Non-cacheable<br>1: Cacheable                                                                                                                                       |                                                  |                     |              |           |      |
| D:     | Dirty bit. Indicates whether the page<br>0 = Not written to<br>1 = Written to                                                                                                                                 | e has been writ                                  | en to.              |              |           |      |

Figure 3.5 Virtual Address and TLB Structure

Rev. 5.00, 09/03, page 64 of 760

number

The second method is used to prevent lowered TLB efficiency that results when multiprocesses run simultaneously in the same virtual address space (multiple virtual memory specific entry is selected by generating an index number for each process. Figures 3.6 show the indexing schemes.

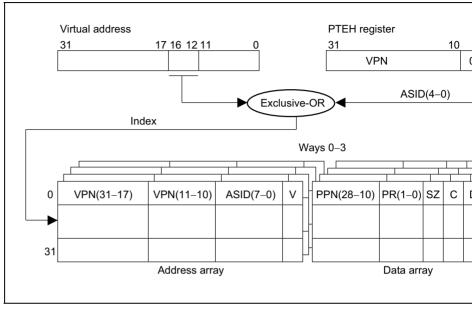



Figure 3.6 TLB Indexing (IX = 1)

Renesas

Rev. 5.00, 09/03, pa

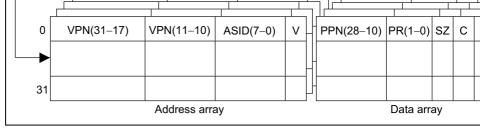



Figure 3.7 TLB Indexing (IX = 0)

#### 3.3.3 TLB Address Comparison

The results of address comparison determine whether a specific virtual page number is in the TLB. The virtual page number of the virtual address that accesses external memocompared to the virtual page number of the indexed TLB entry. The ASID within the P compared to the ASID of the indexed TLB entry. All four ways are searched simultane compared values match, and the indexed TLB entry is valid (V bit = 1), the hit is regist

It is necessary to have software ensure that TLB hits do not occur simultaneously in mo way, as hardware operation is not guaranteed if this occurs. For example, if there are tw TLB entries with the same VPN and a setting is made such that a TLB hit is made only process with ASID = H'FF when one is in the shared state (SH = 1) and the other in the state (SH = 0), then if the ASID in PTEH is set to H'FF, there is a possibility of simulta hits in both these ways. It is therefore necessary to ensure that this kind of setting is not software.

The object compared varies depending on the page management information (SZ, SH) entry. It also varies depending on whether the system supports multiple virtual memory virtual memory.

The page-size information determines whether VPN (11-10) is compared. VPN (11-10) compared for 1-kbyte pages (SZ = 0) but not for 4-kbyte pages (SZ = 1).

Rev. 5.00, 09/03, page 66 of 760

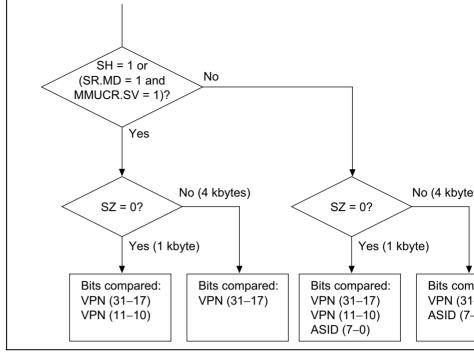



Figure 3.8 Objects of Address Comparison

Renesas

Rev. 5.00, 09/03, pa

memory.

The C bit in the entry indicates whether the referenced page resides in a cacheable or no cacheable area of memory. When the control register in area 1 is mapped, set the C bit to PR field specifies the access rights for the page in privileged and user modes and is used memory. Attempts at nonpermitted accesses result in TLB protection violation exception.

Access states designated by the D, C, and PR bits are shown in table 3.2.

|        |    | Privileged Mode           |                                       | User Mode                                |                        |
|--------|----|---------------------------|---------------------------------------|------------------------------------------|------------------------|
|        |    | Reading                   | Writing                               | Reading                                  | Writing                |
| D bit  | 0  | Permitted                 | Initial page write exception          | Permitted                                | Initial pa<br>exceptio |
|        | 1  | Permitted                 | Permitted                             | Permitted                                | Permitte               |
| C bit  | 0  | Permitted<br>(no caching) | Permitted<br>(no caching)             | Permitted<br>(no caching)                | Permitte<br>(no cach   |
|        | 1  | Permitted (with caching)  | Permitted<br>(with caching)           | Permitted<br>(with caching)              | Permitte<br>(with cac  |
| PR bit | 00 | Permitted                 | TLB protection<br>violation exception | TLB protection<br>violation<br>exception | TLB prot<br>violation  |
|        | 01 | Permitted                 | Permitted                             | TLB protection<br>violation<br>exception | TLB prot<br>violation  |
|        | 10 | Permitted                 | TLB protection<br>violation exception | Permitted                                | TLB prot<br>violation  |
|        | 11 | Permitted                 | Permitted                             | Permitted                                | Permitte               |

#### Table 3.2 Access States Designated by D, C, and PR Bits

Rev. 5.00, 09/03, page 68 of 760

determines the MMU exception and whether the cache is to be accessed (using the details of the determination method and the hardware processing, see section 3.5, I Exceptions.

#### 3.4.2 MMU Software Management

There are three kinds of MMU software management, as follows.

- MMU register setting. MMUCR setting, in particular, should be performed in area for which address translation is not performed. Also, since SV and IX bit changes address translation system changes, in this case, TLB flushing should be performed simultaneously writing 1 to the TF bit also. Since MMU exceptions are not genera MMU disabled state with the AT bit cleared to 0, use in the disabled state must be with software that does not use the MMU.
- TLB entry recording, deletion, and reading. TLB entry recording can be done in tw using the LDTLB instruction, or by writing directly to the memory-mapped TLB. entry deletion and reading, the memory allocation TLB can be accessed. See section MMU Instruction (LDTLB), for details of the LDTLB instruction, and section 3.6, Configuration of Memory-Mapped TLB, for details of the memory-mapped TLB.
- 3. MMU exception processing. When an MMU exception is generated, it is handled of information set from the hardware side. See section 3.5, MMU Exceptions, for a

When single virtual memory mode is used, it is possible to create a state in which phymemory access is enabled in the privileged mode only by clearing the share status bit specify recording of all TLB entries. This strengthens inter-process memory protection enables special access levels to be created in the privileged mode only.

Recording a 1-kbyte page TLB entry may result in a synonym problem. See section 3. Avoiding Synonym Problems.

Rev. 5.00, 09/03, pa

When an MMU exception occurs, the virtual page number of the virtual address that ca exception is set in PTEH by hardware. The way is set in the RC bit of MMUCR for eac exception (see figure 3.3). Consequently, if the LDTLB instruction is issued after settin PTEL in the MMU exception handling routine, TLB entry recording is possible. Any T can be updated by software rewriting of PTEH and the RC bits in MMUCR.

As the LDTLB instruction changes address translation information, there is a risk of de address translation information if this instruction is issued in the P0, U0, or P3 area. Mattherefore, that this instruction is issued in the P1 or P2 area. Also, an instruction associate access to the P0, U0, or P3 area (such as the RTE instruction) should be issued at least instructions after the LDTLB instruction.

Rev. 5.00, 09/03, page 70 of 760

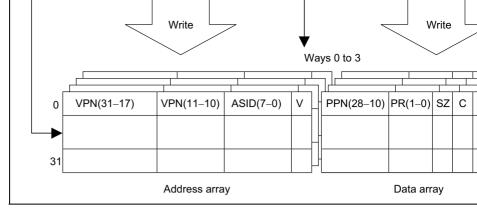



Figure 3.9 Operation of LDTLB Instruction

RENESAS

Rev. 5.00, 09/03, pa

offset, and since they are not subject to address translation, they are the same as physical bits 11–4. In cache-based address comparison and recording in the address array, since tag address is a physical address, physical address bits 28–10 are recorded.

When a 1-kbyte page is used, also, a cache index number is created using virtual addree However, in case of a 1-kbyte page, virtual address bit (11, 10) is subject to address tra and therefore may not be the same as physical address bit (11, 10). Consequently, the p address is recorded in a different entry from that of the index number indicated by the p address in the cache address array.

For example, assume that, with 1-kbyte page TLB entries, TLB entries for which the for translation has been performed are recorded in two TLBs:

| Virtual address 1 | H'00000000 | $\rightarrow$ | physical address | H'00000400 |
|-------------------|------------|---------------|------------------|------------|
| Virtual address 2 | H'00000400 | $\rightarrow$ | physical address | H'00000400 |

Virtual address 1 is recorded in cache entry H'00, and virtual address 2 in cache entry H two virtual addresses are recorded in different cache entries despite the fact that the phy addresses are the same, memory inconsistency will occur as soon as a write is performe virtual address. Therefore, when recording a 1-kbyte TLB entry, if the physical address as a physical address already used in another TLB entry, it should be recorded in such a physical address bit (11, 10) is the same.

Note: In readiness for the future expansion of the SuperH RISC engine family, we react that, when multiple sets of address translation information are mapped onto the physical area of memory, you set the VPN numbers so that each VPN [20:10] is the others. We also recommend that you do not map multiple sets of address-translation that include 1- and 4-kbyte pages to a single physical area.

Rev. 5.00, 09/03, page 72 of 760

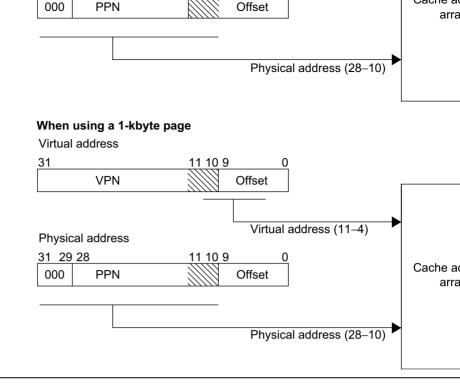



Figure 3.10 Synonym Problem

Rev. 5.00, 09/03, pa

software operations.

Hardware Operations: In a TLB miss, the SH7709S hardware executes a set of prescr operations, as follows:

- 1. The VPN field of the virtual address causing the exception is written to the PTEH re
- 2. The virtual address causing the exception is written to the TEA register.
- Either exception code H'040 for a load access, or H'060 for a store access, is writter EXPEVT register.
- 4. The PC value indicating the address of the instruction in which the exception occur written to the save program counter (SPC). If the exception occurred in a delay slot value indicating the address of the related delayed branch instruction is written to the
- 5. The contents of the status register (SR) at the time of the exception are written to th status register (SSR).
- 6. The mode (MD) bit in SR is set to 1 to place the SH7709S in the privileged mode.
- 7. The block (BL) bit in SR is set to 1 to mask any further exception requests.
- 8. The register bank (RB) bit in SR is set to 1.
- 9. The random counter (RC) field in the MMU control register (MMUCR) is increment when all ways are checked for the TLB entry corresponding to the logical address a exception occurred, and all ways are valid. If one or more ways are invalid, those w in RC in prioritized order from way 0 through way 1, way 2, and way 3.
- 10. Execution branches to the address obtained by adding the value of the VBR content H'00000400 to invoke the user-written TLB miss exception handler.

**Software (TLB Miss Handler) Operations:** The software searches the page tables in a memory and allocates the required page table entry. Upon retrieving the required page to software must execute the following operations:

1. Write the value of the physical page number (PPN) field and the protection key (PR (SZ), cacheable (C), dirty (D), share status (SH), and valid (V) bits of the page table recorded in the address translation table in the external memory into the PTEL regist SH7709S.

Rev. 5.00, 09/03, page 74 of 760

selected TLB entry are compared and a valid entry is found to match, but the type of *a* permitted by the access rights specified in the PR field. TLB protection violation exce processing includes both hardware and software operations.

**Hardware Operations:** In a TLB protection violation exception, the SH7709S hardw a set of prescribed operations, as follows:

- 1. The VPN field of the virtual address causing the exception is written to the PTEH
- 2. The virtual address causing the exception is written to the TEA register.
- Either exception code H'0A0 for a load access, or H'0C0 for a store access, is writt EXPEVT register.
- 4. The PC value indicating the address of the instruction in which the exception occur written into SPC (if the exception occurred in a delay slot, the PC value indicating of the related delayed branch instruction is written into SPC).
- 5. The contents of SR at the time of the exception are written to SSR.
- 6. The MD bit in SR is set to 1 to place the SH7709S in the privileged mode.
- 7. The BL bit in SR is set to 1 to mask any further exception requests.
- 8. The register bank (RB) bit in SR is set to 1.
- 9. The way that generated the exception is set in the RC field in MMUCR.
- 10. Execution branches to the address obtained by adding the value of the VBR content H'00000100 to invoke the TLB protection violation exception handler.

**Software (TLB Protection Violation Handler) Operations:** Software resolves the T protection violation and issues the RTE (return from exception handler) instruction to the handler and return to the instruction stream.

Rev. 5.00, 09/03, pa

- 1. The virt humber of the virtual address eausing the exception is written to the rite
- 2. The virtual address causing the exception is written to the TEA register.
- 3. The way number causing the exception is written to RC in MMUCR.
- Either exception code H'040 for a load access, or H'060 for a store access, is writter EXPEVT register.
- 5. The PC value indicating the address of the instruction in which the exception occurr written to the SPC. If the exception occurred in a delay slot, the PC value indicating address of the delayed branch instruction is written to the SPC.
- 6. The contents of SR at the time of the exception are written into SSR.
- 7. The mode (MD) bit in SR is set to 1 to place the SH7709S in the privileged mode.
- 8. The block (BL) bit in SR is set to 1 to mask any further exception requests.
- 9. The register bank (RB) bit in SR is set to 1.
- 10. Execution branches to the address obtained by adding the value of the VBR content H'00000100, and the TLB protection violation exception handler starts.

**Software (TLB Invalid Exception Handler) Operations:** The software searches the p in external memory and assigns the required page table entry. Upon retrieving the required table entry, software must execute the following operations:

- 1. Write the values of the physical page number (PPN) field and the values of the prote (PR), page size (SZ), cacheable (C), dirty (D), share status (SH), and valid (V) bits of table entry recorded in the external memory to the PTEL register.
- 2. If using software for way selection for entry replacement, write the desired value to field in MMUCR.
- 3. Issue the LDTLB instruction to load the contents of PTEH and PTEL into the TLB.
- 4. Issue the RTE instruction to terminate the handler and return to the instruction strea RTE instruction should be issued after two LDTLB instructions.

Rev. 5.00, 09/03, page 76 of 760

- 1. The VPN field of the virtual address causing the exception is written to the PTEH
- 2. The virtual address causing the exception is written to the TEA register.
- 3. Exception code H'080 is written to the EXPEVT register.
- 4. The PC value indicating the address of the instruction in which the exception occu written to the SPC. If the exception occurred in a delay slot, the PC value indicatin address of the related delayed branch instruction is written to the SPC.
- 5. The contents of SR at the time of the exception are written to SSR.
- 6. The MD bit in SR is set to 1 to place the SH7709S in the privileged mode.
- 7. The BL bit in SR is set to 1 to mask any further exception requests.
- 8. The register bank (RB) bit in SR is set to 1.
- 9. The way that caused the exception is set in the RC field in MMUCR.
- 10. Execution branches to the address obtained by adding the value of the VBR conter H'00000100 to invoke the user-written initial page write exception handler.

**Software (Initial Page Write Handler) Operations:** The software must execute the operations:

- 1. Retrieve the required page table entry from external memory.
- 2. Set the D bit of the page table entry in the external memory to 1.
- 3. Write the value of the PPN field and the PR, SZ, C, D, SH, and V bits of the page in the external memory to the PTEL register.
- 4. If using software for way selection for entry replacement, write the desired value t field in MMUCR.
- 5. Issue the LDTLB instruction to load the contents of PTEH and PTEL into the TLE
- 6. Issue the RTE instruction to terminate the handler and return to the instruction stree RTE instruction should be issued after two LDTLB instructions.

Figure 3.11 shows the flowchart for MMU exceptions.

Rev. 5.00, 09/03, pa

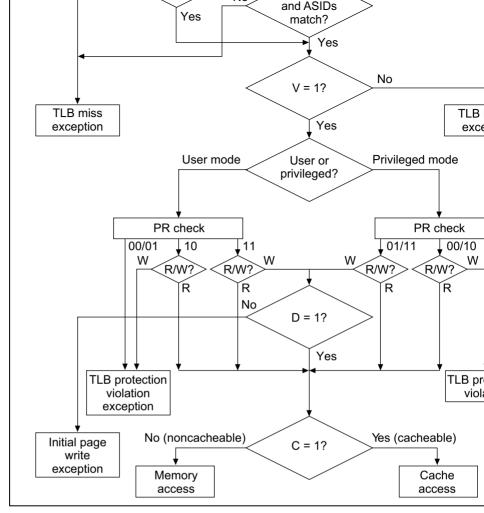



Figure 3.11 MMU Exception Generation Flowchart

Rev. 5.00, 09/03, page 78 of 760

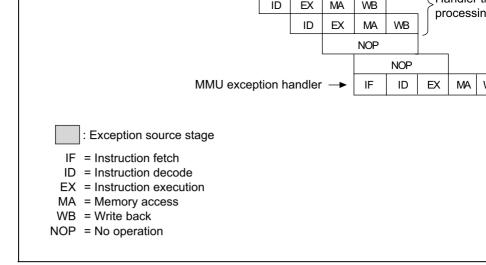



Figure 3.12 MMU Exception Signals in Instruction Fetch

Renesas

Rev. 5.00, 09/03, pa

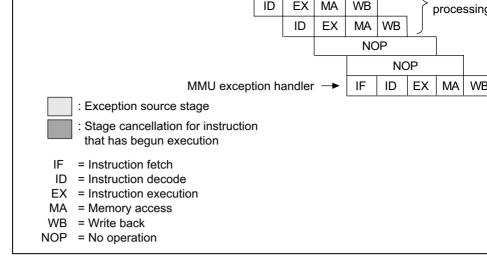



Figure 3.13 MMU Exception Signals in Data Access

## 3.6 Configuration of Memory-Mapped TLB

To allow the management of TLB operations by software, the MOV instruction can be privileged mode, to read and write TLB contents. The TLB is mapped to the P4 area of address space. The TLB address array (VPN, V bit, and ASID) is mapped to H'F20000 H'F2FFFFFF, and the TLB data array (PPN, PR, SZ, CD, S, and H bits) is mapped to H to H'F3FFFFFFF. It is also possible to access the V bits in the address array from the dat Only longword access is possible, for both the address and data arrays.

#### 3.6.1 Address Array

The address array is mapped to H'F2000000 to H'F2FFFFFF. To access the address array bit address field (for read/write access) and 32-bit data field (for write access) must be a The address field has the information that selects the entry to be accessed; the data field the VPN, the V bit, and the ASID to be written to the address array (figure 3.14 (1)).

Rev. 5.00, 09/03, page 80 of 760

#### (2) Address Array Write

Writes the data set in the data field to the entry that corresponds to the entry address that were specified in the address field.

#### 3.6.2 Data Array

The data array is assigned to H'F3000000 to H'F3FFFFFF. To access a data array, the address field (for read/write operations), and 32-bit data field (for write operations) m specified. These are specified in the general register. The address section specifies info selecting the entry to be accessed; the data section specifies the longword data to be w data array (figure 3.14 (2)).

In the address section, specify the entry address for selecting the entry (bits 16–12), W selecting the way (bits 9–8: 00 is way 0, 01 is way 1, 10 is way 2, 11 is way 3), and H indicate data array access (bits 31–24). The IX bit in MMUCR indicates whether an E taken of the entry address and ASID.

Both reading and writing use the longword of the data array specified by the index add way number. The access size of the data array is fixed at longword.

Renesas

Rev. 5.00, 09/03, pa

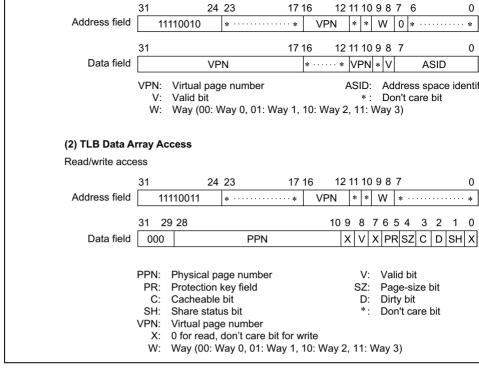



Figure 3.14 Specifying Address and Data for Memory-Mapped TLB Acc

Rev. 5.00, 09/03, page 82 of 760

```
; MMUCR.IX=0
; VPN(31-17)=B'0001 0101 0100 011 VPN(11-10)=B'10 ASID=B'0
; corresponding entry association is made from the entry selec
; the VPN(16-12)=B'1 0011 index, the V bit of the hit way is c
; 0,achieving invalidation.
MOV.L R0,@R1
```

**Reading the Data of a Specific Entry:** This example reads the data section of a specific entry. The bit order indicated in the data field in figure 3.14 (2) is read. R0 specifies the and the data section of a selected entry is read to R1.

```
; R1=H'F300 4300 VPN(16-12)=B'00100 Way 3
MOV.L @R0,R1
```

## 3.7 Usage Note

The operations listed below must only be performed when the TLB is disabled or in the area. Any subsequent operation that accesses the P0, P3, or U0 area must take place two instructions after any of the below operations.

- 1. Change SR.MD or SR.BL
- 2. Execute the LDTLB instruction
- 3. Write to the memory-mapped TLB
- 4. Change MMUCR.

Rev. 5.00, 09/03, pa

Rev. 5.00, 09/03, page 84 of 760

termination of the executing instruction, control is passed to a user-written exception h However, in response to an interrupt request, normal program execution continues unt the executing instruction. Here, all exceptions other than resets and interrupts will be general exceptions. There are thus three types of exceptions: resets, general exception interrupts.

#### 4.1.2 Register Configuration

Table 4.1 lists the registers used for exception handling. A register with an undefined should be initialized by software.

#### Register Size **Initial Value** Abbr. R/W **TRAPA** exception register TRA R/W Longword Undefined EXPEVT R/W Exception event register Longword Power-on reset: H'000 Manual reset: H'020\*1 INTEVT R/W Longword Undefined Interrupt event register Undefined Interrupt event register2 INTEVT2 R Longword

#### Table 4.1 Register Configuration

Notes: 1. H'000 is set in a power-on reset, and H'020 in a manual reset.

2. When address translation by the MMU does not apply, the address in parer should be used.

## 4.2 Exception Handling Function

## 4.2.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SI in the saved program counter (SPC) and saved status register (SSR), respectively, and the exception handler is invoked from a vector address. The return from exception har instruction is issued by the exception handler routine on completion of the routine, res

RENESAS

Rev. 5.00, 09/03, pa

A

Н' Н'

H'

H'

(⊢

- 5. An exception code identifying the exception event is written to bits 11–0 of the exce event (EXPEVT) or interrupt event (INTEVT or INTEVT2) register.
- 6. Instruction execution jumps to the designated exception vector address to invoke th routine.

#### 4.2.2 Exception Vector Addresses

The reset vector address is fixed at H'A0000000. The other three events are assigned of the vector base address by software. Translation look-aside buffer (TLB) miss exceptio offset from the vector base address of H'00000400. The vector address offset for genera events other than TLB miss exceptions is H'00000100. The interrupt vector address off H'00000600. The vector base address is loaded into the vector base register (VBR) by s The vector base address should reside in P1 or P2 fixed physical address space. Figure 4 the relationship between the vector base address, the vector offset, and the vector table.

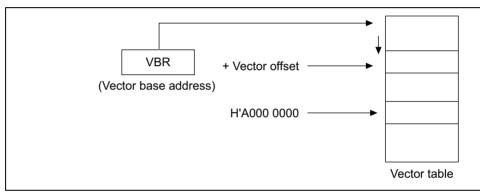


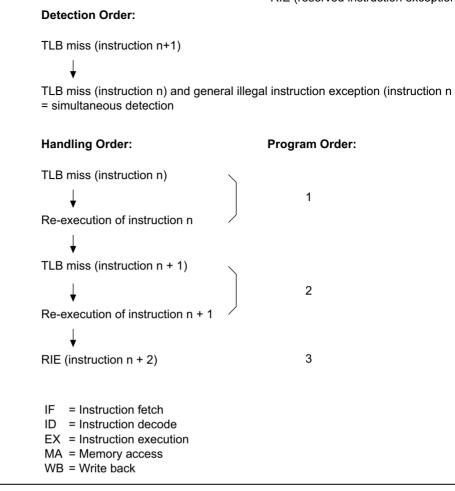

Figure 4.1 Vector Table

In table 4.2, exceptions and their vector addresses are listed by exception type, instructic completion state, relative acceptance priority, relative order of occurrence within an instruction sequence and vector address for exceptions and their vector addresses.

Rev. 5.00, 09/03, page 86 of 760

| events                |           | TLB miss                                            | 2               | 2   | _ |
|-----------------------|-----------|-----------------------------------------------------|-----------------|-----|---|
|                       |           | TLB invalid<br>(instruction access)                 | 2               | 3   | _ |
|                       |           | TLB protection<br>violation (instruction<br>access) | 2               | 4   | _ |
|                       |           | General illegal instruction exception               | 2               | 5   |   |
|                       |           | Illegal slot instruction exception                  | 2               | 5   |   |
|                       |           | CPU address error<br>(data access)                  | 2               | 6   |   |
|                       |           | TLB miss (data access not in repeat loop)           | 2               | 7   |   |
|                       |           | TLB invalid (data<br>access)                        | 2               | 8   | _ |
|                       |           | TLB protection<br>violation (data access)           | 2               | 9   |   |
|                       |           | Initial page write                                  | 2               | 10  |   |
|                       | Completed | Unconditional trap<br>(TRAPA instruction)           | 2               | 5   |   |
|                       |           | User breakpoint trap                                | 2               | n*2 |   |
|                       |           | DMA address error                                   | 2               |     |   |
| General               | Completed | Nonmaskable interrupt                               | 3               |     |   |
| interrupt<br>requests |           | External hardware<br>interrupt                      | 4 <sup>*3</sup> | _   | _ |
|                       |           | UDI interrupt                                       | 4 <sup>*3</sup> | _   | _ |

 The user defines the break point traps. 1 is a break point before instruction and 11 is a break point after instruction execution. For an operand break point


3. Use software to specify relative priorities of external hardware interrupts ar module interrupts (see section 6, Interrupt Controller (INTC)).

Rev. 5.00, 09/03, pa

detected in a subsequent instruction.

Three general exception events (reserved instruction code exception, unconditional trap illegal instruction exception) are detected in the decode stage (ID stage) of different ins and are mutually exclusive events in the instruction pipeline. They have the same execupriority. Figure 4.2 shows the order of general exception acceptance.

Rev. 5.00, 09/03, page 88 of 760



#### Figure 4.2 Example of Acceptance Order of General Exceptions

All exceptions other than a reset are detected in the pipeline ID stage, and accepted at boundaries. However, an exception is not accepted between a delayed branch instruction delay slot. A re-execution type exception detected in a delay slot is accepted before ex the delayed branch instruction. A completion type exception detected in a delayed branch instruction are set.

Rev. 5.00, 09/03, pa

| Exception Event                        | Exception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Power-on reset                         | H'000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Manual reset                           | H'020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| UDI reset                              | H'000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| TLB miss/invalid (read)                | H'040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| TLB miss/invalid (write)               | H'060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Initial page write                     | H'080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| TLB protection violation (read)        | H'0A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| TLB protection violation (write)       | H'0C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| CPU address error (read)               | H'0E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| CPU address error (write)              | H'100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Unconditional trap (TRAPA instruction) | H'160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Illegal general instruction exception  | H'180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Illegal slot instruction exception     | H'1A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| User breakpoint trap                   | H'1E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| DMA address error                      | H'5C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Nonmaskable interrupt                  | H'1C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| UDI interrupt                          | H'5E0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| External hardware interrupts:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| IRL3–IRL0 = 0000                       | H'200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| IRL3–IRL0 = 0001                       | H'220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                        | Power-on reset         Manual reset         UDI reset         TLB miss/invalid (read)         TLB miss/invalid (write)         Initial page write         TLB protection violation (read)         TLB protection violation (write)         CPU address error (read)         CPU address error (write)         Unconditional trap (TRAPA instruction)         Illegal general instruction exception         Illegal slot instruction exception         User breakpoint trap         DMA address error         Nonmaskable interrupt         UDI interrupt         External hardware interrupts:         IRL3–IRL0 = 0000 |  |

# Table 4.3Exception Codes

Rev. 5.00, 09/03, page 90 of 760

| IRL3–IRL0 = 1000 | H'300 |
|------------------|-------|
| IRL3–IRL0 = 1001 | H'320 |
| IRL3–IRL0 = 1010 | H'340 |
| IRL3–IRL0 = 1011 | H'360 |
| IRL3–IRL0 = 1100 | H'380 |
| IRL3–IRL0 = 1101 | H'3A0 |
| IRL3–IRL0 = 1110 | H'3C( |
|                  |       |

#### 4.2.5 Exception Request Masks

When the BL bit in SR is 0, exceptions and interrupts are accepted.

If a general exception event occurs when the BL bit in SR is 1, the CPU's internal reg to their post-reset state, other module registers retain their contents prior to the genera and a branch is made to the same address (H'A0000000) as for a reset.

If a general interrupt occurs when BL = 1, the request is masked (held pending) and n until the BL bit is cleared to 0 by software. For reentrant exception handling, SPC and be saved and the BL bit in SR cleared to 0.

#### 4.2.6 Returning from Exception Handling

The RTE instruction is used to return from exception handling. When RTE is executed value is set in PC, and the SSR value in SR, and the return from exception handling is by branching to the SPC address.

If SPC and SSR have been saved in external memory, set the BL bit in SR to 1, then read and SSR, and issue an RTE instruction.

Rev. 5.00, 09/03, pa

EXPEVI can also be modified by software.

- 2. The interrupt event register (INTEVT) resides at address H'FFFFFD8, and contain interrupt exception code or a code indicating the interrupt priority. Which is set whe interrupt occurs depends on the interrupt source (see tables 6.4 and 6.5). The except interrupt priority code is set automatically by hardware when an exception occurs. I can also be modified by software.
- Interrupt event register 2 (INTEVT2) resides at address H'04000000, and contains a exception code. The exception code set in INTEVT2 is that for an interrupt request. exception code is set automatically by hardware when an exception occurs.
- 4. The TRAPA exception register (TRA) resides at address H'FFFFFD0, and contain immediate data (imm) for the TRAPA instruction. TRA is set automatically by hard a TRAPA instruction is executed. TRA can also be modified by software.

The bit configurations of the EXPEVT, INTEVT, INTEVT2, and TRA registers are she figure 4.3.

| EXPEVT, | INTEVT, and IN                     | NTEVT2 registers                    | TRA register |   |    |
|---------|------------------------------------|-------------------------------------|--------------|---|----|
| 31      |                                    | 11 0                                | 31           |   | 9  |
| 0       | 0                                  | Exception code                      | 0            | 0 | ir |
|         | erved bits, alwa<br>t immediate da | ays read as 0<br>ta in TRAPA instru | ction        |   |    |

Figure 4.3 Bit Configurations of EXPEVT, INTEVT, INTEVT2, and TRA Re

Rev. 5.00, 09/03, page 92 of 760

sequence consists of the following operations:

- 1. The MD bit in SR is set to 1 to place the SH7709S in privileged mode.
- 2. The BL bit in SR is set to 1, masking any subsequent exceptions (except the NMI is when the BLMSK bit is 1).
- 3. The RB bit in SR is set to 1.
- 4. An encoded value of H'000 in a power-on reset or H'020 in a manual reset is writte 0 of the EXPEVT register to identify the exception event.
- 5. Instruction execution jumps to the user-written exception handler at address H'A00

#### 4.4.2 Interrupts

An interrupt handling request is accepted on completion of the current instruction. The acceptance sequence consists of the following operations:

- 1. The contents of PC and SR are saved to SPC and SSR, respectively.
- 2. The BL bit in SR is set to 1, masking any subsequent exceptions (except the NMI is when the BLMSK bit is 1).
- 3. The MD bit in SR is set to 1 to place the SH7709S in privileged mode.
- 4. The RB bit in SR is set to 1.
- 5. An encoded value identifying the exception event is written to bits 11–0 of the INTEVT2 registers.
- 6. Instruction execution jumps to the vector location designated by the sum of the val contents of the vector base register (VBR) and H'00000600 to invoke the exception

Renesas

Rev. 5.00, 09/03, pa

- 4. The RB bit in SR is set to 1.
- Instruction execution jumps to the vector location designated by either the sum of the base address and offset H'00000400 in the vector table in a TLB miss trap, or by the vector base address and offset H'00000100 for exceptions other than TLB miss traps the exception handler.

# 4.5 Individual Exception Operations

This section describes the conditions for specific exception handling, and this LSI oper

## 4.5.1 Resets

- Power-On Reset
  - Conditions: RESETP low
  - Operations: EXPEVT set to H'000, VBR and SR initialized, branch to PC = H'A Initialization sets the VBR register to H'0000000. In SR, the MD, RB and BL bi 1 and the interrupt mask bits (I3 to I0) are set to B'1111. The CPU and on-chip p modules are initialized. See the register descriptions in the relevant sections for power-on reset must always be performed when powering on. A low level is out the RESETOUT pin, and a high level is output from the STATUS0 and STATU
- Manual Reset
  - Conditions:  $\overline{\text{RESETM}}$  low
  - Operations: EXPEVT set to H'020, VBR and SR initialized, branch to PC = H'A Initialization sets the VBR register to H'0000000. In SR, the MD, RB, and BL b to 1 and the interrupt mask bits (I3 to I0) are set to B'1111. The CPU and on-chi peripheral modules are initialized. See the register descriptions in the relevant se details. A low level is output from the RESETOUT pin, and a high level is output STATUS0 and STATUS1 pins.

Rev. 5.00, 09/03, page 94 of 760

|                   | Conditions for Transition | Internal State |                                         |  |
|-------------------|---------------------------|----------------|-----------------------------------------|--|
| Туре              | to Reset State            | CPU            | On-Chip Periphera                       |  |
| Power-on<br>reset | RESETP = Low              | Initialized    | (See register config relevant sections) |  |
| Manual<br>reset   | RESETM = Low              | Initialized    |                                         |  |
| UDI<br>reset      | UDI reset command input   | Initialized    |                                         |  |

#### 4.5.2 General Exceptions

- TLB miss exception
  - Conditions: Comparison of TLB addresses shows no address match.
  - Operations: The virtual address (32 bits) that caused the exception is set in TEA corresponding virtual page number (22 bits) is set in PTEH (31–10). The ASID indicates the ASID at the time the exception occurred. If all ways are valid, 1 is the RC bit in MMUCR. If there is one or more invalid way, they are set by prior with way 0.

PC and SR of the instruction that generated the exception are saved to SPC and SS respectively. If the exception occurred during a read, H'040 is set in EXPEVT; if the occurred during a write, H'060 is set in EXPEVT. The BL, MD and RB bits in SR and a branch occurs to PC = VBR + H'0400.

To speed up TLB miss processing, the offset differs from other exceptions.

Rev. 5.00, 09/03, pa

occurred during a write, H'060 is set in EXPEVT. The BL, MD, and RB bits in SR a and a branch occurs to PC = VBR + H'0100.

- Initial page write exception
  - Conditions: A hit occurred to the TLB for a store access, but the TLB entry data 0.

This occurs for initial writes to the page registered by the load.

— Operations: The virtual address (32 bits) that caused the exception is set in TEA corresponding virtual page number (22 bits) is set in PTEH (31–10). The ASID indicates the ASID at the time the exception occurred. The way that generated the exception is set in the RC bit in MMUCR.

PC and SR of the instruction that generated the exception are saved to SPC and SSF respectively. H'080 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1 branch occurs to PC = VBR + H'0100.

- TLB protection exception
  - Conditions: When a hit access violates the TLB protection information (PR bits) below:

| PR | Privileged mode    | User mode          |
|----|--------------------|--------------------|
| 00 | Only read enabled  | No access          |
| 01 | Read/write enabled | No access          |
| 10 | Only read enabled  | Only read enabled  |
| 11 | Read/write enabled | Read/write enabled |

— Operations: The virtual address (32 bits) that caused the exception is set in TEA corresponding virtual page number (22 bits) is set in PTEH (31–10). The ASID indicates the ASID at the time the exception occurred. The way that generated the exception is set in the RC bits in MMUCR.

PC and SR of the instruction that generated the exception are saved to SPC and SSF respectively. If the exception occurred during a read, H'0A0 is set in EXPEVT; if th occurred during a write, H'0C0 is set in EXPEVT. The BL, MD, and RB bits in SR and a branch occurs to PC = VBR + H'0100.

Rev. 5.00, 09/03, page 96 of 760

SR of the instruction that generated the exception are saved to SPC and SSR, real f the exception occurred during a read, H'0E0 is set in EXPEVT; if the except during a write, H'100 is set in EXPEVT. The BL, MD, and RB bits in SR are s branch occurs to PC = VBR + H'0100. See section 3.5.5, Processing Flow in E MMU Exception, for more information.

- Unconditional trap
  - Conditions: TRAPA instruction executed
  - Operations: The exception is a processing-completion type, so PC of the instruction the TRAPA instruction is saved to SPC. SR from the time when the TRAPA in was executing is saved to SSR. The 8-bit immediate value in the TRAPA instruction quadrupled and set in TRA (9–0). H'160 is set in EXPEVT. The BL, MD, and SR are set to 1 and a branch occurs to PC = VBR + H'0100.
- Illegal general instruction exception
  - Conditions:
    - a. When undefined code not in a delay slot is decoded
       Delay branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTI BF/S

Undefined instruction: H'Fxxx

- b. When a privileged instruction not in a delay slot is decoded in user mode Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP; Instructions tha GBR with LDC/STC are not privileged instructions and therefore do not approximately and the statement of the s
- Operations: PC and SR of the instruction that generated this instruction are sav and SSR, respectively. H'180 is set in EXPEVT. The BL, MD, and RB bits in S 1 and a branch occurs to PC = VBR + H'100. When an undefined code other the decoded, operation cannot be guaranteed.

Rev. 5.00, 09/03, pa

- c. When a privileged instruction in a delay slot is decoded in user mode Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP; Instructions that GBR with LDC/STC are not privileged instructions and therefore do not app
- Operations: PC of the immediately preceding delay branch instruction is saved t of the instruction that generated the exception is saved to SSR. H'1A0 is set in E The BL, MD, and RB bits in SR are set to 1 and a branch occurs to PC = VBR + When an undefined instruction other than H'Fxxx is decoded, operation cannot b guaranteed.
- User break point trap
  - Conditions: When a break condition set in the user break controller is satisfied
  - Operations: When a post-execution break occurs, PC of the instruction immedia the instruction that set the break point is set in SPC. If a pre-execution break occurs the instruction that set the break point is set in SPC. SR when the break occurs is SSR. H'1E0 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1 and occurs to PC = VBR + H'0100. See section 7, User Break Controller, for more in
- DMA address error
  - Conditions:
    - a. Word data accessed from addresses other than word boundaries (4n + 1, 4n 1)
    - b. Longword accessed from addresses other than longword boundaries (4n + 1, 4n + 3)
  - Operations: PC of the instruction immediately after the instruction executed before exception occurs is saved to SPC. SR when the exception occurs is saved to SSF set in EXPEVT. The BL, MD, and RB bits in SR are set to 1 and a branch occur VBR + H'0100.

Rev. 5.00, 09/03, page 98 of 760

- section 6, Interrupt Controller (INTC), for more information.
- 2. IRL Interrupts
  - Conditions: The value of the interrupt mask bits in SR is lower than the IRL3– and the BL bit in SR is 0. The interrupt is accepted at an instruction boundary.
  - Operations: The PC value after the instruction at which the interrupt is accepte SPC. SR at the time the interrupt is accepted is saved to SSR. The code corresp the IRL3–IRL0 level is set in INTEVT and INTEVT2. The corresponding code H'200 + [IRL3–IRL0] × H'20. See table 6.5, for the corresponding codes. The RB bits in SR are set to 1 and a branch occurs to VBR + H'0600. The received set in SR.IMASK. See section 6, Interrupt Controller (INTC), for more inform
- 3. IRQ Pin Interrupts
  - Conditions: The IRQ pin is asserted, SR.IMASK is lower than the IRQ priority the BL bit in SR is 0. The interrupt is accepted at an instruction boundary.
  - Operations: The PC value after the instruction at which the interrupt is accepted SPC. SR at the point the interrupt is accepted is saved to SSR. The code corress the interrupt source is set in INTEVT and INTEVT2. The BL, MD, and RB b set to 1 and a branch occurs to VBR + H'0600. The received level is not set in t mask bits in SR. See section 6, Interrupt Controller (INTC), for more informati
- 4. PINT Pin Interrupts
  - Conditions: The PINT pin is asserted, the interrupt mask bits in SR. is lower th priority level, and the BL bit in SR is 0. The interrupt is accepted at an instruct boundary.
  - Operations: The PC value after the instruction at which the interrupt is accepted SPC. SR at the point the interrupt is accepted is saved to SSR. The code corress the interrupt source is set in INTEVT and INTEVT2. The BL, MD, and RB b set to 1 and a branch occurs to VBR + H'0600. The received level is not set in to mask bits in SR. See section 6, Interrupt Controller (INTC), for more information

Rev. 5.00, 09/03, pa

- 6. UDI Interrupt
  - Conditions: An UDI interrupt command is input (see section 22.4.4, UDI Interru SR.IMASK is lower than 15, and the BL bit in SR is 0. The interrupt is accepted instruction boundary.
  - Operations: The PC value after the instruction that accepts the interrupt is saved SR at the point the interrupt is accepted is saved to SSR. H'5E0 is set to INTEV' INTEVT2. The BL, MD, and RB bits in SR are set to 1 and a branch occurs to V H'0600. See section 6, Interrupt Controller (INTC), for more information.

# 4.6 Cautions

- Return from exception handling
  - Check the BL bit in SR with software. When SPC and SSR have been saved to ememory, set the BL bit in SR to 1 before restoring them.
  - Issue an RTE instruction, which sets SPC in PC and SSR in SR, and causes a brasses of SPC address, and return from exception handling.
- Operation when exception or interrupt occurs while SR.BL = 1
  - Interrupt: Acceptance is suppressed until the BL bit in SR is cleared to 0. If there interrupt request and the reception conditions are satisfied, the interrupt is accept the execution of the instruction that clears the BL bit in SR to 0. In sleep or stand however, the interrupt will be accepted even when the BL bit in SR is 1.
  - Exception: No user break point trap will occur even when the break conditions a When one of the other exceptions occurs, a branch is made to the fixed address of (H'A0000000). In this case, the values of the EXPEVT, SPC, and SSR registers undefined. Differently from general reset processing, the RESETOUT pin is not and reset status is output from the STATUS0 and STATUS1 pins.

Rev. 5.00, 09/03, page 100 of 760

- instruction, however, the branch destination PC is set in SPC. If the condition of conditional delayed branch instruction is not satisfied, the delay slot PC is set i
- Initial register values after reset
  - Undefined registers
    - R0\_BANK0/1-R7\_BANK0/1, R8-R15, GBR, SPC, SSR, MACH, MACL, PR
  - Initialized registers
    - VBR = H'00000000

SR.MD = 1, SR.BL = 1, SR.RB = 1, SR.I3–SR.I0 = H'F. Other SR bits are une PC = H'A0000000

- Ensure that an exception is not generated at an RTE instruction delay slot, as opera guaranteed in this case.
- When the BL bit in the SR register is set to 1, ensure that a TLB-related exception error does not occur at an LDC instruction that updates the SR register and the foll instruction. This will be identified as the occurrence of multiple exceptions, and m reset processing.

Renesas

Rev. 5.00, 09/03, page 102 of 760

| Parameter          | Specification                                       |
|--------------------|-----------------------------------------------------|
| Capacity           | 16 kbytes                                           |
| Structure          | Instruction/data mixed, 4-way set associative       |
| Locking            | Way 2 and way 3 are lockable                        |
| Line size          | 16 bytes                                            |
| Number of entries  | 256 entries/way                                     |
| Write system       | P0, P1, P3, U0: Write-back/write-through selectable |
| Replacement method | Least-recently-used (LRU) algorithm                 |

#### Table 5.1Cache Specifications

### 5.1.2 Cache Structure

The cache mixes data and instructions and uses a 4-way set associative system. It is confour ways (banks), each of which is divided into an address section and a data section, address and data sections is divided into 256 entries. The data section of the entry is calculated line consists of 16 bytes (4 bytes  $\times$  4). The data capacity per way is 4 kbytes (16 entries), with a total of 16 kbytes in the cache as a whole (4 ways). Figure 5.1 shows t structure.

RENESAS

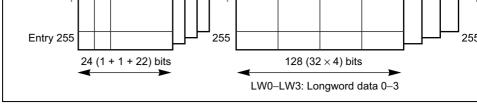



Figure 5.1 Cache Structure

Address Array: The V bit indicates whether the entry data is valid. When the V bit is valid; when 0, data is not valid. The U bit indicates whether the entry has been written to back mode. When the U bit is 1, the entry has been written to; when 0, it has not. The a holds the physical address used in the external memory access. It is composed of 22 bit bits 31–10) used for comparison during cache searches.

In the SH7709S, the top three of 32 physical address bits are used as shadow bits (see s Bus State Controller (BSC)), and therefore in a normal replace operation the top three b tag address are cleared to 0.

The V and U bits are initialized to 0 by a power-on reset, but are not initialized by a ma The tag address is not initialized by either a power-on or manual reset.

**Data Array:** Holds a 16-byte instruction or data. Entries are registered in the cache in 1 (16 bytes). The data array is not initialized by a power-on or manual reset.

**LRU:** With the 4-way set associative system, up to four instructions or data with the sa address (address bits 11–4) can be registered in the cache. When an entry is registered, shows which of the four ways it is recorded in. There are six LRU bits, controlled by ha least-recently-used (LRU) algorithm is used to select the way.

The way that is to be replaced on a cache miss is determined by the 6-bit LRU. Table 5 the correspondence between the LRU bits and the way to be replaced when the cache-loc function is not used (when the cache-lock function is used, refer to section 5.2.2, Cache Register 2 (CCR2)). If a bit pattern other than those listed in table 5.2 is set in the LRU software, the cache will not function correctly. When modifying the LRU bits by softw of the patterns listed in table 5.2.

Rev. 5.00, 09/03, page 104 of 760

### 5.1.3 Register Configuration

Table 5.3 shows details of the cache control register.

#### Table 5.3Register Configuration

| Register                 | Abbr. | R/W | Initial Value | Address /                                 |
|--------------------------|-------|-----|---------------|-------------------------------------------|
| Cache control register   | CCR   | R/W | H'00000000    | H'FFFFFFEC 3                              |
| Cache control register 2 | CCR2  | R/W | H'00000000    | H'040000B0 3<br>(H'A40000B0) <sup>*</sup> |

0

Note: \* When address translation by the MMU does not apply, the address in parenth be used.

# 5.2 Register Description

#### 5.2.1 Cache Control Register (CCR)

The cache is enabled or disabled using the CE bit of the cache control register (CCR). has a CF bit (which invalidates all cache entries), and a WT and CB bits (which select through mode or write-back mode). Programs that change the contents of the CCR reg be placed in address space that is not cached. When updating the contents of the CCR always set bits 4 to 0. Figure 5.2 shows the configuration of the CCR register.

Rev. 5.00, 09/03, pag

| WT: | Write-through bit. Indicates the cache's operating mode for area P0, U0, and P3.<br>1 = write-through mode, 0 = write-back mode. |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| CE: | Cache enable bit. Indicates whether the cache function is used.<br>1 = cache used. 0 = cache not used.                           |

### Figure 5.2 CCR Register Configuration

### 5.2.2 Cache Control Register 2 (CCR2)

CCR2 is used to control the cache-lock function and is valid only in cache locking mode locking mode means that the cache lock bit (bit 12) in SR (status register) is set to 1. The lock function is invalid in non-cache locking mode (the cache-lock bit is 0).

When a prefetch instruction (PREF) is executed in cache locking mode and a cache miss one line size of data pointed to by Rn is brought to cache according to the setting of bit (W3LOAD and W3LOCK) and bits 1 and 0 (W2LOAD and W2LOCK) in CCR2. Table shows the relationship between the bit setting and way to be replaced when a prefetch is is executed. When a prefetch instruction is executed and there is a cache hit, new data i fetched and an entry which has already been valid is retained. For example, when the ca W3LOAD, and W3LOCK bits are set to 1 and a prefetch instruction is executed while size of data pointed to by Rn is already in way 0, a cache hit occurs and data is not fetch 3.

When cache is accessed by means of instructions except for a prefetch instruction in camode, a way that is replaced by the W3LOCK and W2LOCK bits is restricted. Table 5 the relationship between the bit setting of CCR2 and way to be replaced.

The program which modifies the contents of CCR2 must be placed in an address space not cache.

Figure 5.3 shows the configuration of CCR2.

CCR2 is a write-only register; if read, an undefined value will be returned.

Rev. 5.00, 09/03, page 106 of 760

W3LOCK: Way 3 lock bit. W3LOAD: Way 3 load bit.

When W3LOCK = 1 & W3LOAD = 1 & SR, CL = 1, the prefetched data will always be loaded into Way3. In all other conditions the prefetched data will be loaded into the way pointed by LRU.

Note: W2LOAD and W3LOAD should not be set to high at the same time.

-: Reserved bits.

#### Figure 5.3 CCR2 Register Configuration

Whenever CCR2 bit 8 (W3LOCK) or bit 0 (W2LOCK) is high the cache is locked. T data will not be overwritten unless W3LOCK bit and W2LOCK bit are reset or the PF condition during DSP mode matched. During cache locking mode, the LRU in table 5 replaced by tables 5.4 to 5.8.

 Table 5.4
 Way Replacement when PREF Instruction Ended Up in a Cache Mi

| DSP bit | W3LOAD | <b>W3LOCK</b> | W2LOAD | W2LOCK | Way to be replaced  |
|---------|--------|---------------|--------|--------|---------------------|
| 0       | *      | *             | *      | *      | Depends on LRU (tab |
| 1       | *      | 0             | *      | 0      | Depends on LRU (tab |
| 1       | *      | 0             | 0      | 1      | Depends on LRU (tab |
| 1       | 0      | 1             | *      | 0      | Depends on LRU (tab |
| 1       | 0      | 1             | 0      | 1      | Depends on LRU (tab |
| 1       | 0      | *             | 1      | 1      | Way 2               |
| 1       | 1      | 1             | 0      | *      | Way 3               |

\*: Don't care

Do not set as W3LOAD=1 and also W2LOAD=1

Rev. 5.00, 09/03, pag

| 1 | 1 |   | labic |
|---|---|---|-------|
|   |   | • | •     |

\*: Don't care

Do not set as W3LOAD=1 and also W2LOAD=1

### Table 5.6 LRU and Way Replacement (when W2LOCK=1)

| LRU (5–0)                                                      | Way to be R |
|----------------------------------------------------------------|-------------|
| 000000, 000001, 000100, 010100, 100000, 100001, 110000, 110100 | 3           |
| 000011, 000110, 000111, 001011, 001111, 010110, 011110, 011111 | 1           |
| 101001, 101011, 111000, 111001, 111011, 111100, 111110, 111111 | 0           |

### Table 5.7 LRU and Way Replacement (when W3LOCK=1)

| LRU (5–0)                                                      | Way to be R |
|----------------------------------------------------------------|-------------|
| 000000, 000001, 000011, 001011, 100000, 100001, 101001, 101011 | 2           |
| 000100, 000110, 000111, 001111, 010100, 010110, 011110, 011111 | 1           |
| 110000, 110100, 111000, 111001, 111011, 111100, 111110, 111111 | 0           |

### Table 5.8 LRU and Way Replacement (when W2LOCK=1 and W3LOCK=1)

| LRU (5–0)                                                                                      | Way to be R |
|------------------------------------------------------------------------------------------------|-------------|
| 000000, 000001, 000011, 000100, 000110, 000111, 001011, 001111, 010100, 010110, 011110, 011111 | 1           |
| 100000, 100001, 101001, 101011, 110000, 110100, 111000, 111001, 111011, 111100, 111110, 111111 | 0           |

Rev. 5.00, 09/03, page 108 of 760

Entries are selected using bits 11-4 of the address (virtual) of the access to memory ar address tag of that entry is read. In parallel to reading of the address tag, the virtual ad translated to a physical address in the MMU. The physical address after translation and physical address read from the address section are compared. The address comparison ways. When the comparison shows a match and the selected entry is valid (V = 1), a c occurs. When the comparison does not show a match or the selected entry is not valid cache miss occurs. Figure 5.4 shows a hit on way 1.

Renesas

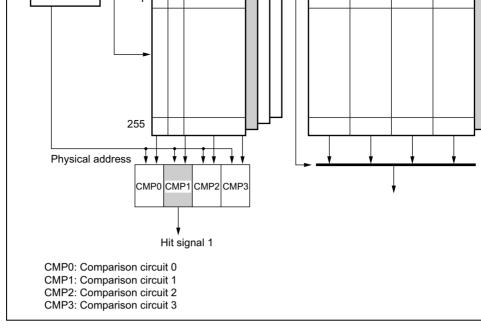



Figure 5.4 Cache Search Scheme (Normal Mode)

Rev. 5.00, 09/03, page 110 of 760

cleared to 0 and the V bit is set to 1.

### 5.3.3 Prefetch Operation

**Prefetch Hit:** The LRU will be updated to correctly indicate the latest way to have be contents of the cache will remain unchanged. Neither instructions nor data are transfer CPU.

**Prefetch Miss:** Neither instructions nor data are transferred to the CPU, and way replate takes place as shown in table 5.4. All other action is the same as for a read miss.

### 5.3.4 Write Access

Write Hit: In a write access in the write-back mode, the data is written to the cache ar of the entry written is set to 1. Writing occurs only to the cache; no external memory wissued. In the write-through mode, the data is written to the cache and an external memory cycle is issued.

**Write Miss:** In the write-back mode, an external write cycle starts when a write miss of the entry is updated. The way to be replaced is shown in table 5.5. When the U bit of the replaced is 1, the cache fill cycle starts after the entry is transferred to the write-back. The write-back unit is 16 bytes. Data is written to the cache and the U bit is set to 1. A cache completes its fill cycle, the write-back buffer writes back the entry to the memory write-through mode, no write to cache occurs in a write miss; the write is only to the ememory.

### 5.3.5 Write-Back Buffer

When the U bit of the entry to be replaced in the write-back mode is 1, it must be writt the external memory. To increase performance, the entry to be replaced is first transfe write-back buffer and fetching of new entries to the cache takes priority over writing be external memory. During the write back cycles, the cache can be accessed. The writecan hold one line of the cache data (16 bytes) and its physical address. Figure 5.5 show configuration of the write-back buffer.

Rev. 5.00, 09/03, pag

#### 5.3.6 Coherency of Cache and External Memory

Use software to ensure coherency between the cache and the external memory. When n shared by this LSI and another device is placed in an address space to be cached, the me allocation cache is manipulated if necessary and a write back should be performed by in the entry. This is also applied to memory shared by the CPU and DMAC in this LSI.

# 5.4 Memory-Mapped Cache

To allow software management of the cache, cache contents can be read and written by MOV instructions in the privileged mode. The cache is mapped onto the P4 area in virt space. The address array is mapped onto addresses H'F0000000 to H'F0FFFFFF, and the array onto addresses H'F1000000 to H'F1FFFFFF. Only longword can be used as the array for the address array and data array, and instruction fetches cannot be performed.

# 5.4.1 Address Array

The address array is mapped to H'F0000000 to H'F0FFFFF. The 32-bit address field (read/write accessed) and 32-bit data field (for write access) must be specified to access of the address array. The address field specifies information that selects the entry to be the data field specifies the tag address, V bit, U bit, and LRU bits to be written to the address (figure 5.6 (1)).

In the address field, specify the entry's address in bits 11-4 to select the entry, W in bits select the way, the A bit (bit 3) to specify an associative operation, and H'F0 in bits 31-indicate access to the address array. Settings for the W bits (13-12) are as follows: 00 is is way 1, 10 is way 2, and 11 is way 3.

In the data field, specify the tag address in bits 31-10, LRU in bits 9-4, U bit in bit 1, an bit 0. The upper 3 bits (bit 31-29) of the tag address must always be 0.

Rev. 5.00, 09/03, page 112 of 760

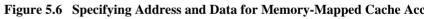
bit (A bit) of the address field must be set to 0. An attempt to write to a cache line for the U bit and V bit are set results in a write-back for that cache line. The tag address, I and V bit specified in the data field are then written. Note that, when a 0 is written to t should always be written to the U bit of the same entry, too.

### (3) Address Array Write (with Associative Operation)

The associative bit (A bit) in the address field indicates whether the addresses are conduring writing. With the A bit set to 1, all 4 ways for the entry specified in the address compared to the tag address specified in the data field for a match. The values of the U bit specified in the data field will be written to the way that has a hit. However, the tag the LRU will not be changed. If no way receives a hit, writing does not take place and no operation.

This operation is used to invalidate the address specification for a cache. Write back we place when the U bit of the entry that received a hit is 1. Note that, when a 0 is written a 0 should always be written to the U bit of the same entry, too.

### 5.4.2 Data Array


The address array is mapped to H'F1000000 to H'F1FFFFFF. To access an element of array, the 32-bit address field (for read/write access) and 32-bit data field (for write ac be specified. The address field specifies the information that selects the entry to be accelerate data field specifies the longword data to be written to the data array.

In the address field, specify the entry's address in bits 11-4, L in bits 3-2 to indicate th position within a line (which consists of 16 bytes), W in bits 13-12 to select the way, a bits 31-24 to indicate access to the data array. The L bits (3-2) specification is in the form: 00 is longword 0, 01 is longword 1, 10 is longword 2, and 11 is longword 3. Set W bits (13-12) are as follows: 00 is way 0, 01 is way 1, 10 is way 2, and 11 is way 3. S is not allowed crossing longword boundaries, always set 00 in bits 1-0 of the address f

Rev. 5.00, 09/03, pag

the position selected by the L bits (3-2) of the address field.

|       | Read acc                           |                                    |         |                       |         |             |      |           |        |   |   |
|-------|------------------------------------|------------------------------------|---------|-----------------------|---------|-------------|------|-----------|--------|---|---|
|       | 31                                 | 24                                 | 23      | *                     | 13      | 12          | 11   | Entry odd | 4      | 3 | 2 |
|       | 1111 00                            | 000                                | *       | *                     | W       |             |      | Entry add | iress  | 0 | ~ |
|       | Write acc                          | cess                               |         |                       |         |             |      |           |        |   |   |
|       | 31                                 | 24                                 | 23      | 14                    | 13      | 12          | 11   |           | 4      | 3 | 2 |
|       | 1111 00                            | 000                                | *       | *                     | W       |             |      | Entry add | lress  | Α | * |
| 2. Da | 31 30 29<br>0 0 0                  |                                    |         | g (28–10)<br>ad and w |         | ccess       | ses) | LRU       | J      | X | Х |
|       | 0 0 0                              | cess (I                            | both re |                       |         | ccess       | ses) | LRI       | J      | X | Х |
|       | 0 0 0<br>ta array ac               | cess (I                            | both re |                       |         | CCESS<br>12 | ses) | LRI       | J<br>4 | X | × |
|       | 0 0 0<br>ta array ac<br>dress spec | cess (l<br>cificatio               | both re | ad and w              | rite a  | 12          |      |           | 4      |   |   |
| Ad    | 0 0 0<br>ta array ac<br>dress spec | ccess (l<br>cificatio<br>24<br>001 | both re | ad and w              | vrite a | 12          | ·    | Entry add | 4      |   |   |



Rev. 5.00, 09/03, page 114 of 760

```
; R0 = H'0000 0000 LRU = H'000, U = 0, V = 0
; R1 = H'F000 1080, Way = 1, Entry = H'08, A = 0
;
MOV.L R0, @R1
```

To invalidate all entries and ways, write 0 to the following addresses.

```
Addresses

F000 0000

F000 0010

F000 0020

:

F000 3FF0
```

This involves a total of 1,024 writes.

The above operation should be performed using a non-cacheable area.

(2) Invalidating a Specific Address

A specific address can be invalidated by writing a 0 to the entry's U and V bits. When 1, the tag address specified by the write data is compared to the tag address within the selected by the entry address. If the tag addresses match, data is written to the memory address. If no match is found, no operation is carried out. If the entry's U bit is 1 at tha entry is written back.

```
; R0 = H'0110 0010; Tag address = B'0000 0001 0001 0000 0000 0
V = 0
; R1 = H'F000 0088; Address array access, Entry = H'08, A = 1
;
MOV.L R0, @R1
```

Rev. 5.00, 09/03, pag

| AND   | R0, | R3  | ; | The  | tag   | addr | ress | lS  | retchea. | U | = | V | П |
|-------|-----|-----|---|------|-------|------|------|-----|----------|---|---|---|---|
| MOV.L | R3, | @R2 | ; | Asso | ociat | tive | purg | ge. |          |   |   |   |   |

The above operation should be performed using a non-cacheable area.

(3) Reading Data from a Specific Entry

This example reads the data section of a specific entry. The longword in the data field of array in figure 5.6 is read to the register.

```
; R0 = H'F100 004C; Data array access, Entry = H'04,
; Way = 0, Longword address = 3
;
MOV.L R0, @R1 ; Longword 3 is read.
```

Rev. 5.00, 09/03, page 116 of 760

### 6.1.1 Features

The INTC has the following features:

- 16 levels of interrupt priority can be set: By setting the five interrupt-priority regis priorities of on-chip peripheral module, IRQ, and PINT interrupts can be selected the levels for individual request sources.
- NMI noise canceler function: An NMI input-level bit indicates the NMI pin state. this bit in the interrupt exception service routine, the pin state can be checked, enalused as a noise canceler.
- External devices can be notified that an interrupt has been received (IRQOUT): W SH7709S has released the bus, the external bus master can be notified that an exter interrupt, an on-chip peripheral module interrupt, or a memory refresh request has enabling the bus to be requested.

Renesas

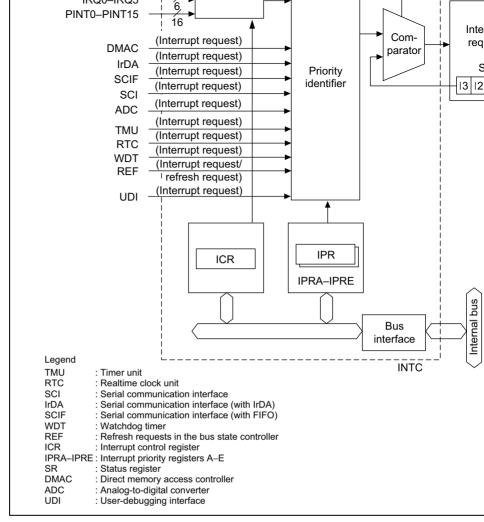



Figure 6.1 Block Diagram of INTC

Rev. 5.00, 09/03, page 118 of 760

|                           |                        |   | SR.                                                                                       |
|---------------------------|------------------------|---|-------------------------------------------------------------------------------------------|
| Interrupt input pins      | IRQ5–IRQ0<br>IRL3–IRL0 | I | Input of interrupt request s maskable by the interrupt                                    |
|                           | IRLS3-IRLS0            |   | SR.                                                                                       |
| Port interrupt input pins | PINT0-PINT15           | I | Input of port interrupt requ<br>maskable by the interrupt<br>SR.                          |
| Bus request output pin    | IRQOUT                 | 0 | Output of signal that notifie<br>devices that an interrupt so<br>memory refresh has occur |
|                           |                        |   |                                                                                           |



| interrupt control register i   |        | 10,00 | 110000 | (H'A4000010)**                           |
|--------------------------------|--------|-------|--------|------------------------------------------|
| Interrupt control register 2   | ICR2   | R/W   | H'0000 | H'04000012<br>(H'A4000012) <sup>*3</sup> |
| PINT interrupt enable register | PINTER | R/W   | H'0000 | H'04000014<br>(H'A4000014) <sup>*3</sup> |
| Interrupt priority register A  | IPRA   | R/W   | H'0000 | H'FFFFFEE2                               |
| Interrupt priority register B  | IPRB   | R/W   | H'0000 | H'FFFFFEE4                               |
| Interrupt priority register C  | IPRC   | R/W   | H'0000 | H'04000016<br>(H'A4000016)* <sup>3</sup> |
| Interrupt priority register D  | IPRD   | R/W   | H'0000 | H'04000018<br>(H'A4000018) <sup>*3</sup> |
| Interrupt priority register E  | IPRE   | R/W   | H'0000 | H'0400001A<br>(H'A400001A) <sup>**</sup> |
| Interrupt request register 0   | IRR0   | R/W   | H'00   | H'04000004<br>(H'A4000004)* <sup>3</sup> |
| Interrupt request register 1   | IRR1   | R     | H'00   | H'04000006<br>(H'A4000006)* <sup>3</sup> |
| Interrupt request register 2   | IRR2   | R     | H'00   | H'04000008<br>(H'A4000008)* <sup>©</sup> |
|                                |        |       |        |                                          |

Notes: 1. Initialized by a power-on or manual reset.

2. H'8000 when the NMI pin is high, H'0000 when the NMI pin is low.

3. When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 120 of 760

control register (ICR1) is 1 or the BL bit in the status register (SR) is 0, NMI interrupt accepted when the MAI bit in the ICR1 register is 0. NMI interrupts are edge-detected standby mode, the interrupt is accepted regardless of the BL setting. The NMI edge se (NMIE) in the interrupt control register 0 (ICR0) is used to select either rising or fallin detection. When the NMIE bit in the ICR0 register is changed, an NMI interrupt is no 20 cycles after changing ICR0. NMIE to avoid a false detection of NMI. NMI interrupt handling does not affect the interrupt mask level bits (I3–I0) in the status register (SR)

When the BL bit is land the BLMSK bit in the ICR1 register is set to 1 and only NMI are accepted, the SPC register and SSR register are updated by the NMI interrupt hand it impossible to return to the original processing from exception handling initiated prior NMI interrupt. Use should therefore be restricted to cases where return is not necessar

It is possible to wake the chip up from the standby state with an NMI interrupt (excep MAI bit in the ICR1 register is set to 1).

### 6.2.2 IRQ Interrupts

IRQ interrupts are input by level or edge from pins IRQ0–IRQ5. The priority level can interrupt priority registers C–D (IPRC–IPRD) in a range from 0 to 15.

When using edge-sensing for IRQ interrupts, clear the interrupt source by having software from the corresponding bit in IRR0, then write 0 to the bit.

When the ICR1 register is rewritten, IRQ interrupts may be mistakenly detected, depe pin states. To prevent this, rewrite the register while interrupts are masked, then releas after clearing the illegal interrupt by writing 0 to interrupt request register 0 (IRR0).

Edge input interrupt detection requires input of a pulse width of more than two cycles peripheral clock  $(P\phi)$  basis.

The interrupt mask bits (I3–I0) in the status register (SR) are not affected by IRQ interhandling.

Rev. 5.00, 09/03, pag

processing (WDT count).

#### 6.2.3 IRL Interrupts

IRL interrupts are input by level at pins IRL3–IRL0 and IRLS3–IRLS0. IRLS3–IRLS0 enabled when the IRQLVL bit and IRLSEN bit in interrupt control register 1 (ICR1) are The priority level is the higher level indicated by pins IRL3–IRL0 and IRLS3–IRLS0. IRLO7/IRLS3–IRLS0 value of 0 (0000) indicates the highest-level interrupt request (interrupt priority level 15). A value of 15 (1111) indicates no interrupt request (interrupt priority Figure 6.2 shows an example of IRL interrupt connection. Table 6.3 shows IRL/IRLS printerrupt levels.

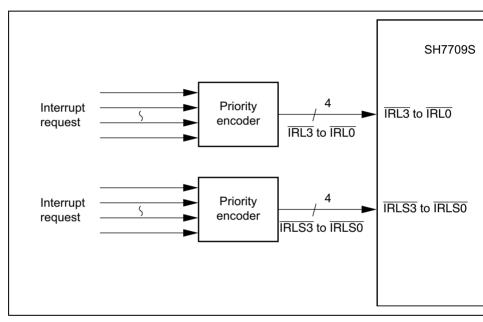



Figure 6.2 Example of IRL Interrupt Connection

Rev. 5.00, 09/03, page 122 of 760

|   |   | - | - |    |                   |
|---|---|---|---|----|-------------------|
| 0 | 1 | 0 | 1 | 10 | Level 10 interrup |
| 0 | 1 | 1 | 0 | 9  | Level 9 interrupt |
| 0 | 1 | 1 | 1 | 8  | Level 8 interrupt |
| 1 | 0 | 0 | 0 | 7  | Level 7 interrupt |
| 1 | 0 | 0 | 1 | 6  | Level 6 interrupt |
| 1 | 0 | 1 | 0 | 5  | Level 5 interrupt |
| 1 | 0 | 1 | 1 | 4  | Level 4 interrupt |
| 1 | 1 | 0 | 0 | 3  | Level 3 interrupt |
| 1 | 1 | 0 | 1 | 2  | Level 2 interrupt |
| 1 | 1 | 1 | 0 | 1  | Level 1 interrupt |
| 1 | 1 | 1 | 1 | 0  | No interrupt requ |

A noise-cancellation feature is built in, and the IRL interrupt is not detected unless the sampled at every peripheral module clock cycle remain unchanged for two consecutive that no transient level on the IRL/IRLS pin change is detected. In standby mode, as the clock is stopped, noise cancellation is performed using the 32-kHz clock for the RTC is Therefore when the RTC is not used, interruption by means of IRL interrupts cannot be in standby mode.

The priority level of the IRL interrupt must not be lowered until the interrupt is accept interrupt handling starts. Correct operation cannot be guaranteed if the level is not main However, the priority level can be changed to a higher one.

The interrupt mask bits (I3–I0) in the status register (SR) are not affected by  $\overline{IRL}/\overline{IRL}$  handling.

When the interrupt level of the IRL interrupt is higher than the level set by the I3-I0 b the IRL interrupt can be used to recover from standby mode (however, this only applie RTC is used for 32-kHz oscillator).

Rev. 5.00, 09/03, pag

handling.

PINT0/1 interrupts can wake the chip up from the standby state when the relevant inter higher than the setting of I3–I0 in the SR register (but only when the RTC 32-kHz oscil used).

### 6.2.5 On-Chip Peripheral Module Interrupts

On-chip peripheral module interrupts are generated by the following ten modules:

- Timer unit (TMU)
- Realtime clock (RTC)
- Serial communication interfaces (SCI, IrDA, SCIF)
- Bus state controller (BSC)
- Watchdog timer (WDT)
- Direct memory access controller (DMAC)
- Analog-to-digital converter (ADC)
- User-debugging interface (UDI)

Not every interrupt source is assigned a different interrupt vector. Sources are reflected interrupt event registers (INTEVT and INTEVT2). It is easy to identify sources by usin of the INTEVT or INTEVT2 register as a branch offset.

A priority level (from 0 to 15) can be set for each module except UDI by writing to interpriority registers A, B, and E (IPRA, IPRB, and IPRE). The priority level of the UDI in 15 (fixed).

The interrupt mask bits (I3–I0) in the status register are not affected by on-chip periphe interrupt handling.

TMU and RTC interrupts can wake the chip up from the standby state when the relevant level is higher than the setting of I3–I0 in the SR register (but only when the RTC 32-ke oscillator is used).

Rev. 5.00, 09/03, page 124 of 760

on-chip peripheral module, IRQ, and PINT interrupts is set to 0 by a reset.

When the priorities of multiple interrupt sources are set to the same level and such integenerated simultaneously, they are handled according to the default order shown in tail 6.5.

Renesas

|      | IRQ2     | H'200–3C0* (H'640)             | 0–15 (0) | IPRC (11-8)  | _        |
|------|----------|--------------------------------|----------|--------------|----------|
|      | IRQ3     | H'200–3C0 <sup>*</sup> (H'660) | 0–15 (0) | IPRC (15–12) | _        |
|      | IRQ4     | H'200–3C0* (H'680)             | 0–15 (0) | IPRD (3-0)   | _        |
|      | IRQ5     | H'200–3C0* (H'6A0)             | 0–15 (0) | IPRD (7-4)   | _        |
| PINT | PINT0-7  | H'200–3C0* (H'700)             | 0–15 (0) | IPRD (15-12) |          |
|      | PINT8-15 | H'200–3C0* (H'720)             | 0–15 (0) | IPRD (11–8)  | _        |
| DMAC | DEI0     | H'200–3C0 <sup>*</sup> (H'800) | 0–15 (0) | IPRE (15–12) | High     |
|      | DEI1     | H'200–3C0 <sup>*</sup> (H'820) | _        |              | <b></b>  |
|      | DEI2     | H'200–3C0 <sup>*</sup> (H'840) | _        |              | <b>↓</b> |
|      | DEI3     | H'200–3C0* (H'860)             | _        |              | Low      |
| IrDA | ERI1     | H'200–3C0 <sup>*</sup> (H'880) | 0–15 (0) | IPRE (11-8)  | High     |
|      | RXI1     | H'200–3C0* (H'8A0)             | _        |              | <b></b>  |
|      | BRI1     | H'200–3C0* (H'8C0)             | _        |              | <b>V</b> |
|      | TXI1     | H'200–3C0* (H'8E0)             | _        |              | Low      |
| SCIF | ERI2     | H'200–3C0* (H'900)             | 0–15 (0) | IPRE (7-4)   | High     |
|      | RXI2     | H'200–3C0* (H'920)             | _        |              | <b>A</b> |
|      | BRI2     | H'200–3C0* (H'940)             | _        |              |          |
|      | TXI2     | H'200–3C0* (H'960)             | _        |              | Low      |
| ADC  | ADI      | H'200–3C0* (H'980)             | 0–15 (0) | IPRE (3-0)   | _        |
| TMU0 | TUNI0    | H'400 (H'400)                  | 0–15 (0) | IPRA (15–12) | _        |
| TMU1 | TUNI1    | H'420 (H'420)                  | 0–15 (0) | IPRA (11–8)  | _        |
| TMU2 | TUNI2    | H'440 (H'440)                  | 0–15 (0) | IPRA (7–4)   | High     |
|      | TICPI2   | H'460 (H'460)                  |          |              | Low      |

Rev. 5.00, 09/03, page 126 of 760

|     | IXI  | H'520 (H'520) |          | <b>•</b>         |
|-----|------|---------------|----------|------------------|
|     | TEI  | H'540 (H'540) |          | Low              |
| WDT | ITI  | H'560 (H'560) | 0–15 (0) | IPRB (15–12) —   |
| REF | RCMI | H'580 (H'580) | 0–15 (0) | IPRB (11–8) High |
|     | ROVI | H'5A0 (H'5A0) |          | Low              |

Note: \* The code corresponding to an interrupt level shown in table 6.6 is set.

RENESAS

|      | $\overline{\text{IRL}(3:0)}^{*2} = 0010$ | H'240 (H'240)                   | 13       | _            | —            |
|------|------------------------------------------|---------------------------------|----------|--------------|--------------|
|      | IRL(3:0) <sup>*2</sup> = 0011            | H'260 (H'260)                   | 12       | _            | —            |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 0100$ | H'280 (H'280)                   | 11       | _            | —            |
|      | IRL(3:0) <sup>*2</sup> = 0101            | H'2A0 (H'2A0)                   | 10       | _            | —            |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 0110$ | . ,                             | 9        |              | —            |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 0111$ |                                 | 8        | _            |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1000$ |                                 | 7        | _            |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1001$ | . ,                             | 6        |              |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1010$ | . ,                             | 5        |              |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1011$ |                                 | 4        |              |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1100$ | . ,                             | 3        |              |              |
|      | IRL(3:0) <sup>*2</sup> = 1101            |                                 | 2        |              |              |
|      | $\overline{\text{IRL}(3:0)}^{*2} = 1110$ |                                 | 1        |              |              |
| IRQ  | IRQ4                                     | H'200–3C0 <sup>*1</sup> (H'680) | . ,      | IPRD (3–0)   |              |
|      | IRQ5                                     | H'200–3C0 <sup>*1</sup> (H'6A0) |          | ( )          | —            |
| PINT | PINT0-7                                  | H'200–3C0 <sup>*1</sup> (H'700) | . ,      | IPRD (15–12) |              |
|      | PINT8–15                                 | H'200–3C0 <sup>*1</sup> (H'720) | . ,      | IPRD (11-8)  |              |
| DMAC | DEI0                                     | H'200–3C0 <sup>*1</sup> (H'800) | 0–15 (0) | IPRE (15–12) | High         |
|      | DEI1                                     | H'200–3C0 <sup>*1</sup> (H'820) | -        |              | . ▲          |
|      | DEI2                                     | H'200–3C0 <sup>*1</sup> (H'840) | -        |              | ¥            |
|      | DEI3                                     | H'200–3C0 <sup>*1</sup> (H'860) | ·        |              | Low          |
| IrDA | ERI1                                     | H'200–3C0 <sup>*1</sup> (H'880) | 0–15 (0) | IPRE (11-8)  | High         |
|      | RXI1                                     | H'200–3C0 <sup>*1</sup> (H'8A0) | -        |              | <b>≜</b>     |
|      | BRI1                                     | H'200–3C0 <sup>*1</sup> (H'8C0) | _        |              | $\checkmark$ |
| _    | TXI1                                     | H'200–3C0 <sup>*1</sup> (H'8E0) | -<br>    |              | Low          |

Rev. 5.00, 09/03, page 128 of 760

| TMU0 | I UNIO | H'400 (H'400) | 0–15 (0) | IPRA (15–12) | _        |
|------|--------|---------------|----------|--------------|----------|
| TMU1 | TUNI1  | H'420 (H'420) | 0–15 (0) | IPRA (11-8)  |          |
| TMU2 | TUNI2  | H'440 (H'440) | 0–15 (0) | IPRA (7–4)   | High     |
|      | TICPI2 | H'460 (H'460) | _        |              | Low      |
| RTC  | ATI    | H'480 (H'480) | 0–15 (0) | IPRA (3–0)   | High     |
|      | PRI    | H'4A0 (H'4A0) | _        |              | <b>1</b> |
|      | CUI    | H'4C0 (H'4C0) | _        |              | Low      |
| SCI  | ERI    | H'4E0 (H'4E0) | 0–15 (0) | IPRB (7-4)   | High     |
|      | RXI    | H'500 (H'500) | _        |              | <b>≜</b> |
|      | TXI    | H'520 (H'520) | _        |              | L .      |
|      | TEI    | H'540 (H'540) | _        |              | Low      |
| WDT  | ITI    | H'560 (H'560) | 0–15 (0) | IPRB (15-12) |          |
| REF  | RCMI   | H'580 (H'580) | 0–15 (0) | IPRB (11-8)  | High     |
|      | ROVI   | H'5A0 (H'5A0) | _        |              | Low      |

Notes: 1. The code corresponding to an interrupt level shown in table 6.6 is set.

2. When IRLS3–IRLS0 are enabled, IRL is the higher level of IRL3–IRL0 and IRLS0.

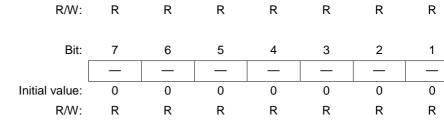
Renesas

| 10 | H ZAU |
|----|-------|
| 9  | H'2C0 |
| 8  | H'2E0 |
| 7  | H'300 |
| 6  | H'320 |
| 5  | H'340 |
| 4  | H'360 |
| 3  | H'380 |
| 2  | H'3A0 |
| 1  | H'3C0 |

Rev. 5.00, 09/03, page 130 of 760

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |

Table 6.7 lists the relationship between the interrupt sources and the IPRA—IPRE bits


Table 6.7 Interrupt Request Sources and IPRA–IPRE

| Register | Bits 15 to 12  | Bits 11 to 8    | Bits 7 to 4 | Bits 3 |
|----------|----------------|-----------------|-------------|--------|
| IPRA     | TMU0           | TMU1            | TMU2        | RTC    |
| IPRB     | WDT            | REF             | SCI0        | Reserv |
| IPRC     | IRQ3           | IRQ2            | IRQ1        | IRQ0   |
| IPRD     | PINT0 to PINT7 | PINT8 to PINT15 | IRQ5        | IRQ4   |
| IPRE     | DMAC           | IrDA            | SCIF        | ADC    |
|          |                |                 |             |        |

Note: \* Always read as 0. Only 0 should be written.

As shown in table 6.7, on-chip peripheral module, IRQ, or PINT interrupts are assigned bit groups in each register. These 4-bit groups (bits 15 to 12, bits 11 to 8, bits 7 to 4, at 0) are set with values from H'0 (0000) to H'F (1111). Setting H'0 means priority level is requested); H'F is priority level 15 (the highest level). A reset initializes IPRA–IPRI

Renesas



Note: \* 1 when NMI input is high, 0 when NMI input is low.

**Bit 15—NMI Input Level (NMIL):** Sets the level of the signal input at the NMI pin. The read to determine the NMI pin level. This bit cannot be modified.

| Bit 15: NMIL | Description             |
|--------------|-------------------------|
| 0            | NMI input level is low  |
| 1            | NMI input level is high |

**Bit 8—NMI Edge Select (NMIE):** Selects whether the falling or rising edge of the interrequest signal at the NMI pin is detected.

| Bit 8: NMIE | Description                                                |
|-------------|------------------------------------------------------------|
| 0           | Interrupt request is detected on falling edge of NMI input |
| 1           | Interrupt request is detected on rising edge of NMI input  |

Bits 14 to 9 and 7 to 0—Reserved: These bits are always read as 0. The write value shalways be 0.

Rev. 5.00, 09/03, page 132 of 760

| R/W:           | R/W         | R/W | R/W | RW  | R/W    | R/W    | R/M  |
|----------------|-------------|-----|-----|-----|--------|--------|------|
| Bit:           | 7           | 6   | 5   | 4   | 3      | 2      | 1    |
| Dit.           | ,<br>IRQ31S |     | -   | •   | IRQ11S | IRQ10S | IRQ0 |
| Initial value: | 0           | 0   | 0   | 0   | 0      | 0      | 0    |
| R/W:           | R/W         | R/W | R/W | R/W | R/W    | R/W    | R/M  |

Bit 15—Mask All Interrupts (MAI): When set to 1, all interrupt requests are masked low level is being input to the NMI pin. Masks NMI interrupts in standby mode.

| Bit 15: MAI | Description                                                       |
|-------------|-------------------------------------------------------------------|
| 0           | All interrupt requests are not masked when NMI pin is low level ( |
| 1           | All interrupt requests are masked when NMI pin is low level       |

**Bit 14—Interrupt Request Level Detect (IRQLVL):** Selects whether the IRQ3–IRC used as four independent interrupt pins or as 15-level interrupt pins encoded as IRL3–

Bit 14: IRQLVL Description

| 0 | Used as four independent interrupt request pins IRQ3-IRQ0 |
|---|-----------------------------------------------------------|
| 1 | Used as 15-level interrupt pins encoded as IRL3–IRL0 (    |

Bit 13—BL Bit Mask (BLMSK): Specifies whether NMI interrupts are masked when in the SR register is 1.

#### Bit 13: BLMSK Description

| 0 | NMI interrupts are masked when BL bit is 1 (             |
|---|----------------------------------------------------------|
| 1 | NMI interrupts are accepted regardless of BL bit setting |

Renesas

the fixed pin is detected at the fising edge, at the faming edge, of at the low level.

|   | Bit IV. In QUOU | Description                                                |
|---|-----------------|------------------------------------------------------------|
| 0 | 0               | An interrupt request is detected at IRQ5 input falling (Ir |
|   | 1               | An interrupt request is detected at IRQ5 input rising      |
| 1 | 0               | An interrupt request is detected at IRQ5 input low levels  |
|   | 1               | Reserved                                                   |

Bit 11: IRQ51S Bit 10: IRQ50S Description

**Bits 9 and 8—IRQ4 Sense Select (IRQ41S, IRQ40S):** Select whether the interrupt sig IRQ4 pin is detected at the rising edge, at the falling edge, or at the low level.

| Bit 9: IRQ41S | Bit 8: IRQ40S | Description                                               |
|---------------|---------------|-----------------------------------------------------------|
| 0             | 0             | An interrupt request is detected at IRQ4 input falling    |
|               |               | (Ir                                                       |
|               | 1             | An interrupt request is detected at IRQ4 input rising     |
| 1             | 0             | An interrupt request is detected at IRQ4 input low levels |
|               | 1             | Reserved                                                  |

**Bits 7 and 6—IRQ3 Sense Select (IRQ31S, IRQ30S):** Select whether the interrupt sig IRQ3 pin is detected at the rising edge, at the falling edge, or at the low level.

| Bit 7: IRQ31S | Bit 6: IRQ30S | Description                                                   |
|---------------|---------------|---------------------------------------------------------------|
| 0             | 0             | An interrupt request is detected at IRQ3 input falling<br>(Ir |
|               | 1             | An interrupt request is detected at IRQ3 input rising         |
| 1             | 0             | An interrupt request is detected at IRQ3 input low levels     |
|               | 1             | Reserved                                                      |

Rev. 5.00, 09/03, page 134 of 760

**Bits 3 and 2—IRQ1 Sense Select (IRQ11S, IRQ10S):** Select whether the interrupt s IRQ1 pin is detected at the rising edge, at the falling edge, or at the low level.

| Bit 3: IRQ11S | Bit 2: IRQ10S | Description                                           |
|---------------|---------------|-------------------------------------------------------|
| 0             | 0             | An interrupt request is detected at IRQ1 input fallin |
|               | 1             | An interrupt request is detected at IRQ1 input rising |
| 1             | 0             | An interrupt request is detected at IRQ1 input low I  |
|               | 1             | Reserved                                              |

**Bits 1 and 0—IRQ0 Sense Select (IRQ01S, IRQ00S):** Select whether the interrupt s IRQ0 pin is detected at the rising edge, at the falling edge, or at the low level.

| Bit 1: IRQ01S | Bit 0: IRQ00S | Description                                            |
|---------------|---------------|--------------------------------------------------------|
| 0             | 0             | An interrupt request is detected at IRQ0 input falling |
|               | 1             | An interrupt request is detected at IRQ0 input rising  |
| 1             | 0             | An interrupt request is detected at IRQ0 input low le  |
|               | 1             | Reserved                                               |

Renesas

| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W   |
|----------------|--------|--------|--------|--------|--------|--------|-------|
|                |        |        |        |        |        |        |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     |
|                | PINT7S | PINT6S | PINT5S | PINT4S | PINT3S | PINT2S | PINT1 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W   |

Bits 15 to 0—PINT15 to PINT0 Sense Select (PINT15S to PINT0S): Select whether request signals to PINT15 to PINT0 are detected at the low level or high level.

| Bits 15–0:<br>PINT15S to PINT0S | Description                                                                   |
|---------------------------------|-------------------------------------------------------------------------------|
| 0                               | Interrupt requests are detected at low level input to the PINT p<br>(I        |
| 1                               | Interrupt requests are detected at high level input to the PINT $\mathfrak p$ |

Rev. 5.00, 09/03, page 136 of 760

| R/W:           | R/W         | R/W    | R/W | R/W | R/W | R/W    | R/M |
|----------------|-------------|--------|-----|-----|-----|--------|-----|
| Bit:           | 7           | 6      | 5   | 4   | 3   | 2      | 1   |
| Dit.           | ,<br>PINT7E | PINT6E | -   | •   | -   | PINT2E |     |
| Initial value: | 0           | 0      | 0   | 0   | 0   | 0      | 0   |
| R/W:           | R/W         | R/W    | R/W | R/W | R/W | R/W    | R/M |

**Bits 15 to 0—PINT15 to PINT0 Interrupt Enable (PINT15E to PINT0E):** Enable interrupt request input to pins PINT15 to PINT0.

| Bits 15–0:<br>PINT15E to PINT0E | Description                            |
|---------------------------------|----------------------------------------|
| 0                               | PINT input interrupt requests disabled |
| 1                               | PINT input interrupt requests enabled  |

When all or some of pins PINT0–PINT15 are not used for interrupt input, bits corresp pins not used as interrupt request pins should be cleared to 0.

Renesas

| R/W: | R | R | R/W | R/W | R/W | R/W | R/W |
|------|---|---|-----|-----|-----|-----|-----|
|------|---|---|-----|-----|-----|-----|-----|

When clearing an IRQ5R–IRQ0R bit to 0, read the bit while bit set to 1, and then write case, 0 should be written only to the bits to be cleared and 1 to the other bits. The conte bits to which 1 is written do not change.

**Bit 7—PINT0 to PINT7 Interrupt Request (PINT0R):** Indicates whether there is interequest input to pins PINT0 to PINT7.

Bit 7: PINTOR Description

| 0 | No interrupt request to pins PINT0 to PINT7 | (Ir |
|---|---------------------------------------------|-----|
| 1 | Interrupt to pins PINT0 to PINT7            |     |

**Bit 6—PINT8 to PINT15 Interrupt Request (PINT1R):** Indicates whether there is in request input to pins PINT8 to PINT15.

| Bit 6: PINT1R | Description                                        |     |
|---------------|----------------------------------------------------|-----|
| 0             | No interrupt request input to pins PINT8 to PINT15 | (Ir |
| 1             | Interrupt request input to pins PINT8 to PINT15    |     |

**Bit 5—IRQ5 Interrupt Request (IRQ5R):** Indicates whether there is interrupt request the IRQ5 pin. When edge detection mode is set for IRQ5, an interrupt request is cleared clearing the IRQ5R bit.

| Bit 5: IRQ5R | Description                            |     |
|--------------|----------------------------------------|-----|
| 0            | No interrupt request input to IRQ5 pin | (Ir |
| 1            | Interrupt request input to IRQ5 pin    |     |

Rev. 5.00, 09/03, page 138 of 760

the IRQ3 pin. When edge detection mode is set for IRQ3, an interrupt request is cleared clearing the IRQ3R bit.

| Bit 3: IRQ3R | Description                              |
|--------------|------------------------------------------|
| 0            | No interrupt request input to IRQ3 pin ( |
| 1            | Interrupt request input to IRQ3 pin      |

**Bit 2—IRQ2 Interrupt Request (IRQ2R):** Indicates whether there is interrupt reque the IRQ2 pin. When edge detection mode is set for IRQ2, an interrupt request is cleared clearing the IRQ2R bit.

### Bit 2: IRQ2R Description

| 0 | No interrupt request input to IRQ2 pin ( |
|---|------------------------------------------|
| 1 | Interrupt request input to IRQ2 pin      |

**Bit 1—IRQ1 Interrupt Request (IRQ1R):** Indicates whether there is interrupt reque the IRQ1 pin. When edge detection mode is set for IRQ1, an interrupt request is cleared clearing the IRQ1R bit.

### Bit 1: IRQ1R Description

| 0 | No interrupt request input to IRQ1 pin ( |
|---|------------------------------------------|
| 1 | Interrupt request input to IRQ1 pin      |

**Bit 0—IRQ0 Interrupt Request (IRQ0R):** Indicates whether there is interrupt reque the IRQ0 pin. When edge detection mode is set for IRQ0, an interrupt request is cleared clearing the IRQ0R bit.

| Bit 0: IRQ0R | Description                              |
|--------------|------------------------------------------|
| 0            | No interrupt request input to IRQ0 pin ( |
| 1            | Interrupt request input to IRQ0 pin      |

Rev. 5.00, 09/03, pag

# Renesas

| R/W: | R | R | R | R | R | R | R |
|------|---|---|---|---|---|---|---|
|------|---|---|---|---|---|---|---|

**Bit 7—TXI1 Interrupt Request (TXI1R):** Indicates whether a TXI1 (IrDA) interrupt been generated.

| Bit 7: TXI1 | Description                          |     |
|-------------|--------------------------------------|-----|
| 0           | TXI1 interrupt request not generated | (Ir |
| 1           | TXI1 interrupt request generated     |     |

**Bit 6—BRI1 Interrupt Request (BRI1R):** Indicates whether a BRI1 (IrDA) interrupt been generated.

| Bit 6: BRI1R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | BRI1 interrupt request not generated | (Ir |
| 1            | BRI1 interrupt request generated     |     |

Bit 5—RXI1 Interrupt Request (RXI1R): Indicates whether an RXI1 (IrDA) interrup has been generated.

| Bit 5: RXI1R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | RXI1 interrupt request not generated | (Ir |
| 1            | RXI1 interrupt request generated     |     |

**Bit 4—ERI1 Interrupt Request (ERI1R):** Indicates whether an ERI1 (IrDA) interrup has been generated.

| Bit 4: ERI1R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | ERI1 interrupt request not generated | (Ir |
| 1            | ERI1 interrupt request generated     |     |

Rev. 5.00, 09/03, page 140 of 760

has been generated.

| Bit 2: DEI2R | Description                            |
|--------------|----------------------------------------|
| 0            | DEI2 interrupt request not generated ( |
| 1            | DEI2 interrupt request generated       |

**Bit 1—DEI1 Interrupt Request (DEI1R):** Indicates whether a DEI1 (DMAC) interr has been generated.

| Bit 1: DEI1R | Description                            |
|--------------|----------------------------------------|
| 0            | DEI1 interrupt request not generated ( |
| 1            | DEI1 interrupt request generated       |

**Bit 0—DEI0 Interrupt Request (DEI0R):** Indicates whether a DEI0 (DMAC) interr has been generated.

| Bit 0: DEI0R | Description                            |
|--------------|----------------------------------------|
| 0            | DEI0 interrupt request not generated ( |
| 1            | DEI0 interrupt request generated       |

## 6.3.8 Interrupt Request Register 2 (IRR2)

IRR2 is an 8-bit read-only register that indicates whether an A/D converter or SCIF in request has been generated. This register is initialized to H'00 by a power-on reset or but is not initialized in standby mode.

| Bit:           | 7 | 6 | 5 | 4    | 3     | 2     | 1    |
|----------------|---|---|---|------|-------|-------|------|
|                |   | — |   | ADIR | TXI2R | BRI2R | RXI2 |
| Initial value: | 0 | 0 | 0 | 0    | 0     | 0     | 0    |
| R/W:           | R | R | R | R    | R     | R     | R    |

Rev. 5.00, 09/03, pag

**Bit 3—TXI2 Interrupt Request (TXI2R):** Indicates whether a TXI2 (SCIF) interrupt been generated.

| Bit 3: TXI2R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | TXI2 interrupt request not generated | (Ir |
| 1            | TXI2 interrupt request generated     |     |

**Bit 2—BRI2 Interrupt Request (BRI2R):** Indicates whether a BRI2 (SCIF) interrupt been generated.

| Bit 2: BRI2R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | BRI2 interrupt request not generated | (Ir |
| 1            | BRI2 interrupt request generated     |     |

Bit 1—RXI2 Interrupt Request (RXI2R): Indicates whether an RXI2 (SCIF) interrup has been generated.

| Bit 1: RXI2R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | RXI2 interrupt request not generated | (Ir |
| 1            | RXI2 interrupt request generated     |     |

Bit 0—ERI2 Interrupt Request (ERI2R): Indicates whether an ERI2 (SCIF) interrup has been generated.

| Bit 0: ERI2R | Description                          |     |
|--------------|--------------------------------------|-----|
| 0            | ERI2 interrupt request not generated | (Ir |
| 1            | ERI2 interrupt request generated     |     |

Rev. 5.00, 09/03, page 142 of 760

- following the priority levels set in interrupt priority registers A to E (IPRA to IPRI priority interrupts are held pending. If two of these interrupts have the same priority multiple interrupts occur within a single module, the interrupt with the highest defa or the highest priority within its IPR setting unit (as indicated in tables 6.4 and 6.5).
- 3. The priority level of the interrupt selected by the interrupt controller is compared with interrupt mask bits (I3–I0) in the status register (SR) of the CPU. If the request printingher than the level in bits I3–I0, the interrupt controller accepts the interrupt and interrupt request signal to the CPU. When the interrupt controller receives an interrupt level is output from the IRQOUT pin.
- 4. Detection timing: The INTC operates, and notifies the CPU of interrupt requests, is synchronization with the peripheral clock ( $P\phi$ ). The CPU receives an interrupt at a instructions.
- 5. The interrupt source code is set in the interrupt event registers (INTEVT and INTE
- 6. The status register (SR) and program counter (PC) are saved to SSR and SPC, resp
- 7. The block bit (BL), mode bit (MD), and register bank bit (RB) in SR are set to 1.
- 8. The CPU jumps to the start address of the interrupt handler (the sum of the value s vector base register (VBR) and H'00000600). This jump is not a delayed branch. T handler may branch with the INTEVT and INTEVT2 register value as its offset in identify the interrupt source. This enables it to branch to the handling routine for th interrupt source.
- Notes: 1. The interrupt mask bits (I3–I0) in the status register (SR) are not changed acceptance of an interrupt in the SH7709S.
  - 2. **IRQOUT** outputs a low level until the interrupt request is cleared. However interrupt source is masked by an interrupt mask bit, the **IRQOUT** pin return high level. The level is output without regard to the BL bit.
  - 3. The interrupt source flag should be cleared in the interrupt handler. To ensi interrupt request that should have been cleared is not inadvertently accepte the interrupt source flag after it has been cleared, then wait for the interval table 6.8 (Time for priority decision and SR mask bit comparison) before c BL bit or executing an RTE instruction.

Rev. 5.00, 09/03, pag

Renesas

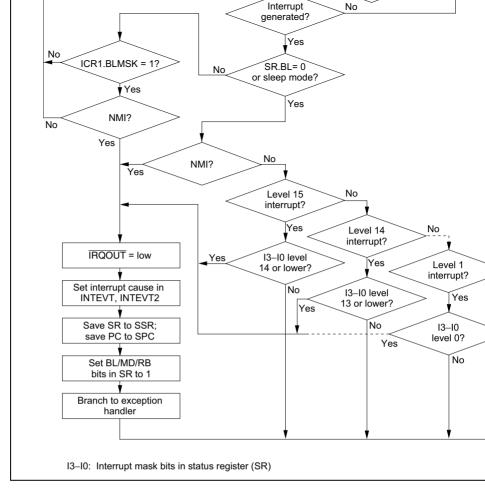



Figure 6.3 Interrupt Operation Flowchart

Rev. 5.00, 09/03, page 144 of 760

- 4. Clear the BL bit in SR, and set the accepted interrupt level in the interrupt mask bit
- 5. Handle the interrupt.
- 6. Execute the RTE instruction.

When these procedures are followed in order, an interrupt of higher priority than the o handled can be accepted after clearing BL in step 4. Figure 6.3 shows a sample interrupt flowchart.

# 6.5 Interrupt Response Time

The time from generation of an interrupt request until interrupt exception handling is j and fetching of the first instruction of the exception handler is started (the interrupt reis shown in table 6.8. Figure 6.4 shows an example of pipeline operation when an IRL accepted. When SR.BL is 1, interrupt exception handling is masked, and is kept waitin completion of an instruction that clears BL to 0.

Renesas

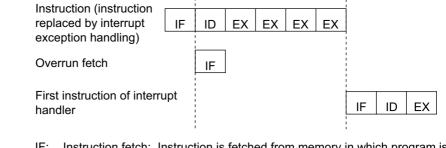
| Wait time until end<br>of sequence being<br>executed by CPU                                                                                   | X (≥ 0) × lcyc | X (≥ 0) × lcyc | X (≥ 0) × Icyc | X (≥ 0) × Icyc | Interr<br>handl<br>waitin<br>execu-<br>tion e<br>numb<br>tion e<br>states<br>maxir<br>time i<br>Howe<br>set to<br>ction<br>by an<br>interr<br>handl<br>defen<br>comp<br>instru<br>clears<br>the foc<br>instru |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               |                |                |                |                | interr<br>handl<br>handl<br>furthe                                                                                                                                                                            |
| Time from interrupt<br>exception handling<br>(save of SR and PC)<br>until fetch of first<br>instruction of<br>exception handler is<br>started | 5 × lcyc       | 5 × lcyc       | 5 × lcyc       | 5 × lcyc       |                                                                                                                                                                                                               |

Rev. 5.00, 09/03, page 146 of 760

|  |                               |         |          |          | + 3 × PCyc                                       |                                                                                                    |
|--|-------------------------------|---------|----------|----------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|
|  | Minimum<br>case <sup>*2</sup> | 7.5     | 16.5     | 12.5     | 8.5 <sup>*5</sup> /11.5 <sup>*6</sup>            | At 60<br>= 30)<br>0.13-                                                                            |
|  | Maximum<br>case <sup>*3</sup> | 8.5 + S | 26.5 + S | 18.5 + S | 10.5 + S <sup>*5</sup><br>16.5 + S <sup>*6</sup> | At 60<br>= 15)<br>0.26-<br>case<br>cach<br>At 60<br>= 15)<br>0.29-<br>(whe<br>mem<br>perfo<br>wait |

Icyc: Duration of one cycle of internal clock supplied to CPU.

Bcyc: Duration of one CKIO cycle.


Pcyc: Duration of one cycle of peripheral clock supplied to peripheral modules.

Notes: 1. S also includes the memory access wait time.

The processing requiring the maximum execution time is LDC.L @Rm+, SF memory access is a cache-hit, this requires seven instruction execution cycles the external access is performed, the corresponding number of cycles must There are also instructions that perform two external memory accesses; if t memory access is slow, the number of instruction execution cycles will increace accordingly.

- 2. The internal clock:CKIO:peripheral clock ratio is 2:1:1.
- 3. The internal clock:CKIO:peripheral clock ratio is 4:1:1.
- 4. IRQ mode
- 5. Modules: TMU, RTC, SCI, WDT, REFC
- 6. Modules: DMAC, ADC, IrDA, SCIF

Rev. 5.00, 09/03, pag



IF: Instruction fetch: Instruction is fetched from memory in which program is sto

- Instruction decode: Fetched instruction is decoded. ID:
- EX: Instruction execution: Data operation and address calculation are performe

Figure 6.4 Example of Pipeline Operations when IRL Interrupt is Accep

Rev. 5.00, 09/03, page 148 of 760

instruction fetches.

### 7.1.1 Features

The user break controller has the following features:

• The following break comparison conditions can be set.

Number of break channels: two channels (channels A and B)

User break can be requested as either the independent or sequential condition on cl and B (sequential break setting: channel A and, then channel B match with logical not in the same bus cycle).

Address (Compares 40 bits comprised of a 32-bit logical address prefixed with address. Comparison bits are maskable in 32-bit units, user can easily program addresses at bottom 12 bits (4-k page), bottom 10 bits (1-k page), or any size o One of two address buses (CPU address bus (LAB), cache address bus (IAB)) eselected.

- Data (only on channel B, 32-bit maskable)
- One of the two data buses (CPU data bus (LDB), cache data bus (IDB)) can be
- Bus master: CPU cycle or DMAC cycle
- Bus cycle: instruction fetch or data access
- Read/write
- Operand size: byte, word, or longword
- User break is generated upon satisfying break conditions. A user-designed user-brac condition exception processing routine can be run.
- In an instruction fetch cycle, it can be selected that a break is set before or after an is executed.
- Maximum repeat times for the break condition:  $2^{12} 1$  times.
- Eight pairs of branch source/destination buffers.

Rev. 5.00, 09/03, pag

Renesas

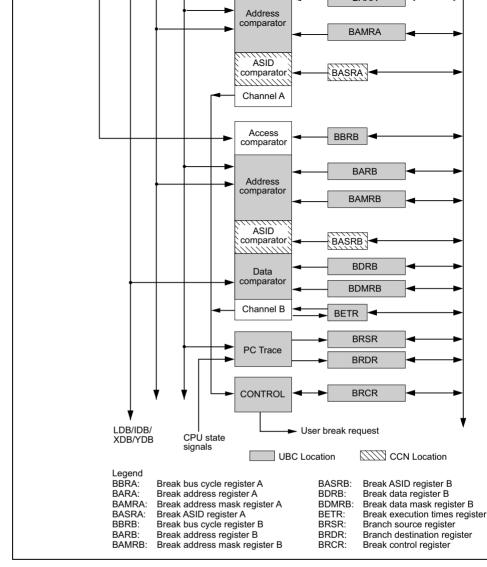



Figure 7.1 Block Diagram of User Break Controller

Rev. 5.00, 09/03, page 150 of 760

| Break bus cycle register A       | BBKA  | R/W | H'0000                  | Н.ЕЕЕЕЕВ8  | 16 |
|----------------------------------|-------|-----|-------------------------|------------|----|
| Break address register B         | BARB  | R/W | H'00000000              | H'FFFFFFA0 | 32 |
| Break address mask<br>register B | BAMRB | R/W | H'00000000              | H'FFFFFFA4 | 32 |
| Break bus cycle register B       | BBRB  | R/W | H'0000                  | H'FFFFFFA8 | 16 |
| Break data register B            | BDRB  | R/W | H'00000000              | H'FFFFFF90 | 32 |
| Break data mask register B       | BDMRB | R/W | H'00000000              | H'FFFFF94  | 32 |
| Break control register           | BRCR  | R/W | H'00000000              | H'FFFFFF98 | 32 |
| Execution count break register   | BETR  | R/W | H'0000                  | H'FFFFFF9C | 16 |
| Branch source register           | BRSR  | R   | Undefined <sup>*2</sup> | H'FFFFFFAC | 32 |
| Branch destination register      | BRDR  | R   | Undefined <sup>*2</sup> | H'FFFFFBC  | 32 |
| Break ASID register A            | BASRA | R/W | Undefined               | H'FFFFFFE4 | 16 |
| Break ASID register B            | BASRB | R/W | Undefined               | H'FFFFFE8  | 16 |

Notes: 1. Initialized by power-on reset. Values held in standby state and undefined b resets.

2. Bit 31 of BRSR and BRDR (valid flag) is initialized by power-on resets. But are not initialized.

Renesas

| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |
| Bit:           | 23    | 22    | 21    | 20    | 19    | 18    | 17    |
|                | BAA23 | BAA22 | BAA21 | BAA20 | BAA19 | BAA18 | BAA17 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |
| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     |
|                | BAA15 | BAA14 | BAA13 | BAA12 | BAA11 | BAA10 | BAA9  |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     |
|                | BAA7  | BAA6  | BAA5  | BAA4  | BAA3  | BAA2  | BAA1  |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

Bits 31 to 0—Break Address A31 to A0 (BAA31 to BAA0): Stores the address on the IAB specifying break conditions of channel A.

Rev. 5.00, 09/03, page 152 of 760

| R/VV.          | <b>R</b> / VV | <b>N/VV</b> | <b>N/ V</b> | <b>K</b> / VV | <b>R</b> / V V | <b>R</b> / V V | R/V  |
|----------------|---------------|-------------|-------------|---------------|----------------|----------------|------|
| Bit:           | 23            | 22          | 21          | 20            | 19             | 18             | 17   |
|                | BAMA23        | BAMA22      | BAMA21      | BAMA20        | BAMA19         | BAMA18         | BAMA |
| Initial value: | 0             | 0           | 0           | 0             | 0              | 0              | 0    |
| R/W:           | R/W           | R/W         | R/W         | R/W           | R/W            | R/W            | R/W  |
|                |               |             |             |               |                |                |      |
| Bit:           | 15            | 14          | 13          | 12            | 11             | 10             | 9    |
|                | BAMA15        | BAMA14      | BAMA13      | BAMA12        | BAMA11         | BAMA10         | BAM  |
| Initial value: | 0             | 0           | 0           | 0             | 0              | 0              | 0    |
| R/W:           | R/W           | R/W         | R/W         | R/W           | R/W            | R/W            | R/W  |
|                |               |             |             |               |                |                |      |
| Bit:           | 7             | 6           | 5           | 4             | 3              | 2              | 1    |
|                | BAMA7         | BAMA6       | BAMA5       | BAMA4         | BAMA3          | BAMA2          | BAM  |
| Initial value: | 0             | 0           | 0           | 0             | 0              | 0              | 0    |
| R/W:           | R/W           | R/W         | R/W         | R/W           | R/W            | R/W            | R/V  |

**Bits 31 to 0—Break Address Mask Register A31 to A0 (BAMA31 to BAMA0):** S<sub>R</sub> masked in the channel A break address bits specified by BARA (BAA31–BAA0).

| Bits 31 to 0:<br>BAMAn | Description                                                                   |
|------------------------|-------------------------------------------------------------------------------|
| 0                      | Break address bit BAAn of channel A is included in the break condition        |
| 1                      | Break address bit BAAn of channel A is masked and is not included i condition |
| n = 31  to  0          |                                                                               |

n = 31 to 0

Rev. 5.00, 09/03, pag

| R/W:           | R    | R    | R    | R    | R    | R    | R    |
|----------------|------|------|------|------|------|------|------|
|                |      |      |      |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1    |
|                | CDA1 | CDA0 | IDA1 | IDA0 | RWA1 | RWA0 | SZA1 |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  |

Bits 15 to 8-Reserved: These bits are always read as 0. The write value should alway

**Bits 7 and 6—CPU Cycle/DMAC Cycle Select A (CDA1, CDA0):** Selects the CPU of DMAC cycle as the bus cycle of the channel A break condition.

| Bit 7: CDA1 | Bit 6: CDA0 | Description                           |     |
|-------------|-------------|---------------------------------------|-----|
| 0           | 0           | Condition comparison is not performed | (Ir |
| *           | 1           | The break condition is the CPU cycle  |     |
| 1           | 0           | The break condition is the DMAC cycle |     |
|             |             |                                       |     |

\*: Don't care

**Bits 5 and 4—Instruction Fetch/Data Access Select A (IDA1, IDA0):** Selects the inst fetch cycle or data access cycle as the bus cycle of the channel A break condition.

| Bit 5: IDA1 | Bit 4: IDA0 | Description                                                 |      |
|-------------|-------------|-------------------------------------------------------------|------|
| 0           | 0           | Condition comparison is not performed                       | (Ir  |
|             | 1           | The break condition is the instruction fetch cycle          |      |
| 1           | 0           | The break condition is the data access cycle                |      |
|             | 1           | The break condition is the instruction fetch cycle of cycle | or c |

Rev. 5.00, 09/03, page 154 of 760

Bits 1 and 0—Operand Size Select A (SZA1, SZA0): Selects the operand size of the for the channel A break condition.

| Bit 1: SZA1 | Bit 0: SZA0 | Description                                       |
|-------------|-------------|---------------------------------------------------|
| 0           | 0           | The break condition does not include operand size |
|             |             | (                                                 |
|             | 1           | The break condition is byte access                |
| 1           | 0           | The break condition is word access                |
|             | 1           | The break condition is longword access            |

RENESAS

| R/VV.          | <b>N/ V</b> | <b>N/VV</b> | <b>N/VV</b> | <b>N/VV</b> | <b>N/VV</b> | <b>K</b> / V V | <b>R</b> / V V |
|----------------|-------------|-------------|-------------|-------------|-------------|----------------|----------------|
| Bit:           | 23          | 22          | 21          | 20          | 19          | 18             | 17             |
|                | BAB23       | BAB22       | BAB21       | BAB20       | BAB19       | BAB18          | BAB17          |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0              | 0              |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R/W         | R/W            | R/W            |
|                |             |             |             |             |             |                |                |
| Bit:           | 15          | 14          | 13          | 12          | 11          | 10             | 9              |
|                | BAB15       | BAB14       | BAB13       | BAB12       | BAB11       | BAB10          | BAB9           |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0              | 0              |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R/W         | R/W            | R/W            |
|                |             |             |             |             |             |                |                |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2              | 1              |
|                | BAB7        | BAB6        | BAB5        | BAB4        | BAB3        | BAB2           | BAB1           |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0              | 0              |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R/W         | R/W            | R/W            |
|                |             |             |             |             |             |                |                |

Rev. 5.00, 09/03, page 156 of 760

| R/W.           | R/W    | <b>N/W</b> | r./ v v | <b>K</b> / VV | <b>R</b> / V V | R/W    | r(/v |
|----------------|--------|------------|---------|---------------|----------------|--------|------|
| Bit:           | 23     | 22         | 21      | 20            | 19             | 18     | 17   |
|                | BAMB23 | BAMB22     | BAMB21  | BAMB20        | BAMB19         | BAMB18 | BAME |
| Initial value: | 0      | 0          | 0       | 0             | 0              | 0      | 0    |
| R/W:           | R/W    | R/W        | R/W     | R/W           | R/W            | R/W    | R/V  |
|                |        |            |         |               |                |        |      |
| Bit:           | 15     | 14         | 13      | 12            | 11             | 10     | 9    |
|                | BAMB15 | BAMB14     | BAMB13  | BAMB12        | BAMB11         | BAMB10 | BAM  |
| Initial value: | 0      | 0          | 0       | 0             | 0              | 0      | 0    |
| R/W:           | R/W    | R/W        | R/W     | R/W           | R/W            | R/W    | R/V  |
|                |        |            |         |               |                |        |      |
| Bit:           | 7      | 6          | 5       | 4             | 3              | 2      | 1    |
|                | BAMB7  | BAMB6      | BAMB5   | BAMB4         | BAMB3          | BAMB2  | BAM  |
| Initial value: | 0      | 0          | 0       | 0             | 0              | 0      | 0    |
| R/W:           | R/W    | R/W        | R/W     | R/W           | R/W            | R/W    | R/V  |

**Bits 31 to 0—Break Address Mask Register B31 to B0 (BAMB31 to BAMB0):** Sp masked in the channel B break address bits specified by BARB (BAB31—BAB0).

| Bits 31 to 0:<br>BAMBn | Description                                                                    |
|------------------------|--------------------------------------------------------------------------------|
| 0                      | Break address BABn of channel B is included in the break condition (           |
| 1                      | Break address BABn of channel B is masked and is not included in the condition |
| 041.0                  |                                                                                |

n = 31 to 0

RENESAS

| Bit:           | 23    | 22    | 21    | 20    | 19    | 18    | 17    |
|----------------|-------|-------|-------|-------|-------|-------|-------|
|                | BDB23 | BDB22 | BDB21 | BDB20 | BDB19 | BDB18 | BDB11 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |
| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     |
|                | BDB15 | BDB14 | BDB13 | BDB12 | BDB11 | BDB10 | BDB9  |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     |
|                | BDB7  | BDB6  | BDB5  | BDB4  | BDB3  | BDB2  | BDB1  |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Rev. 5.00, 09/03, page 158 of 760

| R/VV.          | R/VV   | R/W    | R/VV   | R/VV   | R/VV   | R/VV   | R/W  |
|----------------|--------|--------|--------|--------|--------|--------|------|
| Bit:           | 23     | 22     | 21     | 20     | 19     | 18     | 17   |
|                | BDMB23 | BDMB22 | BDMB21 | BDMB20 | BDMB19 | BDMB18 | BDME |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0    |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W  |
|                |        |        |        |        |        |        |      |
| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9    |
|                | BDMB15 | BDMB14 | BDMB13 | BDMB12 | BDMB11 | BDMB10 | BDM  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0    |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W  |
|                |        |        |        |        |        |        |      |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1    |
|                | BDMB7  | BDMB6  | BDMB5  | BDMB4  | BDMB3  | BDMB2  | BDM  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0    |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/V  |

Bits 31 to 0—Break Data Mask Register B31 to B0 (BDMB31 to BDMB0): Specific the channel B break data bits specified by BDRB (BDB31—BDB0).

| Bits 31 to 0:<br>BDMBn | Description                                                                   |
|------------------------|-------------------------------------------------------------------------------|
| 0                      | Break data BDBn of channel B is included in the break condition               |
| 1                      | Break data BDBn of channel B is masked and is not included in the b condition |
| n = 31 to 0            |                                                                               |

Notes: 1. Specify an operand size when including the value of the data bus in the bree 2. When a byte size is specified as a break condition, the same-byte data must

bits 15 to 8 and bits 7 to 0 in BDRB for the break data.

Rev. 5.00, 09/03, pag

# Renesas

| R/W:           | R    | R    | R    | R    | R    | R    | R    |
|----------------|------|------|------|------|------|------|------|
|                |      |      |      |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1    |
|                | CDB1 | CDB0 | IDB1 | IDB0 | RWB1 | RWB0 | SZB1 |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  |

Bits 15 to 8-Reserved: These bits are always read as 0. These bits are always read as

**Bits 7 and 6—CPU Cycle/DMAC Cycle Select B (CDB1, CDB0):** Select the CPU cy DMAC cycle as the bus cycle of the channel B break condition.

| Bit 7: CDB1 | Bit 6: CDB0 | Description                           |     |
|-------------|-------------|---------------------------------------|-----|
| 0           | 0           | Condition comparison is not performed | (Ir |
| *           | 1           | The break condition is the CPU cycle  |     |
| 1           | 0           | The break condition is the DMAC cycle |     |
|             |             |                                       |     |

\*: Don't care

**Bits 5 and 4—Instruction Fetch/Data Access Select B (IDB1, IDB0):** Select the instruction fetch cycle or data access cycle as the bus cycle of the channel B break condition.

| Bit 5: IDB1 | Bit 4: IDB0 | Description                                                   |
|-------------|-------------|---------------------------------------------------------------|
| 0           | 0           | Condition comparison is not performed (Ir                     |
|             | 1           | The break condition is the instruction fetch cycle            |
| 1           | 0           | The break condition is the data access cycle                  |
|             | 1           | The break condition is the instruction fetch cycle or c cycle |

Rev. 5.00, 09/03, page 160 of 760

Bits 1 and 0—Operand Size Select B (SZB1, SZB0): Select the operand size of the the channel B break condition.

| Bit 1: SZB1 | Bit 0: SZB0 | Description                                       |
|-------------|-------------|---------------------------------------------------|
| 0           | 0           | The break condition does not include operand size |
|             |             | (                                                 |
|             | 1           | The break condition is byte access                |
| 1           | 0           | The break condition is word access                |
|             | 1           | The break condition is longword access            |

Renesas

- 4. Determine whether to include data bus on channel B in comparison conditions.
- 5. Enable PC trace.
- 6. Enable the ASID check.

The break control register (BRCR) is a 32-bit read/write register that has break condition flags and bits for setting a variety of break conditions. A power-on reset initializes BRC H'00000000.

| Bit:           | 31     | 30     | 29     | 28     | 27   | 26   | 25 |
|----------------|--------|--------|--------|--------|------|------|----|
|                |        | _      | _      | —      | _    | _    | —  |
| Initial value: | 0      | 0      | 0      | 0      | 0    | 0    | 0  |
| R/W:           | R      | R      | R      | R      | R    | R    | R  |
|                |        |        |        |        |      |      |    |
| Bit:           | 23     | 22     | 21     | 20     | 19   | 18   | 17 |
|                |        |        | BASMA  | BASMB  | _    |      | —  |
| Initial value: | 0      | 0      | 0      | 0      | 0    | 0    | 0  |
| R/W:           | R      | R      | R/W    | R/W    | R    | R    | R  |
|                |        |        |        |        |      |      |    |
| Bit:           | 15     | 14     | 13     | 12     | 11   | 10   | 9  |
|                | SCMFCA | SCMFCB | SCMFDA | SCMFDB | PCTE | PCBA | —  |
| Initial value: | 0      | 0      | 0      | 0      | 0    | 0    | 0  |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W  | R/W  | R  |
|                |        |        |        |        |      |      |    |
| Bit:           | 7      | 6      | 5      | 4      | 3    | 2    | 1  |
|                | DBEB   | PCBB   |        | —      | SEQ  |      | —  |
| Initial value: | 0      | 0      | 0      | 0      | 0    | 0    | 0  |
| R/W:           | R/W    | R/W    | R      | R      | R/W  | R    | R  |

Bits 31 to 22-Reserved: These bits are always read as 0. The write value should alwa

Rev. 5.00, 09/03, page 162 of 760

ASIDO (DASD7 to DASD0) set ili DASRD ale illaskeu ol liot.

Bit 20: BASMB Description

| 0 | All BASRB bits are included in break condition, ASID is checked (  |
|---|--------------------------------------------------------------------|
| 1 | No BASRB bits are included in break condition, ASID is not checked |

Bits 19 to 16—Reserved: These bits are always read as 0. The write value should alw

**Bit 15—CPU Condition Match Flag A (SCMFCA):** When the CPU bus cycle conditions set for channel A is satisfied, this flag is set to 1 (not cleared to 0). In clear this flag, write 0 into this bit.

| Bit 15:<br>SCMFCA | Description                                            |
|-------------------|--------------------------------------------------------|
| 0                 | The CPU cycle condition for channel A does not match ( |
| 1                 | The CPU cycle condition for channel A matches          |

**Bit 14—CPU Condition Match Flag B (SCMFCB):** When the CPU bus cycle conditions set for channel B is satisfied, this flag is set to 1 (not cleared to 0). In clear this flag, write 0 into this bit.

| Bit 14:<br>SCMFCB | Description                                            |
|-------------------|--------------------------------------------------------|
| 0                 | The CPU cycle condition for channel B does not match ( |
| 1                 | The CPU cycle condition for channel B matches          |

Renesas

**Bit 12—DMAC Condition Match Flag B (SCMFDB):** When the on-chip DMAC bus condition in the break conditions set for channel B is satisfied, this flag is set to 1 (not c 0). In order to clear this flag, write 0 into this bit.

| Bit 12:<br>SCMFDB | Description                                           |     |
|-------------------|-------------------------------------------------------|-----|
| 0                 | The DMAC cycle condition for channel B does not match | (Ir |
| 1                 | The DMAC cycle condition for channel B matches        |     |

Bit 11—PC Trace Enable (PCTE): Enables PC trace.

| Bit 11: PCTE | Description       |     |
|--------------|-------------------|-----|
| 0            | Disables PC trace | (Ir |
| 1            | Enables PC trace  |     |

**Bit 10—PC Break Select A (PCBA):** Selects the break timing of the instruction fetch channel A as before or after instruction execution.

| Bit 10: PCBA | Description                                               |     |
|--------------|-----------------------------------------------------------|-----|
| 0            | PC break of channel A is set before instruction execution | (Ir |
| 1            | PC break of channel A is set after instruction execution  |     |

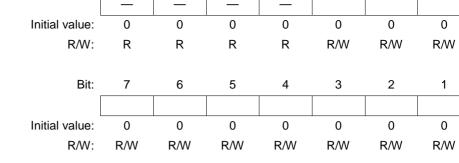
Bits 9 and 8—Reserved: These bits are always read as 0. The write value should always

**Bit 7—Data Break Enable B (DBEB):** Selects whether or not the data bus condition i in the break condition of channel B.

| Bit 7: DBEB | Description                                                      |     |
|-------------|------------------------------------------------------------------|-----|
| 0           | No data bus condition is included in the condition of channel B  | (Ir |
| 1           | The data bus condition is included in the condition of channel B |     |

Rev. 5.00, 09/03, page 164 of 760

**Bit 3—Sequence Condition Select (SEQ):** Selects two conditions of channels A and independent or sequential.


| Bit 3: SEQ | Description                                                                  |
|------------|------------------------------------------------------------------------------|
| 0          | Channels A and B are compared under the independent condition (              |
| 1          | Channels A and B are compared under the sequential condition (cha channel B) |

Bits 2 and 1-Reserved: These bits are always read as 0. The write value should always

**Bit 0—The Number of Execution Times Break Enable (ETBE):** Enable the execut break condition only on channel B. If this bit is 1 (break enable), a user break is issued number of break conditions matches with the number of execution times that is specific BETR register.

| Bit 0: ETBE | Description                                                  |
|-------------|--------------------------------------------------------------|
| 0           | The execution-times break condition is masked on channel B ( |
| 1           | The execution-times break condition is enabled on channel B  |

Renesas



Rev. 5.00, 09/03, page 166 of 760

| Bit:              | 31                      | 30    | 29    | 28    | 27    | 26    | 25   |
|-------------------|-------------------------|-------|-------|-------|-------|-------|------|
|                   | SVF                     | PID2  | PID1  | PID0  | BSA27 | BSA26 | BSA2 |
| Initial value:    | 0                       | *     | *     | *     | *     | *     | *    |
| R/W:              | R                       | R     | R     | R     | R     | R     | R    |
|                   |                         |       |       |       |       |       |      |
| Bit:              | 23                      | 22    | 21    | 20    | 19    | 18    | 17   |
|                   | BSA23                   | BSA22 | BSA21 | BSA20 | BSA19 | BSA18 | BSA  |
| Initial value:    | *                       | *     | *     | *     | *     | *     | *    |
| R/W:              | R                       | R     | R     | R     | R     | R     | R    |
|                   |                         |       |       |       |       |       |      |
| Bit:              | 15                      | 14    | 13    | 12    | 11    | 10    | 9    |
|                   | BSA15                   | BSA14 | BSA13 | BSA12 | BSA11 | BSA10 | BSA  |
| Initial value:    | *                       | *     | *     | *     | *     | *     | *    |
| R/W:              | R                       | R     | R     | R     | R     | R     | R    |
|                   |                         |       |       |       |       |       |      |
| Bit:              | 7                       | 6     | 5     | 4     | 3     | 2     | 1    |
|                   | BSA7                    | BSA6  | BSA5  | BSA4  | BSA3  | BSA2  | BSA  |
| Initial value:    | *                       | *     | *     | *     | *     | *     | *    |
| R/W:              | R                       | R     | R     | R     | R     | R     | R    |
| Note: * Undefined | Note: * Undefined value |       |       |       |       |       |      |

**Bit 31—BRSR Valid Flag (SVF):** Indicates whether the address and the pointer by w branch source address can be calculated. When a branch source address is fetched, this to 1. This flag is cleared to 0 in reading BRSR.

| Bit 31: SVF | Description                           |
|-------------|---------------------------------------|
| 0           | The value of BRSR register is invalid |
| 1           | The value of BRSR register is valid   |

Rev. 5.00, 09/03, pag

Renesas

Bits 27 to 0—Branch Source Address (BSA27 to BSA0): These bits store the last fete address before branch.

### 7.2.12 Branch Destination Register (BRDR)

BRDR is a 32-bit read register. BRDR stores the branch destination fetch address. BRD flag bit that is set to 1 when branch occurs. This flag bit is cleared to 0, when BRDR is also initialized by power-on resets or manual resets. Other bits are not initialized by res BRDR registers have queue structure and a stored register is shifted every branch.

| Bit:                    | 31    | 30    | 29    | 28    | 27    | 26    | 25    |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|
|                         | DVF   |       | _     | —     | BDA27 | BDA26 | BDA2  |
| Initial value:          | 0     | *     | *     | *     | *     | *     | *     |
| R/W:                    | R     | R     | R     | R     | R     | R     | R     |
|                         |       |       |       |       |       |       |       |
| Bit:                    | 23    | 22    | 21    | 20    | 19    | 18    | 17    |
|                         | BDA23 | BDA22 | BDA21 | BDA20 | BDA19 | BDA18 | BDA17 |
| Initial value:          | *     | *     | *     | *     | *     | *     | *     |
| R/W:                    | R     | R     | R     | R     | R     | R     | R     |
|                         |       |       |       |       |       |       |       |
| Bit:                    | 15    | 14    | 13    | 12    | 11    | 10    | 9     |
|                         | BDA15 | BDA14 | BDA13 | BDA12 | BDA11 | BDA10 | BDA9  |
| Initial value:          | *     | *     | *     | *     | *     | *     | *     |
| R/W:                    | R     | R     | R     | R     | R     | R     | R     |
|                         |       |       |       |       |       |       |       |
| Bit:                    | 7     | 6     | 5     | 4     | 3     | 2     | 1     |
|                         | BDA7  | BDA6  | BDA5  | BDA4  | BDA3  | BDA2  | BDA1  |
| Initial value:          | *     | *     | *     | *     | *     | *     | *     |
| R/W:                    | R     | R     | R     | R     | R     | R     | R     |
| Note: * Undefined value |       |       |       |       |       |       |       |

Rev. 5.00, 09/03, page 168 of 760

**Dits 50 to 20—Reserved.** These bits are always read as 0. The write value should alw

Bits 27 to 0—Branch Destination Address (BDA27 to BDA0): These bits store the address after branch.

### 7.2.13 Break ASID Register A (BASRA)

Break ASID register A (BASRA) is an 8-bit read/write register that specifies the ASII as the break condition for channel A. It is not initialized by resets.

| Bit:                    | 7     | 6     | 5     | 4     | 3     | 2     | 1    |  |  |
|-------------------------|-------|-------|-------|-------|-------|-------|------|--|--|
|                         | BASA7 | BASA6 | BASA5 | BASA4 | BASA3 | BASA2 | BASA |  |  |
| Initial value:          | *     | *     | *     | *     | *     | *     | *    |  |  |
| R/W:                    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  |  |  |
| Note: * Undefined value |       |       |       |       |       |       |      |  |  |

Bits 7 to 0—Break ASID A7 to 0 (BASA7 to BASA0): These bits store the ASID (b that is the channel A break condition.

#### 7.2.14 Break ASID Register B (BASRB)

Break ASID register B (BASRB) is an 8-bit read/write register that specifies the ASII as the break condition for channel B. It is not initialized by resets.

| Bit:                    | 7     | 6     | 5     | 4     | 3     | 2     | 1    |  |  |
|-------------------------|-------|-------|-------|-------|-------|-------|------|--|--|
|                         | BASB7 | BASB6 | BASB5 | BASB4 | BASB3 | BASB2 | BASE |  |  |
| Initial value:          | *     | *     | *     | *     | *     | *     | *    |  |  |
| R/W:                    | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  |  |  |
| Note: * Undefined value |       |       |       |       |       |       |      |  |  |

**Bits 7 to 0—Break ASID A7 to 0 (BASB7 to BASB0):** These bits store the ASID (bit that is the channel B break condition.

Rev. 5.00, 09/03, pag

- break data register (BDRB). The masked data is set in the break data mask register of The breaking bus conditions are set in the break bus cycle registers (BBRA and BBR groups of the BBRA and BBRB (CPU cycle/DMAC cycle select, instruction fetch/of select, and read/write select) are each set. No user break will be generated if even of groups is set with 00. The respective conditions are set in the bits of the BRCR.
- 2. When the break conditions are satisfied, the UBC sends a user break request to the i controller. The break type will be sent to CPU indicating the instruction fetch, pre/p instruction break, data access break. When conditions match up, the CPU condition flags (SCMFCA and SCMFCB) and DMAC condition match flags (SCMFDA and a for the respective channels are set.
- 3. The appropriate condition match flags (SCMFCA, SCMFDA, SCMFCB, and SCM be used to check if the set conditions match or not. The matching of the conditions but they are not reset. 0 must first be written to them before they can be used again.
- 4. There is a chance that the data access break and its following instruction fetch break around the same time, there will be only one break request to the CPU, but these two channel match flags could be both set.

### 7.3.2 Break on Instruction Fetch Cycle

- When CPU/instruction fetch/read/word or longword is set in the break bus cycle reg (BBRA/BBRB), the break condition becomes the CPU instruction fetch cycle. Whe breaks before or after the execution of the instruction can then be selected with the PCBA/PCBB bits of the break control register (BRCR) for the appropriate channel.
- 2. An instruction set for a break before execution breaks when it is confirmed that the has been fetched and will be executed. This means this feature cannot be used on in fetched by overrun (instructions fetched at a branch or during an interrupt transition be executed). When this kind of break is set for the delay slot of a delay branch instrubreak is generated prior to execution of the instruction that then first accepts the break meanwhile, the break set for pre-instruction-break on delay slot instruction and post instruction-break on SLEEP instruction are also prohibited.

Rev. 5.00, 09/03, page 170 of 760

#### 7.3.3 Break by Data Access Cycle

- 1. The memory cycles in which CPU data access breaks occur are from instructions.
- 2. The relationship between the data access cycle address and the comparison conditi operand size are listed in table 7.2:

Table 7.2 Data Access Cycle Addresses and Operand Size Comparison Condit

| Access Size | Address Compared                                              |
|-------------|---------------------------------------------------------------|
| Longword    | Compares break address register bits 31–2 to address bus bits |
| Word        | Compares break address register bits 31–1 to address bus bits |
| Byte        | Compares break address register bits 31–0 to address bus bits |

This means that when address H'00001003 is set without specifying the size condi example, the bus cycle in which the break condition is satisfied is as follows (when conditions are met).

Longword access at H'00001000 Word access at H'00001002 Byte access at H'00001003

3. When the data value is included in the break conditions on B channel:

When the data value is included in the break conditions, either longword, word, or specified as the operand size of the break bus cycle registers (BBRA and BBRB). values are included in break conditions, a break is generated when the address con data conditions both match. To specify byte data for this case, set the same data in bits 15–8 and bits 7–0 of the break data register B (BDRB) and break data mask re (BDMRB). When word or byte is set, bits 31–16 of BDRB and BDMRB are ignor

4. When the DMAC data access is included in the break condition:

When the address is included in the break condition on DMAC data access, the op the break bus cycle registers (BBRA and BBRB) should be byte, word or no specific size. When the data value is included, select either byte or word.

Rev. 5.00, 09/03, pag

= H'0001 after channel A condition match.

#### 7.3.5 Value of Saved Program Counter

The PC when a break occurs is saved to the SPC in user breaks. The PC value saved is depending on the type of break.

- 1. When instruction fetch (before instruction execution) is specified as a break condition. The value of the program counter (PC) saved is the address of the instruction that me break condition. The fetched instruction is not executed, and a break occurs before it
- 2. When instruction fetch (after instruction execution) is specified as a break condition The PC value saved is the address of the instruction to be executed following the inwhich the break condition matches. The fetched instruction is executed, and a break before the execution of the next instruction.
- 3. When data access (address only) is specified as a break condition:

The PC value is the address of the instruction to be executed following the instruction matched the break condition. The instruction that matched the condition is executed break occurs before the next instruction is executed.

4. When data access (address + data) is specified as a break condition:

The PC value is the start address of the instruction that follows the instruction alread when break processing started up. When a data value is added to the break condition place where the break will occur cannot be specified exactly. The break will occur be execution of an instruction fetched around the data access where the break occurred

Rev. 5.00, 09/03, page 172 of 760

and IA (the instruction address before branch occurs) is as follows: IA = BSA - 2Notes are needed when an interrupt (a branch) is issued before the branch destinati instruction is executed. In case of the next figure, the instruction "Exec" executed before branch is calculated by IA = BSA - 2 \* PID. However, when branch "branc slot and the destination address is 4n + 2 address, the address "Dest" which is spec branch instruction is stored in BRSR (Dest = BSA). Therefore, as IA = BSA - 2 \* applied to this case, this PID is invalid. The case where BSA is 4n + 2 boundary is only to this case and then some cases are classified as follows:

```
Exec:branch Dest
Dest:instr (not executed)
interrupt
Int: interrupt routine
```

If the PID value is odd, instruction buffer indicates PID+2 buffer. However, these in this table are accounted for it. Therefore, the true branch source address is calcu BSA and PID values stored in BRSR.

- The branch address before branch occurrence, IA, has different values due to some branch.
  - a. Branch instruction

The branch instruction address

b. Interrupt

The last instruction executed before interrupt

The top address of interrupt routine is stored in BRDR.

4. BRSR and BRDR have eight pairs of queue structures. The top of queues is read fi address stored in the PC trace register is read. BRSR and BRDR share the read poir BRSR and BRDR in order, the queue only shifts after BRDR is read. When readin longword access should be used. Also, the PC trace has a trace pointer, which initi to the bottom of the queues. The first pair of branch addresses will be stored at the the queues, then push up when next pairs come into the queues. The trace pointer w the next branch address to be executed, unless it got push out of the queues. When address has been executed, the trace pointer will shift down to next pair of address

Rev. 5.00, 09/03, pag

BARA = H'00000404, BAMRA = H'00000000, BBRA = H'0054, BARB = H'00008 BAMRB = H'00000006, BBRB = H'0054, BDRB = H'000000000, BDMRB = H'0000 BRCR = H'00300400

Specified conditions: Channel A/channel B independent mode

Channel A

Address: H'00000404, Address mask: H'00000000

Bus cycle: CPU/instruction fetch (after instruction execution)/read (operand si included in the condition)

No ASID check is included

• Channel B

| Address:   | H'00008010, Address mask: H'00000006                               |
|------------|--------------------------------------------------------------------|
| Data:      | H'0000000, Data mask: H'00000000                                   |
| Bus cycle: | CPU/instruction fetch (before instruction execution)/read (operand |
|            | included in the condition)                                         |
| No ASID c  | heck is included                                                   |

A user break occurs after an instruction of address H'00000404 is executed or befor instructions of adresses H'00008010 to H'00008016 are executed.

Rev. 5.00, 09/03, page 174 of 760

- Channel B

| Address:   | H'0003722E, Address mask: H'00000000, ASID = H'70              |
|------------|----------------------------------------------------------------|
| Data:      | H'00000000, Data mask: H'00000000                              |
| Bus cycle: | CPU/instruction fetch (before instruction execution)/read/word |

An instruction with ASID = H'80 and address H'00037226 is executed, and a user before an instruction with ASID = H'70 and address H'0003722E is executed.

3. Register specifications

BARA = H'00027128, BAMRA = H'00000000, BBRA = H'005A, BARB = H'000 BAMRB = H'00000000, BBRB = H'0054, BDRB = H'00000000, BDMRB = H'00 BRCR = H'00300000

Specified conditions: Channel A/channel B independent mode

• Channel A

| Address:   | H'00027128, Address mask: H'00000000                            |
|------------|-----------------------------------------------------------------|
| Bus cycle: | CPU/instruction fetch (before instruction execution)/write/word |
| No ASID c  | heck is included                                                |

Channel B

| Address: H'00031415, Address mask: I | H'00000000 |
|--------------------------------------|------------|
|--------------------------------------|------------|

- Data: H'00000000, Data mask: H'00000000
- Bus cycle: CPU/instruction fetch (before instruction execution)/read (operand included in the condition)

No ASID check is included

On channel A, no user break occurs since instruction fetch is not a write cycle. On no user break occurs since instruction fetch is performed for an even address.

Renesas

- Channel B

| Address:   | H'0003722E, Address mask: H'00000000, ASID: H'70               |
|------------|----------------------------------------------------------------|
| Data:      | H'00000000, Data mask: H'00000000                              |
| Bus cycle: | CPU/instruction fetch (before instruction execution)/read/word |

Since instruction fetch is not a write cycle on channel A, a sequence condition does Therefore, no user break occurs.

5. Register specifications

BARA = H'00000500, BAMRA = H'00000000, BBRA = H'0057, BARB = H'0000 BAMRB = H'00000000, BBRB = H'0057, BDRB = H'00000000, BDMRB = H'000 BRCR = H'00300001, BETR = H'0005

Specified conditions: Channel A/channel B independent mode

Channel A

- Bus cycle: CPU/instruction fetch (before instruction execution)/read/longword
- Channel B
  - Address: H'00001000, Address mask: H'00000000
  - Data: H'00000000, Data mask: H'00000000

Bus cycle: CPU/instruction fetch (before instruction execution)/read/longword

The number of execution-times break enable (5 times)

On channel A, a user break occurs before an instruction of address H'00000500 is e On channel B, a user break occurs before the fifth instruction execution after instrucaddress H'00001000 are executed four times.

Rev. 5.00, 09/03, page 176 of 760

- included in the condition)
- Channel B

| Address:   | H'00008010, Address mask: H'00000006, ASID: H'70                   |
|------------|--------------------------------------------------------------------|
| Data:      | H'0000000, Data mask: H'00000000                                   |
| Bus cycle: | CPU/instruction fetch (before instruction execution)/read (operand |
|            | included in the condition)                                         |

A user break occurs after an instruction with ASID = H'80 and address H'0000800H'00008FFE is executed or before instructions with ASID = H'70 and addresses H to H'00008016 are executed.

#### Break Condition Specified to a CPU Data Access Cycle

1. Register specifications

BARA = H'00123456, BAMRA = H'00000000, BBRA = H'0064, BARB = H'0000 BAMRB = H'000000FF, BBRB = H'006A, BDRB = H'0000A512, BDMRB = H'00 BRCR = H'00000080, BASRA = H'80, BASRB = H'70

Specified conditions: Channel A/channel B independent mode

Channel A Address: H'00123456, Address mask: H'00000000 Bus cycle: CPU/data access/read (operand size is not included in the condition Channel B Address: H'000ABCDE, Address mask: H'000000FF, ASID: H'70 Data: H'0000A512, Data mask: H'0000000 Bus cycle: CPU/data access/write/word

On channel A, a user break occurs with ASID = H'80 during longword read to add H'00123454, word read to address H'00123456, or byte read to address H'00123456 channel B, a user break occurs with ASID = H'70 when word H'A512 is written in H'000ABC00 to H'000ABCFE.

Rev. 5.00, 09/03, pag

| Address:   | H'00314156, Address mask: H'00000000, ASID: H'80                    |
|------------|---------------------------------------------------------------------|
| Bus cycle: | DMAC/instruction fetch/read (operand size is not included in the co |

Channel B Address: H'00055555, Address mask: H'00000000, ASID: H'70 Data: H'00000078, Data mask: H'0000000F Bus cycle: DMAC/data access/write/byte

On channel A, no user break occurs since instruction fetch is not performed in DMA On channel B, a user break occurs with ASID = H'70 when the DMAC writes byte b address H'00055555.

Rev. 5.00, 09/03, page 178 of 760

٠

- b. Since the CPU has a pipeline configuration, the pipeline determines the order of instruction fetch cycle and a memory cycle. Therefore, when a channel condition in the order of bus cycles, a sequential condition is satisfied.
- c. When the bus cycle condition for channel A is specified as a break before exec (PCBA = 0 in BRCR) and an instruction fetch cycle (in BBRA), the attention i A break is issued and condition match flags in BRCR are set to 1, when the bus conditions both for channels A and B match simultaneously.
- 4. The change of a UBC register value is executed in MA (memory access) stage. The even if the break condition matches in the instruction fetch address following the i which the pre-execution break is specified as the break condition, no break occurs, know the timing UBC register is changed, read the last written register. Instruction are valid for the newly written register value.
- 5. The branch instruction should not be executed as soon as PC trace register BRSR a are read.
- 6. When PC breaks and TLB exceptions or errors occur in the same instruction. The follows:
  - a. Break and instruction fetch exceptions: Instruction fetch exception occurs first.
  - b. Break before execution and operand exception: Break before execution occurs
  - c. Break after execution and operand exception: Operand exception occurs first.

Renesas

Rev. 5.00, 09/03, page 180 of 760

-----

The SH7709S has the following power-down modes and function:

- 1. Sleep mode
- 2. Standby mode
- 3. Module standby function (TMU, RTC, SCI, UBC, DMAC, DAC, ADC, SCIF, and chip peripheral modules)
- 4. Hardware standby mode

Table 8.1 shows the transition conditions for entering the modes from the program exe as well as the CPU and peripheral module states in each mode and the procedures for each mode.



| Standby<br>mode               | Execute SLEEP<br>instruction with<br>STBY bit set to<br>1 in STBCR | Halts | Halts Held               | Held | Halt                         | Held | Self-<br>refresh | 1.  <br>2. |
|-------------------------------|--------------------------------------------------------------------|-------|--------------------------|------|------------------------------|------|------------------|------------|
| Module<br>standby<br>function | Set MSTP bit to<br>1 in STBCR                                      | Runs  | Runs Held<br>or<br>halts | Held | Specified<br>module<br>halts | *2   | Refresh          | 1. (<br>   |
|                               |                                                                    |       |                          |      |                              |      |                  | 2. I       |
| Hardware<br>standby<br>mode   | Drive CA pin low                                                   | Halts | Halts Held               | Held | Halt <sup>*3</sup>           | Held | Self-<br>refresh | Po         |
| Notes: 1                      | . The RTC still ru                                                 |       |                          |      |                              | •    |                  |            |

(RTC)). The TMU still runs when output of the RTC is used as input to its co section 12, Timer (TMU)).2. Depends on the on-chip peripheral module.

TMU external pin: Held

SCI external pin: Reset

3. The RTC still runs if the START bit in RCR2 is set to 1. The TMU does not run

Rev. 5.00, 09/03, page 182 of 760

|                           |        |   | LL: Normal operation                                                                                                |
|---------------------------|--------|---|---------------------------------------------------------------------------------------------------------------------|
| Wakeup from standby mode  | WAKEUP | 0 | Active-low assertion after accepting wa<br>interrupt in standby mode until returning<br>operation with WDT overflow |
| Material II. Is help have |        |   |                                                                                                                     |

Note: H: high level; L: low level

### 8.1.3 Register Configuration

Table 8.3 shows the control register configuration for the power-down modes.

### Table 8.3 Register Configuration

| Name                       | Abbreviation | R/W | Initial Value | Access Size |
|----------------------------|--------------|-----|---------------|-------------|
| Standby control register   | STBCR        | R/W | H'00*         | H'FFFFFF82  |
| Standby control register 2 | STBCR2       | R/W | H'00*         | H'FFFFFF88  |

Note: \* Initialized by a power-on reset. This value is not initialized by a manual reset; value is retained.

# 8.2 **Register Descriptions**

## 8.2.1 Standby Control Register (STBCR)

The standby control register (STBCR) is an 8-bit readable/writable register that sets the down mode. STBCR is initialized to H'00 by a power-on reset.

| Bit:           | 7    | 6 | 5 | 4      | 3 | 2     | 1   |
|----------------|------|---|---|--------|---|-------|-----|
|                | STBY | — | — | STBXTL |   | MSTP2 | MST |
| Initial value: | 0    | 0 | 0 | 0      | 0 | 0     | 0   |
| R/W:           | R/W  | R | R | R/W    | R | R/W   | R/W |

Rev. 5.00, 09/03, pag

in standby mode.

| Bit 4: STBXTL | Description                                       |    |
|---------------|---------------------------------------------------|----|
| 0             | Clock pulse generator is halted in standby mode   | (1 |
| 1             | Clock pulse generator is operates in standby mode |    |

**Bit 2—Module Standby 2** (**MSTP2**): Specifies halting of the clock supply to the times (an on-chip peripheral module). When the MSTP2 bit is set to 1, the supply of the clock TMU is halted.

| Bit 2: MSTP2 | Description                   |    |
|--------------|-------------------------------|----|
| 0            | TMU runs                      | (1 |
| 1            | Clock supply to TMU is halted |    |

**Bit 1—Module Standby 1** (**MSTP1**): Specifies halting of the clock supply to the realting RTC (an on-chip peripheral module). When the MSTP1 bit is set to 1, the supply of the the RTC is halted. When the clock halts, all RTC registers become inaccessible, but the keeps running.

| Bit 1: MSTP1 | Description                   |    |
|--------------|-------------------------------|----|
| 0            | RTC runs                      | (1 |
| 1            | Clock supply to RTC is halted |    |

Before switching the RTC to module standby, access at least one among the registers R and TMU.

Rev. 5.00, 09/03, page 184 of 760

#### 8.2.2 Standby Control Register 2 (STBCR2)

The standby control register 2 (STBCR2) is a readable/writable 8-bit register that sets down mode. STBCR2 is initialized to H'00 by a power-on reset.

| Bit:           | 7   | 6     | 5     | 4     | 3     | 2     | 1   |
|----------------|-----|-------|-------|-------|-------|-------|-----|
|                |     | MDCHG | MSTP8 | MSTP7 | MSTP6 | MSTP5 | MST |
| Initial value: | 0   | 0     | 0     | 0     | 0     | 0     | 0   |
| R/W:           | R/W | R/W   | R/W   | R/W   | R/W   | R/W   | R/W |

Bit 7—Reserved: The write value set in the program should always be 1.

**Bit 6—Pin MD5 to MD0 Control (MDCHG):** Specifies whether or not pins MD5 to changed in standby mode. When this bit is set to 1, the MD5 to MD0 pin values are la returning from standby mode by means of a reset or interrupt.

| Bit 6: MDCHG | Description                                     |
|--------------|-------------------------------------------------|
| 0            | Pins MD5 to MD0 are not changed in standby mode |
| 1            | Pins MD5 to MD0 are changed in standby mode     |

**Bit 5— Module Stop 8 (MSTP8):** Specifies halting of the clock supply to the user br controller UBC (an on-chip peripheral module). When the MSTP8 bit is set to 1, the s clock to the UBC is halted.

| Bit 5: MSTP8 | Description                   |
|--------------|-------------------------------|
| 0            | UBC runs                      |
| 1            | Clock supply to UBC is halted |

Renesas

peripheral module). When the MSTP6 bit is set to 1, the supply of the clock to the DAC

| Bit 3: MSTP6 | Description                |   |
|--------------|----------------------------|---|
| 0            | DAC runs                   | ( |
| 1            | Clock supply to DAC halted |   |

**Bit 2—Module Stop 5 (MSTP5):** Specifies halting of the clock supply to the ADC (an peripheral module). When the MSTP5 bit is set to 1, the supply of the clock to the ADC and all registers are initialized.

| Bit 2: MSTP5 | Description                                              |   |
|--------------|----------------------------------------------------------|---|
| 0            | ADC runs                                                 | ( |
| 1            | Clock supply to ADC halted and all registers initialized |   |

**Bit 1—Module Stop 4 (MSTP4):** Specifies halting of the clock supply to the SCI2 (SC communication interface with FIFO (an on-chip peripheral module). When the MSTP1 1, the supply of the clock to SCI2 (SCIF) is halted.

| Bit 1: MSTP4 | Description                        |   |
|--------------|------------------------------------|---|
| 0            | SCI2 (SCIF) runs                   | ( |
| 1            | Clock supply to SCI2 (SCIF) halted |   |

**Bit 0—Module Stop 3 (MSTP3):** Specifies halting of the clock supply to the SCI1 (Irl Infrared Data Association interface with FIFO (an on-chip peripheral module). When the bit is set to 1, the supply of the clock to SCI1 (IrDA) is halted.

| Bit 0: MSTP3 | Description                       |   |
|--------------|-----------------------------------|---|
| 0            | SCI1(IrDA) runs                   | ( |
| 1            | Clock supply to SCI1(IrDA) halted |   |

Rev. 5.00, 09/03, page 186 of 760

CKIO2 pins. In sleep mode, the STATUS1 pin is set high and the STATUS0 pin low.

### 8.3.2 Canceling Sleep Mode

Sleep mode is canceled by an interrupt (NMI, IRQ, IRL, on-chip peripheral module, P reset. Interrupts are accepted in sleep mode even when the BL bit in the SR register is necessary, save SPC and SSR to the stack before executing the SLEEP instruction.

**Canceling with an Interrupt:** When an NMI, IRQ, IRL or on-chip peripheral module occurs, sleep mode is canceled and interrupt exception handling is executed. A code in interrupt source is set in the INTEVT and INTEVT2 registers.

Canceling with a Reset: Sleep mode is canceled by a power-on reset or a manual rese

### 8.3.3 Precautions when Using the Sleep Mode

DMAC transfers should not be performed in the sleep mode under conditions other the clock ratio of I $\phi$  (on-chip clock) to B $\phi$  (bus clock) is 1:1.

Renesas

states of registers in standby mode.

| Module                                 | <b>Registers Initialized</b> | Registers Retaining I  |
|----------------------------------------|------------------------------|------------------------|
| Interrupt controller (INTC)            | —                            | All registers          |
| On-chip clock pulse generator<br>(OSC) | _                            | All registers          |
| User break controller (UBC)            | _                            | All registers          |
| Bus state controller (BSC)             | _                            | All registers          |
| Timer unit (TMU)                       | TSTR register                | Registers other than T |
| Realtime clock (RTC)                   | _                            | All registers          |
| A/D converter (ADC)                    | All registers                | —                      |
| D/A converter (DAC)                    | _                            | All registers          |

#### Table 8.4 Register States in Standby Mode

The procedure for moving to standby mode is as follows:

- 1. Clear the TME bit in the WDT's timer control register (WTCSR) to 0 to stop the W the WDT's timer counter (WTCNT) to 0 and the CKS2–CKS0 bits in the WTCSR 1 appropriate values to secure the specified oscillation settling time.
- 2. After the STBY bit in the STBCR register is set to 1, a SLEEP instruction is execute
- 3. Standby mode is entered and the clocks within the chip are halted. The STATUS1 p goes low and the STATUS0 pin output goes high.

Rev. 5.00, 09/03, page 188 of 760

Interrupt handling then begins and a code indicating the interrupt source is set in the II INTEVT2 registers. After the branch to the interrupt handling routine, clear the STBY STBCR register. WTCNT stops automatically. If the STBY bit is not cleared, WTCN' operation and a transition is made to standby mode<sup>\*3</sup> when it reaches H'80. This funct the data from being destroyed due to a rise in voltage with an unstable power supply, of Interrupts are accepted in standby mode even when the BL bit in the SR register is 1. I save SPC and SSR to the stack before executing the SLEEP instruction. Immediately a interrupt is detected, the phase of the CKIO pin clock output may be unstable, until the starts interrupt handling. (The canceling condition is that the IRL3–IRL0 level is high mask level in the I3–I0 bits in the SR register.)

- Notes: 1. When the RTC is being used, standby mode can be canceled using IRL3–I IRQ0, or PINT0/1.
  - 2. Standby mode can be canceled with an RTC or TMU (only when running or clock) interrupt.
  - 3. This standby mode can be canceled only by a power-on reset.

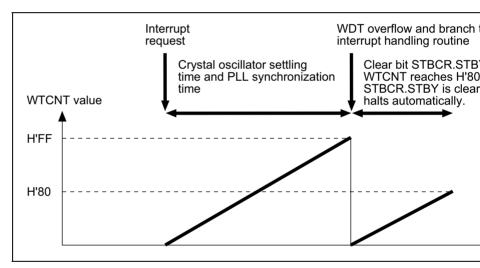



Figure 8.1 Canceling Standby Mode with STBCR.STBY

Rev. 5.00, 09/03, pag

- 1. Enter standby mode using the appropriate procedures.
- 2. Once standby mode is entered and the clock stopped within the chip, the STATUS1 is low and the STATUS0 pin output is high.
- 3. Once the STATUS1 pin goes low and the STATUS0 pin goes high, the input clock or the frequency is changed.
- 4. When the frequency is changed, an NMI, IRL, IRQ, PINT, or on-chip peripheral mo (except interval timer) interrupt is input after the change. When the clock is stopped interrupts are input after the clock is applied.
- 5. After the time set in the WDT has elapsed, the clock starts being applied internally chip, the STATUS1 and STATUS0 pins both go low, and operation resumes from i exception handling.

Rev. 5.00, 09/03, page 190 of 760

their values.

| Bit      | Value                                                                         | Description                                                               |  |  |  |  |
|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| MSTP8    | 0                                                                             | UBC runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to UBC halted                                             |  |  |  |  |
| MSTP7    | 0                                                                             | DMAC runs                                                                 |  |  |  |  |
|          | 1                                                                             | Supply of clock to DMAC halted                                            |  |  |  |  |
| MSTP6    | 0                                                                             | DAC runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to DAC halted                                             |  |  |  |  |
| MSTP5    | 0                                                                             | ADC runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to ADC halted, and all registers initialized              |  |  |  |  |
| MSTP4    | 0                                                                             | SCIF runs                                                                 |  |  |  |  |
|          | 1                                                                             | Supply of clock to SCIF halted                                            |  |  |  |  |
| MSTP3    | 0                                                                             | IrDA runs                                                                 |  |  |  |  |
|          | 1                                                                             | Supply of clock to IrDA halted                                            |  |  |  |  |
| MSTP2    | 0                                                                             | TMU runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to TMU halted. Registers initialized*1                    |  |  |  |  |
| MSTP1    | 0                                                                             | RTC runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to RTC halted. Register access prohibited <sup>*2*3</sup> |  |  |  |  |
| MSTP0    | 0                                                                             | SCI runs                                                                  |  |  |  |  |
|          | 1                                                                             | Supply of clock to SCI halted                                             |  |  |  |  |
| Natao: 4 | The registers initialized are the same as in standby made (as table $Q_{1}$ ) |                                                                           |  |  |  |  |

Notes: 1. The registers initialized are the same as in standby mode (see table 8.4).

2. The counter runs.

 Before switching the RTC to module standby, access at least one among th RTC, SCI, and TMU.

### 8.5.2 Clearing Module Standby Function

The module standby function can be cleared by clearing the MSTPSLP0 and MSTP8to 0, or by a power-on reset or manual reset.

Rev. 5.00, 09/03, pag

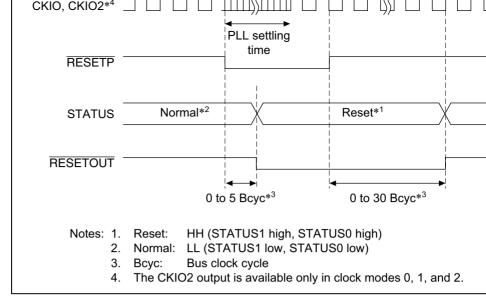



Figure 8.2 Power-On Reset (Clock Modes 0, 1, 2, and 7) STATUS Outp

Rev. 5.00, 09/03, page 192 of 760

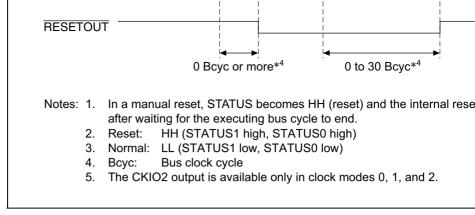



Figure 8.3 Manual Reset STATUS Output

Renesas

| STATUS | Normal*2         | Standby* <sup>1</sup>                                                        |    | Nor |
|--------|------------------|------------------------------------------------------------------------------|----|-----|
| WAKEUP | <br> <br>        |                                                                              |    |     |
| 2.     | Normal: LL (STAT | TUS1 low, STATUS0 hig<br>IUS1 low, STATUS0 low<br>is available only in clock | y) | 2.  |

Figure 8.4 Standby to Interrupt STATUS Output

Rev. 5.00, 09/03, page 194 of 760

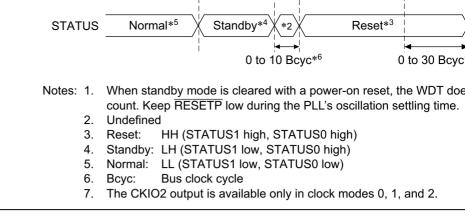
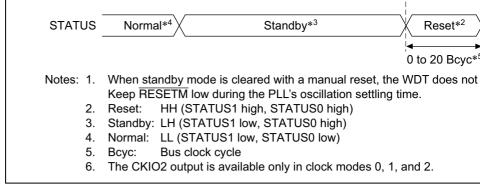
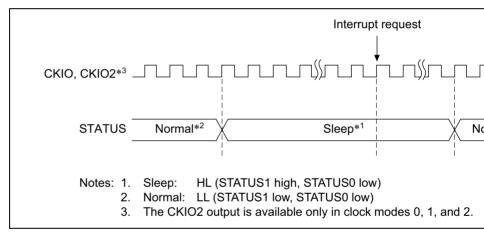




Figure 8.5 Standby to Power-On Reset STATUS Output


RENESAS



#### Figure 8.6 Standby to Manual Reset STATUS Output

#### 8.6.3 Timing for Canceling Sleep Mode

#### **Sleep to Interrupt**



#### Figure 8.7 Sleep to Interrupt STATUS Output

Rev. 5.00, 09/03, page 196 of 760

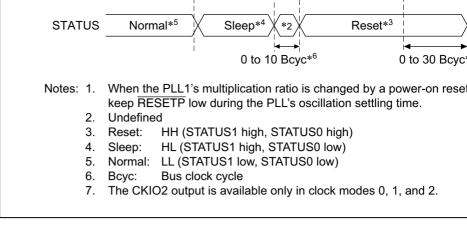



Figure 8.8 Sleep to Power-On Reset STATUS Output

RENESAS

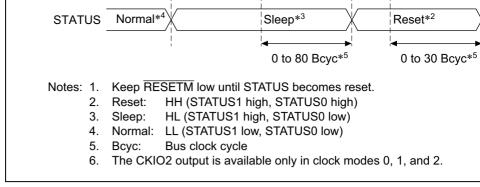



Figure 8.9 Sleep to Manual Reset STATUS Output

Rev. 5.00, 09/03, page 198 of 760

flardware standby mode differs from (software) standby mode as follows.

- 1. Interrupts and manual resets are not accepted.
- 2. The TMU does not operate.

Operation when a low-level signal is input at the CA pin depends on the CPG state, as

1. In standby mode

The clock remains stopped and the chip enters the hardware standby state. Accept interrupts and manual resets is disabled, TCLK output is fixed low, and the TMU I

- During WDT operation when standby mode is canceled by an interrupt The chip enters hardware standby mode after standby mode is canceled and the CF operation.
- 3. In sleep mode

The chip enters hardware standby mode after sleep mode is canceled and the CPU operation.

Hold the CA pin low in hardware standby mode.

### 8.7.2 Canceling Hardware Standby Mode

Hardware standby mode can only be canceled by a power-on reset.

When the CA pin is driven high while the  $\overline{\text{RESETP}}$  pin is low, clock oscillation is star the  $\overline{\text{RESETP}}$  pin low until clock oscillation stabilizes. When the  $\overline{\text{RESETP}}$  pin is drive CPU begins power-on reset processing.

Operation is not guaranteed in the event of an interrupt or manual reset.

Rev. 5.00, 09/03, pag



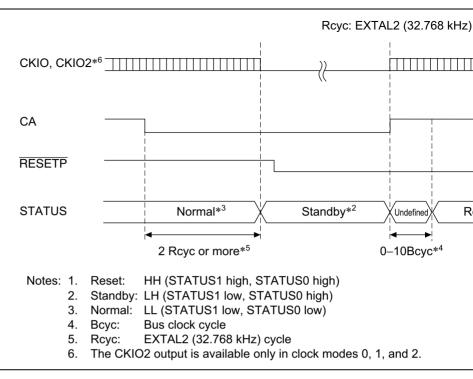



Figure 8.10 Hardware Standby Mode (When CA Goes Low in Normal Operation)

Rev. 5.00, 09/03, page 200 of 760

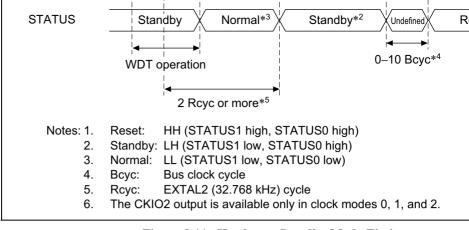



Figure 8.11 Hardware Standby Mode Timing (When CA Goes Low during WDT Operation on Standby Mode Cancella

Renesas

Rev. 5.00, 09/03, page 202 of 760

#### 9.1.1 Features

The CPG has the following features:

- Four clock modes: Selection of four clock modes for different frequency ranges, p consumption, direct crystal input, and external clock input.
- Three clocks generated independently: An internal clock for the CPU, cache, and ' peripheral clock (Pφ) for the on-chip peripheral modules; and a bus clock (CKIO) external bus interface.
- Frequency change function: Internal and peripheral clock frequencies can be change independently using the PLL circuit and divider circuit within the CPG. Frequencie changed by software using frequency control register (FRQCR) settings.
- Power-down mode control: The clock can be stopped for sleep mode and standby specific modules can be stopped using the module standby function.

The WDT has the following features:

- Can be used to ensure the clock settling time: Use the WDT to cancel standby more temporary standbys which occur when the clock frequency is changed.
- Can switch between watchdog timer mode and interval timer mode.
- Generates internal resets in watchdog timer mode: Internal resets occur after count Selection of power-on reset or manual reset.
- Generates interrupts in interval timer mode: Internal timer interrupts occur after co overflow.
- Selection of eight counter input clocks. Eight clocks (×1 to ×1/4096) can be obtain dividing the peripheral clock.

Rev. 5.00, 09/03, pag

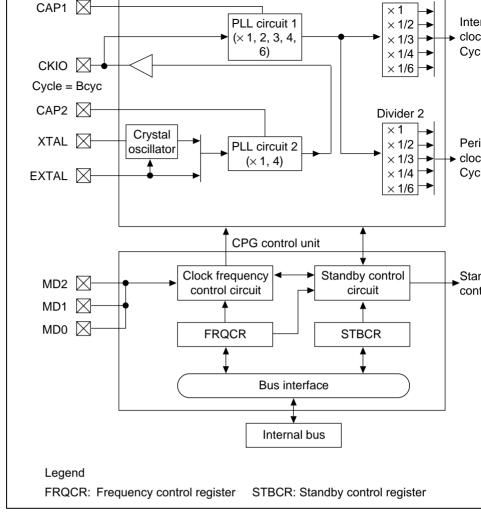



Figure 9.1 Block Diagram of Clock Pulse Generator

Rev. 5.00, 09/03, page 204 of 760

- See table 9.3 for more information on clock operation modes.
- 3. Crystal Oscillator: This oscillator is used when a crystal oscillator element is conn XTAL and EXTAL pins. It operates according to the clock operating mode setting
- 4. Divider 1: Divider 1 generates a clock at the operating frequency used by the intern The operating frequency can be 1, 1/2, 1/3, 1/4 or 1/6 times the output frequency of circuit 1, as long as it is not lower than the CKIO pin clock frequency. The division in the frequency control register.
- 5. Divider 2: Divider 2 generates a clock at the operating frequency used by the perip The operating frequency can be 1, 1/2, 1/3, 1/4 or 1/6 times the output frequency of circuit 1 or the CKIO pin clock frequency, as long as it is not higher than the CKIO frequency. The division ratio is set in the frequency control register.
- 6. Clock Frequency Control Circuit: The clock frequency control circuit controls the frequency using the MD pins and the frequency control register.
- 7. Standby Control Circuit: The standby control circuit controls the state of the clock generator and other modules during clock switching and sleep/standby modes.
- 8. Frequency Control Register: The frequency control register has control bits assign following functions: the frequency multiplication ratio of PLL 1, and the frequency ratio of the internal clock and the peripheral clock.
- 9. Standby Control Register: The standby control register has bits for controlling the modes. See section 8, Power-Down Modes, for more information.

Renesas

|                              | MD2   | I   |                                                                           |
|------------------------------|-------|-----|---------------------------------------------------------------------------|
| Crystal I/O pins             | XTAL  | 0   | Connects a crystal oscillator                                             |
| (clock input pins)           | EXTAL | I   | Connects a crystal oscillator. Also used to inpu external clock           |
| Clock I/O pin                | CKIO  | I/O | Inputs or outputs an external clock                                       |
| Capacitor<br>connection pins | CAP1  | I   | Connects capacitor for PLL circuit 1 operation (recommended value 470 pF) |
| for PLL                      | CAP2  | I   | Connects capacitor for PLL circuit 2 operation (recommended value 470 pF) |

## 9.2.3 CPG Register Configuration

Table 9.2 shows the CPG register configuration.

## Table 9.2CPG Register

| Register Name              | Abbreviation | R/W | Initial Value | Address    | Ac |
|----------------------------|--------------|-----|---------------|------------|----|
| Frequency control register | FRQCR        | R/W | H'0102        | H'FFFFFF80 | 16 |

Rev. 5.00, 09/03, page 206 of 760

| 0 | 0             | 0            | 0  | EXTAL                 | CKIO | On,<br>multi-<br>plication<br>ratio: 1 | On | PLL1<br>output | PLL1 |
|---|---------------|--------------|----|-----------------------|------|----------------------------------------|----|----------------|------|
| 1 | 0             | 0            | 1  | EXTAL                 | CKIO | On,<br>multi-<br>plication<br>ratio: 4 | On | PLL1<br>output | PLL1 |
| 2 | 0             | 1            | 0  | Crystal<br>oscillator | CKIO | On,<br>multi-<br>plication<br>ratio: 4 | On | PLL1<br>output | PLL1 |
| 7 | 1             | 1            | 1  | CKIO                  | —    | Off                                    | On | PLL1<br>output | PLL1 |
| _ | Exce<br>value | pt aboʻ<br>9 | ve | Reserve               | d    |                                        |    |                |      |

**Mode 0:** An external clock is input from the EXTAL pin and undergoes waveform sh. PLL circuit 2 before being supplied inside the chip. PLL circuit 1 is constantly on. An frequency of 25 MHz to 66.67 MHz can be used, and the CKIO frequency range is 25 66.67 MHz.

**Mode 1:** An external clock is input from the EXTAL pin and its frequency is multiplic PLL circuit 2 before being supplied inside the chip, allowing a low-frequency external used. An input clock frequency of 6.25 MHz to 16.67 MHz can be used, and the CKIC range is 25 MHz to 66.67 MHz.

**Mode 2:** The on-chip crystal oscillator operates, with the oscillation frequency being a by 4 by PLL circuit 2 before being supplied inside the chip, allowing a low crystal frequesed. A crystal oscillation frequency of 6.25 MHz to 16.67 MHz can be used, and the frequency range is 25 MHz to 66.67 MHz.

Rev. 5.00, 09/03, pag

As PLL circuit I compensates for fluctuations in the CKIO pin load, this mode is suitable connection of synchronous DRAM.

| Clock<br>Mode | FRQCR  | PLL1     | PLL2     | Clock Rate <sup>*</sup><br>(I:B:P) | <sup>°</sup> Input Frequency<br>Range | CKIO Free<br>Range |
|---------------|--------|----------|----------|------------------------------------|---------------------------------------|--------------------|
| 0             | H'0100 | ON (× 1) | ON (× 1) | 1:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'0101 | ON (× 1) | ON (× 1) | 1:1:1/2                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'0102 | ON (× 1) | ON (× 1) | 1:1:1/4                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'0111 | ON (× 2) | ON (× 1) | 2:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'0112 | ON (× 2) | ON (× 1) | 2:1:1/2                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'0115 | ON (× 2) | ON (× 1) | 1:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'0116 | ON (× 2) | ON (× 1) | 1:1:1/2                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'0122 | ON (× 4) | ON (× 1) | 4:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'0126 | ON (× 4) | ON (× 1) | 2:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'012A | ON (× 4) | ON (× 1) | 1:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'A100 | ON (× 3) | ON (× 1) | 3:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'A101 | ON (× 3) | ON (× 1) | 3:1:1/2                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'E100 | ON (× 3) | ON (× 1) | 1:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |
|               | H'E101 | ON (× 3) | ON (× 1) | 1:1:1/2                            | 25 MHz to 66.67 MHz                   | 25 MHz to          |
|               | H'A111 | ON (× 6) | ON (× 1) | 6:1:1                              | 25 MHz to 33.34 MHz                   | 25 MHz to          |

 Table 9.4
 Available Combinations of Clock Mode and FRQCR Values

Rev. 5.00, 09/03, page 208 of 760

|   | H'0116 | ON (× 2) | ON (× 4)         | 4:4:2   | 6.25 MHz to 16.67 MHz | 25 MHz 1 |
|---|--------|----------|------------------|---------|-----------------------|----------|
|   | H'0122 | ON (× 4) | ON (× 4)         | 16:4:4  | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
|   | H'0126 | ON (× 4) | ON ( $\times$ 4) | 8:4:4   | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
|   | H'012A | ON (× 4) | ON ( $\times$ 4) | 4:4:4   | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
|   | H'A100 | ON (× 3) | ON (× 4)         | 12:4:4  | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
|   | H'A101 | ON (× 3) | ON ( $\times$ 4) | 12:4:2  | 6.25 MHz to 16.67 MHz | 25 MHz 1 |
|   | H'E100 | ON (× 3) | ON ( $\times$ 4) | 4:4:4   | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
|   | H'E101 | ON (× 3) | ON ( $\times$ 4) | 4:4:2   | 6.25 MHz to 16.67 MHz | 25 MHz 1 |
|   | H'A111 | ON (× 6) | ON (× 4)         | 24:4:4  | 6.25 MHz to 8.34 MHz  | 25 MHz 1 |
| 7 | H'0100 | ON (× 1) | OFF              | 1:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'0101 | ON (× 1) | OFF              | 1:1:1/2 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'0102 | ON (× 1) | OFF              | 1:1:1/4 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'0111 | ON (× 2) | OFF              | 2:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'0112 | ON (× 2) | OFF              | 2:1:1/2 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'0115 | ON (× 2) | OFF              | 1:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'0116 | ON (× 2) | OFF              | 1:1:1/2 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'0122 | ON (× 4) | OFF              | 4:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'0126 | ON (× 4) | OFF              | 2:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'012A | ON (× 4) | OFF              | 1:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'A100 | ON (× 3) | OFF              | 3:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'A101 | ON (× 3) | OFF              | 3:1:1/2 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'E100 | ON (× 3) | OFF              | 1:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |
|   | H'E101 | ON (× 3) | OFF              | 1:1:1/2 | 25 MHz to 66.67 MHz   | 25 MHz 1 |
|   | H'A111 | ON (× 6) | OFF              | 6:1:1   | 25 MHz to 33.34 MHz   | 25 MHz 1 |

Do not set values other than those in the table above in the FRQCR register. Note: \* Taking input clock as 1.

RENESAS

- The peripheral clock frequency should not be set higher than the frequency of the pin, higher than 33.34 MHz.
- 3. The output frequency of PLL circuit 1 is the product of the CKIO frequency and the multiplication ratio of PLL circuit 1.
- 4.  $\times 1, \times 2, \times 3, \times 4$ , or  $\times 6$  can be used as the multiplication ratio of PLL circuit  $1. \times 1 \times 1/3, \times 1/4$ , and  $\times 1/6$  can be selected as the division ratios of dividers 1 and 2. Set the frequency control register. The on/off state of PLL circuit 2 is determined by the

Rev. 5.00, 09/03, page 210 of 760

FRQCR is initialized to H'0102 by a power-on reset, but retains its value in a manual standby mode.

## FRQCR:

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9   |
|----------------|------|------|------|------|------|------|-----|
|                | STC2 | IFC2 | PFC2 |      |      |      |     |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0   |
| R/W:           | R/W  | R/W  | R/W  | R    | R    | R    | R   |
|                |      |      |      |      |      |      |     |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1   |
|                | —    | _    | STC1 | STC0 | IFC1 | IFC0 | PFC |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 1   |
| R/W:           | R    | R    | R/W  | R/W  | R/W  | R/W  | R/W |

**Bits 15, 5, and 4—Frequency Multiplication Ratio (STC):** These bits specify the fr multiplication ratio of PLL circuit 1.

| Bit 15: STC2    | Bit 5: STC1 | Bit 4: STC0 | Description |
|-----------------|-------------|-------------|-------------|
| 0               | 0           | 0           | × 1         |
| 0               | 0           | 1           | ×2          |
| 1               | 0           | 0           | × 3         |
| 0               | 1           | 0           | × 4         |
| 1               | 0           | 1           | ×6          |
| Except above va | lue         |             | Reserved    |

Renesas

Note: Do not set the internal clock frequency lower than the CKIO pin frequency.

**Bits 13, 1, and 0—Peripheral Clock Frequency Division Ratio (PFC):** These bits sp division ratio of the peripheral clock frequency with respect to the frequency of the outp frequency of PLL circuit 1 or the frequency of the CKIO pin.

| Bit 13: PFC2       | Bit 1: PFC1 | Bit 0: PFC0 | Description                   |
|--------------------|-------------|-------------|-------------------------------|
| 0                  | 0           | 0           | ×1                            |
| 0                  | 0           | 1           | × 1/2                         |
| 1                  | 0           | 0           | × 1/3                         |
| 0                  | 1           | 0           | × 1/4 (Initial value)         |
| 1                  | 0           | 1           | × 1/6                         |
| Except above value |             |             | Reserved (Setting prohibited) |

Note: Do not set the peripheral clock frequency higher than the CKIO pin frequency.

Bits 12 to 9, 7, and 6—Reserved: These bits are always read as 0. The write value sho be 0.

Bit 8—Reserved: This bit is always read as 1. The write value should always be 1.

Rev. 5.00, 09/03, page 212 of 760

A PLL settling time is required when the multiplication rate of PLL circuit 1 is change chip WDT counts the settling time.

- 1. In the initial state, the multiplication rate of PLL circuit 1 is 1.
- Set a value that will become the specified oscillation settling time in the WDT and WDT. The following must be set: WTCSR register TME bit = 0: WDT stops WTCSR register CKS2–CKS0 bits: Division ratio of WDT count clock WTCNT counter: Initial counter value
- Set the desired value in the STC2 to STC0 bits. The division ratio can also be set in IFC0 bits and PFC2–PFC0 bits.
- The processor pauses internally and the WDT starts incrementing. In clock modes the internal and peripheral clocks both stop. (except for the peripheral clock suppli WDT)
- 5. Supply of the clock that has been set begins at WDT count overflow, and the proce operating again. The WDT stops after it overflows.

When the following three conditions are all met, FRQCR should not be changed while transfer is in progress.

- Bits IFC2 to IFC0 are changed.
- STC2 to STC0 are not changed.
- The clock ratio of I $\phi$  (on-chip clock) to B $\phi$  (bus clock) after the change is other the

### 9.5.2 Changing the Division Ratio

The WDT will not count unless the multiplication ratio is changed simultaneously.

- 1. In the initial state, IFC2-IFC0 = 000 and PFC2-PFC0 = 010.
- 2. Set the IFC2, IFC1, IFC0, PFC2, PFC1, and PFC0 bits to the new division ratio. T that can be set are limited by the clock mode and the multiplication ratio of PLL ci that if the wrong value is set, the processor will malfunction.
- 3. The clock is immediately supplied at the new division ratio.

Rev. 5.00, 09/03, pag

# Renesas

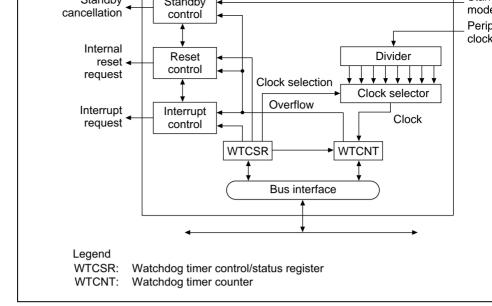
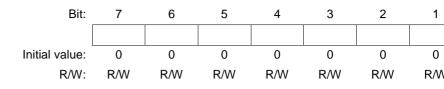



Figure 9.2 Block Diagram of WDT

#### 9.6.2 Register Configuration

The WDT has two registers that select the clock, switch the timer mode, and perform of functions. Table 9.5 shows the WDT registers.


#### Table 9.5Register Configuration

| Name                                   | Abbreviation | R/W  | Initial Value | Address    | Ac       |
|----------------------------------------|--------------|------|---------------|------------|----------|
| Watchdog timer counter                 | WTCNT        | R/W* | H'00          | H'FFFFFF84 | R:<br>W: |
| Watchdog timer control/status register | WTCSR        | R/W* | H'00          | H'FFFFFF86 | R:<br>W: |

Note: \* Write with word access. Write with H'5A and H'A5, respectively, in the upper by longword writes are not possible. Read with byte access.

Rev. 5.00, 09/03, page 214 of 760

word access to write to the WTCNT counter, with H'5A in the upper byte. Use byte ac WTCNT.



#### 9.7.2 Watchdog Timer Control/Status Register (WTCSR)

The watchdog timer control/status register (WTCSR) is an 8-bit readable/writable register composed of bits to select the clock used for the count, bits to select the timer mode, a flags. WTCSR differs from other registers in that it is more difficult to write to. See set Notes on Register Access, for details. Its address is H'FFFFF86. The WTCSR register initialized to H'00 only by a power-on reset through the RESETP pin. When a WDT or causes an internal reset, WTCSR retains its value. When used to count the clock settline canceling a standby, it retains its value after counter overflow. Use word access to write WTCSR counter, with H'A5 in the upper byte. Use byte access to read WTCSR.

| Bit:           | 7   | 6     | 5    | 4    | 3    | 2    | 1   |
|----------------|-----|-------|------|------|------|------|-----|
|                | TME | WT/IT | RSTS | WOVF | IOVF | CKS2 | CKS |
| Initial value: | 0   | 0     | 0    | 0    | 0    | 0    | 0   |
| R/W:           | R/W | R/W   | R/W  | R/W  | R/W  | R/W  | R/W |

**Bit 7—Timer Enable (TME):** Starts and stops timer operation. Clear this bit to 0 who WDT in standby mode or when changing the clock frequency.

| Bit 7: TME | Description                                                |
|------------|------------------------------------------------------------|
| 0          | Timer disabled: Count-up stops and WTCNT value is retained |
| 1          | Timer enabled                                              |

Rev. 5.00, 09/03, pag

Renesas

timer mode. In interval timer mode, this setting is ignored.

| Bit 5: RSTS | Description    |    |
|-------------|----------------|----|
| 0           | Power-on reset | (I |
| 1           | Manual reset   |    |
|             | =.             |    |

Note: RESETOUT is output.

**Bit 4—Watchdog Timer Overflow (WOVF):** Indicates that the WTCNT has overflow watchdog timer mode. This bit is not set in interval timer mode.

| Bit 4: WOVF | Description                                 |    |
|-------------|---------------------------------------------|----|
| 0           | No overflow                                 | (1 |
| 1           | WTCNT has overflowed in watchdog timer mode |    |

**Bit 3—Interval Timer Overflow (IOVF):** Indicates that WTCNT has overflowed in it timer mode. This bit is not set in watchdog timer mode.

| Bit 3: IOVF | Description                                 |    |
|-------------|---------------------------------------------|----|
| 0           | No overflow                                 | (1 |
| 1           | WTCNT has overflowed in interval timer mode |    |

Bits 2 to 0—Clock Select 2 to 0 (CKS2 to CKS0): These bits select the clock to be us WTCNT count from the eight types obtainable by dividing the peripheral clock. The ov period in the table is the value when the peripheral clock ( $P\phi$ ) is 15 MHz.

Rev. 5.00, 09/03, page 216 of 760

| 1 | 0 | 1/1024 | 17.48 ms |
|---|---|--------|----------|
|   | 1 | 1/4096 | 69.91 ms |

Note: If bits CKS2–CKS0 are modified when the WDT is running, the up-count may n performed correctly. Ensure that these bits are modified only when the WDT is

### 9.7.3 Notes on Register Access

The watchdog timer counter (WTCNT) and watchdog timer control/status register (W more difficult to write to than other registers. The procedure for writing to these regist below.

Writing to WTCNT and WTCSR: These registers must be written to using a word to instruction. They cannot be written to with a byte or longword transfer instruction. We to WTCNT, set the upper byte to H'5A and transfer the lower byte as the write data, as figure 9.3. When writing to WTCSR, set the upper byte to H'A5 and transfer the lower write data. This transfer procedure writes the lower byte data to WTCNT or WTCSR.

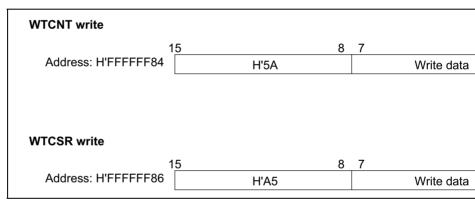



Figure 9.3 Writing to WTCNT and WTCSR

RENESAS

TME bit is 1, an erroneous reset or interval timer interrupt may be generated when to overflows.

- 2. Set the type of count clock used in the CKS2–CKS0 bits in WTCSR and the initial the counter in the WTCNT counter. These values should ensure that the time till co-overflow is longer than the clock oscillation settling time.
- 3. Switch to standby mode by executing a SLEEP instruction to stop the clock.
- 4. The WDT starts counting by detecting the edge change of the NMI signal or detecti interrupts.
- 5. When the WDT count overflows, the CPG starts supplying the clock and the proces resumes operation. The WOVF flag in WTCSR is not set when this happens.
- 6. Since the WDT continues counting from H'00, set the STBY bit in the STBCR regist the interrupt handling routine and this will stop the WDT. When the STBY bit remarks the SH7709S again enters standby mode when the WDT has counted up to H'80. The mode can be canceled by a power-on reset.

## 9.8.2 Changing the Frequency

To change the frequency used by the PLL, use the WDT. When changing the frequency switching the divider, do not use the WDT.

- 1. Before changing the frequency, always clear the TME bit in WTCSR to 0. When th is 1, an erroneous reset or interval timer interrupt may be generated when the count
- Set the type of count clock used in the CKS2–CKS0 bits of WTCSR and the initial the counter in the WTCNT counter. These values should ensure that the time till con overflow is longer than the clock oscillation settling time.
- 3. When the frequency control register (FRQCR) is written to, the clock stops and the enters standby mode temporarily. The WDT starts counting.
- 4. When the WDT count overflows, the CPG resumes supplying the clock and the proresumes operation. The WOVF flag in WTCSR is not set when this happens.
- 5. The counter stops at a value of H'00 or H'01. The stop value depends on the clock ra

Rev. 5.00, 09/03, page 218 of 760

- 1. Set the WT/IT bit in the WTCSR register to 1, set the reset type in the RSTS bit, so count clock in the CKS2–CKS0 bits, and set the initial value of the counter in the v counter.
- 2. Set the TME bit in WTCSR to 1 to start the count in watchdog timer mode.
- 3. While operating in watchdog timer mode, rewrite the counter periodically to H'00 the counter from overflowing.
- 4. When the counter overflows, the WDT sets the WOVF flag in WTCSR to 1 and get type of reset specified by the RSTS bit. The counter then resumes counting. When generated, a low level is output at the RESETOUT pin, and a high level at the STA STATUS1 pins. The output period is approximately 1 count clock cycle in the case on reset, and approximately 5 peripheral clock cycles in the case of a manual reset

#### 9.8.4 Using Interval Timer Mode

When operating in interval timer mode, interval timer interrupts are generated at every the counter. This enables interrupts to be generated at set periods.

- 1. Clear the WT/IT bit in the WTCSR register to 0, set the type of count clock in the CKS0 bits, and set the initial value of the counter in the WTCNT counter.
- 2. Set the TME bit in WTCSR to 1 to start the count in interval timer mode.
- 3. When the counter overflows, the WDT sets the IOVF flag in WTCSR to 1 and an i timer interrupt request is sent to the INTC. The counter then resumes counting.

Renesas

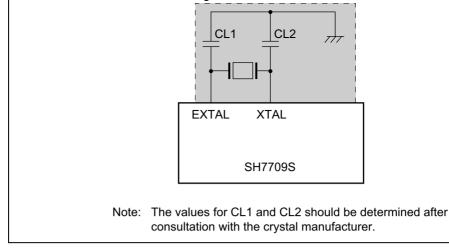



Figure 9.4 Points for Attention when Using Crystal Resonator

**Decoupling Capacitors:** Insert a laminated ceramic capacitor of 0.1 to 1  $\mu$ F as a passiv for each V<sub>SS</sub>/V<sub>CC</sub> pair. Mount the passive capacitors close to the SH7709S power suppl use components with a frequency characteristic suitable for the chip's operating freque as a suitable capacitance value.

Digital system V<sub>SS</sub>/V<sub>CC</sub> pairs: 19-21, 27-29, 33-35, 45-47, 57-59, 69-71, 79-81, 83-85, 111, 132-134, 153-154, 161-163, 173-175, 181-183, 205-208

On-chip oscillator V<sub>SS</sub>/V<sub>CC</sub> pairs: 3-6, 145-147, 148-150

Note: The pin numbers above apply to LQFP and HQFP packages.

When Using a PLL Oscillator Circuit: Keep the wiring from the PLL  $V_{CC}$  and  $V_{SS}$  compattern to the power supply pins short, and make the pattern width large, to minimize the inductance component. Ground the oscillation stabilization capacitors C1 and C2 to  $V_{SS}$  and  $V_{SS}$  (PLL2), respectively. Place C1 and C2 close to the CAP1 and CAP2 pins and clocate a wiring pattern in the vicinity. In clock mode 7, connect the EXTAL pin to  $V_{CC}$  leave the XTAL pin open.

Rev. 5.00, 09/03, page 220 of 760

### Renesas

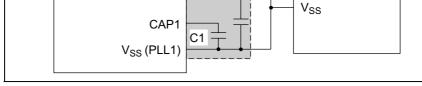



Figure 9.5 Points for Attention when Using PLL Oscillator Circuit

RENESAS

Rev. 5.00, 09/03, page 222 of 760

design and allowing high-speed data transfers in a compact system.

#### 10.1.1 Features

The BSC has the following features:

- Physical address space is divided into six areas
  - A maximum 64 Mbytes for each of the six areas, 0, 2–6
  - Area bus width can be selected by register (area 0 is set by external pin)
  - Wait states can be inserted using the  $\overline{WAIT}$  pin
  - Wait state insertion can be controlled through software. Register settings can be specify the insertion of 1–10 cycles independently for each area (1–38 cycles for and 6 and the PCMCIA interface only)
  - The type of memory connected can be specified for each area, and control sign output for direct memory connection
  - Wait cycles are automatically inserted to avoid data bus conflict for continuous accesses to different areas or writes directly following reads in the same area
- Direct interface to synchronous DRAM
  - Multiplexes row/column addresses according to synchronous DRAM capacity
  - Supports burst operation
  - Supports bank active mode
  - Has both auto-refresh and self-refresh functions
  - Controls timing of synchronous DRAM direct-connection control signals accorregister setting
- Burst ROM interface
  - Insertion of wait states controllable through software
  - Register setting control of burst transfers
- PCMCIA direct-connection interface
  - Insertion of wait states controllable through software
  - Bus sizing function for I/O bus width (only in little-endian mode)

Rev. 5.00, 09/03, pag

# Renesas

Rev. 5.00, 09/03, page 224 of 760

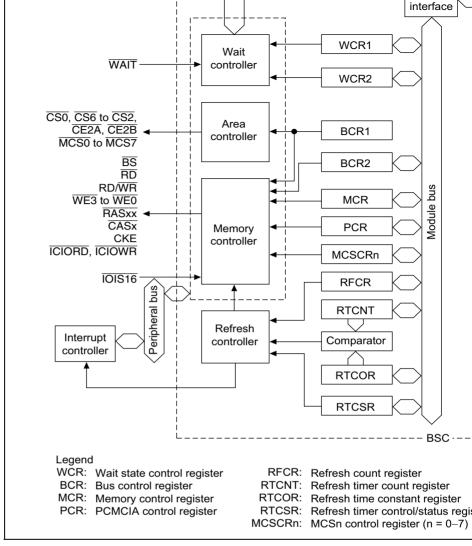



Figure 10.1 Block Diagram of Bus State Controller

Rev. 5.00, 09/03, pag

Renesas

|                             | D31–D16                                                              | I/O | Data I/O when using 32-bit bus width                                                                                                                                                  |
|-----------------------------|----------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bus cycle start             | BS                                                                   | 0   | Shows start of bus cycle. During burst tra<br>asserted every data cycle.                                                                                                              |
| Chip select 0, 2-4          | $\overline{\text{CS0}}, \overline{\text{CS2}}-\overline{\text{CS4}}$ | 0   | Chip select signals to indicate area being                                                                                                                                            |
| Chip select 5, 6            | CS5/CE1A,<br>CS6/CE1B                                                | 0   | Chip select signals to indicate area being $\overline{CS5/CE1A}$ and $\overline{CS6/CE1B}$ can also be a $\overline{CE1A}$ and $\overline{CE1B}$ of PCMCIA.                           |
| PCMCIA card select          | CE2A, CE2B                                                           | 0   | CE2A and CE2B signals when PCMCIA                                                                                                                                                     |
| Read/write                  | RD/WR                                                                | 0   | Data bus direction indication signal. PCN indication signal.                                                                                                                          |
| Row address<br>strobe 3L    | RAS3L                                                                | 0   | When synchronous DRAM is used, $\overline{RAS}$ 32-Mbyte address and 64-Mbyte address                                                                                                 |
| Row address<br>strobe 3U    | RAS3U                                                                | 0   | When synchronous DRAM is used, $\overline{RAS}$ upper 32-Mbyte address.                                                                                                               |
| Column address<br>strobe    | CASL                                                                 | 0   | When synchronous DRAM is used, $\overline{CAS}$ lower 32-Mbyte address and 64-Mbyte a                                                                                                 |
| Column address<br>strobe LH | CASU                                                                 | 0   | When synchronous DRAM is used, $\overline{CAS}$ upper 32-Mbyte address.                                                                                                               |
| Data enable 0               | WE0/DQMLL                                                            | 0   | When memory other than synchronous I<br>used, D7–D0 write strobe signal. When<br>synchronous DRAM is used, selects D7-                                                                |
| Data enable 1               | WE1/DQMLU/<br>WE                                                     | 0   | When memory other than synchronous I<br>PCMCIA is used, D15–D8 write strobe s<br>synchronous DRAM is used, selects D15<br>PCMCIA is used, strobe signal indicating<br>cycle.          |
| Data enable 2               | WE2/DQMUL/<br>ICIORD                                                 | 0   | When memory other than synchronous I<br>PCMCIA is used, D23–D16 write strobe<br>When synchronous DRAM is used, selec<br>D16. When PCMCIA is used, strobe sign<br>indicating I/O read. |
|                             |                                                                      |     |                                                                                                                                                                                       |

Rev. 5.00, 09/03, page 226 of 760

| IOIS16                        | IOIS16         | I | Signal indicating PCMCIA 16-bit I/O. V little-endian mode. |
|-------------------------------|----------------|---|------------------------------------------------------------|
| Bus release request           | BREQ           | I | Bus release request signal                                 |
| Bus release<br>acknowledgment | BACK           | 0 | Bus release acknowledge signal                             |
| Mask ROM chip select          | MCS[0]- MCS[7] | 0 | Chip select signal for mask ROM conne<br>0 or 2.           |

RENESAS

|                                                                                                                                                                                                                     | DOIL                                           | 1.0, 4.4                 | 110000                                         |                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Bus control register 2                                                                                                                                                                                              | BCR2                                           | R/W                      | H'3FF0                                         | H'FFFFF62                                                                                              |
| Wait state control register 1                                                                                                                                                                                       | WCR1                                           | R/W                      | H'3FF3                                         | H'FFFFF64                                                                                              |
| Wait state control register 2                                                                                                                                                                                       | WCR2                                           | R/W                      | H'FFFF                                         | H'FFFFF66                                                                                              |
| Individual memory control register                                                                                                                                                                                  | MCR                                            | R/W                      | H'0000                                         | H'FFFFFF68 <sup>4</sup>                                                                                |
| PCMCIA control register                                                                                                                                                                                             | PCR                                            | R/W                      | H'0000                                         | H'FFFFFF6C                                                                                             |
| Refresh timer control/status<br>register                                                                                                                                                                            | RTCSR                                          | R/W                      | H'0000                                         | H'FFFFFF6E                                                                                             |
| Refresh timer counter                                                                                                                                                                                               | RTCNT                                          | R/W                      | H'0000                                         | H'FFFFFF70                                                                                             |
| Refresh time constant register                                                                                                                                                                                      | RTCOR                                          | R/W                      | H'0000                                         | H'FFFFFF72                                                                                             |
| Refresh count register                                                                                                                                                                                              | RFCR                                           | R/W                      | H'0000                                         | H'FFFFFF74                                                                                             |
| Synchronous DRAM mode                                                                                                                                                                                               | SDMR                                           | W                        | _                                              | H'FFFFD000- 8                                                                                          |
| register, area 2                                                                                                                                                                                                    |                                                |                          |                                                | H'FFFFDFFF                                                                                             |
| -                                                                                                                                                                                                                   | _                                              |                          |                                                | H'FFFFDFFF<br>H'FFFFE000–<br>H'FFFFEFFF                                                                |
| register, area 2<br>Synchronous DRAM mode                                                                                                                                                                           |                                                | R/W                      | H'0000                                         | H'FFFFE000-                                                                                            |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3                                                                                                                                                       | MCSCR0<br>MCSCR1                               | R/W<br>R/W               | H'0000<br>H'0000                               | H'FFFFE000–<br>H'FFFFEFFF                                                                              |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register                                                                                                                              |                                                |                          |                                                | H'FFFFE000–<br>H'FFFFEFFF<br>H'FFFFF50                                                                 |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register<br>MCS1 control register                                                                                                     | MCSCR1                                         | R/W                      | H'0000                                         | H'FFFFE000–<br>H'FFFFEFFF<br>H'FFFFF50<br>H'FFFFF52                                                    |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register<br>MCS1 control register<br>MCS2 control register                                                                            | MCSCR1<br>MCSCR2                               | R/W<br>R/W               | H'0000<br>H'0000                               | H'FFFFE000–<br>H'FFFFEFFF<br>H'FFFFF50<br>H'FFFFF52<br>H'FFFFF54                                       |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register<br>MCS1 control register<br>MCS2 control register<br>MCS3 control register                                                   | MCSCR1<br>MCSCR2<br>MCSCR3                     | R/W<br>R/W<br>R/W        | H'0000<br>H'0000<br>H'0000                     | H'FFFFE000–<br>H'FFFFEFFF<br>H'FFFFF50<br>H'FFFFF52<br>H'FFFFF54<br>H'FFFFF56                          |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register<br>MCS1 control register<br>MCS2 control register<br>MCS3 control register<br>MCS4 control register                          | MCSCR1<br>MCSCR2<br>MCSCR3<br>MCSCR4           | R/W<br>R/W<br>R/W<br>R/W | H'0000<br>H'0000<br>H'0000<br>H'0000           | H'FFFFE000–<br>H'FFFFEFFF<br>H'FFFFF50<br>H'FFFFF52<br>H'FFFFF54<br>H'FFFFF56<br>H'FFFFF58             |
| register, area 2<br>Synchronous DRAM mode<br>register, area 3<br>MCS0 control register<br>MCS1 control register<br>MCS2 control register<br>MCS3 control register<br>MCS4 control register<br>MCS5 control register | MCSCR1<br>MCSCR2<br>MCSCR3<br>MCSCR4<br>MCSCR5 | R/W<br>R/W<br>R/W<br>R/W | H'0000<br>H'0000<br>H'0000<br>H'0000<br>H'0000 | H'FFFFE000-<br>H'FFFFFFF<br>H'FFFFF50<br>H'FFFFF52<br>H'FFFFF54<br>H'FFFFF56<br>H'FFFFF58<br>H'FFFFF58 |

Notes: For details, see section 10.2.7, Synchronous DRAM Mode Register (SDMR).

\* Initialized by a power-on reset.

Rev. 5.00, 09/03, page 228 of 760

As shown in table 10.3, the SH7709S can be connected directly to six memory/PCMC areas, and it outputs chip select signals ( $\overline{CS0}$ ,  $\overline{CS2}$ – $\overline{CS6}$ ,  $\overline{CE2A}$ ,  $\overline{CE2B}$ ) for each of the asserted during area 0 access;  $\overline{CS6}$  is asserted during area 6 access. When PCMCIA in selected in area 5 or 6, in addition to  $\overline{CS5}/\overline{CS6}$ ,  $\overline{CE2A}/\overline{CE2B}$  are asserted for the correspondence bytes accessed.

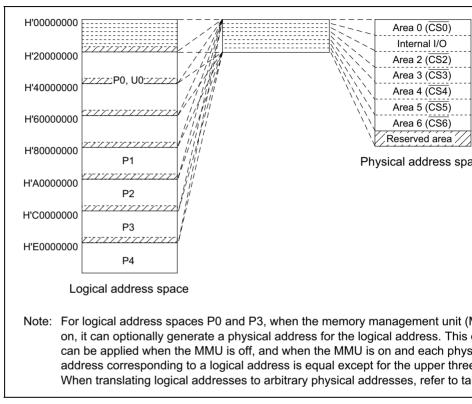



Figure 10.2 Correspondence between Logical Address Space and Physical Add

Rev. 5.00, 09/03, pag

| 2               | Ordinary memory <sup>*1</sup> ,                                          | H'08000000 to H'0BFFFFFF                                                                                            | 64 Mbytes      | 8,  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------|-----|--|--|--|--|
|                 | synchronous DRAM                                                         | H'08000000 + H'20000000 × n to<br>H'0BFFFFFF + H'20000000 × n                                                       | Shadow         | n : |  |  |  |  |
| 3               | Ordinary memory <sup>*1</sup> ,                                          | H'0C000000 to H'0FFFFFF                                                                                             | 64 Mbytes      | 8,  |  |  |  |  |
|                 | synchronous DRAM                                                         | $\begin{array}{l} H'0C000000 + H'20000000 \times n \text{ to} \\ H'0FFFFFF + H'20000000 \times n \end{array}$       | Shadow         | n : |  |  |  |  |
| 4               | Ordinary memory <sup>*1</sup>                                            | H'10000000 to H'13FFFFFF                                                                                            | 64 Mbytes      | 8,  |  |  |  |  |
|                 |                                                                          | H'10000000 + H'20000000 × n to<br>H'13FFFFFF + H'20000000 × n                                                       | Shadow         | n : |  |  |  |  |
| 5               | Ordinary memory <sup>*1</sup> ,                                          | H'14000000 to H'15FFFFFF                                                                                            | 32 Mbytes      | 8,  |  |  |  |  |
|                 | PCMCIA, burst ROM                                                        | H'16000000 to H'17FFFFFF                                                                                            | FFFF 32 Mbytes |     |  |  |  |  |
|                 | Ordinary memory,<br>burst ROM                                            | H'14000000 + H'20000000 × n to<br>H'17FFFFFF + H'20000000 × n                                                       | Shadow         | n : |  |  |  |  |
| 6               | Ordinary memory <sup>*1</sup> ,                                          | H'18000000 to H'19FFFFFF                                                                                            | 32 Mbytes      | 8,  |  |  |  |  |
|                 | PCMCIA, burst ROM                                                        | H'1A000000 to H'1BFFFFF                                                                                             |                |     |  |  |  |  |
|                 |                                                                          | H'18000000 + H'20000000 × n to<br>H'1BFFFFFF + H'20000000 × n                                                       | Shadow         |     |  |  |  |  |
| 7 <sup>*6</sup> | Reserved area                                                            | $\begin{array}{l} \mbox{H'1C000000 + H'20000000 \times n} \\ \mbox{to H'1FFFFFF + H'20000000 \times n} \end{array}$ |                | n : |  |  |  |  |
| Notes:          | 1. Memory with interface                                                 | such as SRAM or ROM.                                                                                                |                |     |  |  |  |  |
|                 | 2. Use external pin to sp                                                | ecify memory bus width.                                                                                             |                |     |  |  |  |  |
|                 | 3. Use register to specify                                               | -                                                                                                                   |                |     |  |  |  |  |
|                 | •                                                                        | AM interfaces, bus width must be 16                                                                                 | or 32 bits.    |     |  |  |  |  |
|                 | <ol><li>With PCMCIA interface, bus width must be 8 or 16 bits.</li></ol> |                                                                                                                     |                |     |  |  |  |  |

- 6. Do not access the reserved area. If the reserved area is accessed, correct o cannot be guaranteed.
- 7. When the control register in area 1 is not used for address translation by the the first three bits of the logical address to 101 for allocation to the P2 space

Rev. 5.00, 09/03, page 230 of 760

| Area 4: H'10000000 | Ordinary memory                      |                                                     |
|--------------------|--------------------------------------|-----------------------------------------------------|
| Area 5: H'14000000 | Ordinary memory/<br>burst ROM/PCMCIA | The PCMCIA interface is<br>by the memory and I/O ca |
| Area 6: H'18000000 | Ordinary memory/<br>burst ROM/PCMCIA | The PCMCIA interface is by the memory and I/O ca    |

#### Figure 10.3 Physical Space Allocation

**Memory Bus Width:** The memory bus width in the SH7709S can be set for each area external pins can be used to select byte (8 bits), word (16 bits), or longword (32 bits) or reset. The correspondence between the external pins (MD4 and MD3) and the memory shown in table below.

| MD4 | MD3 | Memory Size           |
|-----|-----|-----------------------|
| 0   | 0   | Reserved (Do not set) |
| 0   | 1   | 8 bits                |
| 1   | 0   | 16 bits               |
| 1   | 1   | 32 bits               |

Table 10.4 Correspondence between External Pins (MD4 and MD3) and Memo

For areas 2–6, byte, word, and longword can be chosen for the bus width using bus co 2 (BCR2) whenever ordinary memory, ROM, or burst ROM are used. When the synch DRAM interface is used, word or longword can be chosen as the bus width.

When the PCMCIA interface is used, set the bus width to byte or word. When synchro DRAM is connected to both area 2 and area 3, set the same bus width for areas 2 and 2 using the port function, set each of the bus widths to byte or word for all areas. For moinformation, see section 10.2.2, Bus Control Register 2 (BCR2).

Rev. 5.00, 09/03, pag

## Renesas

The SH7709S supports PCMCIA standard interface specifications in physical space are

The interfaces supported are basically the "IC memory card interface" and "I/O card in stipulated in JEIDA Specifications Ver. 4.2 (PCMCIA2.1).

 Table 10.5
 PCMCIA Interface Characteristics

| Item               | Feature                                                                                                                                            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Access             | Random access                                                                                                                                      |
| Data bus           | 8/16 bits                                                                                                                                          |
| Memory type        | Mask ROM, OTPROM, EPROM, EEPROM, flash memor                                                                                                       |
| Memory capacity    | Maximum 32 Mbytes                                                                                                                                  |
| I/O space capacity | Maximum 32 Mbytes                                                                                                                                  |
| Other features     | Dynamic bus sizing of I/O bus width <sup>*</sup><br>The PCMCIA interface can be accessed from the address<br>area or non-address translation area. |

Note: \* Dynamic bus sizing of the I/O bus width is supported only in little-endian mode

| Area 5: H'14000000 | Common memory/Attribute memory |
|--------------------|--------------------------------|
| Area 5: H'16000000 | I/O space                      |
| Area 6: H'18000000 | Common memory/Attribute memory |
| Area 6: H'1A000000 | I/O space                      |

## Figure 10.4 PCMCIA Space Allocation

Rev. 5.00, 09/03, page 232 of 760

| 5  | D6              | 1/0 | Data            | D6              | 1/0 | Data                         | Dt |
|----|-----------------|-----|-----------------|-----------------|-----|------------------------------|----|
| 6  | D7              | I/O | Data            | D7              | I/O | Data                         | D7 |
| 7  | CE1             | I   | Card enable     | CE1             | I   | Card enable                  | C  |
| 8  | A10             | Ι   | Address         | A10             | Ι   | Address                      | A1 |
| 9  | OE              | I   | Output enable   | OE              | I   | Output enable                | R  |
| 10 | A11             | I   | Address         | A11             | I   | Address                      | A1 |
| 11 | A9              | I   | Address         | A9              | I   | Address                      | AS |
| 12 | A8              | Ι   | Address         | A8              | I   | Address                      | A  |
| 13 | A13             | Ι   | Address         | A13             | Ι   | Address                      | A1 |
| 14 | A14             | Ι   | Address         | A14             | I   | Address                      | A1 |
| 15 | WE/PGM          | Ι   | Write enable    | WE/PGM          | Ι   | Write enable                 | W  |
| 16 | RDY/BSY         | 0   | Ready/Busy      | IREQ            | 0   | Ready/Busy                   | _  |
| 17 | V <sub>CC</sub> |     | Operation power | V <sub>CC</sub> |     | Operation power              |    |
| 18 | VPP1            |     | Program power   | VPP1            |     | Program/<br>peripheral power |    |
| 19 | A16             | Ι   | Address         | A16             | Ι   | Address                      | A1 |
| 20 | A15             | Ι   | Address         | A15             | Ι   | Address                      | A1 |
| 21 | A12             | Ι   | Address         | A12             | Ι   | Address                      | A1 |
| 22 | A7              | Ι   | Address         | A7              | Ι   | Address                      | A7 |
| 23 | A6              | Ι   | Address         | A6              | Ι   | Address                      | A6 |
| 24 | A5              | Ι   | Address         | A5              | Ι   | Address                      | A5 |
| 25 | A4              | Ι   | Address         | A4              | Ι   | Address                      | A۷ |
| 26 | A3              | Ι   | Address         | A3              | I   | Address                      | A3 |
| 27 | A2              | Ι   | Address         | A2              | Ι   | Address                      | A2 |
| 28 | A1              | Ι   | Address         | A1              | Ι   | Address                      | A1 |
| 29 | A0              | I   | Address         | A0              | Ι   | Address                      | AC |
| 30 | D0              | I/O | Data            | D0              | I/O | Data                         | D  |
|    |                 |     |                 |                 |     |                              |    |

Renesas

| 37 | D11             | I/O | Data            | D11             | I/O | Data                         | D1              |
|----|-----------------|-----|-----------------|-----------------|-----|------------------------------|-----------------|
| 38 | D12             | I/O | Data            | D12             | I/O | Data                         | D1:             |
| 39 | D13             | I/O | Data            | D13             | I/O | Data                         | D13             |
| 40 | D14             | I/O | Data            | D14             | I/O | Data                         | D1              |
| 41 | D15             | I/O | Data            | D15             | I/O | Data                         | D1              |
| 42 | CE2             | Ι   | Card enable     | CE2             | Ι   | Card enable                  | CE              |
| 43 | VS1             | Ι   | Voltage sense 1 | VS1             | Ι   | Voltage sense 1              | _               |
| 44 | RFU             |     | Reserved        | IORD            | Ι   | I/O read                     | ICI             |
| 45 | RFU             |     | Reserved        | IOWR            | Ι   | I/O write                    | ICI             |
| 46 | A17             | Ι   | Address         | A17             | Ι   | Address                      | A1              |
| 47 | A18             | Ι   | Address         | A18             | Ι   | Address                      | A18             |
| 48 | A19             | Ι   | Address         | A19             | Ι   | Address                      | A19             |
| 49 | A20             | Ι   | Address         | A20             | Ι   | Address                      | A2(             |
| 50 | A21             | Ι   | Address         | A21             | Ι   | Address                      | A2 <sup>-</sup> |
| 51 | V <sub>CC</sub> |     | Power supply    | V <sub>CC</sub> |     | Power supply                 |                 |
| 52 | VPP2            |     | Program power   | VPP2            |     | Program/<br>peripheral power |                 |
| 53 | A22             | Ι   | Address         | A22             | Ι   | Address                      | A22             |
| 54 | A23             | I   | Address         | A23             | I   | Address                      | A23             |
| 55 | A24             | Ι   | Address         | A24             | Ι   | Address                      | A24             |
| 56 | A25             | I   | Address         | A25             | I   | Address                      | A2              |
| 57 | VS2             | Ι   | Voltage sense 2 | VS2             | Ι   | Voltage sense 2              | —               |
| 58 | RESET           | I   | Reset           | RESET           | I   | Reset                        | —               |
| 59 | WAIT            | 0   | Wait request    | WAIT            | 0   | Wait request                 |                 |
| 60 | RFU             |     | Reserved        | INPACK          | 0   | Input acknowledge            | -               |
|    |                 |     |                 |                 |     |                              |                 |

Rev. 5.00, 09/03, page 234 of 760

| 0. | 20  | 1/0 | Bala           | 00  | "0  | Bulu           |   |
|----|-----|-----|----------------|-----|-----|----------------|---|
| 65 | D9  | I/O | Data           | D9  | I/O | Data           | D |
| 66 | D10 | I/O | Data           | D10 | I/O | Data           | D |
| 67 | CD2 | 0   | Card detection | CD2 | 0   | Card detection |   |
| 68 | GND |     | Ground         | GND |     | Ground         |   |

## **10.2 BSC Registers**

#### 10.2.1 Bus Control Register 1 (BCR1)

Bus control register 1 (BCR1) is a 16-bit readable/writable register that sets the functic cycle state for each area. It is initialized to H'0000 by a power-on reset, but is not initial manual reset or in standby mode. Do not access external memory outside area 0 until register initialization is complete.

| Bit:               | 15          | 14        | 13          | 12         | 11         | 10        | 9      |
|--------------------|-------------|-----------|-------------|------------|------------|-----------|--------|
|                    | PULA        | PULD      | HIZMEM      | HIZCNT     | ENDIAN     | A0BST1    | A0BS   |
| Initial value:     | 0           | 0         | 0           | 0          | 0/1*       | 0         | 0      |
| R/W:               | R/W         | R/W       | R/W         | R/W        | R          | R/W       | R/W    |
|                    |             |           |             |            |            |           |        |
| Bit:               | 7           | 6         | 5           | 4          | 3          | 2         | 1      |
|                    | A5BST0      | A6BST1    | A6BST0      | DRAM       | DRAM       | DRAM      | A5 P0  |
|                    |             |           |             | TP2        | TP1        | TP0       |        |
| Initial value:     | 0           | 0         | 0           | 0          | 0          | 0         | 0      |
| R/W:               | R/W         | R/W       | R/W         | R/W        | R/W        | R/W       | R/W    |
| lota: * Samples th | no valuo of | the exter | nal nin (MI | D5) design | nating the | ondian in | 2 0000 |

Note: \* Samples the value of the external pin (MD5) designating the endian in a power

Renesas

which not in use.

| Bit 14: PULD | Description   |     |
|--------------|---------------|-----|
| 0            | Not pulled up | (Ir |
| 1            | Pulled up     |     |

**Bit 13—Hi-Z Memory Control (HIZMEM):** Specifies the state of A25–A0,  $\overline{BS}$ ,  $\overline{CS}$ ,  $\overline{WE}$ /DQM,  $\overline{RD}$ ,  $\overline{CE2A}$ ,  $\overline{CE2B}$  and DRAK0/1 in standby mode.

| Bit 13: HIZMEM | Description                                                                      |
|----------------|----------------------------------------------------------------------------------|
| 0              | A25–A0, BS, CS, RD/WR, WE/DQM, RD, CE2A, CE2B and DRA<br>Hi-Z in standby mode (I |
| 1              | A25–A0, BS, CS, RD/WR, WE/DQM, RD, CE2A, CE2B and DRA high in standby mode       |

**Bit 12—High-Z Control (HIZCNT):** Specifies the state of the  $\overline{RAS}$  and  $\overline{CAS}$  signals mode and when the bus is released.

| Bit 12: HIZCNT | Description                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------|
| 0              | RASandCASsignals are high-impedance (High-Z) in standby mwhen bus is released(Ir                    |
| 1              | $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signals are driven in standby mode and when bus |

**Bit 11—Endian Flag (ENDIAN):** Samples the value of the external pin designating th a power-on reset. The endian for all physical spaces is decided by this bit, which is read

| Bit 11: ENDIAN | Description                                                                                 |
|----------------|---------------------------------------------------------------------------------------------|
| 0              | (On reset) Endian setting external pin (MD5) is low. Indicates the is set as big-endian     |
| 1              | (On reset) Endian setting external pin (MD5) is high. Indicates the is set as little-endian |

Rev. 5.00, 09/03, page 236 of 760

| 1 | 0 | Access area 0 accessed as burst ROM (8 c    |
|---|---|---------------------------------------------|
|   |   | accesses). Can be used when bus width is    |
|   |   | Should not be specified when bus width is 1 |
|   | 1 | Access area 0 accessed as burst ROM (16     |
|   |   | accesses). Can be used only when bus wid    |
|   |   | Should not be specified when bus width is 1 |
| - |   |                                             |

**Bits 8 and 7—Area 5 Burst Enable (A5BST1, A5BST0):** Specify whether to use bu and PCMCIA burst mode in physical space area 5. When burst ROM and PCMCIA burst are used, these bits set the number of burst transfers.

| Bit 8: A5BST1 | Bit 7: A5BST0 | Description                                                                                                                       |
|---------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0             | 0             | Access area 5 accessed as ordinary memo<br>(                                                                                      |
|               | 1             | Burst access of area 5 (4 consecutive acces<br>be used when bus width is 8, 16, or 32.                                            |
| 1             | 0             | Burst access of area 5 (8 consecutive acce<br>be used when bus width is 8 or 16. Should<br>specified when bus width is 32.        |
|               | 1             | Burst access of area 5 (16 consecutive acc<br>be used only when bus width is 8. Should n<br>specified when bus width is 16 or 32. |

**Bits 6 and 5—Area 6 Burst Enable (A6BST1, A6BST0):** Specify whether to use bu and PCMCIA burst mode in physical space area 6. When burst ROM and PCMCIA bu are used, these bits set the number of burst transfers.

Rev. 5.00, 09/03, pag

Renesas

be used only when bus width is 8. Should no specified when bus width is 16 or 32.

**Bits 4 to 2—Area 2, Area 3 Memory Type (DRAMTP2, DRAMTP1, DRAMTP0):** the types of memory connected to physical space areas 2 and 3. Ordinary memory, such SRAM, or flash ROM, can be directly connected. Synchronous DRAM can also be directly connected.

| 0 | 0 | 0 | Areas 2 and 3 are ordinary me                                |
|---|---|---|--------------------------------------------------------------|
|   |   | 1 | Reserved (Setting prohibited)                                |
|   | 1 | 0 | Area 2: ordinary memory; area synchronous DRAM <sup>*2</sup> |
|   |   | 1 | Areas 2 and 3 are synchronous<br>*2                          |
| 1 | 0 | 0 | Reserved (Setting prohibited)                                |
|   |   | 1 | Reserved (Setting prohibited)                                |
|   | 1 | 0 | Reserved (Setting prohibited)                                |
|   |   | 1 | Reserved (Setting prohibited)                                |

Bit 4: DRAMTP2 Bit 3: DRAMTP1 Bit 2: DRAMTP0 Description

Notes: 1. When selecting this mode, set the same bus width for area 2 and area 3.

2. Do not access synchronous DRAM when clock ratio  $I\phi:B\phi = 1:1$ 

**Bit 1—Area 5 Bus Type (A5PCM):** Designates whether to access physical space area PCMCIA space.

| Bit 1: A5PCM | Description                                       |     |
|--------------|---------------------------------------------------|-----|
| 0            | Physical space area 5 accessed as ordinary memory | (Ir |
| 1            | Physical space area 5 accessed as PCMCIA space    |     |

Rev. 5.00, 09/03, page 238 of 760

Bus control register 2 (BCR2) is a 16-bit readable/writable register that selects the bus area and whether an 8-bit port is used or not. It is initialized to H'3FF0 by a power-on not initialized by a manual reset or in standby mode. Do not access external memory of 0 until BCR2 register initialization is complete.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9    |
|----------------|-------|-------|-------|-------|-------|-------|------|
|                | _     | _     | A6SZ1 | A6SZ0 | A5SZ1 | A5SZ0 | A4SZ |
| Initial value: | 0     | 0     | 1     | 1     | 1     | 1     | 1    |
| R/W:           | R     | R     | R/W   | R/W   | R/W   | R/W   | R/W  |
|                |       |       |       |       |       |       |      |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1    |
|                | A3SZ1 | A3SZ0 | A2SZ1 | A2SZ0 | —     | —     | _    |
| Initial value: | 1     | 1     | 1     | 1     | 0     | 0     | 0    |
| R/W:           | R/W   | R/W   | R/W   | R/W   | R     | R     | R    |

Bits 15, 14, 3, 2, 1, and 0—Reserved: These bits are always read as 0. The write valualways be 0.

Bits 2n + 1, 2n—Area n (2–6) Bus Size Specification (AnSZ1, AnSZ0): Specify the physical space area n (n = 2 to 6).



## 10.2.3 Wait State Control Register 1 (WCR1)

Wait state control register 1 (WCR1) is a 16-bit readable/writable register that specifies number of idle (wait) state cycles inserted for each area. For some memories, data bus on not be turned off quickly even when the read signal from the external device is turned of can result in conflicts between data buses when consecutive memory accesses are to different memories or when a write immediately follows a memory read. This LSI automatically number of idle states set in WCR1 in those cases.

WCR1 is initialized to H'3FF3 by a power-on reset. It is not initialized by a manual reset standby mode, and retains its contents.

| Bit:           | 15          | 14    | 13    | 12    | 11    | 10    | 9     |
|----------------|-------------|-------|-------|-------|-------|-------|-------|
|                | WAITSE<br>L |       | A6IW1 | A6IW0 | A5IW1 | A5IW0 | A4IW1 |
| Initial value: | 0           | 0     | 1     | 1     | 1     | 1     | 1     |
| R/W:           | R/W         | R     | R/W   | R/W   | R/W   | R/W   | R/W   |
| Bit:           | 7           | 6     | 5     | 4     | 3     | 2     | 1     |
|                | A3IW1       | A3IW0 | A2IW1 | A2IW0 |       | _     | A0IW1 |
| Initial value: | 1           | 1     | 1     | 1     | 0     | 0     | 1     |
| R/W:           | R/W         | R/W   | R/W   | R/W   | R     | R     | R/W   |

Rev. 5.00, 09/03, page 240 of 760

0.

**Bits 2n + 1, 2n—Area n (6–2, 0) Intercycle Idle Specification (AnIW1, AnIW0):** S number of idles inserted between bus cycles when switching between physical space *a* 0) and another space or between a read access and a write access in the same physical

| Bit 2n + 1: AnIW1 | Bit 2n: AnIW0 | Description              |
|-------------------|---------------|--------------------------|
| 0                 | 0             | 1 idle cycle inserted    |
|                   | 1             | 1 idle cycle inserted    |
| 1                 | 0             | 2 idle cycles inserted   |
|                   | 1             | 3 idle cycles inserted ( |

#### 10.2.4 Wait State Control Register 2 (WCR2)

Wait state control register 2 (WCR2) is a 16-bit readable/writable register that specific number of wait state cycles inserted for each area. It also specifies the data access pitc memory accesses. This allows direct connection of even low-speed memories without circuit. WCR2 is initialized to H'FFFF by a power-on reset. It is not initialized by a m or in standby mode.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9    |
|----------------|-------|-------|-------|-------|-------|-------|------|
|                | A6 W2 | A6 W1 | A6 W0 | A5 W2 | A5 W1 | A5 W0 | A4 W |
| Initial value: | 1     | 1     | 1     | 1     | 1     | 1     | 1    |
| R/W:           | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  |
|                |       |       |       |       |       |       |      |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1    |
|                | A4 W0 | A3 W1 | A3 W0 | A2 W1 | A2 W0 | A0 W2 | A0 W |
| Initial value: | 1     | 1     | 1     | 1     | 1     | 1     | 1    |
| R/W:           | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  |
|                |       |       |       |       |       |       |      |

Rev. 5.00, 09/03, pag

|   |   | 1 | 1                     | Enabled | 2  | E |
|---|---|---|-----------------------|---------|----|---|
|   | 1 | 0 | 2                     | Enabled | 3  | E |
|   |   | 1 | 3                     | Enabled | 4  | E |
| 1 | 0 | 0 | 4                     | Enabled | 4  | E |
|   |   | 1 | 6                     | Enabled | 6  | E |
|   | 1 | 0 | 8                     | Enabled | 8  | E |
|   |   | 1 | 10<br>(Initial value) | Enabled | 10 | E |

Bits 12 to 10—Area 5 Wait Control (A5W2, A5W1, A5W0): Specify the number of inserted in physical space area 5. Also specify the number of states for burst transfer.

|                 |                 |                 | Description             |          |                                       |   |  |  |
|-----------------|-----------------|-----------------|-------------------------|----------|---------------------------------------|---|--|--|
|                 |                 |                 | Firs                    | t Cycle  | Burst Cycle<br>(Excluding First (     |   |  |  |
| Bit 12:<br>A5W2 | Bit 11:<br>A5W1 | Bit 10:<br>A5W0 | Inserted<br>Wait States | WAIT Pin | Number of States<br>Per Data Transfer | W |  |  |
| 0               | 0               | 0               | 0                       | Disabled | 2                                     | E |  |  |
|                 |                 | 1               | 1                       | Enabled  | 2                                     | E |  |  |
|                 | 1               | 0               | 2                       | Enabled  | 3                                     | E |  |  |
|                 |                 | 1               | 3                       | Enabled  | 4                                     | E |  |  |
| 1               | 0               | 0               | 4                       | Enabled  | 4                                     | E |  |  |
|                 |                 | 1               | 6                       | Enabled  | 6                                     | E |  |  |
|                 | 1               | 0               | 8                       | Enabled  | 8                                     | E |  |  |
|                 |                 | 1               | 10<br>(Initial value)   | Enabled  | 10                                    | E |  |  |

Rev. 5.00, 09/03, page 242 of 760

|   |   | 1 | 3  | Enabled |
|---|---|---|----|---------|
| 1 | 0 | 0 | 4  | Enabled |
|   |   | 1 | 6  | Enabled |
|   | 1 | 0 | 8  | Enabled |
|   |   | 1 | 10 | Enabled |

Bits 6 and 5—Area 3 Wait Control (A3W1, A3W0): Specify the number of wait sta in physical space area 3.

• For Ordinary Memory

|             |             | Description          |           |  |
|-------------|-------------|----------------------|-----------|--|
| Bit 6: A3W1 | Bit 5: A3W0 | Inserted Wait States | WAIT Pin  |  |
| 0           | 0           | 0                    | Ignored   |  |
|             | 1           | 1                    | Enabled   |  |
| 1           | 0           | 2                    | Enabled   |  |
| _           | 1           | 3                    | Enabled ( |  |

For Synchronous DRAM ٠

0

1

Description Bit 6: A3W1 Bit 5: A3W0 Synchronous DRAM: CAS Latency 0 1 1 1 2 0 1 3 (Initial value)

RENESAS

| 1 | 0 2 | Enabled |     |
|---|-----|---------|-----|
|   | 1 3 | Enabled | (Ir |

• For Synchronous DRAM

|             |             |           | Description           |  |
|-------------|-------------|-----------|-----------------------|--|
| Bit 4: A2W1 | Bit 3: A2W0 | Synchrono | ous DRAM: CAS Latency |  |
| 0           | 0           | 1         |                       |  |
|             | 1           | 1         |                       |  |
| 1           | 0           | 2         |                       |  |
|             | 1           | 3         | (Initial value)       |  |

Bits 2 to 0—Area 0 Wait Control (A0W2, A0W1, A0W0): Specify the number of was inserted in physical space area 0. Also specify the burst pitch for burst transfer.

|                | Description    |                |                         |          | escription                            |   |
|----------------|----------------|----------------|-------------------------|----------|---------------------------------------|---|
|                |                |                | Firs                    | st Cycle | Burst C<br>(Excluding Fi              |   |
| Bit 2:<br>A0W2 | Bit 1:<br>A0W1 | Bit 0:<br>A0W0 | Inserted<br>Wait States | WAIT Pin | Number of States<br>Per Data Transfer | W |
| 0              | 0              | 0              | 0                       | Ignored  | 2                                     | E |
|                |                | 1              | 1                       | Enabled  | 2                                     | E |
|                | 1              | 0              | 2                       | Enabled  | 3                                     | E |
|                |                | 1              | 3                       | Enabled  | 4                                     | Е |
| 1              | 0              | 0              | 4                       | Enabled  | 4                                     | Е |
|                |                | 1              | 6                       | Enabled  | 6                                     | E |
|                | 1              | 0              | 8                       | Enabled  | 8                                     | Е |
|                |                | 1              | 10<br>(Initial value)   | Enabled  | 10                                    | E |

Rev. 5.00, 09/03, page 244 of 760

When using synchronous DRAM, do not access areas 2 and 3 until this register is initi

| Bit:           | 15   | 14   | 13   | 12   | 11    | 10    | 9    |
|----------------|------|------|------|------|-------|-------|------|
|                | TPC1 | TPC0 | RCD1 | RCD0 | TRWL1 | TRWL0 | TRAS |
| Initial value: | 0    | 0    | 0    | 0    | 0     | 0     | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W   | R/W   | R/W  |
|                |      |      |      |      |       |       |      |
| Bit:           | 7    | 6    | 5    | 4    | 3     | 2     | 1    |
|                | RASD | AMX3 | AMX2 | AMX1 | AMX0  | RFSH  | RMO  |
| Initial value: | 0    | 0    | 0    | 0    | 0     | 0     | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W   | R/W   | R/W  |

**Bits 15 and 14—RAS Precharge Time (TPC1, TPC0):** When synchronous DRAM selected as connected memory, they set the minimum number of cycles until output of bank-active command after precharge. However, the number of cycles input immediat issue of an all-bank-precharge command (PALL) in the case of an auto-refresh or a pr command (PRE) in the bank active mode is one fewer than the normal value. TPC1 sh set to 0 and TPC0 to 1 in the bank active mode.

|                 |                 | Description             |                                                     |                          |  |  |
|-----------------|-----------------|-------------------------|-----------------------------------------------------|--------------------------|--|--|
| Bit 15:<br>TPC1 | Bit 14:<br>TPC0 | Normal Operation        | Immediately after<br>Precharge Command <sup>*</sup> | Immediate<br>Self-Refres |  |  |
| 0               | 0               | 1 cycle (Initial value) | 0 cycle (Initial value)                             | 2 cycles (I              |  |  |
|                 | 1               | 2 cycles                | 1 cycle                                             | 5 cycles                 |  |  |
| 1               | 0               | 3 cycles                | 2 cycles                                            | 8 cycles                 |  |  |
|                 | 1               | 4 cycles                | 3 cycles                                            | 11 cycles                |  |  |

Note: \* Immediately after all-bank-precharge (PALL) in the case of an auto-refresh or (PRE) in the bank active mode.

Rev. 5.00, 09/03, pag

Renesas

**Bits 11 and 10—Write-Precharge Delay (TRWL1, TRWL0):** Set the synchronous D write-precharge delay time. This designates the time between the end of a write cycle a bank-active command. This setting is valid only when synchronous DRAM is connected write cycle, the next bank-active command is not issued for the period TPC + TRWL.

| Bit 11: TRWL1 | Bit 10: TRWL0 | Description                   |     |
|---------------|---------------|-------------------------------|-----|
| 0             | 0             | 1 cycle                       | (Ir |
|               | 1             | 2 cycles                      |     |
| 1             | 0             | 3 cycles                      |     |
|               | 1             | Reserved (Setting prohibited) |     |

**Bits 9 and 8**— $\overline{CAS}$ -Before- $\overline{RAS}$  Refresh  $\overline{RAS}$  Assert Time (TRAS1, TRAS0): Whe synchronous DRAM interface is selected, no bank-active command is issued during the TPC + TRAS after an auto-refresh command.

| Bit 9: TRAS1 | Bit 8: TRAS0 | Description |     |
|--------------|--------------|-------------|-----|
| 0            | 0            | 2 cycles    | (Ir |
|              | 1            | 3 cycles    |     |
| 1            | 0            | 4 cycles    |     |
|              | 1            | 5 cycles    |     |

**Bit 7—Synchronous DRAM Bank Active (RASD):** Specifies whether synchronous D used in bank active mode or auto-precharge mode. Set auto-precharge mode when areas are both designated as synchronous DRAM space.

| Bit 7: RASD | Description         |     |
|-------------|---------------------|-----|
| 0           | Auto-precharge mode | (Ir |
| 1           | Bank active mode    |     |

The bank active mode should not be used unless the bus width for all areas is 32 bits.

Rev. 5.00, 09/03, page 246 of 760

|       |           |       |   | · ·                                                                                                                                                                       |
|-------|-----------|-------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |           | 1     | 0 | The row address begins with A11 (The A11 value A1 when the row address is output. $8M \times 16$ -bit $\times$ products) <sup>*1</sup>                                    |
| 0     | 1         | 0     | 0 | The row address begins with A9 (The A9 value is when the row address is output. $1M \times 16$ -bit $\times 4$ -bit products)                                             |
|       |           |       | 1 | The row address begins with A10 (The A10 value A1 when the row address is output. $2M \times 8$ -bit $\times 4$ -products, $2M \times 16$ -bit $\times 4$ -bank products) |
|       |           | 1     | 1 | The row address begins with A9 (The A9 value is when the row address is output. $512k \times 32$ -bit $\times 4$ -products) <sup>*2</sup>                                 |
| 0     | 0         | 0     | 0 | Begin synchronous DRAM access after setting AN *1**                                                                                                                       |
| Excep | t above v | value |   | Reserved (Setting prohibited)                                                                                                                                             |

Notes: 1. Can only be set when using a 16-bit bus width.

2. Can only be set when using a 32-bit bus width.

**Bit 2—Refresh Control (RFSH):** The RFSH bit determines whether or not synchron refresh operations are is performed. If the refresh function is not used, the timer for ge periodic refresh requests can also be used as an interval timer.

| Bit 2: RFSH | Description  |
|-------------|--------------|
| 0           | No refresh ( |
| 1           | Refresh      |

Renesas

| 0 | Auto refresh (RFSH must be 1) | (Ir |
|---|-------------------------------|-----|
| 1 | Self-refresh (RFSH must be 1) |     |

Bit 0-Reserved: This bit is always read as 0. The write value should always be 0.

#### 10.2.6 PCMCIA Control Register (PCR)

The PCMCIA control register (PCR) is a 16-bit readable/writable register that specifies assertion and negation timing of the  $\overline{OE}$  and  $\overline{WE}$  signals for the PCMCIA interface con areas 5 and 6. The  $\overline{OE}$  and  $\overline{WE}$  signal assertion width is set by the wait control bits in the register.

PCR is initialized to H'0000 by a power-on reset, but is not initialized, and retains its comanual reset and in standby mode.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     |
|----------------|--------|--------|--------|--------|--------|--------|-------|
|                | A6W3   | A5W3   | _      | —      | A5TED2 | A6TED2 | A5TEH |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W   |
|                |        |        |        |        |        |        |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     |
|                | A5TED1 | A5TED0 | A6TED1 | A6TED0 | A5TEH1 | A5TEH0 | A6TEH |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W   |

Rev. 5.00, 09/03, page 248 of 760

| 0 | 0 | 0 | 0 | 0           | Ignored | 2  |  |
|---|---|---|---|-------------|---------|----|--|
| 0 | 0 | 0 | 1 | 1           | Enabled | 2  |  |
| 0 | 0 | 1 | 0 | 2           | Enabled | 3  |  |
| 0 | 0 | 1 | 1 | 3           | Enabled | 4  |  |
| 0 | 1 | 0 | 0 | 4           | Enabled | 5  |  |
| 0 | 1 | 0 | 1 | 6           | Enabled | 7  |  |
| 0 | 1 | 1 | 0 | 8           | Enabled | 9  |  |
| 0 | 1 | 1 | 1 | 10          | Enabled | 11 |  |
|   |   |   |   | (Initial va | alue)   |    |  |
| 1 | 0 | 0 | 0 | 12          | Enabled | 13 |  |
| 1 | 0 | 0 | 1 | 14          | Enabled | 15 |  |
| 1 | 0 | 1 | 0 | 18          | Enabled | 19 |  |
| 1 | 0 | 1 | 1 | 22          | Enabled | 23 |  |
| 1 | 1 | 0 | 0 | 26          | Enabled | 27 |  |
| 1 | 1 | 0 | 1 | 30          | Enabled | 31 |  |
| 1 | 1 | 1 | 0 | 34          | Enabled | 35 |  |
| 1 | 1 | 1 | 1 | 38          | Enabled | 39 |  |
|   |   |   |   |             |         |    |  |

**Bit 14—Area 5 Wait Control (A5W3):** Specifies the number of inserted wait states a combined with bits A5W2–A5W0 in WCR2. Also specifies the number of transfer stat transfer. Clear this bit to 0 when area 5 is not set to PCMCIA.

The relationship between the set value and the number of waits is the same as for A6W

Bits 13 and 12—Reserved: These bits are always read as 0. The write value should a

Renesas

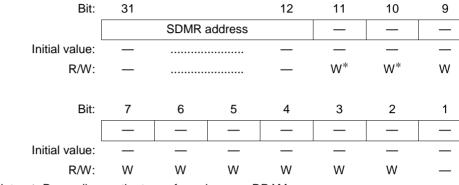
|   |   | 1 | 3.5-cycle delay |
|---|---|---|-----------------|
| 1 | 0 | 0 | 4.5-cycle delay |
|   |   | 1 | 5.5-cycle delay |
|   | 1 | 0 | 6.5-cycle delay |
|   |   | 1 | 7.5-cycle delay |

**Bits 10, 5, and 4—Area 6 Address OE/WE Assert Delay (A6TED2, A6TED1, A6TE** A6TED bits specify the delay time from address output to OE/WE assertion for the PC interface connected to area 6.

| Bit 5:<br>A6TED1 | Bit 4:<br>A6TED0               | Description                                                                                                                                                                                                                                       |
|------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                | 0                              | 0.5-cycle delay (Ir                                                                                                                                                                                                                               |
|                  | 1                              | 1.5-cycle delay                                                                                                                                                                                                                                   |
| 1                | 0                              | 2.5-cycle delay                                                                                                                                                                                                                                   |
|                  | 1                              | 3.5-cycle delay                                                                                                                                                                                                                                   |
| 0                | 0                              | 4.5-cycle delay                                                                                                                                                                                                                                   |
|                  | 1                              | 5.5-cycle delay                                                                                                                                                                                                                                   |
| 1                | 0                              | 6.5-cycle delay                                                                                                                                                                                                                                   |
|                  | 1                              | 7.5-cycle delay                                                                                                                                                                                                                                   |
|                  | A6TED1           0           1 | A6TED1         A6TED0           0         0           1         0           1         0           0         1           0         1           1         0           1         1           0         1           1         0           1         1 |

Rev. 5.00, 09/03, page 250 of 760

|   |   | 1 | 3.5-cycle delay |
|---|---|---|-----------------|
| 1 | 0 | 0 | 4.5-cycle delay |
|   |   | 1 | 5.5-cycle delay |
|   | 1 | 0 | 6.5-cycle delay |
|   |   | 1 | 7.5-cycle delay |


Bits 8, 1, and 0—Area 6 OE/WE Negate Address Delay (A6TEH2, A6TEH1, A6T

Specify the address hold delay time from  $\overline{OE}/\overline{WE}$  negation for the PCMCIA interface area 6.

| Bit 8:<br>A6TEH2 | Bit 1:<br>A6TEH1 | Bit 0:<br>A6TEH0 | Description       |
|------------------|------------------|------------------|-------------------|
| 0                | 0                | 0                | 0.5-cycle delay ( |
|                  |                  | 1                | 1.5-cycle delay   |
|                  | 1                | 0                | 2.5-cycle delay   |
|                  |                  | 1                | 3.5-cycle delay   |
| 1                | 0                | 0                | 4.5-cycle delay   |
|                  |                  | 1                | 5.5-cycle delay   |
|                  | 1                | 0                | 6.5-cycle delay   |
|                  |                  | 1                | 7.5-cycle delay   |

Renesas

synchronous DRAM is connected to A2 of the chip and A1 of the synchronous DRAM is connected to A3 of the chip, the value actually written to the synchronous DRAM is the shifted two bits right. With a 16-bit bus width, the value written is the X value shifted cright. For example, with a 32-bit bus width, when H'0230 is written to the SDMR regist 2, random data is written to the address H'FFFFD000 (address Y) + H'08C0 (value X), H'FFFFD8C0. As a result, H'0230 is written to the SDMR register. The range for value H'0000 to H'0FFC. When H'0230 is written to the SDMR register of area 3, random dat to the address H'FFFFE000 (address Y) + H'08C0. As a result is written to the SDMR register. The range for value X is H'0000 to H'0FFC.



Note: \* Depending on the type of synchronous DRAM.

Rev. 5.00, 09/03, page 252 of 760

on Accessing Refresh Control Related Registers.

| Bit:           | 15  | 14   | 13   | 12   | 11   | 10  | 9   |
|----------------|-----|------|------|------|------|-----|-----|
|                |     | —    | —    | —    | —    |     |     |
| Initial value: | 0   | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R   | R    | R    | R    | R    | R   | R   |
|                |     |      |      |      |      |     |     |
| Bit:           | 7   | 6    | 5    | 4    | 3    | 2   | 1   |
|                | CMF | CMIE | CKS2 | CKS1 | CKS0 | OVF | OVI |
| Initial value: | 0   | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R/W | R/W  | R/W  | R/W  | R/W  | R/W | R/M |

Bits 15 to 8-Reserved: These bits are always read as 0. The write value should alwa

Bit 7—Compare Match Flag (CMF): Indicates that the values of RTCNT and RTCC

| Bit 7: CMF | Description                                                                                                                 |
|------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0          | The values of RTCNT and RTCOR do not match (                                                                                |
|            | Clearing condition: When a refresh is performed after 0 has bee<br>CMF and RFSH = 1 and RMODE = 0 (to perform a CBR refresh |
| 1          | The values of RTCNT and RTCOR match                                                                                         |
|            | Setting condition: RTCNT = RTCOR*                                                                                           |

Note: \* Contents do not change when 1 is written to CMF.

**Bit 6—Compare Match Interrupt Enable (CMIE):** Enables or disables an interrupt caused when CMF in RTCSR is set to 1. Do not set this bit to 1 when using auto-refree.

| Bit 6: CMIE | Description                            |
|-------------|----------------------------------------|
| 0           | Interrupt request by CMF is disabled ( |
| 1           | Interrupt request by CMF is enabled    |

Rev. 5.00, 09/03, pag

Renesas

|   | I | 0 |           |  |
|---|---|---|-----------|--|
|   |   | 1 | CKIO/64   |  |
| 1 | 0 | 0 | CKIO/256  |  |
|   |   | 1 | CKIO/1024 |  |
|   | 1 | 0 | CKIO/2048 |  |
|   |   | 1 | CKIO/4096 |  |

**Bit 2—Refresh Count Overflow Flag (OVF):** Indicates when the number of refresh reindicated in the refresh count register (RFCR) exceeds the limit set in the LMTS bit in 1

| Bit 2: OVF | Description                                                                              |
|------------|------------------------------------------------------------------------------------------|
| 0          | RFCR has not exceeded the count limit value set in LMTS (Ir                              |
|            | Clearing condition: When 0 is written to OVF                                             |
| 1          | RFCR has exceeded the count limit value set in LMTS                                      |
|            | Setting condition: When the RFCR value has exceeded the counset in LMTS $\!\!\!\!\!\!^*$ |

Note: \* Contents do not change when 1 is written to OVF.

**Bit 1—Refresh Count Overflow Interrupt Enable (OVIE):** Selects whether to suppr generation of interrupt requests by the OVF bit in RTCSR when OVF is set to 1.

| Bit 1: OVIE | Description                          |     |
|-------------|--------------------------------------|-----|
| 0           | Interrupt request by OVF is disabled | (Ir |
| 1           | Interrupt request by OVF is enabled  |     |

Rev. 5.00, 09/03, page 254 of 760

#### **10.2.9** Refresh Timer Counter (RTCNT)

RTCNT is a 16-bit register containing a readable/writable 8-bit counter that counts up clock. The clock select bits (CKS2–CKS0) in RTCSR select the input clock. When RT matches RTCOR, the CMF bit in RTCSR is set and RTCNT is cleared. RTCNT is init H'00 by a power-on reset, but continues incrementing after a manual reset. It is not ini standby mode, but holds its contents.

Note: The method of writing to RTCNT differs from that for general registers to ens RTCNT is not rewritten incorrectly. Use a word transfer instruction to set the as B'10100101 and the lower byte as the write data. For details, see section 10 Cautions on Accessing Refresh Control Related Registers.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | —   | —   | —   | —   | —   | —   |     |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |

Rev. 5.00, 09/03, pag

bits CKS2 to CKS0 in RTCSR.

Note: The method of writing to RTCOR differs from that for general registers to ensu RTCOR is not rewritten incorrectly. Use a word transfer instruction to set the u as B'10100101 and the lower byte as the write data. For details, see section 10.2 Cautions on Accessing Refresh Control Related Registers.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | —   |     | —   | —   | —   | —   | —   |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W |

#### 10.2.11 Refresh Count Register (RFCR)

The refresh count register (RFCR) counts the number of refreshing. When RFCR exceed count limit value set in the LMTS bit in RTCSR, the OVF bit in RTCSR is set and RFC cleared. RFCR is a 10-bit readable/writable counter. RFCR is initialized to H'0000 by a reset. RFCR continues incrementing in a manual reset. It is not initialized by in standby holds its contents.

Note: The method of writing to RFCR differs from that for general registers to ensure is not rewritten incorrectly. Use a word transfer instruction to set the six bits sta the MSB in the upper byte as B'101001, and the remaining bits as the write data details, see section 10.2.12, Cautions on Accessing Refresh Control Related Re

Rev. 5.00, 09/03, page 256 of 760

|  | R/W: | R/W |
|--|------|-----|-----|-----|-----|-----|-----|-----|
|--|------|-----|-----|-----|-----|-----|-----|-----|

#### 10.2.12 Cautions on Accessing Refresh Control Related Registers

RFCR, RTCSR, RTCNT, and RTCOR require that a specific code be appended to the is written to prevent data from being mistakenly overwritten by program overruns or operations (figure 10.5). Perform reads and writes using the following methods:

1. When writing to RFCR, RTCSR, RTCNT, and RTCOR, use only word transfer in Byte transfer instructions cannot be used.

When writing to RTCNT, RTCSR, or RTCOR, place B'10100101 in the upper byt write data in the lower byte. When writing to RFCR, place B'101001 in the upper the write data in the remaining bits, as shown in figure 10.5.

2. When reading from RFCR, RTCSR, RTCNT, and RTCOR, carry out reads with a width. 0 is read from undefined bits.

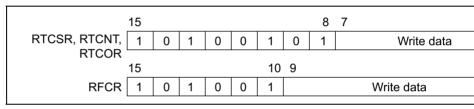



Figure 10.5 Writing to RFCR, RTCSR, RTCNT, and RTCOR

Rev. 5.00, 09/03, pag

reomb[1:0] in the received should be set to ob (other function).

| Bit:           | 15 | 14    | 13   | 12   | 11  | 10  | 9   |
|----------------|----|-------|------|------|-----|-----|-----|
|                | —  | —     |      | _    | —   | —   |     |
| Initial value: | 0  | 0     | 0    | 0    | 0   | 0   | 0   |
| R/W:           | R  | R     | R    | R    | R   | R   | R   |
| Bit:           | 7  | 6     | 5    | 4    | 3   | 2   | 1   |
|                | —  | CS2/0 | CAP1 | CAP0 | A25 | A24 | A23 |
| Initial value: | 0  | 0     | 0    | 0    | 0   | 0   | 0   |
| R/W:           | R  | R/W   | R/W  | R/W  | R/W | R/W | R/W |

Bits 15 to 7-Reserved: These bits are always read as 0. The write value should alway

Bit 6—CS2/CS0 Select (CS2/0): Selects whether an area 2 or area 0 address is to be de

| Bit 6: CS2/0 | Description        |
|--------------|--------------------|
| 0            | Area 0 is selected |
| 1            | Area 2 is selected |

Only 0 should be used for the CS2/0 bit in MCSCR0. Either 0 or 1 may be used for MCMCSCR7.

| Bit 5: CAP1 | Bit 4: CAP0 | Description                  |
|-------------|-------------|------------------------------|
| 0           | 0           | 32-Mbit memory is connected  |
| 0           | 1           | 64-Mbit memory is connected  |
| 1           | 0           | 128-Mbit memory is connected |
| 1           | 1           | 256-Mbit memory is connected |

Bits 3 to 0—Start Address Specification (A25, A24, A23, A22): These bits specify the address of the memory area for which  $\overline{MCS[0]}$  is asserted.

Rev. 5.00, 09/03, page 258 of 760

The bit configuration and functions are the same as those of MCSCR0.

#### 10.2.16 MCS3 Control Register (MCSCR3)

The MCS3 control register (MCSCR3) specifies the  $\overline{MCS[3]}$  pin output conditions.

The bit configuration and functions are the same as those of MCSCR0.

#### 10.2.17 MCS4 Control Register (MCSCR4)

The MCS4 control register (MCSCR4) specifies the  $\overline{\text{MCS}[4]}$  pin output conditions.

The bit configuration and functions are the same as those of MCSCR0.

#### 10.2.18 MCS5 Control Register (MCSCR5)

The MCS5 control register (MCSCR5) specifies the  $\overline{\text{MCS}[5]}$  pin output conditions.

The bit configuration and functions are the same as those of MCSCR0.

### 10.2.19 MCS6 Control Register (MCSCR6)

The MCS6 control register (MCSCR6) specifies the  $\overline{\text{MCS[6]}}$  pin output conditions.

The bit configuration and functions are the same as those of MCSCR0.

#### 10.2.20 MCS7 Control Register (MCSCR7)

The MCS7 control register (MCSCR7) specifies the  $\overline{MCS[7]}$  pin output conditions.

The bit configuration and functions are the same as those of MCSCR0.

Rev. 5.00, 09/03, pag

# Renesas

Three data bus widths are available for ordinary memory (byte, word, longword) and tw widths (word and longword) for synchronous DRAM. For the PCMCIA interface, choose byte and word. This means data alignment is done by matching the device's data width endian. The access unit must also be matched to the device's bus width. This also mean longword data is read from a byte-width device, four read operations must be performe SH7709S, data alignment and conversion of data length is performed automatically bet respective interfaces.

Tables 10.7 to 10.12 show the relationship between endian, device data width, and acce

| Table 10.7 | 32-Bit External Device/Big-Endian A | Access and Data Alignment |
|------------|-------------------------------------|---------------------------|
|            |                                     |                           |

|                      |               | Data I        | Bus          |             |               | Strobe        | Signals       |
|----------------------|---------------|---------------|--------------|-------------|---------------|---------------|---------------|
| Operation            | D31–D24       | D23–D16       | D15–D8       | D7-D0       | WE3,<br>DQMUU | WE2,<br>DQMUL | WE1,<br>DQMLU |
| Byte access<br>at 0  | Data<br>7–0   | _             | _            | _           | Asserted      |               |               |
| Byte access<br>at 1  | _             | Data<br>7–0   | _            | _           |               | Asserted      |               |
| Byte access<br>at 2  | _             | _             | Data<br>7–0  | _           |               |               | Asserted      |
| Byte access<br>at 3  | _             | —             | —            | Data<br>7–0 |               |               |               |
| Word access<br>at 0  | Data<br>15–8  | Data<br>7–0   | —            | _           | Asserted      | Asserted      |               |
| Word access<br>at 2  | _             | _             | Data<br>15–8 | Data<br>7–0 |               |               | Asserted      |
| Longword access at 0 | Data<br>31–24 | Data<br>23–16 | Data<br>15–8 | Data<br>7–0 | Asserted      | Asserted      | Asserted      |

Rev. 5.00, 09/03, page 260 of 760

| Byte access                | s at 2           | _ | _ | Data<br>7–0   | _             | Asserted |
|----------------------------|------------------|---|---|---------------|---------------|----------|
| Byte access                | s at 3           | — | _ | _             | Data<br>7–0   |          |
| Word acces                 | s at 0           | _ | — | Data<br>15–8  | Data<br>7–0   | Asserted |
| Word acces                 | s at 2           | _ | — | Data<br>15–8  | Data<br>7–0   | Asserted |
| Longword<br>access<br>at 0 | 1st time<br>at 0 | — | _ | Data<br>31–24 | Data<br>23–16 | Asserted |
|                            | 2nd time<br>at 2 | _ | — | Data<br>15–8  | Data<br>7–0   | Asserted |

RENESAS

| Word access<br>at 0  | 1st time<br>at 0 | — | — | — | Data<br>15–8  |
|----------------------|------------------|---|---|---|---------------|
|                      | 2nd time<br>at 1 | — | — | _ | Data<br>7–0   |
| Word access at 2     | 1st time<br>at 2 | — | — | _ | Data<br>15–8  |
|                      | 2nd time<br>at 3 | _ | — | _ | Data<br>7–0   |
| Longword access at 0 | 1st time<br>at 0 | _ | _ | _ | Data<br>31–24 |
|                      | 2nd time<br>at 1 | _ | _ | _ | Data<br>23–16 |
|                      | 3rd time<br>at 2 | _ | _ | _ | Data<br>15–8  |
|                      | 4th time<br>at 3 | _ | _ | _ | Data<br>7–0   |

Rev. 5.00, 09/03, page 262 of 760

| Byte access<br>at 2  | _             | Data<br>7–0   | —            | —           |          | Asserted |          |
|----------------------|---------------|---------------|--------------|-------------|----------|----------|----------|
| Byte access<br>at 3  | Data<br>7–0   | _             | —            | —           | Asserted |          |          |
| Word access<br>at 0  | —             | —             | Data<br>15–8 | Data<br>7–0 |          |          | Asserted |
| Word access<br>at 2  | Data<br>15–8  | Data<br>7–0   | —            | —           | Asserted | Asserted |          |
| Longword access at 0 | Data<br>31–24 | Data<br>23–16 | Data<br>15–8 | Data<br>7–0 | Asserted | Asserted | Asserted |

# Table 10.11 16-Bit External Device/Little-Endian Access and Data Alignment

|                            |                  | Data Bus    |             |               |               | Strobe Signals |               |               |
|----------------------------|------------------|-------------|-------------|---------------|---------------|----------------|---------------|---------------|
| Operation                  |                  | D31–<br>D24 | D23–<br>D16 | D15–D8        | D7-D0         | WE3,<br>DQMUU  | WE2,<br>DQMUL | WE1,<br>DQMLU |
| Byte access at 0           |                  | _           | _           | _             | Data<br>7–0   |                |               |               |
| Byte access at 1           |                  | _           | _           | Data<br>7–0   | _             |                |               | Asserted      |
| Byte access at 2           |                  | _           | _           | _             | Data<br>7–0   |                |               |               |
| Byte access at 3           |                  | _           | _           | Data<br>7–0   | _             |                |               | Asserted      |
| Word access at 0           |                  | _           |             | Data<br>15–8  | Data<br>7–0   |                |               | Asserted      |
| Word access at 2           |                  | _           | _           | Data<br>15–8  | Data<br>7–0   |                |               | Asserted      |
| Longword<br>access<br>at 0 | 1st time<br>at 0 | _           | _           | Data<br>15–8  | Data<br>7–0   |                |               | Asserted      |
|                            | 2nd time<br>at 2 | _           | _           | Data<br>31–24 | Data<br>23–16 |                |               | Asserted      |

Rev. 5.00, 09/03, pag

Renesas

| Byte access at 2        |                  | — | _ | _ | Data<br>7–0   |
|-------------------------|------------------|---|---|---|---------------|
| Byte access a           | t 3              | _ | _ | _ | Data<br>7–0   |
| Word access<br>at 0     | 1st time<br>at 0 | — | _ | _ | Data<br>7–0   |
|                         | 2nd time<br>at 1 | — | — | _ | Data<br>15–8  |
| Word access<br>at 2     | 1st time<br>at 2 | — | — | _ | Data<br>7–0   |
|                         | 2nd time<br>at 3 | — | _ | _ | Data<br>15–8  |
| Longword<br>access at 0 | 1st time<br>at 0 | — | _ | _ | Data<br>7–0   |
|                         | 2nd time<br>at 1 | — | _ | _ | Data<br>15–8  |
|                         | 3rd time<br>at 2 | _ | _ | _ | Data<br>23–16 |
|                         | 4th time<br>at 3 | _ | _ | _ | Data<br>31–24 |

Rev. 5.00, 09/03, page 264 of 760

between 0 and 10 wait cycles using the A0W2–A0W0 bits in WCR2. When the burst is used, the bus cycle pitch of the burst cycle is determined within a range of 2–10 accord number of waits.

Area 1: Area 1 physical address bits A28–A26 are 001. Address bits A31–A29 are ign the address range is H'04000000 + H'20000000 × n – H'07FFFFFF + H'20000000 × n and n = 1-6 are the shadow spaces).

Area 1 is the area specifically for internal peripheral modules. External memories can connected.

Control registers of the peripheral modules shown below are mapped to this area 1. The addresses are physical addresses, to which logical addresses can be mapped when the enabled:

DMAC, PORT, IrDA, SCIF, ADC, DAC, INTC (except INTEVT, IPRA, IPRB) These registers must be set not to be cached by using software.

Area 2: Area 2 physical address bits A28–A26 are 010. Address bits A31–A29 are ignored the address range is H'08000000 + H'20000000 × n – H'0BFFFFFF + H'20000000 × n and n = 1-6 are the shadow spaces).

Ordinary memories such as SRAM and ROM, as well as synchronous DRAM, can be to this space. Byte, word, or longword can be selected as the bus width using bits A2S A2SZ0 in BCR2 for ordinary memory.

When the area 2 space is accessed, the  $\overline{CS2}$  signal is asserted. When ordinary memorie connected, the  $\overline{RD}$  signal that can be used as  $\overline{OE}$  and the  $\overline{WE0}$ – $\overline{WE3}$  signals for write also asserted and the number of bus cycles is selected between 0 and 3 wait cycles usi A2W1 and A2W0 bits in WCR2. Only when ordinary memories are connected, any w inserted in each bus cycle by means of the external wait pin ( $\overline{WAIT}$ ).

When synchronous DRAM is connected, the  $\overline{RAS3U}$  and  $\overline{RAS3L}$  signals,  $\overline{CASU}$  and signals,  $\overline{RD}/\overline{WR}$  signal, and byte control signals DQMHH, DQMHL, DQMLH, and D all asserted and addresses multiplexed. Control of  $\overline{RAS3U}$ ,  $\overline{RAS3L}$ ,  $\overline{CASU}$ ,  $\overline{CASL}$ , da and address multiplexing is set with MCR.

Rev. 5.00, 09/03, pag

# Renesas

When ordinary memories are connected, the  $\overline{RD}$  signal that can be used as  $\overline{OE}$  and the signals for write control are asserted and the number of bus cycles is selected between 0 cycles using the A3W1 and A3W0 bits in WCR2.

When synchronous DRAM is connected, the  $\overline{RAS3U}$  and  $\overline{RAS3L}$  signals,  $\overline{CASU}$  and  $\overline{C}$  signals,  $\overline{RD}/\overline{WR}$  signal, and byte control signals DQMHH, DQMHL, DQMLH, and DC all asserted and addresses multiplexed.

Area 4: Area 4 physical address bits A28–A26 are 100. Address bits A31–A29 are ignored the address range is H'10000000 + H'20000000 × n – H'13FFFFFF + H'20000000 × n ( and n = 1-6 are the shadow spaces).

Only ordinary memories such as SRAM and ROM can be connected to this space. Byte longword can be selected as the bus width using bits A4SZ1 and A4SZ0 in BCR2. Whe 4 space is accessed, the  $\overline{CS4}$  signal is asserted. The  $\overline{RD}$  signal that can be used as  $\overline{OE}$  at  $\overline{WE0}-\overline{WE3}$  signals for write control are also asserted. The number of bus cycles is selected between 0 and 10 wait cycles using the A4W2–A4W0 bits in WCR2. Any wait can be is each bus cycle by means of the external wait pin ( $\overline{WAIT}$ ).

Area 5: Area 5 physical address bits A28–A26 are 101. Address bits A31–A29 are ignthe address range is the 64 Mbytes at H'14000000 + H'20000000 × n – H'17FFFFFF + H'20000000 × n (n = 0–6 and n = 1–6 are the shadow spaces).

Ordinary memories such as SRAM and ROM as well as burst ROM and PCMCIA interbe connected to this space. When the PCMCIA interface is used, the IC memory card in address range comprises the 32 Mbytes at H'14000000 + H'20000000 × n to H'15FFFF. H'20000000 × n (n = 0–6 and n = 1–6 are the shadow spaces), and the I/O card interface range comprises the 32 Mbytes at H'16000000 + H'20000000 × n to H'17FFFFFF + H'2 n (n = 0–6 and n = 1–6 are the shadow spaces).

For ordinary memory and burst ROM, byte, word, or longword can be selected as the b using bits A5SZ1 and A5SZ0 in BCR2. For the PCMCIA interface, byte or word can b as the bus width using bits A5SZ1 and A5SZ0 bits in BCR2.

Rev. 5.00, 09/03, page 266 of 760

bus cycle pitch of the burst cycle is determined within a range of 2-11 (2–39 for the P interface) according to the number of waits. The setup and hold times of address/ $\overline{CS5}$  read/write strobe signals can be set in the range 0.5–7.5 using bits A5TED2–A5TED0 A5TEH2–A5TEH0 in the PCR register.

Area 6: Area 6 physical address bits A28–A26 are 110. Address bits A31–A29 are igithe address range is the 64 Mbytes at H'18000000 + H'20000000 × n – H'1BFFFFFF – H'20000000 × n (n = 0–6 and n = 1–6 are the shadow spaces).

Ordinary memories such as SRAM and ROM as well as burst ROM and PCMCIA int be connected to this space. When the PCMCIA interface is used, the IC memory card address range is 32 Mbytes at H'18000000 + H'20000000 × n – H'19FFFFFF + H'200 and the I/O card interface address range is 32 Mbytes at H'1A000000 + H'20000000 × H'1BFFFFFF + H'20000000 × n (n = 0–6 and n = 1–6 are the shadow spaces).

For ordinary memory and burst ROM, byte, word, or longword can be selected as the using bits A6SZ1 and A6SZ0 in BCR2. For the PCMCIA interface, byte or word can as the bus width using bits A6SZ1 and A6SZ0 in BCR2.

When the area 6 space is accessed and ordinary memory is connected, the  $\overline{CS6}$  signal The  $\overline{RD}$  signal that can be used as  $\overline{OE}$  and the  $\overline{WE0}$ – $\overline{WE3}$  signals for write control are asserted. When the PCMCIA interface is used, the  $\overline{CE1B}$  signal,  $\overline{CE2B}$  signal,  $\overline{RD}$  signal, and  $\overline{WE}$ ,  $\overline{ICIORD}$ , and  $\overline{ICIOWR}$  signals are asserted.

The number of bus cycles is selected between 0 and 10 wait cycles using the A6W2–A WCR2. With the PCMCIA interface, from 0 to 38 wait cycles can be selected using th A6W0 bits in WCR2 and the A6W3 bit in PCR. In addition, any number of waits can in each bus cycle by means of the external wait pin (WAIT). The bus cycle pitch of th is determined within a range of 2–11 (2–39 for the PCMCIA interface) according to the waits. The address/ $\overline{CS6}$  setup and hold times for the read/write strobe signals can be s range 0.5–7.5 using bits A6TED2–A6TED0 and A6TEH2–A6TEH0 in the PCR regis

Rev. 5.00, 09/03, pag

Renesas

least significant bit of the address, but since there is no access size specification, 32 bits read in case of a 32-bit device, and 16 bits in case of a 16-bit device. When writing, onl signal for the byte to be written is asserted. For details, see section 10.3.1, Endian/Acce Data Alignment.

Read/write for cache fill or write-back follows the set bus width and transfers a total of continuously. The bus is not released during this transfer. For cache misses that occur or word operand accesses or branching to odd word boundaries, the fill is always perfor longword accesses on the chip-external interface. Write-through-area write access and cacheable read/write access are based on the actual address size.

Rev. 5.00, 09/03, page 268 of 760

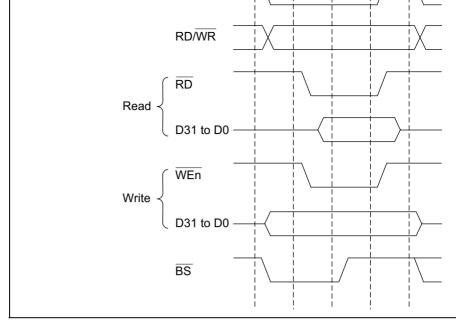



Figure 10.6 Basic Timing of Basic Interface

RENESAS

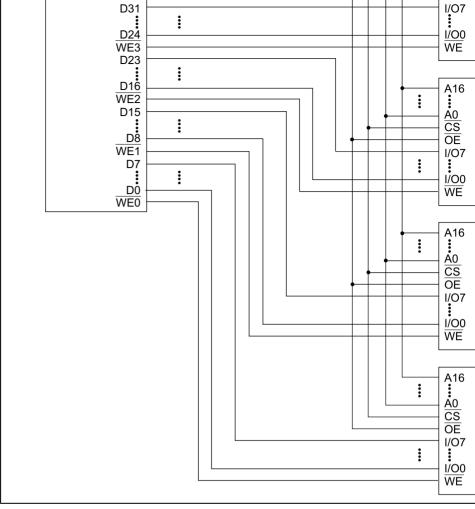



Figure 10.7 Example of 32-Bit Data-Width Static RAM Connection

Rev. 5.00, 09/03, page 270 of 760

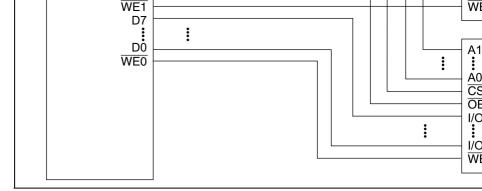



Figure 10.8 Example of 16-Bit Data-Width Static RAM Connection

RENESAS

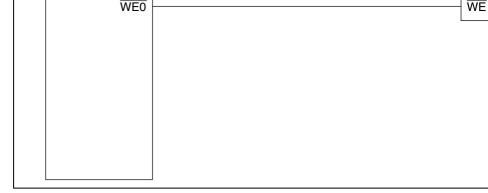



Figure 10.9 Example of 8-Bit Data-Width Static RAM Connection

Rev. 5.00, 09/03, page 272 of 760

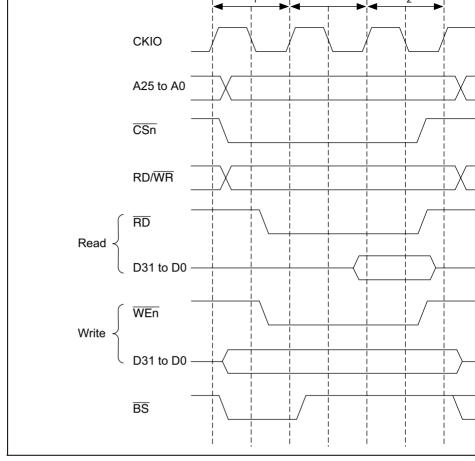



Figure 10.10 Basic Interface Wait Timing (Software Wait Only)

RENESAS

nowever, the wArr signal is ignored in the following three cases.

- A write to external address space in dual address mode with 16-byte DMA transfer
- Transfer from an external device with DACK to external address space in single adwith 16-byte DMA transfer
- Cache write-back access

Rev. 5.00, 09/03, page 274 of 760

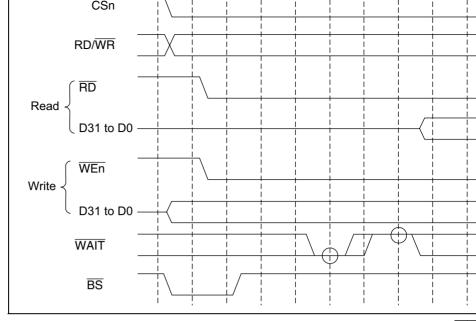



Figure 10.11 Basic Interface Wait State Timing (Wait State Insertion by  $\overline{WA}$ WAITSEL = 1)

Renesas

DRAM operating mode. A data bus width of 16 or 32 bits can be selected. A 16-bit bur is performed in a cache fill/write-back cycle, and only one access is performed in a write area write or a non-cacheable area read/write.

The control signals for direct connection of synchronous DRAM are  $\overline{RAS3L}$ ,  $\overline{RAS3U}$ ,  $\overline{CASU}$ , RD/WR,  $\overline{CS2}$  or  $\overline{CS3}$ , DQMUU, DQMUL, DQMLU, DQMLL, and CKE. All t other than  $\overline{CS2}$  and  $\overline{CS3}$  are common to all areas, and signals other than CKE are valid to the synchronous DRAM only when  $\overline{CS2}$  or  $\overline{CS3}$  is asserted. Synchronous DRAM ca be connected in parallel to a number of areas. CKE is negated (low) only when self-ref performed, and is always asserted (high) at other times.

In the refresh cycle and mode-register write cycle,  $\overline{RAS3U}$  and  $\overline{RAS3L}$  or  $\overline{CASU}$  and  $\overline{C}$  output.

Commands for synchronous DRAM are specified by RAS3L, RAS3U, CASL, CASU, and special address signals. The commands are NOP, auto-refresh (REF), self-refresh (precharge all banks (PALL), row address strobe bank active (ACTV), read (READ), reprecharge (READA), write (WRIT), write with precharge (WRITA), and mode register (MRS).

Byte specification is performed by DQMUU, DQMUL, DQMLU, and DQMLL. A reac performed for the byte for which the corresponding DQM is low. In big-endian mode, I specifies an access to address 4n, and DQMLL specifies an access to address 4n + 3. In endian mode, DQMUU specifies an access to address 4n + 3, and DQMLL specifies an address 4n.

Figures 10.12 and 10.13 show examples of the connection of two  $1M \times 16$ -bit  $\times$  4-bank synchronous DRAMs and one  $1M \times 16$ -bit  $\times$  4-bank synchronous DRAM, respectively

Rev. 5.00, 09/03, page 276 of 760

Renesas

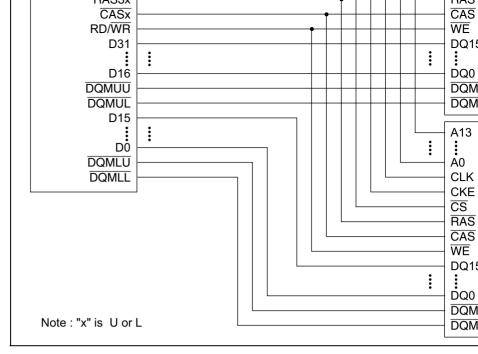



Figure 10.12 Example of 64-Mbit Synchronous DRAM Connection (32-Bit B

Renesas

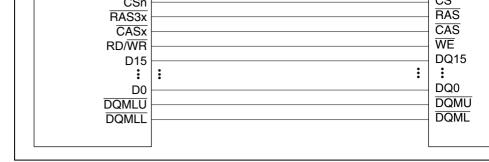



Figure 10.13 Example of 64-Mbit Synchronous DRAM Connection (16-Bit Bu

Address Multiplexing: Synchronous DRAM can be connected without external multiplex circuitry in accordance with the address multiplex specification bits AMX2-AMX0 in N 10.13 shows the relationship between the address multiplex specification bits and the bit the address pins.

A25-A17 and A0 are not multiplexed; the original values are always output at these pir

When A0, the LSB of the synchronous DRAM address, is connected to the SH7709S, i longword address specification. Connection should therefore be made in the following a 32-bit bus width, connect pin A0 of the synchronous DRAM to pin A2 of the SH7709 connect pin A1 to pin A3; with a 16-bit bus width, connect pin A0 of the synchronous I pin A1 of the SH7709S, then connect pin A1 to pin A2.

Rev. 5.00, 09/03, page 278 of 760

|      |                                                                                              |   |   |   |   | auuress           | AT                |     |                    |                   |       |       |
|------|----------------------------------------------------------------------------------------------|---|---|---|---|-------------------|-------------------|-----|--------------------|-------------------|-------|-------|
|      | $2M \times$<br>16bits ×<br>4banks <sup>*2</sup>                                              | 0 | 1 | 0 | 1 | Column<br>address | A1 to A9<br>A8    | A10 | A11                | L/H <sup>*3</sup> | A13   | A2:   |
|      |                                                                                              |   |   |   |   | Row<br>address    | A10 to A18<br>A17 | A19 | A20                | A21               | A22   | A2:   |
|      | $1M \times$<br>16bits ×<br>4banks <sup>*2</sup>                                              | 0 | 1 | 0 | 0 | Column<br>address | A1 to A9<br>A8    | A10 | A11                | L/H <sup>*3</sup> | A13   | A2:   |
|      |                                                                                              |   |   |   |   | Row<br>address    | A9 to A17<br>A16  | A18 | A19                | A20               | A21   | A2:   |
|      | $\begin{array}{l} \text{2M} \times \\ \text{8bits} \times \\ \text{4banks}^{*2} \end{array}$ | 0 | 1 | 0 | 1 | Column<br>address | A1 to A9<br>A8    | A10 | A11                | L/H <sup>*3</sup> | A13   | A2:   |
|      |                                                                                              |   |   |   |   | Row<br>address    | A10 to A18<br>A17 | A19 | A20                | A21               | A22   | A2;   |
|      | $512k \times$<br>$32bits \times$<br>$4banks^{*2}$                                            | 0 | 1 | 1 | 1 | Column<br>address | A1 to A9<br>A8    | A10 | A11                | L/H <sup>*3</sup> | A21*' | ⁴ A2: |
|      |                                                                                              |   |   |   |   | Row<br>address    | A9 to A17<br>A16  | A18 | A19                | A20               | A21*' | 4 A2  |
| bits | $8M \times$<br>16bits ×<br>4banks <sup>*1</sup>                                              | 1 | 1 | 1 | 0 | Column<br>address | A1 to A9<br>A8    | A10 | L/H* <sup>:</sup>  | <sup>3</sup> A12  | A23   | A24   |
|      |                                                                                              |   |   |   |   | Row<br>address    | A11 to A19<br>A18 | A20 | A21                | A22               | A23   | A24   |
|      | $4M \times$<br>16bits ×<br>4banks <sup>*2</sup>                                              | 1 | 1 | 0 | 1 | Column<br>address | A1 to A9<br>A8    | A10 | L/H* <sup>**</sup> | <sup>3</sup> A12  | A22   | A23   |
|      |                                                                                              |   |   |   |   | Row<br>address    | A10 to A18<br>A17 | A19 | A20                | A21               | A22   | A23   |

Renesas

| 16bits $	imes$ 4banks $^{*2}$                  |   |   |   |   | address        | A8                |     |      |                  |                       |
|------------------------------------------------|---|---|---|---|----------------|-------------------|-----|------|------------------|-----------------------|
|                                                |   |   |   |   | Row<br>address | A 9 to A17<br>A16 | A18 | A19  | A20              | A21 <sup>*4</sup> A22 |
| $2M \times$<br>8bits ×<br>4banks <sup>*2</sup> | 0 | 1 | 0 | 1 |                | A1 to A9<br>A8    | A10 | L/H* | <sup>3</sup> A12 | A22 <sup>*4</sup> A23 |
|                                                |   |   |   |   | Row<br>address | A10 to A18<br>A17 | A19 | A20  | A21              | A22 <sup>*4</sup> A23 |

Notes: 1. Only RAL3L or CASL is output.

2. When addresses are upper 32 Mbytes, RAS3U or CASU is output. When addresses are lower 32 Mbytes, RAS3L or CASL is output.

- 3. L/H is a bit used in the command specification; it is fixed at L or H according access mode.
- 4. Bank address specification

Rev. 5.00, 09/03, page 280 of 760

| 712 | 720 | L/11 | Alto     | Address prechar |
|-----|-----|------|----------|-----------------|
| A11 | A19 | A11  | A9       | Address         |
| A10 | A18 | A10  | A8       |                 |
| A9  | A17 | A9   | A7       |                 |
| A8  | A16 | A8   | A6       |                 |
| A7  | A15 | A7   | A5       |                 |
| A6  | A14 | A6   | A4       |                 |
| A5  | A13 | A5   | A3       |                 |
| A4  | A12 | A4   | A2       |                 |
| A3  | A11 | A3   | A1       |                 |
| A2  | A10 | A2   | A0       |                 |
| A1  | A9  | A1   | Not used |                 |
| A0  | A0  | A0   | Not used |                 |
|     |     |      |          |                 |

**Burst Read:** In the example in figure 10.15 it is assumed that four 2M × 8-bit synchrod DRAMs are connected and a 32-bit data width is used, and the burst length is 1. Follo cycle in which ACTV command output is performed, a READ command is issued in t and Tc3 cycles, and a READA command in the Tc4 cycle, and the read data is accepted rising edge of the external command clock (CKIO) from cycle Td1 to cycle Td4. The used to wait for completion of auto-precharge based on the READA command inside synchronous DRAM; no new access command can be issued to the same bank during but access to synchronous DRAM for another area is possible. In the SH7709S, the nu cycles is determined by the TPC bit specification in MCR, and commands cannot be issued synchronous DRAM during this interval.

The example in figure 10.14 shows the basic cycle. To connect low-speed synchronou the cycle can be extended by setting WCR2 and MCR bits. The number of cycles from command output cycle, Tr, to the READ command output cycle, Tc1, can be specified RCD bits in MCR, with values of 0 to 3 specifying 1 to 4 cycles, respectively. In case cycles, a Trw cycle, in which an NOP command is issued for the synchronous DRAM between the Tr cycle and the Tc cycle. The number of cycles from READ and READ, output cycles Tc1-Tc4 to the first read data latch cycle, Td1, can be specified as 1 to 3

Rev. 5.00, 09/03, pag

## Renesas

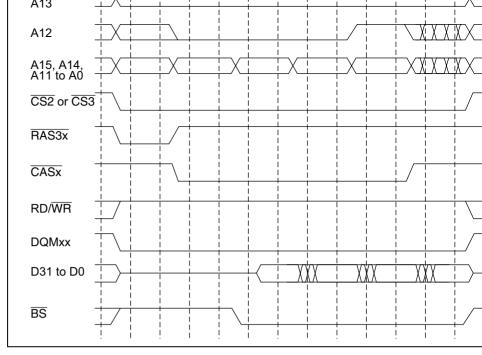



Figure 10.14 Basic Timing for Synchronous DRAM Burst Read

Rev. 5.00, 09/03, page 282 of 760

missed data is read in wraparound mode.

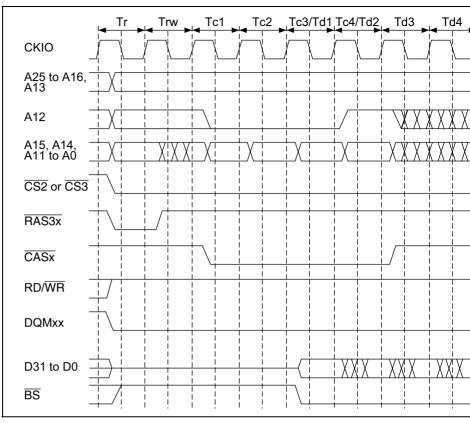



Figure 10.15 Synchronous DRAM Burst Read Wait Specification Time

RENESAS

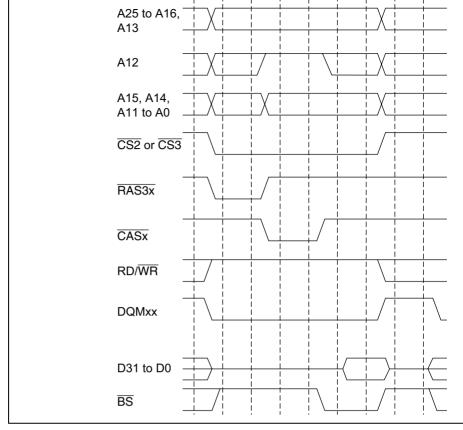



Figure 10.16 Basic Timing for Synchronous DRAM Single Read

Rev. 5.00, 09/03, page 284 of 760

also added as a wait interval until precharging is started following the write command a new command for the same bank is deferred during this interval. The number of Trv be specified by the TRWL bits in MCR.

Renesas

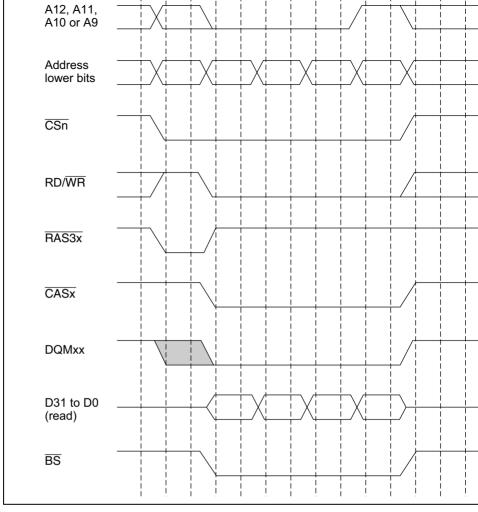



Figure 10.17 Basic Timing for Synchronous DRAM Burst Write

Rev. 5.00, 09/03, page 286 of 760

The number of Trwl cycles can be specified by the TRWL bits in MCR.

Renesas

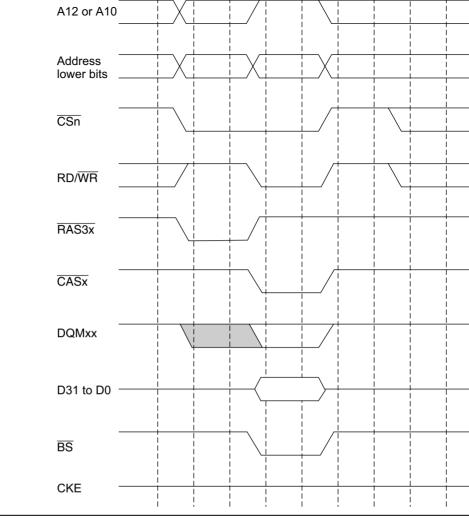



Figure 10.18 Basic Timing for Synchronous DRAM Single Write

Rev. 5.00, 09/03, page 288 of 760

command followed by a READ or WRIT command. If this is followed by an access to row address, the access time will be longer because of the precharging performed after request is issued.

In a write, when auto-precharge is performed, a command cannot be issued for a period Tpc cycles after issuance of the WRITA command. When bank active mode is used, F WRIT commands can be issued successively if the row address is the same. The numb can thus be reduced by Trwl + Tpc cycles for each write. The number of cycles betwee of the precharge command and the row address strobe command is determined by the MCR.

Whether faster execution speed is achieved by use of bank active mode or by use of back determined by the probability of accessing the same row address (P1), and the average cycles from completion of one access to the next access (Ta). If Ta is greater than Tpc due to the precharge wait when writing is imperceptible. In this case, the access speed active mode and basic access is determined by the number of cycles from the start of a issuance of the read/write command:  $(Tpc + Trcd) \times (1 - P1)$  and Trcd, respectively.

There is a limit on Tras, the time for placing each bank in the active state. If there is not that there will not be a cache hit and another row address will be accessed within the p which this value is maintained by program execution, it is necessary to set auto-refrest refresh cycle to no more than the maximum value of Tras. In this way, it is possible to restrictions on the maximum active state time for each bank. If auto-refresh is not used must be taken in the program to ensure that the banks do not remain active for longer to prescribed time.

A burst read cycle without auto-precharge is shown in figure 10.19, a burst read cycle row address in figure 10.20, and a burst read cycle for different row addresses in figure Similarly, a burst write cycle without auto-precharge is shown in figure 10.22, a burst for the same row address in figure 10.23, and a burst write cycle for different row add figure 10.24.

Renesas

considered, as long as accesses to the same row address continue, the operation starts w cycle in figure 10.19 or 10.22, followed by repetition of the cycle in figure 10.20 or 10. access to a different area 3 space during this time has no effect. If there is an access to a row address in the bank active state, after this is detected the bus cycle in figure 10.21 c executed instead of that in figure 10.20 or 10.23. In bank active mode, too, all banks be inactive after a refresh cycle or after the bus is released as the result of bus arbitration.

The bank active mode should not be used unless the bus width for all areas is 32 bits.

Rev. 5.00, 09/03, page 290 of 760

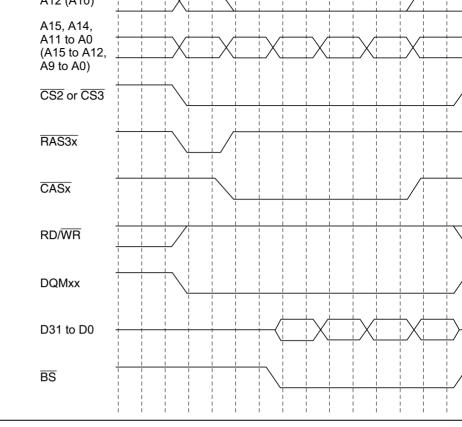



Figure 10.19 Burst Read Timing (No Precharge)

Renesas

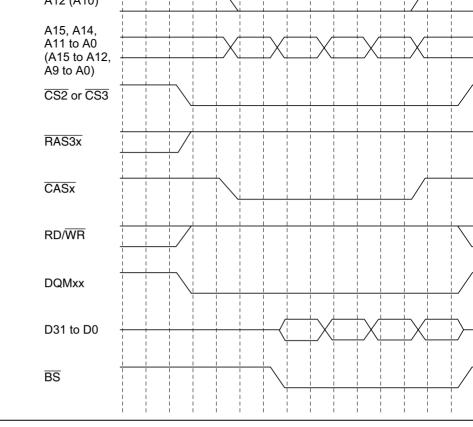



Figure 10.20 Burst Read Timing (Same Row Address)

Rev. 5.00, 09/03, page 292 of 760

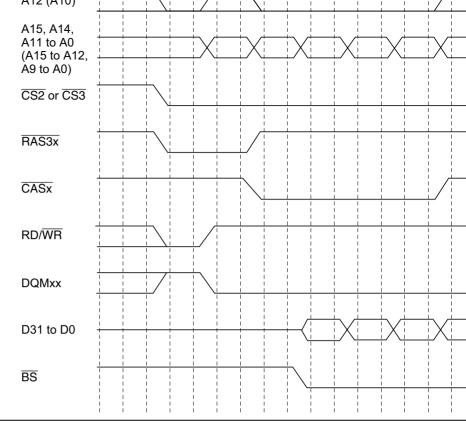



Figure 10.21 Burst Read Timing (Different Row Addresses)

RENESAS

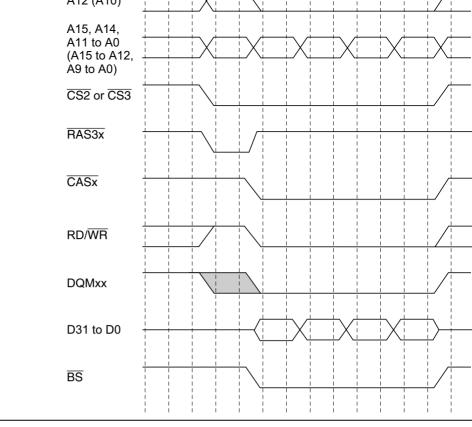



Figure 10.22 Burst Write Timing (No Precharge)

Rev. 5.00, 09/03, page 294 of 760

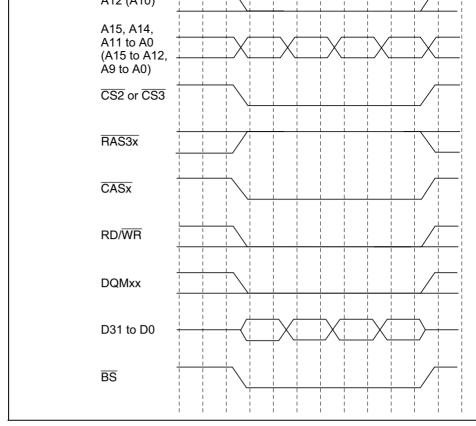



Figure 10.23 Burst Write Timing (Same Row Address)

Renesas

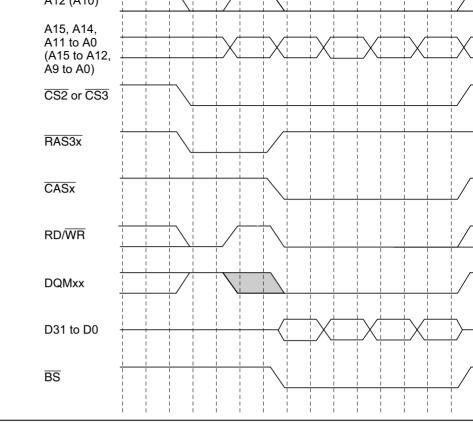



Figure 10.24 Burst Write Timing (Different Row Addresses)

Rev. 5.00, 09/03, page 296 of 760

to satisfy the refresh interval stipulation for the synchronous DRAM used. First massettings for RTCOR, RTCNT, and the RMODE and RFSH bits in MCR, then mak CKS0 setting. When the clock is selected by CKS2-CKS0, RTCNT starts counting value at that time. The RTCNT value is constantly compared with the RTCOR values are the same, a refresh request is generated and an auto-refresh is perfors same time, RTCNT is cleared to zero and the count-up is restarted. Figure 10.25 sl auto-refresh cycle timing.

All-bank precharging is performed in the Tp cycle, then an REF command is issue cycle following the interval specified by the TPC bits in MCR. After the TRr cycle command output cannot be performed for the duration of the number of cycles specified by the TPC bits in MCR. Trans bits in MCR plus the number of cycles specified by the TPC bits in MCR. Tand TPC bits must be set so as to satisfy the synchronous DRAM refresh cycle tim (active/active command delay time).

Auto-refreshing is performed in normal operation, in sleep mode, and in case of a reset.

Renesas

| CMF      |                                            |                 |
|----------|--------------------------------------------|-----------------|
|          | CMF flag cleared by start of refresh cycle | <b></b>         |
| External |                                            | o-refresh cycle |
|          |                                            |                 |

Figure 10.25 Auto-Refresh Operation

Rev. 5.00, 09/03, page 298 of 760

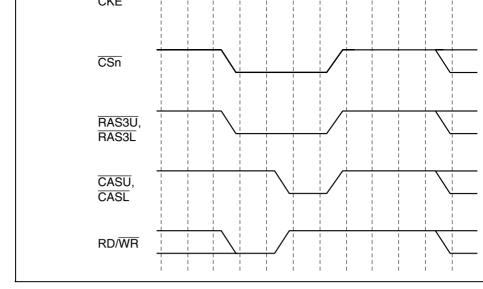



Figure 10.26 Synchronous DRAM Auto-Refresh Timing

Renesas

clearing and data retention are performed correctly, and auto-refreshing is performe correct intervals. When self-refreshing is activated from the state in which auto-refr set, or when exiting standby mode other than through a power-on reset, auto-refresh restarted if RFSH is set to 1 and RMODE is cleared to 0 when self-refresh mode is the transition from clearing of self-refresh mode to the start of auto-refreshing takes time should be taken into consideration when setting the initial value of RTCNT. M RTCNT value 1 less than the RTCOR value will enable refreshing to be started imm

After self-refreshing has been set, the self-refresh state continues even if the chip statis entered using the SH7709S's standby function, and is maintained even after record standby mode other than through a power-on reset. In case of a power-on reset, the controller's registers are initialized, and therefore the self-refresh state is cleared. Self-refreshing is performed in normal operation, in sleep mode, in standby mode, a of a manual reset.

When using synchronous DRAM, use the following procedure to initiate self-refres

- 1. Clear the refresh control bit to 0.
- 2. Write H'00 to the RTCNT register.
- 3. Set the refresh control bit and refresh mode bit to 1.

Rev. 5.00, 09/03, page 300 of 760



Figure 10.27 Synchronous DRAM Self-Refresh Timing

• Relationship between Refresh Requests and Bus Cycle Requests

If a refresh request is generated during execution of a bus cycle, execution of the red deferred until the bus cycle is completed. If a refresh request occurs when the bus released by the bus arbiter, refresh execution is deferred until the bus is acquired. If between RTCNT and RTCOR occurs while a refresh is waiting to be executed, so refresh request is generated, the previous refresh request is eliminated. In order for to be performed normally, care must be taken to ensure that no bus cycle or bus rig that is longer than the refresh interval. When a refresh request is generated, the IR asserted (driven low). Therefore, normal refreshing can be performed by having the pin monitored by a bus master other than the SH7709S requesting the bus, or the b and returning the bus to the SH7709S. When refreshing is started, and if no other is request has been generated, the IRQOUT pin is negated (driven high).

Renesas

wrap type = sequential, and burst length 1 supported by the SH7709S, arbitrary data is byte-size access to the following addresses.

With 32-bit bus width:

| CAS latency 1<br>CAS latency 2<br>CAS latency 3 | Area 2<br>FFFFD840<br>FFFFD880<br>FFFFD8C0 | Area 3<br>FFFFE840<br>FFFFE880<br>FFFFE8C0 |
|-------------------------------------------------|--------------------------------------------|--------------------------------------------|
| With 16-bit bus width:                          |                                            |                                            |
|                                                 | Area 2                                     | Area 3                                     |
| CAS latency 1                                   | FFFFD420                                   | FFFFE420                                   |
| CAS latency 2                                   | FFFFD440                                   | FFFFE440                                   |
| CAS latency 3                                   | FFFFD460                                   | FFFFE460                                   |

Mode register setting timing is shown in figure 10.28.

As a result of the write to address H'FFFFD000 + X or H'FFFFE000 + X, a precharge a (PALL) command is first issued in the TRp1 cycle, then a mode register write comman in the TMw1 cycle.

Address signals, when the mode-register write command is issued, are as follows:

32-bit bus width:

A15-A9 = 0000100 (burst read and single write) A8-A6 = CAS latency A5 = 0 (burst type = sequential) A4-A2 = 000 (burst length 1)

16-bit bus width:

A14-A8 = 0000100 (burst read and single write) A7-A5 = CAS latency A4 = 0 (burst type = sequential) A3-A1 = 000 (burst length 1)

Rev. 5.00, 09/03, page 302 of 760

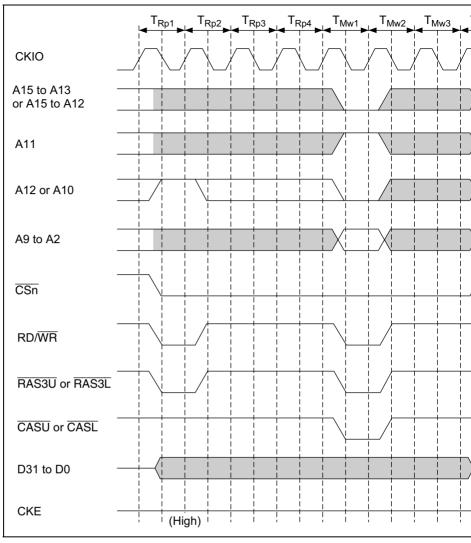



Figure 10.28 Synchronous DRAM Mode Write Timing

Rev. 5.00, 09/03, pag

Renesas

When 16-bit ROM is connected, 4 or 8 can be set in the same way. When 32-bit ROM connected, only 4 can be set.

WAIT pin sampling is performed in the first access if one or more wait states are set, as always performed in the second and subsequent accesses.

The second and subsequent access cycles also comprise two cycles when a burst ROM made and the wait specification is 0. The timing in this case is shown in figure 10.30.

However, the  $\overline{WAIT}$  signal is ignored in the following three cases:

- A write to external address space in dual address mode with 16-byte DMA transfer
- Transfer from an external device with DACK to external address space in single add with 16-byte DMA transfer
- Cache write-back access

Rev. 5.00, 09/03, page 304 of 760

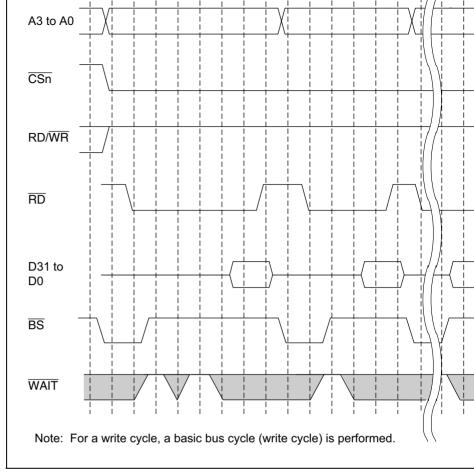



Figure 10.29 Burst ROM Wait Access Timing

Rev. 5.00, 09/03, pag

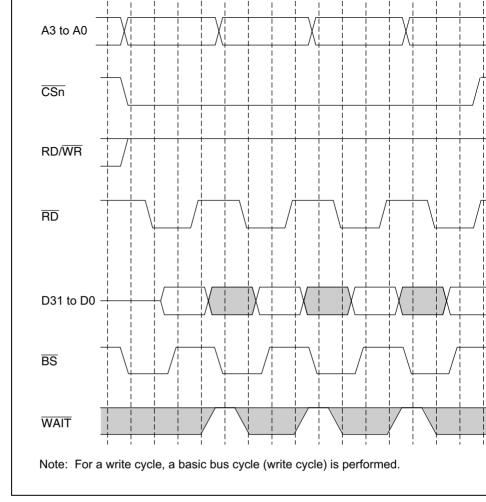



Figure 10.30 Burst ROM Basic Access Timing

Rev. 5.00, 09/03, page 306 of 760

Figure 10.31 shows an example of PCMCIA card connection to the SH7709S. To enal insertion of the PCMCIA cards (i.e. insertion or removal while system power is being 3-state buffer must be connected between the SH7709S's bus interface and the PCMC

As operation in big-endian mode is not explicitly stipulated in the JEIDA/PCMCIA sp the PCMCIA interface for the SH7709S in big-endian mode is stipulated independent

However, the  $\overline{WAIT}$  signal is ignored in the following three cases:

- A write to external address space in dual address mode with 16-byte DMA transfer
- Transfer from an external device with DACK to external address space in single a with 16-byte DMA transfer
- Cache write-back access

Renesas

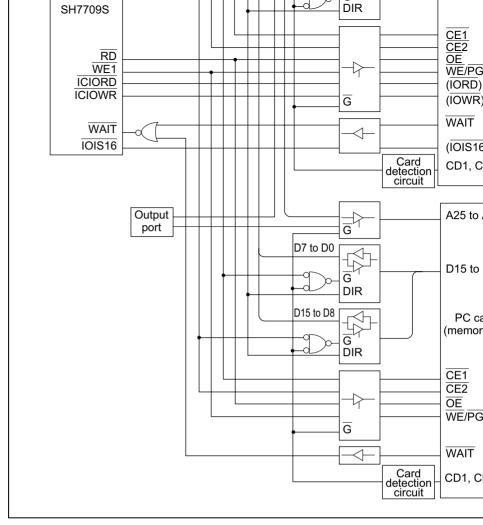
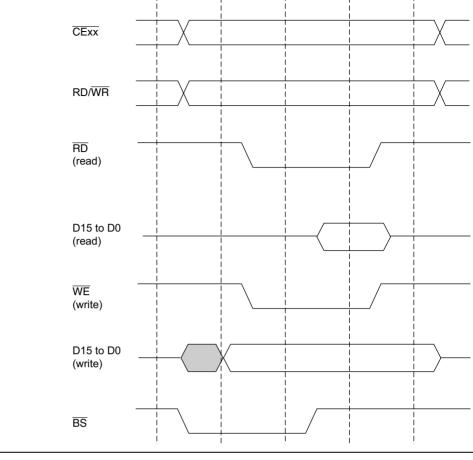




Figure 10.31 Example of PCMCIA Interface

Rev. 5.00, 09/03, page 308 of 760

WAIT pin can be inserted in the same way as for the basic interface. Figure 10.33 sho PCMCIA memory bus wait timing.

RENESAS





Rev. 5.00, 09/03, page 310 of 760

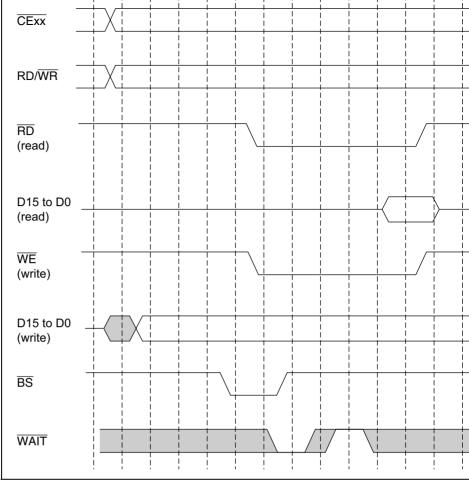



Figure 10.33 Wait Timing for PCMCIA Memory Card Interface

Renesas

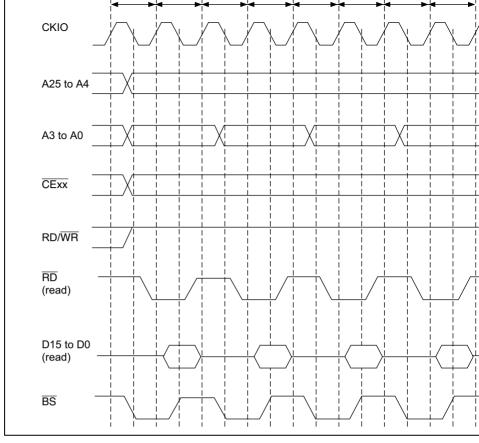
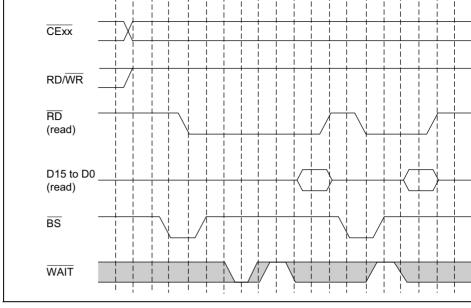




Figure 10.34 Basic Timing for PCMCIA Memory Card Interface Burst Ac

Rev. 5.00, 09/03, page 312 of 760





RENESAS

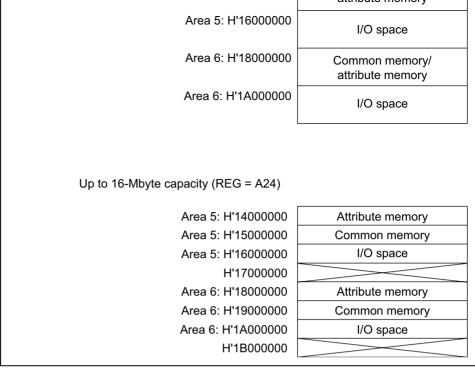



Figure 10.36 PCMCIA Space Allocation

Rev. 5.00, 09/03, page 314 of 760

When accessing a PCMCIA I/O card, the access should be performed using a non-cac in virtual space (P2 or P3 space) or an area specified as non-cacheable by the MMU.

When an I/O card interface access is made to a PCMCIA card in little-endian mode, d sizing of the I/O bus width is possible using the  $\overline{IOIS16}$  pin. When a 16-bit bus width 5 or area 6, if the  $\overline{IOIS16}$  signal is high during a word-size I/O bus cycle, the I/O port recognized as being 8 bits in width. In this case, a data access for only 8 bits is perform I/O bus cycle being executed, followed automatically by a data access for the remaining the remaining

Figure 10.39 shows the basic timing for dynamic bus sizing.

In big-endian mode, the  $\overline{IOIS16}$  signal is not supported, and should be fixed low.

Renesas

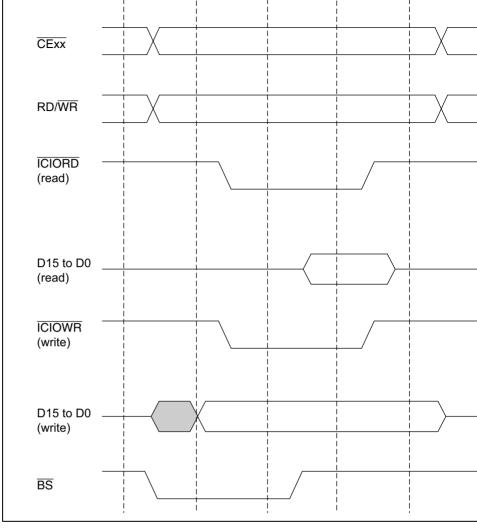



Figure 10.37 Basic Timing for PCMCIA I/O Card Interface

Rev. 5.00, 09/03, page 316 of 760

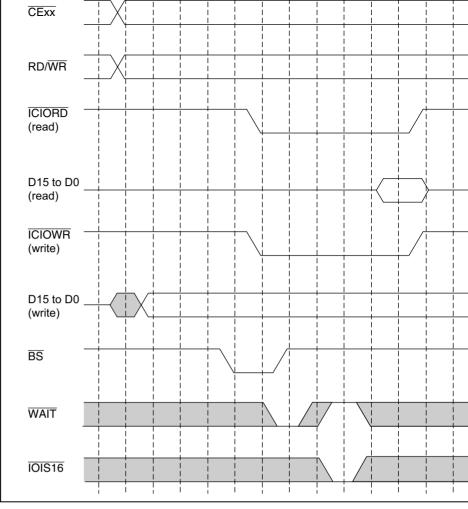



Figure 10.38 Wait Timing for PCMCIA I/O Card Interface

Rev. 5.00, 09/03, pag

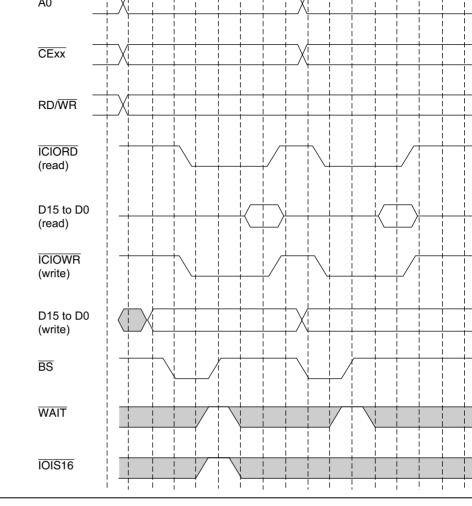



Figure 10.39 Dynamic Bus Sizing Timing for PCMCIA I/O Card Interfa

Rev. 5.00, 09/03, page 318 of 760

different area, and when a read access is followed by a write access from the SH7709S SH7709S performs consecutive write cycles, the data transfer direction is fixed (from SH7709S to other memory) and there is no problem. With read accesses to the same as principle, data is output from the same data buffer, and wait cycle insertion is not perf AnIW1 and AnIW0 (n = 0, 2-6) in WCR1 specify the number of idle cycles to be inset between access cycles when a physical space area access is followed by an access to a or when the SH7709S performs a write access after a read access to physical space area is originally space between accesses, the number of idle cycles inserted is the specified idle cycles minus the number of empty cycles.

Waits are not inserted between accesses when bus arbitration is performed, since emptinement inserted for arbitration purposes.



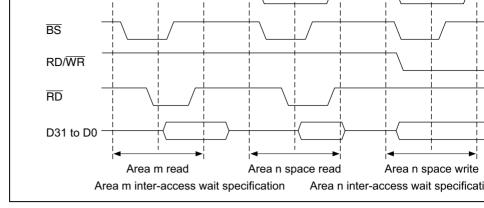



Figure 10.40 Waits between Access Cycles

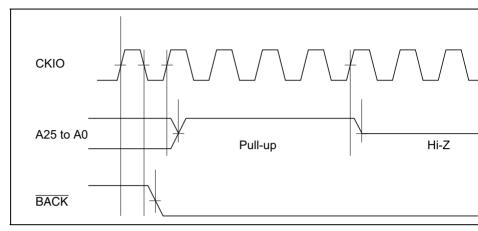
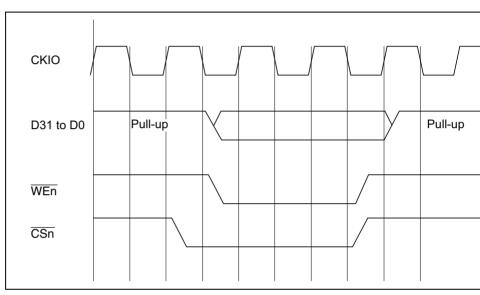
## 10.3.8 Bus Arbitration

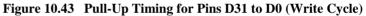
When a bus release request ( $\overline{BREQ}$ ) is asserted from an external device, buses are released the bus cycle being executed is completed and a bus grant signal ( $\overline{BACK}$ ) is output. The released during burst transfers for cache fills or write-back, or TAS instruction execution the read cycle and write cycle. Bus arbitration is not executed in multiple bus cycles the generated when the data bus width is shorter than the access size; i.e. in the bus cycles v longword access is executed for the 8-bit memory. At the negation of  $\overline{BREQ}$ ,  $\overline{BACK}$  is and bus use is restarted. See Appendix A.1, Pin States, for the pin states when the bus is

The SH7709S sometimes needs to retrieve a bus it has released. For example, when me generates a refresh request or an interrupt request internally, the SH7709S must perform appropriate processing. The SH7709S has a bus request signal ( $\overline{IRQOUT}$ ) for this purp it must retrieve the bus, it asserts the  $\overline{IRQOUT}$  signal. Devices asserting an external bus request receive the assertion of the  $\overline{IRQOUT}$  signal and negate the  $\overline{BREQ}$  signal to rele The SH7709S retrieves the bus and carries out the processing.

Rev. 5.00, 09/03, page 320 of 760

PULA bit in BCR1 to 1. The address pins are pulled up for a 4-clock period after BAC asserted. Figure 10.41 shows the address pin pull-up timing. Similarly, data pin pull-up performed by setting the PULD bit in BCR1 to 1. The data pins should be pulled up w bus is not in use. The data pin pull-up timing for a read cycle is shown in figure 10.42 timing for a write cycle in figure 10.43.



Figure 10.41 Pull-Up Timing for Pins A25 to A0

Renesas



Figure 10.42 Pull-Up Timing for Pins D31 to D0 (Read Cycle)





Rev. 5.00, 09/03, page 322 of 760

MCS[0]-MCS[7], the corresponding bits in the PCCR register should be set to "other

When CS2/0 = 0 in the MCSCR0 and when the PTC0 pin is switched to  $\overline{MCS[0]}$  (when PCOMD1–PCOMD0 are set to "other function"), the  $\overline{CS0}$  pin is also switched to  $\overline{MC}$ 

As port register writes operate on the peripheral clock, they take time compared with i execution by the CPU operating on the high-speed internal clock. Therefore, if an ins accesses  $\overline{MCS[1]}$  to  $\overline{MCS[7]}$  is located several instructions after an instruction that sw to  $\overline{MCS}$ , the switch from PTC[n] to  $\overline{MCSn}$  and from  $\overline{CS0}$  to  $\overline{MCS[0]}$  may not be performed by the several several instruction.

To prevent this problem, the following switching procedure should be used.

- When the program runs with cache on
- (1) To switch port C to  $\overline{\text{MCS}}$ , set the corresponding bits in the PCCR register to 00 ("o function").
- (2) Read the PCCR register and check whether the set value is read. Repeat until the sread.
- (3) Perform a dummy read from non-cacheable CS0 space (e.g. address H'A0000000) result in an access to the CS0 space, and immediately afterward, CS0 will be switc MCS[0], and port C[n] will be switched to MCS[n].
- (4) Access can now be made to the  $\overline{\text{MCS}[1]}$  to  $\overline{\text{MCS}[7]}$  spaces.
- When the program runs in MCS[0] space with cache off
- (1) Set the PCCR register as in (1) above.
- (2) Place at least three NOP instructions after the instruction in (1). As a result, when register is rewritten, an access to the CS0 space will be generated, and immediately CS0 will be switched to MCS[0], and port C[n] will be switched to MCS[n].
- (3) Access can now be made to the  $\overline{MCS[1]}$  to  $\overline{MCS[7]}$  spaces.

Rev. 5.00, 09/03, pag

Renesas

|   |   | 1 | 1 |   | _ | L | Н | H'3000000 to H'3FFFFF  | -   |
|---|---|---|---|---|---|---|---|------------------------|-----|
| 0 | 1 | 0 | 0 | 0 | _ | L | Н | H'0000000 to H'07FFFFF | 64- |
|   |   | 0 | 0 | 1 | _ | L | Н | H'0800000 to H'0FFFFF  | _   |
|   |   | 0 | 1 | 0 | _ | L | Н | H'1000000 to H'17FFFFF | _   |
|   |   | 0 | 1 | 1 | _ | L | Н | H'1800000 to H'1FFFFFF | _   |
|   |   | 1 | 0 | 0 | _ | L | Н | H'2000000 to H'27FFFFF | _   |
|   |   | 1 | 0 | 1 | _ | L | Н | H'2800000 to H'2FFFFFF | _   |
|   |   | 1 | 1 | 0 | _ | L | Н | H'3000000 to H'37FFFFF | _   |
|   |   | 1 | 1 | 1 | _ | L | Н | H'3800000 to H'3FFFFFF | _   |
| 0 | 0 | 0 | 0 | 0 | 0 | L | Н | H'0000000 to H'03FFFFF | 32- |
|   |   | 0 | 0 | 0 | 1 | L | Н | H'0400000 to H'07FFFFF | _   |
|   |   | 0 | 0 | 1 | 0 | L | Н | H'0800000 to H'0BFFFFF | _   |
|   |   | 0 | 0 | 1 | 1 | L | Н | H'0C00000 to H'0FFFFF  | _   |
|   |   | 0 | 1 | 0 | 0 | L | Н | H'1000000 to H'13FFFFF | _   |
|   |   | 0 | 1 | 0 | 1 | L | Н | H'1400000 to H'17FFFFF | _   |
|   |   | 0 | 1 | 1 | 0 | L | Н | H'1800000 to H'1BFFFFF | _   |
|   |   | 0 | 1 | 1 | 1 | L | Н | H'1C00000 to H'1FFFFF  | _   |
|   |   | 1 | 0 | 0 | 0 | L | Н | H'2000000 to H'23FFFFF | _   |
|   |   | 1 | 0 | 0 | 1 | L | Н | H'2400000 to H'27FFFFF | _   |
|   |   | 1 | 0 | 1 | 0 | L | Н | H'2800000 to H'2BFFFFF | _   |
|   |   | 1 | 0 | 1 | 1 | L | Н | H'2C00000 to H'2FFFFFF | _   |
|   |   | 1 | 1 | 0 | 0 | L | Н | H'3000000 to H'33FFFFF | _   |
|   |   | 1 | 1 | 0 | 1 | L | Н | H'3400000 to H'37FFFFF | _   |
|   |   | 1 | 1 | 1 | 0 | L | Н | H'3800000 to H'3BFFFFF | _   |
|   |   | 1 | 1 | 1 | 1 | L | Н | H'3C00000 to H'3FFFFF  | _   |
|   |   |   |   |   |   |   |   |                        |     |

Rev. 5.00, 09/03, page 324 of 760

| 0 | 1 | 0 | 0 | 0 | _ | Н | L | H'0000000 to H'07FFFF 6  |
|---|---|---|---|---|---|---|---|--------------------------|
|   |   | 0 | 0 | 1 | — | Н | L | H'0800000 to H'0FFFFF    |
|   |   | 0 | 1 | 0 | — | Н | L | H'1000000 to H'17FFFFF   |
|   |   | 0 | 1 | 1 | _ | Н | L | H'1800000 to H'1FFFFFF   |
|   |   | 1 | 0 | 0 | _ | Н | L | H'2000000 to H'27FFFFF   |
|   |   | 1 | 0 | 1 | _ | Н | L | H'2800000 to H'2FFFFFF   |
|   |   | 1 | 1 | 0 | _ | Н | L | H'3000000 to H'37FFFFF   |
|   |   | 1 | 1 | 1 | _ | Н | L | H'3800000 to H'3FFFFFF   |
| 0 | 0 | 0 | 0 | 0 | 0 | Н | L | H'0000000 to H'03FFFFF 3 |
|   |   | 0 | 0 | 0 | 1 | Н | L | H'0400000 to H'07FFFFF   |
|   |   | 0 | 0 | 1 | 0 | Н | L | H'0800000 to H'0BFFFFF   |
|   |   | 0 | 0 | 1 | 1 | Н | L | H'0C00000 to H'0FFFFF    |
|   |   | 0 | 1 | 0 | 0 | Н | L | H'1000000 to H'13FFFFF   |
|   |   | 0 | 1 | 0 | 1 | Н | L | H'1400000 to H'17FFFFF   |
|   |   | 0 | 1 | 1 | 0 | Н | L | H'1800000 to H'1BFFFFF   |
|   |   | 0 | 1 | 1 | 1 | Н | L | H'1C00000 to H'1FFFFFF   |
|   |   | 1 | 0 | 0 | 0 | Н | L | H'2000000 to H'23FFFFF   |
|   |   | 1 | 0 | 0 | 1 | Н | L | H'2400000 to H'27FFFFF   |
|   |   | 1 | 0 | 1 | 0 | Н | L | H'2800000 to H'2BFFFFF   |
|   |   | 1 | 0 | 1 | 1 | Н | L | H'2C00000 to H'2FFFFFF   |
|   |   | 1 | 1 | 0 | 0 | Н | L | H'3000000 to H'33FFFFF   |
|   |   | 1 | 1 | 0 | 1 | Н | L | H'3400000 to H'37FFFFF   |
|   |   | 1 | 1 | 1 | 0 | Н | L | H'3800000 to H'3BFFFFF   |
|   |   | 1 | 1 | 1 | 1 | Н | L | H'3C00000 to H'3FFFFF    |

Rev. 5.00, 09/03, pag

Renesas

Rev. 5.00, 09/03, page 326 of 760

the DMAC reduces the burden on the CPU and increases overall operating efficiency.

## 11.1.1 Features

The DMAC has the following features.

- Four channels
- 4-GB address space in the architecture
- 16-byte transfer (In 16-byte transfer, four 32-bit reads are executed, followed by for writes.)
- Choice of 8-bit, 16-bit, 32-bit, or 16-byte transfer data length
- 16 Mbytes (16,777,216 transfers)
- Address mode: Dual address mode and single address mode are supported. In add address transfer mode or indirect address transfer mode can be selected.
  - Dual address mode transfer: Both the transfer source and transfer destination as by address. Dual address mode has direct address transfer mode and indirect ad transfer mode.

Direct address transfer mode: The values specified in the DMAC registers ind transfer source and transfer destination. Two bus cycles are required for one d Indirect address transfer mode: Data is transferred with the address stored prio address specified in the transfer source address in the DMAC. Other operation same as those of direct address transfer mode. This function is only available if Four bus cycles are required for one data transfer.

- Single address mode transfer: Either the transfer source or transfer destination device is accessed (selected) by means of the DACK signal, and the other deviaccessed by address. One transfer unit of data is transferred in one bus cycle.
- Channel functions: The transfer mode that can be specified depends on the channe
  - Channel 0: External request can be accepted.
  - Channel 1: External request can be accepted.
  - Channel 2: This channel has a source address reload function, which reloads a address every four transfers.

Rev. 5.00, 09/03, pag

## Renesas

- request can be accepted in all the channels.)
- Auto request (The transfer request is generated automatically within the DMAC
- Selectable bus modes: Cycle-steal mode or burst mode
- Selectable channel priority levels:

Fixed mode: The channel priority is fixed.

Round-robin mode: The priority of the channel in which the execution request was made the lowest.

• Interrupt request: An interrupt request to the CPU can be generated after the specific of transfers.

Rev. 5.00, 09/03, page 328 of 760



Figure 11.1 Block Diagram of DMAC

Rev. 5.00, 09/03, pag

|   | DMA transfer request acceptance | DACK0 | 0 | Strobe output to an externa<br>DMA transfer request from<br>device to channel 0 |
|---|---------------------------------|-------|---|---------------------------------------------------------------------------------|
|   | DMA request<br>acknowledge      | DRAK0 | 0 | Output showing that DREQ accepted                                               |
| 1 | DMA transfer request            | DREQ1 | I | DMA transfer request input<br>external device to channel                        |
|   | DMA transfer request acceptance | DACK1 | 0 | Strobe output to an externa<br>DMA transfer request from<br>device to channel 1 |
|   | DMA request<br>acknowledge      | DRAK1 | 0 | Output showing that DREQ accepted                                               |
|   |                                 |       |   |                                                                                 |

Rev. 5.00, 09/03, page 330 of 760

|   | register 0                            |         |       |            | (H'A4000020) <sup>*4</sup>               | -  |
|---|---------------------------------------|---------|-------|------------|------------------------------------------|----|
|   | DMA destination<br>address register 0 | DAR0    | R/W   | Undefined  | H'04000024<br>(H'A4000024) <sup>*4</sup> | 32 |
|   | DMA transfer count register 0         | DMATCR0 | R/W   | Undefined  | H'04000028<br>(H'A4000028) <sup>*4</sup> | 24 |
|   | DMA channel control register 0        | CHCR0   | R/W*1 | H'00000000 | H'0400002C<br>(H'A400002C) <sup>*4</sup> | 32 |
| 1 | DMA source address register 1         | SAR1    | R/W   | Undefined  | H'04000030<br>(H'A4000030) <sup>*4</sup> | 32 |
|   | DMA destination<br>address register 1 | DAR1    | R/W   | Undefined  | H'04000034<br>(H'A4000034) <sup>*4</sup> | 32 |
|   | DMA transfer count register 1         | DMATCR1 | R/W   | Undefined  | H'04000038<br>(H'A4000038) <sup>*4</sup> | 24 |
|   | DMA channel control register 1        | CHCR1   | R/W*1 | H'00000000 | H'0400003C<br>(H'A400003C) <sup>*4</sup> | 32 |
| 2 | DMA source address register 2         | SAR2    | R/W   | Undefined  | H'04000040<br>(H'A4000040) <sup>*4</sup> | 32 |
|   | DMA destination<br>address register 2 | DAR2    | R/W   | Undefined  | H'04000044<br>(H'A4000044) <sup>*4</sup> | 32 |
|   | DMA transfer count register 2         | DMATCR2 | R/W   | Undefined  | H'04000048<br>(H'A4000048) <sup>*4</sup> | 24 |
|   | DMA channel control register 2        | CHCR2   | R/W*1 | H'00000000 | H'0400004C<br>(H'A400004C) <sup>*4</sup> | 32 |

Renesas

|        | register 3               |              |                          | (H'A400005C) <sup>*4</sup>             |          |
|--------|--------------------------|--------------|--------------------------|----------------------------------------|----------|
| Shared | DMA operation register   | DMAOR        | R/W <sup>*1</sup> H'0000 | H'0400060<br>(H'A400060) <sup>*4</sup> | 16       |
| Notoo  | These registers are less | stad in area | 1 of physical apage      | Thoroforo who                          | a tha aa |

Notes: These registers are located in area 1 of physical space. Therefore, when the ca either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. Only 0 can be written to bit 1 of CHCR0 to CHCR3, and bits 1 and 2 of DMA the flag after 1 is read.
- If 16-bit access is used on SAR0 to SAR3, DAR0 to DAR3, and CHCR0 to C value in the 16 bits that were not accessed is retained.
- 3. DMATCR comprises the 24 bits from bit 0 to bit 23. The upper 8 bits, bits 24 cannot be written with 1 and are always read as 0.
- 4. When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 332 of 760

transferring data in 16-byte units, a 16-byte boundary (address 16n) must be set for the address value. Operation is not guaranteed if other addresses are specified.

Bit: 31 30 29 28 27 26 25 Initial value: \_ \_ \_\_\_\_ \_\_\_\_ \_\_\_\_ R/W: R/W R/W R/W R/W R/W R/W R/W Bit: 23 22 21 20 . . . ... Initial value: \_\_\_\_ — . . . R/W: R/W R/W R/W R/W . . .

An undefined value will be returned in a reset. The previous value is retained in stand

Renesas

An undefined value will be returned in a reset. The previous value is retained in standby

| Bit:           | 31  | 30  | 29  | 28  | 27  | 26  | 25  |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | _   | —   |     | —   | —   | _   | —   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  | 20  |     |     |     |
|                |     |     |     |     |     |     |     |
| Initial value: |     |     |     |     | 1   |     |     |
| R/W:           | R/W | R/W | R/W | R/W |     |     |     |

Rev. 5.00, 09/03, page 334 of 760

Writing to upper eight bits in DMATCR is invalid; 0s are read if these bits are read. T value should always be 0.

Bit: 31 30 29 27 25 28 26 Initial value: \_ \_\_\_\_ \_\_\_\_ \_ \_ \_\_\_\_ \_\_\_\_ R/W: R R R R R R R Bit: 23 22 21 20 ... ... Initial value: \_ \_ \_ \_ ... R/W: R/W R/W R/W R/W ...

An undefined value will be returned in a reset. The previous value is retained in stand

Renesas

CHCR1; they are not used in CHCR2 and CHCR3. Consequently, writing to these bits in CHCR2 and CHCR3; 0s are read if these bits are read.

| Bit:           | 31  |         | 21  | 20      | 19      | 18      | 17     |
|----------------|-----|---------|-----|---------|---------|---------|--------|
|                |     | [       | _   | DI      | RO      | RL      | AM     |
| Initial value: | 0   | ••••    | 0   | 0       | 0       | 0       | 0      |
| R/W:           | R   |         | R   | (R/W)*2 | (R/W)*2 | (R/W)*2 | (R/W)* |
|                |     |         |     |         |         |         |        |
| 5.             |     |         | 4.0 | 4.0     |         | 4.0     |        |
| Bit:           | 15  | 14      | 13  | 12      | 11      | 10      | 9      |
|                | DM1 | DM0     | SM1 | SM0     | RS3     | RS2     | RS1    |
| Initial value: | 0   | 0       | 0   | 0       | 0       | 0       | 0      |
| R/W:           | R/W | R/W     | R/W | R/W     | R/W     | R/W     | R/W    |
|                |     |         |     |         |         |         |        |
| Bit:           | 7   | 6       | 5   | 4       | 3       | 2       | 1      |
|                | —   | DS      | ТМ  | TS1     | TS0     | IE      | TE     |
| Initial value: | 0   | 0       | 0   | 0       | 0       | 0       | 0      |
| R/W:           | R   | (R/W)*2 | R/W | R/W     | R/W     | R/W     | R/(W)* |
|                |     |         |     |         |         |         |        |

These register values are initialized to 0 in a reset. The previous value is retained in sta

Notes: 1. Only 0 can be written to the TE bit after 1 is read.

2. The DI, RO, RL, AM, AL, and DS bits are not included in some channels.

Rev. 5.00, 09/03, page 336 of 760

|   | -                                             |
|---|-----------------------------------------------|
| 0 | Direct address mode operation for channel 3 ( |
| 1 | Indirect address mode operation for channel 3 |

**Bit 19—Source Address Reload Bit (RO):** Selects whether the source address initial reloaded in channel 2.

This bit is only valid in CHCR2. Writing to this bit is invalid in CHCR0, CHCR1, and is read if this bit is read. The write value should always be 0. When using 16-byte transmust be cleared to 0, specifying non-reloading. Operation is not guaranteed if reloading specified.

| Bit 19: RO | Description                    |   |
|------------|--------------------------------|---|
| 0          | Source address is not reloaded | ( |
| 1          | Source address is reloaded     |   |

**Bit 18—Request Check Level Bit (RL):** Specifies whether DRAK (DREQ acknowled output is active-high or active-low.

This bit is only valid in CHCR0 and CHCR1. Writing to this bit is invalid in CHCR2 CHCR3; 0 is read if this bit is read. The write value should always be 0.

| Bit 18: RL | Description             |    |
|------------|-------------------------|----|
| 0          | Active-low DRAK output  | (I |
| 1          | Active-high DRAK output |    |

Renesas

| 0 | Brior output in read by de | (" |
|---|----------------------------|----|
| 1 | DACK output in write cycle |    |

**Bit 16—Acknowledge Level (AL):** Specifies whether DACK (acknowledge) signal ou active-high or active-low.

This bit is only valid in CHCR0 and CHCR1. Writing to this bit is invalid in CHCR2 a CHCR3; 0 is read if this bit is read. The write value should always be 0.

| Bit 16: AL | Description             |     |
|------------|-------------------------|-----|
| 0          | Active-low DACK output  | (Ir |
| 1          | Active-high DACK output |     |

Bits 15 and 14—Destination Address Mode Bits 1 and 0 (DM1, DM0): Select wheth DMA destination address is incremented, decremented, or left fixed.

| Bit 15: DM1 | Bit 14: DM0 | Description                                                                                                                     |
|-------------|-------------|---------------------------------------------------------------------------------------------------------------------------------|
| 0           | 0           | Fixed destination address (Ir                                                                                                   |
| 0           | 1           | Destination address is incremented (+1 in 8-bit tran<br>16-bit transfer, +4 in 32-bit transfer, +16 in 16-byte                  |
| 1           | 0           | Destination address is decremented (-1 in 8-bit tran<br>16-bit transfer, -4 in 32-bit transfer; illegal setting in<br>transfer) |
| 1           | 1           | Setting prohibited                                                                                                              |

Rev. 5.00, 09/03, page 338 of 760

|   |   | transfer)          |
|---|---|--------------------|
| 1 | 1 | Setting prohibited |

If the transfer source is specified by indirect address, specify the address holding the v address in which the data to be transferred is stored (i.e. the indirect address) in source register 3 (SAR3).

Specification of SAR3 incrementing or decrementing in indirect address mode depend SM1 and SM0 settings. In this case, however, the SAR3 increment or decrement value or fixed at 0, regardless of the transfer data size specified in TS1 and TS0.



| 0 | 0 | 1 | 1 | External request / Single address mode                   |
|---|---|---|---|----------------------------------------------------------|
|   |   |   |   | External device with DACK $\rightarrow$ external address |
| 0 | 1 | 0 | 0 | Auto request                                             |
| 0 | 1 | 0 | 1 | Setting prohibited                                       |
| 0 | 1 | 1 | 0 | Setting prohibited                                       |
| 0 | 1 | 1 | 1 | Setting prohibited                                       |
| 1 | 0 | 0 | 0 | Setting prohibited                                       |
| 1 | 0 | 0 | 1 | Setting prohibited                                       |
| 1 | 0 | 1 | 0 | IrDA transmission                                        |
| 1 | 0 | 1 | 1 | IrDA reception                                           |
| 1 | 1 | 0 | 0 | SCIF transmission                                        |
| 1 | 1 | 0 | 1 | SCIF reception                                           |
| 1 | 1 | 1 | 0 | A/D converter                                            |
| 1 | 1 | 1 | 1 | СМТ                                                      |
|   |   |   |   |                                                          |

Notes: When using 16-byte transfer, the following settings must not be made:

1010 IrDA transmission

1011 IrDA reception

- 1100 SCIF transmission
- 1101 SCIF reception
- 1110 A/D converter
- 1111 CMT

Operation is not guaranteed if these settings are made.

\* External request specification is valid only in channels 0 and 1. None of the re sources can be selected in channels 2 and 3.

Rev. 5.00, 09/03, page 340 of 760

| Bit 6: DS | Description                   |
|-----------|-------------------------------|
| 0         | DREQ detected by low level (  |
| 1         | DREQ detected at falling edge |

Bit 5—Transmit Mode (TM): Specifies the bus mode when transferring data.

| Bit 5: TM | Description        |
|-----------|--------------------|
| 0         | Cycle-steal mode ( |
| 1         | Burst mode         |

Bits 4 and 3—Transmit Size Bits 1 and 0 (TS1, TS0): Specify the size of data to be

| Bit 4: TS1 | Bit 3: TS0 | Description                         |
|------------|------------|-------------------------------------|
| 0          | 0          | Byte size (8 bits) (                |
| 0          | 1          | Word size (16 bits)                 |
| 1          | 0          | Longword size (32 bits)             |
| 1          | 1          | 16-byte unit (4 longword transfers) |

**Bit 2—Interrupt Enable Bit (IE):** If this bit is set to 1, an interrupt is requested on contact the number of data transfers specified in DMATCR (i.e. when TE = 1).

| Bit 2: IE | Description                                                                        |
|-----------|------------------------------------------------------------------------------------|
| 0         | Interrupt request is not generated on completion of data tra specified in DMATCR ( |
| 1         | Interrupt request is generated on completion of data transfe<br>in DMATCR          |

RENESAS

| Clearing conditions: Writing 0 to TE after reading TE = |
|---------------------------------------------------------|
| Power-on reset, manual reset                            |
| Data transfers specified in DMATCR completed            |

Bit 0—DMAC Enable Bit (DE): Enables operation of the corresponding channel.

| Bit 0: DE | Description                |     |
|-----------|----------------------------|-----|
| 0         | Channel operation disabled | (Ir |
| 1         | Channel operation enabled  |     |

If an auto-request is specified (RS3 to RS0), transfer starts when this bit is set to 1. In a request or an internal module request, transfer starts when a transfer request is generate bit is set to 1. Clearing this bit during transfer terminates the transfer.

Even if the DE bit is set, transfer is not enabled if the TE bit is 1, the DME bit in DMA the NMIF or AE bit in DMAOR is 1.

Rev. 5.00, 09/03, page 342 of 760

1

| Initial value: | 0 | 0 | 0 | 0 | 0 | 0      | 0    |
|----------------|---|---|---|---|---|--------|------|
| R/W:           | R | R | R | R | R | R      | R/W  |
|                |   |   |   |   |   |        |      |
| Bit:           | 7 | 6 | 5 | 4 | 3 | 2      | 1    |
|                |   | — | _ | — |   | AE     | NMI  |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0      | 0    |
| R/W:           | R | R | R | R | R | R/(W)* | R/(W |
|                |   |   |   |   |   |        |      |

Note: \* Only 0 can be written to the AE and NMIF bits after 1 is read.

Bits 15 to 10-Reserved: These bits are always read as 0. The write value should alw

Bits 9 and 8—Priority Mode Bits 1 and 0 (PR1, PR0): Select the priority level betw channels when there are simultaneous transfer requests for multiple channels.

| Bit 9: PR1 | Bit 8: PR0 | Description             |
|------------|------------|-------------------------|
| 0          | 0          | CH0 > CH1 > CH2 > CH3 ( |
| 0          | 1          | CH0 > CH2 > CH3 > CH1   |
| 1          | 0          | CH2 > CH0 > CH1 > CH3   |
| 1          | 1          | Round-robin             |

Bits 7 to 3-Reserved: These bits are always read as 0. The write value should alway

RENESAS

**Bit 1—NMI Flag Bit (NMIF):** Indicates that an NMI is input. This bit is set regardless whether the DMAC is in the operating or halted state. The CPU cannot write 1 to this I can be written to clear this bit after 1 is read.

| Bit 1: NMIF | Description                                                 |
|-------------|-------------------------------------------------------------|
| 0           | No NMI input; DMA transfer is enabled (Ir                   |
|             | Clearing conditions: Writing 0 to NMIF after reading NMIF = |
|             | Power-on reset, manual reset                                |
| 1           | NMI input; DMA transfer is disabled                         |
|             | This bit is set by occurrence of an NMI interrupt           |

**Bit 0—DMA Master Enable Bit (DME):** Enables or disables the DMAC on all chann DME bit and the DE bit corresponding to each channel in CHCR are set to 1, transfer is on the corresponding channel. If this bit is cleared during transfer, transfer on all the ch be terminated.

Even if the DME bit is set, transfer is not enabled if the TE bit is 1 or the DE bit is 0 in the NMIF or AE bit is 1 in DMAOR.

| Bit 0: DME | Description                           |     |
|------------|---------------------------------------|-----|
| 0          | DMA transfer disabled on all channels | (Ir |
| 1          | DMA transfer enabled on all channels  |     |

Rev. 5.00, 09/03, page 344 of 760

After the DMA source address register (SAR), DMA destination address register (DA transfer count register (DMATCR), DMA channel control register (CHCR), and DMA register (DMAOR) are set, the DMAC transfers data according to the following proce

- 1. Checks to see if transfer is enabled (DE = 1, DME = 1, TE = 0, AE = 0, NMIF = 0
- 2. When a transfer request comes and transfer is enabled, the DMAC transfers 1 trans data (according to the TS0 and TS1 settings). For an auto-request, the transfer beg automatically when the DE bit and DME bit are set to 1. The DMATCR value will decremented for each transfer. The actual transfer flows vary by address mode and
- 3. When the specified number of transfers have been completed (when DMATCR reat transfer ends normally. If the IE bit in CHCR is set to 1 at this time, a DEI interrup the CPU.
- 4. When an address error occurs by the DMAC or an NMI interrupt is generated, the aborted.

Figure 11.2 is a flowchart of this procedure.

Renesas

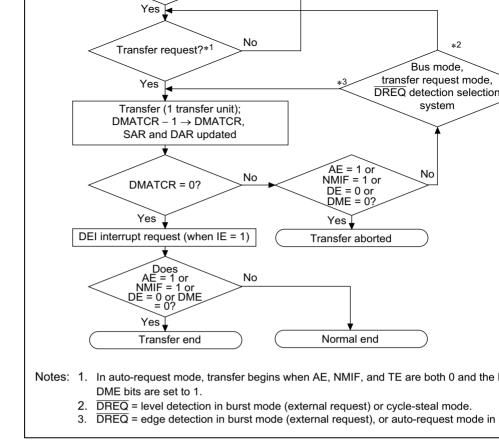



Figure 11.2 DMAC Transfer Flowchart

Rev. 5.00, 09/03, page 346 of 760

memory-to-memory transfer or a transfer between memory and an on-chip peripheral unable to request a transfer, the auto-request mode allows the DMAC to automatically transfer request signal internally. When the DE bit of CHCR0–CHCR3 and the DME DMAOR are set to 1, the transfer begins so long as the TE bit of CHCR0–CHCR3 and and AE bits of DMAOR are 0.

**External Request Mode:** In this mode a transfer is performed in response to the requered ( $\overline{DREQ}$ ) of an external device. Choose one of the modes shown in table 11.3 accordin application system. When this mode is selected, if DMA transfer is enabled (DE = 1, ITE = 0, AE = 0, NMIF = 0), a transfer is performed upon a request at the  $\overline{DREQ}$  input  $\overline{DREQ}$  detection by either a falling edge or low level of the signal input with the DS b and CHCR1 (DS = 0 for level detection, DS = 1 for edge detection). The source of the request does not have to be the data transfer source or destination.

| RS3 | RS2 | RS1 | RS0 | Address Mode              | Source                                               | Destir           |
|-----|-----|-----|-----|---------------------------|------------------------------------------------------|------------------|
| 0   | 0   | 0   | 0   | Dual address<br>mode      | Any*                                                 | Any*             |
|     |     | 1   | 0   | Single address mode       | External memory,<br>memory-mapped<br>external device | Extern<br>with D |
|     |     | 1   | _   | External device with DACK | Extern<br>memo<br>extern                             |                  |

Table 11.3 Selecting External Request Modes with RS Bits

Note: \* External memory, memory-mapped external device, on-chip memory, on-chip module (This applies only to IrDA, SCIF, A/D converter, D/A converter, and I/C

**On-Chip Module Request Mode:** In this mode a transfer is performed in response to request signal (interrupt request signal) of an on-chip module. This mode cannot be se 16-byte transfer. These are six transfer request signals: the receive-data-full interrupts the transmit-data-empty interrupts (TXI) from two serial communication interfaces (In the A/D conversion end interrupt (ADI) of the A/D converter, and the compare match interrupt (CMI) of the CMT (table 11.4). When this mode is selected, if DMA transfer (DE = 1, DME = 1, TE = 0, AE = 0, NMIF = 0), a transfer is performed upon input of Rev. 5.00, 09/03, page

| RS3 | RS2 | RS1 | RS0 | Request<br>Source   | DMA Transfer Request Signal                                | Source | Desti-<br>nation |
|-----|-----|-----|-----|---------------------|------------------------------------------------------------|--------|------------------|
| 1   | 0   | 1   | 0   | IrDA<br>transmitter | TXI1 (IrDA transmit-data-empty interrupt transfer request) | Any*   | TDR1             |
| 1   | 0   | 1   | 1   | IrDA<br>receiver    | RXI1 (IrDA receive-data-full interrupt transfer request)   | RDR1   | Any*             |
| 1   | 1   | 0   | 0   | SCIF<br>transmitter | TXI2 (SCIF transmit-data-empty interrupt transfer request) | Any*   | TDR2             |
| 1   | 1   | 0   | 1   | SCIF<br>receiver    | RXI2 (SCIF receive-data-full interrupt transfer request)   | RDR1   | Any*             |
| 1   | 1   | 1   | 0   | A/D<br>converter    | ADI (A/D conversion end interrupt)                         | ADDR   | Any*             |
| 1   | 1   | 1   | 1   | CMT                 | CMI (Compare match timer interrupt)                        | Any*   | Any*             |

ADDR: A/D data register of A/D converter

Note: \* External memory, memory-mapped external device, on-chip peripheral module applies only to IrDA, SCIF, A/D converter, D/A converter, and I/O ports.)

When outputting transfer requests from on-chip peripheral modules, the appropriate int enable bits must be set to output the interrupt signals.

If the interrupt request signal of the on-chip peripheral module is used as a DMA transf signal, an interrupt is not sent to the CPU.

The DMA transfer request signals in table 11.4 are automatically discontinued when the corresponding DMA transfer is performed. If cycle-steal mode is being employed, they withdrawn at the first transfer; if burst mode is being used, they are discontinued at the transfer.

Rev. 5.00, 09/03, page 348 of 760

Renesas

CH0 > CH2 > CH3 > CH1CH0 > CH2 > CH3 > CH1CH2 > CH0 > CH1 > CH3

These are selected by the PR1 and PR0 bits in DMAOR.

**Round-Robin Mode:** Each time one word, byte, or longword is transferred on one ch priority order is rotated. The channel on which the transfer was just finished rotates to of the priority order. The round-robin mode operation is shown in figure 11.3. The pr round-robin mode is CH0 > CH1 > CH2 > CH3 immediately after reset.

Renesas

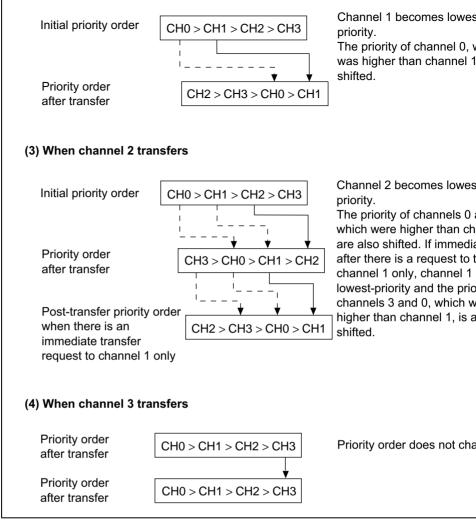



Figure 11.3 Round-Robin Mode

Rev. 5.00, 09/03, page 350 of 760

- 4. When the channel 0 transfer ends, channel 0 becomes lowest-priority.
- 5. At this point, channel 1 has a higher priority than channel 3, so the channel 1 trans (channel 3 waits for transfer).
- 6. When the channel 1 transfer ends, channel 1 becomes lowest-priority.
- 7. The channel 3 transfer begins.
- 8. When the channel 3 transfer ends, channels 3 and 2 shift downward in priority so t 3 becomes the lowest-priority.

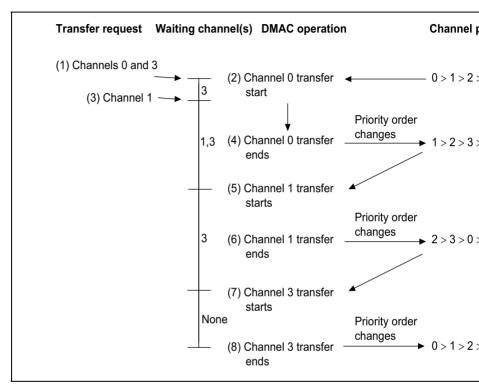



Figure 11.4 Changes in Channel Priority in Round-Robin Mode

Rev. 5.00, 09/03, pag

|                                  | Destination               |                    |                                      |                      |  |
|----------------------------------|---------------------------|--------------------|--------------------------------------|----------------------|--|
| Source                           | External Device with DACK | External<br>Memory | Memory-<br>Mapped External<br>Device | On-C<br>Perij<br>Mod |  |
| External device with<br>DACK     | Not available             | Dual, single       | Dual, single                         | Not a                |  |
| External memory                  | Dual, single              | Dual               | Dual                                 | Dual                 |  |
| Memory-mapped<br>external device | Dual, single              | Dual               | Dual                                 | Dual                 |  |
| On-chip peripheral module        | Not available             | Dual               | Dual                                 | Dual                 |  |
| Notes: 1. Dual: Dua              | address mode              |                    |                                      |                      |  |

2. Single: Single address mode

3. Dual address mode includes direct address mode and indirect address mode

4. 16-byte transfer is not available for on-chip peripheral modules.

#### **Address Modes:**

Dual Address Mode

In dual address mode, both the transfer source and destination are accessed (selectal address. The source and destination can be located externally or internally. Dual address (1) a direct address transfer mode and (2) an indirect address transfer mode.

Rev. 5.00, 09/03, page 352 of 760

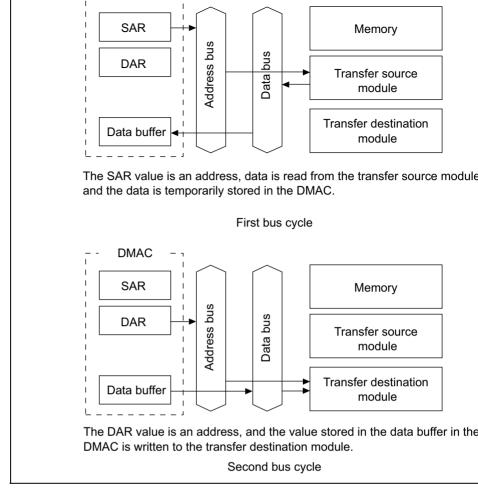
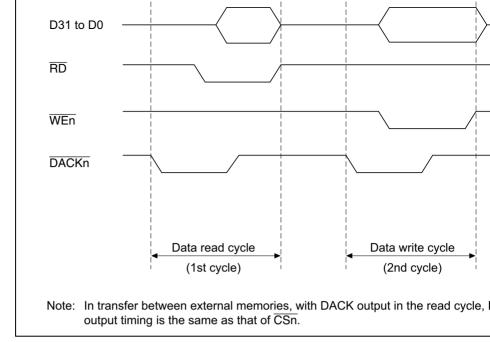




Figure 11.5 Operation of Direct Address Mode in Dual Address Mod

RENESAS



### Figure 11.6 Example of DMA Transfer Timing in the Direct Address Mode in D (Transfer Source: Ordinary Memory, Transfer Destination: Ordinary Mem

(2) In indirect address transfer mode, the address of memory in which data to be trastored is specified in the transfer source address register (SAR3) in the DMAC. Consequently, in this mode, the address value specified in the transfer source aregister in the DMAC is read first. This value is temporarily stored in the DMAC the read value is output as an address, and the value stored in that address is stored DMAC again. Then, the value read afterwards is written to the address specified transfer destination address; this completes one DMA transfer. 16-byte transfer possible.

Rev. 5.00, 09/03, page 354 of 760

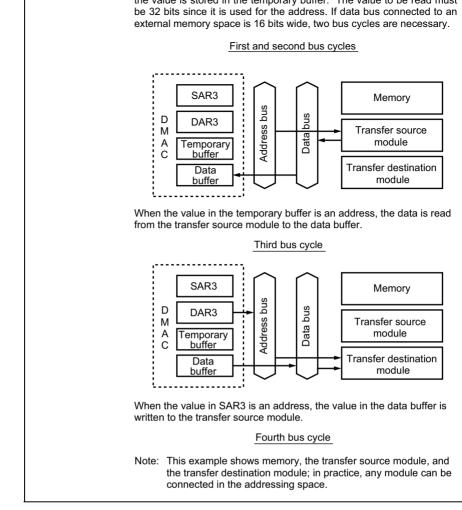
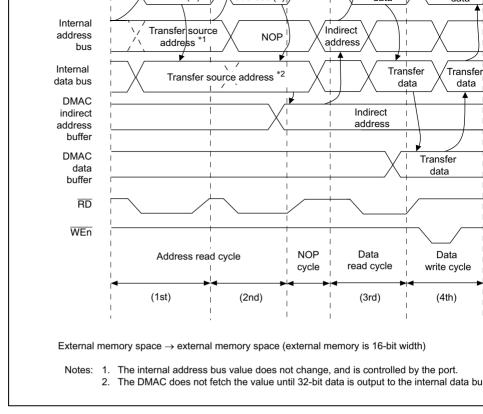




Figure 11.7 Indirect Address Operation in Dual Address Mode (When External Memory Space has a 16-Bit Width)

Rev. 5.00, 09/03, pag



## Figure 11.8 Example of Transfer Timing in the Indirect Address Mode in Dual Address Mode

Rev. 5.00, 09/03, page 356 of 760

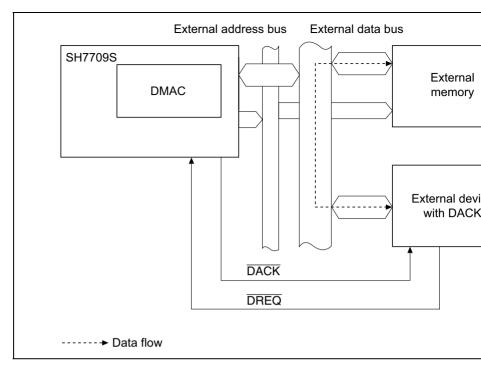
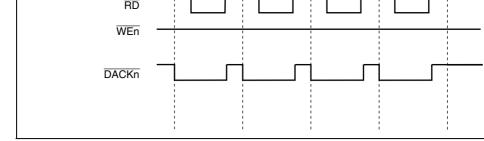



Figure 11.9 Data Flow in Single Address Mode

Two kinds of transfer are possible in single address mode: (1) transfer between an device with DACK and a memory-mapped external device, and (2) transfer betwee external device with DACK and external memory. In both cases, only the external signal ( $\overline{DREQ}$ ) is used for transfer requests.


Figures 11.10 and 11.11 show examples of DMA transfer timing in single address

Renesas



Figure 11.10 Example of DMA Transfer Timing in Single Address Mod

Rev. 5.00, 09/03, page 358 of 760



## Figure 11.11 Example of DMA Transfer Timing in Single Address Mo (16-byte Transfer, External Memory Space (Ordinary Memory) → External D DACK)

**Bus Modes:** There are two bus modes: cycle-steal and burst. Select the mode in the T CHCR0–CHCR3.

Cycle-Steal Mode

In cycle-steal mode, the bus is given to another bus master after a one-transfer-uni word, longword, or 16-byte unit) DMAC. When another transfer request occurs, the obtained from the other bus master and transfer is performed for one transfer unit. transfer ends, the bus is passed to the other bus master. This is repeated until the tr conditions are satisfied.

In the cycle-steal mode, transfer areas are not affected regardless of the transfer retransfer source, and transfer destination settings. Figure 11.12 shows an example of transfer timing in cycle-steal mode. Transfer conditions shown in the figure are:

 $\frac{\text{Dual address mode}}{\text{DREQ} \text{ level detection}}$ 

Rev. 5.00, 09/03, pag

Durst Mode

Once the bus is obtained, the transfer is performed continuously until the transfer er condition is satisfied. In external request mode with low level detection of the  $\overline{DRE}$  however, when the  $\overline{DREQ}$  pin is driven high, the bus passes to the other bus master DMAC transfer request that has already been accepted ends, even if the transfer end have not been satisfied.

Burst mode cannot be used when a serial communication interface (IrDA, SCI), or a converter is the transfer request source. Figure 11.13 shows an example of burst mode of burst mode and the series of the series o

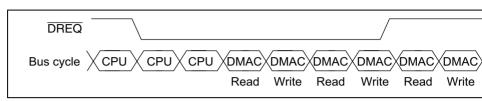



Figure 11.13 Example of Transfer in Burst Mode

Rev. 5.00, 09/03, page 360 of 760

|            | External device with DACK and<br>memory-mapped external device        | External          | B/C   | 8/16/32/128           |
|------------|-----------------------------------------------------------------------|-------------------|-------|-----------------------|
|            | External memory and external memory                                   | All <sup>*1</sup> | B/C   | 8/16/32/128           |
|            | External memory and memory-<br>mapped external device                 | All *1            | B/C   | 8/16/32/128           |
|            | Memory-mapped external device<br>and memory-mapped external<br>device | All *1            | B/C   | 8/16/32/128           |
|            | External memory and on-chip peripheral module                         | All *2            | B/C*3 | 8/16/32 <sup>*4</sup> |
|            | Memory-mapped external device<br>and on-chip peripheral module        | All *2            | B/C*3 | 8/16/32 <sup>*4</sup> |
|            | On-chip peripheral module and on-<br>chip peripheral module           | All *2            | B/C*3 | 8/16/32 <sup>*4</sup> |
| Single     | External device with DACK and external memory                         | External          | B/C   | 8/16/32/128           |
|            | External device with DACK and memory-mapped external device           | External          | B/C   | 8/16/32/128           |
| B. Burst C | · Cycle-steal                                                         |                   |       |                       |

B: Burst, C: Cycle-steal

Notes: 1. External requests, auto requests and on-chip peripheral module (CMT) req available.

- External requests, auto requests and on-chip peripheral module requests a available. When the IrDA, SCIF, or A/D converter is also the transfer reque however, the transfer destination or transfer source must be the IrDA, SCIF converter, respectively.
- If the transfer request source is the IrDA, SCIF, or A/D converter only cycle is available.
- 4. The access size permitted when the transfer destination or source is an on peripheral module register.
- 5. If the transfer request is an external request, only channels 0 and 1 are ava

Rev. 5.00, 09/03, pag

The bus will then switch between the two in the order channel 1, channel 0, channel 1,

Even if the priority is set in fixed mode or in round-robin mode, the bus will not be give CPU since channel 1 is in burst mode. This example is illustrated in figure 11.14.

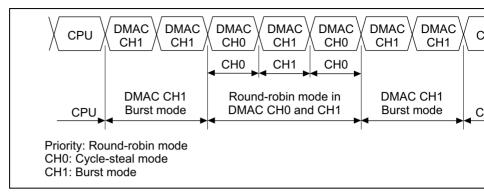



Figure 11.14 Bus State when Multiple Channels Are Operating

Rev. 5.00, 09/03, page 362 of 760

The second and subsequent  $\overline{\text{DREQ}}$  sampling operations are started two cycles after the sample.

#### Operation

• Cycle-Steal Mode

In cycle-steal mode, the  $\overline{\text{DREQ}}$  sampling timing is the same regardless of whether edge detection is used.

For example, in figure 11.15 (cycle-steal mode, level input), DMAC transfer begin earliest, three cycles after the first sampling is performed. The second sampling is cycles after the first. If  $\overline{\text{DREQ}}$  is not detected at this time, sampling is performed in subsequent cycle.

Thus,  $\overline{\text{DREQ}}$  sampling is performed one step in advance. The third sampling operaperformed until the idle cycle following the end of the first DMA transfer.

The above conditions are the same whatever the number of CPU transfer cycles, as figure 11.16. The above conditions are also the same whatever the number of DMA cycles, as shown in figure 11.17.

DACK is output in a read in the example in figure 11.15, and in a write in the example in figure 11.16. In both cases, DACK is output for the same duration as  $\overline{\text{CSn}}$ .

Figure 11.18 shows an example in which sampling is executed in all subsequent cy  $\overline{\text{DREQ}}$  cannot be detected.

Renesas

In burst mode, also, the DACK output period is the same as in cycle-steal mode.

• Burst Mode, Edge Detection

In the case of burst mode with edge detection,  $\overline{\text{DREQ}}$  sampling is only performed of

For example, in figure 11.21, DMAC transfer begins, at the earliest, three cycles aft sampling is performed. After this, DMAC transfer is executed continuously until the of data transfers set in the DMATCR register have been completed. DREQ is not sa during this time.

To restart DMAC after it has been suspended by an NMI, first clear NMIF, then inprequest again.

In burst mode, also, the DACK output period is the same as in cycle-steal mode.

Rev. 5.00, 09/03, page 364 of 760

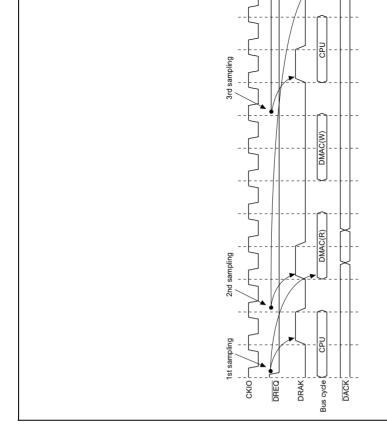



Figure 11.15 Cycle-Steal Mode, Level Input (CPU Access: 2 Cycles)

Renesas

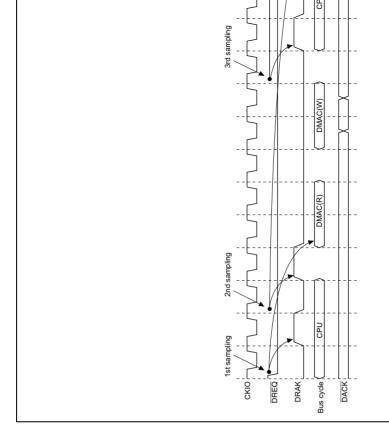



Figure 11.16 Cycle-Steal Mode, Level Input (CPU Access: 3 Cycles)

Rev. 5.00, 09/03, page 366 of 760

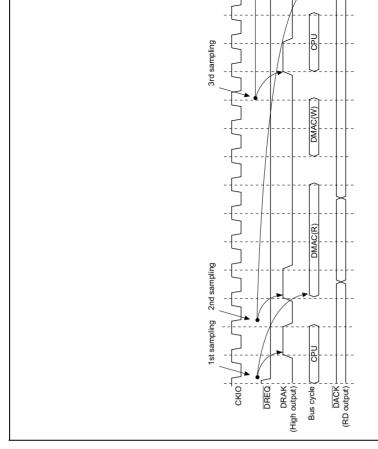



Figure 11.17 Cycle-Steal Mode, Level input (CPU Access: 2 Cycles, DMA RI 4 Cycles)

Renesas

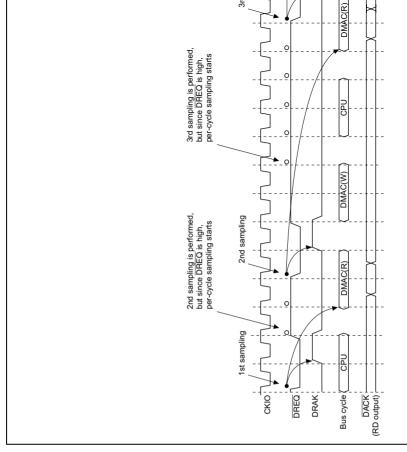



Figure 11.18 Cycle-Steal Mode, Level input (CPU Access: 2 Cycles, DREQ Input

Rev. 5.00, 09/03, page 368 of 760

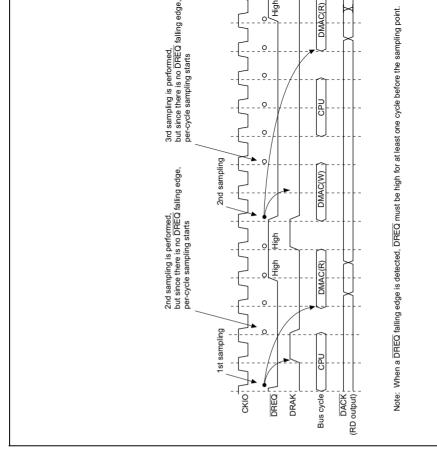



Figure 11.19 Cycle-Steal Mode, Edge input (CPU Access: 2 Cycles)

Renesas

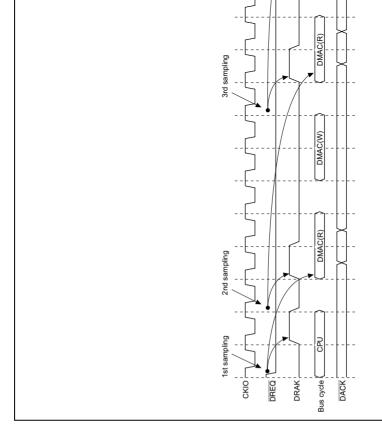



Figure 11.20 Burst Mode, Level Input

Rev. 5.00, 09/03, page 370 of 760

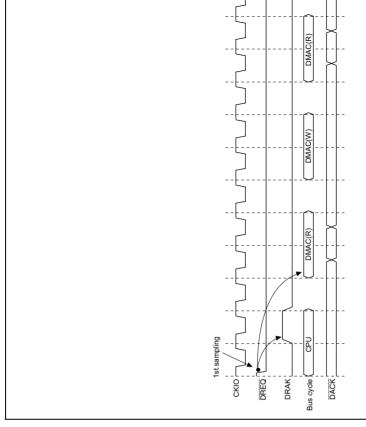



Figure 11.21 Burst Mode, Edge Input

Renesas

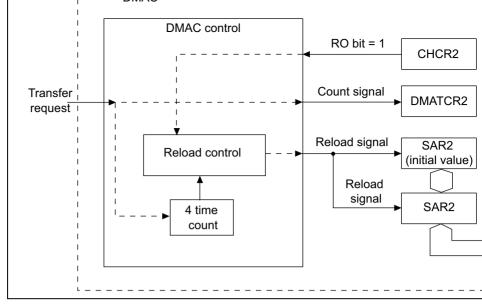



Figure 11.22 Source Address Reload Function Diagram

Rev. 5.00, 09/03, page 372 of 760

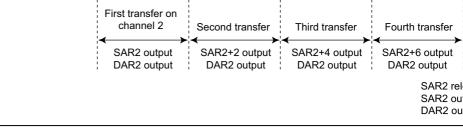



Figure 11.23 Timing Chart of Source Address Reload Function

The reload function can be executed with a transfer data size of 8, 16, or 32 bits.

DMATCR2, which specifies the transfer count, decrements 1 each time a transfer end of whether the reload function is on or off. Consequently, a multiple of four must be so DMATCR2 when the reload function is on. Operation is not guaranteed if other values specified.

The counter that counts the execution of four transfers for the address reload function clearing the DME bit in DMAOR or the DE bit in CHCR2, by setting the transfer end in CHCR2), by DMAC address error, and by NMI input, as well as by a reset, but the DAR2, and DMATCR2 registers are not reset. Therefore, if these sources are generate be a mix of an initialized counter and uninitialized registers in the DMAC, and a malfibe caused by restarting the DMAC in that state. Consequently, if one of these sources setting of the TE bit occurs during use of the address reload function, set SAR2, DAR DMATCR2 again.

Renesas

accepted until the ending conditions are satisfied.

In cycle-steal mode, the operation is the same regardless of whether the transfer req detected by level or edge.

(b) Burst mode, edge detection (external request, internal request, and auto-request)

The timing from the point where the ending conditions are satisfied to the point when DMAC stops operating is the same as in cycle-steal mode. With edge detection in b though only one transfer request is generated to start the DMAC, stop request samp performed at the same timing as transfer request sampling in cycle-steal mode. As a period when a stop request is not sampled is regarded as the period when a transfer generated, and after performing the DMA transfer for this period, the DMAC stops

- (c) Burst mode, level detection (external request) Same as in (a).
- (d) Bus timing when transfer is suspended

Transfer is suspended when one transfer ends. Even if transfer ending conditions at during a read in direct address transfer in dual address mode, the subsequent write p executed, and after the transfer in (a) to (c) above has been executed, DMAC operat suspended.

**Individual Channel Ending Conditions:** There are two ending conditions. A transfer the value of the channel's DMA transfer count register (DMATCR) is 0, or when the D channel's CHCR register is cleared to 0.

- When DMATCR is 0: When the DMATCR value becomes 0 and the corresponding DMA transfer ends, the transfer end flag bit (TE) is set in CHCR. If the IE (interrup bit has been set, a DMAC interrupt (DEI) request is sent to the CPU. This transfer e not apply to (a) to (d) described above.
- When DE in CHCR is 0: Software can halt a DMA transfer by clearing the DE bit is channel's CHCR register. The TE bit is not set when this happens. This transfer end to (a) to (d) described above.

Rev. 5.00, 09/03, page 374 of 760

bit to 0. At this time, if there are channels that should not be restarted, clear the co-DE bit in CHCR.

Transfer ending when DME is cleared to 0 in DMAOR: Clearing the DME bit to 0 forcibly aborts transfer on all channels. The TE bit is not set. All channels abort the according to the conditions in (a) to (d) in section 11.3.7, DMA Transfer Ending C in NMI interrupt generation. In this case, the values in SAR, DAR, and DMATCR updated.

## Renesas

The CMT has the following features:

- Four types of counter input clock can be selected
  - One of four internal clocks ( $P\phi/4$ ,  $P\phi/8$ ,  $P\phi/16$ ,  $P\phi/64$ ) can be selected.
- Generates a DMA transfer request when compare match occurs.

#### **Block Diagram**

Figure 11.24 shows a block diagram of the CMT.

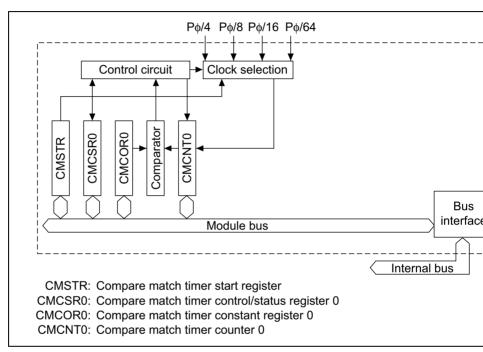



Figure 11.24 Block Diagram of CMT

Rev. 5.00, 09/03, page 376 of 760

| Compare match timer control/status register 0 | CMCSR0           | R/(W) <sup>*1</sup> | H'0000      | H'04000072 8<br>(H'A4000072) <sup>*2</sup> |
|-----------------------------------------------|------------------|---------------------|-------------|--------------------------------------------|
| Compare match counter 0                       | CMCNT0           | R/W                 | H'0000      | H'04000074 8<br>(H'A4000074) <sup>*2</sup> |
| Compare match constant register 0             | CMCOR0           | R/W                 | H'FFFF      | H'04000076 8<br>(H'A4000076) <sup>*2</sup> |
| Notes: 1. The only value th                   | at can be writte | en to the CM        | F bit in CM | ICSR0 is 0 to clear                        |

 When address translation by the MMU does not apply, the address in parer should be used.

#### 11.4.2 Register Descriptions

#### **Compare Match Timer Start Register (CMSTR)**

The compare match timer start register (CMSTR) is a 16-bit register that selects wheth match counter 0 (CMCNT0) is operated or halted. It is initialized to H'0000 by a reset its previous value in standby mode.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9   |
|----------------|----|----|----|----|----|----|-----|
|                |    | —  |    | _  | —  | _  | —   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| R/W:           | R  | R  | R  | R  | R  | R  | R   |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1   |
|                | —  |    |    | —  |    |    | —   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0   |
| R/W:           | R  | R  | R  | R  | R  | R  | R/W |

Bits 15 to 2-Reserved: These bits are always read as 0. The write value should always

Bit 1-Reserved: This bit can be read or written. The write value should always be 0

Rev. 5.00, 09/03, pag

occurrence of compare matches, sets the enable/disable status of interrupts, and establis clock used for incrementation. It is initialized to H'0000 by a reset, but retains its previous standby mode.

| Bit:           | 15     | 14  | 13 | 12 | 11 | 10 | 9    |
|----------------|--------|-----|----|----|----|----|------|
|                | —      | —   | —  | —  |    |    | —    |
| Initial value: | 0      | 0   | 0  | 0  | 0  | 0  | 0    |
| R/W:           | R      | R   | R  | R  | R  | R  | R    |
| Bit:           | 7      | 6   | 5  | 4  | 3  | 2  | 1    |
|                | CMF    |     | _  | —  | _  | _  | CKS1 |
| Initial value: | 0      | 0   | 0  | 0  | 0  | 0  | 0    |
| R/W:           | R/(W)* | R/W | R  | R  | R  | R  | R/W  |

Note: \* The only value that can be written is 0 to clear the flag.

Bits 15 to 8 and 5 to 2—Reserved: These bits are always read as 0. The write value sh always be 0.

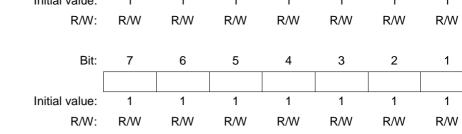
**Bit 7—Compare Match Flag (CMF):** Indicates whether or not the compare match tim 0 (CMCNT0) and compare match timer constant 0 (CMCOR0) values match.

| Bit 7: CMF | Description                                              |
|------------|----------------------------------------------------------|
| 0          | CMCNT0 and CMCOR0 values do not match (Ir                |
|            | Clearing condition: Write 0 to CMF after reading CMF = 1 |
| 1          | CMCNT0 and CMCOR0 values match                           |

Rev. 5.00, 09/03, page 378 of 760

| 1 | 0 | Р ф/16 |
|---|---|--------|
|   | 1 | P      |

#### **Compare Match Counter 0 (CMCNT0)**


Compare match counter 0 (CMCNT0) is a 16-bit register used as an up-counter.

When an internal clock is selected with the CKS1 and CKS0 bits in the CMCSR0 regists STR bit in CMSTR is set to 1, CMCNT0 begins incrementing on that clock. When the value matches that of compare match constant register 0 (CMCOR0), CMCNT0 is cle H'0000 and the CMF flag in CMCSR0 is set to 1.

CMCNT0 is initialized to H'0000 by a reset, but retains its previous value in standby n

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W |

Rev. 5.00, 09/03, pag



## 11.4.3 Operation

#### **Period Count Operation**

When an internal clock is selected with the CKS1 and CKS0 bits in the CMCSR0 regist STR bit in CMSTR is set to 1, CMCNT0 begins incrementing on the selected clock. W CMCNT counter value matches that of CMCOR0, the CMCNT0 counter is cleared to H the CMF flag in the CMCSR0 register is set to 1. The CMCNT0 counter begins countin from H'0000.

Figure 11.25 shows the compare match counter operation.

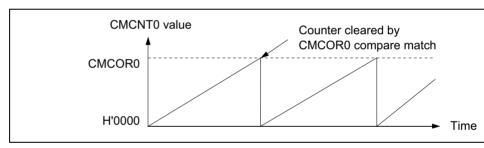
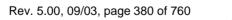




Figure 11.25 Counter Operation



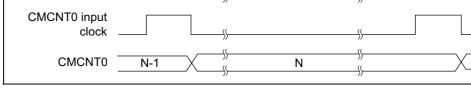



Figure 11.26 Count Timing

## 11.4.4 Compare Match

## **Compare Match Flag Setting Timing**

The CMF bit in the CMCSR0 register is set to 1 by the compare match signal generate CMCOR0 register and the CMCNT0 counter match. The compare match signal is gen final state of the match (timing at which the CMCNT0 counter matching count value i Consequently, after the CMCOR0 register and the CMCNT0 counter match, a compar signal will not be generated until a CMCNT0 counter input clock occurs. Figure 11.27 CMF bit setting timing.

Renesas

| CMCOR0                  | N |
|-------------------------|---|
| Compare<br>match signal |   |
| CMF                     |   |
| СМІ                     |   |

Figure 11.27 CMF Setting Timing

## **Compare Match Flag Clearing Timing**

The CMF bit in the CMCSR0 register is cleared by writing 0 to it after reading 1. Figure shows the timing when the CMF bit is cleared by the CPU.

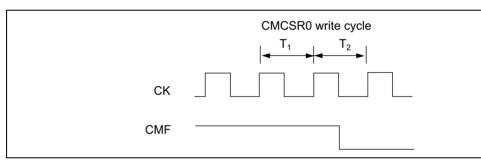
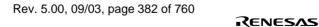




Figure 11.28 Timing of CMF Clearing by the CPU



## Table 11.8 Transfer Conditions and Register Settings for Transfer between Onand External Memory

| Transfer Conditions                            | Register | Settin |
|------------------------------------------------|----------|--------|
| Transfer source: RDR1 of on-chip IrDA          | SAR3     | H'0400 |
| Transfer destination: External memory          | DAR3     | H'0040 |
| Number of transfers: 64                        | DMATCR3  | H'0000 |
| Transfer source address: Fixed                 | CHCR3    | H'0000 |
| Transfer destination address: Incremented      |          |        |
| Transfer request source: IrDA (RXI1)           |          |        |
| Bus mode: Cycle-steal                          |          |        |
| Transfer unit: Byte                            |          |        |
| Interrupt request generated at end of transfer |          |        |
| Channel priority order: 0 > 2 > 3 > 1          | DMAOR    | H'010  |
|                                                |          |        |

Renesas

| Transfer source: On-chip A/D converter         | SAR2    | H'0400  |
|------------------------------------------------|---------|---------|
| Transfer destination: Internal memory          | DAR2    | H'00400 |
| Number of transfers: 128 (reloading 32 times)  | DMATCR2 | H'0000  |
| Transfer source address: Incremented           | CHCR2   | H'00089 |
| Transfer destination address: Decremented      |         |         |
| Transfer request source: A/D converter         |         |         |
| Bus mode: Burst                                |         |         |
| Transfer unit: Longword                        |         |         |
| Interrupt request generated at end of transfer |         |         |
| Channel priority order: 0 > 2 > 3 > 1          | DMAOR   | H'0101  |

When the address reload function is on, the value set in SAR returns to the initially set four transfers. In this example, when a transfer request is generated from the A/D converted data is read from the register at address H'04000080 in the A/D converter, and is written external memory address H'00400000. Since longword data has been transferred, the value SAR and DAR are H'04000084 and H'003FFFFC, respectively. The bus is kept and data are performed successively because this transfer is in burst mode.

After four transfers end, fifth and sixth transfers are performed if the address reload fun and the value in SAR is incremented from H'0400008C to H'04000090, H'04000094... address reload function is on, DMA transfer stops after the fourth transfer ends, and the request signal to the CPU is cleared. At this time, the value stored in SAR is not increm from H'0400008C to H'04000090, but returns to the initially set value, H'04000080. Th DAR continues to be decremented regardless of whether the address reload function is

Rev. 5.00, 09/03, page 384 of 760

| Bus right                                                                             | Released      | Held            |  |  |
|---------------------------------------------------------------------------------------|---------------|-----------------|--|--|
| DMAC operation                                                                        | Stops         | Keeps operating |  |  |
| Interrupt                                                                             | Not generated | Not generated   |  |  |
| Transfer request source flag clearing                                                 | Executed      | Not executed    |  |  |
| Notes: 1. An interrupt is generated regardless of whether the address reload function |               |                 |  |  |

- Iotes: 1. An interrupt is generated regardless of whether the address reload function if transfers are executed until the value in DMATCR reaches 0 and the IE b has been set to 1.
  - The transfer request source flag is cleared regardless of whether the addre function is on or off, if transfers are executed until the value in DMATCR re-
  - Specify burst mode when using the address reload function. This function r correctly executed in cycle-steal mode.
  - 4. Set a multiple of four in DMATCR when using the address reload function. may not be correctly executed if other values are specified.

# 11.5.3 Example of DMA Transfer between External Memory and SCIF Trans (Indirect Address On)

In this example, DMA transfer is performed between the external memory specified b address (transfer source) and the SCIF transmitter (transfer destination) using DMAC Table 11.11 shows the transfer conditions and register settings. In addition, the trigger number of transmit FIFO data bytes is set to 1 (TTRG1 = TTRG0 = 1 in SCFCR).

Rev. 5.00, 09/03, pag

|                                                   | DIMATORS | 11000  |
|---------------------------------------------------|----------|--------|
| Transfer source address: Incremented              | CHCR3    | H'0001 |
| Transfer destination address: Fixed               |          |        |
| Transfer request source: SCIF (TXI2)              |          |        |
| Bus mode: Cycle-steal                             |          |        |
| Transfer unit: Byte                               |          |        |
| No interrupt request generated at end of transfer |          |        |
| Channel priority order: 0 > 1 > 2 > 3             | DMAOR    | H'000  |

If the indirect address is on, data stored in the address set in SAR is not used as transfer data. In the indirect address, after the value stored in the address set in SAR is read, tha is used as an address again, and the value stored in that address is read and stored in the set in DAR.

In the example shown in table 11.11, when an SCIF transfer request is generated, the D the value in address H'00400000 set in SAR3. Since the value H'00450000 is stored in t address, the DMAC reads the value H'00450000. Next, the DMAC uses that read value address again, and reads the value H'55 stored in that address. Then, the DMAC writes H'55 to address H'04000156 set in DAR3; this completes one indirect address transfer.

In the indirect address, when data is read first from the address set in SAR3, the data tra is always longword regardless of the settings of the TS0 and TS1 bits that specify the tr size. However, whether the transfer source address is fixed, incremented, or decremented specified by the SM0 and SM1 bits. Therefore, in this example, though the transfer data specified as byte, the value in SAR3 is H'00400004 when one transfer ends. Write oper the same as in normal dual address transfer.

Rev. 5.00, 09/03, page 386 of 760

- 4. Before entering standby mode, the DME bit in DMAOR must be cleared to 0 and accepted by the DMAC completed.
- 5. The on-chip peripherals which the DMAC can access are the IrDA, SCIF, A/D conconverter, and I/O ports. Do not access other peripherals with the DMAC.
- 6. When starting up the DMAC, set CHCR or DMAOR last. Normal operation is not if settings for another register are made last.
- Even if the maximum number of transfers are performed in the same channel after DMATCR count reaches 0 and DMA transfer ends normally, write 0 to DMATCR Otherwise, normal DMA transfer may not be performed.
- 8. When using the address reload function, specify burst mode as the transfer mode. I mode, normal DMA transfer may not be performed.
- 9. When using the address reload function, set a multiple of four in DMATCR. Norm is not guaranteed if other values are specified.
- 10. When detecting an external request at the falling edge, keep the external request presenting the DMAC.
- 11. Do not access the space from H'4000062 to H'400006F, which is not used in the D Accessing this space may cause malfunctions.
- 12. The  $\overline{\text{WAIT}}$  signal is ignored in the case of a write to external address space in dual mode with 16-byte transfer, or transfer from an external device with DACK to exter space in signal address mode with 16-byte transfer.
- 13. DMAC transfers should not be performed in the sleep mode under conditions othe the clock ratio of I $\phi$  (on-chip clock) to B $\phi$  (bus clock) is 1:1.
- 14. When the following three conditions are all met, the frequency control register (FF should not be changed while a DMAC transfer is in progress.
  - Bits IFC2 to IFC0 are changed.
  - STC2 to STC0 in FRQCR are not changed.
  - The clock ratio of I $\phi$  (on-chip clock) to B $\phi$  (bus clock) after the change is other

Renesas

Rev. 5.00, 09/03, page 388 of 760

The TMU has the following features:

- Each channel is provided with an auto-reload 32-bit down counter.
- Channel 2 is provided with an input capture function.
- All channels are provided with 32-bit constant registers and 32-bit down counters read or written to at any time.
- All channels generate interrupt requests when the 32-bit down counter underflows (H'00000000 → H'FFFFFFF).
- Allows selection between 6 counter input clocks: External clock (TCLK), on-chip clock (16 kHz), Pφ/4, Pφ/16, Pφ/64, Pφ/256. (Pφ is the internal clock for peripheral See section 9, On-Chip Oscillation Circuits, for more information on the clock pull
- All channels can operate when the SH7709S is in standby mode: When the RTC o is being used as the counter input clock, the SH7709S is still able to count in stand
- Synchronized read: TCNT is a sequentially changing 32-bit register. Since the perform module used has an internal bus width of 16 bits, a time lag can occur between the the upper 16 bits and lower 16 bits are read. To correct the discrepancy in the courvalue caused by this time lag, a synchronization circuit is built into the TCNT so the 32-bit data in the TCNT can be read at once.
- The maximum operating frequency of the 32-bit counter is 2 MHz on all channels: SH7709S so that the clock input to the timer counters of each channel (obtained by the external clock and internal clock with the prescaler) does not exceed the maxim operating frequency.

Renesas

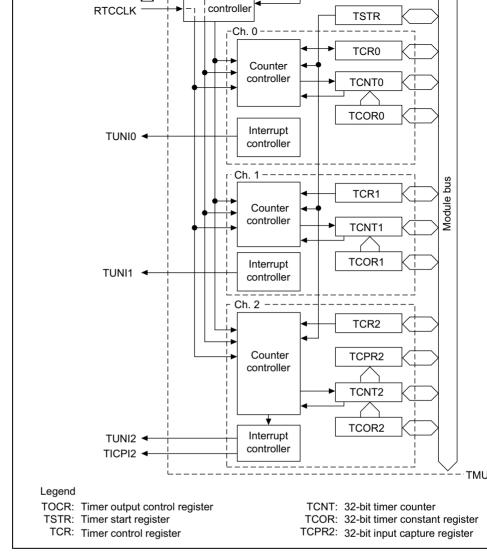



Figure 12.1 Block Diagram of TMU

Rev. 5.00, 09/03, page 390 of 760

## 12.1.4 Register Configuration

Table 12.2 shows the TMU register configuration.

# Table 12.2TMU Registers

| Channel | Register                      | Abbre-<br>viation | R/W | Initial Value $^*$ | Address   |
|---------|-------------------------------|-------------------|-----|--------------------|-----------|
| Common  | Timer output control register | TOCR              | R/W | H'00               | H'FFFFFE  |
|         | Timer start register          | TSTR              | R/W | H'00               | H'FFFFFE  |
| 0       | Timer constant register 0     | TCOR0             | R/W | H'FFFFFFFF         | H'FFFFFE  |
|         | Timer counter 0               | TCNT0             | R/W | H'FFFFFFFF         | H'FFFFFE  |
|         | Timer control register 0      | TCR0              | R/W | H'0000             | H'FFFFFE  |
| 1       | Timer constant register 1     | TCOR1             | R/W | H'FFFFFFFF         | H'FFFFFE  |
|         | Timer counter 1               | TCNT1             | R/W | H'FFFFFFFF         | H'FFFFFE  |
|         | Timer control register 1      | TCR1              | R/W | H'0000             | H'FFFFFE  |
| 2       | Timer constant register 2     | TCOR2             | R/W | H'FFFFFFFF         | H'FFFFFE  |
|         | Timer counter 2               | TCNT2             | R/W | H'FFFFFFFF         | H'FFFFFEI |
|         | Timer control register 2      | TCR2              | R/W | H'0000             | H'FFFFFEI |
|         | Input capture register 2      | TCPR2             | R   | Undefined          | H'FFFFFEI |
|         |                               |                   |     |                    |           |

Note: \* Initialized by power-on resets or manual resets.

Rev. 5.00, 09/03, pag

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
|----------------|---|---|---|---|---|---|---|
|                | — | — | _ | _ | — | — | — |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R | R | R | R | R | R | R |

Bits 7 to 1-Reserved: These bits are always read as 0. The write value should always

**Bit 0—Timer Clock Pin Control (TCOE):** Selects use of the timer clock pin (TCLK) external clock output pin or input pin for input capture control for the on-chip timer, or output pin for the on-chip RTC output clock. Since the TCLK pin is multiplexed as the when the pin is used as TCLK, bits PH7MD1 and PH7MD0 in the PHCR register shou 00 (the "other function" setting).

| Bit 0: TCOE | Description                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------|
| 0           | Timer clock pin (TCLK) used as external clock input or input capt input pin for the on-chip timer |
| 1           | Timer clock pin (TCLK) used as output pin for on-chip RTC output                                  |

#### 12.2.2 Timer Start Register (TSTR)

TSTR is an 8-bit readable/writable register that selects whether to run or halt the timer of (TCNT) for channels 0–2. TSTR is initialized to H'00 by a power-on reset or manual renot initialized in standby mode when the input clock selected for the channel is the on-c clock (RTCCLK). Only when an external clock (TCLK) or the peripheral clock (P $\phi$ ) is input clock, it is initialized in standby mode when the multiplication ratio of PLL circuit changed or when the MSTP2 bit in STBCR is set to 1.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2    | 1    |
|----------------|---|---|---|---|---|------|------|
|                | _ | — | — | — | — | STR2 | STR1 |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0    | 0    |
| R/W:           | R | R | R | R | R | R/W  | R/W  |

Rev. 5.00, 09/03, page 392 of 760

Renesas

| Bit 1: STR1 | Description        |
|-------------|--------------------|
| 0           | TCNT1 count halted |
| 1           | TCNT1 counts       |

Bit 0-Counter Start 0 (STR0): Selects whether to run or halt timer counter 0 (TCN

| Bit 0: STR0 | Description        |
|-------------|--------------------|
| 0           | TCNT0 count halted |
| 1           | TCNT0 counts       |

#### 12.2.3 Timer Control Registers (TCR)

The timer control registers (TCR) control the timer counters (TCNT) and interrupts. T three TCR registers, one for each channel.

The TCR registers are 16-bit readable/writable registers that control the issuance of in when the flag indicating timer counter (TCNT) underflow has been set to 1, and also c counter clock selection. When the external clock has been selected, they also select its Additionally, TCR2 controls the channel 2 input capture function and the issuance of i during input capture. The TCR registers are initialized to H'0000 by a power-on reset reset, but are not initialized in standby mode and retain their contents.

RENESAS

|                  | —         | —       | UNIE | CKEG1 | CKEGU | TPSC2 | IPSC |
|------------------|-----------|---------|------|-------|-------|-------|------|
| Initial value:   | 0         | 0       | 0    | 0     | 0     | 0     | 0    |
| R/W:             | R         | R       | R/W  | R/W   | R/W   | R/W   | R/W  |
|                  |           |         |      |       |       |       |      |
| Channel 2 TCR Bi | t Configu | ration: |      |       |       |       |      |
|                  |           |         |      |       |       |       |      |
| Bit:             | 15        | 14      | 13   | 12    | 11    | 10    | 9    |
|                  | —         |         | _    | —     | —     | —     | ICPF |
| Initial value:   | 0         | 0       | 0    | 0     | 0     | 0     | 0    |
| R/W:             | R         | R       | R    | R     | R     | R     | R/W  |
|                  |           |         |      |       |       |       |      |
| Bit:             | 7         | 6       | 5    | 4     | 3     | 2     | 1    |
|                  | ICPE1     | ICPE0   | UNIE | CKEG1 | CKEG0 | TPSC2 | TPSC |
| Initial value:   | 0         | 0       | 0    | 0     | 0     | 0     | 0    |
| R/W:             | R/W       | R/W     | R/W  | R/W   | R/W   | R/W   | R/W  |

Bits 15 to 10, 9 (except TCR2), 7, and 6 (except TCR2)—Reserved: These bits are a as 0. The write value should always be 0.

**Bit 9—Input Capture Interrupt Flag (ICPF):** A function of channel 2 only: the flag input capture is requested via the TCLK pin.

| Bit 9: ICPF | Description                                                                                                               |
|-------------|---------------------------------------------------------------------------------------------------------------------------|
| 0           | No input capture request has been issued<br>Clearing condition: When 0 is written to ICPF                                 |
| 1           | Input capture has been requested via the TCLK pin<br>Setting condition: When input capture is requested via the TCLK pin' |
|             |                                                                                                                           |

Note: \* Contents do not change when 1 is written to ICPF.

Rev. 5.00, 09/03, page 394 of 760

**Bits 7 and 6—Input Capture Control (ICPE1, ICPE0):** A function of channel 2 on determines whether the input capture function can be used, and when used, whether or enable interrupts.

When using this input capture function it is necessary to set the TCLK pin to input mo TCOE bit in the TOCR register. Additionally, use the CKEG bit to designate use of eirising or falling edge of the TCLK pin to set the value in TCNT2 in the input capture of (TCPR2).

| Bit 7: ICPE1 | Bit 6: ICPE0 | Description                                                         |
|--------------|--------------|---------------------------------------------------------------------|
| 0            | 0            | Input capture function is not used                                  |
|              | 1            | Reserved (Setting prohibited)                                       |
| 1            | 0            | Input capture function is used. Interrupt due to ICF is not enabled |
|              | 1            | Input capture function is used. Interrupt due to ICF is enabled     |

**Bit 5—Underflow Interrupt Control (UNIE):** Controls enabling of interrupt genera the status flag (UNF) indicating TCNT underflow has been set to 1.

| Bit 5: UNIE | Description                                |
|-------------|--------------------------------------------|
| 0           | Interrupt due to UNF (TUNI) is not enabled |
| 1           | Interrupt due to UNF (TUNI) is enabled     |

Renesas

| Bit 2: TPSC2 | Bit 1: TPSC1 | Bit 0: TPSC0 | Description                                            |
|--------------|--------------|--------------|--------------------------------------------------------|
| 0            | 0            | 0            | Internal clock: count on Pø/4 (I                       |
|              |              | 1            | Internal clock: count on Pø/16                         |
|              | 1            | 0            | Internal clock: count on Pø/64                         |
|              |              | 1            | Internal clock: count on Pø/256                        |
| 1            | 0            | 0            | Internal clock: count on clock output of RTC (RTC CLK) |
|              |              | 1            | Count on TCLK pin input                                |
|              | 1            | 0            | Reserved (Setting prohibited)                          |
|              |              | 1            | Reserved (Setting prohibited)                          |
|              |              |              |                                                        |

Bits 2 to 0—Timer Prescaler 2 to 0 (TPSC2 to TPSC0): Select the TCNT count cloc

Rev. 5.00, 09/03, page 396 of 760

Renesas

| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |
|                |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  | 20  | 19  | 18  | 17  |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |
|                |     |     |     |     |     |     |     |
| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/M |

#### 12.2.5 Timer Counters (TCNT)

The timer counters are 32-bit readable/writable registers. The TMU has three timer confor each channel.

TCNT counts down upon input of a clock. The clock input is selected using the TPSC bits in the timer control register (TCR).

When a TCNT count-down results in an underflow (H'00000000  $\rightarrow$  H'FFFFFFF), th flag (UNF) in the timer control register (TCR) of the relevant channel is set. The TCO simultaneously set in TCNT itself and the count-down continues from that value.

Rev. 5.00, 09/03, pag

# Renesas

| Dit.           | 01  | 00  | 25  | 20  | 21  | 20  | 20  |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  | 20  | 19  | 18  | 17  |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W |
|                |     |     |     |     |     |     |     |

Rev. 5.00, 09/03, page 398 of 760

| Bit:           | 31 | 30 | 29 | 28 | 27 | 26 | 25 |
|----------------|----|----|----|----|----|----|----|
|                |    |    |    |    |    |    |    |
| Initial value: | —  | —  | —  | —  | —  | —  | —  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |
| Bit:           | 23 | 22 | 21 | 20 | 19 | 18 | 17 |
|                |    |    |    |    |    |    |    |
| Initial value: |    | _  |    | _  | _  |    | _  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |
| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9  |
|                |    |    |    |    |    |    |    |
| Initial value: |    | _  |    |    | _  |    | —  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1  |
|                |    |    |    |    |    |    |    |
| Initial value: | _  |    |    |    |    |    |    |
| R/W:           | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |

Renesas

counter (TCNT) starts counting. When a TCNT underflows, the UNF flag of the correst timer control register (TCR) is set. At this time, if the UNIE bit in TCR is 1, an interrupt sent to the CPU. Also at this time, the value is copied from TCOR to TCNT and the dot operation is continued.

The count operation is set as follows (figure 12.2):

- Select the counter clock with the TPSC2–TPSC0 bits in the timer control register (Texternal clock is selected, set the TCLK pin to input mode with the TOCE bit in TO select its edge with the CKEG1 and CKEG0 bits in TCR.
- 2. Use the UNIE bit in TCR to set whether to generate an interrupt when TCNT under
- 3. When using the input capture function, set the ICPE bits in TCR, including the choir whether or not to use the interrupt function (channel 2 only).
- 4. Set a value in the timer constant register (TCOR) (the cycle is the set value plus 1).
- 5. Set the initial value in the timer counter (TCNT).
- 6. Set the STR bit in the timer start register (TSTR) to 1 to start operation.

Rev. 5.00, 09/03, page 400 of 760

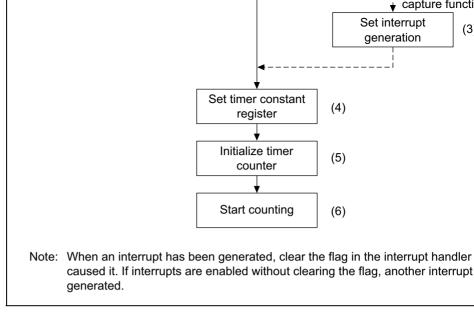



Figure 12.2 Setting the Count Operation

RENESAS

| STR0-STR2 |   |   |   |  |
|-----------|---|---|---|--|
|           | • | ) |   |  |
| UNF       |   |   | ) |  |
|           |   |   | ( |  |

Figure 12.3 Auto-Reload Count Operation

#### **TCNT Count Timing:**

Internal Clock Operation: Set the TPSC2–TPSC0 bits in TCR to select whether performed ule clock Pφ or one of the four internal clocks created by dividing it is used (Pφ Pφ/64, Pφ/256). Figure 12.4 shows the timing.




Figure 12.4 Count Timing when Operating on Internal Clock

Rev. 5.00, 09/03, page 402 of 760

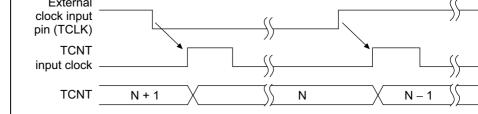
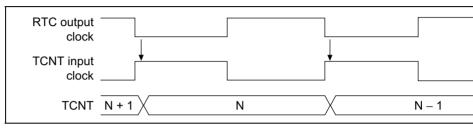




Figure 12.5 Count Timing when Operating on External Clock (Both Edges I

On-Chip RTC Clock Operation: Set the TPSC2–TPSC0 bits in TCR to select the clock as the timer clock. Figure 12.6 shows the timing.





### 12.3.2 Input Capture Function

Channel 2 has an input capture function (figure 12.7). When using the input capture furthe TCLK pin to input mode with the TCOE bit in the timer output control register (T set the timer operation clock to internal clock or on-chip RTC clock with the TPCS2– in the timer control register (TCR2). Also, designate use of the input capture function to generate interrupts on input capture with the IPCE1–IPCE0 bits in TCR2, and design of either the rising or falling edge of the TCLK pin to set the timer counter (TCNT2) v input capture register (TCPR2) with the CKEG1–CKEG0 bits in TCR2.

The input capture function cannot be used in standby mode.

Rev. 5.00, 09/03, pag

# Renesas

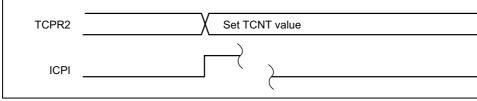



Figure 12.7 Operation Timing when Using Input Capture Function (Using TCLK Rising Edge)

# 12.4 Interrupts

There are two sources of TMU interrupts: underflow interrupts (TUNI) and interrupts with the input capture function (TICPI2).

## 12.4.1 Status Flag Setting Timing

UNF is set to 1 when the TCNT underflows. Figure 12.8 shows the timing.

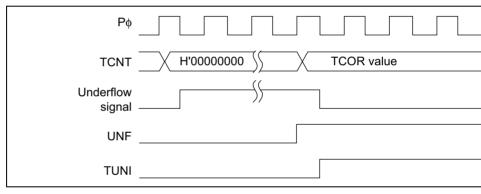
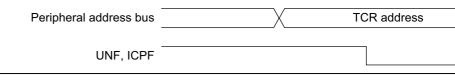




Figure 12.8 UNF Setting Timing

Rev. 5.00, 09/03, page 404 of 760



## Figure 12.9 Status Flag Clearing Timing

## 12.4.3 Interrupt Sources and Priorities

The TMU produces underflow interrupts for each channel. When the interrupt request interrupt enable bit are both set to 1, an interrupt is requested. Codes are set in the interregisters (INTEVT, INTEVT2) for these interrupts and interrupt handling occurs accorded.

The relative priorities of channels can be changed using the interrupt controller (see see Exception Handling, and section 6, Interrupt Controller (INTC)). Table 12.3 lists TMR sources.

| <b>Table 12.3</b> | TMU | <b>Interrupt Sources</b> |
|-------------------|-----|--------------------------|
|-------------------|-----|--------------------------|

| Channel | Interrupt Source | Description               | Priority |
|---------|------------------|---------------------------|----------|
| 0       | TUNI0            | Underflow interrupt 0     | High     |
| 1       | TUNI1            | Underflow interrupt 1     | ♠        |
| 2       | TUNI2            | Underflow interrupt 2     | <b>\</b> |
| 2       | TICPI2           | Input capture interrupt 2 | Low      |

Rev. 5.00, 09/03, pag

#### 12.5.2 Reading Registers

Synchronization processing is performed for timer counting during register reads. Whe counting and register read processing are performed simultaneously, the register value TCNT counting down (with synchronization processing) is read.

Rev. 5.00, 09/03, page 406 of 760

- Clock and calendar functions (BCD display): Seconds, minutes, hours, date, day o month, and year
- 1-Hz to 64-Hz timer (binary display)
- Start/stop function
- 30-second adjust function
- Alarm interrupt: Frame comparison of seconds, minutes, hours, date, day of the we month can be used as conditions for the alarm interrupt
- Cyclic interrupts: The interrupt cycle may be 1/256 second, 1/64 second, 1/16 second second, 1/2 second, 1 second, or 2 seconds
- Carry interrupt: A carry interrupt indicates when a carry occurs during a counter re
- Automatic leap year correction



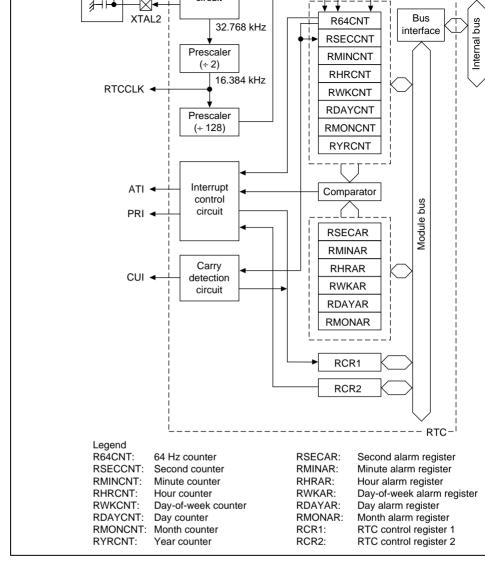



Figure 13.1 Block Diagram of RTC

Rev. 5.00, 09/03, page 408 of 760

| Clock input/clock output           | TCLK             | I/O          | External clock input pin/in<br>control input pin/realtime of<br>output pin (shared by TML |
|------------------------------------|------------------|--------------|-------------------------------------------------------------------------------------------|
| Dedicated power-supply pin for RTC | Vcc-RTC          | —            | Dedicated power-supply p                                                                  |
| Dedicated GND pin for RTC          | Vss-RTC          | _            | Dedicated GND pin for RT                                                                  |
| <b>C</b>                           | en when only the | e RTC is use | be supplied to all power su<br>ed (including standby mode)<br>Vcc) and make no connecti   |

XTAL2.



| Minute counter             | RMINCNT | R/W | Undefined  | H'FFFFFEC4 | 8 |
|----------------------------|---------|-----|------------|------------|---|
| Hour counter               | RHRCNT  | R/W | Undefined  | H'FFFFFEC6 | 8 |
| Day of week counter        | RWKCNT  | R/W | Undefined  | H'FFFFFEC8 | 8 |
| Date counter               | RDAYCNT | R/W | Undefined  | H'FFFFFECA | 8 |
| Month counter              | RMONCNT | R/W | Undefined  | H'FFFFFECC | 8 |
| Year counter               | RYRCNT  | R/W | Undefined  | H'FFFFFECE | 8 |
| Second alarm register      | RSECAR  | R/W | Undefined* | H'FFFFFED0 | 8 |
| Minute alarm register      | RMINAR  | R/W | Undefined* | H'FFFFFED2 | 8 |
| Hour alarm register        | RHRAR   | R/W | Undefined* | H'FFFFFED4 | 8 |
| Day of week alarm register | RWKAR   | R/W | Undefined* | H'FFFFFED6 | 8 |
| Date alarm register        | RDAYAR  | R/W | Undefined* | H'FFFFFED8 | 8 |
| Month alarm register       | RMONAR  | R/W | Undefined* | H'FFFFFEDA | 8 |
| RTC control register 1     | RCR1    | R/W | H'00       | H'FFFFFEDC | 8 |
| RTC control register 2     | RCR2    | R/W | H'09       | H'FFFFFEDE | 8 |
|                            |         |     |            |            |   |

Note: \* Only the ENB bits of each register are initialized.

Rev. 5.00, 09/03, page 410 of 760

R64CNT is not initialized by a power-on reset or manual reset, or in standby mode. Bit 7 is always read as 0.

| Bit:           | 7 | 6   | 5   | 4   | 3   | 2    | 1   |
|----------------|---|-----|-----|-----|-----|------|-----|
|                | — | 1Hz | 2Hz | 4Hz | 8Hz | 16Hz | 32H |
| Initial value: | 0 | _   |     | —   | —   | —    | —   |
| R/W:           | R | R   | R   | R   | R   | R    | R   |

#### 13.2.2 Second Counter (RSECCNT)

The second counter (RSECCNT) is an 8-bit readable/writable register used for setting the BCD-coded second section of the RTC. The count operation is performed by a car second of the 64-Hz counter.

The range that can be set is 00–59 (decimal). Errant operation will result if any other v Carry out write processing after halting the count operation with the START bit in RC

RSECCNT is not initialized by a power-on reset or manual reset, or in standby mode.

| Bit:           | 7 | 6   | 5          | 4   | 3   | 2    | 1    |
|----------------|---|-----|------------|-----|-----|------|------|
|                | _ | 1   | 10 seconds |     |     | 1 se | cond |
| Initial value: | 0 | —   | —          | —   | _   | —    | _    |
| R/W:           | R | R/W | R/W        | R/W | R/W | R/W  | R/W  |

Rev. 5.00, 09/03, pag

iterit is not initialized by a power on reset of mandal reset, of in standby mode.

| Bit:           | 7 | 6   | 5          | 4   | 3   | 2    | 1    |
|----------------|---|-----|------------|-----|-----|------|------|
|                |   |     | 10 minutes | S   |     | 1 mi | nute |
| Initial value: | 0 | —   | —          | —   | _   | —    | —    |
| R/W:           | R | R/W | R/W        | R/W | R/W | R/W  | R/W  |

#### 13.2.4 Hour Counter (RHRCNT)

The hour counter (RHRCNT) is an 8-bit readable/writable register used for setting/cour BCD-coded hour section of the RTC. The count operation is performed by a carry for e of the minute counter.

The range that can be set is 00–23 (decimal). Errant operation will result if any other va Carry out write processing after halting the count operation with the START bit in RCF a carry flag as shown in figure 13.2.

RHRCNT is not initialized by a power-on reset or manual reset, or in standby mode.

| Bit:           | 7 | 6 | 5    | 4    | 3   | 2   | 1   |
|----------------|---|---|------|------|-----|-----|-----|
|                |   |   | 10 h | ours |     | 1 h | our |
| Initial value: | 0 | 0 | _    | —    | —   | —   | —   |
| R/W:           | R | R | R/W  | R/W  | R/W | R/W | R/W |

Rev. 5.00, 09/03, page 412 of 760

it is not initialized by a power on reset of mandal reset, of in standby mode.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2   | 1        |
|----------------|---|---|---|---|---|-----|----------|
|                | — | — |   |   |   |     | Day of v |
| Initial value: | 0 | 0 | 0 | 0 | 0 | —   |          |
| R/W:           | R | R | R | R | R | R/W | R/M      |

Days of the week are coded as shown in table 13.3.

# Table 13.3 Day-of-Week Codes (RWKCNT)

| Day of Week | Code |
|-------------|------|
| Sunday      | 0    |
| Monday      | 1    |
| Tuesday     | 2    |
| Wednesday   | 3    |
| Thursday    | 4    |
| Friday      | 5    |
| Saturday    | 6    |

RENESAS

REFIT CITE IS not initialized by a power on reset of manual reset, of in standby mode.

The RDAYCNT range that can be set changes with each month and in leap years. Pleas the correct setting.

| Bit:           | 7 | 6 | 5    | 4    | 3   | 2   | 1   |
|----------------|---|---|------|------|-----|-----|-----|
|                |   |   | 10 c | days |     | 1 c | lay |
| Initial value: | 0 | 0 | —    | —    | —   | —   | —   |
| R/W:           | R | R | R/W  | R/W  | R/W | R/W | R/W |

### 13.2.7 Month Counter (RMONCNT)

The month counter (RMONCNT) is an 8-bit readable/writable register used for setting/ the BCD-coded month section of the RTC. The count operation is performed by a carry month of the date counter.

The range that can be set is 00–12 (decimal). Errant operation will result if any other va Carry out write processing after halting the count operation with the START bit in RCF

RMONCNT is not initialized by a power-on reset or manual reset, or in standby mode.

| Bit:           | 7 | 6 | 5 | 4            | 3   | 2   | 1    |
|----------------|---|---|---|--------------|-----|-----|------|
|                |   |   |   | 10<br>months |     | 1 m | onth |
| Initial value: | 0 | 0 | 0 | —            |     | —   |      |
| R/W:           | R | R | R | R/W          | R/W | R/W | R/W  |

Rev. 5.00, 09/03, page 414 of 760

in the first in the finitualized by a power on reset of mandal reset, or in standby mode.

Leap years are recognized by dividing the year counter value by 4 and obtaining a fract of 0. The year counter value: 00 is included in leap years.

| Bit:           | 7   | 6    | 5    | 4   | 3   | 2   | 1   |
|----------------|-----|------|------|-----|-----|-----|-----|
|                |     | 10 y | ears |     |     | 1 y | ear |
| Initial value: | _   | _    | —    | —   | —   | —   | —   |
| R/W:           | R/W | R/W  | R/W  | R/W | R/W | R/W | R/W |

#### 13.2.9 Second Alarm Register (RSECAR)

The second alarm register (RSECAR) is an 8-bit readable/writable register, and an ala corresponding to the BCD-coded second section counter RSECCNT of the RTC. Whe bit is set to 1, a comparison with the RSECCNT value is performed. From among the RSECAR/RMINAR/RHRAR/RWKAR/RDAYAR/RMONAR registers, the counter a register comparison is performed only on those with ENB bits set to 1, and if each of t coincide, an RTC alarm interrupt is generated.

The range that can be set is 00–59 (decimal) + ENB bit. Errant operation will result if value is set.

The ENB bit in RSECAR is initialized to 0 by a power-on reset. The remaining RSEC are not initialized and retain their contents by a manual reset, or in standby mode.

| Bit:           | 7   | 6   | 5        | 4   | 3   | 2    | 1    |
|----------------|-----|-----|----------|-----|-----|------|------|
|                | ENB | 1   | 0 second | s   |     | 1 se | cond |
| Initial value: | 0   | —   | _        | —   | _   | —    |      |
| R/W:           | R/W | R/W | R/W      | R/W | R/W | R/W  | R/W  |

RENESAS

The range that can be set is 00-59 (decimal) + ENB bit. Errant operation will result if a value is set.

The ENB bit in RMINAR is initialized by a power-on reset. The remaining RMINAR f not initialized and retain their contents by a manual reset, or in standby mode.

| Bit:           | 7   | 6   | 5         | 4   | 3   | 2    | 1    |
|----------------|-----|-----|-----------|-----|-----|------|------|
|                | ENB |     | 10 minute | S   |     | 1 mi | nute |
| Initial value: | 0   | —   | —         | —   | —   | —    | —    |
| R/W:           | R/W | R/W | R/W       | R/W | R/W | R/W  | R/W  |

#### 13.2.11 Hour Alarm Register (RHRAR)

The hour alarm register (RHRAR) is an 8-bit readable/writable register, and an alarm recorresponding to the BCD-coded hour section counter RHRCNT of the RTC. When the set to 1, a comparison with the RHRCNT value is performed. From among the RSECAR/RMINAR/RHRAR/RWKAR/RDAYAR/RMONAR registers, the counter an register comparison is performed only on those with ENB bits set to 1, and if each of th coincide, an RTC alarm interrupt is generated.

The range that can be set is 00-23 (decimal) + ENB bit. Errant operation will result if a value is set.

The ENB bit in RHRAR is initialized by a power-on reset. The remaining RHRAR fiel initialized and retain their contents by a manual reset, or in standby mode.

| Bit:           | 7   | 6 | 5    | 4    | 3   | 2   | 1   |
|----------------|-----|---|------|------|-----|-----|-----|
|                | ENB |   | 10 h | ours |     | 1 h | our |
| Initial value: | 0   | 0 | —    | —    | _   | —   | —   |
| R/W:           | R/W | R | R/W  | R/W  | R/W | R/W | R/W |

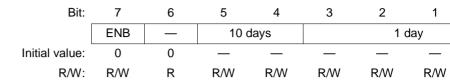
Rev. 5.00, 09/03, page 416 of 760

The range that can be set is 0-6 (decimal) + ENB bit. Errant operation will result if an value is set.

The ENB bit in RWKAR is initialized by a power-on reset. The remaining RWKAR f initialized and retain their contents by a manual reset, or in standby mode.

| Bit:           | 7   | 6 | 5 | 4 | 3 | 2   | 1        |
|----------------|-----|---|---|---|---|-----|----------|
|                | ENB |   |   |   |   |     | Day of v |
| Initial value: | 0   | 0 | 0 | 0 | 0 | _   | —        |
| R/W:           | R/W | R | R | R | R | R/W | R/M      |

Days of the week are coded as shown in table 13.4.


# Table 13.4 Day-of-Week Codes (RWKAR)

| Day of Week | Code |
|-------------|------|
| Sunday      | 0    |
| Monday      | 1    |
| Tuesday     | 2    |
| Wednesday   | 3    |
| Thursday    | 4    |
| Friday      | 5    |
| Saturday    | 6    |

Renesas

value is set. The RDAYCNT range that can be set changes with some months and in lear Please confirm the correct setting.

The ENB bit in RDAYAR is initialized by a power-on reset. The remaining RDAYAR not initialized and retain their contents by a manual reset, or in standby mode.



#### 13.2.14 Month Alarm Register (RMONAR)

The month alarm register (RMONAR) is an 8-bit readable/writable register, and an alar corresponding to the BCD-coded month section counter RMONCNT of the RTC. When bit is set to 1, a comparison with the RMONCNT value is performed. From among the RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, the counter and alarr comparison is performed only on those with ENB bits set to 1, and if each of those coin RTC alarm interrupt is generated.

The range that can be set is 01-12 (decimal) + ENB bit. Errant operation will result if a value is set.

The ENB bit in RMONAR is initialized by a power-on reset. The remaining RMONAF not initialized and retain their contents by a manual reset, or in standby mode.

| Bit:           | 7   | 6 | 5 | 4            | 3   | 2   | 1    |
|----------------|-----|---|---|--------------|-----|-----|------|
|                | ENB |   |   | 10<br>months |     | 1 m | onth |
| Initial value: | 0   | 0 | 0 | —            | —   |     | _    |
| R/W:           | R/W | R | R | R/W          | R/W | R/W | R/W  |

Rev. 5.00, 09/03, page 418 of 760

Renesas

| Bit:           | 7   | 6 | 5 | 4   | 3   | 2 | 1 |
|----------------|-----|---|---|-----|-----|---|---|
|                | CF  | — | — | CIE | AIE | — |   |
| Initial value: | 0   | 0 | 0 | 0   | 0   | 0 | 0 |
| R/W:           | R/W | R | R | R/W | R/W | R | R |

**Bit 7—Carry Flag (CF):** Status flag that indicates that a carry has occurred. Setting **C** indicates reading of a counter register value has occurred when (1) the second counter (2) the 64-Hz counter is carried. A count register value read at this time cannot be gua another read is required.

| Bit 7: CF | Description                                                                     |
|-----------|---------------------------------------------------------------------------------|
| 0         | No count up of R64CNT or RSECCNT<br>Clearing condition: When 0 is written to CF |
| 1         | Count up of R64CNT or RSECCNT<br>Setting condition: When 1 is written to CF     |

Bits 6, 5, 2, and 1—Reserved: These bits are always read as 0. The write value shoul 0.

**Bit 4—Carry Interrupt Enable Flag (CIE):** When the carry flag (CF) is set to 1, the enables interrupts.

| Bit 4: CIE | Description                                                     |
|------------|-----------------------------------------------------------------|
| 0          | A carry interrupt is not generated when the CF flag is set to 1 |
| 1          | A carry interrupt is generated when the CF flag is set to 1     |

Renesas

(only registers with ENB bit set to 1) matches the clock and calendar time. This flag is 0 when 0 is written, but holds its previous value when 1 is written.

| Bit 0: AF | Description                                                                                                         |
|-----------|---------------------------------------------------------------------------------------------------------------------|
| 0         | Clock/calendar and alarm register have not matched since last re<br>Clearing condition: When 0 is written to AF (Ir |
| 1         | Setting condition: Clock/calendar and alarm register have matche registers with ENB set) $^{*}$                     |

Note: \* Contents do not change when 1 is written to AF.

#### 13.2.16 RTC Control Register 2 (RCR2)

The RTC control register 2 (RCR2) is an 8-bit readable/writable register for periodic in control, 30-second adjustment ADJ, divider circuit RESET, and RTC count start/stop c initialized to H'09 by a power-on reset. It is initialized except for RTCEN and START manual reset. It is not initialized, and retains its contents, in standby mode.

| Bit:           | 7   | 6    | 5    | 4    | 3     | 2   | 1    |
|----------------|-----|------|------|------|-------|-----|------|
|                | PEF | PES2 | PES1 | PES0 | RTCEN | ADJ | RESE |
| Initial value: | 0   | 0    | 0    | 0    | 1     | 0   | 0    |
| R/W:           | R/W | R/W  | R/W  | R/W  | R/W   | R/W | R/W  |

**Bit 7—Periodic Interrupt Flag (PEF):** Indicates interrupt generation with the period by the PES bits. When set to 1, PEF generates periodic interrupts.

| Bit 7: PEF | Description                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------|
| 0          | Interrupts not generated with the period designated by the PES b<br>Clearing condition: When 0 is written to PEF (I |
| 1          | Interrupts generated with the period designated by the PES bits Setting condition: When 1 is written to PEF         |

Rev. 5.00, 09/03, page 420 of 760

|   | 1 | Periodic interrupt generated every 1/2 s |
|---|---|------------------------------------------|
| 1 | 0 | Periodic interrupt generated every 1 sec |
|   | 1 | Periodic interrupt generated every 2 sec |

Bit 3—RTCEN: Controls the operation of the crystal oscillator for the RTC.

| Bit 3: RTCEN | Description                          |
|--------------|--------------------------------------|
| 0            | Crystal oscillator for RTC is halted |
| 1            | Crystal oscillator for RTC runs      |

**Bit 2—30 Second Adjustment (ADJ):** When 1 is written to the ADJ bit, times of 29 less will be rounded to 00 seconds and 30 seconds or more to 1 minute. The divider ci prescaler, and R64CNT will be simultaneously reset. This bit is always read as 0. The duration between when the ADJ bit is set to 1 and when the new setting is reflected in value from the seconds counter (RSECCNT) is approximately 91.6  $\mu$ s (when a 32.768 oscillator is connected to the EXTAL2 pin).

| Bit 2: ADJ | Description          |
|------------|----------------------|
| 0          | Runs normally        |
| 1 (Write)  | 30-second adjustment |

**Bit 1—Reset (RESET):** When 1 is written, initializes the divider circuit (RTC presca R64CNT). This bit is always read as 0.

| Bit 1: RESET | Description              |  |
|--------------|--------------------------|--|
| 0            | Runs normally            |  |
| 1 (Write)    | Divider circuit is reset |  |

Renesas

#### **13.3 RTC Operation**

## 13.3.1 Initial Settings of Registers after Power-On

All the registers should be set after the power is turned on.

## 13.3.2 Setting the Time

Figure 13.2 shows how to set the time when the clock is stopped. This works when the calendar or clock is to be set. Programming can be easily performed.

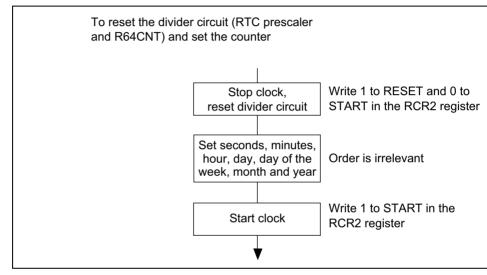



Figure 13.2 Setting the Time

Rev. 5.00, 09/03, page 422 of 760

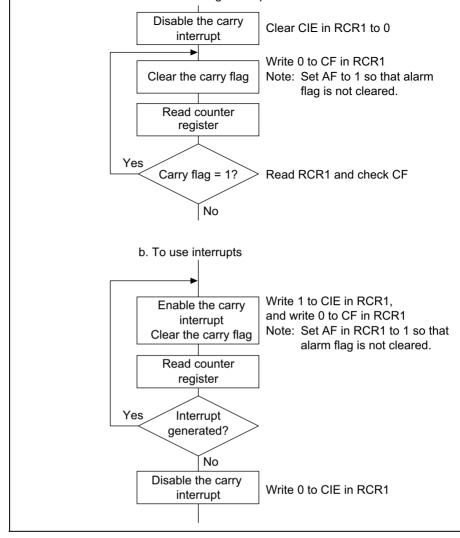



Figure 13.3 Reading the Time

Rev. 5.00, 09/03, pag

be checked by reading this bit, but normally it is done by interrupt. If 1 is placed in the 3) in RCR1, an interrupt is generated when an alarm occurs.

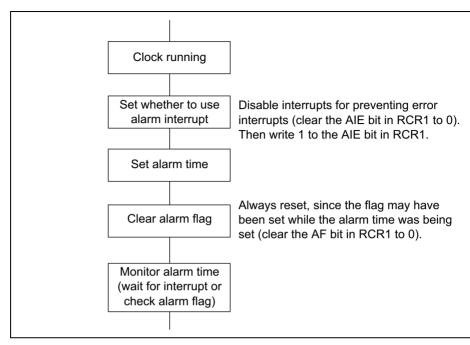
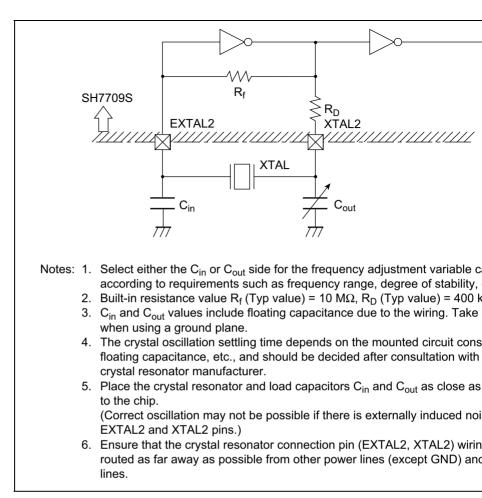




Figure 13.4 Using the Alarm Function

Rev. 5.00, 09/03, page 424 of 760



#### Figure 13.5 Example of Crystal Oscillator Circuit Connection

Rev. 5.00, 09/03, pag

#### 13.4.2 Use of Realtime Clock (RTC) Periodic Interrupts

The method of using the periodic interrupt function is shown in figure 13.6.

A periodic interrupt can be generated periodically at the interval set by the periodic internable flag (PES) in RTC control register 2 (RCR2). When the time set by the periodic enable flag (PES) has elapsed, the periodic interrupt flag (PEF) is set to 1.

The periodic interrupt flag (PEF) is cleared to 0 upon periodic interrupt generation whe periodic interrupt enable flag (PES) is set. Periodic interrupt generation can be confirmed reading this bit, but normally the interrupt function is used.

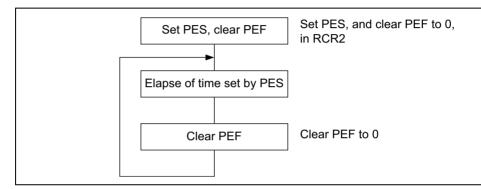



Figure 13.6 Using Periodic Interrupt Function

#### 13.4.3 Precautions when Using RTC Module Standby

Before switching the RTC to module standby, access at least one among the registers R and TMU.

Rev. 5.00, 09/03, page 426 of 760

conforms to the ISO/IEC standard 7816-3 for identification cards. See section 15, Sma Interface, for more information.

### 14.1.1 Features

Selection of asynchronous or synchronous as the serial communication mode.

- Asynchronous mode:
  - Serial data communication is synchronized by start-stop in character units. The communicate with a universal asynchronous receiver/transmitter (UART), an a communication interface adapter (ACIA), or any other communications chip th a standard asynchronous serial system. It can also communicate with two or me processors using the multiprocessor communication function. There are 12 sele data communication formats.
  - Data length: 7 or 8 bits
  - Stop bit length: 1 or 2 bits
  - Parity: Even, odd, or none
  - Multiprocessor bit: 1 or 0
  - Receive error detection: Parity, overrun, and framing errors
  - Break detection: By reading the RxD level directly from the SC port data regis when a framing error occurs
- Synchronous mode:
  - Serial data communication is synchronized with a clock signal. The SCI can co with other chips having a synchronous communication function. There is one s communication format.
  - Data length: 8 bits
  - Receive error detection: Overrun errors
- Full duplex communication: The transmitting and receiving sections are independent SCI can transmit and receive simultaneously. Both sections use double buffering, secontinuous data transfer is possible in both the transmit and receive directions.
- On-chip baud rate generator with selectable bit rates

Rev. 5.00, 09/03, pag

# Renesas

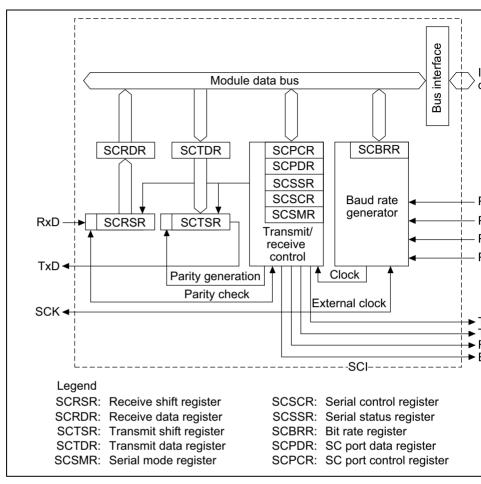



Figure 14.1 Block Diagram of SCI

Rev. 5.00, 09/03, page 428 of 760

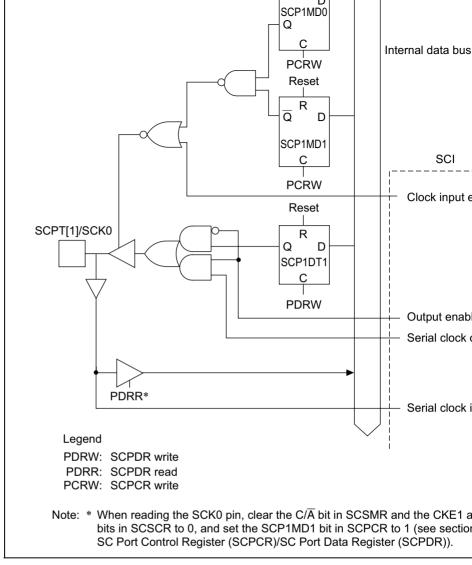



Figure 14.2 SCPT[1]/SCK0 Pin

Rev. 5.00, 09/03, pag

Renesas

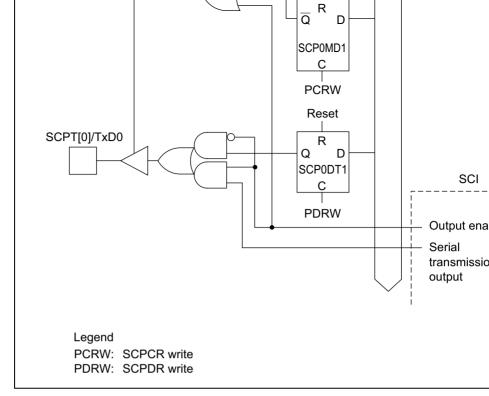
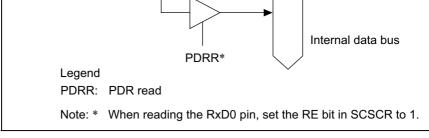




Figure 14.3 SCPT[0]/TxD0 Pin

Rev. 5.00, 09/03, page 430 of 760



#### Figure 14.4 SCPT[0]/RxD0 Pin

#### 14.1.3 Pin Configuration

The SCI has the serial pins summarized in table 14.1.

## Table 14.1 SCI Pins

| Pin Name          | Abbreviation | I/O    | Function             |
|-------------------|--------------|--------|----------------------|
| Serial clock pin  | SCK0         | I/O    | Clock I/O            |
| Receive data pin  | RxD0         | Input  | Receive data input   |
| Transmit data pin | TxD0         | Output | Transmit data output |

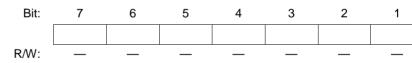
Note: These pins are made to function as serial pins by performing SCI operation set TE, RE, CKEI, and CKE0 bits in SCSCR and the C/Ā bit in SCSMR. Break stat transmission and detection can be performed by means of the SCI's SCSPTR

RENESAS

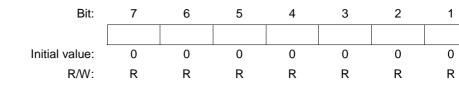
Rev. 5.00, 09/03, pag

T

| 0000  | 1 1/ 1 1                                           | 1100                                              |                                                                           |
|-------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|
| SCBRR | R/W                                                | H'FF                                              | H'FFFFE82                                                                 |
| SCSCR | R/W                                                | H'00                                              | H'FFFFFE84 8                                                              |
| SCTDR | R/W                                                | H'FF                                              | H'FFFFE86 8                                                               |
| SCSSR | R/(W)*                                             | H'84                                              | H'FFFFE88 8                                                               |
| SCRDR | R                                                  | H'00                                              | H'FFFFFE8A 8                                                              |
| SCPDR | R/W                                                | H'00                                              | H'04000136 8<br>(H'A4000136) <sup>*2</sup>                                |
| SCPCR | R/W                                                | H'A888                                            | H'04000116<br>(H'A4000116) <sup>*2</sup>                                  |
|       | SCBRR<br>SCSCR<br>SCTDR<br>SCSSR<br>SCRDR<br>SCPDR | SCBRRR/WSCSCRR/WSCTDRR/WSCSSRR/(W)*SCRDRRSCPDRR/W | SCBRRR/WH'FFSCSCRR/WH'00SCTDRR/WH'FFSCSSRR/(W)*H'84SCRDRRH'00SCPDRR/WH'00 |

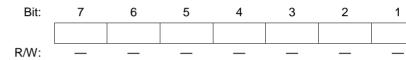

Notes: These registers are located in area 1 of physical space. Therefore, when the ca either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. The only value that can be written is 0 to clear the flags.
- When address translation by the MMU does not apply, the address in parent should be used.

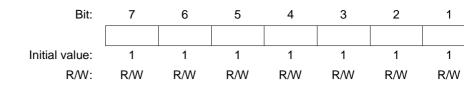

## 14.2 **Register Descriptions**

### 14.2.1 Receive Shift Register (SCRSR)

The receive shift register (SCRSR) receives serial data. Data input at the RxD pin is loa SCRSR in the order received, LSB (bit 0) first, converting the data to parallel form. We byte has been received, it is automatically transferred to SCRDR. The CPU cannot read SCRSR directly.




Rev. 5.00, 09/03, page 432 of 760




### 14.2.3 Transmit Shift Register (SCTSR)

The transmit shift register (SCTSR) transmits serial data. The SCI loads transmit data transmit data register (SCTDR) into SCTSR, then transmits the data serially from the LSB (bit 0) first. After transmitting one-byte data, the SCI automatically loads the new data from SCTDR into SCTSR and starts transmitting again. If the TDRE bit in SCSS however, the SCI does not load the SCTDR contents into SCTSR. The CPU cannot re to SCTSR directly.



Renesas



#### 14.2.5 Serial Mode Register (SCSMR)

The serial mode register (SCSMR) is an 8-bit register that specifies the SCI serial common format and selects the clock source for the baud rate generator.

The CPU can always read and write to SCSMR. SCSMR is initialized to H'00 by a rese standby or module standby mode.

| Bit:           | 7   | 6   | 5   | 4   | 3    | 2   | 1    |
|----------------|-----|-----|-----|-----|------|-----|------|
|                | C/Ā | CHR | PE  | O/E | STOP | MP  | CKS1 |
| Initial value: | 0   | 0   | 0   | 0   | 0    | 0   | 0    |
| R/W:           | R/W | R/W | R/W | R/W | R/W  | R/W | R/W  |

Bit 7—Communication Mode  $(C/\overline{A})$ : Selects whether the SCI operates in asynchronos synchronous mode.

| Bit 7: C/A | Description       |     |
|------------|-------------------|-----|
| 0          | Asynchronous mode | (Ir |
| 1          | Synchronous mode  |     |

Rev. 5.00, 09/03, page 434 of 760

**Bit 5—Parity Enable (PE):** Selects whether to add a parity bit to transmit data and to parity of receive data, in asynchronous mode. In synchronous mode, a parity bit is neith nor checked, regardless of the PE setting.

| Bit 5: P | E Description                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Parity bit not added or checked (                                                                                                                                                         |
| 1        | Parity bit added and checked*                                                                                                                                                             |
| Note: *  | When PE is set to 1, an even or odd parity bit is added to transmit data, dependently mode $(O/\overline{E})$ setting. Receive data parity is checked according to the even mode setting. |

**Bit 4—Parity Mode (O/E):** Selects even or odd parity when parity bits are added and The O/E setting is used only in asynchronous mode and only when the parity enable b to 1 to enable parity addition and checking. The O/E setting is ignored in synchronous asynchronous mode when parity addition and checking is disabled.

| Bit 4: O/E | Description                                                                                                                                                                                                                                      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Even parity <sup>*1</sup> (                                                                                                                                                                                                                      |
| 1          | Odd parity <sup>*2</sup>                                                                                                                                                                                                                         |
| Notes: 1.  | If even parity is selected, the parity bit is added to transmit data to make an number of 1s in the transmitted character and parity bit combined. Receive checked to see if it has an even number of 1s in the received character and combined. |
| •          |                                                                                                                                                                                                                                                  |

If odd parity is selected, the parity bit is added to transmit data to make an of 1s in the transmitted character and parity bit combined. Receive data is of see if it has an odd number of 1s in the received character and parity bit combined.

Renesas

| 0        | One stop bit (I                                                              |
|----------|------------------------------------------------------------------------------|
| 1        | Two stop bits <sup>*2</sup>                                                  |
| Notoo: 1 | When transmitting, a single 1 bit is added at the and of each transmitted ab |

Notes: 1. When transmitting, a single 1-bit is added at the end of each transmitted cha

2. When transmitting, two 1-bits are added at the end of each transmitted chara

**Bit 2—Multiprocessor Mode (MP):** Selects multiprocessor format. When multiprocess is selected, settings of the parity enable (PE) and parity mode  $(O/\overline{E})$  bits are ignored. The setting is used only in asynchronous mode; it is ignored in synchronous mode. For the multiprocessor communication function, see section 14.3.3, Multiprocessor Communic

| Bit 2: MP | Description                      |     |
|-----------|----------------------------------|-----|
| 0         | Multiprocessor function disabled | (Ir |
| 1         | Multiprocessor format selected   |     |

**Bits 1 and 0**—**Clock Select 1 and 0** (**CKS1**, **CKS0**): Select the internal clock source of chip baud rate generator. Four clock sources are available. P $\phi$ , P $\phi$ /4, P $\phi$ /16 and P $\phi$ /64 c according to the setting of the CKS1 and CKS0 bits. For further information on the clock bit rate register settings, and baud rate, see section 14.2.9, Bit Rate Register (SCBRR).

| Bit 1: CKS1 | Bit 0: CKS0 | Description |
|-------------|-------------|-------------|
| 0           | 0           | Ρφ (        |
|             | 1           | Ρφ/4        |
| 1           | 0           | Ρφ/16       |
|             | 1           | Ρφ/64       |

Note: Po: Peripheral clock

Rev. 5.00, 09/03, page 436 of 760

| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
| R/W:           | R/W |

**Bit 7—Transmit Interrupt Enable (TIE):** Enables or disables the transmit-data-emp (TXI) requested when the transmit data register empty bit (TDRE) in the serial status r (SCSSR) is set to 1 due to transfer of serial transmit data from SCTDR to SCTSR.

| Bit 7: TIE    | Description                                                             |
|---------------|-------------------------------------------------------------------------|
| 0             | Transmit-data-empty interrupt request (TXI) is disabled <sup>*</sup>    |
| 1             | Transmit-data-empty interrupt request (TXI) is enabled                  |
| Note: * The T | XI interrupt request can be cleared by reading TDRE after it has been s |

clearing TDRE to 0, or by clearing TIE to 0.

**Bit 6—Receive Interrupt Enable (RIE):** Enables or disables the receive-data-full interrequested when the receive data register full bit (RDRF) in the serial status register (Set to 1 due to transfer of serial receive data from SCRSR to SCRDR. It also enables or discrete vertices interrupt (ERI) requests.

| Bit 6: RIE | Description                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Receive-data-full interrupt (RXI) and receive-error interrupt (ERI) req disabled $^{*}$                                                                  |
| 1          | Receive-data-full interrupt (RXI) and receive-error interrupt (ERI) req<br>enabled                                                                       |
|            | I ERI interrupt requests can be cleared by reading the RDRF flag or er<br>ER, or ORER) after it has been set to 1, then clearing the flag to 0, or<br>). |

RENESAS

Select the transmit format in SCSMR before setting TE to 1.

Bit 4—Receive Enable (RE): Enables or disables the SCI serial receiver.

| Bit 4: RE | Description                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------|
| 0         | Receiver disabled <sup>*1</sup> (In                                                                          |
| 1         | Receiver enabled <sup>*2</sup>                                                                               |
| Notes: 1. | Clearing RE to 0 does not affect the receive flags (RDRF, FER, PER, OREF flags retain their previous values. |
| 2         | Serial reception starts when a start hit is detected in asynchronous mode or                                 |

 Serial reception starts when a start bit is detected in asynchronous mode, or synchronous clock input is detected in synchronous mode. Select the receiv SCSMR before setting RE to 1.

**Bit 3—Multiprocessor Interrupt Enable (MPIE):** Enables or disables multiprocessor The MPIE setting is used only in asynchronous mode, and only if the multiprocessor m (MP) in the serial mode register (SCSMR) is set to 1 during reception. The MPIE settin ignored in synchronous mode or when the MP bit is cleared to 0.

| Bit 3: M | IPIE Description                                                                                                                                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | Multiprocessor interrupts are disabled (normal receive operation)<br>(I                                                                                                                                                                                                                                                                                                                    |
|          | [Clearing conditions]                                                                                                                                                                                                                                                                                                                                                                      |
|          | (1) MPE is cleared to 0 when MPIE is cleared to 0.                                                                                                                                                                                                                                                                                                                                         |
|          | (2) The multiprocessor bit (MPB) is set to 1 in receive data.                                                                                                                                                                                                                                                                                                                              |
| 1        | Multiprocessor interrupts are enabled*                                                                                                                                                                                                                                                                                                                                                     |
|          | Receive-data-full interrupt requests (RXI), receive-error interrupt requ<br>and setting of the RDRF, FER, and ORER status flags in the serial sta<br>(SCSSR) are disabled until data with a multiprocessor bit of 1 is received                                                                                                                                                            |
| Note: *  | The SCI does not transfer receive data from SCRSR to SCRDR, does not deterrors, and does not set the RDRF, FER, and ORER flags in the serial status r (SCSSR). When it receives data that includes MPB = 1, the SCSSR's MPB flag and the SCI automatically clears MPIE to 0, generates RXI and ERI interrupts and RIE bits in the SCSCR are set to 1), and allows the FER and ORER bits to |

Rev. 5.00, 09/03, page 438 of 760

**Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0):** Select the SCI clock source an disable clock output from the SCK pin. Depending on the combination of CKE1 and C SCK pin can be used for serial clock output or serial clock input.

The CKE0 setting is valid only in asynchronous mode, and only when the SCI is interclocked (CKE1 = 0). The CKE0 setting is ignored in synchronous mode, or when an eclock source is selected (CKE1 = 1). Before selecting the SCI operating mode in the sregister (SCSMR), set CKE1 and CKE0. For further details on selection of the SCI closee table 14.10 in section 14.3, Operation.

| Bit 1:<br>CKE1 | Bit 0:<br>CKE0 | Description       |                                                            |
|----------------|----------------|-------------------|------------------------------------------------------------|
| 0              | 0              | Asynchronous mode | Internal clock, SCK pin used for input pin is ignored) (In |
|                |                | Synchronous mode  | Internal clock, SCK pin used for synchror<br>output (In    |
|                | 1              | Asynchronous mode | Internal clock, SCK pin used for clock ou                  |
|                |                | Synchronous mode  | Internal clock, SCK pin used for synchror<br>output        |
| 1              | 0              | Asynchronous mode | External clock, SCK pin used for clock in                  |
|                |                | Synchronous mode  | External clock, SCK pin used for synchro<br>input          |
|                | 1              | Asynchronous mode | External clock, SCK pin used for clock in                  |
|                |                | Synchronous mode  | External clock, SCK pin used for synchro<br>input          |
|                |                |                   |                                                            |

Notes: 1. The output clock frequency is the same as the bit rate.

2. The input clock frequency is 16 times the bit rate.

Renesas

| Bit:           | 7      | 6      | 5      | 4      | 3      | 2    | 1   |  |
|----------------|--------|--------|--------|--------|--------|------|-----|--|
|                | TDRE   | RDRF   | ORER   | FER    | PER    | TEND | MPB |  |
| Initial value: | 1      | 0      | 0      | 0      | 0      | 1    | 0   |  |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R    | R   |  |
|                |        |        |        |        |        |      |     |  |

Note: \* The only value that can be written is 0 to clear the flag.

**Bit 7—Transmit Data Register Empty (TDRE):** Indicates that the SCI has loaded tra from SCTDR into SCTSR and new serial transmit data can be written in SCTDR.

| Bit 7: TDRE                          | Description                                                               |  |  |  |  |
|--------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| 0 SCTDR contains valid transmit data |                                                                           |  |  |  |  |
|                                      | [Clearing condition]                                                      |  |  |  |  |
|                                      | TDRE is cleared to 0 when software reads TDRE after it has been se        |  |  |  |  |
| 1                                    | SCTDR does not contain valid transmit data (I                             |  |  |  |  |
|                                      | [Setting conditions]                                                      |  |  |  |  |
|                                      | (1) TDRE is set to 1 when the chip is reset or enters standby mode.       |  |  |  |  |
|                                      | (2) The TE bit in the serial control register (SCSCR) is cleared to 0.    |  |  |  |  |
|                                      | (3) SCTDR contents are loaded into SCTSR, so new data can be wr<br>SCTDR. |  |  |  |  |

Rev. 5.00, 09/03, page 440 of 760

[Setting condition]

RDRF is set to 1 when serial data is received normally and transferre SCRSR to SCRDR.

- Note: SCRDR and RDRF are not affected by detection of receive errors or by clearing bit to 0 in the serial control register. They retain their previous contents. If RDR to 1 when reception of the next data ends, an overrun error (ORER) occurs and data is lost.
- Bit 5-Overrun Error (ORER): Indicates that data reception aborted due to an over

| Bit 5: O | RER | Description                                                                                                                                                                                                   |
|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        |     | Receiving is in progress or has ended normally <sup>*1</sup> (                                                                                                                                                |
|          |     | [Clearing conditions]                                                                                                                                                                                         |
|          |     | (1) ORER is cleared to 0 when the chip is reset or enters standby m                                                                                                                                           |
|          |     | (2) When software reads ORER after it has been set to 1, then write<br>ORER.                                                                                                                                  |
| 1        |     | A receive overrun error occurred <sup>*2</sup>                                                                                                                                                                |
|          |     | [Setting condition]                                                                                                                                                                                           |
|          |     | ORER is set to 1 if reception of the next serial data ends when RDR                                                                                                                                           |
| Notes:   |     | aring the RE bit to 0 in the serial control register does not affect the OR<br>ains its previous value.                                                                                                       |
| :        | rec | RDR continues to hold the data received before the overrun error, so su<br>eive data is lost. Serial receiving cannot continue while ORER is set to 1<br>chronous mode, serial transmitting is also disabled. |

Rev. 5.00, 09/03, pag

A receive manning error occurred

[Setting condition]

FER is set to 1 if the stop bit at the end of receive data is checked and be  $0.^{*2}$ 

- Notes: 1. Clearing the RE bit to 0 in the serial control register does not affect the FER retains its previous value.
  - 2. When the stop bit length is two bits, only the first bit is checked. The second not checked. When a framing error occurs, the SCI transfers the receive data SCRDR but does not set RDRF. Serial receiving cannot continue while FER In synchronous mode, serial transmitting is also disabled.

**Bit 3—Parity Error (PER):** Indicates that data reception (with parity) aborted due to a error in asynchronous mode.

| Bit 3: PEF | Description                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Receiving is in progress or has ended normally <sup>*1</sup> (Ir                                                                                                                                           |
|            | [Clearing conditions]                                                                                                                                                                                      |
|            | (1) PER is cleared to 0 when the chip is reset or enters standby mode                                                                                                                                      |
|            | (2) When software reads PER after it has been set to 1, then writes 0                                                                                                                                      |
| 1          | A receive parity error occurred*2                                                                                                                                                                          |
|            | [Setting condition]                                                                                                                                                                                        |
|            | PER is set to 1 if the number of 1s in receive data, including the parity not match the even or odd parity setting of the parity mode bit $(O/\overline{E})$ ir mode register (SCSMR).                     |
| Notes: 1.  | Clearing the RE bit to 0 in the serial control register does not affect the PER retains its previous value.                                                                                                |
| 2.         | When a parity error occurs, the SCI transfers the receive data into SCRDR b<br>set RDRF. Serial receiving cannot continue while PER is set to 1. In synchro<br>mode, serial transmitting is also disabled. |

Rev. 5.00, 09/03, page 442 of 760

| 1 | End of transmission (                                                    |
|---|--------------------------------------------------------------------------|
|   | [Setting conditions]                                                     |
|   | (1) TEND is set to 1 when the chip is reset or enters standby mode.      |
|   | (2) When TE is cleared to 0 in the serial control register (SCSCR).      |
|   | (3) If TDRE is 1 when the last bit of a one-byte serial character is tra |

**Bit 1—Multiprocessor Bit (MPB):** Stores the value of the multiprocessor bit in receive when a multiprocessor format is selected for receiving in asynchronous mode. MPB is bit and cannot be written to.

| Bit 1: MP | B Description                                                                                     |
|-----------|---------------------------------------------------------------------------------------------------|
| 0         | Multiprocessor bit value in receive data is $0^*$ (                                               |
| 1         | Multiprocessor bit value in receive data is 1                                                     |
|           | f RE is cleared to 0 when a multiprocessor format is selected, MPB retains its<br>previous value. |

**Bit 0—Multiprocessor Bit Transfer (MPBT):** Stores the value of the multiprocessor transmit data when a multiprocessor format is selected for transmitting in asynchronous. The MPBT setting is ignored in synchronous mode, when a multiprocessor format is r or when the SCI is not transmitting.

| Bit 0: MPBT | Description                                      |
|-------------|--------------------------------------------------|
| 0           | Multiprocessor bit value in transmit data is 0 ( |
| 1           | Multiprocessor bit value in transmit data is 1   |

Renesas

it is also possible to read data on the Serr pin, and write output data.

#### SCPCR

| Bit:           | 15     | 14   | 13   | 12   | 11   | 10   | 9   | 8     | 7   | 6     | 5    | 4    | 3    | 2   |
|----------------|--------|------|------|------|------|------|-----|-------|-----|-------|------|------|------|-----|
|                | SCP7   | SCP7 | SCP6 | SCP6 | SCP5 | SCP5 | SCP | 4SCP4 | SCP | 3SCP3 | SCP2 | SCP2 | SCP1 | SCI |
|                | MD1    | MD0  | MD1  | MD0  | MD1  | MD0  | MD1 | MD0   | MD  | 1 MD0 | MD1  | MD0  | MD1  | MD  |
| Initial value: | 1      | 0    | 1    | 0    | 1    | 0    | 0   | 0     | 1   | 0     | 0    | 0    | 1    | 0   |
| R/W:           | R/W    | R/W  | R/W  | R/W  | R/W  | R/W  | R/W | R/W   | R/W | R/W   | R/W  | R/W  | R/W  | R/\ |
| SCPDR          | Bit:   |      | 7    |      | 6    | 5    |     | 4     |     | 3     |      | 2    |      | 1   |
|                |        | SC   | P7DT | SCF  | P6DT | SCP  | 5DT | SCP4  | DT  | SCP3D | T SC | P2D1 | SCF  | P1D |
| Initial        | /alue: |      | 0    |      | 0    | 0    |     | 0     | 1   | 0     | ·    | 0    |      | 0   |
|                | R/W:   |      | R    | R    | W    | R٨   | N   | R/W   | /   | R/W   | I    | R/W  | R    | /W  |
|                |        |      |      |      |      |      |     |       |     |       |      |      |      |     |

SCI pin I/O and data control are performed by bits 3-0 of SCPCR and bits 1 and 0 of S

SCPCR Bits 3 and 2—Serial Clock Port I/O (SCP1MD1, SCP1MD0): Specify serial pin I/O. When the SCK pin is actually used as a port I/O pin, clear the C/ $\overline{A}$  bit in SCSN CKE1 and CKE0 in SCSCR to 0.

| Bit 3:<br>SCP1MD1 | Bit 2:<br>SCP1MD0 | Description                               |
|-------------------|-------------------|-------------------------------------------|
| 0                 | 0                 | SCP1DT bit value is not output to SCK pin |
| 0                 | 1                 | SCP1DT bit value is output to SCK pin     |
| 1                 | 0                 | SCK pin value is read from SCP1DT bit     |
| 1                 | 1                 | (Initial value                            |

Rev. 5.00, 09/03, page 444 of 760

**SCPCR Bits 1 and 0—Serial Port Break I/O (SCP0MD1, SCP0MD0):** Specify the TxD pin output condition. When the TxD pin is actually used as a port output pin and value set with the SCP0DT bit, clear the TE bit in SCSCR to 0.

| Bit 1:<br>SCP0MD1 | Bit 0:<br>SCP0MD0 | Description                                 |
|-------------------|-------------------|---------------------------------------------|
| 0                 | 0                 | SCP0DT bit value is not output to TxD pin ( |
| 0                 | 1                 | SCP0DT bit value is output to TxD pin       |

**SCPDR Bit 0—Serial Port Break Data (SCP0DT):** Specifies the serial port RxD pin and TxD pin output data. The TxD pin output condition is specified by the SCP0MD1 SCP0MD0 bits. When the TxD pin is set to output mode, the value of the SCP0DT bit the TxD pin. The RxD pin value is read from the SCP0DT bit regardless of the values SCP0MD1 and SCP0MD0 bits, if RE in SCSCR is set to 1. The initial value of this bit power-on reset is undefined.

| Bit 0:<br>SCP0DT | Description      |   |
|------------------|------------------|---|
| 0                | I/O data is low  | ( |
| 1                | I/O data is high |   |

Block diagrams of the SCI I/O port pins are shown in figures 14.2, 14.3, and 14.4.

Renesas

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   |
|----------------|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W |

The SCBRR setting is calculated as follows:

Asynchronous mode: N =  $\frac{P\phi}{-64 \times 2^{2n-1} \times B} \times 10^6 - 1$ 

Synchronous mode: N = 
$$\frac{P\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

- B: Bit rate (bits/s)
- N: SCBRR setting for baud rate generator ( $0 \le N \le 255$ )
- Po: Operating frequency for peripheral modules (MHz)
- n: Baud rate generator clock source (n = 0, 1, 2, 3) (for the clock sources and n, see table 14.3.)

#### Table 14.3 SCSMR Settings

|   |              |      | SCSMR Settings |
|---|--------------|------|----------------|
| n | Clock Source | CKS1 | CKS0           |
| 0 | Рф           | 0    | 0              |
| 1 | P¢/4         | 0    | 1              |
| 2 | Pø/16        | 1    | 0              |
| 3 | P¢/64        | 1    | 1              |

Note: The bit rate error in asynchronous is given by the following formula:

Error (%) = 
$$(\frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}}) \times 100$$

Rev. 5.00, 09/03, page 446 of 760

| 150   | 1 | 103 | 0.16   | 1 | 108 | 0.21   | 1 | 127 |
|-------|---|-----|--------|---|-----|--------|---|-----|
| 300   | 0 | 207 | 0.16   | 0 | 217 | 0.21   | 0 | 255 |
| 600   | 0 | 103 | 0.16   | 0 | 108 | 0.21   | 0 | 127 |
| 1200  | 0 | 51  | 0.16   | 0 | 54  | -0.70  | 0 | 63  |
| 2400  | 0 | 25  | 0.16   | 0 | 26  | 1.14   | 0 | 31  |
| 4800  | 0 | 12  | 0.16   | 0 | 13  | -2.48  | 0 | 15  |
| 9600  | 0 | 6   | -6.99  | 0 | 6   | -2.48  | 0 | 7   |
| 19200 | 0 | 2   | 8.51   | 0 | 2   | 13.78  | 0 | 3   |
| 31250 | 0 | 1   | 0.00   | 0 | 1   | 4.86   | 0 | 1   |
| 38400 | 0 | 1   | -18.62 | 0 | 1   | -14.67 | 0 | 1   |

## Pφ (MHz)

|                   |   | 3   |           |   | 3.6864 | 4         |   | 4   |  |
|-------------------|---|-----|-----------|---|--------|-----------|---|-----|--|
| Bit Rate (bits/s) | n | Ν   | Error (%) | n | Ν      | Error (%) | n | Ν   |  |
| 110               | 1 | 212 | 0.03      | 2 | 64     | 0.70      | 2 | 70  |  |
| 150               | 1 | 155 | 0.16      | 1 | 191    | 0.00      | 1 | 207 |  |
| 300               | 1 | 77  | 0.16      | 1 | 95     | 0.00      | 1 | 103 |  |
| 600               | 0 | 155 | 0.16      | 0 | 191    | 0.00      | 0 | 207 |  |
| 1200              | 0 | 77  | 0.16      | 0 | 95     | 0.00      | 0 | 103 |  |
| 2400              | 0 | 38  | 0.16      | 0 | 47     | 0.00      | 0 | 51  |  |
| 4800              | 0 | 19  | -2.34     | 0 | 23     | 0.00      | 0 | 25  |  |
| 9600              | 0 | 9   | -2.34     | 0 | 11     | 0.00      | 0 | 12  |  |
| 19200             | 0 | 4   | -2.34     | 0 | 5      | 0.00      | 0 | 6   |  |
| 31250             | 0 | 2   | 0.00      | _ | _      | _         | 0 | 3   |  |
| 38400             | _ | _   | _         | 0 | 2      | 0.00      | 0 | 2   |  |

Renesas

| 2400  | 0 | 63 | 0.00  | 0 | 64 | 0.16  | 0 | 77 |
|-------|---|----|-------|---|----|-------|---|----|
| 4800  | 0 | 31 | 0.00  | 0 | 32 | -1.36 | 0 | 38 |
| 9600  | 0 | 15 | 0.00  | 0 | 15 | 1.73  | 0 | 19 |
| 19200 | 0 | 7  | 0.00  | 0 | 7  | 1.73  | 0 | 9  |
| 31250 | 0 | 4  | -1.70 | 0 | 4  | 0.00  | 0 | 5  |
| 38400 | 0 | 3  | 0.00  | 0 | 3  | 1.73  | 0 | 4  |

|                   |   |     |           |   | Ρφ (Ν | /Hz)      |   |     |
|-------------------|---|-----|-----------|---|-------|-----------|---|-----|
|                   |   | 6.1 | 44        |   | 7.37  | 28        |   | 8   |
| Bit Rate (bits/s) | n | Ν   | Error (%) | n | Ν     | Error (%) | n | Ν   |
| 110               | 2 | 108 | 0.08      | 2 | 130   | -0.07     | 2 | 141 |
| 150               | 2 | 79  | 0.00      | 2 | 95    | 0.00      | 2 | 103 |
| 300               | 1 | 159 | 0.00      | 1 | 191   | 0.00      | 1 | 207 |
| 600               | 1 | 79  | 0.00      | 1 | 95    | 0.00      | 1 | 103 |
| 1200              | 0 | 159 | 0.00      | 0 | 191   | 0.00      | 0 | 207 |
| 2400              | 0 | 79  | 0.00      | 0 | 95    | 0.00      | 0 | 103 |
| 4800              | 0 | 39  | 0.00      | 0 | 47    | 0.00      | 0 | 51  |
| 9600              | 0 | 19  | 0.00      | 0 | 23    | 0.00      | 0 | 25  |
| 19200             | 0 | 9   | 0.00      | 0 | 11    | 0.00      | 0 | 12  |
| 31250             | 0 | 5   | 2.40      | 0 | 6     | 5.33      | 0 | 7   |
| 38400             | 0 | 4   | 0.00      | 0 | 5     | 0.00      | 0 | 6   |

### Rev. 5.00, 09/03, page 448 of 760

| 1200  | 1 | 95  | 0.00  | 1 | 103 | 0.16 | 1 | 127 | 0.00  | 1 | 1 |
|-------|---|-----|-------|---|-----|------|---|-----|-------|---|---|
| 2400  | 0 | 191 | 0.00  | 0 | 207 | 0.16 | 0 | 255 | 0.00  | 1 | 6 |
| 4800  | 0 | 95  | 0.00  | 0 | 103 | 0.16 | 0 | 127 | 0.00  | 0 | 1 |
| 9600  | 0 | 47  | 0.00  | 0 | 51  | 0.16 | 0 | 63  | 0.00  | 0 | 6 |
| 19200 | 0 | 23  | 0.00  | 0 | 25  | 0.16 | 0 | 31  | 0.00  | 0 | 3 |
| 31250 | 0 | 14  | -1.70 | 0 | 15  | 0.00 | 0 | 19  | -1.70 | 0 | 1 |
| 38400 | 0 | 11  | 0.00  | 0 | 12  | 0.16 | 0 | 15  | 0.00  | 0 | 1 |
|       |   |     |       |   |     |      |   |     |       |   |   |

Pφ (MHz)

|                      |   | 24  |              |   | 24.57 | 6            |   | 28.7 |              |   |   |
|----------------------|---|-----|--------------|---|-------|--------------|---|------|--------------|---|---|
| Bit Rate<br>(bits/s) | n | N   | Error<br>(%) | n | N     | Error<br>(%) | n | N    | Error<br>(%) | n | N |
| 110                  | 3 | 106 | -0.44        | 3 | 108   | 0.08         | 3 | 126  | 0.31         | 3 | 1 |
| 150                  | 3 | 77  | 0.16         | 3 | 79    | 0.00         | 3 | 92   | 0.46         | 3 | 9 |
| 300                  | 2 | 155 | 0.16         | 2 | 159   | 0.00         | 2 | 186  | -0.08        | 2 | 1 |
| 600                  | 2 | 77  | 0.16         | 2 | 79    | 0.00         | 2 | 92   | 0.46         | 2 | 9 |
| 1200                 | 1 | 155 | 0.16         | 1 | 159   | 0.00         | 1 | 186  | -0.08        | 1 | 1 |
| 2400                 | 1 | 77  | 0.16         | 1 | 79    | 0.00         | 1 | 92   | 0.46         | 1 | 9 |
| 4800                 | 0 | 155 | 0.16         | 0 | 159   | 0.00         | 0 | 186  | -0.08        | 0 | 1 |
| 9600                 | 0 | 77  | 0.16         | 0 | 79    | 0.00         | 0 | 92   | 0.46         | 0 | 9 |
| 19200                | 0 | 38  | 0.16         | 0 | 39    | 0.00         | 0 | 46   | -0.61        | 0 | 4 |
| 31250                | 0 | 23  | 0.00         | 0 | 24    | -1.70        | 0 | 28   | -1.03        | 0 | 2 |
| 38400                | 0 | 19  | -2.34        | 0 | 19    | 0.00         | 0 | 22   | 1.55         | 0 | 2 |

RENESAS

| 1k   | 1 | 249 | 2 | 124 | 2 | 249 | 3 | 111 | 3 |
|------|---|-----|---|-----|---|-----|---|-----|---|
| 2.5k | 1 | 99  | 1 | 199 | 2 | 99  | 2 | 178 | 2 |
| 5k   | 0 | 199 | 1 | 99  | 1 | 199 | 2 | 89  | 2 |
| 10k  | 0 | 99  | 0 | 199 | 1 | 99  | 1 | 178 | 1 |
| 25k  | 0 | 39  | 0 | 79  | 0 | 159 | 1 | 71  | 1 |
| 50k  | 0 | 19  | 0 | 39  | 0 | 79  | 0 | 143 | 0 |
| 100k | 0 | 9   | 0 | 19  | 0 | 39  | 0 | 71  | 0 |
| 250k | 0 | 3   | 0 | 7   | 0 | 15  |   | _   | 0 |
| 500k | 0 | 1   | 0 | 3   | 0 | 7   | _ | _   | 0 |
| 1M   | 0 | 0*  | 0 | 1   | 0 | 3   |   | _   |   |
| 2M   |   |     | 0 | 0*  | 0 | 1   | _ | _   |   |

Notes: Settings with an error of 1% or less are recommended.

Blank: No setting possible

-: Setting possible, but error occurs

\*: Continuous transmit/receive operation not possible

Rev. 5.00, 09/03, page 450 of 760

| 2.097152 | 65536  | 0 | 0 |
|----------|--------|---|---|
| 2.4576   | 76800  | 0 | 0 |
| 3        | 93750  | 0 | 0 |
| 3.6864   | 115200 | 0 | 0 |
| 4        | 125000 | 0 | 0 |
| 4.9152   | 153600 | 0 | 0 |
| 8        | 250000 | 0 | 0 |
| 9.8304   | 307200 | 0 | 0 |
| 12       | 375000 | 0 | 0 |
| 14.7456  | 460800 | 0 | 0 |
| 16       | 500000 | 0 | 0 |
| 19.6608  | 614400 | 0 | 0 |
| 20       | 625000 | 0 | 0 |
| 24       | 750000 | 0 | 0 |
| 24.576   | 768000 | 0 | 0 |
| 28.7     | 896875 | 0 | 0 |
| 30       | 937500 | 0 | 0 |

Renesas

| 4       | 1.0000 | 62500  |
|---------|--------|--------|
| 4.9152  | 1.2288 | 76800  |
| 8       | 2.0000 | 125000 |
| 9.8304  | 2.4576 | 153600 |
| 12      | 3.0000 | 187500 |
| 14.7456 | 3.6864 | 230400 |
| 16      | 4.0000 | 250000 |
| 19.6608 | 4.9152 | 307200 |
| 20      | 5.0000 | 312500 |
| 24      | 6.0000 | 375000 |
| 24.576  | 6.1440 | 384000 |
| 28.7    | 7.1750 | 448436 |
| 30      | 7.5000 | 468750 |

# Table 14.8 Maximum Bit Rates with External Clock Input (Synchronous Mode)

| Ρφ (MHz) | External Input Clock (MHz) | Maximum Bit Rate ( |
|----------|----------------------------|--------------------|
| 8        | 1.3333                     | 1333333.3          |
| 16       | 2.6667                     | 2666666.7          |
| 24       | 4.0000                     | 400000.0           |
| 28.7     | 4.7833                     | 4783333.3          |
| 30       | 5.0000                     | 500000.0           |

Rev. 5.00, 09/03, page 452 of 760

the serial control register (SCSCR), as shown in table 14.10.

#### **Asynchronous Mode:**

- Data length is selectable: 7 or 8 bits.
- Parity and multiprocessor bits are selectable. So is the stop bit length (1 or 2 bits). combination of the preceding selections constitutes the communication format and length.
- In receiving, it is possible to detect framing errors (FER), parity errors (PER), over (ORER) and breaks.
- An internal or external clock can be selected as the SCI clock source.
  - When an internal clock is selected, the SCI operates using the on-chip baud rat and can output a serial clock signal with a frequency matching the bit rate.
  - When an external clock is selected, the external clock input must have a freque the bit rate. (The on-chip baud rate generator is not used.)

### Synchronous Mode:

- The transmission/reception format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors (ORER).
- An internal or external clock can be selected as the SCI clock source.
  - When an internal clock is selected, the SCI operates using the on-chip baud rat and outputs a serial clock signal to external devices.
  - When an external clock is selected, the SCI operates on the input serial clock. T baud rate generator is not used.

Rev. 5.00, 09/03, pag

Renesas

|   | 1 | 0 | - | 0 | -                          | 7-bit | Not set | -       |
|---|---|---|---|---|----------------------------|-------|---------|---------|
|   |   |   |   | 1 |                            |       |         |         |
|   |   | 1 | - | 0 | -                          |       | Set     | -       |
|   |   |   |   | 1 | -                          |       |         |         |
|   | 0 | * | 1 | 0 | Asynchronous               | 8-bit | Not set | Set     |
|   |   | * | - | 1 | (multiprocessor<br>format) |       |         |         |
|   | 1 | * | - | 0 | ioimat)                    | 7-bit | _       |         |
|   |   | * | - | 1 | -                          |       |         |         |
| 1 | * | * | * | * | Synchronous                | 8-bit | =       | Not set |

Note: Asterisks (\*) indicate don't care bits.

## Table 14.10 SCSMR and SCSCR Settings and SCI Clock Source Selection

| SCSCI         | R Settings                   |                                                                             | SCI Transmit/Receive Cloc                                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |  |  |
|---------------|------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Bit 1<br>CKE1 | Bit 0<br>CKE0                | Mode                                                                        | Clock<br>Source                                                                                                                                                     | SCK<br>Pin Function                                                                                                                                                                                                                                                                                                      |  |  |
| 0             | 0                            | Asynchronous<br>mode                                                        | Internal                                                                                                                                                            | SCI does not use the S                                                                                                                                                                                                                                                                                                   |  |  |
|               | 1                            |                                                                             |                                                                                                                                                                     | Outputs a clock with free matching the bit rate                                                                                                                                                                                                                                                                          |  |  |
| 1             | 0                            |                                                                             | External                                                                                                                                                            | Inputs a clock with freq                                                                                                                                                                                                                                                                                                 |  |  |
|               | 1                            |                                                                             |                                                                                                                                                                     | times the bit rate                                                                                                                                                                                                                                                                                                       |  |  |
| 0             | 0                            | Synchronous<br>mode                                                         | Internal                                                                                                                                                            | Outputs the synchrono                                                                                                                                                                                                                                                                                                    |  |  |
|               | 1                            |                                                                             |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                          |  |  |
| 1             | 0                            | =                                                                           | External                                                                                                                                                            | Inputs the synchronous                                                                                                                                                                                                                                                                                                   |  |  |
|               | 1                            | =                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                          |  |  |
|               | Bit 1<br>CKE1<br>0<br>1<br>0 | CKE1         CKE0           0 $0$ 1 $0$ 1 $0$ 0 $1$ 0 $0$ 1 $0$ 1 $0$ 1 $1$ | Bit 1<br>CKE1     Bit 0<br>CKE0     Mode       0     0     Asynchronous<br>mode       1     0       1     0       1     0       1     1       0     0       1     1 | Bit 1<br>CKE1     Bit 0<br>CKE0     Mode     Clock<br>Source       0     0     Asynchronous<br>mode     Internal       1     0     External       0     0     Synchronous<br>node       0     0     Internal       1     0     Internal       1     0     Internal       1     0     Internal       1     0     Internal |  |  |

Rev. 5.00, 09/03, page 454 of 760

serial communication, the communication line is normally held in the mark (high) stat monitors the line and starts serial communication when the line goes to the space (low indicating a start bit. One serial character consists of a start bit (low), data (LSB first; the lowerest bit), parity bit (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCI synchronizes at the falling edge of the The SCI samples each data bit on the eighth pulse of a clock with a frequency 16 time Receive data is latched at the center of each bit.

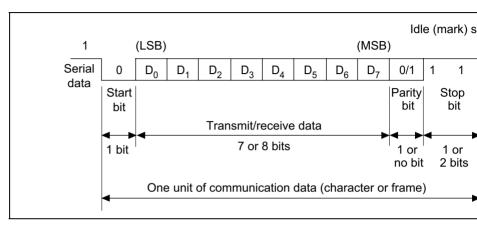



Figure 14.5 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)



| 0      | 0      | 0 | 1      | START          | 8-bit data               |            | STOP        | ST  |
|--------|--------|---|--------|----------------|--------------------------|------------|-------------|-----|
| 0      | 1      | 0 | 0      | START          | 8-bit data               | 8-bit data |             | ST  |
| 0      | 1      | 0 | 1      | START          | 8-bit data               | 8-bit data |             | ST  |
| 1      | 0      | 0 | 0      | START          | 7-bit data               | STOP       |             |     |
| 1      | 0      | 0 | 1      | START          | 7-bit data               | STOP       | STOP        |     |
| 1      | 1      | 0 | 0      | START          | 7-bit data               | Ρ          | STOP        | ]   |
| 1      | 1      | 0 | 1      | START          | 7-bit data               | Ρ          | STOP        | ST  |
| 0      | _      | 1 | 0      | START          | 8-bit data               |            | MPB         | ST  |
|        |        |   |        |                |                          | 8-bit data |             |     |
| 0      | _      | 1 | 1      | START          | 8-bit data               |            | MPB         | ST  |
| 0<br>1 | _      | 1 | 1<br>0 | START<br>START | 8-bit data<br>7-bit data | MPB        | MPB<br>STOP | ST  |
|        | _<br>_ |   |        |                |                          | MPB<br>MPB |             | STO |

**Clock:** An internal clock generated by the on-chip baud rate generator or an external cl from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is by the  $C/\overline{A}$  bit in the serial mode register (SCSMR) and bits CKE1 and CKE0 in the series register (SCSCR) (table 14.10).

When an external clock is input at the SCK pin, it must have a frequency equal to 16 tin desired bit rate.

Rev. 5.00, 09/03, page 456 of 760



Figure 14.6 Output Clock and Serial Data Timing (Asynchronous Mo

**Transmitting and Receiving Data (SCI Initialization (Asynchronous Mode)):** Bef transmitting or receiving, clear the TE and RE bits to 0 in the serial control register (Se initialize the SCI as follows.

When changing the operation mode or communication format, always clear the TE and 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and in transmit shift register (SCTSR). Clearing RE to 0, however, does not initialize the RD FER, and ORER flags or receive data register (SCRDR), which retain their previous c

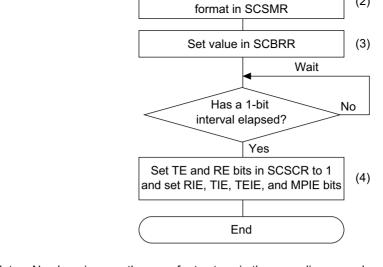

When an external clock is used, the clock should not be stopped during initialization of operation. SCI operation becomes unreliable if the clock is stopped.

Figure 14.7 shows a sample flowchart for initializing the SCI. The procedure for initial SCI is:

- 1. Select the clock source in the serial control register (SCSCR). Leave RIE, TIE, TE TE, and RE cleared to 0. If clock output is selected in asynchronous mode, clock o immediately after the setting is made in SCSCR.
- 2. Select the communication format in the serial mode register (SCSMR).
- 3. Write the value corresponding to the bit rate in the bit rate register (SCBRR) (not n an external clock is used).
- 4. Wait for at least the interval required to transmit or receive one bit, then set TE or serial control register (SCSCR) to 1. Also set RIE, TIE, TEIE, and MPIE as necess TE or RE enables the SCI to use the TxD or RxD pin. The initial state is the mark transmitting, or the idle state (waiting for a start bit) when receiving.

Rev. 5.00, 09/03, pag

Renesas



Note: Numbers in parentheses refer to steps in the preceding procedure description.

Figure 14.7 Sample Flowchart for SCI Initialization

**Transmitting Serial Data (Asynchronous Mode):** Figure 14.8 shows a sample flowed transmitting serial data. The procedure for transmitting serial data is:

- 1. SCI status check and transmit data write: Read the serial status register (SCSSR), ch the TDRE bit is 1, then write transmit data in the transmit data register (SCTDR) an TDRE to 0.
- 2. To continue transmitting serial data: Read the TDRE bit to check whether it is safe it reads 1); if so, write data in SCTDR, then clear TDRE to 0.
- To output a break at the end of serial transmission: Set the port SC data register (SC port SC control register (SCPCR), then clear the TE bit to 0 in the serial control reg (SCSCR). For SCPCR and SCPDR settings, see section 14.2.8, SC Port Control Re (SCPCR)/SC Port Data Register (SCPDR).

Rev. 5.00, 09/03, page 458 of 760

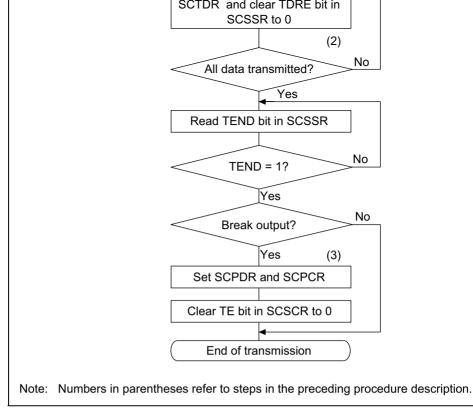



Figure 14.8 Sample Flowchart for Transmitting Serial Data

Rev. 5.00, 09/03, pag

Renesas

- a. Start bit: One 0 bit is output.
- b. Transmit data: Seven or eight bits of data are output, LSB first.
- c. Parity bit or multiprocessor bit: One parity bit (even or odd parity) or one multip bit is output. Formats in which neither a parity bit nor a multiprocessor bit is out also be selected.
- d. Stop bit: One or two 1-bits (stop bits) are output.
- e. Marking: Output of 1-bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI loc data from SCTDR into SCTSR, outputs the stop bit, then begins serial transmission frame. If TDRE is 1, the SCI sets the TEND bit to 1 in SCSSR, outputs the stop bit, continues output of 1-bits (marking). If the transmit-end interrupt enable bit (TEIE) is set to 1, a transmit-end interrupt (TEI) is requested.

Rev. 5.00, 09/03, page 460 of 760

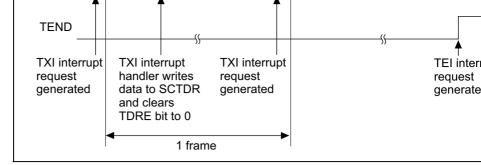



Figure 14.9 Example of SCI Transmit Operation in Asynchronous Mo (8-Bit Data with Parity and One Stop Bit)

**Receiving Serial Data (Asynchronous Mode):** Figure 14.10 shows a sample flowchar receiving serial data. The procedure for receiving serial data after enabling the SCI for is:

- Receive error handling and break detection: If a receive error occurs, read the ORE FER bits in SCSSR to identify the error. After executing the necessary error handle ORER, PER and FER to 0. Receiving cannot resume if ORER, PER or FER remain When a framing error occurs, the RxD pin can be read to detect the break state.
- SCI status check and receive-data read: Read the serial status register (SCSSR), ch RDRF is set to 1, then read receive data from the receive data register (SCRDR) an RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has c 0 to 1.
- 3. To continue receiving serial data: Read the RDRF and SCRDR bits and clear RDR before the stop bit of the current frame is received.

Rev. 5.00, 09/03, pag

Renesas

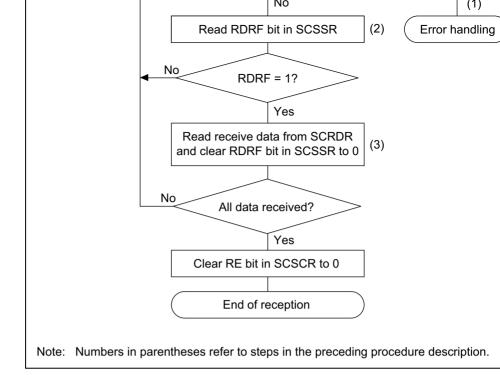



Figure 14.10 Sample Flowchart for Receiving Serial Data

Rev. 5.00, 09/03, page 462 of 760

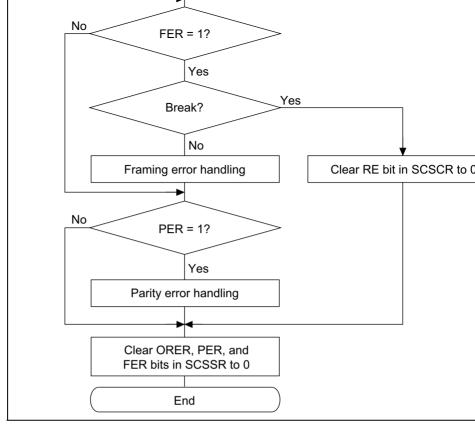



Figure 14.10 Sample Flowchart for Receiving Serial Data (cont)

Renesas

- -
- b. Stop bit check: The stop bit value must be 1. If there are two stop bits, only the f is checked.
- c. Status check: RDRF must be 0 so that receive data can be loaded from SCRSR is SCRDR.

If these checks all pass, the SCI sets RDRF to 1 and stores the received data in S one of the checks fails (receive error), the SCI operates as indicated in table 14.1

- Note: When a receive error flag is set, further receiving is disabled. The RDRF bit is not Be sure to clear the error flags.
- 4. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 SCSCR, the SCI requests a receive-data-full interrupt (RXI). If one of the error flag PER, or FER) is set to 1 and the receive-data-full interrupt enable bit (RIE) in SCSC set to 1, the SCI requests a receive-error interrupt (ERI).

#### Table 14.12 Receive Error Conditions and SCI Operation

| Receive Error | Abbreviation | Condition                                                            | Data Transfer                                     |
|---------------|--------------|----------------------------------------------------------------------|---------------------------------------------------|
| Overrun error | ORER         | Receiving of next data ends while<br>RDRF is still set to 1 in SCSSR | Receive data no<br>transferred from<br>into SCRDR |
| Framing error | FER          | Stop bit is 0                                                        | Receive data tra<br>from SCRSR into               |
| Parity error  | PER          | Parity of receive data differs from even/odd parity setting in SCSMR | Receive data tra<br>from SCRSR inte               |

Rev. 5.00, 09/03, page 464 of 760

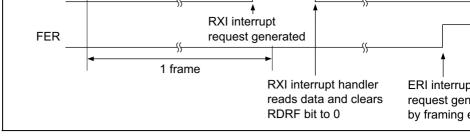



Figure 14.11 Example of SCI Receive Operation (8-Bit Data with Parity and One Stop Bit)

#### 14.3.3 Multiprocessor Communication

The multiprocessor communication function enables several processors to share a sing communication line. The processors communicate in asynchronous mode using a form additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by a unique I communication cycle consists of an ID-sending cycle that identifies the receiving proceduta-sending cycle. The multiprocessor bit distinguishes ID-sending cycles from data-cycles. The transmitting processor starts by sending the ID of the receiving processor it wants to communicate as data with the multiprocessor bit set to 1. Next the transmit processor sends transmit data with the multiprocessor bit cleared to 0.

Receiving processors skip incoming data until they receive data with the multiprocess 1. When they receive data with the multiprocessor bit set to 1, receiving processors co data with their IDs. The receiving processor with a matching ID continues to receive f incoming data. Processors with IDs not matching the received data skip further incom until they again receive data with the multiprocessor bit set to 1. Multiple processors co receive data in this way.

Figure 14.12 shows an example of communication among processors using the multip format.

Rev. 5.00, 09/03, pag

# Renesas

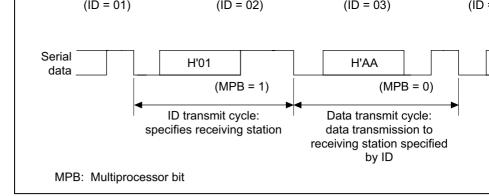



Figure 14.12 Communication Among Processors Using Multiprocessor For (Sending Data H'AA to Receiving Processor A)

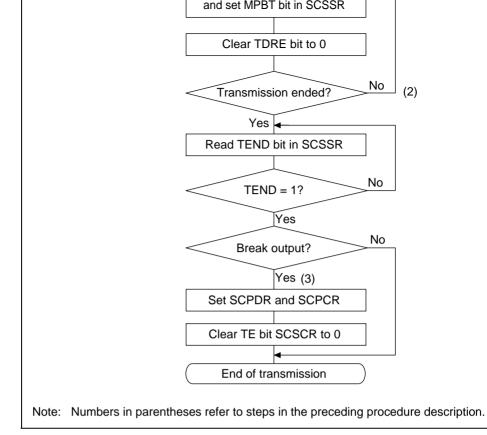
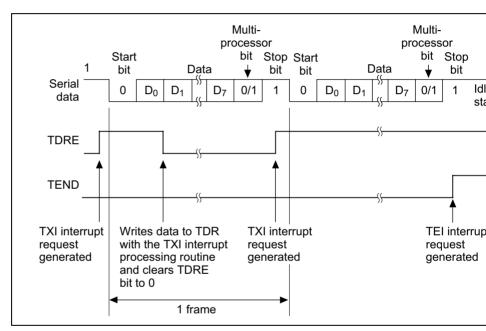
**Communication Formats:** Four formats are available. Parity-bit settings are ignored w multiprocessor format is selected. For details see table 14.11.

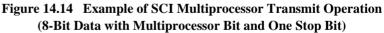
Clock: See the description in the asynchronous mode section.

**Transmitting Multiprocessor Serial Data:** Figure 14.13 shows a sample flowchart for transmitting multiprocessor serial data. The procedure for transmitting multiprocessor serial data.

- SCI status check and transmit data write: Read the serial status register (SCSSR), ch the TDRE bit is 1, then write transmit data in the transmit data register (SCTDR). A MPBT (multiprocessor bit transfer) to 0 or 1 in SCSSR. Finally, clear TDRE to 0.
- 2. To continue transmitting serial data: Read the TDRE bit to check whether it is safe it reads 1); if so, write data in SCTDR, then clear TDRE to 0.
- To output a break at the end of serial transmission: Set the port SC data register (SC port SC control register (SCPCR), then clear the TE bit to 0 in the serial control reg (SCSCR). For SCPCR and SCPDR settings, see section 14.2.8, SC Port Control Reg (SCPCR)/SC Port Data Register (SCPDR).

Rev. 5.00, 09/03, page 466 of 760



Figure 14.13 Sample Flowchart for Transmitting Multiprocessor Serial

Renesas

- a. Start bit: One 0-bit is output.
- b. Transmit data: Seven or eight bits are output, LSB first.
- c. Multiprocessor bit: One multiprocessor bit (MPBT value) is output.
- d. Stop bit: One or two 1-bits (stop bits) are output.
- e. Marking: Output of 1-bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI tra from SCTDR into SCTSR, outputs the stop bit, then begins serial transmission of th frame. If TDRE is 1, the SCI sets the TEND bit in SCSSR to 1, outputs the stop bit, continues output of 1 bits in the mark state. If the transmit-end interrupt enable bit ( SCSCR is set to 1, a transmit-end interrupt (TEI) is requested at this time.

Figure 14.14 shows SCI transmission with a multiprocessor format.





Rev. 5.00, 09/03, page 468 of 760

Renesas

from the receive data register (SCRDR).

4. Receive error handling and break detection: If a receive error occurs, read the ORE bits in SCSSR to identify the error. After executing the necessary error handling, c ORER and FER to 0. Receiving cannot resume if ORER or FER remain set to 1. W framing error occurs, the RxD pin can be read to detect the break state.

Renesas

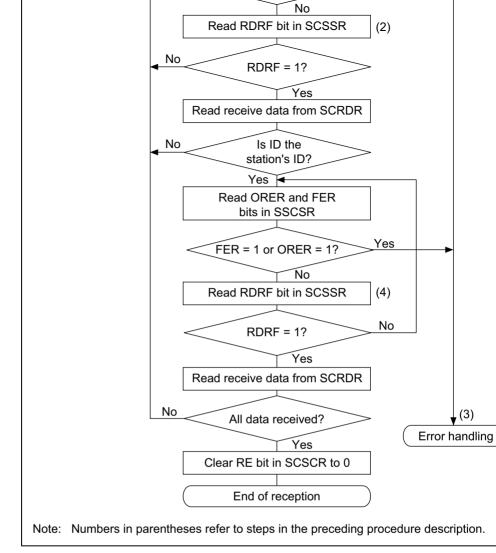



Figure 14.15 Sample Flowchart for Receiving Multiprocessor Serial Da

Rev. 5.00, 09/03, page 470 of 760

Renesas

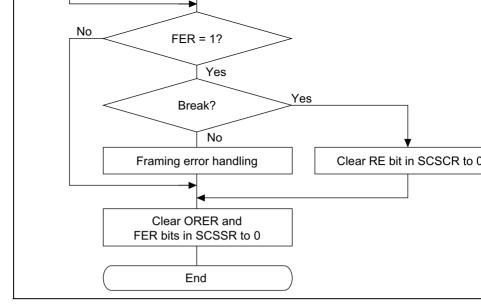



Figure 14.15 Sample Flowchart for Receiving Multiprocessor Serial Data

Renesas

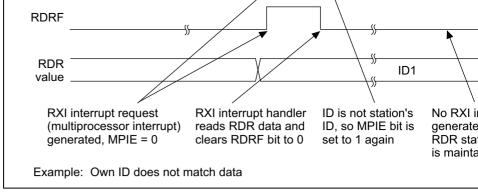



Figure 14.16 Example of SCI Receive Operation (8-Bit Data with Multiprocessor Bit and One Stop Bit)

Rev. 5.00, 09/03, page 472 of 760

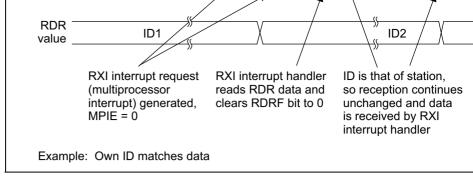



Figure 14.16 Example of SCI Receive Operation (cont) (8-Bit Data with Multiprocessor Bit and One Stop Bit)

Renesas

Figure 14.17 shows the general format in synchronous serial communication.

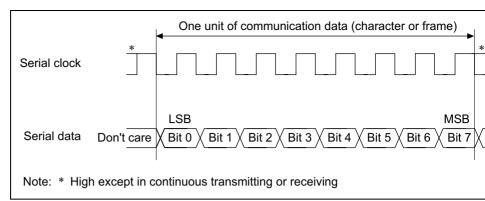
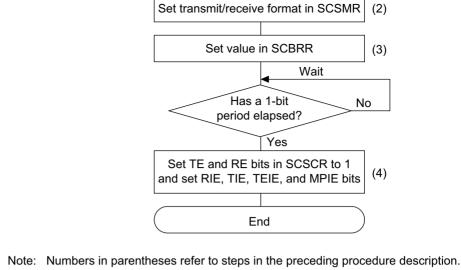



Figure 14.17 Data Format in Synchronous Communication

In synchronous serial communication, each data bit is output on the communication line falling edge of the serial clock to the next. Data is guaranteed valid at the rising edge of clock. In each character, the serial data bits are transmitted in order from the LSB (first, MSB (last). After output of the MSB, the communication line remains in the state of the synchronous mode, the SCI transmits or receives data by synchronizing with the falling the serial clock.

**Communication Format:** The data length is fixed at eight bits. No parity bit or multip can be added.

Rev. 5.00, 09/03, page 474 of 760


external clock source.

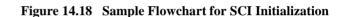

**Transmitting and Receiving Data SCI Initialization (Synchronous Mode):** Before transmitting, receiving, or changing the mode or communication format, the software the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the SCI. to 0 sets TDRE to 1 and initializes the transmit shift register (SCTSR). Clearing RE to does not initialize the RDRF, PER, FER, and ORER flags and receive data register (Swhich retain their previous contents.

Figure 14.18 shows a sample flowchart for initializing the SCI. The procedure for init SCI is:

- 1. Select the clock source in the serial control register (SCSCR). Leave RIE, TIE, TE TE and RE cleared to 0.
- 2. Select transmit/receive format in the serial mode register (SCSMR).
- 3. Write the value corresponding to the bit rate in the bit rate register (SCBRR) (not an external clock is used).
- 4. Wait for at least the interval required to transmit or receive one bit, then set TE or serial control register (SCSCR) to 1. Also set RIE, TIE, TEIE and MPIE. Setting T allows use of the TxD and RxD pins.

Renesas





**Transmitting Serial Data (Synchronous Mode):** Figure 14.19 shows a sample flowch transmitting serial data. The procedure for transmitting serial data is:

- 1. SCI status check and transmit data write: Read the serial status register (SCSSR), ch the TDRE bit is 1, then write transmit data in the transmit data register (SCTDR) an TDRE to 0.
- 2. To continue transmitting serial data: Read the TDRE bit to check whether it is safe it reads 1); if so, write data in SCTDR, then clear TDRE to 0.

Rev. 5.00, 09/03, page 476 of 760

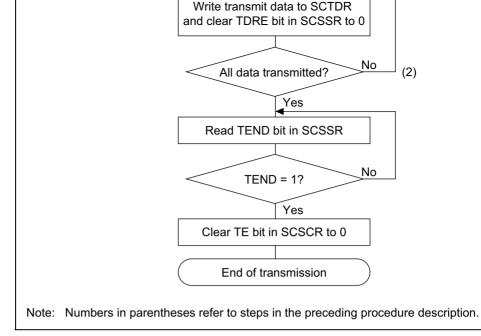



Figure 14.19 Sample Flowchart for Transmitting Serial Data

Renesas

clock source is selected, the SCI outputs data in synchronization with the input cloc output from the TxD pin in order from the LSB (bit 0) to the MSB (bit 7).

- 3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is 0, the SC data from SCTDR into SCTSR, then begins serial transmission of the next frame. If 1, the SCI sets the TEND bit in SCSSR to 1, transmits the MSB, then holds the tran pin (TxD) in the MSB state. If the transmit-end interrupt enable bit (TEIE) in SCSC 1, a transmit-end interrupt (TEI) is requested at this time.
- 4. After the end of serial transmission, the SCK pin is held in the high state.

Figure 14.20 shows an example of SCI transmit operation.

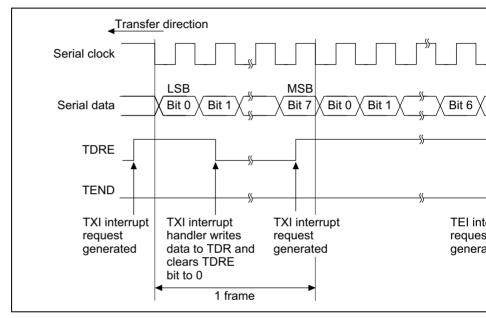



Figure 14.20 Example of SCI Transmit Operation

Rev. 5.00, 09/03, page 478 of 760

- cannot resume if OKEK remains set to 1.
- SCI status check and receive data read: Read the serial status register (SCSSR), ch RDRF is set to 1, then read receive data from the receive data register (SCRDR) at RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has c 0 to 1.
- 3. To continue receiving serial data: Read SCRDR, and clear RDRF to 0 before the M of the current frame is received.

Renesas

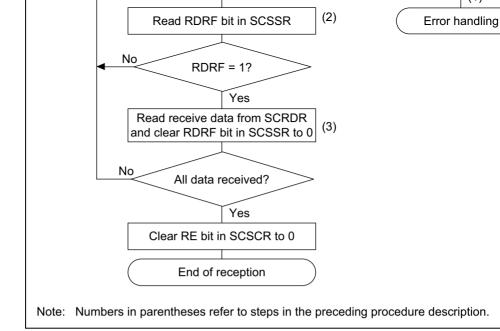



Figure 14.21 Sample Flowchart for Receiving Serial Data

Rev. 5.00, 09/03, page 480 of 760

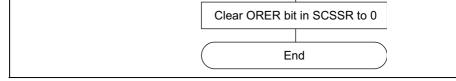



Figure 14.21 Sample Flowchart for Receiving Serial Data (cont)

In receiving, the SCI operates as follows:

- 1. The SCI synchronizes with serial clock input or output and initializes internally.
- 2. Receive data is shifted into SCRSR in order from the LSB to the MSB. After receidata, the SCI checks that RDRF is 0 so that receive data can be loaded from SCRS SCRDR. If this check is passed, the SCI sets RDRF to 1 and stores the received da SCRDR. If the check is not passed (receive error), the SCI operates as indicated in This state prevents further transmission or reception. While receiving, the RDRF to 1. Be sure to clear the error flag.
- After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to SCSCR, the SCI requests a receive-data-full interrupt (RXI). If the ORER bit is se receive-data-full interrupt enable bit (RIE) in SCSCR is also set to 1, the SCI requireceive-error interrupt (ERI).

Figure 14.22 shows an example of SCI receive operation.



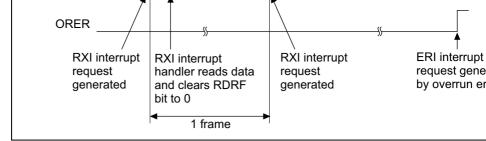



Figure 14.22 Example of SCI Receive Operation

**Transmitting and Receiving Serial Data Simultaneously (Synchronous Mode):** Fig shows a sample flowchart for transmitting and receiving serial data simultaneously. The for setting the SCI to transmit and receive serial data simultaneously is:

- SCI status check and transmit data write: Read the serial status register (SCSSR), ch the TDRE bit is 1, then write transmit data in the transmit data register (SCTDR) an TDRE to 0. The TXI interrupt can also be used to determine if the TDRE bit has ch 0 to 1.
- 2. Receive error handling: If a receive error occurs, read the ORER bit in SCSSR to id error. After executing the necessary error handling, clear ORER to 0. Transmitting/s cannot resume if ORER remains set to 1.
- 3. SCI status check and receive data read: Read the serial status register (SCSSR), che RDRF is set to 1, then read receive data from the receive data register (SCRDR) and RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has ch 0 to 1.
- 4. To continue transmitting and receiving serial data: Read the RDRF bit and SCRDR, RDRF to 0 before the MSB (bit 7) of the current frame is received. Also read the TI check whether it is safe to write (if it reads 1); if so, write data in SCTDR, then clea 0 before the MSB (bit 7) of the current frame is transmitted.

Rev. 5.00, 09/03, page 482 of 760

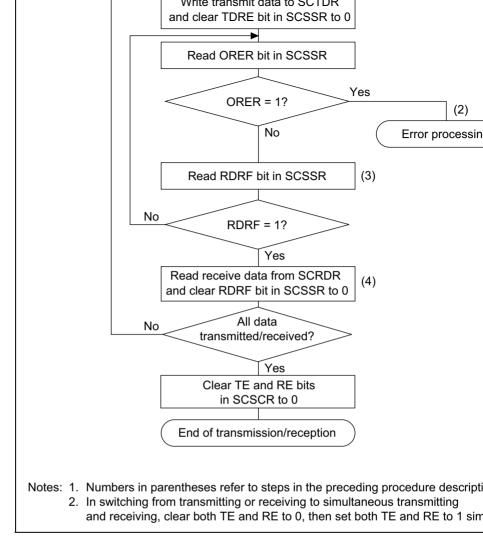



Figure 14.23 Sample Flowchart for Transmitting/Receiving Serial Da

Rev. 5.00, 09/03, pag

The is requested when the represent of the besself is set to 1.

ERI is requested when the ORER, PER, or FER bit in SCSSR is set to 1.

TEI is requested when the TEND bit in SCSSR is set to 1. Where the TXI interrupt indicates that writing is enabled, the TEI interrupt indicates that the transmit operation is

Table 14.13 SCI Interrupt Sources

| Interrupt Source | Description                       | Priority When Reset Is |
|------------------|-----------------------------------|------------------------|
| ERI              | Receive error (ORER, PER, or FER) | High                   |
| RXI              | Receive data full (RDRF)          | <b>↑</b>               |
| TXI              | Transmit data empty (TDRE)        | ↓                      |
| TEI              | Transmit end (TEND)               | Low                    |

See section 4, Exception Handling, for priorities and the relationship to non-SCI interru

Rev. 5.00, 09/03, page 484 of 760

transmit data to SCIDR, be sure to check that IDRE is set to 1.

**Simultaneous Multiple Receive Errors:** Table 14.14 indicates the state of SCSSR st when multiple receive errors occur simultaneously. When an overrun error occurs, the contents cannot be transferred to SCRDR, so receive data is lost.

| RDRF           |                            |                                                                                                                         |                                                                                                                                                                                                   | Receive D                                                                                                                                                                                                 |
|----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NENI           | ORER                       | FER                                                                                                                     | PER                                                                                                                                                                                               | SCRSR →                                                                                                                                                                                                   |
| 1              | 1                          | 0                                                                                                                       | 0                                                                                                                                                                                                 | Х                                                                                                                                                                                                         |
| 0              | 0                          | 1                                                                                                                       | 0                                                                                                                                                                                                 | 0                                                                                                                                                                                                         |
| 0              | 0                          | 0                                                                                                                       | 1                                                                                                                                                                                                 | 0                                                                                                                                                                                                         |
| 1              | 1                          | 1                                                                                                                       | 0                                                                                                                                                                                                 | Х                                                                                                                                                                                                         |
| 1              | 1                          | 0                                                                                                                       | 1                                                                                                                                                                                                 | Х                                                                                                                                                                                                         |
| 0              | 0                          | 1                                                                                                                       | 1                                                                                                                                                                                                 | 0                                                                                                                                                                                                         |
| <sup>.</sup> 1 | 1                          | 1                                                                                                                       | 1                                                                                                                                                                                                 | Х                                                                                                                                                                                                         |
|                | 1<br>0<br>0<br>1<br>1<br>0 | 1     1       0     0       0     0       1     1       1     1       0     0       1     1       0     0       1     1 | 1     1     0       0     0     1       0     0     0       1     1     1       1     1     0       0     0     1       1     1     1       1     1     1       1     1     1       1     1     1 | 1     1     0     0       0     0     1     0       0     0     1     0       1     1     1     0       1     1     0     1       1     1     1     0       1     1     1     1       0     0     1     1 |

 Table 14.14
 SCSSR Status Flags and Transfer of Receive Data

X: Receive data is not transferred from SCRSR to SCRDR.

O: Receive data is transferred from SCRSR to SCRDR.

**Break Detection and Processing:** Break signals can be detected by reading the RxD when a framing error (FER) is detected. In the break state, the input from the RxD pin all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state, receiver continues to operate, so if the FER bit is cleared to 0, it will be set to 1 again.

**Sending a Break Signal:** The TxD pin I/O condition and level can be determined by a SCP0DT bit in the port SC data register (SCPDR) and bits SCP0MD0 and SCP0MD1 SC control register (SCPCR). This feature can be used to send breaks. To send a break serial transmission, clear the SCP0DT bit to 0 (designating low level), then clear the T (halting transmission). When the TE bit is cleared to 0, the transmitter is initialized reg the current transmission state, and 0 is output from the TxD pin.

Rev. 5.00, 09/03, pag

# Renesas

to 0 does not clear the receive error flags.

**Receive Data Sampling Timing and Receive Margin in Asynchronous Mode:** In asymode, the SCI operates on a base clock of 16 times the transfer rate frequency. In receive SCI synchronizes internally with the falling edge of the start bit, which it samples on the clock. Receive data is latched at the rising edge of the eighth base clock pulse (figure 14)

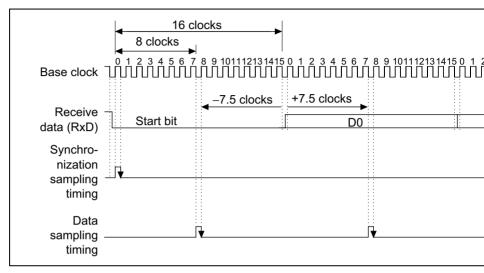



Figure 14.24 Receive Data Sampling Timing in Asynchronous Mode

Rev. 5.00, 09/03, page 486 of 760

L = Frame length (L = 9 to 12) F = Absolute deviation of clock frequency

From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as in equation 2

Equation 2:

 $\label{eq:main_state} \begin{array}{l} M &= (0.5 - 1/(2 \times 16)) \times 100\% \\ &= 46.875\% \end{array}$ 

This is a theoretical value. A reasonable margin to allow in system designs is 20% to 3

#### Notes on Synchronous External Clock Mode:

- Do not set TE = RE = 1 until at least four clocks after external clock SCK has char to 1.
- Set TE = RE = 1 only when external clock SCK is 1.
- When receiving, RDRF is set to 1 when RE is set to zero 2.5–3.5 clocks after the r the SCK input of the D7 bit in RxD, but data cannot be copied to SCRDR.

Note on Synchronous Internal Clock Mode: When receiving, RDRF is set to 1 when R to zero 1.5 clocks after the rising edge of the SCK output of the D7 bit in RxD, but dat copied to SCRDR.

Renesas

Rev. 5.00, 09/03, page 488 of 760

#### 15.1.1 Features

The smart card interface has the following features:

- Asynchronous mode
  - Data length: 8 bits
  - Parity bit generation and check
  - Receive mode error signal detection (parity error)
  - Transmit mode error signal detection and automatic re-transmission of data
  - Supports both direct convention and inverse convention
- Bit rate can be selected using on-chip baud rate generator.
- Three types of interrupts: Transmit-data-empty, receive-data-full, and communication interrupts are requested independently.

Renesas

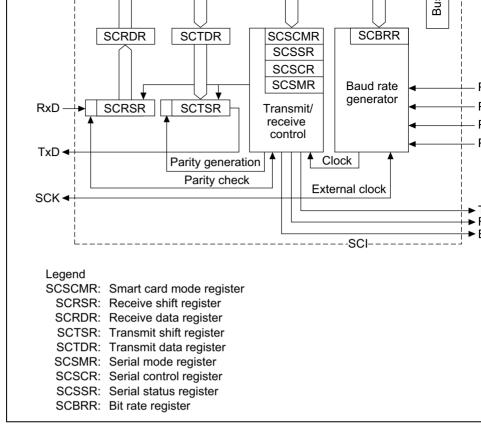



Figure 15.1 Block Diagram of Smart Card Interface

Rev. 5.00, 09/03, page 490 of 760

| Transmit data pin TxD0 Output Transmit d | data output |
|------------------------------------------|-------------|
|------------------------------------------|-------------|

### 15.1.4 Smart Card Interface Registers

Table 15.2 summarizes the registers used by the smart card interface. The SCSMR, SC SCSCR, SCTDR, and SCRDR registers are the same as for the normal SCI function. The described in section 14, Serial Communication Interface (SCI).

#### Table 15.2 Registers

| Name                     | Abbreviation | R/W     | Initial Value <sup>*3</sup> | Address    |
|--------------------------|--------------|---------|-----------------------------|------------|
| Serial mode register     | SCSMR        | R/W     | H'00                        | H'FFFFFE80 |
| Bit rate register        | SCBRR        | R/W     | H'FF                        | H'FFFFFE82 |
| Serial control register  | SCSCR        | R/W     | H'00                        | H'FFFFFE84 |
| Transmit data register   | SCTDR        | R/W     | H'FF                        | H'FFFFFE86 |
| Serial status register   | SCSSR        | R/(W)*1 | H'84                        | H'FFFFFE88 |
| Receive data register    | SCRDR        | R       | H'00                        | H'FFFFFE8A |
| Smart card mode register | SCSCMR       | R/W     | H'00 <sup>*2</sup>          | H'FFFFFE8C |
|                          |              |         |                             |            |

Notes: 1. Only 0 can be written, to clear the flags.

2. Bits 0, 2, and 3 are cleared. The value of the other bits is undefined.

3. Initialized by a power-on or manual reset.

Rev. 5.00, 09/03, pag

mode.

| Bit:           | 7 | 6 | 5 | 4 | 3    | 2    | 1 |
|----------------|---|---|---|---|------|------|---|
|                | _ | — | _ | _ | SDIR | SINV | — |
| Initial value: | — | _ | — | — | 0    | 0    | _ |
| R/W:           | R | R | R | R | R/W  | R/W  | R |

**Bits 7 to 4 and 1—Reserved:** These bits are always read as 0. The write value should 0.

**Bit 3—Smart Card Data Transfer Direction (SDIR):** Selects the serial/parallel conversion format.

| Bit 3: SDIR | Description                                                                         |
|-------------|-------------------------------------------------------------------------------------|
| 0           | Contents of SCTDR are transferred LSB-first, and receive data is SCRDR LSB-first (I |
| 1           | Contents of SCTDR are transferred MSB-first, and receive data is SCRDR MSB-first    |

**Bit 2—Smart Card Data Inversion (SINV):** Specifies whether to invert the logic level data. This function is used in combination with bit 3 for transmitting and receiving with convention card. SINV does not affect the logic level of the parity bit. See section 15.3. Settings, for information on how parity is set.

| Bit 2: SINV | Description                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------|
| 0           | Contents of SCTDR are transferred unchanged, and receive data<br>in SCRDR unchanged (I            |
| 1           | Contents of SCTDR are inverted before transfer, and receive data inverted before storage in SCRDR |

Rev. 5.00, 09/03, page 492 of 760

In smart card interface mode, the function of SCSSR bit 4 is changed. The setting con bit 2, the TEND bit, are also changed.

| Bit:           | 7      | 6      | 5      | 4       | 3      | 2    | 1   |
|----------------|--------|--------|--------|---------|--------|------|-----|
|                | TDRE   | RDRF   | ORER   | FER/ERS | PER    | TEND | MPE |
| Initial value: | 1      | 0      | 0      | 0       | 0      | 1    | 0   |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)*  | R/(W)* | R    | R   |

Note: Only 0 can be written, to clear the flag.

### Bit 7—Transmit Data Register Empty (TDRE) Bit 6—Receive Data Register Full (RDRE) Bit 5—Overrun Error (ORER)

# These bits have the same function as in the ordinary SCI. See section 14, Serial Comm Interface (SCI), for more information.

**Bit 4—Error Signal Status (ERS):** In the smart card interface mode, bit 4 indicates t the error signal returned from the receiving side during transmission. The smart card i cannot detect framing errors.

| Bit 4: ERS | Description                                                            |
|------------|------------------------------------------------------------------------|
| 0          | Receiving ended normally with no error signal                          |
|            | [Clearing conditions]                                                  |
|            | (1) By a reset or in standby mode                                      |
|            | (2) Cleared by reading ERS when ERS = 1, then writing 0 to ERS         |
| 1          | An error signal indicating a parity error was transmitted from the rec |
|            | [Setting condition]                                                    |
|            | If the error signal sampled is low                                     |
|            |                                                                        |

Note: The ERS flag maintains its state even when the TE bit in SCSCR is cleared to

Renesas

[Setting conditions]

- (1) the chip is reset or enters standby mode,
- (2) the TE bit in SCSCR is 0 and the FER/ERS bit is also 0,
- (3) the C/A bit in SCSMR is 0, and TDRE = 1 and FER/ERS = 0 (norm transmission) 2.5 etu after a one-byte serial character is transmitte
- (4) the C/A bit in SCSMR is 1, and TDRE = 1 and FER/ERS = 0 (norm transmission) 1.0 etu after a one-byte serial character is transmitte

Note: etu: Elementary Time Unit (time for transfer of 1 bit).

## 15.3 Operation

### 15.3.1 Overview

The primary functions of the smart card interface are described below.

- 1. Each frame consists of 8-bit data and 1 parity bit.
- 2. During transmission, the card leaves a guard time of at least 2 etu (elementary time for transfer of 1 bit) from the end of the parity bit to the start of the next frame.
- 3. During reception, the card outputs an error signal low level for 1 etu after 10.5 etu h from the start bit if a parity error was detected.
- 4. During transmission, it automatically transmits the same data after allowing at least the time the error signal is sampled.
- 5. Only start-stop type asynchronous communication functions are supported; no sync communication functions are available.

Rev. 5.00, 09/03, page 494 of 760

on the IC card.

Use the chip's port output as the reset signal. Apart from these pins, power and ground connections are usually also required.

Note: When the IC card is not connected and both RE and TE are set to 1, closed co is possible and auto-diagnosis can be performed.

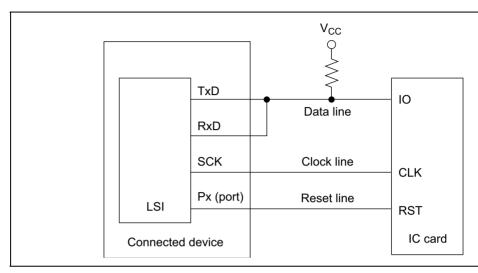



Figure 15.2 Pin Connection Diagram for Smart Card Interface

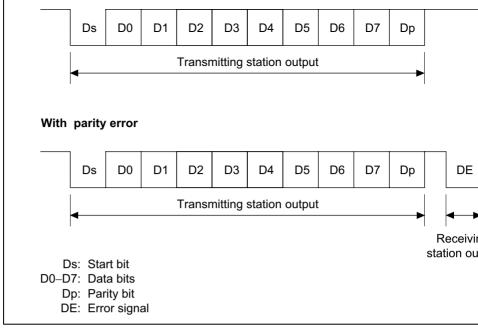



Figure 15.3 Data Format for Smart Card Interface

The operating sequence is:

- 1. The data line is high-impedance when not in use and is fixed high with a pull-up reg
- 2. The transmitting side starts one frame of data transmission. The data frame starts we bit (Ds, low level). The start bit is followed by eight data bits (D0–D7) and a parity
- 3. On the smart card interface, the data line returns to high-impedance after this. The c pulled high with a pull-up register.
- 4. The receiving side checks parity. When the data is received normally with no parity receiving side then waits to receive the next data. When a parity error occurs, the reside outputs an error signal (DE, low level) and requests re-transfer of data. The rec station returns the signal line to high-impedance after outputting the error signal for period. The signal line is pulled high with a pull-up register.

Rev. 5.00, 09/03, page 496 of 760

| Register | Address    | Bit 7 | Bit 6 | Bit 5 | Bit 4       | Bit 3 | Bit 2 | Bit |
|----------|------------|-------|-------|-------|-------------|-------|-------|-----|
| SCSMR    | H'FFFFFE80 | C/A   | 0     | 1     | O/E         | 1     | 0     | CK  |
| SCBRR    | H'FFFFFE82 | BRR7  | BRR6  | BRR5  | BRR4        | BRR3  | BRR2  | BR  |
| SCSCR    | H'FFFFFE84 | TIE   | RIE   | TE    | RE          | 0     | 0     | CK  |
| SCTDR    | H'FFFFFE86 | TDR7  | TDR6  | TDR5  | TDR4        | TDR3  | TDR2  | TDF |
| SCSSR    | H'FFFFFE88 | TDRE  | RDRF  | ORER  | FER/<br>ERS | PER   | TEND  | 0   |
| SCRDR    | H'FFFFFE8A | RDR7  | RDR6  | RDR5  | RDR4        | RDR3  | RDR2  | RDI |
| SCSCMR   | H'FFFFFE8C | _     | _     | _     |             | SDIR  | SINV  |     |
|          |            |       |       |       |             |       |       |     |

Note: Dashes indicate unused bits.

- 1. Setting the serial mode register (SCSMR): The C/A bit selects the setting timing o flag, and selects the clock output state in combination with bits CKE1 and CKE0 i control register (SCSCR). Clear the  $O/\overline{E}$  bit to 0 if the IC card uses the direct convest it to 1 if the card uses the inverse convention. Select the on-chip baud rate gene source with the CKS1 and CKS0 bits (see section 15.3.5, Clock).
- 2. Setting the bit rate register (SCBRR): Set the bit rate. See section 15.3.5, Clock, to calculate the set value.
- Setting the serial control register (SCSCR): The TIE, RIE, TE and RE bits function for the ordinary SCI. See section 14, Serial Communication Interface (SCI), for m information. The CKE0 bit specifies the clock output. When no clock is output, clo 0; when a clock is output, set CKE0 to 1.
- 4. Setting the smart card mode register (SCSCMR): The SDIR and SINV bits are bot 0 for IC cards that use the direct convention, and both set to 1 when the inverse co used. The SMIF bit is set to 1 for the smart card interface.

Figure 15.4 shows sample waveforms for register settings of the two types of IC convention and inverse convention) and their start characters.

In the direct convention type, the logical 1 level is state Z, the logical 0 level is stat communication is LSB-first. The start character data is H'3B. Parity is even (from card standard), and so the parity bit is 1.

Rev. 5.00, 09/03, pag

# Renesas

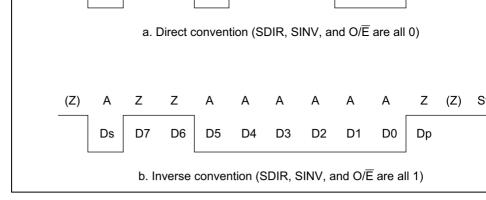



Figure 15.4 Waveform of Start Character

## 15.3.5 Clock

Only the internal clock generated by the on-chip baud rate generator can be used as the communication clock in the smart card interface. The bit rate for the clock is set by the register (SCBRR) and the CKS1 and CKS0 bits in the serial mode register (SCSMR), a calculated using the equation below. Table 15.5 shows sample bit rates. If clock output selected by setting CKE0 to 1, a clock with a frequency 372 times the bit rate is output SCK0 pin.

$$\mathsf{B} = \frac{\mathsf{P}\phi}{1488 \times 2^{2\mathsf{n}-1} \times (\mathsf{N}+1)} \times 10^6$$

Where: N = Value set in SCBRR ( $0 \le N \le 255$ ) B = Bit rate (bits/s) P $\phi$  = Peripheral module operating frequency (MHz) n = 0 to 3 (table 15.4)

Rev. 5.00, 09/03, page 498 of 760

|   |        |         |         | Pφ (MHz | )       |         |
|---|--------|---------|---------|---------|---------|---------|
| Ν | 7.1424 | 10.00   | 10.7136 | 13.00   | 14.2848 | 16.00   |
| 0 | 9600.0 | 13440.9 | 14400.0 | 17473.1 | 19200.0 | 21505.4 |
| 1 | 4800.0 | 6720.4  | 7200.0  | 8736.6  | 9600.0  | 10752.7 |
| 2 | 3200.0 | 4480.3  | 4800.0  | 5824.4  | 6400.0  | 7168.5  |

Table 15.5 Examples of Bit Rate B (Bits/s) for SCBRR Settings (n = 0)

Note: The bit rate is rounded to one decimal place.

Calculate the value to be set in the bit rate register (SCBRR) from the operating freque bit rate. N is an integer in the range  $0 \le N \le 255$ , specifying a smallish error.

$$N = \frac{P\phi}{1488 \times 2^{2n-1} \times B} \times 10^6 - 1$$

| Table 15.6 Examples of SCBRR Settings | s for Bit Rate B (Bits/s) (n = 0) | ) |
|---------------------------------------|-----------------------------------|---|
|---------------------------------------|-----------------------------------|---|

|   |        |   |       |   | Ψ(י    |   | 5000 Bit | 3/3/ |        |   |       |
|---|--------|---|-------|---|--------|---|----------|------|--------|---|-------|
| 7 | 7.1424 |   | 10.00 | 1 | 0.7136 |   | 13.00    | 1    | 4.2848 |   | 16.00 |
| Ν | Error  | Ν | Error | Ν | Error  | Ν | Error    | Ν    | Error  | Ν | Error |
| 0 | 0.00   | 1 | 30.00 | 1 | 25.00  | 1 | 8.99     | 1    | 0.00   | 1 | 12.01 |

(MHz) (9600 Bits/s)

RENESAS

| 16.00 | 21505 | 0 0 |
|-------|-------|-----|
| 18.00 | 24194 | 0 0 |

The bit rate error is found as follows:

$$\text{Error (\%)} = (\frac{P\phi}{1488 \times 2^{2n-1} \times B \times (N+1)} \times 10^6 - 1) \times 100$$

Table 15.8 shows the relationship between transmit/receive clock register set values and states on the smart card interface.

## Table 15.8 Register Set Values and SCK Pin

|                 |      | Regi | ster Value | •    |             | SCK Pin                                                    |
|-----------------|------|------|------------|------|-------------|------------------------------------------------------------|
| Setting         | SMIF | C/Ā  | CKE1       | CKE0 | Output      | State                                                      |
| 1 <sup>*1</sup> | 1    | 0    | 0          | 0    | Port        | Determined by settin<br>register SCP1MD1 a<br>SCP1MD0 bits |
|                 | 1    | 0    | 0          | 1    | wn          | SCK (serial clock) ou                                      |
| 2*2             | 1    | 1    | 0          | 0    | Low output  | Low output state                                           |
|                 | 1    | 1    | 0          | 1    | UL.         | SCK (serial clock) ou                                      |
| 3 <sup>*2</sup> | 1    | 1    | 1          | 0    | High output | High output state                                          |
|                 | 1    | 1    | 1          | 1    | un.         | SCK (serial clock) ou                                      |

Notes: 1. The SCK output state changes as soon as the CKE0 bit is modified. The CK should be cleared to 0.

The clock duty remains constant despite stopping and starting of the clock b modification of the CKE0 bit.

Rev. 5.00, 09/03, page 500 of 760

- in the serial mode register (SCSMR). At this time also clear the CHR and MP bits the STOP and PE bits to 1.
- Set the SMIF, SDIR, and SINV bits in the smart card mode register (SCSCMR). W SMIF bit is set to 1, the TxD and RxD pins both switch from ports to SCI pins and high-impedance.
- 5. Set the value corresponding to the bit rate in the bit rate register (SCBRR).
- 6. Set the clock source select bits (CKE1 and CKE0 bits) in the serial control register Clear the TIE, RIE, TE, RE, MPIE, and TEIE bits to 0. When the CKE0 bit is set t is output from the SCK pin.
- After waiting at least 1 bit, set the TIE, RIE, TE, and RE bits in SCSCR. Do not se RE bits simultaneously unless performing auto-diagnosis.



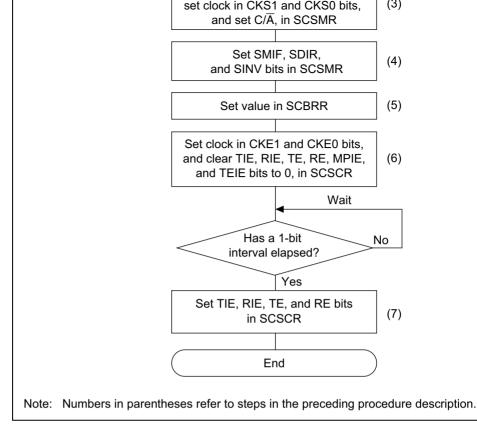



Figure 15.5 Initialization Flowchart (Example)

Rev. 5.00, 09/03, page 502 of 760

- •
- 5. To transmit more data, return to step 2.
- 6. To end transmission, clear the TE bit to 0.

This processing can be interrupted. When the TIE bit is set to 1 and interrupt requests a transmit-data-empty interrupt (TXI) will be requested when the TEND flag is set to of transmission. When the RIE bit is set to 1 and interrupt requests are enabled, a comerror interrupt (ERI) will be requested when the ERS flag is set to 1 when an error occurransmission. See Interrupt Operation below for more information.

Renesas

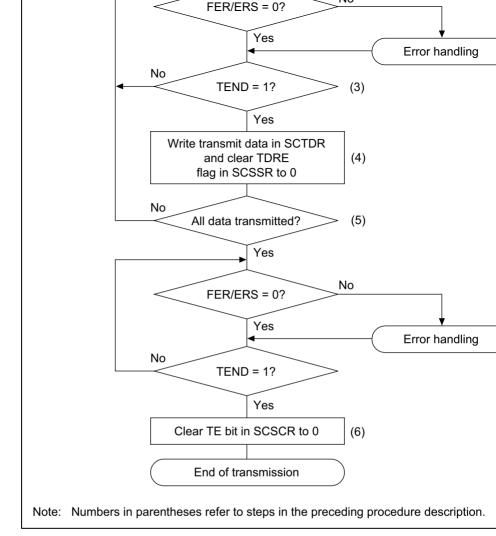



Figure 15.6 Transmission Flowchart

Rev. 5.00, 09/03, page 504 of 760

Renesas

- 6. To end reception, clear the RE bit to 0.

This processing can be interrupted. When the RIE bit is set to 1 and interrupt requests a receive-data-full interrupt (RXI) will be requested when the RDRF flag is set to 1 at reception. When an error occurs during reception and either the ORER or PER flag is communication error interrupt (ERI) will be requested. See Interrupt Operation below information.

The received data will be transferred to SCRDR even when a parity error occurs durin and PER is set to 1, so this data can still be read.



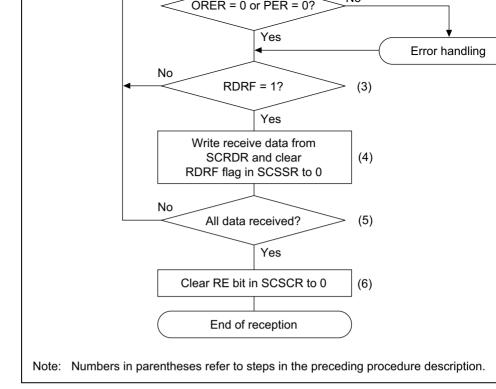



Figure 15.7 Reception Flowchart (Example)

Rev. 5.00, 09/03, page 506 of 760

the transmit-end interrupt (TEI) cannot be requested.

Set the TEND flag in SCSSR to 1 to request a TXI interrupt. Set the RDRF flag in SC request an RXI interrupt. Set the ORER, PER, or FER/ERS flag in SCSSR to 1 to require interrupt (table 15.9).

| Mode          | State  | Flag         | Mask Bit | Interru |
|---------------|--------|--------------|----------|---------|
| Transmit mode | Normal | TEND         | TIE      | TXI     |
|               | Error  | FER/ERS      | RIE      | ERI     |
| Receive mode  | Normal | RDRF         | RIE      | RXI     |
|               | Error  | PER,<br>ORER | RIE      | ERI     |

# Table 15.9 Smart Card Mode Operating State and Interrupt Sources

# 15.4 Usage Notes

When the SCI is used as a smart card interface, be sure that all criteria in sections 15.4 Data Timing and Receive Margin in Asynchronous Mode and 15.4.2, Retransmission

# 15.4.1 Receive Data Timing and Receive Margin in Asynchronous Mode

In asynchronous mode, the SCI runs on a base clock with a frequency of 372 times the rate. During reception, the SCI samples the falling of the start bit using the base clock internal synchronization. Receive data is latched internally at the rising edge of the 18 clock cycle (figure 15.8).

Rev. 5.00, 09/03, pag

Renesas

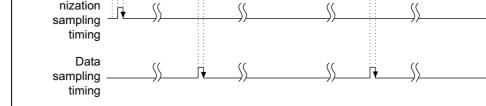



Figure 15.8 Receive Data Sampling Timing in Smart Card Mode

The receive margin is found from the following equation:

For smart card mode:

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5)F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

Where: M = Receive margin (%) N = Ratio of bit rate to clock (N = 372) D = Clock duty (D = 0 to 1.0) L = Frame length (L = 10)F = Absolute value of clock frequency deviation

Using this equation, the receive margin when F = 0 and D = 0.5 is as follows:

 $M = (0.5 - 1/2 \times 372) \times 100\% = 49.866\%$ 

Rev. 5.00, 09/03, page 508 of 760

- 3. When the received parity bit is checked and no error is found, the PER bit in SCSS
- 4. When the received parity bit is checked and no error is found, reception is conside been completed normally and the RDRF bit in SCSSR is automatically set to 1. If in SCSCR is enabled at this time, an RXI interrupt is requested.
- 5. When a normal frame is received, the pin maintains a three-state state when it tran error signal.

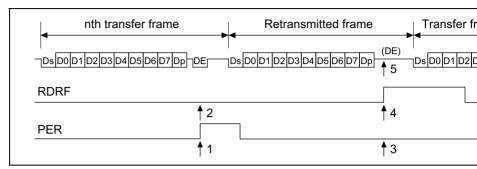



Figure 15.9 Retransmission in SCI Receive Mode

RENESAS

- 3. The FER/ERS bit in SCSSR is not set when no error signal is returned from the reco
- 4. When no error signal is returned from the receiving side, the TEND bit in SCSSR is when the transmission of the frame that includes the retransmission is considered co the TIE bit in SCSCR is enabled at this time, a TXI interrupt will be requested.

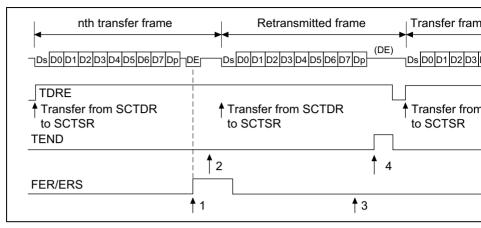



Figure 15.10 Retransmission in SCI Transmit Mode

Rev. 5.00, 09/03, page 510 of 760

## 16.1.1 Features

- Asynchronous serial communication:
  - Serial data communication is performed by start-stop in character units. The Se communicate with a universal asynchronous receiver/transmitter (UART), an a communication interface adapter (ACIA), or any other communications chip th a standard asynchronous serial system. There are eight selectable serial data communication formats.
  - Data length: 7 or 8 bits
  - Stop bit length: 1 or 2 bits
  - Parity: Even, odd, or none
  - Receive error detection: Parity and framing errors
  - Break detection: Break is detected when a framing error is followed by at least the space 0 level (low level). It is also detected by reading the RxD level direct port SC data register (SCPDR) when a framing error occurs.
- Full duplex communication: The transmitting and receiving sections are independent SCI can transmit and receive simultaneously. Both sections use 16-stage FIFO buf high-speed continuous data transfer is possible in both the transmit and receive dir
- On-chip baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source: From either baud rate generator SCK pin (external)
- Four types of interrupts: Transmit-FIFO-data-empty, break, receive-FIFO-data-ful receive-error interrupts are requested independently. The direct memory access co (DMAC) can be activated to execute a data transfer by a transmit-FIFO-data-empt FIFO-data-full interrupt.
- When the SCIF is not in use, it can be stopped by halting the clock supplied to it, s power.
- On-chip modem control functions (RTS and CTS)
- The quantity of data in the transmit and receive FIFO registers and the number of errors of the receive data in the receive FIFO register can be ascertained.

RENESAS

• A time-out error (DR) can be detected when receiving.

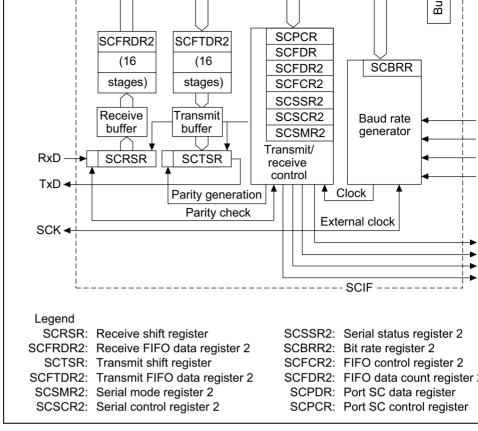
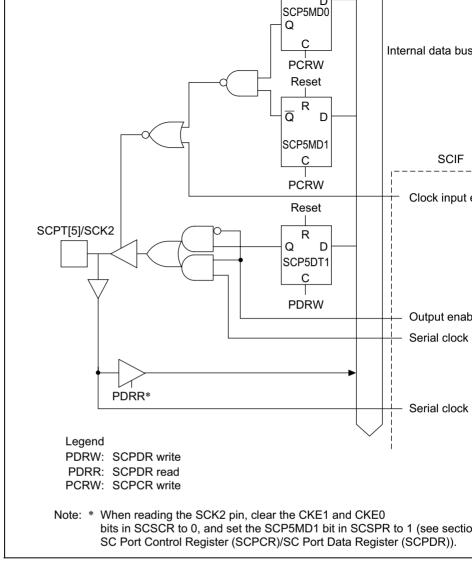




Figure 16.1 Block Diagram of SCIF

Rev. 5.00, 09/03, page 512 of 760



# Figure 16.2 SCPT[5]/SCK2 Pin

Rev. 5.00, 09/03, pag

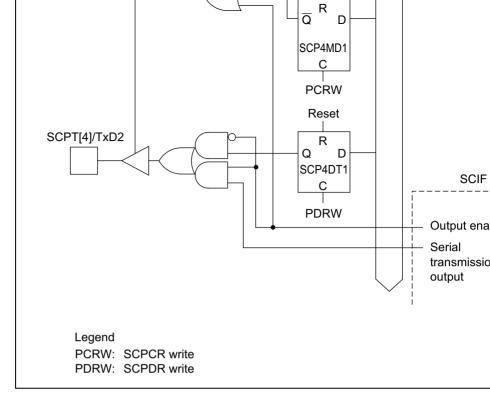
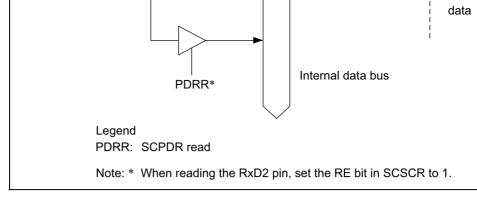




Figure 16.3 SCPT[4]/TxD2 Pin

Rev. 5.00, 09/03, page 514 of 760



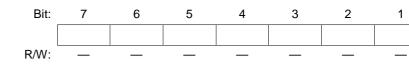
### Figure 16.4 SCPT[4]/RxD2 Pin

# 16.1.3 Pin Configuration

The SCIF has the serial pins summarized in table 16.1.

## Table 16.1 SCIF Pins

| Pin Name            | Abbreviation | I/O    | Function           |
|---------------------|--------------|--------|--------------------|
| Serial clock pin    | SCK2         | I/O    | Clock I/O          |
| Receive data pin    | RxD2         | Input  | Receive data input |
| Transmit data pin   | TxD2         | Output | Transmit data outp |
| Request to send pin | RTS2         | Output | Request to send    |
| Clear to send pin   | CTS2         | Input  | Clear to send      |


Renesas

|                               |         |         |           | (                                        |
|-------------------------------|---------|---------|-----------|------------------------------------------|
| Bit rate register 2           | SCBRR2  | R/W     | H'FF      | H'04000152<br>(H'A4000152) <sup>*2</sup> |
| Serial control register 2     | SCSCR2  | R/W     | H'00      | H'04000154 (H'A4000154) <sup>*2</sup>    |
| Transmit FIFO data register 2 | SCFTDR2 | W       | _         | H'04000156 (H'A4000156) <sup>*2</sup>    |
| Serial status register 2      | SCSSR2  | R/(W)*1 | H'0060    | H'04000158<br>(H'A4000158) <sup>*2</sup> |
| Receive FIFO data register 2  | SCFRDR2 | R       | Undefined | H'0400015A (H'A400015A) <sup>*2</sup>    |
| FIFO control register 2       | SCFCR2  | R/W     | H'00      | H'0400015C (H'A400015C) <sup>*2</sup>    |
| FIFO data count register 2    | SCFDR2  | R       | H'0000    | H'0400015E<br>(H'A400015E) <sup>*2</sup> |
|                               |         |         |           |                                          |

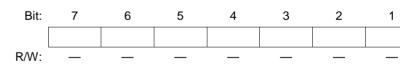
Notes: These registers are located in area 1 of physical space. Therefore, when the ca either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. Only 0 can be written to clear the flag.
- 2. When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 516 of 760

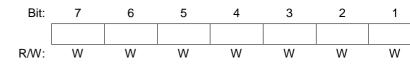


#### 16.2.2 Receive FIFO Data Register (SCFRDR)


The 16-byte receive FIFO data register (SCFRDR) stores serial receive data. The SCI the reception of one byte of serial data by moving the received data from the receive s (SCRSR) into SCFRDR for storage. Continuous reception is possible until 16 bytes and

The CPU can read but not write to SCFRDR. If data is read when there is no receive a SCFRDR, the value is undefined. When this register is full of receive data, subsequent is lost.




#### 16.2.3 Transmit Shift Register (SCTSR)

The transmit shift register (SCTSR) transmits serial data. The SCI loads transmit data transmit FIFO data register (SCFTDR) into SCTSR, then transmits the data serially fr pin, LSB (bit 0) first. After transmitting one data byte, the SCI automatically loads the transmit data from SCFTDR into SCTSR and starts transmitting again. The CPU can write to SCTSR directly.



Rev. 5.00, 09/03, pag

data is attempted, the data is ignored.



## 16.2.5 Serial Mode Register (SCSMR)

The serial mode register (SCSMR) is an 8-bit register that specifies the SCIF serial communication format and selects the clock source for the baud rate generator.

The CPU can always read and write to SCSMR. SCSMR is initialized to H'00 by a rese standby or module standby mode.

| Bit:           | 7 | 6   | 5   | 4   | 3    | 2 | 1    |
|----------------|---|-----|-----|-----|------|---|------|
|                | _ | CHR | PE  | O/E | STOP | — | CKS1 |
| Initial value: | 0 | 0   | 0   | 0   | 0    | 0 | 0    |
| R/W:           | R | R/W | R/W | R/W | R/W  | R | R/W  |

Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.

Bit 6—Character Length (CHR): Selects 7-bit or 8-bit data in asynchronous mode.

| Bit 6: CHR | Description             |     |
|------------|-------------------------|-----|
| 0          | 8-bit data              | (Ir |
| 1          | 7-bit data <sup>*</sup> |     |

Note: \* When 7-bit data is selected, the MSB (bit 7) of the transmit FIFO data register i transmitted.

Rev. 5.00, 09/03, page 518 of 760

**Bit 4—Parity Mode (O/Ē):** Selects even or odd parity when parity bits are added and The O/Ē setting is used only when the parity enable bit (PE) is set to 1 to enable parity and checking. The O/Ē setting is ignored when parity addition and checking is disable

| Bit 4: 0/E | Description                 |
|------------|-----------------------------|
| 0          | Even parity <sup>*1</sup> ( |
| 1          | Odd parity <sup>*2</sup>    |

Notes: 1. If even parity is selected, the parity bit is added to transmit data to make ar number of 1s in the transmitted character and parity bit combined. Receive checked to see if it has an even number of 1s in the received character and combined.

If odd parity is selected, the parity bit is added to transmit data to make an of 1s in the transmitted character and parity bit combined. Receive data is of see if it has an odd number of 1s in the received character and parity bit combined.

Bit 3—Stop Bit Length (STOP): Selects one or two bits as the stop bit length.

When receiving, only the first stop bit is checked, regardless of the STOP bit setting. I stop bit is 1, it is treated as a stop bit, but if the second stop bit is 0, it is treated as the the next incoming character.

#### Bit 3: STOP Description

| 0 | One stop bit <sup>*1</sup> ( |
|---|------------------------------|
| 1 | Two stop bits <sup>*2</sup>  |

Notes: 1. When transmitting, a single 1-bit is added at the end of each transmitted ch 2. When transmitting, two 1-bits are added at the end of each transmitted cha

Bit 2—Reserved: This bit is always read as 0. The write value should always be 0.

Renesas

| 1 Pø/64 |   | •     |
|---------|---|-------|
|         | 1 | Ρφ/64 |

Note: Po: Peripheral clock

## 16.2.6 Serial Control Register (SCSCR)

The serial control register (SCSCR) operates the SCIF transmitter/receiver, selects the soutput in asynchronous mode, enables/disables interrupt requests, and selects the transmic clock source. The CPU can always read and write to SCSCR. SCSCR is initialized to F reset and in standby or module standby mode.

| Bit:           | 7   | 6   | 5   | 4   | 3 | 2 | 1    |
|----------------|-----|-----|-----|-----|---|---|------|
|                | TIE | RIE | TE  | RE  |   | _ | CKE1 |
| Initial value: | 0   | 0   | 0   | 0   | 0 | 0 | 0    |
| R/W:           | R/W | R/W | R/W | R/W | R | R | R/W  |

**Bit 7—Transmit Interrupt Enable (TIE):** Enables or disables the transmit-FIFO-data interrupt (TXI) requested when the serial transmit data is transferred from the transmit I register (SCFTDR) to the transmit shift register (SCTSR), when the quantity of data in transmit FIFO register becomes less than the specified number of transmission triggers, the TDFE flag in the serial FIFO status register (SCFSR) is set to1.

| Bit 7: TI | E Description                                                                                                                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Transmit-FIFO-data-empty interrupt request (TXI) is disabled <sup>*</sup> (Ir                                                                                                                                                   |
| 1         | Transmit-FIFO-data-empty interrupt request (TXI) is enabled                                                                                                                                                                     |
|           | The TXI interrupt request can be cleared by writing a greater quantity of transm<br>the specified transmission trigger number to SCFTDR and by clearing TDFE to<br>reading 1 from TDFE, or can be cleared by clearing TIE to 0. |

Rev. 5.00, 09/03, page 520 of 760

- 1 Receive-data-full interrupt (RXI) and receive-error interrupt (ERI) requested
- Note: \* RXI and ERI interrupt requests can be cleared by reading the DR, ER, or RDF has been set to 1, then clearing the flag to 0, or by clearing RIE to 0. With the read 1 from the RDF flag and clear it to 0, after reading receive data from SCF quantity of receive data becomes less than the specified receive trigger numb

Bit 5—Transmit Enable (TE): Enables or disables the SCIF serial transmitter.

| Bit 5: TE    | Description                                                               |
|--------------|---------------------------------------------------------------------------|
| 0            | Transmitter disabled (                                                    |
| 1            | Transmitter enabled*                                                      |
| Note: * Seri | al transmission starts after writing of transmit data into SCETDP2 Select |

Note: \* Serial transmission starts after writing of transmit data into SCFTDR2. Select format in SCSMR2 and SCFCR2 and reset the TFIFO before setting TE to 1.

Bit 4—Receive Enable (RE): Enables or disables the SCIF serial receiver.

| Bit 4: R | Е  | Description                                                                                                                |
|----------|----|----------------------------------------------------------------------------------------------------------------------------|
| 0        |    | Receiver disabled <sup>*1</sup> (                                                                                          |
| 1        |    | Receiver enabled <sup>*2</sup>                                                                                             |
| Notes:   | 1. | Clearing RE to 0 does not affect the receive flags (DR, ER, BRK, FER, PER ORER). These flags retain their previous values. |
|          | 2. | Serial reception starts when a start bit is detected. Select the receive forma SCSMR2 before setting RE to 1.              |

Bits 3 and 2-Reserved: These bits are always read as 0. The write value should always

Renesas

|   | Dit 0. OILLO | Description                                                            |
|---|--------------|------------------------------------------------------------------------|
| 0 | 0            | Internal clock, SCK pin used for input pin (input sign<br>ignored) (Ir |
|   | 1            | Internal clock, SCK pin used for clock output*1                        |
| 1 | 0            | External clock, SCK pin used for clock input*2                         |
|   | 1            | External clock, SCK pin used for clock input <sup>*2</sup>             |
|   |              |                                                                        |

Notes: 1. The output clock frequency is 16 times the bit rate.

2. The input clock frequency is 16 times the bit rate.

#### 16.2.7 Serial Status Register (SCSSR)

The serial status register (SCSSR) is a 16-bit register. The upper 8 bits indicate the nur receive errors in the SCFRDR data, and the lower 8 bits indicate the SCIF operating sta

The CPU can always read and write to SCSSR, but cannot write 1 to the status flags (E TDFE, BRK, OPER, and DR). These flags can be cleared to 0 only if they have first be (after being set to 1). Bits 3 (FER) and 2 (PER) are read-only bits that cannot be written initialized to H'0060 by a reset and in standby or module standby mode.

| Lower 8 bits:  | 7      | 6      | 5      | 4      | 3   | 2   | 1     |
|----------------|--------|--------|--------|--------|-----|-----|-------|
|                | ER     | TEND   | TDFE   | BRK    | FER | PER | RDF   |
| Initial value: | 0      | 1      | 1      | 0      | 0   | 0   | 0     |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R   | R   | R/(W) |
|                |        |        |        |        | -   |     |       |

Note: \* The only value that can be written is 0 to clear the flag.

Rev. 5.00, 09/03, page 522 of 760

| 1        | A framing error or parity error has occurred*2                                                                                                                                                                                            |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | [Setting conditions]                                                                                                                                                                                                                      |
|          | (1) ER is set to 1 when the stop bit is 0 after checking whether or no<br>stop bit of the received data is 1 at the end of one data receive o                                                                                             |
|          | (2) When the total number of 1s in the receive data plus parity bit do the even/odd parity specified by the $O/\overline{E}$ bit in SCSMR                                                                                                 |
| Notes: 1 | Clearing the RE bit to 0 in SCSCR does not affect the ER bit, which retains<br>value. Even if a receive error occurs, the receive data is transferred to SCF<br>the receive operation is continued. Whether or not the data read from SCR |

a receive error can be detected by the FER and PER bits in SCSSR.In stop mode, only the first stop bit is checked, the second stop bit is not ch

**Bit 6—Transmit End (TEND):** Indicates that when the last bit of a serial character w transmitted, SCFTDR did not contain valid data, so transmission has ended.

| Bit 6: TEND | Description                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------|
| 0           | Transmission is in progress                                                                                |
|             | [Clearing condition]                                                                                       |
|             | When data is written in SCFTDR                                                                             |
| 1           | End of transmission (                                                                                      |
|             | [Setting conditions]                                                                                       |
|             | (1) When the chip is reset or enters standby mode, when TE is clear<br>the serial control register (SCSCR) |
|             | (2) When SCFTDR does not contain receive data when the last bit o<br>serial character is transmitted       |

Renesas

[Clearing condition]

TDFE is cleared to 0 when data exceeding the specified transmission number is written to SCFTDR, or when software reads TDFE after it h set to 1, then writes 0 to TDFE

1 The quantity of transmit data in SCFTDR is less than the specified tra trigger number\*

[Setting conditions]

- (1) TDFE is set to 1 by a reset or in standby mode
- (2) When the quantity of transmit data in SCFTDR becomes less than specified transmission trigger number as a result of transmission
- Note: \* Since SCFTDR is a 16-byte FIFO register, the maximum quantity of data that c written when TDFE is 1 is "16 minus the specified transmission trigger number' attempt is made to write additional data, the data is ignored. The quantity of da SCFTDR is indicated by the upper 8 bits of SCFTDR.

## Bit 4-Break Detection (BRK): Indicates that a break signal has been detected in rece

| Bit 4: Bl | RK Description                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | No break signal received (I                                                                                                                                                                                                                                                                                                                                                                         |
|           | [Clearing conditions]                                                                                                                                                                                                                                                                                                                                                                               |
|           | (1) BRK is cleared to 0 when the chip is reset or enters standby mode                                                                                                                                                                                                                                                                                                                               |
|           | (2) When software reads BRK after it has been set to 1, then writes 0                                                                                                                                                                                                                                                                                                                               |
| 1         | Break signal received*                                                                                                                                                                                                                                                                                                                                                                              |
|           | [Setting conditions]                                                                                                                                                                                                                                                                                                                                                                                |
|           | (1) BRK is set to 1 when data including a framing error is received                                                                                                                                                                                                                                                                                                                                 |
|           | (2) A framing error occurs with space 0 in the subsequent receive date                                                                                                                                                                                                                                                                                                                              |
| Note: *   | When a break is detected, transfer of the receive data (H'00) to SCFRDR stops detection. When the break ends and the receive signal becomes mark 1, the t receive data resumes. The receive data of a frame in which a break signal is or transferred to SCFRDR. After this, however, no receive data is transferred unt ends with the received signal being mark 1, and the next data is received. |

Rev. 5.00, 09/03, page 524 of 760

| 1 | A receive framing endroccurred in the data read norm SCF KDK |
|---|--------------------------------------------------------------|
|   | [Setting condition]                                          |
|   | When a framing error is present in the data read from SCFRDR |

**Bit 2—Parity Error (PER):** Indicates a parity error in the data read from the receive register (SCFRDR).

| Bit 2: PER | Description                                                       |
|------------|-------------------------------------------------------------------|
| 0          | No receive parity error occurred in the data read from SCFRDR (   |
|            | [Clearing conditions]                                             |
|            | (1) When the chip undergoes a power-on reset or enters standby mo |
|            | (2) When no parity error is present in the data read from SCFRDR  |
| 1          | A receive framing error occurred in the data read from SCFRDR     |
|            | [Setting condition]                                               |
|            | When a parity error is present in the data read from SCFRDR       |
|            |                                                                   |

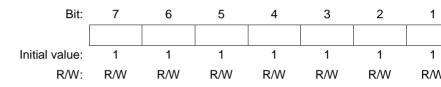
Renesas

- (1) By a power-on reset or in standby mode
   (2) When the quantity of receive data in SCFRDR is less than the spectre trigger value and 1 is read from RDF, which is then cleared
   The quantity of receive data in SCFRDR is greater than the specified trigger number
   [Setting condition]
   When a quantity of receive data greater than the specified receive trig is stored in SCFRDR\*
   Note: \* Since SCFTDR is a 16-byte FIFO register, the maximum quantity of data that c
- Note: \* Since SCFIDR is a 16-byte FIFO register, the maximum quantity of data that c when RDF is 1 is the specified receive trigger number. If an attempt is made to all the data in SCFRDR has been read, the data is undefined. The quantity of r in SCFRDR is indicated by the lower 8 bits of SCFTDR.

**Bit 0—Receive Data Ready (DR):** Indicates that the quantity of data in the receive FII register (SCFRDR) is less than the specified receive trigger number, and that the next d yet been received after the elapse of 15 etu from the last stop bit.

| Bit 0: DR | Description                                                                                                                                                                 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Receiving is in progress, or no receive data remains in SCFRDR after<br>ended normally (Ir                                                                                  |
|           | [Clearing conditions]                                                                                                                                                       |
|           | (1) When the chip undergoes a power-on reset or enters standby mo                                                                                                           |
|           | (2) When software reads DR after it has been set to 1, then writes 0 to                                                                                                     |
| 1         | Next receive data has not been received                                                                                                                                     |
|           | [Setting condition]                                                                                                                                                         |
|           | When SCFRDR contains less data than the specified receive trigger r<br>and the next data has not yet been received after the elapse of 15 etu<br>last stop bit <sup>*</sup> |

Note: \* This is equivalent to 1.5 frames with the 8-bit, 1-stop-bit format. (etu: elemental


Rev. 5.00, 09/03, page 526 of 760

**Bits 11 to 8—Number of Framing Errors 3 to 0 (FER3 to FER0):** Indicate the qua including a framing error in the receive data stored in SCFRDR. The value indicated 8 represents the number of framing errors in SCFRDR.

#### 16.2.8 Bit Rate Register (SCBRR)

The bit rate register (SCBRR) is an 8-bit register that, together with the baud rate gene source selected by the CKS1 and CKS0 bits in the serial mode register (SCSMR), dete serial transmit/receive bit rate.

The CPU can always read and write to SCBRR. SCBRR is initialized to H'FF by a res module standby or standby mode. Each channel has independent baud rate generator of different values can be set in two channels.



The SCBRR setting is calculated as follows:

Asynchronous mode:

$$N = \frac{P\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

- B: Bit rate (bits/s)
- N: SCBRR setting for baud rate generator ( $0 \le N \le 255$ )
- Po: Operating frequency for peripheral modules (MHz)
- n: Baud rate generator clock source (n = 0, 1, 2, 3) (for the clock sources ar n, see table 16.3.)

Rev. 5.00, 09/03, pag

## Renesas

Note: The bit rate error is given by the following formula:

Error (%) = 
$$\left\{ \begin{array}{c} P\phi \\ \hline (N+1) \times 64 \times 2^{2n-1} \times B \end{array} \right\} \times 10^{6} - 1 \left\} \times 10^{6} \end{array}$$

Table 16.4 lists examples of SCBRR settings.

# Table 16.4 Bit Rates and SCBRR Settings

|                   | Ρφ (MHz) |     |           |   |       |           |   |     |  |  |  |
|-------------------|----------|-----|-----------|---|-------|-----------|---|-----|--|--|--|
|                   |          | 2   |           |   | 2.097 | 2.457     |   |     |  |  |  |
| Bit Rate (bits/s) | n        | Ν   | Error (%) | n | Ν     | Error (%) | n | Ν   |  |  |  |
| 110               | 1        | 141 | 0.03      | 1 | 148   | -0.04     | 1 | 174 |  |  |  |
| 150               | 1        | 103 | 0.16      | 1 | 108   | 0.21      | 1 | 127 |  |  |  |
| 300               | 0        | 207 | 0.16      | 0 | 217   | 0.21      | 0 | 255 |  |  |  |
| 600               | 0        | 103 | 0.16      | 0 | 108   | 0.21      | 0 | 127 |  |  |  |
| 1200              | 0        | 51  | 0.16      | 0 | 54    | -0.70     | 0 | 63  |  |  |  |
| 2400              | 0        | 25  | 0.16      | 0 | 26    | 1.14      | 0 | 31  |  |  |  |
| 4800              | 0        | 12  | 0.16      | 0 | 13    | -2.48     | 0 | 15  |  |  |  |
| 9600              | 0        | 6   | -6.99     | 0 | 6     | -2.48     | 0 | 7   |  |  |  |
| 19200             | 0        | 2   | 8.51      | 0 | 2     | 13.78     | 0 | 3   |  |  |  |
| 31250             | 0        | 1   | 0.00      | 0 | 1     | 4.86      | 0 | 1   |  |  |  |
| 38400             | 0        | 1   | -18.62    | 0 | 0     | -14.67    | 0 | 1   |  |  |  |

Rev. 5.00, 09/03, page 528 of 760

| 2400  | 0 | 38 | 0.16  | 0 | 47 | 0.00  | 0 | 51 |
|-------|---|----|-------|---|----|-------|---|----|
| 4800  | 0 | 19 | -2.34 | 0 | 23 | 0.00  | 0 | 25 |
| 9600  | 0 | 9  | -2.34 | 0 | 11 | 0.00  | 0 | 12 |
| 19200 | 0 | 4  | -2.34 | 0 | 5  | 0.00  | 0 | 6  |
| 31250 | 0 | 2  | 0.00  | 0 | 3  | -7.84 | 0 | 3  |
| 38400 |   | _  | —     | 0 | 2  | 0.00  | 0 | 2  |

|                   | Ρφ (MHz) |      |           |   |     |           |   |     |  |  |  |
|-------------------|----------|------|-----------|---|-----|-----------|---|-----|--|--|--|
|                   |          | 4.91 | 52        |   | 5   |           | e |     |  |  |  |
| Bit Rate (bits/s) | n        | Ν    | Error (%) | n | Ν   | Error (%) | n | Ν   |  |  |  |
| 110               | 2        | 86   | 0.31      | 2 | 88  | -0.25     | 2 | 106 |  |  |  |
| 150               | 1        | 255  | 0.00      | 2 | 64  | 0.16      | 2 | 77  |  |  |  |
| 300               | 1        | 127  | 0.00      | 1 | 129 | 0.16      | 1 | 155 |  |  |  |
| 600               | 0        | 255  | 0.00      | 1 | 64  | 0.16      | 1 | 77  |  |  |  |
| 1200              | 0        | 127  | 0.00      | 0 | 129 | 0.16      | 0 | 155 |  |  |  |
| 2400              | 0        | 63   | 0.00      | 0 | 64  | 0.16      | 0 | 77  |  |  |  |
| 4800              | 0        | 31   | 0.00      | 0 | 32  | -1.36     | 0 | 38  |  |  |  |
| 9600              | 0        | 15   | 0.00      | 0 | 15  | 1.73      | 0 | 19  |  |  |  |
| 19200             | 0        | 7    | 0.00      | 0 | 7   | 1.73      | 0 | 9   |  |  |  |
| 31250             | 0        | 4    | -1.70     | 0 | 4   | 0.00      | 0 | 5   |  |  |  |
| 38400             | 0        | 3    | 0.00      | 0 | 3   | 1.73      | 0 | 4   |  |  |  |

# RENESAS

| 2400  | 0 | 79 | 0.00 | 0 | 95 | 0.00 | 0 | 103 |
|-------|---|----|------|---|----|------|---|-----|
| 4800  | 0 | 39 | 0.00 | 0 | 47 | 0.00 | 0 | 51  |
| 9600  | 0 | 19 | 0.00 | 0 | 23 | 0.00 | 0 | 25  |
| 19200 | 0 | 9  | 0.00 | 0 | 11 | 0.00 | 0 | 12  |
| 31250 | 0 | 5  | 2.40 | 0 | 6  | 5.33 | 0 | 7   |
| 38400 | 0 | 4  | 0.00 | 0 | 5  | 0.00 | 0 | 6   |

| Рφ | (Mł | Ιz) |
|----|-----|-----|
|----|-----|-----|

|                      |   | 9.8304 |              |   | 10  |              |   | 12  |              | 12 |    |
|----------------------|---|--------|--------------|---|-----|--------------|---|-----|--------------|----|----|
| Bit Rate<br>(bits/s) | n | N      | Error<br>(%) | n | N   | Error<br>(%) | n | N   | Error<br>(%) | n  | N  |
| 110                  | 1 | 174    | -0.26        | 2 | 177 | -0.25        | 1 | 212 | 0.03         | 2  | 21 |
| 150                  | 1 | 127    | 0.00         | 2 | 129 | 0.16         | 1 | 155 | 0.16         | 2  | 15 |
| 300                  | 0 | 255    | 0.00         | 2 | 64  | 0.16         | 1 | 77  | 0.16         | 2  | 79 |
| 600                  | 0 | 127    | 0.00         | 1 | 129 | 0.16         | 0 | 155 | 0.16         | 1  | 15 |
| 1200                 | 0 | 255    | 0.00         | 1 | 64  | 0.16         | 0 | 77  | 0.16         | 1  | 79 |
| 2400                 | 0 | 127    | 0.00         | 0 | 129 | 0.16         | 0 | 38  | 0.16         | 0  | 15 |
| 4800                 | 0 | 63     | 0.00         | 0 | 64  | 0.16         | 0 | 19  | 0.16         | 0  | 79 |
| 9600                 | 0 | 31     | 0.00         | 0 | 32  | -1.36        | 0 | 9   | 0.16         | 0  | 39 |
| 19200                | 0 | 15     | 0.00         | 0 | 15  | 1.73         | 0 | 4   | 0.16         | 0  | 19 |
| 31250                | 0 | 9      | -1.70        | 0 | 9   | 0.00         | 0 | 2   | 0.00         | 0  | 11 |
| 38400                | 0 | 1      | 0.00         | 0 | 7   | 1.73         | 0 | 9   | -2.34        | 0  | 9  |
|                      |   |        |              |   |     |              |   |     |              |    |    |

# Rev. 5.00, 09/03, page 530 of 760

| 1200   | 1 | 95  | 0.00  | 1 | 103 | 0.16 | 1 | 127 | 0.00  | 1 | 1 |
|--------|---|-----|-------|---|-----|------|---|-----|-------|---|---|
| 2400   | 0 | 191 | 0.00  | 0 | 207 | 0.16 | 0 | 255 | 0.00  | 0 | 6 |
| 4800   | 0 | 95  | 0.00  | 0 | 103 | 0.16 | 0 | 127 | 0.00  | 0 | 1 |
| 9600   | 0 | 47  | 0.00  | 0 | 51  | 0.16 | 0 | 63  | 0.00  | 0 | 6 |
| 19200  | 0 | 23  | 0.00  | 0 | 25  | 0.16 | 0 | 31  | 0.00  | 0 | 3 |
| 31250  | 0 | 14  | -1.70 | 0 | 15  | 0.00 | 0 | 19  | -1.70 | 0 | 1 |
| 38400  | 0 | 11  | 0.00  | 0 | 12  | 0.16 | 0 | 15  | 0.00  | 0 | 1 |
| 115200 | 0 | 3   | 0.00  | 0 | 3   | 8.51 | 0 | 4   | 6.67  | 0 | 4 |
| 500000 | 0 | 0   | -7.84 | 0 | 0   | 0.00 | 0 | 0   | 22.9  | 0 | 0 |
|        |   |     |       |   |     |      |   |     |       |   |   |

|                      |   | Ρφ (MHz) |              |   |        |              |   |      |              |   |   |
|----------------------|---|----------|--------------|---|--------|--------------|---|------|--------------|---|---|
|                      |   | 24       |              |   | 24.576 |              |   | 28.7 |              |   |   |
| Bit Rate<br>(bits/s) | n | N        | Error<br>(%) | n | N      | Error<br>(%) | n | N    | Error<br>(%) | n | N |
| 110                  | 3 | 106      | -0.44        | 3 | 108    | 0.08         | 3 | 126  | 0.31         | 3 | 1 |
| 150                  | 3 | 77       | 0.16         | 3 | 79     | 0.00         | 3 | 92   | 0.46         | 3 | 9 |
| 300                  | 2 | 155      | 0.16         | 2 | 159    | 0.00         | 2 | 186  | -0.08        | 2 | 1 |
| 600                  | 2 | 77       | 0.16         | 2 | 79     | 0.00         | 2 | 92   | 0.46         | 2 | 9 |
| 1200                 | 1 | 155      | 0.16         | 1 | 159    | 0.00         | 1 | 186  | -0.08        | 1 | 1 |
| 2400                 | 1 | 77       | 0.16         | 1 | 79     | 0.00         | 1 | 92   | 0.46         | 1 | 9 |
| 4800                 | 0 | 155      | 0.16         | 0 | 159    | 0.00         | 0 | 186  | -0.08        | 0 | 1 |
| 9600                 | 0 | 77       | 0.16         | 0 | 79     | 0.00         | 0 | 92   | 0.46         | 0 | 9 |
| 19200                | 0 | 38       | 0.16         | 0 | 39     | 0.00         | 0 | 46   | -0.61        | 0 | 4 |
| 31250                | 0 | 23       | 0.00         | 0 | 24     | -1.70        | 0 | 28   | -1.03        | 0 | 2 |
| 38400                | 0 | 19       | -2.34        | 0 | 19     | 0.00         | 0 | 22   | 1.55         | 0 | 2 |
| 115200               | 0 | 6        | -6.99        | 0 | 6      | -4.76        | 0 | 7    | -2.68        | 0 | 7 |
| 500000               | 0 | 1        | -25.0        | 0 | 1      | -23.2        | 0 | 1    | -10.3        | 0 | 1 |

Rev. 5.00, 09/03, pag

| 2.097152 | 65536  | 0 | 0 |
|----------|--------|---|---|
| 2.4576   | 76800  | 0 | 0 |
| 3        | 93750  | 0 | 0 |
| 3.6864   | 115200 | 0 | 0 |
| 4        | 125000 | 0 | 0 |
| 4.9152   | 153600 | 0 | 0 |
| 8        | 250000 | 0 | 0 |
| 9.8304   | 307200 | 0 | 0 |
| 12       | 375000 | 0 | 0 |
| 14.7456  | 460800 | 0 | 0 |
| 16       | 500000 | 0 | 0 |
| 19.6608  | 614400 | 0 | 0 |
| 20       | 625000 | 0 | 0 |
| 24       | 750000 | 0 | 0 |
| 24.576   | 768000 | 0 | 0 |
| 28.7     | 896875 | 0 | 0 |
| 30       | 937500 | 0 | 0 |
|          |        |   |   |

Rev. 5.00, 09/03, page 532 of 760

| 4       | 1.0000 | 62500  |
|---------|--------|--------|
| 4.9152  | 1.2288 | 76800  |
| 8       | 2.0000 | 125000 |
| 9.8304  | 2.4576 | 153600 |
| 12      | 3.0000 | 187500 |
| 14.7456 | 3.6864 | 230400 |
| 16      | 4.0000 | 250000 |
| 19.6608 | 4.9152 | 307200 |
| 20      | 5.0000 | 312500 |
| 24      | 6.0000 | 375000 |
| 24.576  | 6.1440 | 384000 |
| 28.7    | 7.1750 | 448436 |
| 30      | 7.5000 | 468750 |

RENESAS

can always be read and written to by the CPU. It is initialized to H'00 by a reset, by the standby function, and in standby mode.

**Bits 7 and 6—Receive FIFO Data Trigger (RTRG1, RTRG0):** Set the quantity of re which sets the receive data full (RDF) flag in the serial status register (SCSSR). The RI set to 1 when the quantity of receive data stored in the receive FIFO register (SCFRDR) the set trigger number shown below.

| Bit 7: RTRG1 | Bit 6: RTRG0 | Receive Trigger Number |
|--------------|--------------|------------------------|
| 0            | 0            | 1 (Ir                  |
| 0            | 1            | 4                      |
| 1            | 0            | 8                      |
| 1            | 1            | 14                     |

**Bits 5 and 4—Transmit FIFO Data Trigger (TTRG1, TTRG0):** Set the quantity of a transmit data which sets the transmit FIFO data register empty (TDFE) flag in the seried register (SCSSR). The TDFE flag is set to 1 when the quantity of transmit data in the transmit FIFO data register (SCFTDR) becomes less than the set trigger number shown below.

| Bit 5: TTRG1 | Bit 4: TTRG0 | Transmit Trigger Number |
|--------------|--------------|-------------------------|
| 0            | 0            | 8 (8)*                  |
| 0            | 1            | 4 (12)                  |
| 1            | 0            | 2 (14)                  |
| 1            | 1            | 1 (15)                  |

Note: \* Initial value. Values in parentheses mean the number of empty bits in SCFTDR TDFE flag is set to 1.

Rev. 5.00, 09/03, page 534 of 760

The data register and resets the data to the empty state.

Bit 2: TFRST Description

| ÷ | Reset operation disabled* | ( |
|---|---------------------------|---|
| 1 | Reset operation enabled   |   |

Note: \* Reset is executed in a reset or in standby mode.

**Bit 1—Receive FIFO Data Register Reset (RFRST):** Disables the receive data in the FIFO data register and resets the data to the empty state.

| 1 Reset operation enabled | 0 | Reset operation disabled* | ( |
|---------------------------|---|---------------------------|---|
|                           | 1 | Reset operation enabled   |   |

Note: \* Reset is executed in a reset or in standby mode.

**Bit 0—Loop-Back Test (LOOP):** Internally connects the transmit output pin (TXD) input pin (RXD) and enables loop-back testing.

| Bit 0: LOOP | Description               |
|-------------|---------------------------|
| 0           | Loop back test disabled ( |
| 1           | Loop back test enabled    |

Renesas

| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|----------------|---|---|---|---|---|---|---|
| R/W:           | R | R | R | R | R | R | R |

The upper 8 bits of SCFDR indicate the quantity of non-transmitted data stored in SCF means no transmit data, and H'10 means that SCFTDR is full of transmit data.

| Lower 8 Bits:  | 7 | 6 | 5 | 4  | 3  | 2  | 1  |
|----------------|---|---|---|----|----|----|----|
|                |   | — | _ | R4 | R3 | R2 | R1 |
| Initial value: | 0 | 0 | 0 | 0  | 0  | 0  | 0  |
| R/W:           | R | R | R | R  | R  | R  | R  |

The lower 8 bits of SCFDR indicate the quantity of receive data stored in SCFRDR. H' no receive data, and H'10 means that SCFRDR full of receive data.

Rev. 5.00, 09/03, page 536 of 760

(SCSMR), as shown in table 16.7. The SCIF clock source is selected by the combinate CKE1 and CKE0 bits in the serial control register (SCSCR), as shown in table 16.8.

- Data length is selectable: 7 or 8 bits.
- Parity and multiprocessor bits are selectable, as is the stop bit length (1 or 2 bits). combination of the preceding selections constitutes the communication format and length.
- In receiving, it is possible to detect framing errors (FER), parity errors (PER), rece data full, receive data ready, and breaks.
- In transmitting, it is possible to detect transmit FIFO data empty.
- The number of stored data bytes is indicated for both the transmit and receive FIF
- An internal or external clock can be selected as the SCIF clock source.
  - When an internal clock is selected, the SCIF operates using the on-chip baud ra generator, and can output a serial clock signal with a frequency 16 times the bir
  - When an external clock is selected, the external clock input must have a freque the bit rate. (The on-chip baud rate generator is not used.)

|              |              | ę           | SCSMR S       | SCIF Communicatio |               |                 |
|--------------|--------------|-------------|---------------|-------------------|---------------|-----------------|
| Mode         | Bit 6<br>CHR | Bit 5<br>PE | Bit 3<br>STOP | Data<br>Length    | Parity<br>Bit | Stop Bit Length |
| Asynchronous | 0            | 0           | 0             | 8-bit             | Not set       | 1 bit           |
|              |              |             | 1             | _                 |               | 2 bits          |
|              |              | 1           | 0             | _                 | Set           | 1 bit           |
|              |              |             | 1             | _                 |               | 2 bits          |
|              | 1            | 0           | 0             | 7-bit             | Not set       | 1 bit           |
|              |              |             | 1             | _                 |               | 2 bits          |
|              |              | 1           | 0             | _                 | Set           | 1 bit           |
|              |              |             | 1             | _                 |               | 2 bits          |

#### Table 16.7 SCSMR Settings and SCIF Communication Formats

Renesas

|   | bit rate |  |
|---|----------|--|
| 1 | Dil Tale |  |

## 16.3.2 Serial Operation

**Transmit/Receive Formats:** Table 16.9 lists the eight communication formats that can selected. The format is selected by settings in the serial mode register (SCSMR).

| S   | CSMR | Bits |       | Seri | al Tı | ransi | nit/F  | lece  | ive l | Form | nat and | Frame I | _ength |
|-----|------|------|-------|------|-------|-------|--------|-------|-------|------|---------|---------|--------|
| CHR | PE   | STOP | 1     | 2    | 3     | 4     | 5      | 6     | 7     | 8    | 9       | 10      | 11     |
| 0   | 0    | 0    | START |      |       |       | 8-b    | it da | ta    |      |         | STOP    |        |
| 0   | 0    | 1    | START |      |       |       | 8-b    | it da | ta    |      |         | STOP    | STOP   |
| 0   | 1    | 0    | START |      |       |       | 8-b    | it da | ta    |      |         | Ρ       | STOF   |
| 0   | 1    | 1    | START |      |       |       | 8-b    | it da | ta    |      |         | Ρ       | STOF   |
| 1   | 0    | 0    | START |      |       | 7-    | oit da | ata   |       |      | STOP    | ]       |        |
| 1   | 0    | 1    | START |      |       | 7-    | oit da | ata   |       |      | STOP    | STOP    | ]      |
| 1   | 1    | 0    | START |      |       | 7-    | oit da | ata   |       |      | Р       | STOP    | ]      |
| 1   | 1    | 1    | START |      |       | 7-    | oit da | ata   |       |      | Р       | STOP    | STOF   |

## Table 16.9 Serial Communication Formats

START: Start bit

STOP: Stop bit

P: Parity bit

Rev. 5.00, 09/03, page 538 of 760

**Transmitting and Receiving Data (SCIF Initialization):** Before transmitting or receive the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the SCIF

When changing the communication format, always clear the TE and RE bits to 0 befo the procedure given below. Clearing TE to 0 initializes the transmit shift register (SCT Clearing TE and RE to 0, however, does not initialize the serial status register (SCSSF FIFO data register (SCFTDR), or receive FIFO data register (SCFRDR), which retain previous contents. Clear TE to 0 after all transmit data has been transmitted and the TE the SCSSR is set. The TE bit can be cleared to 0 during transmission, but the transmit the high impedance state after the bit is cleared to 0. Set the TFRST bit in SCFCR to 1 SCFTDR before TE is set again to start transmission.

When an external clock is used, the clock should not be stopped during initialization of operation. SCIF operation becomes unreliable if the clock is stopped.

Figure 16.5 shows a sample flowchart for initializing the SCIF. The procedure for init SCIF is:

1. Set the clock selection in SCSCR.

Be sure to clear bits RIE TIE, TE, and RE to 0.

When clock output is selected, the clock is output immediately after SCSCR settin

- 2. Set the communication format in SCSMR.
- Write a value corresponding to the bit rate into the bit rate register (SCBRR). (Not necessary if an external clock is used.)
- 4. Wait at least one bit interval, then set the TE bit or RE bit in SCSCR to 1. Also se and TIE bits.

Setting the TE and RE bits enables the TxD and RxD pins to be used. When trans SCIF will go to the mark state; when receiving, it will go to the idle state, waiting bit.

RENESAS

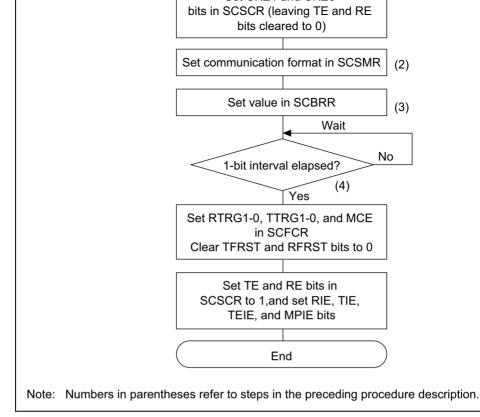



Figure 16.5 Sample Flowchart for SCIF Initialization

Rev. 5.00, 09/03, page 540 of 760

hags, then elear these hags to 0.

The number of transmit data bytes that can be written is (16 - transmit trigger set n

2. Serial transmission continuation procedure:

To continue serial transmission, read 1 from the TDFE flag to confirm that writing then write data to SCFTDR, and then clear the TDFE flag to 0.

3. Break output at the end of serial transmission:

To output a break in serial transmission, set the port SC data register (SCPDR) and control register (SCPCR), then clear the TE bit to 0 in the serial control register (S information on SCPDR and SCPCR, see section 16.2.8, Bit Rate Register (SCBRF)

In steps 1 and 2, it is possible to ascertain the number of data bytes that can be written number of transmit data bytes in SCFTDR indicated by the upper 8 bits of the FIFO daregister (SCFDR).



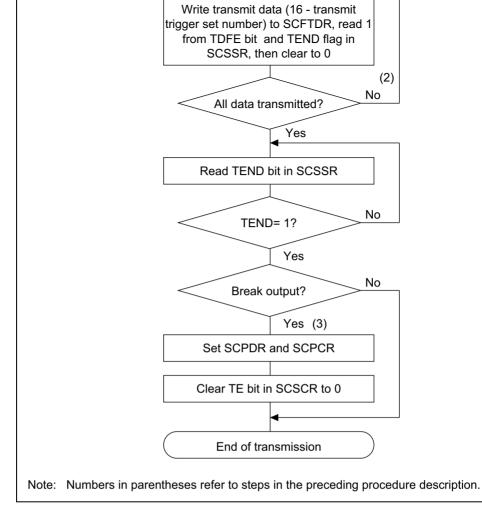



Figure 16.6 Sample Flowchart for Transmitting Serial Data

Rev. 5.00, 09/03, page 542 of 760

FIFO control register (SCFCR), the TDFE flag is set. If the TIE bit in the serial corregister (SCSR) is set to 1 at this time, a transmit-FIFO-data-empty interrupt (TXI) generated.

The serial transmit data is sent from the TxD pin in the following order.

- a. Start bit: One-bit 0 is output.
- b. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
- c. Parity bit: One parity bit (even or odd parity) is output. (A format in which a p not output can also be selected.)
- d. Stop bit(s): One or two 1-bits (stop bits) are output.
- e. Mark state: 1 is output continuously until the start bit that starts the next transm sent.
- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the stop bit. present, the data is transferred from SCFTDR to SCTSR, the stop bit is sent, and the transmission of the next frame is started.

If there is no transmit data, the TEND flag in SCSSR is set to 1, the stop bit is sent the line goes to the mark state in which 1 is output continuously.

Renesas

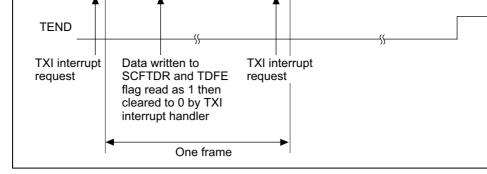



Figure 16.7 Example of Transmit Operation (8-Bit Data, Parity, One Stop Bit)

4. When modem control is enabled, transmission can be stopped and restarted in accord the CTS input value. When CTS is set to 1, if transmission is in progress, the line g mark state after transmission of one frame. When CTS is set to 0, the next transmit output starting from the start bit.

Figure 16.8 shows an example of the operation when modem control is used.

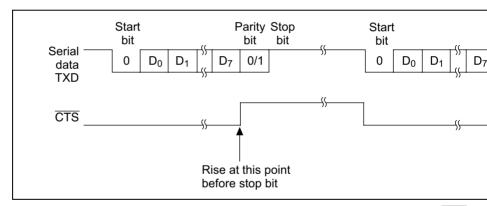



Figure 16.8 Example of Operation Using Modem Control (CTS)

Rev. 5.00, 09/03, page 544 of 760

Renesas

- 1
- 2. SCIF status check and receive data read : Read the serial status register (SCSSR) a that RDF = 1, then read the receive data in the receive FIFO data register (SCFRD from the RDF flag, and then clear the RDF flag to 0. The transition of the RDF flag 1 can be identified by an RXI interrupt.
- 3. Serial reception continuation procedure: To continue serial reception, read at least trigger set number of receive data bytes from SCFRDR, read 1 from the RDF flag, the RDF flag to 0. The number of receive data bytes in SCFRDR can be ascertain reading the lower bits of SCFDR.



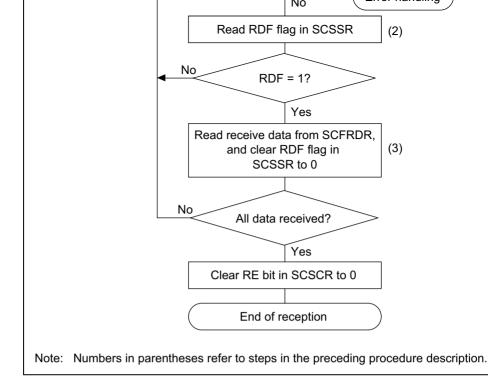



Figure 16.9 Sample Flowchart for Receiving Serial Data

Rev. 5.00, 09/03, page 546 of 760

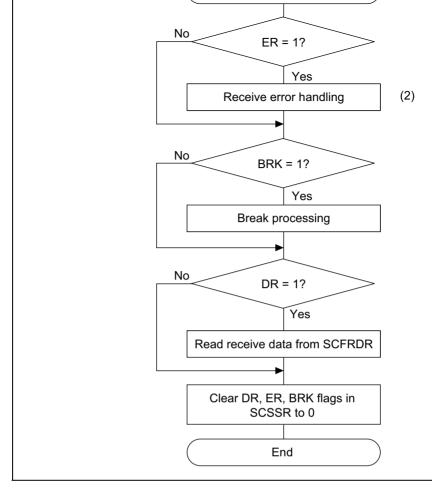



Figure 16.10 Sample Flowchart for Receiving Serial Data (cont)

Rev. 5.00, 09/03, pag

- a. Stop bit check: The SCIF checks whether the stop bit is 1. If there are two stop the first is checked.
- b. The SCIF checks whether receive data can be transferred from the receive shift (SCRSR) to SCFRDR.
- c. Break check: The SCIF checks that the BRK flag is 0, indicating that the break s set.

If all the above checks are passed, the receive data is stored in SCFRDR.

Note: Reception is not suspended when a receive error occurs.

4. If the RIE bit in SCSR is set to 1 when the RDF or DR flag changes to 1, a receivefull interrupt (RXI) request is generated. If the RIE bit in SCSR is set to 1 when the ER flag changes to 1, a receive-error inter request is generated.

If the RIE bit in SCSR is set to 1 when the BRK flag changes to 1, a break reception (BRI) request is generated.

Rev. 5.00, 09/03, page 548 of 760



Figure 16.11 Example of SCIF Receive Operation (8-Bit Data, Parity, One Stop Bit)

5. When modem control is enabled, the  $\overline{\text{RTS}}$  signal is output when SCFRDR is empty  $\overline{\text{RTS}}$  is 0, reception is possible. When  $\overline{\text{RTS}}$  is 1, this indicates that SCFRDR is full reception is not possible.

Figure 16.12 shows an example of the operation when modem control is used.

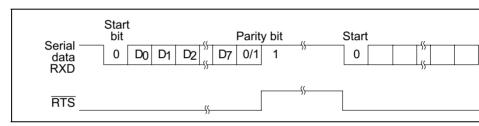



Figure 16.12 Example of Operation Using Modem Control (RTS)

Renesas

generated. The DMAC can be activated and data transfer performed when this interrup generated. When data exceeding the transmit trigger number is written to the transmit d (SCFTDR) by the DMAC, 1 is read from the TDFE flag, after which 0 is written to it to

When the RDF flag in SCSSR is set to 1, an RXI interrupt request is generated. The Dibe activated and data transfer performed when the RDF flag in SCSSR is set to 1. When data less than the receive trigger number is read from the receive data register (SCFRD DMAC, 1 is read from the RDF flag, after which 0 is written to it to clear it.

When the ER flag in SCSSR is set to 1, an ERI interrupt request is generated.

When the BRK flag in SCSSR is set to 1, a BRI interrupt request is generated.

The TXI interrupt indicates that transmit data can be written, and the RXI interrupt indithere is receive data in SCFRDR.

#### **Table 16.10 SCIF Interrupt Sources**

| Interrupt<br>Source | Description                                                                      | DMAC<br>Activation     | Priori<br>Rese |
|---------------------|----------------------------------------------------------------------------------|------------------------|----------------|
| ERI                 | Interrupt initiated by receive error flag (ER)                                   | Not possible           | High           |
| RXI                 | Interrupt initiated by receive data FIFO full flag (RDF) or data ready flag (DR) | Possible<br>(RDF only) |                |
| BRI                 | Interrupt initiated by break flag (BRK)                                          | Not possible           |                |
| TXI                 | Interrupt initiated by transmit FIFO data empty flag (TDFE)                      | Possible               | Low            |

See section 4, Exception Handling, for priorities and the relationship to non-SCIF international

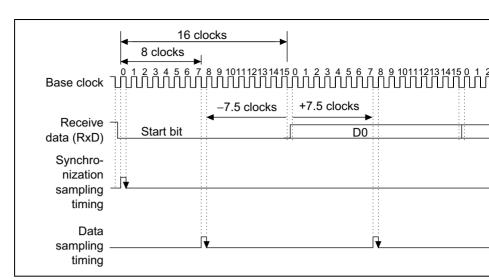
Rev. 5.00, 09/03, page 550 of 760

trigger number, the TDFE flag will be set to 1 again even after having been cleared to clearing should therefore be carried out after data exceeding the specified transmit trig has been written to SCFTDR.

The number of transmit data bytes in SCFTDR can be found from the upper 8 bits of t data count register (SCFDR).

2. SCFRDR Reading and RDF Flag: The RDF flag in the serial status register (SCS when the number of receive data bytes in the receive FIFO data register (SCFRDR) has equal to or greater than the receive trigger number set by bits RTRG1 and RTRG0 in the control register (SCFCR). After RDF is set, receive data equivalent to the trigger number and from SCFRDR, allowing efficient continuous reception.

However, if the number of data bytes in SCFRDR exceeds the trigger number, the RD be set to 1 again even after having been cleared to 0. RDF should therefore be cleared being read as 1 after all the receive data has been read.


The number of receive data bytes in SCFRDR can be found from the lower 8 bits of th count register (SCFDR).

**3. Break Detection and Processing:** Break signals can be detected by reading the Ry directly when a framing error (FER) is detected. In the break state the input from the consists of all 0s, so the FER flag is set and the parity error flag (PER) may also be set although transfer of receive data to SCFRDR is halted in the break state, the SCIF receives continues to operate, so if the BRK flag is cleared to 0 it will be set to 1 again.

**4. Sending a Break Signal:** The I/O condition and level of the TxD pin are determine SCP4DT bit in the port SC data register (SCPDR) and bits SCP4MD0 and SCP4MD1 SC control register (SCPCR). This feature can be used to send a break signal. To send a break signal during serial transmission, clear the SCP4DT bit to 0 (designat level), then set the SCP4MD0 and SCP4MD1 bits to 0 and 1, respectively, and finally bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is initia regardless of the current transmission state, and 0 is output from the TxD pin.

RENESAS

edge of the eighth base clock pulse. The timing is shown in figure 16.13.





The receive margin in asynchronous mode can therefore be expressed as shown in equa

Equation 1:

$$M = \left| \left( 0.5 - \frac{1}{2N} \right) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

Where: M: Receive margin (%)

- N: Ratio of clock frequency to bit rate (N = 16)
- D: Clock duty cycle (D = 0 to 1.0)
- L: Frame length (L = 9 to 12)
- F: Absolute deviation of clock frequency

From equation 1, if F = 0 and D = 0.5, the receive margin is 46.875%, as given by equa

Rev. 5.00, 09/03, page 552 of 760

#### Renesas

Renesas

Rev. 5.00, 09/03, page 554 of 760

### 17.1.1 Features

- Conforms to the IrDA 1.0 system
- Asynchronous serial communication
  - Data length: 8 bits
  - Stop bit length: 1 bit
  - Parity bit: None
- On-chip 16-stage FIFO buffers for both transmit and receive operations
- On-chip baud rate generator with selectable bit rates
- Guard functions to protect the receiver during transmission
- Clock supply halted to reduce power consumption when not using the IrDA interfa

RENESAS

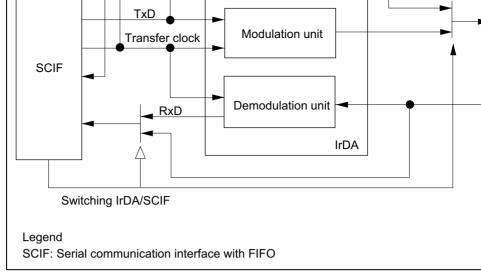
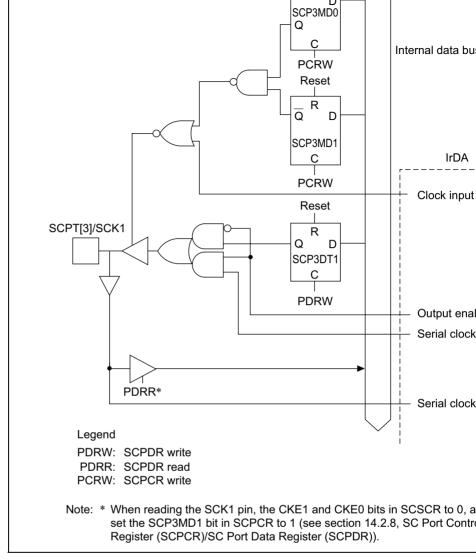




Figure 17.1 Block Diagram of IrDA

Rev. 5.00, 09/03, page 556 of 760



## Figure 17.2 SCPT[3]/SCK1 Pin

Rev. 5.00, 09/03, pag

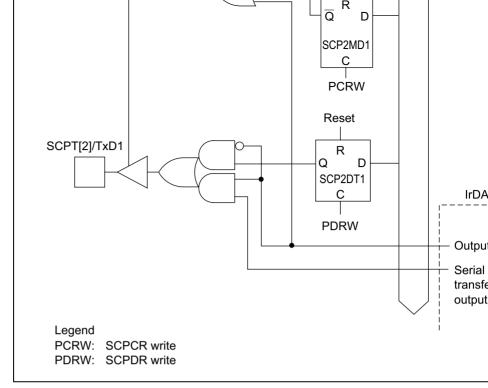
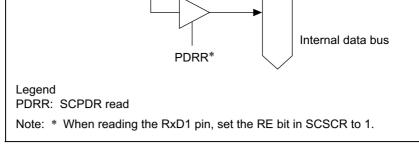




Figure 17.3 SCPT[2]/TxD1 Pin

Rev. 5.00, 09/03, page 558 of 760



#### Figure 17.4 SCPT[2]/RxD1 Pin

### 17.1.3 Pin Configuration

The IrDA has the serial pins summarized in table 17.1.

#### Table 17.1 IrDA Pins

| Pin Name          | Signal Name | I/O    | Function             |
|-------------------|-------------|--------|----------------------|
| Serial clock pin  | SCK1        | I/O    | Clock I/O            |
| Receive data pin  | RxD1        | Input  | Receive data input   |
| Transmit data pin | TxD1        | Output | Transmit data output |

Note: Clock input from the serial clock pin cannot be set in IrDA mode.

RENESAS

Rev. 5.00, 09/03, pag

T

|                               |         |                     |           | (H'A4000140)               |
|-------------------------------|---------|---------------------|-----------|----------------------------|
| Bit rate register 1           | SCBRR1  | R/W                 | H'FF      | H'04000142<br>(H'A4000142) |
| Serial control register 1     | SCSCR1  | R/W                 | H'00      | H'04000144<br>(H'A4000144) |
| Transmit FIFO data register 1 | SCFTDR1 | W                   | —         | H'04000146<br>(H'A4000146) |
| Serial status register 1      | SCSSR1  | R/(W) <sup>*1</sup> | H'0060    | H'04000148<br>(H'A4000148) |
| Receive FIFO data register 1  | SCFRDR1 | R                   | Undefined | H'0400014A<br>(H'A400014A) |
| FIFO control register 1       | SCFCR1  | R/W                 | H'00      | H'0400014C<br>(H'A400014C) |
| FIFO data count register 1    | SCFDR1  | R                   | H'0000    | H'0400014E<br>(H'A400014E) |
|                               |         |                     |           |                            |

Notes: These registers are located in area 1 of physical space. Therefore, when the ca either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. Only 0 can be written to clear the flag.
- 2. When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 560 of 760

| Dit.           | '     | 0    | 0    | -    | 0    | 2    |     |
|----------------|-------|------|------|------|------|------|-----|
|                | IRMOD | ICK3 | ICK2 | ICK1 | ICK0 | PSEL | CKS |
| Initial value: | 0     | 0    | 0    | 0    | 0    | 0    | 0   |
| R/W:           | R/W   | R/W  | R/W  | R/W  | R/W  | R/W  | R/M |

SCSMR is an 8-bit register that selects IrDA or SCIF mode, specifies the SCIF serial communication format, selects the IrDA output pulse width, and selects the baud rate clock source.

This module operates as IrDA when the IRMOD bit is set to 1. At this time, bits 3 to 6 0. This register functions in the same way as the SCSMR register in the SCIF when th bit is cleared to 0; therefore, this module can also operate as an SCIF.

SCSMR is initialized to H'00 by a power-on reset or manual reset, when the module is the module standby function, and in standby mode.

**Bit 7—IrDA Mode (IRMOD):** Selects whether this module operates as an IrDA serial communication interface or as an SCIF.

Bit 7: IRMOD Description

| 0     | Operates as an SCIF                        |                                         |
|-------|--------------------------------------------|-----------------------------------------|
| 1*    | Operates as an IrDA                        |                                         |
| Note: | * Do not set the CKE1 bit in the serial co | atrol register (SCSCRT) to 1 if the IRM |

Note: \* Do not set the CKE1 bit in the serial control register (SCSCRT) to 1 if the IRM to 1.

Renesas

| 10110 | 10112 |       |       | IOLL |                                 |
|-------|-------|-------|-------|------|---------------------------------|
| ICK3  | ICK2  | ICK1  | ICK0  | 1    |                                 |
| Don't | Don't | Don't | Don't | 0    | Pulse width: 3/16 of bit length |
| care  | care  | care  | care  |      |                                 |

It is necessary to generate a fixed clock pulse, IRCLK, by dividing the  $P\phi$  clock by 1/2 the value of N determined by the setting of ICK3–ICK0).

Example:

P
 clock: 14.7456 MHz

IRCLK: 921.6 kHz (fixed)

N: Setting of ICK3–ICK0 ( $0 \le N \le 15$ )

$$N \ge \frac{P\phi}{2XIRCLK} - 1 \ge 7$$

Accordingly, N is 7.

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): Select the internal baud rate gene source. P $\phi$ , P $\phi$ /4, P $\phi$ /16, or P $\phi$ /64 can be selected by setting the CKS1 and CKS0 bits.

Refer to section 14.2.9, Bit Rate Register (SCBRR), for the relationship between the cle the bit rate register set value, and the baud rate.

| Bit 0: CKS0 | Description                 |
|-------------|-----------------------------|
| 0           | Pø clock (l                 |
| 1           | Pø/4 clock                  |
| 0           | Ρφ/16                       |
| 1           | Ρφ/64                       |
|             | Bit 0: CKS0 0 1 0 1 0 1 0 1 |

Note: Po: Peripheral clock

Rev. 5.00, 09/03, page 562 of 760

Renesas

Refer to section 16.3, Operation, for SCIF mode operation.

### 17.3.1 Overview

The IrDA module modifies TxD/RxD transmit/receive data waveforms to satisfy the I specification for infrared communication.

In the IrDA 1.0 specification, communication is first performed at a speed of 9600 bpc communication speed is changed. However, the communication rate cannot be autom changed in this module, so the communication speed should be confirmed, and the appropriate speed set for this module by software.

Note: In IrDA mode, reception cannot be performed when the TE bit in the serial co (SCSCR) is set to 1 (enabling transmission). When performing reception, clear in SCSCR to 0.
As the SH7709S's RxD1 pin is active-high in IrDA mode, a (Schmidt) inverte inserted when connecting an active-low IrDA module.
The RxD1 pin is active-low in SCIF mode.

#### 17.3.2 Transmitting

In the case of a serial output signal (UART frame) from the SCIF, its waveforms are not the signal is converted into the IR frame serial output signal by the IrDA module, as sl figure 17.5.

When serial data is 0, a pulse of 3/16 the IR frame bit width is generated and output. W data is 1, no pulse is output.

RENESAS

An infrared LED is driven by this signal demodulated to 3/16 width.

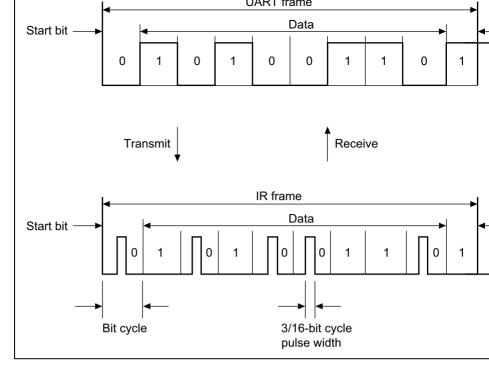



Figure 17.5 Transmit/Receive Operation

Rev. 5.00, 09/03, page 564 of 760

| Port | Port Function<br>(Related Module)           | Other Function<br>(Related Module) |
|------|---------------------------------------------|------------------------------------|
| A    | PTA7 input/output (port)                    | D23 input/output (data bus)        |
| A    | PTA6 input/output (port)                    | D22 input/output (data bus)        |
| A    | PTA5 input/output (port)                    | D21 input/output (data bus)        |
| A    | PTA4 input/output (port)                    | D20 input/output (data bus)        |
| A    | PTA3 input/output (port)                    | D19 input/output (data bus)        |
| A    | PTA2 input/output (port)                    | D18 input/output (data bus)        |
| A    | PTA1 input/output (port)                    | D17 input/output (data bus)        |
| A    | PTA0 input/output (port)                    | D16 input/output (data bus)        |
| В    | PTB7 input/output (port)                    | D31 input/output (data bus)        |
| В    | PTB6 input/output (port)                    | D30 input/output (data bus)        |
| В    | PTB5 input/output (port)                    | D29 input/output (data bus)        |
| В    | PTB4 input/output (port)                    | D28 input/output (data bus)        |
| В    | PTB3 input/output (port)                    | D27 input/output (data bus)        |
| В    | PTB2 input/output (port)                    | D26 input/output (data bus)        |
| В    | PTB1 input/output (port)                    | D25 input/output (data bus)        |
| В    | PTB0 input/output (port)                    | D24 input/output (data bus)        |
| С    | PTC7 input/output (port)/PINT7 input (INTC) | MCS7 output (BSC)                  |
| С    | PTC6 input/output (port)/PINT6 input (INTC) | MCS6 output (BSC)                  |
| С    | PTC5 input/output (port)/PINT5 input (INTC) | MCS5 output (BSC)                  |
| С    | PTC4 input/output (port)/PINT4 input (INTC) | MCS4 output (BSC)                  |
| С    | PTC3 input/output (port)/PINT3 input (INTC) | MCS3 output (BSC)                  |
| С    | PTC2 input/output (port)/PINT2 input (INTC) | MCS2 output (BSC)                  |
| С    | PTC1 input/output (port)/PINT1 input (INTC) | MCS1 output (BSC)                  |

# Table 18.1 List of Multiplexed Pins

Renesas

| PTD2 input/output (port)              | RESETOUT output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTD1 input/output (port)              | DRAK0 output (DMAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PTD0 input/output (port)              | DRAK1 output (DMAC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PTE7 input/output (port)              | AUDSYNC output (AUD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PTE6 input/output (port)              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PTE5 input/output (port)              | CE2B output (PCMCIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PTE4 input/output (port)              | CE2A output (PCMCIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PTE3 input/output (port)              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PTE2 input/output (port)              | RAS3U output (BSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTE1 input/output (port)              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PTE0 input/output (port)              | TDO output (UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PTF7 input (port)/PINT15 input (INTC) | TRST input (AUD, UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PTF6 input (port)/PINT14 input (INTC) | TMS input (UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PTF5 input (port)/PINT13 input (INTC) | TD1 input (UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PTF4 input (port)/PINT12 input (INTC) | TCK input (UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PTF3 input (port)/PINT11 input (INTC) | IRLS3 input (INTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTF2 input (port)/PINT10 input (INTC) | IRLS2 input (INTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTF1 input (port)/PINT9 input (INTC)  | IRLS1 input (INTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTF0 input (port)/PINT8 input (INTC)  | IRLS0 input (INTC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTG7 input (port)                     | IOIS16 input (PCMCIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PTG6 input (port)                     | ASEMD0 input (AUD, UDI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PTG5 input (port)                     | ASEBRKAK output (AUD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PTG4 input (port)                     | CKIO2 output (CPG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PTG3 input (port)                     | AUDATA3 output (AUD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PTG2 input (port)                     | AUDATA2 output (AUD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | PTD1 input/output (port)PTD0 input/output (port)PTE7 input/output (port)PTE6 input/output (port)PTE5 input/output (port)PTE4 input/output (port)PTE3 input/output (port)PTE1 input/output (port)PTE1 input/output (port)PTE1 input/output (port)PTE7 input (port)/PINT15 input (INTC)PTF6 input (port)/PINT14 input (INTC)PTF5 input (port)/PINT13 input (INTC)PTF4 input (port)/PINT12 input (INTC)PTF2 input (port)/PINT11 input (INTC)PTF2 input (port)/PINT10 input (INTC)PTF1 input (port)/PINT10 input (INTC)PTF0 input (port)PTG3 input (port)PTG5 input (port)PTG4 input (port)PTG3 input (port)PTG3 input (port) |

Rev. 5.00, 09/03, page 566 of 760

| Н | PTH3 input (port)/IRQ3 input (INTC) | IRQ3 input (INTC)                                        |
|---|-------------------------------------|----------------------------------------------------------|
| Н | PTH2 input (port)/IRQ2 input (INTC) | IRQ2 input (INTC)                                        |
| Н | PTH1 input (port)/IRQ1 input (INTC) | IRQ1 input (INTC)                                        |
| Н | PTH0 input (port)/IRQ0 input (INTC) | IRQ0 input (INTC)                                        |
| J | PTJ7 input/output (port)            | STATUS1 output (CPG)                                     |
| J | PTJ6 input/output (port)            | STATUS0 output (CPG)                                     |
| J | PTJ5 input/output (port)            | _                                                        |
| J | PTJ4 input/output (port)            | _                                                        |
| J | PTJ3 input/output (port)            | CASU output (BSC)                                        |
| J | PTJ2 input/output (port)            | CASL output (BSC)                                        |
| J | PTJ1 input/output (port)            |                                                          |
| J | PTJ0 input/output (port)            | RAS3L output (BSC)                                       |
| K | PTK7 input/output (port)            | WE3 output (BSC)/DQMUU outp<br>(BSC)/ICIOWR output (BSC) |
| K | PTK6 input/output (port)            | WE2 output (BSC)/DQMUL outp<br>(BSC)/ICIORD output (BSC) |
| К | PTK5 input/output (port)            | CKE output (BSC)                                         |
| К | PTK4 input/output (port)            | BS output (BSC)                                          |
| К | PTK3 input/output (port)            | CS5 output (BSC)/CE1A output                             |
| К | PTK2 input/output (port)            | CS4 output (BSC)                                         |
| К | PTK1 input/output (port)            | CS3 output (BSC)                                         |
| К | PTK0 input/output (port)            | CS2 output (BSC)                                         |
| L | PTL7 input (port)                   | AN7 input (ADC)/DA0 output (D                            |
| L | PTL6 input (port)                   | AN6 input (ADC)/DA1 output (D                            |
| L | PTL5 input (port)                   | AN5 input (ADC)                                          |
|   |                                     |                                                          |

Renesas

|                         | SCPT0 output (port)                               | TxD0 output (UART ch 1)       |  |
|-------------------------|---------------------------------------------------|-------------------------------|--|
| SCPT                    | SCPT0 input (port) RxD0 input (UART ch 1)         |                               |  |
| SCPT                    | SCPT1 input/output (port)                         | SCK0 input/output (UART ch 1) |  |
|                         | SCPT2 output (port)                               | TxD1 output (UART ch 2)       |  |
| SCPT SCPT2 input (port) |                                                   | RxD1 input (UART ch 2)        |  |
| SCPT                    | SCPT3 input/output (port)                         | SCK1 input/output (UART ch 2) |  |
|                         | SCPT4 output (port)                               | TxD2 output (UART ch 3)       |  |
| SCPT                    | SCPT4 input (port)                                | RxD2 input (UART ch 3)        |  |
| SCPT                    | SCPT5 input/output (port)                         | SCK2 input/output (UART ch 3) |  |
| SCPT                    | SCPT6 input/output (port) RTS2 output (UART ch 3) |                               |  |

Note: SCPT0, SCPT2, and SCPT4 have the same data register to be accessed althou have different input pins and output pins.

Rev. 5.00, 09/03, page 568 of 760

|                              |                    |     |                            | (HA4000100)                             |
|------------------------------|--------------------|-----|----------------------------|-----------------------------------------|
| Port B control register      | PBCR               | R/W | H'0000                     | H'04000102<br>(H'A4000102) <sup>*</sup> |
| Port C control register      | PCCR               | R/W | H'AAAA                     | H'04000104<br>(H'A4000104) <sup>*</sup> |
| Port D control register      | PDCR               | R/W | H'AA8A                     | H'04000106<br>(H'A4000106) <sup>*</sup> |
| Port E control register      | PECR               | R/W | H'AAAA/H'2AA8              | H'04000108<br>(H'A4000108) <sup>*</sup> |
| Port F control register      | PFCR               | R/W | H'AAAA/H'00AA              | H'0400010A<br>(H'A400010A)              |
| Port G control register      | PGCR               | R/W | H'AAAA/H'A200              | H'0400010C<br>(H'A400010C)              |
| Port H control register      | PHCR               | R/W | H'AAAA/H'8AAA              | H'0400010E<br>(H'A400010E)              |
| Port J control register      | PJCR               | R/W | H'0000                     | H'04000110<br>(H'A4000110) <sup>°</sup> |
| Port K control register      | PKCR               | R/W | H'0000                     | H'04000112<br>(H'A4000112) <sup>°</sup> |
| Port L control register      | PLCR               | R/W | H'0000                     | H'04000114<br>(H'A4000114) <sup>*</sup> |
| SC port control register     | SCPCR              | R/W | H'A888                     | H'04000116<br>(H'A4000116) <sup>°</sup> |
| Natary A. The initial column | a af the area at E | - 0 | I la a netra l'a a miatara |                                         |

Notes: 1. The initial value of the port E, F, G, and H control registers depends on the ASEMD0 pin. If a low level is input at the ASEMD0 pin while the RESETP pin is asserted, is entered; if a high level is input, normal mode is entered. See section 22, Debugging Interface (UDI), for more information on the UDI.

 These registers are located in area 1 of physical space. Therefore, when the on, either access these registers from the P2 area of logical space or else appropriate setting using the MMU so that these registers are not cached.

\* When address translation by the MMU does not apply, the address in parer should be used.

RENESAS

The port A control register (PACR) is a 16-bit readable/writable register that selects the functions. PACR is initialized to H'0000 by a power-on reset, but is not initialized by a reset, in standby mode, or in sleep mode.

Bits 15 and 14—PA7 Mode 1 and 0 (PA7MD1, PA7MD0) Bits 13 and 12—PA6 Mode 1 and 0 (PA6MD1, PA6MD0) Bits 11 and 10—PA5 Mode 1 and 0 (PA5MD1, PA5MD0) Bits 9 and 8—PA4 Mode 1 and 0 (PA4MD1, PA4MD0) Bits 7 and 6—PA3 Mode 1 and 0 (PA3MD1, PA3MD0) Bits 5 and 4—PA2 Mode 1 and 0 (PA2MD1, PA2MD0) Bits 3 and 2—PA1 Mode 1 and 0 (PA1MD1, PA1MD0) Bits 1 and 0—PA0 Mode 1 and 0 (PA0MD1, PA0MD0)

These bits select the pin functions and perform input pull-up MOS control.

Bit (2n + 1) Bit 2n

| PAnMD1 | PAnMD0 | Pin Function                    |     |
|--------|--------|---------------------------------|-----|
| 0      | 0      | Other function (see table 18.1) | (In |
| 0      | 1      | Port output                     |     |
| 1      | 0      | Port input (Pull-up MOS: on)    |     |
| 1      | 1      | Port input (Pull-up MOS: off)   |     |

Rev. 5.00, 09/03, page 570 of 760

functions. PBCR is initialized to H'0000 by a power-on reset, but is not initialized by a reset, in standby mode, or in sleep mode.

Bits 15 and 14—PB7 Mode 1 and 0 (PB7MD1, PB7MD0) Bits 13 and 12—PB6 Mode 1 and 0 (PB6MD1, PB6MD0) Bits 11 and 10—PB5 Mode 1 and 0 (PB5MD1, PB5MD0) Bits 9 and 8—PB4 Mode 1 and 0 (PB4MD1, PB4MD0) Bits 7 and 6—PB3 Mode 1 and 0 (PB3MD1, PB3MD0) Bits 5 and 4—PB2 Mode 1 and 0 (PB2MD1, PB2MD0) Bits 3 and 2—PB1 Mode 1 and 0 (PB1MD1, PB1MD0) Bits 1 and 0—PB0 Mode 1 and 0 (PB0MD1, PB0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| Dit (211 + 1) |        |                                   |
|---------------|--------|-----------------------------------|
| PBnMD1        | PBnMD0 | Pin Function                      |
| 0             | 0      | Other function (see table 18.1) ( |
| 0             | 1      | Port output                       |
| 1             | 0      | Port input (Pull-up MOS: on)      |
| 1             | 1      | Port input (Pull-up MOS: off)     |

Bit (2n + 1) Bit 2n

RENESAS

functions. PCCR is initialized to H'AAAA by a power-on reset, but is not initialized by reset, in standby mode, or in sleep mode.

Bits 15 and 14—PC7 Mode 1 and 0 (PC7MD1, PC7MD0) Bits 13 and 12—PB6 Mode 1 and 0 (PC6MD1, PC6MD0) Bits 11 and 10—PC5 Mode 1 and 0 (PC5MD1, PC5MD0) Bits 9 and 8—PC4 Mode 1 and 0 (PC4MD1, PC4MD0) Bits 7 and 6—PC3 Mode 1 and 0 (PC3MD1, PC3MD0) Bits 5 and 4—PC2 Mode 1 and 0 (PC2MD1, PC2MD0) Bits 3 and 2—PC1 Mode 1 and 0 (PC1MD1, PC1MD0) Bits 1 and 0—PC0 Mode 1 and 0 (PC0MD1, PC0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| ы (211 + 1) | DILZII |                                 |     |
|-------------|--------|---------------------------------|-----|
| PCnMD1      | PCnMD0 | Pin Function                    |     |
| 0           | 0      | Other function (see table 18.1) |     |
| 0           | 1      | Port output                     |     |
| 1           | 0      | Port input (Pull-up MOS: on)    | (Ir |
| 1           | 1      | Port input (Pull-up MOS: off)   |     |

Bit (2n + 1) Bit 2n

Rev. 5.00, 09/03, page 572 of 760

The point D control register (r DCK) is a 10-bit reauable/ writable register that screets in functions. PDCR is initialized to H'AA8A by a power-on reset, but is not initialized by reset, in standby mode, or in sleep mode.

# Bits 15 and 14—PD7 Mode 1 and 0 (PD7MD1, PD7MD0) Bits 11 and 10-PD5 Mode 1 and 0 (PD5MD1, PD5MD0)

Bits 7 and 6—PD3 Mode 1 and 0 (PD3MD1, PD3MD0)

Bits 5 and 4—PD2 Mode 1 and 0 (PD2MD1, PD2MD0)

Bits 3 and 2—PD1 Mode 1 and 0 (PD1MD1, PD1MD0)

Bits 1 and 0—PD0 Mode 1 and 0 (PD0MD1, PD0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| Bit 2n |                                 |                                                                                             |
|--------|---------------------------------|---------------------------------------------------------------------------------------------|
| PDnMD0 | Pin Function                    |                                                                                             |
| 0      | Other function (see table 18.1) | (Initial va                                                                                 |
| 1      | Port output                     |                                                                                             |
| 0      | Port input (Pull-up MOS: on)    | (Initial value) (n =                                                                        |
| 1      | Port input (Pull-up MOS: off)   |                                                                                             |
|        | PDnMD0                          | PDnMD0Pin Function0Other function (see table 18.1)1Port output0Port input (Pull-up MOS: on) |

(n

# Bits 13 and 12—PD6 Mode 1 and 0 (PD6MD1, PD6MD0) Bits 9 and 8—PD4 Mode 1 and 0 (PD4MD1, PD4MD0)

These bits select the pin functions and perform input pull-up MOS control.

| Bit (2n + 1) | Bit 2n |                                 |
|--------------|--------|---------------------------------|
| PDnMD1       | PDnMD0 | Pin Function                    |
| 0            | 0      | Other function (see table 18.1) |
| 0            | 1      | Reserved                        |
| 1            | 0      | Port input (Pull-up MOS: on) (  |
| 1            | 1      | Port input (Pull-up MOS: off)   |

RENESAS

functions. PECR is initialized to H'AAAA ( $\overline{ASEMD0} = 1$ ) or H'2AA8 ( $\overline{ASEMD0} = 0$ ) power-on reset, but is not initialized by a manual reset, in software standby mode, or in mode.

Bits 15 and 14—PE7 Mode 1 and 0 (PE7MD1, PE7MD0) Bits 13 and 12—PE6 Mode 1 and 0 (PE6MD1, PE6MD0) Bits 11 and 10—PE5 Mode 1 and 0 (PE5MD1, PE5MD0) Bits 9 and 8—PE4 Mode 1 and 0 (PE4MD1, PE4MD0) Bits 7 and 6—PE3 Mode 1 and 0 (PE3MD1, PE3MD0) Bits 5 and 4—PE2 Mode 1 and 0 (PE2MD1, PE2MD0) Bits 3 and 2—PE1 Mode 1 and 0 (PE1MD1, PE1MD0) Bits 1 and 0—PE0 Mode 1 and 0 (PE0MD1, PE0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| Bit (2n | + 1) | Bit 2n |
|---------|------|--------|
|---------|------|--------|

| PEnMD1 | PEnMD0 | Pin Function                            |                      |
|--------|--------|-----------------------------------------|----------------------|
| 0      | 0      | Reserved (n = 0, 7) (see table $18.1$ ) | (Initial value) (ASI |
| 0      | 1      | Port output                             |                      |
| 1      | 0      | Port input (Pull-up MOS: on)            | (Initial value) (ASI |
| 1      | 1      | Port input (Pull-up MOS: off)           |                      |

Bit (2n + 1) Bit 2n

| PEnMD1 | PEnMD0 | Pin Function                                                             |
|--------|--------|--------------------------------------------------------------------------|
| 0      | 0      | Other function (n = 2, 4, 5) (see table 18.1), Reserved (n = $(n + 1)$ ) |
| 0      | 1      | Port output                                                              |
| 1      | 0      | Port input (Pull-up MOS: on) (In                                         |
| 1      | 1      | Port input (Pull-up MOS: off)                                            |

Rev. 5.00, 09/03, page 574 of 760

functions. PFCR is initialized to H'AAAA (ASEMD0 = 1) or H'00AA (ASEMD0 = 0) on reset, but is not initialized by a manual reset, in standby mode, or in sleep mode.

Bits 15 and 14—PF7 Mode 1 and 0 (PF7MD1, PF7MD0) Bits 13 and 12—PF6 Mode 1 and 0 (PF6MD1, PF6MD0) Bits 11 and 10—PF5 Mode 1 and 0 (PF5MD1, PF5MD0) Bits 9 and 8—PF4 Mode 1 and 0 (PF4MD1, PF4MD0) Bits 7 and 6—PF3 Mode 1 and 0 (PF3MD1, PF3MD0) Bits 5 and 4—PF2 Mode 1 and 0 (PF2MD1, PF2MD0) Bits 3 and 2—PF1 Mode 1 and 0 (PF1MD1, PF1MD0) Bits 1 and 0—PF0 Mode 1 and 0 (PF0MD1, PF0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| PFnMD1 | PFnMD0 | Pin Function                    |                    |  |
|--------|--------|---------------------------------|--------------------|--|
| 0      | 0      | Other function (see table 18.1) | (Initial value) (A |  |
| 0      | 1      | Reserved                        |                    |  |
| 1      | 0      | Port input (Pull-up MOS: on)    | (Initial value) (A |  |
| 1      | 1      | Port input (Pull-up MOS: off)   |                    |  |

Bit (2n + 1) Bit 2n

| Bit (2n + 1) Bit 2n |
|---------------------|
|---------------------|

| · · · · · · |        |                                 |   |
|-------------|--------|---------------------------------|---|
| PFnMD1      | PFnMD0 | Pin Function                    |   |
| 0           | 0      | Other function (see table 18.1) |   |
| 0           | 1      | Reserved                        |   |
| 1           | 0      | Port input (Pull-up MOS: on)    | ( |
| 1           | 1      | Port input (Pull-up MOS: off)   |   |

Rev. 5.00, 09/03, pag

# Renesas

functions. PGCR is initialized to H'AAAA ( $\overline{ASEMD0} = 1$ ) or H'A200 ( $\overline{ASEMD0} = 0$ ) on reset, but is not initialized by a manual reset, in standby mode, or in sleep mode.

Bits 15 and 14—PG7 Mode 1 and 0 (PG7MD1, PG7MD0) Bits 13 and 12—PG6 Mode 1 and 0 (PG6MD1, PG6MD0) Bits 11 and 10—PG5 Mode 1 and 0 (PG5MD1, PG5MD0) Bits 9 and 8—PG4 Mode 1 and 0 (PG4MD1, PG4MD0) Bits 7 and 6—PG3 Mode 1 and 0 (PG3MD1, PG3MD0) Bits 5 and 4—PG2 Mode 1 and 0 (PG2MD1, PG2MD0) Bits 3 and 2—PG1 Mode 1 and 0 (PG1MD1, PG1MD0) Bits 1 and 0—PG0 Mode 1 and 0 (PG0MD1, PG0MD0) These bits select the pin functions and perform input pull-up MOS control.

Rev. 5.00, 09/03, page 576 of 760

| Bit (2n + 1) | Bit 2n |                                                 |     |
|--------------|--------|-------------------------------------------------|-----|
| PGnMD1       | PGnMD0 | Pin Function                                    |     |
| 0            | 0      | Other function $(n = 4, 6, 7)$ (see table 18.1) |     |
| 0            | 1      | Reserved                                        |     |
| 1            | 0      | Port input (Pull-up MOS: on)                    | (Ir |
| 1            | 1      | Port input (Pull-up MOS: off)                   |     |

Note: \* When n = 6, ASEMD0/PTG6 functions as ASEMD0 input while the reset signal asserted, and as PTG6 input immediately after the reset signal is nagated.

| Bit 3   | Bit 0  |                                 |                   |
|---------|--------|---------------------------------|-------------------|
| PG1MD1* | PG0MD0 | Pin Function                    |                   |
| 0       | 0      | Other function (see table 18.1) | (Initial value) A |
| 0       | 1      | Reserved                        |                   |
| 1       | 0      | Port input (Pull-up MOS: on)    | (Initial value) A |
| 1       | 1      | Port input (Pull-up MOS: off)   |                   |
|         |        |                                 |                   |

Note: \* Controlled by PG1MD1 (bit 3), not PG0MD1 (bit 1).

# 18.3.8 Port H Control Register (PHCR)

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
|                |     |     |     |     |     |     |     |     |     |     |     |     | PH1 |    |
|                | MD1 | MD0 | MD1 | M  |
| Initial value: | 1   | 0   | 1/0 | 0   | 1   | 0   | 1   | 0   | 1   | 0   | 1   | 0   | 1   | C  |
| R/W:           | R/W | R/ |

The port H control register (PHCR) is a 16-bit readable/writable register that selects the functions. PHCR is initialized to H'AAAA ( $\overline{ASEMD0} = 1$ ) or H'8AAA ( $\overline{ASEMD0} = 0$ ) power-on reset, but is not initialized by a manual reset, in standby mode, or in sleep m

Rev. 5.00, 09/03, pag

# Renesas

| Bits 13 and 12—PH6 Mode 1 and 0 (PH6MD1, PH6MD0)                  |
|-------------------------------------------------------------------|
| Bits 11 and 10—PH5 Mode 1 and 0 (PH5MD1, PH5MD0)                  |
| Bits 9 and 8—PH4 Mode 1 and 0 (PH4MD1, PH4MD0)                    |
| Bits 7 and 6—PH3 Mode 1 and 0 (PH3MD1, PH3MD0)                    |
| Bits 5 and 4—PH2 Mode 1 and 0 (PH2MD1, PH2MD0)                    |
| Bits 3 and 2—PH1 Mode 1 and 0 (PH1MD1, PH1MD0)                    |
| Bits 1 and 0—PH0 Mode 1 and 0 (PH0MD1, PH0MD0)                    |
| These hits called the min for stiene and morforms innet well an M |

These bits select the pin functions and perform input pull-up MOS control.

| Bit 13 | Bit 12 |                                 |                     |
|--------|--------|---------------------------------|---------------------|
| PH6MD1 | PH6MD0 | Pin Function                    |                     |
| 0      | 0      | Other function (see table 18.1) | (Initial value) (AS |
| 0      | 1      | Reserved                        |                     |
| 1      | 0      | Port input (Pull-up MOS: on)    | (Initial value) (AS |
| 1      | 1      | Port input (Pull-up MOS: off)   |                     |

| Bit (2n + 1) | Bit 2n |                                 |     |
|--------------|--------|---------------------------------|-----|
| PHnMD1       | PHnMD0 | Pin Function                    |     |
| 0            | 0      | Other function (see table 18.1) |     |
| 0            | 1      | Reserved                        |     |
| 1            | 0      | Port input (Pull-up MOS: on)    | (In |
| 1            | 1      | Port input (Pull-up MOS: off)   |     |

Rev. 5.00, 09/03, page 578 of 760

The port J control register (PJCR) is a 16-bit readable/writable register that selects the functions. PJCR is initialized to H'0000 by a power-on reset, but is not initialized by a reset, in standby mode, or in sleep mode.

Bits 15 and 14—PJ7 Mode 1 and 0 (PJ7MD1, PJ7MD0) Bits 13 and 12—PJ6 Mode 1 and 0 (PJ6MD1, PJ6MD0) Bits 11 and 10—PJ5 Mode 1 and 0 (PJ5MD1, PJ5MD0) Bits 9 and 8—PJ4 Mode 1 and 0 (PJ4MD1, PJ4MD0) Bits 7 and 6—PJ3 Mode 1 and 0 (PJ3MD1, PJ3MD0) Bits 5 and 4—PJ2 Mode 1 and 0 (PJ2MD1, PJ2MD0) Bits 3 and 2—PJ1 Mode 1 and 0 (PJ1MD1, PJ1MD0) Bits 1 and 0—PJ0 Mode 1 and 0 (PJ0MD1, PJ0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| . ,    |        |                                                                                    |   |
|--------|--------|------------------------------------------------------------------------------------|---|
| PJnMD1 | PJnMD0 | Pin Function                                                                       |   |
| 0      | 0      | Other function $(n = 0, 2, 3, 6, 7)$ (see table 18.1),<br>Reserved $(n = 1, 4, 5)$ | ( |
| 0      | 1      | Port output                                                                        |   |
| 1      | 0      | Port input (Pull-up MOS: on)                                                       |   |
| 1      | 1      | Port input (Pull-up MOS: off)                                                      |   |
|        |        |                                                                                    |   |

Bit (2n + 1) Bit 2n

RENESAS

The port K control register (PKCR) is a 16-bit readable/writable register that selects the functions. PKCR is initialized to H'0000 by a power-on reset, but is not initialized by a reset, in standby mode, or in sleep mode.

Bits 15 and 14—PK7 Mode 1 and 0 (PK7MD1, PK7MD0) Bits 13 and 12—PK6 Mode 1 and 0 (PK6MD1, PK6MD0) Bits 11 and 10—PK5 Mode 1 and 0 (PK5MD1, PK5MD0) Bits 9 and 8—PK4 Mode 1 and 0 (PK4MD1, PK4MD0) Bits 7 and 6—PK3 Mode 1 and 0 (PK3MD1, PK3MD0) Bits 5 and 4—PK2 Mode 1 and 0 (PK2MD1, PK2MD0) Bits 3 and 2—PK1 Mode 1 and 0 (PK1MD1, PK1MD0) Bits 1 and 0—PK0 Mode 1 and 0 (PK0MD1, PK0MD0) These bits select the pin functions and perform input pull-up MOS control.

| Bit Zh |                                 |                                                                                             |
|--------|---------------------------------|---------------------------------------------------------------------------------------------|
| PKnMD0 | Pin Function                    |                                                                                             |
| 0      | Other function (see table 18.1) | (In                                                                                         |
| 1      | Port output                     |                                                                                             |
| 0      | Port input (Pull-up MOS: on)    |                                                                                             |
| 1      | Port input (Pull-up MOS: off)   |                                                                                             |
|        |                                 | PKnMD0Pin Function0Other function (see table 18.1)1Port output0Port input (Pull-up MOS: on) |

Bit (2n + 1) Bit 2n

Rev. 5.00, 09/03, page 580 of 760

The port L control register (PLCR) is a 16-bit readable/writable register that selects th functions. PLCR is initialized to H'0000 by a power-on reset, but is not initialized by a reset, in standby mode, or in sleep mode.

Bits 15 and 14—PL7 Mode 1 and 0 (PL7MD1, PL7MD0) Bits 13 and 12—PL6 Mode 1 and 0 (PL6MD1, PL6MD0) Bits 11 and 10—PL5 Mode 1 and 0 (PL5MD1, PL5MD0) Bits 9 and 8—PL4 Mode 1 and 0 (PL4MD1, PL4MD0) Bits 7 and 6—PL3 Mode 1 and 0 (PL3MD1, PL3MD0) Bits 5 and 4—PL2 Mode 1 and 0 (PL2MD1, PL2MD0) Bits 3 and 2—PL1 Mode 1 and 0 (PL1MD1, PL1MD0) Bits 1 and 0—PL0 Mode 1 and 0 (PL0MD1, PL0MD0)

These bits select the pin functions and perform input pull-up MOS control.

| =(=    |        |                                 |   |
|--------|--------|---------------------------------|---|
| PLnMD1 | PLnMD0 | Pin Function                    |   |
| 0      | 0      | Other function (see table 18.1) | ( |
| 0      | 1      | Reserved                        |   |
| 1      | 0      | Port input (Pull-up MOS: on)    |   |
| 1      | 1      | Port input (Pull-up MOS: off)   |   |
|        |        |                                 |   |

Bit (2n + 1) Bit 2n

When the DA0 and DA1 pins are used as the D/A converter outputs or when PTL7 an used in the "other function" state, PLCR should by kept at its initial value.

Renesas

The SC port control register (SCPCR) is a 16-bit readable/writable register that selects functions. The setting of SCPCR is valid only when transmit/receive operations are disc SCSCR register. SCPCR is initialized to H'A888 by a power-on reset, but is not initiali manual reset, in standby mode, or in sleep mode. When the TE bit in SCSCR is set to 1 function" output state has a higher priority than the SCPCR setting for the TxD[2:0] pin the RE bit in SCSCR is set to 1, the input state has a higher priority than the SCPCR set RxD[2:0] pins.

**Bits 15 and 14—SCP7 Mode 1 and 0 (SCP7MD1, SCP7MD0):** These bits select the function and perform input pull-up MOS control.

| Bit 15  | Bit 14  |                                 |     |
|---------|---------|---------------------------------|-----|
| SCP7MD1 | SCP7MD0 | Pin Function                    |     |
| 0       | 0       | Other function (see table 18.1) |     |
| 0       | 1       | Reserved                        |     |
| 1       | 0       | Port input (Pull-up MOS: on)    | (Ir |
| 1       | 1       | Port input (Pull-up MOS: off)   |     |

Bits 13, 12—SCP6 Mode 1, 0 (SCP6MD1, SCP6MD0): These bits select the pin function perform input pull-up MOS control.

| Bit 13  | Bit 12  |                                 |     |
|---------|---------|---------------------------------|-----|
| SCP6MD1 | SCP6MD0 | Pin Function                    |     |
| 0       | 0       | Other function (see table 18.1) |     |
| 0       | 1       | Port output                     |     |
| 1       | 0       | Port input (Pull-up MOS: on)    | (Ir |
| 1       | 1       | Port input (Pull-up MOS: off)   |     |

Rev. 5.00, 09/03, page 582 of 760

Bits 9 and 8—SCP4 Mode 1 and 0 (SCP4MD1, SCP4MD0): These bits select the p and perform input pull-up MOS control.

| Bit 9   | Bit 8   |                                                                        |   |
|---------|---------|------------------------------------------------------------------------|---|
| SCP4MD1 | SCP4MD0 | Pin Function                                                           |   |
| 0       | 0       | Transmit data output 2 (TxD2)<br>Receive data input 2 (RxD2)           | ( |
| 0       | 1       | General output (SCPT[4] output pin)<br>Receive data input 2 (RxD2)     |   |
| 1       | 0       | SCPT[4] input pin pull-up (input pin)<br>Transmit data output 2 (TxD2) |   |
| 1       | 1       | General input (SCPT[4] input pin)<br>Transmit data output 2 (TxD2)     |   |
|         |         |                                                                        |   |

Note: There is no SCPT[4] simultaneous I/O combination because one bit (SCP4DT) using two pins, TxD2 and RxD2.

When port input is set (bit SCPnMD1 is set to 1) and when the TE bit in SCSCR is set TxD2 pin is in the output state. When the TE bit is cleared to 0, the TxD2 pin goes to impedance state.

Bits 7 and 6—SCP3 Mode 1 and 0 (SCP3MD1, SCP3MD0): These bits select the p and perform input pull-up MOS control.

| Bit 7   | Bit 6   |                                 |
|---------|---------|---------------------------------|
| SCP3MD1 | SCP3MD0 | Pin Function                    |
| 0       | 0       | Other function (see table 18.1) |
| 0       | 1       | Port output                     |
| 1       | 0       | Port input (Pull-up MOS: on) (I |
| 1       | 1       | Port input (Pull-up MOS: off)   |

Rev. 5.00, 09/03, pag

Renesas

| 1 | 0         | SCPT[2] input pin pull-up (input pin)<br>Transmit data output 1 (TxD1) |
|---|-----------|------------------------------------------------------------------------|
| 1 | 1         | General input (SCPT[2] input pin)<br>Transmit data output 1 (TxD1)     |
|   | TI : 0.05 |                                                                        |

Note: There is no SCPT[2] simultaneous I/O combination because one bit (SCP2DT) is using two pins, TxD1 and RxD1.

When port input is set (bit SCPnMD1 is set to 1) and when the TE bit in SCSCR is set to TxD1 pin is in the output state. When the TE bit is cleared to 0, the TxD1 pin goes to t impedance state.

Bits 3 and 2—SCP1 Mode 1 and 0 (SCP1MD1, SCP1MD0): These bits select the pin and perform input pull-up MOS control.

| Bit 3   | Bit 2   |                                 |     |
|---------|---------|---------------------------------|-----|
| SCP1MD1 | SCP1MD0 | Pin Function                    |     |
| 0       | 0       | Other function (see table 18.1) |     |
| 0       | 1       | Port output                     |     |
| 1       | 0       | Port input (Pull-up MOS: on)    | (Ir |
| 1       | 1       | Port input (Pull-up MOS: off)   |     |

Rev. 5.00, 09/03, page 584 of 760

| 1    | 0                 | SCPT[0] input pin pull-up (input pin)<br>Transmit data output 0 (TxD0) |
|------|-------------------|------------------------------------------------------------------------|
| 1    | 1                 | General input (SCPT[0] input pin)<br>Transmit data output 0 (TxD0)     |
| NI ( | <b>T</b> I : 0.01 |                                                                        |

Note: There is no SCPT[0] simultaneous I/O combination because one bit (SCP0DT) using two pins, TxD0 and RxD0.

When port input is set (bit SCPnMD1 is set to 1) and when the TE bit in SCSCR is set TxD0 pin is in the output state. When the TE bit is cleared to 0, the TxD0 pin goes to impedance state.

Renesas

Rev. 5.00, 09/03, page 586 of 760

# 19.2 Port A

Port A is an 8-bit input/output port with the pin configuration shown in figure 19.1. Ea an input pull-up MOS, which is controlled by the port A control register (PACR) in the

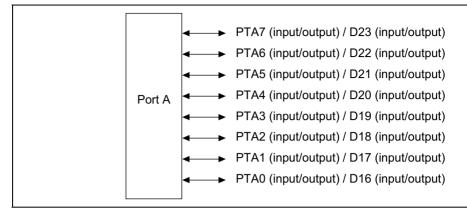



Figure 19.1 Port A

#### 19.2.1 Register Description

Table 19.1 summarizes the port A register.

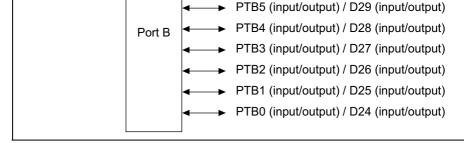
#### Table 19.1 Port A Register

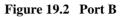
| Name                 | Abbreviation | R/W | Initial Value | Address A                                 |
|----------------------|--------------|-----|---------------|-------------------------------------------|
| Port A data register | PADR         | R/W | H'00          | H'04000120 8<br>(H'A4000120) <sup>*</sup> |
|                      |              |     |               |                                           |

Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an approprusing the MMU so that this register is not cached.

\* When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, pag


PTA7 to PTA0. Bits PA7DT to PA0DT correspond to pins PTA7 to PTA0. When the p is general output port, if the port is read the value of the corresponding PADR bit is retudirectly. When the function is general input port, if the port is read the corresponding part read. Table 19.2 shows the function of PADR.


PADR is initialized to H'00 by a power-on reset. It retains its previous value in standby sleep mode, and in a manual reset.

| PAnMD1 | PAnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (See table 18.1) | PADR value | Value is written to PADR, bu affect pin state |
|        | 1      | Output                          | PADR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PADR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PADR, bu affect pin state |

 Table 19.2
 Port A Data Register (PADR) Read/Write Operations

Rev. 5.00, 09/03, page 588 of 760





### 19.3.1 Register Description

Table 19.3 summarizes the port B register.

### Table 19.3Port B Register

| Name                 | Abbreviation | R/W        | Initial Value     | Address                                 | A |
|----------------------|--------------|------------|-------------------|-----------------------------------------|---|
| Port B data register | PBDR         | R/W        | H'00              | H'04000122<br>(H'A4000122) <sup>*</sup> | 8 |
| •                    |              | area of lo | gical space or el | ore, when the cac<br>se make an appro   |   |

wsing the MMU so that this register is not cached.
\* When address translation by the MMU does not apply, the address in parent

should be used.

Rev. 5.00, 09/03, pag

Renesas

is general output port, if the port is read the value of the corresponding PBDR bit is retu directly. When the function is general input port, if the port is read the corresponding p read. Table 19.4 shows the function of PBDR.

PBDR is initialized to H'00 by a power-on reset. It retains its previous value in standby sleep mode, and in a manual reset.

| PBnMD1 | PBnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (See table 18.1) | PBDR value | Value is written to PBDR, bu affect pin state |
|        | 1      | Output                          | PBDR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PBDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PBDR, bu affect pin state |

 Table 19.4
 Port B Data Register (PBDR) Read/Write Operations

Rev. 5.00, 09/03, page 590 of 760

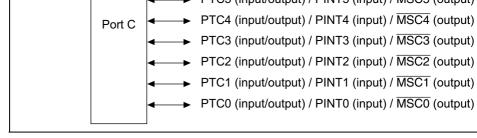



Figure 19.3 Port C

### **19.4.1** Register Description

Table 19.5 summarizes the port C register.

#### Table 19.5 Port C Register

| Name                 | Abbreviation | R/W | Initial Value | Address                                 | A |
|----------------------|--------------|-----|---------------|-----------------------------------------|---|
| Port C data register | PCDR         | R/W | H'00          | H'04000124<br>(H'A4000124) <sup>*</sup> | 8 |
|                      | 1 1 I I      | · · | · <u> </u>    | 1 1                                     |   |

Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropr using the MMU so that this register is not cached.

\* When address translation by the MMU does not apply, the address in paren should be used.

Rev. 5.00, 09/03, pag

Renesas

is general output port, if the port is read, the value of the corresponding PCDR bit is ret directly. When the function is general input port, if the port is read, the corresponding pread. Table 19.6 shows the function of PCDR.

PCDR is initialized to H'00 by a power-on reset, after which the general input port func up MOS on) is set as the initial pin function, and the corresponding pin levels are read.

PCDR retains its previous value in standby mode and sleep mode, and in a manual rese

| PCnMD1 | PCnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PCDR value | Value is written to PCDR, bu affect pin state |
|        | 1      | Output                          | PCDR value | Write value is output from pi                 |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PCDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PCDR, bu affect pin state |

 Table 19.6
 Port C Data Register (PCDR) Read/Write Operations

Rev. 5.00, 09/03, page 592 of 760

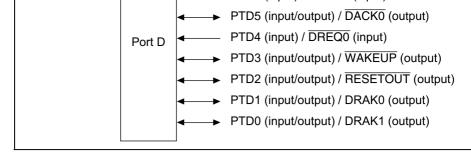



Figure 19.4 Port D

# 19.5.1 Register Description

Table 19.7 summarizes the port D register.

#### Table 19.7 Port D Register

| Name                    | Abbreviation        | R/W           | Initial Value    | Address                               |
|-------------------------|---------------------|---------------|------------------|---------------------------------------|
| Port D data register    | PDDR                | R/W or R      | B'0*0*0000       | H'04000126 (H'A4000126) <sup>*1</sup> |
| Notes: This register is | s located in area ' | 1 of physical | space. Therefore | ore, when the cache                   |

access this register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropr using the MMU so that this register is not cached.

\* Means no value.

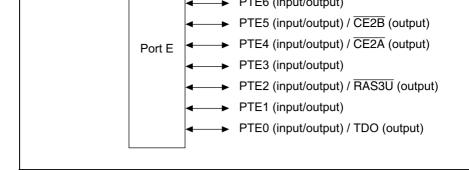
\*1 When address translation by the MMU does not apply, the address in parel should be used.

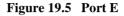
Renesas

The port D data register (PDDR) is a 6-bit readable/writable and 2-bit read-only register data for pins PTD7 to PTD0. Bits PD7DT to PD0DT correspond to pins PTD7 to PTD0 pin function is general output port, if the port is read, the value of the corresponding PE returned directly. When the function is general input port, if the port is read, the corresponding PE level is read. Table 19.8 shows the function of PDDR.

PDDR is initialized to B'0\*0\*0000 by a power-on reset. After initialization, the general function (pull-up MOS on) is set as the initial pin function, and the corresponding pin le read from bits PD7DT—PD3DT, PD1DT, and PD0DT. PDDR retains its previous valu standby mode and sleep mode, and in a manual reset.

Note that the low level is read if bits 6 and 4 are read except in general-purpose input.


| PDnMD1 | PDnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PDDR value | Value is written to PDDR, bu affect pin state |
|        | 1      | Output                          | PDDR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PDDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PDDR, bu affect pin state |


 Table 19.8
 Port D Data Register (PDDR) Read/Write Operations

(n = 0,

| PDnMD1 | PDnMD0 | Pin State                       | Read      | Write                         |
|--------|--------|---------------------------------|-----------|-------------------------------|
| 0      | 0      | Other function (see table 18.1) | Low level | Ignored (no effect on pin sta |
|        | 1      | Reserved                        | Low level | Ignored (no effect on pin sta |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state | Ignored (no effect on pin sta |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state | Ignored (no effect on pin sta |

Rev. 5.00, 09/03, page 594 of 760





### **19.6.1** Register Description

Table 19.9 summarizes the port E register.

### Table 19.9Port E Register

| Name                 | Abbreviation | R/W | Initial Value | Address                                 | A |
|----------------------|--------------|-----|---------------|-----------------------------------------|---|
| Port E data register | PEDR         | R/W | H'00          | H'04000128<br>(H'A4000128) <sup>*</sup> | 8 |
|                      |              |     |               |                                         |   |

Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an approprusing the MMU so that this register is not cached.

\* When address translation by the MMU does not apply, the address in parent should be used.

Renesas

general output port, if the port is read the value of the corresponding PEDR bit is return. When the function is general input port, if the port is read the corresponding pin level is Table 19.10 shows the function of PEDR.

PEDR is initialized to H'00 by a power-on reset, after which the general input port func up MOS on) is set as the initial pin function, and the corresponding pin levels are read. its previous value in standby mode and sleep mode, and in a manual reset.

| PEnMD1 | PEnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PEDR value | Value is written to PEDR, bu affect pin state |
|        | 1      | Output                          | PEDR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PEDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PEDR, bu affect pin state |

### Table 19.10 Port E Data Register (PEDR) Read/Write Operations

Rev. 5.00, 09/03, page 596 of 760

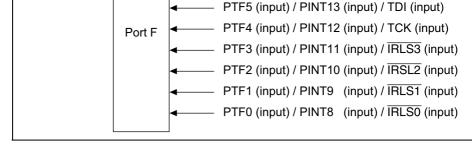



Figure 19.6 Port F

# 19.7.1 Register Description

Table 19.11 summarizes the port F register.

## Table 19.11 Port F Register

| Name   |                                                  | Abbreviation                                        | R/W                   | Initial Value                | Address                                  |
|--------|--------------------------------------------------|-----------------------------------------------------|-----------------------|------------------------------|------------------------------------------|
| Port F | data register                                    | PFDR                                                | R                     | H'**                         | H'0400012A<br>(H'A400012A) <sup>*1</sup> |
| Notes: | access this reg<br>using the MMU<br>* Means no v | ister from the P2 a<br>so that this regist<br>alue. | area of letter is not | ogical space or e<br>cached. | ore, when the cach<br>lse make an approp |

\*1 When address translation by the MMU does not apply, the address in parer should be used.

Renesas

PTF0. Bits PF7DT to PF0DT correspond to pins PTF7 to PTF0. When the function is g input port, if the port is read the corresponding pin level is read. Table 19.12 shows the PFDR.

PFDR is initialized by a power-on reset, after which the general input port function (pu on) is set as the initial pin function, and the corresponding pin levels are read.

| PFnMD1 | PFnMD0 | Pin State                       | Read      | Write                         |
|--------|--------|---------------------------------|-----------|-------------------------------|
| 0      | 0      | Other function (see table 18.1) | H'00      | Ignored (no effect on pin sta |
|        | 1      | Reserved                        | H'00      | Ignored (no effect on pin sta |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state | Ignored (no effect on pin sta |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state | Ignored (no effect on pin sta |

Table 19.12 Port F Data Register (PFDR) Read/Write Operations

Rev. 5.00, 09/03, page 598 of 760

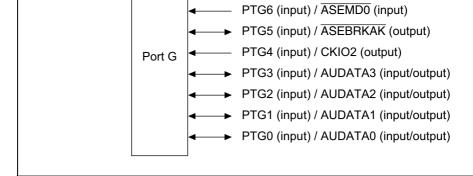



Figure 19.7 Port G

### **19.8.1** Register Description

Table 19.13 summarizes the port G register.

#### Table 19.13 Port G Register

| Name                 | Abbreviation | R/W | Initial Value | Address /                                  |
|----------------------|--------------|-----|---------------|--------------------------------------------|
| Port G data register | PGDR         | R/W | H'**          | H'0400012C 8<br>(H'A400012C) <sup>*1</sup> |

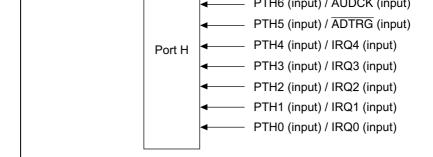
Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropr using the MMU so that this register is not cached.

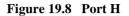
\* Means no value.

\*1 When address translation by the MMU does not apply, the address in parer should be used.

Rev. 5.00, 09/03, pag

Renesas


PTG0. Bits PG7DT to PG0DT correspond to pins PTG7 to PTG0. When the function is input port, if the port is read the corresponding pin level is read. Table 19.14 shows the PGDR.


PGDR is initialized by a power-on reset, after which the general input port function (pu on) is set as the initial pin function, and the corresponding pin levels are read.

| PGnMD1 | PGnMD0 | Pin State                       | Read      | Write                          |
|--------|--------|---------------------------------|-----------|--------------------------------|
| 0      | 0      | Other function (see table 18.1) | H'00      | Ignored (no effect on pin stat |
|        | 1      | Reserved                        | H'00      | Ignored (no effect on pin stat |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state | Ignored (no effect on pin stat |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state | Ignored (no effect on pin stat |

Table 19.14 Port G Data Register (PGDR) Read/Write Operations

Rev. 5.00, 09/03, page 600 of 760





### **19.9.1** Register Description

Table 19.15 summarizes the port H register.

### Table 19.15 Port H Register

| Name                    | Abbreviation      | R/W         | Initial Value  | Address                                  |
|-------------------------|-------------------|-------------|----------------|------------------------------------------|
| Port H data register    | PHDR              | R/W or R    | B'0*****       | H'0400012E<br>(H'A400012E) <sup>*1</sup> |
| Notes: This register is | located in area 1 | of physical | space. Therefo | re, when the cache                       |

access this register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropr using the MMU so that this register is not cached.

\* Means no value.

\*1 When address translation by the MMU does not apply, the address in parer should be used.

Rev. 5.00, 09/03, pag

Renesas

a 1-bit readable/writable and 7-bit read-only register data for pins PTH7 to PTH0. Bits PH7DT to PH0DT correspond to pins PTH7 to PTH0 pin function is general output port, if the port is read, the value of the corresponding PF returned directly. When the function is general input port, if the port is read, the corresp level is read. Table 19.16 shows the function of PHDR.

PHDR is initialized to B'0\*\*\*\*\*\* by a power-on reset, after which the general input p (pull-up MOS on) is set as the initial pin function, and the corresponding pin levels are retains its previous value in standby mode and sleep mode, and in a manual reset.

Note that the low level is read if bits 6 to 0 are read except in general-purpose input.

| PHnMD1 | PHnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PHDR value | Value is written to PHDR, bu affect pin state |
|        | 1      | Output                          | PHDR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PHDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PHDR, bu affect pin state |

Table 19.16 Port H Data Register (PHDR) Read/Write Operations

| PHnMD1 | PHnMD0 | Pin State                       | Read      | Write                          |
|--------|--------|---------------------------------|-----------|--------------------------------|
| 0      | 0      | Other function (see table 18.1) | Low level | Ignored (no effect on pin stat |
|        | 1      | Reserved                        | Low level | Ignored (no effect on pin stat |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state | Ignored (no effect on pin stat |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state | Ignored (no effect on pin stat |

Rev. 5.00, 09/03, page 602 of 760

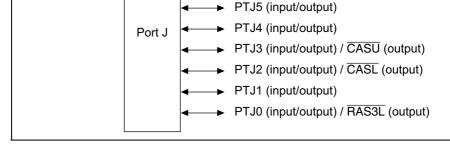



Figure 19.9 Port J

# 19.10.1 Register Description

Table 19.17 summarizes the port J register.

## Table 19.17 Port J Register

| Name                                                                                                                                                                                                                   |               | Abbreviation | R/W | Initial Value | Address                                 | A |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----|---------------|-----------------------------------------|---|
| Port J o                                                                                                                                                                                                               | data register | PJDR         | R/W | H'00          | H'04000130<br>(H'A4000130) <sup>*</sup> | 8 |
| Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropusing the MMU so that this register is not cached. |               |              |     |               |                                         |   |

\* When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, pag

Renesas

output port, if the port is read the value of the corresponding PJDR bit is returned direc the function is general input port, if the port is read, the corresponding pin level is read. 19.18 shows the function of PJDR.

PJDR is initialized to H'00 by a power-on reset. It retains its previous value in software mode and sleep mode, and in a manual reset.

| PJnMD1 | PJnMD0 | Pin State                       | Read       | Write                                             |
|--------|--------|---------------------------------|------------|---------------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PJDR value | Value is written to PJDR, bur<br>affect pin state |
|        | 1      | Output                          | PJDR value | Write value is output from pi                     |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PJDR, bur affect pin state    |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PJDR, bur<br>affect pin state |

Table 19.18 Port J Data Register (PJDR) Read/Write Operations

Rev. 5.00, 09/03, page 604 of 760

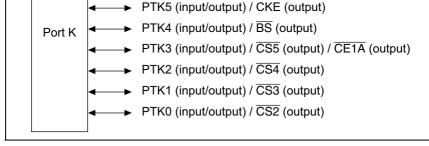



Figure 19.10 Port K

# 19.11.1 Register Description

Table 19.19 summarizes the port K register.

### Table 19.19 Port K Register

| Name                                                                                                                                                                                                                    | Abbreviation | R/W | Initial Value | Address                                 | A |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|---------------|-----------------------------------------|---|
| Port K data registe                                                                                                                                                                                                     | er PKDR      | R/W | H'00          | H'04000132<br>(H'A4000132) <sup>*</sup> | 8 |
| Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an approp using the MMU so that this register is not cached. |              |     |               |                                         |   |

\* When address translation by the MMU does not apply, the address in parent should be used.

Renesas

is general output port, if the port is read, the value of the corresponding PKDR bit is read, the function is general input port, if the port is read, the corresponding pKDR bit is read. Table 19.20 shows the function of PKDR.

PKDR is initialized to H'00 by a power-on reset. It retains its previous value in standby sleep mode, and in a manual reset.

| PKnMD1 | PKnMD0 | Pin State                       | Read       | Write                                         |
|--------|--------|---------------------------------|------------|-----------------------------------------------|
| 0      | 0      | Other function (see table 18.1) | PKDR value | Value is written to PKDR, bu affect pin state |
|        | 1      | Output                          | PKDR value | Write value is output from pir                |
| 1      | 0      | Input (Pull-up<br>MOS on)       | Pin state  | Value is written to PKDR, bu affect pin state |
|        | 1      | Input (Pull-up<br>MOS off)      | Pin state  | Value is written to PKDR, bu affect pin state |

# Table 19.20 Port K Data Register (PKDR) Read/Write Operations

Rev. 5.00, 09/03, page 606 of 760

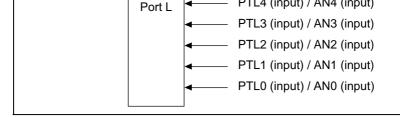



Figure 19.11 Port L

## 19.12.1 Register Description

Table 19.21 summarizes the port L register.

#### Table 19.21 Port L Register

| Name                 | Abbreviation | R/W | Initial Value | Address                     | A |
|----------------------|--------------|-----|---------------|-----------------------------|---|
| Port L data register | PLDR         | R   | H'00          | H'04000134<br>(H'A4000134)* | 8 |

Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an approprusing the MMU so that this register is not cached.

\* When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, pag

input port, if the port is read, the corresponding pin level is read. Table 19.22 shows the of PLDR.

PKDR is initialized to H'00 by power-on reset. It retains its previous value in software mode and sleep mode, and in a manual reset.

The port L is also used as an analog pin, therefore does not have a pull-up MOS.

| PLnMD1 | PLnMD0 | Pin State                       | Read      | Write                         |
|--------|--------|---------------------------------|-----------|-------------------------------|
| 0      | 0      | Other function (see table 18.1) | H'00      | Ignored (no effect on pin sta |
|        | 1      | Reserved                        | H'00      | Ignored (no effect on pin sta |
| 1      | 0      | Input                           | Pin state | Ignored (no effect on pin sta |
|        | 1      | Input                           | Pin state | Ignored (no effect on pin sta |

Table 19.22 Port L Data Register (PLDR) Read/Write Operation

Rev. 5.00, 09/03, page 608 of 760

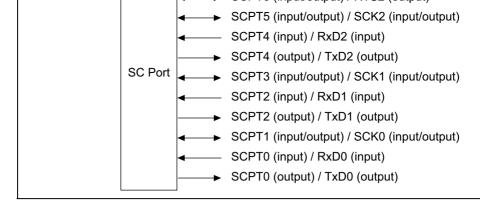



Figure 19.12 SC Port

# 19.13.1 Register Description

Table 19.23 summarizes the SC port register.

#### Table 19.23 SC Port Register

| Name                    | Abbreviation      | R/W         | Initial Value | Address A                                  |
|-------------------------|-------------------|-------------|---------------|--------------------------------------------|
| SC Port data register   | SCPDR             | R/W or R    | B'*0000000    | H'04000136 8<br>(H'A4000136) <sup>*1</sup> |
| Notoo, This register is | located in area 1 | of physical | anaga Tharafa | re when the each                           |

Notes: This register is located in area 1 of physical space. Therefore, when the cache access this register from the P2 area of logical space or else make an appropr using the MMU so that this register is not cached.

\* Means no value.

\*1 When address translation by the MMU does not apply, the address in parer should be used.

Renesas

The SC port data register (SCPDR) is a 7-bit readable/writable and 1-bit read-only registores data for pins SCPT7 to SCPT0. Bits SCP7DT to SCP0DT correspond to pins SC SCPT0. When the pin function is general output port, if the port is read, the value of the corresponding SCPDR bit is returned directly. When the function is general input port, is read, the corresponding pin level is read. Table 19.24 shows the function of SCPDR.

SCPDR is initialized to B'\*0000000 by a power-on reset. After initialization, the gener port function (pull-up MOS on) is set as the initial pin function, and the corresponding are read from bits SCP7DT—SCP5DT, SCP3DT, and SCP1DT. SCPDR retains its prevalue in standby mode and sleep mode, and in a manual reset.

Note that the low level is read if bit 7 is read except in general-purpose input.

When the pin states of the RxD2 to RxD0 of the SCP4DT, SCP2DT, and SCP0DT bits are read while the TE and RE bits in SCSCR are not cleared to 0, the RE bit in SCSCR set to 1. When the RE bit is set to 1, the RxD pins become an input state and their pin st read prior to the SCPCR setting.

Rev. 5.00, 09/03, page 610 of 760

| SCPnMD1 | SCPnMD0 | Pin State                       | Read      | Write                     |
|---------|---------|---------------------------------|-----------|---------------------------|
| 0       | 0       | Other function (see table 18.1) | Low level | Ignored (no effect on pin |
|         | 1       | Output                          | Low level | Ignored (no effect on pin |
| 1       | 0       | Input (Pull-up<br>MOS on)       | Pin state | Ignored (no effect on pin |
|         | 1       | Input (Pull-up<br>MOS off)      | Pin state | Ignored (no effect on pin |
|         |         |                                 |           |                           |

Renesas

Rev. 5.00, 09/03, page 612 of 760

A/D converter features are listed below.

- 10-bit resolution
- Eight input channels
- High-speed conversion
  - Conversion time: maximum 15  $\mu$ s per channel (P $\phi$  = 33 MHz operation)
- Three conversion modes
  - Single mode: A/D conversion on one channel
  - Multi mode: A/D conversion on one to four channels
  - Scan mode: Continuous A/D conversion on one to four channels
- Four 16-bit data registers
  - A/D conversion results are transferred for storage into data registers correspond channels.
- Sample-and-hold function
- A/D conversion can be externally triggered
- A/D interrupt requested at the end of conversion
  - At the end of A/D conversion, an A/D end interrupt (ADI) can be requested.

Renesas

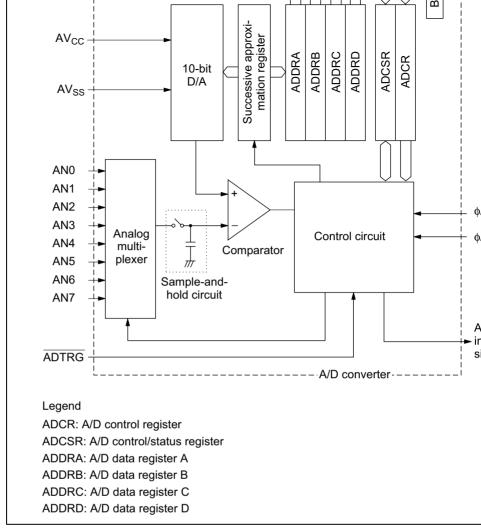



Figure 20.1 Block Diagram of A/D Converter

Rev. 5.00, 09/03, page 614 of 760

| Analog power supply pin        | AVcc  | Input | Analog power supply                      |
|--------------------------------|-------|-------|------------------------------------------|
| Analog ground pin              | AVss  | Input | Analog ground and referen                |
| Analog input pin 0             | AN0   | Input | Group 0 analog inputs                    |
| Analog input pin 1             | AN1   | Input | _                                        |
| Analog input pin 2             | AN2   | Input | _                                        |
| Analog input pin 3             | AN3   | Input | _                                        |
| Analog input pin 4             | AN4   | Input | Group1 analog inputs                     |
| Analog input pin 5             | AN5   | Input | _                                        |
| Analog input pin 6             | AN6   | Input | _                                        |
| Analog input pin 7             | AN7   | Input |                                          |
| A/D external trigger input pin | ADTRG | Input | External trigger input for st conversion |
|                                |       |       |                                          |

Renesas

|                             | ADDIAL | K       | 1100 | (H'A4000082) <sup>*2</sup>               |
|-----------------------------|--------|---------|------|------------------------------------------|
| A/D data register BH        | ADDRBH | R       | H'00 | H'04000084<br>(H'A4000084) <sup>*2</sup> |
| A/D data register BL        | ADDRBL | R       | H'00 | H'04000086 (H'A4000086) <sup>*2</sup>    |
| A/D data register CH        | ADDRCH | R       | H'00 | H'04000088<br>(H'A4000088) <sup>*2</sup> |
| A/D data register CL        | ADDRCL | R       | H'00 | H'0400008A (H'A400008A) <sup>*2</sup>    |
| A/D data register DH        | ADDRDH | R       | H'00 | H'0400008C<br>(H'A400008C) <sup>*2</sup> |
| A/D data register DL        | ADDRDL | R       | H'00 | H'040008E (H'A40008E)*2                  |
| A/D control/status register | ADCSR  | R/(W)*1 | H'00 | H'04000090 (H'A4000090)*2                |
| A/D control register        | ADCR   | R/W     | H'07 | H'04000092 (H'A4000092)*2                |
|                             |        |         |      |                                          |

Notes: These registers are located in area 1 of physical space. Therefore, when the car either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. Only 0 can be written to bit 7, to clear the flag.
- 2. When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 616 of 760

| R/W:              | R   | R   | R | R | R | R | R |
|-------------------|-----|-----|---|---|---|---|---|
| Lower register: L |     |     |   |   |   |   |   |
| Bit:              | 7   | 6   | 5 | 4 | 3 | 2 | 1 |
|                   | AD1 | AD0 | — | — | — | — | — |
| Initial value:    | 0   | 0   | 0 | 0 | 0 | 0 | 0 |
| R/W:              | R   | R   | R | R | R | R | R |
| n = A to D        |     |     |   |   |   |   |   |

The four A/D data registers (ADDRA to ADDRD) are 16-bit read-only registers that s results of A/D conversion.

An A/D conversion produces 10-bit data, which is transferred for storage into the A/D register corresponding to the selected channel. The upper 8 bits of the result are stored byte (bits 7 to 0) of the A/D data register. The lower 2 bits are stored in the lower byte 6). Bits 5 to 0 of an A/D data register are reserved bits that are always read as 0. Table indicates the pairings of analog input channels and A/D data registers.

The A/D data registers are initialized to H'0000 by a reset and in standby mode.

#### Table 20.3 Analog Input Channels and A/D Data Registers

| A       | nalog input channel |                   |
|---------|---------------------|-------------------|
| Group 0 | Group 1             | A/D Data Register |
| AN0     | AN4                 | ADDRA             |
| AN1     | AN5                 | ADDRB             |
| AN2     | AN6                 | ADDRC             |
| AN3     | AN7                 | ADDRD             |
|         |                     |                   |

## Analog Input Channel

Rev. 5.00, 09/03, pag

Renesas

ADCSR is an 8-bit readable/writable register that selects the mode and controls the A/L ADCSR is initialized to H'00 by a reset and in standby mode.

| Bit 7: ADF | Description                                                        |
|------------|--------------------------------------------------------------------|
| 0          | [Clearing conditions] (                                            |
|            | (1) Cleared by reading ADF while ADF = 1, then writing 0 to ADF    |
|            | (2) Cleared when DMAC is activated by ADI interrupt and ADDR is re |
| 1          | [Setting conditions]                                               |
|            | (1) Single mode: A/D conversion ends                               |
|            | (2) Multi mode: A/D conversion ends on all selected channels       |
|            | (3) Scan mode: A/D conversion ends on all selected channels        |

Bit 7—A/D End Flag (ADF): Indicates the end of A/D conversion.

**Bit 6—A/D Interrupt Enable (ADIE):** Enables or disables the interrupt (ADI) request end of A/D conversion. The ADIE bit should be set while the A/D conversion stops.

| Bit 6: ADIE | Description                                 |     |
|-------------|---------------------------------------------|-----|
| 0           | A/D end interrupt request (ADI) is disabled | (In |
| 1           | A/D end interrupt request (ADI) is enabled  |     |

Rev. 5.00, 09/03, page 618 of 760

(3) Scan mode: A/D conversion starts and continues, cycling through channels, until ADST is cleared to 0 by software, by a reset, or by to standby mode

**Bit 4—Multi Mode (MULTI):** Selects single mode, multi mode or scan mode. For fu information on operation in these modes, see section 20.4, Operation.

| Bit 4: MULTI | ADCR: Bit5: SCN | Description    |
|--------------|-----------------|----------------|
| 0            | 0               | Single mode (I |
|              | 1               | _              |
| 1            | 0               | Multi mode     |
|              | 1               | Scan mode      |

**Bit 3—Clock Select (CKS):** Selects the A/D conversion time. Clear the ADST bit to changing the conversion time.

| Bit 3:CKS | Description                            |    |
|-----------|----------------------------------------|----|
| 0         | Conversion time = 536 states (maximum) | (1 |
| 1         | Conversion time = 266 states (maximum) |    |

Renesas

|   | - | - | =   |            |
|---|---|---|-----|------------|
|   |   | 1 | AN3 | AN0 to AN3 |
| 1 | 0 | 0 | AN4 | AN4        |
|   |   | 1 | AN5 | AN4, AN5   |
|   | 1 | 0 | AN6 | AN4 to AN6 |
|   |   | 1 | AN7 | AN4 to AN7 |

Rev. 5.00, 09/03, page 620 of 760

conversion. ADCR is initialized to H'07 by a reset and in standby mode.

Bit 7 and 6—Trigger Enable (TRGE1, TRGE0): Enables or disables external trigger conversion.

The TRGE1 and TRGE0 bits should only be set when conversion is not in progress.

| Bit 7: TRGE1 | Bit 6: TRGE0 | Description                                           |
|--------------|--------------|-------------------------------------------------------|
| 0            | 0            | A/D conversion does not start when an external tri    |
| 0            | 1            | (I)                                                   |
| 1            | 0            | A/D conversion starts at the falling edge of an input |
| 1            | 1            | the external trigger pin (ADTRG)                      |

**Bit 5—Scan Mode (SCN):** Selects multi mode or scan mode when the MULTI bit is the description of bit 4 in section 20.2.2, A/D Control/Status Register (ADCSR).

**Bits 4 and 3—Reserved (RESVD1, RESVD2):** These bits are always read as 0. The should always be 0.

Bits 2 to 0-Reserved: These bits are always read as 1. The write value should alway

RENESAS

When reading an A/D data register, always read the upper byte before the lower byte. It to read only the upper byte, but if only the lower byte is read, the read value is not guar

Figure 20.2 shows the data flow for access to an A/D data register.

See section 20.7.3, Access Size and Read Data.

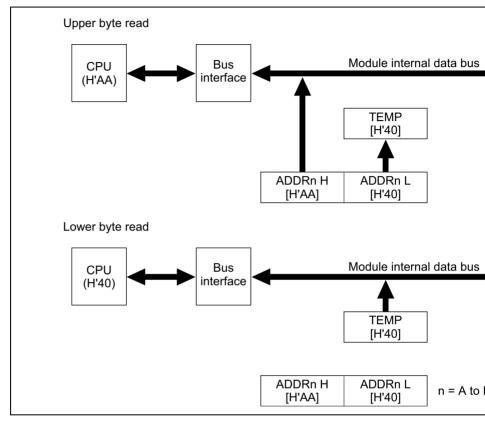



Figure 20.2 A/D Data Register Access Operation (Reading H'AA40)

Rev. 5.00, 09/03, page 622 of 760

Renesas

ADST bit remains set to 1 during A/D conversion and is automatically cleared to 0 wh conversion ends.

When conversion ends the ADF bit is set to 1. If the ADIE bit is also set to 1, an ADI requested at this time. To clear the ADF bit to 0, first read ADF when ADF = 1, then ADF bit.

When the mode or analog input channel must be switched during A/D conversion, to p incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. A the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST set at the same time as the mode or channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described new

Figure 20.3 shows a timing diagram for this example. (The ADCSR register specifies operation example.)

- 1. Single mode is selected (MULTI = 0), input channel AN1 is selected (CH2 = CH1 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST
- 2. When A/D conversion is completed, the result is transferred into ADDRB. At the s the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes the transferred into 1 and the A/D converter becomes a set of the transferred into 1 and the t
- 3. Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- 4. The A/D interrupt handling routine starts.
- 5. The routine reads ADCSR, then writes 0 to the ADF flag.
- 6. The routine reads and processes the conversion result (ADDRB = 0).
- 7. Execution of the A/D interrupt handling routine ends. Then, when the ADST bit is A/D conversion starts and steps 2 to 7 are executed.

Rev. 5.00, 09/03, pag

Renesas

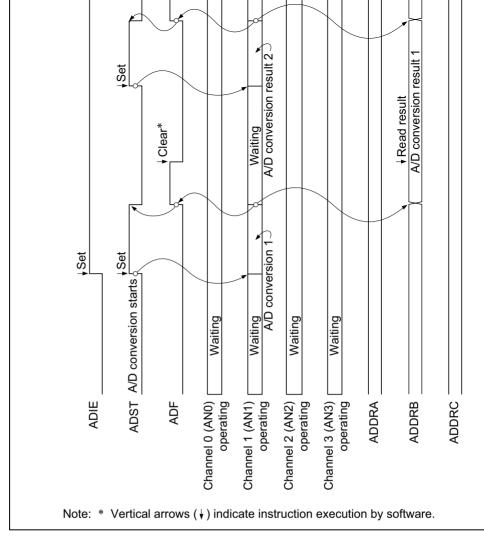
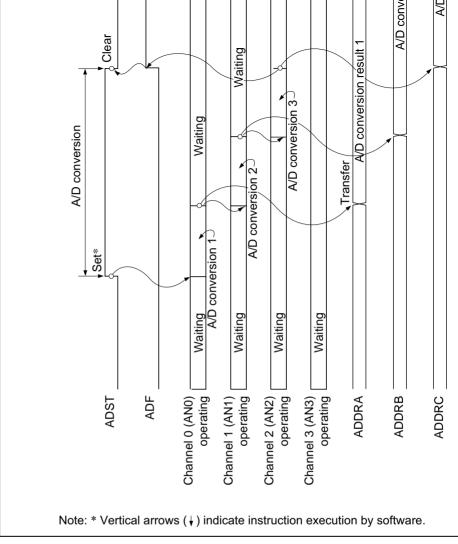
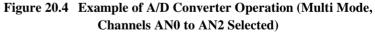



Figure 20.3 Example of A/D Converter Operation (Single Mode, Channel 1 S


Rev. 5.00, 09/03, page 624 of 760


When the mode or analog input channel selection must be changed during A/D conver prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conver making the necessary changes, set the ADST bit to 1. A/D conversion will start again first channel in the group. The ADST bit can be set at the same time as the mode or ch selection is changed.

Typical operations when three channels in group 0 (AN0 to AN2) are selected in scan described next. Figure 20.4 shows a timing diagram for this example.

- 1. Multi mode is selected (MULTI = 1, SCN = 0), channel group 0 is selected (CH2 = input channels AN0 to AN2 are selected (CH1 = 1, CH0 = 0), and A/D conversion (ADST = 1).
- 2. When A/D conversion of the first channel (AN0) is completed, the result is transfer ADDRA. Next, conversion of the second channel (AN1) starts automatically.
- 3. Conversion proceeds in the same way through the third channel (AN2).
- 4. When conversion of all selected channels (AN0 to AN2) is completed, the ADF fla and ADST bit is cleared to 0. If the ADIE bit is set to 1, an ADI interrupt is reques time.

Renesas





Rev. 5.00, 09/03, page 626 of 760

When the mode or analog input channel must be changed during analog conversion, to incorrect operation, first clear the ADST bit to 0 to halt A/D conversion. After making necessary changes, set the ADST bit to 1. A/D conversion will start again from the fin in the group. The ADST bit can be set at the same time as the mode or channel selectic changed.

Typical operations when three channels (AN0 to AN2) in group 0 are selected in scan described next. Figure 20.5 shows a timing diagram for this example.

- 1. Scan mode is selected (MULTI = 1, SCN = 1), channel group 0 is selected (CH2 = input channels AN0 to AN2 are selected (CH1 = 1, CH0 = 0), and A/D conversion (ADST = 1).
- 2. When A/D conversion of the first channel (AN0) is completed, the result is transfe ADDRA. Next, conversion of the second channel (AN1) starts automatically.
- 3. Conversion proceeds in the same way through the third channel (AN2).
- 4. When conversion of all the selected channels (AN0 to AN2) is completed, the AD2 to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set t interrupt is requested at this time.
- 5. Steps 2 to 4 are repeated as long as the ADST bit remains set to 1. When the ADS cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D cor starts again from the first channel (AN0).

Renesas

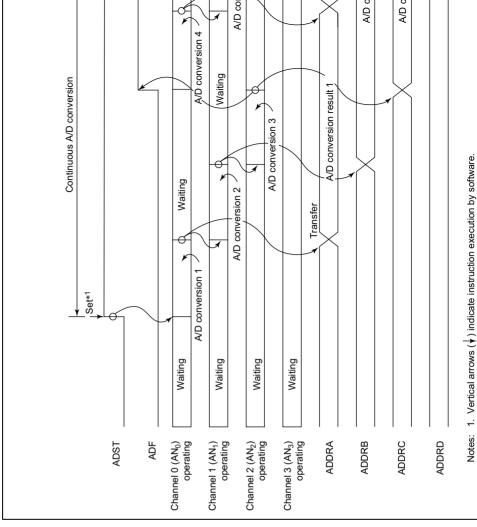



Figure 20.5 Example of A/D Converter Operation (Scan Mode, Channels AN0 to AN2 Selected)

Rev. 5.00, 09/03, page 628 of 760

In multi mode and scan mode, the conversion time values given in table 20.4 apply to conversion. In the second and subsequent conversions, the conversion time is fixed at when CKS = 0 in ADCSR, or 256 states when CKS = 1. In both cases, the CKS bit sh according to the Po frequency so that the conversion time is within the range shown in in section 23, Electrical Characteristics.

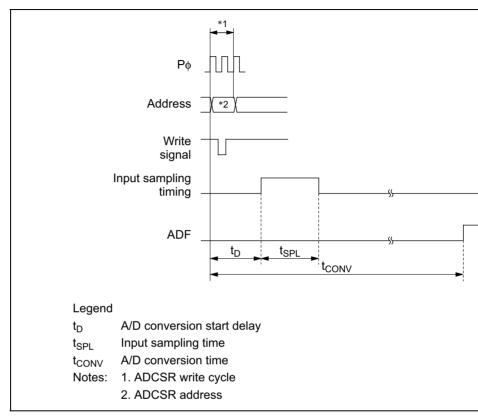



Figure 20.6 A/D Conversion Timing

Rev. 5.00, 09/03, pag

# 20.4.5 External Trigger Input Timing

A/D conversion can be externally triggered. When the TRGE1 and TRGE0 bits are set ADCR, external trigger input is enabled at the  $\overline{\text{ADTRG}}$  pin. A high-to-low transition at  $\overline{\text{ADTRG}}$  pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operation regardless of the conversion mode, are the same as if the ADST bit had been set to 1 by Figure 20.7 shows the timing.

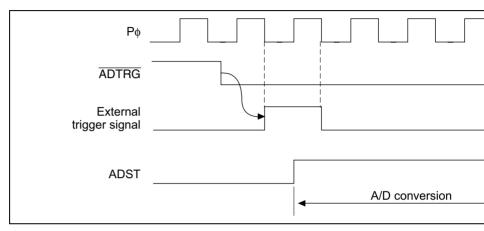



Figure 20.7 External Trigger Input Timing

Rev. 5.00, 09/03, page 630 of 760

is the deviation between the input analog value and the output digital value. It includes following errors:

- Offset error
- Full-scale error
- Quantization error
- Nonlinearity error

These four error quantities are explained below with reference to figure 20.8. In the figure 3 bits of the A/D converter have been simplified to 3 bits.

Offset error is the deviation between actual and ideal A/D conversion characteristics w digital output value changes from the minimum (zero voltage) 0000000000 (000 in the 000000001 (001 in the figure)(figure 20.8, item (1)). Full-scale error is the deviation b actual and ideal A/D conversion characteristics when the digital output value changes 111111110 (110 in the figure) to the maximum 1111111111 (111 in the figure)(figur (2)). Quantization error is the intrinsic error of the A/D converter and is expressed as 1 (figure 20.8, item (3)). Nonlinearity error is the deviation between actual and ideal A/I characteristics between zero voltage and full-scale voltage (figure 20.8, item (4)). Not not include offset, full-scale, or quantization error.

Renesas

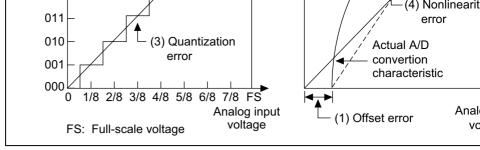
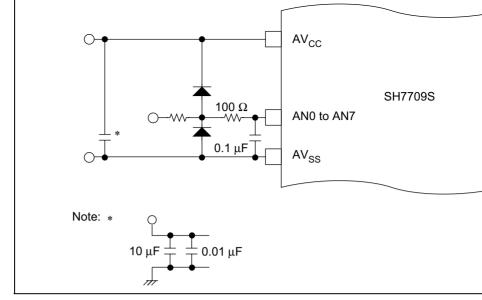
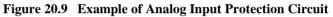



Figure 20.8 Definitions of A/D Conversion Accuracy

# 20.7 Usage Notes

When using the A/D converter, note the following points.


## 20.7.1 Setting Analog Input Voltage


- Analog Input Voltage Range: During A/D conversion, the voltages input to the anal pins ANn should be in the range AV<sub>SS</sub> ≤ ANn ≤ AV<sub>CC</sub> (n = 0 to 7).
- Relationships of AV<sub>CC</sub> and AV<sub>SS</sub>: AV<sub>CC</sub> and AV<sub>SS</sub> should be related as follows: A  $V_{CC} \pm 0.3 \text{ V}$  and  $AV_{SS} = V_{SS}$ .

#### 20.7.2 Processing of Analog Input Pins

To prevent damage from voltage surges at the analog input pins (AN0 to AN7), connect protection circuit like the one shown in figure 20.9. The circuit shown also includes an suppress noise. This circuit is shown as an example; the circuit constants should be sele according to actual application conditions. Table 20.5 lists the analog input pin specific figure 20.10 shows an equivalent circuit diagram of the analog input ports.

Rev. 5.00, 09/03, page 632 of 760





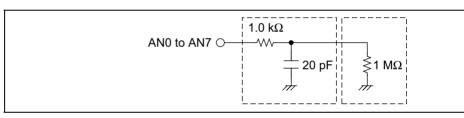



Figure 20.10 Analog Input Pin Equivalent Circuit

Rev. 5.00, 09/03, pag

|                    |      |                                             | 32 Bits (   | D31–D0)       | 16 Bits      | s (D15–D0)   | 8 Bit                |
|--------------------|------|---------------------------------------------|-------------|---------------|--------------|--------------|----------------------|
| Access             |      |                                             |             |               | E            | ndian        |                      |
| Size               | Co   | mmand                                       | Big         | Little        | Big          | Little       | Big                  |
| Byte<br>access     | MOV  | V.L#ADDRAH,R9<br>J.B@R9,R8<br>V.L#ADDRAL,R9 | FFFFFFF     | FFFFFFF       | FFFF         | FFFF         | FF                   |
|                    | MOV  | /.B@R9,R8                                   | C0C0C0C0    | C0C0C0C0      | C0C0         | C0C0         | C0                   |
| Word<br>access     |      | J.L#ADDRAH,R9<br>J.W@R9,R8                  | FFxxFFxx    | FFxxFFxx      | FFxx         | FFxx         | FF<br>xx             |
|                    |      | J.L#ADDRAL,R9<br>J.W@R9,R8                  | C0xxC0xx    | C0xxC0xx      | C0xx         | C0xx         | C0<br>xx             |
| Longword<br>access |      | J.L#ADDRAH,R9<br>J.L@R9,R8                  | FFxxC0xx    | FFxxC0xx      | Ffxx<br>C0xx | C0xx<br>FFxx | FF<br>xx<br>C0<br>xx |
| In this tab        | ole: | #ADDRAH .EQU                                | H'04000     | 080           |              |              |                      |
|                    |      | #ADDRAL .EQU                                | н'04000     | 082           |              |              |                      |
|                    |      | Values are shown i                          | n hexadecim | al for the ca | ise wher     | e read data  | is output t          |

Values are shown in hexadecimal for the case where read data is output to external device via R8.

Rev. 5.00, 09/03, page 634 of 760

D/A converter features are listed below.

- Eight-bit resolution
- Two output channels
- Conversion time: maximum 10 µs (with 20-pF capacitive load)
- Output voltage: 0 V to AVcc

# 21.1.2 Block Diagram

Figure 21.1 shows a block diagram of the D/A converter.

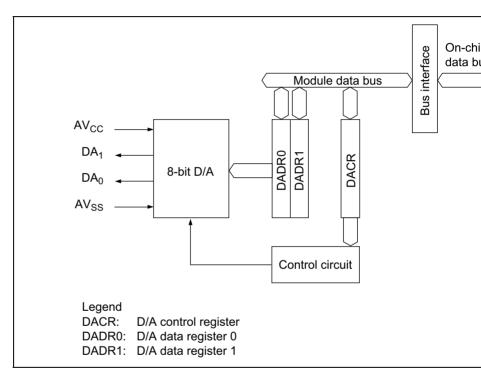



Figure 21.1 Block Diagram D/A Converter

Rev. 5.00, 09/03, pag

Renesas

| Analog output pin 0 | DA0 | Output | Analog output, channel 0 |
|---------------------|-----|--------|--------------------------|
| Analog output pin 1 | DA1 | Output | Analog output, channel 1 |

# 21.1.4 Register Configuration

Table 21.2 summarizes the D/A converter's registers.

## Table 21.2 D/A Converter Registers

| Name                 | Abbreviation | R/W | Initial Value | Address              |
|----------------------|--------------|-----|---------------|----------------------|
| D/A data register 0  | DADR0        | R/W | H'00          | H'040000<br>(H'A4000 |
| D/A data register 1  | DADR1        | R/W | H'00          | H'040000<br>(H'A4000 |
| D/A control register | DACR         | R/W | H'1F          | H'040000<br>(H'A4000 |

Notes: These registers are located in area 1 of physical space. Therefore, when the ca either access these registers from the P2 area of logical space or else make an setting using the MMU so that these registers are not cached.

- 1. Lower 16 bits of the address
- When address translation by the MMU does not apply, the address in parent should be used.

Rev. 5.00, 09/03, page 636 of 760

The D/A data registers (DADR0 and DADR1) are 8-bit readable/writable registers that data to be converted. When analog output is enabled, the D/A data register values are converted and output at the analog output pins.

The D/A data registers are initialized to H'00 by a reset.

# 21.2.2 D/A Control Register (DACR)

| Bit:           | 7     | 6     | 5   | 4 | 3 | 2 | 1 |
|----------------|-------|-------|-----|---|---|---|---|
|                | DAOE1 | DAOE0 | DAE |   |   |   | — |
| Initial value: | 0     | 0     | 0   | 1 | 1 | 1 | 1 |
| R/W:           | R/W   | R/W   | R/W | R | R | R | R |

DACR is an 8-bit readable/writable register that controls the operation of the D/A con DACR is initialized to H'1F by a reset.

Bit 7-D/A Output Enable 1 (DAOE1): Controls D/A conversion and analog output

| Bit 7: DAOE1 | Description                                                |     |
|--------------|------------------------------------------------------------|-----|
| 0            | DA1 analog output is disabled                              | (Ir |
| 1            | Channel-1 D/A conversion and DA1 analog output are enabled |     |

Bit 6-D/A Output Enable 0 (DAOE0): Controls D/A conversion and analog output

| Bit 6: DAOE0 | Description                                                |     |
|--------------|------------------------------------------------------------|-----|
| 0            | DA0 analog output is disabled                              | (Ir |
| 1            | Channel-0 D/A conversion and DA0 analog output are enabled |     |

RENESAS

|   |   |   | (Ir                                  |
|---|---|---|--------------------------------------|
| 0 | 1 | 0 | D/A conversion is enabled in channe  |
|   |   |   | D/A conversion is disabled in channe |
| 0 | 1 | 1 | D/A conversion is enabled in channe  |
| 1 | 0 | 0 | D/A conversion is disabled in channe |
|   |   |   | D/A conversion is enabled in channe  |
| 1 | 0 | 1 | D/A conversion is enabled in channe  |
| 1 | 1 | _ | D/A conversion is enabled in channe  |

When the DAE bit is set to 1, even if bits DAOE0 and DAOE1 in DACR and the ADS' ADCSR are cleared to 0, the same current is drawn from the analog power supply as du and D/A conversion.

Bits 4 to 0—Reserved: Read-only bits, always read as 1.

Rev. 5.00, 09/03, page 638 of 760

The example of *D*/T conversion on channel o is given next. Thing is indicated in figu

- 1. Data to be converted is written in DADR0.
- Bit DAOE0 is set to 1 in DACR. D/A conversion starts and DA0 becomes an outp converted result is output after the conversion time. The output value is (DADR0 c × AVcc. Output of this conversion result continues until the value in DADR0 is me the DAOE0 bit is cleared to 0.
- 3. If the DADR0 value is modified, conversion starts immediately, and the result is o the conversion time.
- 4. When the DAOE0 bit is cleared to 0, DA0 becomes an input pin.

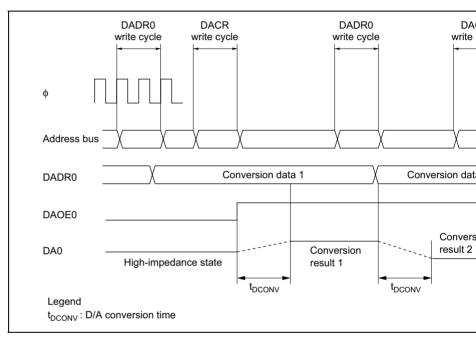



Figure 21.2 Example of D/A Converter Operation

Rev. 5.00, 09/03, pag

Rev. 5.00, 09/03, page 640 of 760

## 22.2 User Debugging Interface (UDI)

The UDI (User debugging interface) performs on-chip debugging which is supported in The UDI described here is a serial interface which is compatible with JTAG (Joint Test Group, IEEE Standard 1149.1 and IEEE Standard Test Access Port and Boundary-Scat Architecture) specifications.

The UDI in the SH7709S supports a boundary scan mode, and is also used for emulate connection.

When using an emulator, UDI functions should not be used. Refer to the emulator ma method of connecting the emulator.

## 22.2.1 Pin Descriptions

**TCK:** UDI serial data input/output clock pin. Data is serially supplied to the UDI fro input pin (TDI), and output from the data output pin (TDO), in synchronization with the data output pin (TDO) is supplied to the UDI from the data output pin (TDO).

**TMS:** Mode select input pin. The state of the TAP control circuit is determined by ch signal in synchronization with TCK. The protocol complies with the JTAG standard (1149.1).

**TRST:** UDI reset input pin. Input is accepted asynchronously with respect to TCK, ar the UDI is reset. See section 22.4.2, Reset Configuration, for more information.

**TDI:** UDI serial data input pin. Data transfer to the UDI is executed by changing this synchronization with TCK.

**TDO:** UDI serial data output pin. Data output from the UDI is executed by reading the synchronization with TCK.

**ASEMDO:** ASE mode select pin. If a low level is input at the  $\overrightarrow{ASEMDO}$  pin while the pin is asserted, ASE mode is entered; if a high level is input, normal mode is entered. on the user system alone, without an emulator and the UDI, hold this pin at high level.

Rev. 5.00, 09/03, pag

# Renesas

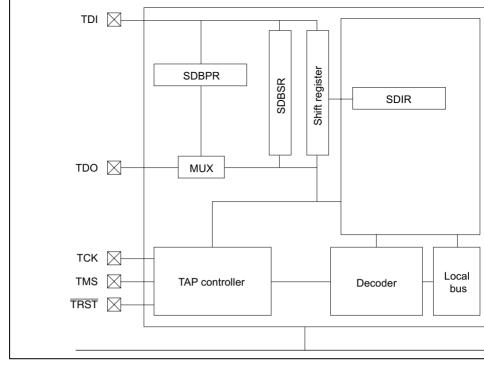



Figure 22.1 Block Diagram of UDI

## 22.3 Register Descriptions

The UDI has the following registers.

- SDBPR: Bypass register
- SDIR: Instruction register
- SDBSR: Boundary scan register

Rev. 5.00, 09/03, page 642 of 760

Note: \* Initialized when TRST pin is low or when TAP is in the test-logic-reset state.

#### 22.3.1 Bypass Register (SDBPR)

The bypass register is a 1-bit register that cannot be accessed by the CPU. When SDII bypass mode, SDBPR is connected between UDI pins TDI and TDO.

### 22.3.2 Instruction Register (SDIR)

The instruction register (SDIR) is a 16-bit read-only register. The register is in bypas initial state. It is initialized by  $\overline{\text{TRST}}$  assertion or in the TAP test-logic-reset state, and written to by the UDI irrespective of the CPU mode. Operation is not guaranteed if a r command is set in this register

| Bit:           | 15  | 14  | 13  | 12  | 11 | 10 | 9 |
|----------------|-----|-----|-----|-----|----|----|---|
|                | TI3 | TI2 | TI1 | TI0 | _  |    |   |
| Initial value: | 1   | 1   | 1   | 1   | 1  | 1  | 1 |
| Bit:           | 7   | 6   | 5   | 4   | 3  | 2  | 1 |
|                | —   |     | —   | _   | —  |    |   |
| Initial value: | 1   | 1   | 1   | 1   | 1  | 1  | 1 |

Bits 15 to 12—Test Instruction Bits (TI3 to TI0): Cannot be written by the CPU.

Renesas

| 0 | 1 | 1 | 1 | UDI reset assert   |     |
|---|---|---|---|--------------------|-----|
| 1 | 0 | 0 | — | Reserved           |     |
| 1 | 0 | 1 |   | UDI interrupt      |     |
| 1 | 1 | 0 |   | Reserved           |     |
| 1 | 1 | 1 | 0 | Reserved           |     |
| 1 | 1 | 1 | 1 | Bypass mode        | (Ir |
| 0 | 0 | 0 | 1 | Recovery from slee | р   |

Bits 11 to 0—Reserved: These bits are always read as 1.

### 22.3.3 Boundary Scan Register (SDBSR)

The boundary scan register (SDBSR) is a shift register, located on the PAD, for control input/output pins of the SH7709S.

Using the EXTEST and SAMPLE/PRELOAD commands, a boundary scan test conform JTAG standard can be carried out. Table 22.3 shows the correspondence between the pr LSI and boundary scan register bits.

Rev. 5.00, 09/03, page 644 of 760

| 334 | DZ7/PTB3 | IIN | 303 | IRQU/IRLU/PTHU |
|-----|----------|-----|-----|----------------|
| 333 | D26/PTB2 | IN  | 302 | IRQ1/IRL1/PTH1 |
| 332 | D25/PTB1 | IN  | 301 | IRQ2/IRL2/PTH2 |
| 331 | D24/PTB0 | IN  | 300 | IRQ3/IRL3/PTH3 |
| 330 | D23/PTA7 | IN  | 299 | IRQ4/PTH4      |
| 329 | D22/PTA6 | IN  | 298 | D31/PTB7       |
| 328 | D21/PTA5 | IN  | 297 | D30/PTB6       |
| 327 | D20/PTA4 | IN  | 296 | D29/PTB5       |
| 326 | D19/PTA3 | IN  | 295 | D28/PTB4       |
| 325 | D18/PTA2 | IN  | 294 | D27/PTB3       |
| 324 | D17/PTA1 | IN  | 293 | D26/PTB2       |
| 323 | D16/PTA0 | IN  | 292 | D25/PTB1       |
| 322 | D15      | IN  | 291 | D24/PTB0       |
| 321 | D14      | IN  | 290 | D23/PTA7       |
| 320 | D13      | IN  | 289 | D22/PTA6       |
| 319 | D12      | IN  | 288 | D21/PTA5       |
| 318 | D11      | IN  | 287 | D20/PTA4       |
| 317 | D10      | IN  | 286 | D19/PTA3       |
| 316 | D9       | IN  | 285 | D18/PTA2       |
| 315 | D8       | IN  | 284 | D17/PTA1       |
| 314 | D7       | IN  | 283 | D16/PTA0       |
| 313 | D6       | IN  | 282 | D15            |
| 312 | D5       | IN  | 281 | D14            |
| 311 | D4       | IN  | 280 | D13            |
| 310 | D3       | IN  | 279 | D12            |
| 309 | D2       | IN  | 278 | D11            |
| -   |          |     |     |                |

Renesas

| 270 | D3       | OUT     | 240 | D5                        |
|-----|----------|---------|-----|---------------------------|
| 269 | D2       | OUT     | 239 | D4                        |
| 268 | D1       | OUT     | 238 | D3                        |
| 267 | D0       | OUT     | 237 | D2                        |
| 266 | D31/PTB7 | Control | 236 | D1                        |
| 265 | D30/PTB6 | Control | 235 | D0                        |
| 264 | D29/PTB5 | Control | 234 | BS/PTK4                   |
| 263 | D28/PTB4 | Control | 233 | WE2/DQMUL/ICIORD/<br>PTK6 |
| 262 | D27/PTB3 | Control | 232 | WE3/DQMUU/ICIORD/<br>PTK7 |
| 261 | D26/PTB2 | Control | 231 | AUDSYNC/PTE7              |
| 260 | D25/PTB1 | Control | 230 | CS2/PTK0                  |
| 259 | D24/PTB0 | Control | 229 | CS3/PTK1                  |
| 258 | D23/PTA7 | Control | 228 | CS4/PTK2                  |
| 257 | D22/PTA6 | Control | 227 | CS5/CE1A/PTK3             |
| 256 | D21/PTA5 | Control | 226 | CE2A/PTE4                 |
| 255 | D20/PTA4 | Control | 225 | CE2B/PTE5                 |
| 254 | D19/PTA3 | Control | 224 | A0                        |
| 253 | D18/PTA2 | Control | 223 | A1                        |
| 252 | D17/PTA1 | Control | 222 | A2                        |
| 251 | D16/PTA0 | Control | 221 | A3                        |
| 250 | D15      | Control | 220 | A4                        |
| 249 | D14      | Control | 219 | A5                        |
| 248 | D13      | Control | 218 | A6                        |

Rev. 5.00, 09/03, page 646 of 760

| 210 | A14                       | OUT | 180 | A2  |
|-----|---------------------------|-----|-----|-----|
| 209 | A15                       | OUT | 179 | A3  |
| 208 | A16                       | OUT | 178 | A4  |
| 207 | A17                       | OUT | 170 | A5  |
| -   |                           |     |     |     |
| 206 | A18                       | OUT | 176 | A6  |
| 205 | A19                       | OUT | 175 | A7  |
| 204 | A20                       | OUT | 174 | A8  |
| 203 | A21                       | OUT | 173 | A9  |
| 202 | A22                       | OUT | 172 | A10 |
| 201 | A23                       | OUT | 171 | A11 |
| 200 | A24                       | OUT | 170 | A12 |
| 199 | A25                       | OUT | 169 | A13 |
| 198 | BS/PTK4                   | OUT | 168 | A14 |
| 197 | RD                        | OUT | 167 | A15 |
| 196 | WE0/DQMLL                 | OUT | 166 | A16 |
| 195 | WE1/DQMLU/WE              | OUT | 165 | A17 |
| 194 | WE2/DQMUL/ICIORD/<br>PTK6 | OUT | 164 | A18 |
| 193 | WE3/DQMUU/ICIOWR/<br>PTK7 | OUT | 163 | A19 |
| 192 | RD/WR                     | OUT | 162 | A20 |
| 191 | AUDSYNC/PTE7              | OUT | 161 | A21 |
| 190 | CS0/MCS0                  | OUT | 160 | A22 |
| 189 | CS2/PTK0                  | OUT | 159 | A23 |
| 188 | CS3/PTK1                  | OUT | 158 | A24 |

RENESAS

| 151 | WE3/DQMUU/ICIOWR/<br>PTK7 | Control | 121 | AUDATA3/PTG3      |
|-----|---------------------------|---------|-----|-------------------|
| 150 | RD/WR                     | Control | 120 | AUDATA2/PTG2      |
| 149 | AUDSYNC/PTE7              | Control | 119 | AUDATA1/PTG1      |
| 148 | CS0/MCS0                  | Control | 118 | AUDATA0/PTG0      |
| 147 | CS2/PTK0                  | Control | 117 | ADTRG/PTH5        |
| 146 | CS3/PTK1                  | Control | 116 | IRLS3/PTF3/PINT11 |
| 145 | CS4/PTK2                  | Control | 115 | IRLS2/PTF2/PINT10 |
| 144 | CS5/CE1A/PTK3             | Control | 114 | IRLS1/PTF1/PINT9  |
| 143 | CS6/CE1B                  | Control | 113 | IRLS0/PTF0/PINT8  |
| 142 | CE2A/PTE4                 | Control | 112 | MD0               |
| 141 | CE2B/PTE5                 | Control | 111 | CKE/PTK5          |
| 140 | CKE/PTK5                  | IN      | 110 | RAS3L/PTJ0        |
| 139 | RAS3L/PTJ0                | IN      | 109 | PTJ1              |
| 138 | PTJ1                      | IN      | 108 | CASL/PTJ2         |
| 137 | CASL/PTJ2                 | IN      | 107 | CASU/PTJ3         |
| 136 | CASU/PTJ3                 | IN      | 106 | PTJ4              |
| 135 | PTJ4                      | IN      | 105 | PTJ5              |
| 134 | PTJ5                      | IN      | 104 | DACK0/PTD5        |
| 133 | DACK0/PTD5                | IN      | 103 | DACK1/PTD7        |
| 132 | DACK1/PTD7                | IN      | 102 | PTE6              |
| 131 | PTE6                      | IN      | 101 | PTE3              |
| 130 | PTE3                      | IN      | 100 | RAS3U/PTE2        |
| 129 | RAS3U/PTE2                | IN      | 99  | PTE1              |
| 128 | PTE1                      | IN      | 98  | BACK              |
|     |                           |         | -   |                   |

Rev. 5.00, 09/03, page 648 of 760

| 90 | PTJ1          | Control | 58 |
|----|---------------|---------|----|
| 89 | CASL/PTJ2     | Control | 57 |
| 88 | CASU/PTJ3     | Control | 56 |
| 87 | PTJ4          | Control | 55 |
| 86 | PTJ5          | Control | 54 |
| 85 | DACK0/PTD5    | Control | 53 |
| 84 | DACK1/PTD7    | Control | 52 |
| 83 | PTE6          | Control | 51 |
| 82 | PTE3          | Control | 50 |
| 81 | RAS3U/PTE2    | Control | 49 |
| 80 | PTE1          | Control | 48 |
| 79 | BACK          | Control | 47 |
| 78 | ASEBRKAK/PTG5 | Control | 46 |
| 77 | AUDATA3/PTG3  | Control | 45 |
| 76 | AUDATA2/PTG2  | Control | 44 |
| 75 | AUDATA1/PTG1  | Control | 43 |
| 74 | AUDATA0/PTG0  | Control | 42 |
| 73 | STATUS0/PTJ6  | IN      | 41 |
| 72 | STATUS1/PTJ7  | IN      | 40 |
| 71 | TCLK/PTH7     | IN      | 39 |
| 70 | SCK0/SCPT1    | IN      | 38 |
| 69 | SCK1/SCPT3    | IN      | 37 |
| 68 | SCK2/SCPT5    | IN      | 36 |
| 67 | RTS2/SCPT6    | IN      | 35 |
| 66 | RxD0/SCPT0    | IN      | 34 |

| 58 | RxD1/SCPT2      |
|----|-----------------|
| 57 | CTS2/IRQ5/SCPT7 |
| 56 | MCS7/PTC7/PINT7 |
| 55 | MCS6/PTC6/PINT6 |
| 54 | MCS5/PTC5/PINT5 |
| 53 | MCS4/PTC4/PINT4 |
| 52 | MCS3/PTC3/PINT3 |
| 51 | MCS2/PTC2/PINT2 |
| 50 | MCS1/PTC1/PINT1 |
| 49 | MCS0/PTC0/PINT0 |
| 48 | MD3             |
| 47 | MD4             |
| 46 | MD5             |
| 45 | STATUS0/PTJ6    |
| 44 | STATUS1/PTJ7    |
| 43 | TCLK/PTH7       |
| 42 | IRQOUT          |
| 41 | TxD0/SCPT0      |
| 40 | SCK0/SCPT1      |
| 39 | TxD1/SCPT2      |
| 38 | SCK1/SCPT3      |
| 37 | TxD2/SCPT4      |
| 36 | SCK2/SCPT5      |
| 35 | RTS2/SCPT6      |
| 34 | MCS7/PTC7/PINT7 |

Renesas

| -  |                 |         |       |                 |
|----|-----------------|---------|-------|-----------------|
| 26 | MCS1/PTC1/PINT1 | OUT     | 8     | MCS4/PTC4/PINT4 |
| 25 | MCS0/PTC0/PINT0 | OUT     | 7     | WAKEUP/PTD3     |
| 24 | DRAK0/PTD1      | OUT     | 6     | RESETOUT/PTD2   |
| 23 | DRAK1/PTD0      | OUT     | 5     | MCS3/PTC3/PINT3 |
| 22 | STATUS0/PTJ6    | Control | 4     | MCS2/PTC2/PINT2 |
| 21 | STATUS1/PTJ7    | Control | 3     | MCS1/PTC1/PINT1 |
| 20 | TCLK/PTH7       | Control | 2     | MCS0/PTC0/PINT0 |
| 19 | IRQOUT          | Control | 1     | DRAK0/PTD1      |
| 18 | TxD0/SCPT0      | Control | 0     | DRAK1/PTD0      |
| 17 | SCK0/SCPT1      | Control | to TD | 0               |
| 16 | TxD1/SCPT2      | Control |       |                 |

Note: Control is an active-low signal.

When Control is driven low, the corresponding pin is driven by the value of OUT.

Rev. 5.00, 09/03, page 650 of 760

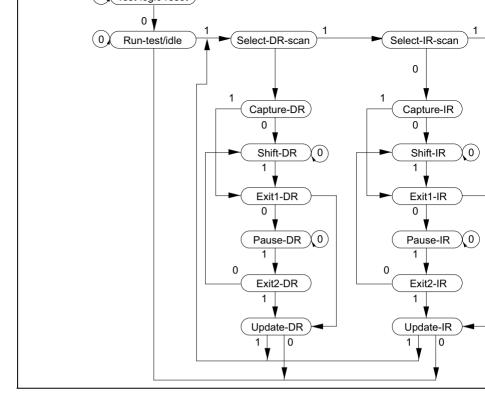



Figure 22.2 TAP Controller State Transitions

Note: The transition condition is the TMS value at the rising edge of TCK. The TDI sampled at the rising edge of TCK; shifting occurs at the falling edge of TCK value changes at the TCK falling edge. The TDO is at high impedance, except DR (shift-SR) and shift-IR states. During the change to  $\overline{\text{TRST}} = 0$ , there is a threst-logic-reset asynchronously with TCK.

Rev. 5.00, 09/03, pag

# Renesas

| Low-level | Low-level                               | Low-level          | Reset hold <sup>*2</sup>                                     |  |
|-----------|-----------------------------------------|--------------------|--------------------------------------------------------------|--|
|           |                                         | High-level         | ASE user mode <sup>*3</sup> : Normal reset                   |  |
|           |                                         |                    | ASE break mode <sup>*3</sup> : RESETP asse                   |  |
|           |                                         |                    | masked                                                       |  |
|           | High-level                              | Low-level          | UDI reset only                                               |  |
|           |                                         | High-level         | Normal operation                                             |  |
| Notes: 1. | . Selects main chip mode or ASE mode    |                    |                                                              |  |
|           | ASEMD0 = H, normal i                    | mode               |                                                              |  |
|           | ASEMD0 = L, ASE mo                      | de                 |                                                              |  |
|           | Set ASEMD0 = H when UDI.                | n using on the us  | er system alone, without an emulato                          |  |
| 2.        | In ASE mode, reset ho                   | ld is enabled by o | Iriving the $\overline{RESETP}$ and $\overline{TRST}$ pins I |  |
|           | constant cycle. In this s               | state, the CPU do  | es not start up, even if RESETP is d                         |  |
|           |                                         | •                  | on is enabled, but the CPU does not                          |  |
|           | The reset hold state is                 | cancelled by the   | following:                                                   |  |
|           | <ul> <li>Boot request from L</li> </ul> | JDI                |                                                              |  |
|           | Another RESETP a                        | ssert (power-on r  | eset)                                                        |  |
| 3.        | There are two ASE mo                    | des, one for exec  | cuting software in the emulator's firm                       |  |

There are two ASE modes, one for executing software in the emulator's firm break mode) and one for executing user software (ASE user mode).

Rev. 5.00, 09/03, page 652 of 760

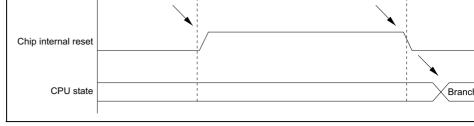



Figure 22.3 UDI Reset

## 22.4.4 UDI Interrupt

The UDI interrupt function generates an interrupt by setting a command from the UDI SDIR. An UDI interrupt is a general exception/interrupt operation, resulting in a brand address based on the VBR value plus offset, and with return by the RTE instruction. The request has a fixed priority level of 15.

UDI interrupts are not accepted in sleep mode or standby mode.

## 22.4.5 Bypass

The JTAG-based bypass mode for the UDI pins can be selected by setting a command UDI in SDIR.

## 22.4.6 Using UDI to Recover from Sleep Mode

It is possible to recover from sleep mode by setting a command (0001) from the UDI is

**BYPASS:** The BYPASS instruction is an essential standard instruction that operates the register. This instruction shortens the shift path to speed up serial data transfer involvin chips on the printed circuit board. While this instruction is executing, the test circuit has on the system circuits. The instruction code is 1111.

**SAMPLE/PRELOAD:** The SAMPLE/PRELOAD instruction inputs values from this I internal circuitry to the boundary scan register, outputs values from the scan path, and I onto the scan path. When this instruction is executing, this LSI's input pin signals are the directly to the internal circuitry, and internal circuit values are directly output externally output pins. This LSI's system circuits are not affected by execution of this instruction instruction code is 0100.

In a SAMPLE operation, a snapshot of a value to be transferred from an input pin to the circuitry, or a value to be transferred from the internal circuitry to an output pin, is lated boundary scan register and read from the scan path. Snapshot latching is performed in synchronization with the rise of TCK in the Capture-DR state. Snapshot latching does normal operation of this LSI.

In a PRELOAD operation, an initial value is set in the parallel output latch of the bound register from the scan path prior to the EXTEST instruction. Without a PRELOAD oper when the EXTEST instruction was executed an undefined value would be output from pin until completion of the initial scan sequence (transfer to the output latch) (with the linstruction, the parallel output latch value is constantly output to the output pin).

**EXTEST:** This instruction is provided to test external circuitry when this LSI is mount printed circuit board. When this instruction is executed, output pins are used to output (previously set by the SAMPLE/PRELOAD instruction) from the boundary scan register printed circuit board, and input pins are used to latch test results into the boundary scan from the printed circuit board. If testing is carried out by using the EXTEST instruction the Nth test data is scanned-in when test data (N-1) is scanned out.

Rev. 5.00, 09/03, page 654 of 760

- 2. Boundary scan mode does not cover reset-related signals (RESETP, RESETM, CA
- 3. Boundary scan mode does not cover UDI-related signals (TCK, TDI, TDO, TMS,
- 4. When a boundary scan test is carried out, ensure that the CKIO clock operates con The CKIO frequency range is as follows:

Minimum: 1 MHz

Maximum: Maximum frequency for respective clock mode specified in the CPG s Set pins MD[2:0] to the clock mode to be used.

After powering on, wait for the CKIO clock to stabilize before performing a bound test.

- 5. Fix the  $\overline{\text{RESETP}}$  pin low.
- 6. Fix the CA pin high, and the  $\overline{\text{ASEMD0}}$  pin low.

# 22.6 Usage Notes

- 1. An UDI command other than an UDI interrupt, once set, will not be modified as lo another command is not re-issued from the UDI. An UDI interrupt command, how be changed to a bypass command once set.
- 2. Because chip operations are suspended in standby mode, UDI commands are not a However, the TAP controller remains in operation at this time.
- 3. The UDI is used for emulator connection. Therefore, UDI functions cannot be use using an emulator.

# 22.7 Advanced User Debugger (AUD)

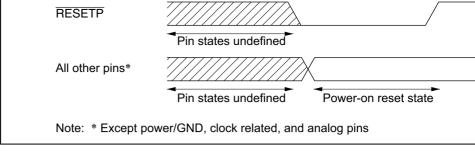
The AUD is a function exclusively for use by an emulator. Refer to the User's Manua relevant emulator for details of the AUD.

Rev. 5.00, 09/03, pag

Renesas

Rev. 5.00, 09/03, page 656 of 760

|                                 |                                              | 5                  |    |
|---------------------------------|----------------------------------------------|--------------------|----|
| Power supply voltage (I/O)      | VccQ                                         | –0.3 to 4.2        | V  |
| Power supply voltage (internal) | Vcc<br>Vcc – PLL1<br>Vcc – PLL2<br>Vcc – RTC | –0.3 to 2.5        | V  |
| Input voltage (except port L)   | Vin                                          | -0.3 to VccQ + 0.3 | V  |
| Input voltage (port L)          | Vin                                          | -0.3 to AVcc + 0.3 | V  |
| Analog power-supply voltage     | AVcc                                         | -0.3 to 4.6        | V  |
| Analog input voltage            | Van                                          | -0.3 to AVcc + 0.3 | V  |
| Operating temperature           | Topr                                         | -20 to 75          | ٥( |
| Storage temperature             | Tstr                                         | -55 to 125         | ٥( |
|                                 |                                              |                    |    |


**Caution:** Operating the chip in excess of the absolute maximum rating may result in p damage.

- Order of turning on 1.7 V/1.8 V/1.9 V/2.0 V power (Vcc, Vcc-PLL1, Vcc-PLL2, V and 3.3 V power (VccQ, AVcc):
  - 1. First turn on the 3.3 V power, then turn on the 1.7 V/1.8 V/1.9 V/2.0 V power v This interval should be as short as possible.
  - 2. Until voltage is applied to all power supplies, a low level is input at the RESET CKIO has operated for a maximum of 4 clock cycles, internal circuits remain us so pin states are also undefined. The system design must ensure that these under do not cause erroneous system operation. Note that the RESETP pin cannot receivel signal while a low level signal is being input to the CA pin.

Waveforms at power-on are shown in the following figure.

Rev. 5.00, 09/03, pag

Renesas



### **Power-On Sequence**

- Power-off order
  - 1. In the reverse order of powering-on, first turn off the 1.7 V/1.8 V/1.9 V/2.0 V peturn off the 3.3 V power within 1 ms. This interval should be as short as possible
  - 2. Pin states are undefined while only the 1.7 V/1.8 V/1.9 V/2.0 V power is off. The design must ensure that these undefined states do not cause erroneous system of

Rev. 5.00, 09/03, page 658 of 760

| Power supply voltage |                             | VCCQ      | 3.0  | 3.3  | 3.6  | V  |                                                          |
|----------------------|-----------------------------|-----------|------|------|------|----|----------------------------------------------------------|
|                      |                             | Vcc,      | 1.85 | 2.00 | 2.15 |    | 200 MHz mode                                             |
|                      |                             | Vcc-PLL1, | 1.75 | 1.90 | 2.05 |    | 167 MHz mode                                             |
|                      |                             | Vcc-PLL2, | 1.65 | 1.80 | 2.05 |    | 133 MHz mode                                             |
|                      |                             | Vcc-RTC   | 1.55 | 1.70 | 1.95 |    | 100 MHz mode                                             |
| Current              | Normal                      | lcc       | —    | 410  | 680  | mA | Vcc = 2.0 V, Iφ                                          |
| dissipation          | operation                   |           |      | 330  | 540  |    | Vcc = 1.9 V, Iφ                                          |
|                      |                             |           | _    | 250  | 410  |    | Vcc = 1.8 V, Iφ                                          |
|                      |                             |           | _    | 190  | 310  |    | Vcc = 1.7 V, Iφ                                          |
|                      |                             | IccQ      | —    | 20   | 40   |    | VccQ = 3.3 V,                                            |
|                      | Sleep<br>mode <sup>*1</sup> | lcc       | —    | 15   | 30   |    | <sup>*1</sup> When there external bus cy                 |
|                      |                             | IccQ      | _    | 10   | 20   |    | than the refres                                          |
|                      |                             |           |      |      |      |    | Vcc = 1.9 V,<br>VccQ = 3.3 V                             |
|                      |                             |           |      |      |      |    | $B\phi = 33MHz$                                          |
|                      | Standby mode                | lcc       | _    | 40   | 120  | μA | Ta = 25°C (RT<br>VccQ = 3.3 V,                           |
|                      |                             | IccQ      | —    | 10   | 30   |    | Vcc = 1.55 V tc                                          |
|                      |                             | lcc       | —    | 290  | 900  |    | Ta = 25°C (RT                                            |
|                      |                             | IccQ      | —    | 10   | 30   |    | Crystal is not u<br>VccQ = $3.3$ V,<br>Vcc = $1.55$ V to |
|                      |                             |           |      |      |      |    |                                                          |

Rev. 5.00, 09/03, pag

| PINTO,<br>ASEMDO,<br>ADTRG,<br>TRST,<br>EXTAL,<br>CKIO, RxD1,<br>CA |     |   |               |                                              |
|---------------------------------------------------------------------|-----|---|---------------|----------------------------------------------|
| EXTAL2                                                              | _   | _ | _             | When not conne<br>crystal oscillator<br>Vcc. |
| Port L                                                              | 2.0 |   | AVcc +<br>0.3 |                                              |
| Other input pins                                                    | 2.0 |   | VccQ +<br>0.3 |                                              |

Rev. 5.00, 09/03, page 660 of 760

|                                 | PINTO,<br>ASEMDO,<br>ADTRG,<br>TRST,<br>EXTAL,<br>CKIO, RxD1,<br>CA |                 |      |    |                                                            |    |                                                 |
|---------------------------------|---------------------------------------------------------------------|-----------------|------|----|------------------------------------------------------------|----|-------------------------------------------------|
|                                 | EXTAL2                                                              |                 | _    | _  | _                                                          |    | When not connect<br>crystal oscillator,<br>Vcc. |
|                                 | Port L                                                              | -               | -0.3 | —  | $AVcc \times 0.2$                                          | _  |                                                 |
|                                 | Other input pins                                                    | -               | -0.3 | _  | $\begin{array}{c} \text{VccQ} \\ \times \ 0.2 \end{array}$ | _  |                                                 |
| Input leak<br>current           | All input pins                                                      | l lin l         |      |    | 1.0                                                        | μA | Vin = 0.5 to VccQ                               |
| Three-<br>state leak<br>current | I/O, all<br>output pins<br>(off<br>condition)                       | I Isti I        | _    | _  | 1.0                                                        | μΑ | Vin = 0.5 to VccQ                               |
| Output<br>high<br>voltage       | All output<br>pins                                                  | V <sub>OH</sub> | 2.4  | _  | _                                                          | V  | $VccQ = 3.0 V, I_{OH}$                          |
|                                 |                                                                     |                 | 2.0  | —  |                                                            | _  | $VccQ = 3.0 V, I_{OH}$                          |
| Output low voltage              | All output pins                                                     | V <sub>OL</sub> | _    | _  | 0.55                                                       |    | $VccQ = 3.6 V, I_{OL}$                          |
| Pull-up<br>resistance           | Port pin                                                            | Rpull           | 30   | 60 | 120                                                        | kΩ |                                                 |
| Pin<br>capacity                 | All pins                                                            | С               | —    | —  | 10                                                         | pF |                                                 |

Renesas

| anu D/A    |   |   |    |    |           |  |
|------------|---|---|----|----|-----------|--|
| conversion |   |   |    |    |           |  |
| Idle       | _ | 1 | 20 | uА | Ta = 25°C |  |

Notes: Even when PLL is not used, always connect Vcc-PLL1 and Vcc-PLL2 to Vcc and Vss-PLL1 and Vss-PLL2 to Vss.

Even when RTC is not used, always supply power between Vcc-RTC and Vss-R AVcc must be under condition of VccQ –  $0.3 V \le AVcc \le VccQ + 0.3 V$ . If the A/E converters are not used, do not leave the AVcc and AVss pins open. Connect AV VccQ, and connect AVss to VssQ.

Current dissipation values shown are the values at which all output pins are with under conditions of V<sub>IH</sub> min = VccQ - 0.5 V, V<sub>IL</sub> max = 0.5 V.

The same voltage should be supplied to Vcc, Vcc-RTC, Vcc-PLL1, and Vcc-PLL

\* If the IRL and IRLS interrupts are used, the minimum is 1.9 V.

### Table 23.3 Permitted Output Current Values

 $VccQ = 3.3 \pm 0.3 V$ , Vcc = 1.55 to 2.15 V,  $AVcc = 3.3 \pm 0.3 V$ , Ta = -20 to 75°C

| Item                                            | Symbol                       | Min | Тур | Max |
|-------------------------------------------------|------------------------------|-----|-----|-----|
| Output low-level permissible current (per pin)  | I <sub>OL</sub>              |     | —   | 2.0 |
| Output low-level permissible current (total)    | $\sum I_{OL}$                | _   |     | 120 |
| Output high-level permissible current (per pin) | –I <sub>OH</sub>             | _   |     | 2.0 |
| Output high-level permissible current (total)   | $\Sigma$ (–I <sub>OH</sub> ) | _   |     | 40  |
|                                                 |                              |     |     |     |

Caution: To ensure LSI reliability, do not exceed the value for output current given in tak

Rev. 5.00, 09/03, page 662 of 760

| Operating | CPU, cache, TLB   | f | 30   | _ | 200   | MHz | 200        |
|-----------|-------------------|---|------|---|-------|-----|------------|
| frequency |                   |   | 25   |   | 167   |     | 167        |
|           |                   |   |      |   | 133   |     | 133        |
|           |                   |   |      |   | 100   |     | 100        |
|           | External bus      | _ | 30   | — | 66.67 |     | 200        |
|           |                   |   | 25   |   |       |     | 167        |
|           |                   |   |      |   |       |     | 133<br>100 |
|           |                   |   |      |   |       |     |            |
|           | Peripheral module |   | 7.5  |   | 33.34 |     | 200        |
|           |                   |   | 6.25 |   |       |     | 167        |
|           |                   |   |      |   |       |     | 133        |
|           |                   |   | _    |   | _     |     | 100        |
|           |                   |   |      |   |       |     |            |

Renesas

| EXTAL clock input cycle time (clock mode 2)                        | t <sub>EXcyc</sub>  | 60   | 160 | ns               |
|--------------------------------------------------------------------|---------------------|------|-----|------------------|
| EXTAL clock input low pulse width                                  | t <sub>EXL</sub>    | 1.5  |     | ns               |
| EXTAL clock input high pulse width                                 | t <sub>EXH</sub>    | 1.5  |     | ns               |
| EXTAL clock input rise time                                        | t <sub>EXR</sub>    |      | 6   | ns               |
| EXTAL clock input fall time                                        | t <sub>EXF</sub>    |      | 6   | ns               |
| CKIO clock input frequency                                         | f <sub>CKI</sub>    | 20   | 66  | MHz 2            |
| CKIO clock input cycle time                                        | t <sub>CKIcyc</sub> | 15.2 | 40  | ns               |
| CKIO clock input low pulse width                                   | t <sub>CKIL</sub>   | 1.5  |     | ns               |
| CKIO clock input high pulse width                                  | t <sub>CKIH</sub>   | 1.5  |     | ns               |
| CKIO clock input rise time                                         | t <sub>CKIR</sub>   | _    | 6   | ns               |
| CKIO clock input fall time                                         | t <sub>CKIF</sub>   |      | 6   | ns               |
| CKIO clock output frequency                                        | f <sub>OP</sub>     | 25   | 66  | MHz 2            |
| CKIO clock output cycle time                                       | t <sub>cyc</sub>    | 15.2 | 40  | ns               |
| CKIO clock output low pulse width                                  | t <sub>CKOL</sub>   | 3    |     | ns               |
| CKIO clock output high pulse width                                 | t <sub>CKOH</sub>   | 3    |     | ns               |
| CKIO clock output rise time                                        | t <sub>CKOR</sub>   |      | 5   | ns               |
| CKIO clock output fall time                                        | t <sub>CKOF</sub>   |      | 5   | ns               |
| CKIO2 clock output delay time                                      | t <sub>CK2D</sub>   | -3   | 3   | ns               |
| CKIO2 clock output rise time                                       | t <sub>CK20R</sub>  |      | 7   | ns               |
| CKIO2 clock output fall time                                       | t <sub>CK20F</sub>  |      | 7   | ns               |
| Power-on oscillation settling time                                 | t <sub>osc1</sub>   | 10   |     | ms 2             |
| RESETP setup time                                                  | t <sub>RESPS</sub>  | 20   |     | ns 2             |
| RESETM setup time                                                  | t <sub>RESMS</sub>  | 6    |     | ns               |
| RESETP assert time                                                 | t <sub>RESPW</sub>  | 20   |     | t <sub>cyc</sub> |
| RESETM assert time                                                 | t <sub>RESMW</sub>  | 20   |     | t <sub>cyc</sub> |
| Standby return oscillation settling time 1                         | t <sub>OSC2</sub>   | 10   |     | ms 2             |
| Standby return oscillation settling time 2                         | t <sub>osc3</sub>   | 10   |     | ms 2<br>ms 2     |
| Standby return oscillation settling time 3                         | t <sub>OSC4</sub>   | 11   |     | ms 2             |
| PLL synchronization settling time 1 (standby canceled)             | t <sub>PLL1</sub>   | 100  | _   | µs 2             |
| PLL synchronization settling time 2 (multiplication rete modified) | t <sub>PLL2</sub>   | 100  | —   | µs 2             |
| IRQ/IRL interrupt determination time (RTC used and standby mode)   | t <sub>IRLSTB</sub> | 100  | _   | µs 2             |
|                                                                    |                     |      |     |                  |

Rev. 5.00, 09/03, page 664 of 760



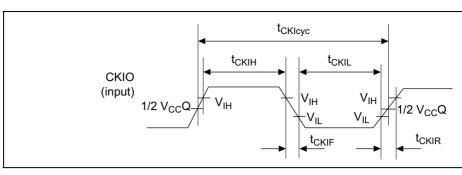



Figure 23.2 CKIO Clock Input Timing

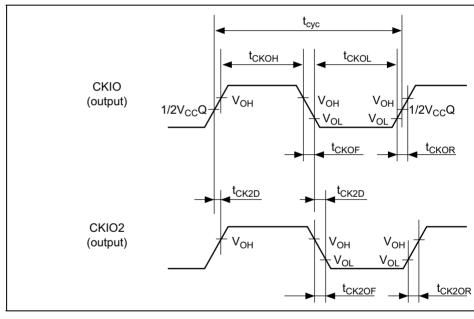
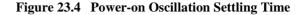




Figure 23.3 CKIO Clock Output Timing

Rev. 5.00, 09/03, pag

Note: Oscillation settling time when built-in oscillator is used



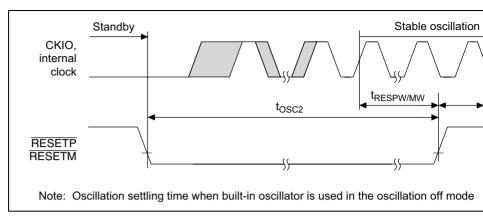



Figure 23.5 Oscillation Settling Time at Standby Return (Return by Res

Rev. 5.00, 09/03, page 666 of 760

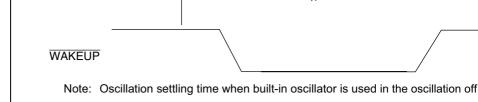



Figure 23.6 Oscillation Settling Time at Standby Return (Return by N

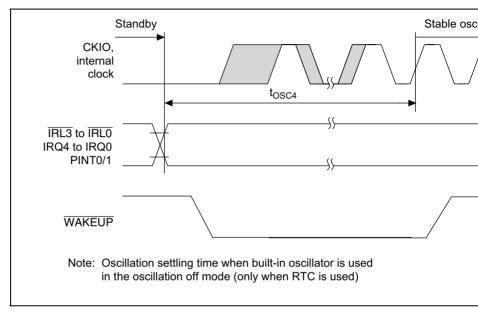



Figure 23.7 Oscillation Settling Time at Standby Return (Return by IRQ4 to IRQ0, PINT0/1, IRL3 to IRL0)

Rev. 5.00, 09/03, pag

Renesas

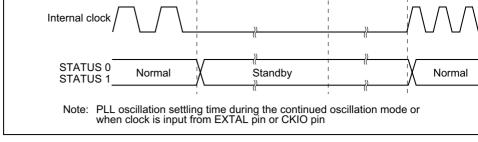



Figure 23.8 PLL Synchronization Settling Time during Standby Recovery (Rese

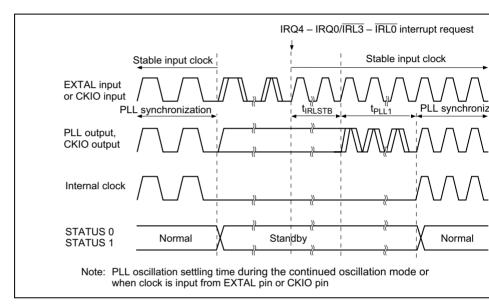



Figure 23.9 PLL Synchronization Settling Time during Standby Recove (IRQ/IRL or PINT0/PINT1 Interrupt)

Rev. 5.00, 09/03, page 668 of 760

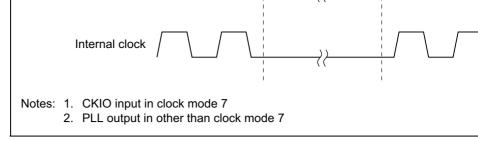



Figure 23.10 PLL Synchronization Settling Time when Frequency Multipl Rate Modified



| RESETP hold time            | t <sub>RESPH</sub> | 4     | —  | ns   |
|-----------------------------|--------------------|-------|----|------|
| RESETM pulse width          | t <sub>RESMW</sub> | 20 *3 | _  | tcyc |
| RESETM setup time           | t <sub>RESMS</sub> | 6     | —  | ns   |
| RESETM hold time            | t <sub>RESMH</sub> | 34    | —  | ns   |
| BREQ setup time             | tBREQS             | 6     | _  | ns   |
| BREQ hold time              | t <sub>BREQH</sub> | 4     | _  | ns   |
| NMI setup time *1           | t <sub>NMIS</sub>  | 10    | _  | ns   |
| NMI hold time               | t <sub>NMIH</sub>  | 4     | _  | ns   |
| IRQ5–IRQ0 setup time *1     | t <sub>IRQS</sub>  | 10    | _  | ns   |
| IRQ5–IRQ0 hold time         | t <sub>IRQH</sub>  | 4     | _  | ns   |
| IRQOUT delay time           | tIRQOD             |       | 10 | ns   |
| BACK delay time             | t <sub>BACKD</sub> | _     | 10 | ns   |
| STATUS1, STATUS0 delay time | t <sub>STD</sub>   | _     | 10 | ns   |
| Bus tri-state delay time 1  | t <sub>BOFF1</sub> | 0     | 15 | ns   |
| Bus tri-state delay time 2  | t <sub>BOFF2</sub> | 0     | 15 | ns   |
| Bus buffer-on time 1        | t <sub>BON1</sub>  | 0     | 15 | ns   |
| Bus buffer-on time 2        | t <sub>BON2</sub>  | 0     | 15 | ns   |
|                             |                    |       |    |      |

Notes: 1. RESETP, NMI, and IRQ5 to IRQ0 are asynchronous. Changes are detected clock fall when the setup shown is used. When the setup cannot be used, d can be delayed until the next clock falls.

2. In the standby mode,  $t_{RESPW} = t_{OSC1}$  (100 µs) when XTAL oscillation is contin  $t_{RESPW} = t_{OSC2}$  (10 ms) when XTAL oscillation is off. In the sleep mode,  $t_{RESPW}$  (100 µs).

When the clock multiplication ratio is changed,  $t_{RESPW} = t_{PLL1}$  (100 µs).

 In the standby mode, t<sub>RESMW</sub> = t<sub>OSC2</sub> (10 ms). In the sleep mode, <u>RESETM</u> n low until STATUS (0-1) changes to reset (HH). When the clock multiplication changed, <u>RESETM</u> must be kept low until STATUS (0-1) changes to reset (H

Rev. 5.00, 09/03, page 670 of 760

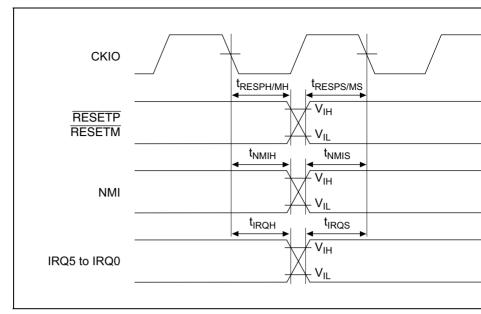



Figure 23.12 Interrupt Signal Input Timing

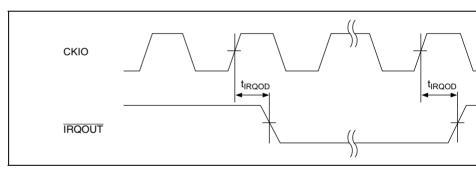



Figure 23.13 **IRQOUT** Timing

Rev. 5.00, 09/03, pag

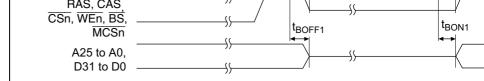



Figure 23.14 Bus Release Timing

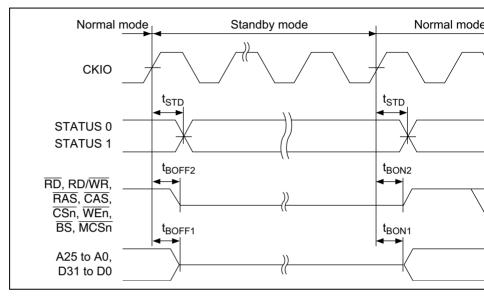



Figure 23.15 Pin Drive Timing at Standby

Rev. 5.00, 09/03, page 672 of 760

| Address setup time              | t <sub>AS</sub>    | 0   |    | ns | 23.10-23.18                  |
|---------------------------------|--------------------|-----|----|----|------------------------------|
| Address hold time <sup>*1</sup> | t <sub>AH</sub>    | 4   |    | ns | 23.16–23.21                  |
| BS delay time                   | t <sub>BSD</sub>   | —   | 10 | ns | 23.16–23.36, 23.40–23.46     |
| CS delay time 1                 | t <sub>CSD1</sub>  | 0   | 10 | ns | 23.16–23.21, 23.40–23.46     |
| CS delay time 2                 | t <sub>CSD2</sub>  | —   | 10 | ns | 23.16–23.21                  |
| CS delay time<br>(SDRAM access) | t <sub>CSD3</sub>  | 1.5 | 10 | ns | 23.22–23.39                  |
| Read/write delay time           | t <sub>RWD</sub>   | 1.5 | 10 | ns | 23.16–23.46, 23.39–23.46     |
| Read/write hold time            | t <sub>RWH</sub>   | 0   | _  | ns | 23.16–23.21                  |
| Read strobe delay time          | t <sub>RSD</sub>   | —   | 10 | ns | 23.16–23.21 23.40–23.43      |
| Read data setup time 1          | t <sub>RDS1</sub>  | 6   | _  | ns | 23.16–23.21, 23.40–23.46     |
| Read data setup time 2          | t <sub>RDS2</sub>  | 5   | _  | ns | 23.22–23.25, 23.30–23.33     |
| Read data hold time 1*2         | t <sub>RDH1</sub>  | 0   | _  | ns | 23.16–23.21, 23.40–23.46     |
| Read data hold time 2           | t <sub>RDH2</sub>  | 1   |    | ns | 23.22–23.25, 23.30–23.33     |
| Write enable delay time         | t <sub>WED</sub>   | _   | 10 | ns | 23.16–23.18, 23.40, 23.41    |
| Write data delay time 1         | t <sub>WDD1</sub>  | —   | 14 | ns | 23.16–23.18, 23.40, 23.41, 2 |
| Write data delay time 2         | t <sub>WDD2</sub>  | 1.5 | 12 | ns | 23.26–23.29, 23.34–23.36     |
| Write data hold time 1          | t <sub>WDH1</sub>  | 1.5 | _  | ns | 23.16–23.18, 23.40, 23.41, 2 |
| Write data hold time 2          | t <sub>WDH2</sub>  | 1.5 | —  | ns | 23.26–23.29, 23.34–23.36     |
| Write data hold time 3          | t <sub>WDH3</sub>  | 2   |    | ns | 23.16–23.18                  |
| Write data hold time 4          | $t_{\text{WDH4}}$  | 2   | _  | ns | 23.40, 23.41, 23.44–23.46    |
| WAIT setup time                 | t <sub>WTS</sub>   | 5   | _  | ns | 23.17–23.21, 23.41, 23.43, 2 |
| WAIT hold time                  | t <sub>WTH</sub>   | 0   | _  | ns | 23.17–23.21, 23.41, 23.43, 2 |
| RAS delay time 2                | t <sub>RASD2</sub> | 1.5 | 10 | ns | 23.22–23.39                  |
| CAS delay time 2                | t <sub>CASD2</sub> | 1.5 | 10 | ns | 23.22–23.39                  |
| DQM delay time                  | t <sub>DQMD</sub>  | 1.5 | 10 | ns | 23.22–23.36                  |
| CKE delay time                  | t <sub>CKED</sub>  | 1.5 | 10 | ns | 23.38                        |
|                                 |                    |     |    |    |                              |

Renesas

(Reference for CKIO fall)

Notes: 1. Specified based on the slowest negate timing for  $\overline{\text{CSn}}$ ,  $\overline{\text{RD}}$ , or  $\overline{\text{WEn}}$ 

2. Specified based on whichever negate timing is faster,  $\overline{\text{CSn}}$  or  $\overline{\text{RD}}$ .

Rev. 5.00, 09/03, page 674 of 760

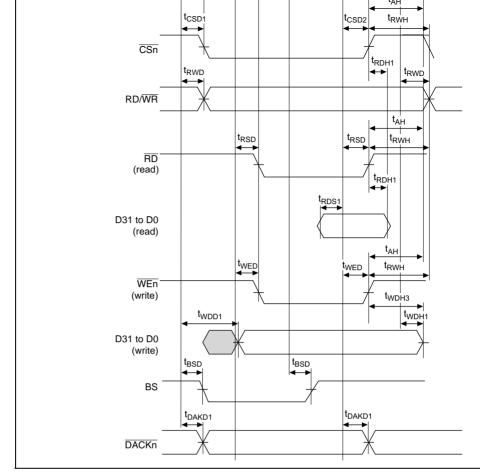



Figure 23.16 Basic Bus Cycle (No Wait)

Renesas

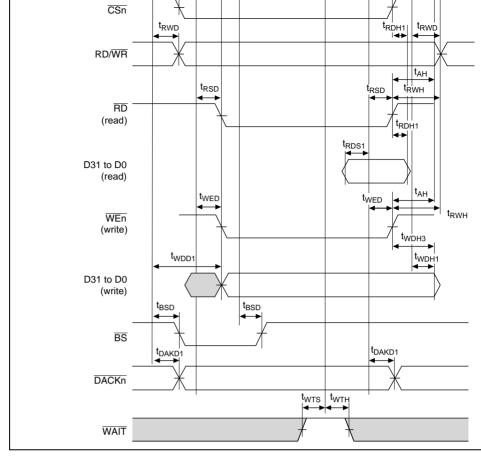



Figure 23.17 Basic Bus Cycle (One Wait)

Rev. 5.00, 09/03, page 676 of 760

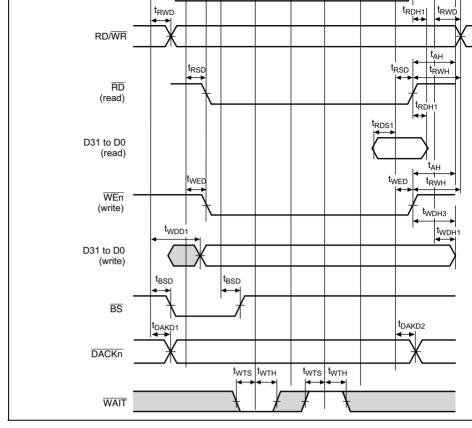



Figure 23.18 Basic Bus Cycle (External Wait, WAITSEL = 1)

RENESAS

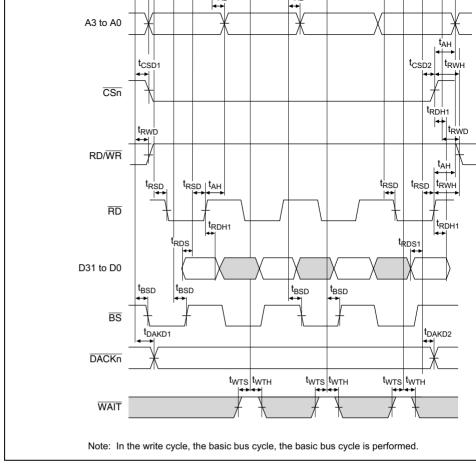



Figure 23.19 Burst ROM Bus Cycle (No Wait)

Rev. 5.00, 09/03, page 678 of 760

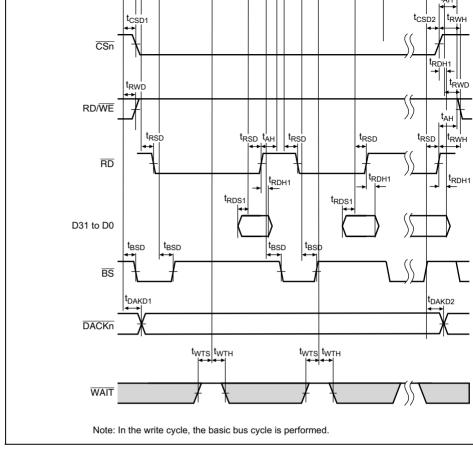



Figure 23.20 Burst ROM Bus Cycle (Two Waits)

Renesas

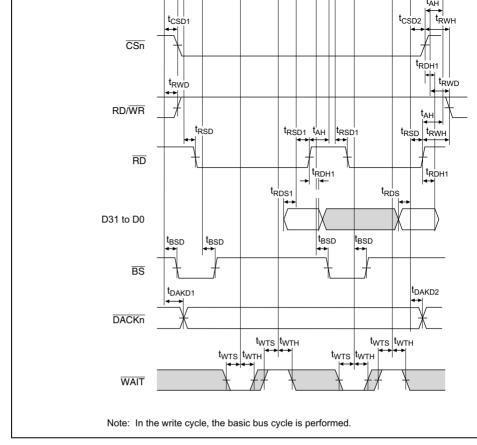



Figure 23.21 Burst ROM Bus Cycle (External Wait, WAITSEL = 1)

Rev. 5.00, 09/03, page 680 of 760

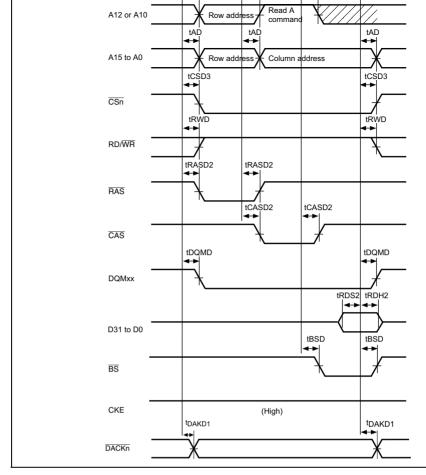



Figure 23.22 Synchronous DRAM Read Bus Cycle (RCD = 0, CAS Latency = 1

Renesas

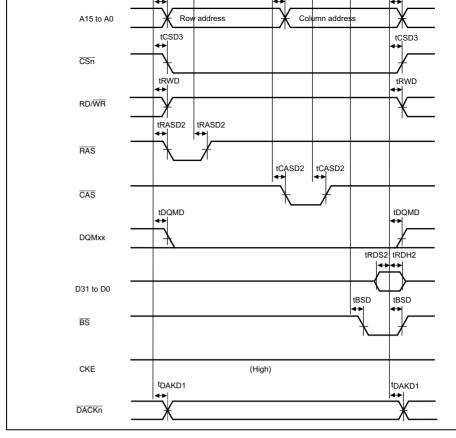



Figure 23.23 Synchronous DRAM Read Bus Cycle (RCD = 2, CAS Latency = 2,

Rev. 5.00, 09/03, page 682 of 760

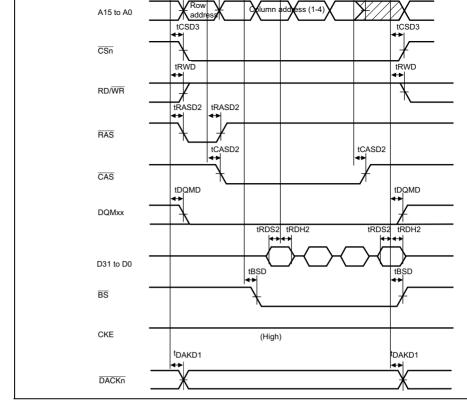



Figure 23.24 Synchronous DRAM Read Bus Cycle (Burst Read (Single Read × 4 CAS Latency = 1, TPC = 1)

Rev. 5.00, 09/03, pag

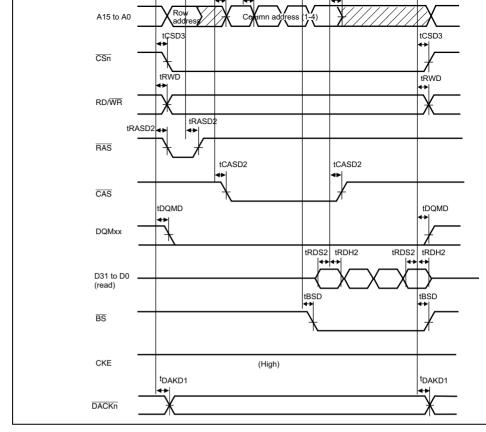



Figure 23.25 Synchronous DRAM Read Bus Cycle (Burst Read (Single Read × 4) CAS Latency = 3, TPC = 0)

Rev. 5.00, 09/03, page 684 of 760

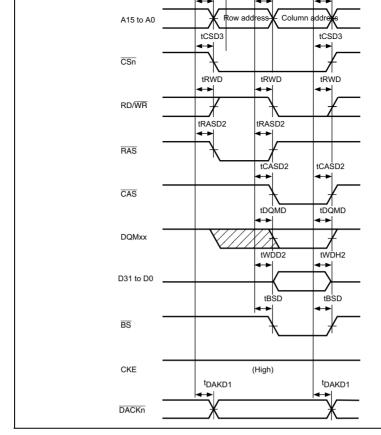



Figure 23.26 Synchronous DRAM Write Bus Cycle (RCD = 0, TPC = 0, TR

RENESAS

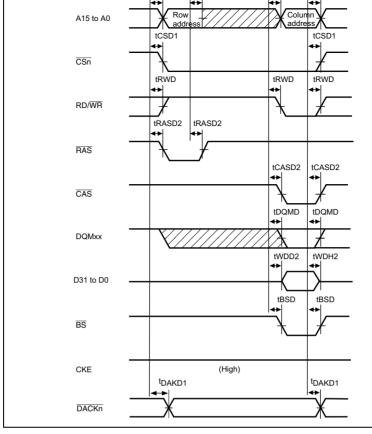



Figure 23.27 Synchronous DRAM Write Bus Cycle (RCD = 2, TPC = 1, TRW

Rev. 5.00, 09/03, page 686 of 760

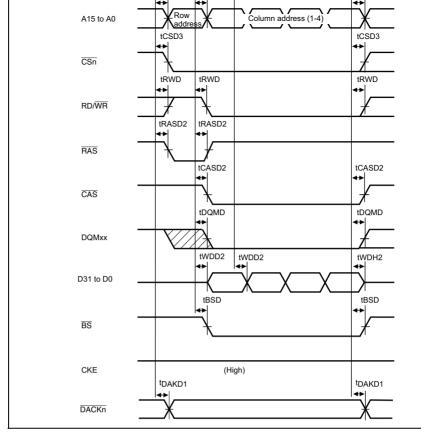



Figure 23.28 Synchronous DRAM Write Bus Cycle (Burst Mode (Single Wr RCD = 0, TPC = 1, TRWL = 0)

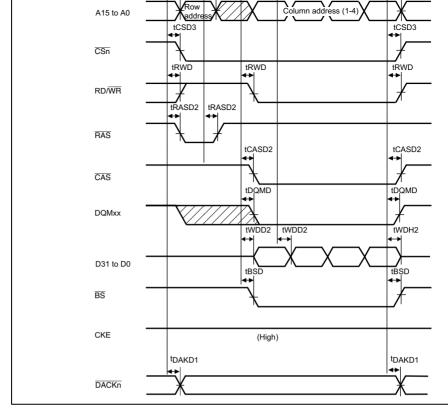



Figure 23.29 Synchronous DRAM Write Bus Cycle (Burst Mode (Single Wri RCD = 1, TPC = 0, TRWL = 0)

Rev. 5.00, 09/03, page 688 of 760

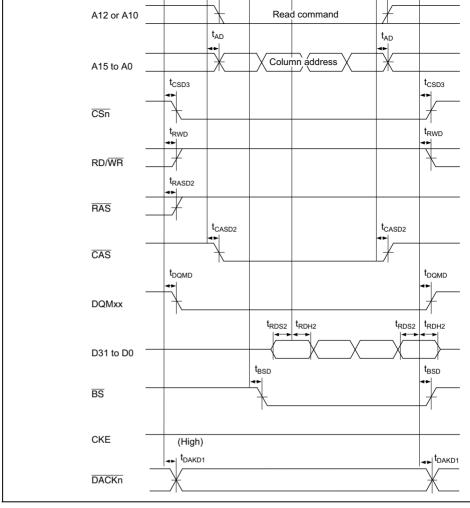



Figure 23.30 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row Address, CAS Latency = 1)

Rev. 5.00, 09/03, pag

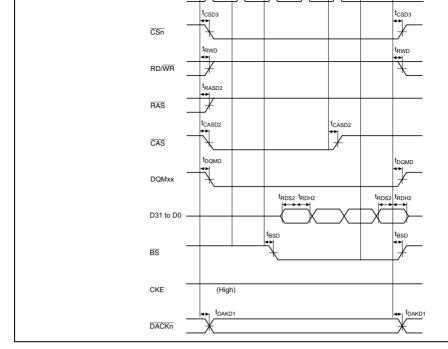



Figure 23.31 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Same Row Address, CAS Latency = 2)

Rev. 5.00, 09/03, page 690 of 760

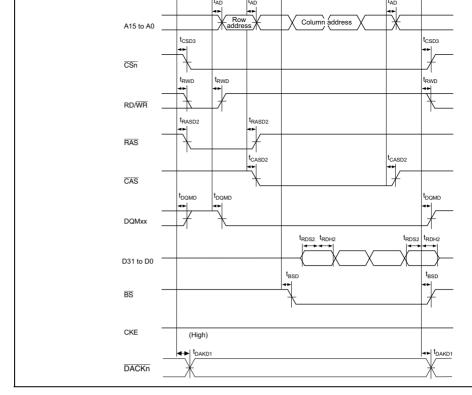



Figure 23.32 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Different Row Address, TPC = 0, RCD = 0, CAS Latency =

Rev. 5.00, 09/03, pag

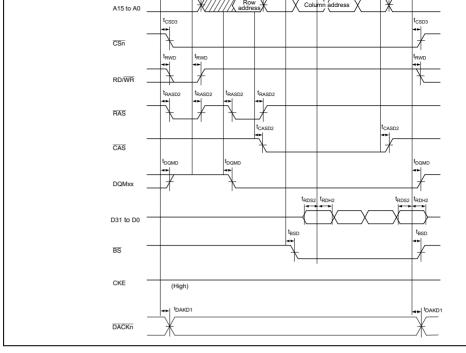



Figure 23.33 Synchronous DRAM Burst Read Bus Cycle (RAS Down, Different Row Address, TPC = 1, RCD = 0, CAS Latency =

Rev. 5.00, 09/03, page 692 of 760

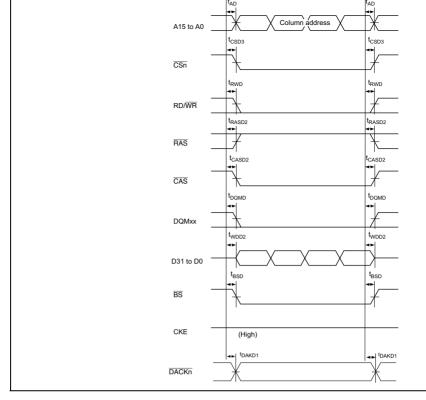



Figure 23.34 Synchronous DRAM Burst Write Bus Cycle (RAS Down, Same Row Address)

Rev. 5.00, 09/03, pag

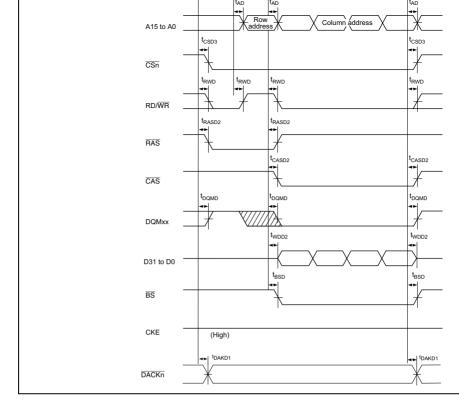



Figure 23.35 Synchronous DRAM Burst Write Bus Cycle (RAS Down, Different Row Address, TPC = 0, RCD = 0)

Rev. 5.00, 09/03, page 694 of 760

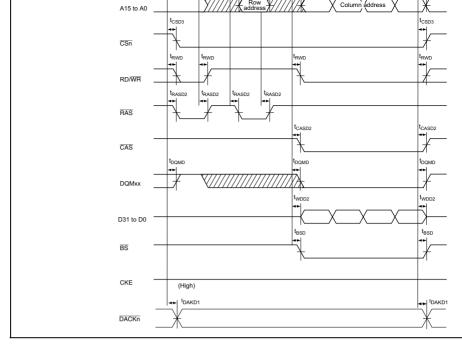



Figure 23.36 Synchronous DRAM Burst Write Bus Cycle (RAS Down, Different Row Address, TPC = 1, RCD = 1)

RENESAS

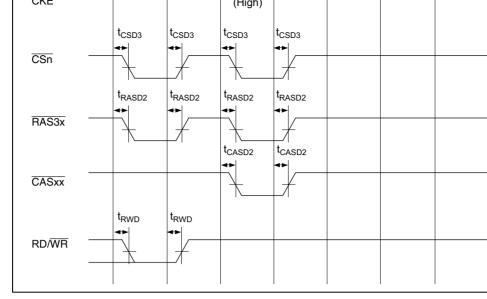



Figure 23.37 Synchronous DRAM Auto-Refresh Timing (TRAS = 1, TPC

Rev. 5.00, 09/03, page 696 of 760

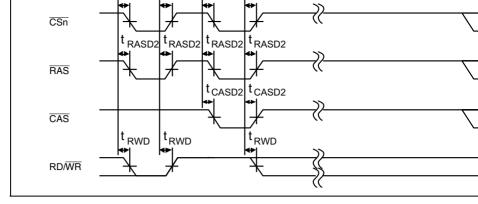



Figure 23.38 Synchronous DRAM Self-Refresh Cycle (TRAS = 1, TPC

Renesas

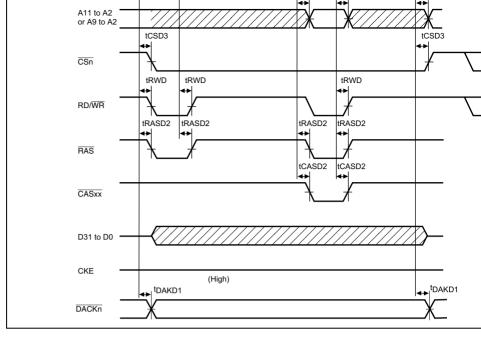



Figure 23.39 Synchronous DRAM Mode Register Write Cycle

Rev. 5.00, 09/03, page 698 of 760

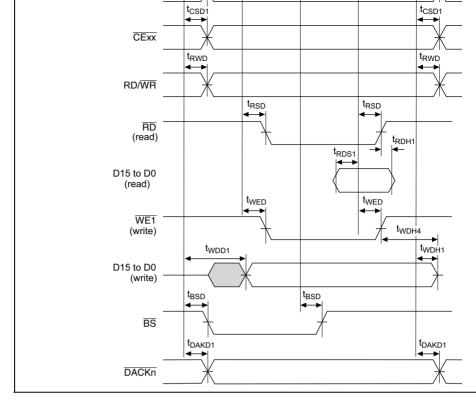



Figure 23.40 PCMCIA Memory Bus Cycle (TED = 0, TEH = 0, No Wa

Rev. 5.00, 09/03, pag

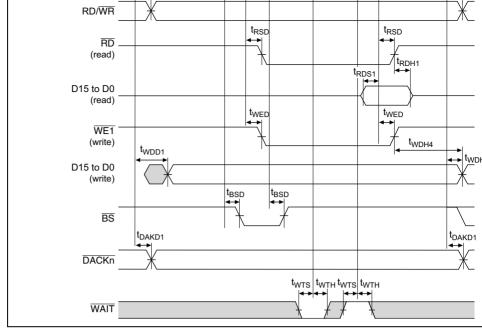
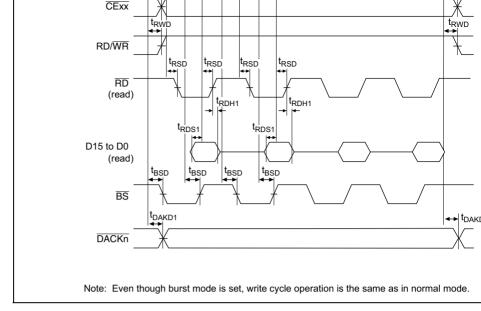
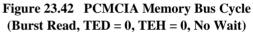





Figure 23.41 PCMCIA Memory Bus Cycle (TED = 2, TEH = 1, One Wait, External Wait, WAITSEL = 1)

Rev. 5.00, 09/03, page 700 of 760





Renesas

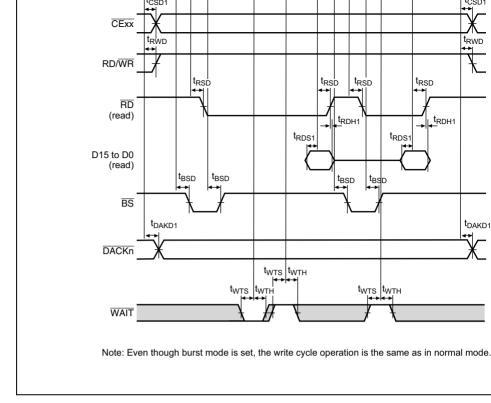



Figure 23.43 PCMCIA Memory Bus Cycle (Burst Read, TED = 1, TEH = 1, Two Waits, Burst Pitch = 3, WAITSEL =

Rev. 5.00, 09/03, page 702 of 760

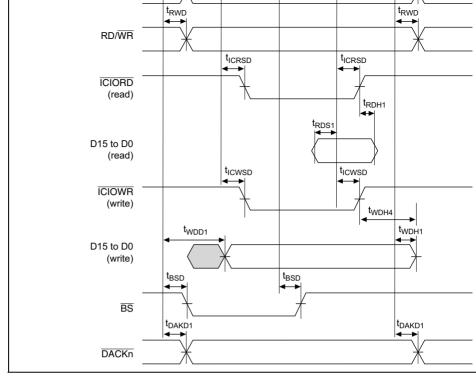



Figure 23.44 PCMCIA I/O Bus Cycle (TED = 0, TEH = 0, No Wait)

RENESAS



Figure 23.45 PCMCIA I/O Bus Cycle (TED = 2, TEH = 1, One Wait, External Wait, WAITSEL = 1)

Rev. 5.00, 09/03, page 704 of 760

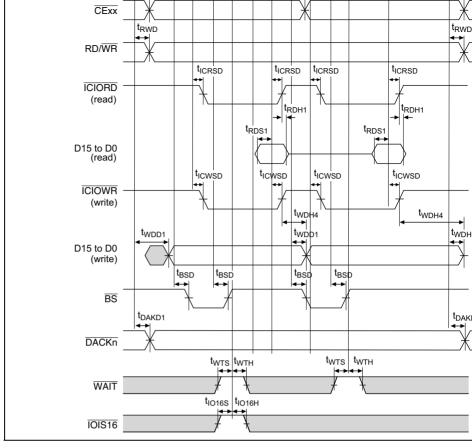



Figure 23.46 PCMCIA I/O Bus Cycle (TED = 1, TEH = 1, One Wait, Bus Sizing, WAITSEL = 1)

Rev. 5.00, 09/03, pag

|      | Timer clock<br>pulse width                      | Edge specification                     | t <sub>тскwн</sub>  | 1.5 | _   | Рсус  |
|------|-------------------------------------------------|----------------------------------------|---------------------|-----|-----|-------|
|      |                                                 | Both edge specification                | t <sub>TCKWL</sub>  | 2.5 | —   |       |
|      | Oscillation se                                  | t <sub>ROSC</sub>                      | 3                   | _   | S   |       |
| SCI  | Input clock                                     | Asynchronization                       | t <sub>SCYC</sub>   | 4   | —   | Рсус  |
|      | cycle                                           | Clock synchronization                  |                     | 6   | —   |       |
|      | Input clock rise time                           |                                        | t <sub>SCKR</sub>   | _   | 1.5 | _     |
|      | Input clock fa                                  | Input clock fall time                  |                     | _   | 1.5 | _     |
|      | Input clock pu                                  | ulse width                             | t <sub>SCKW</sub>   | 0.4 | 0.6 | tscyc |
|      | Transmission                                    | data delay time                        | t <sub>TXD</sub>    | _   | 100 | ns    |
|      | Receive data setup time (clock synchronization) |                                        | t <sub>RXS</sub>    | 100 | —   | _     |
|      | Receive data hold time (clock synchronization)  |                                        | t <sub>RXH</sub>    | 100 | _   | _     |
|      | RTS delay time                                  |                                        | t <sub>RTSD</sub>   | _   | 100 |       |
|      | CTS setup tin                                   | CTS setup time (clock synchronization) |                     | 100 | —   | _     |
|      | CTS hold time (clock synchronization)           |                                        | t <sub>CTSH</sub>   | 100 |     |       |
| Port | Output data delay time                          |                                        | t <sub>PORTD</sub>  |     | 17  | ns    |
|      | Input data setup time                           |                                        | t <sub>PORTS1</sub> | 15  |     |       |
|      | Input data hol                                  | ld time                                | t <sub>PORTH1</sub> | 8   | _   | _     |
|      | Input data set                                  | t <sub>PORTS2</sub>                    | tcyc +<br>15        |     | _   |       |
|      | Input data ho                                   | Input data hold time                   |                     |     | _   |       |
|      | Input data set                                  | t <sub>PORTS3</sub>                    | 3 × tcyc<br>+ 15    | _   | _   |       |
|      | Input data hol                                  | ld time                                | t <sub>PORTH3</sub> | 8   | —   | _     |
| DMAC | DREQ setup                                      | time                                   | t <sub>DRQS</sub>   | 6   | —   | ns    |
|      | DREQ hold ti                                    | t <sub>DREQH</sub>                     | 4                   | —   | _   |       |
|      | DRAK delay t                                    | t <sub>DRAKD</sub>                     | _                   | 10  |     |       |

Note: \* Pcyc is the P clock cycle.

Rev. 5.00, 09/03, page 706 of 760

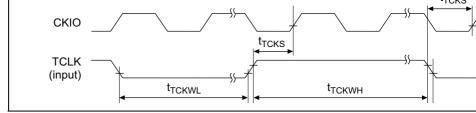



Figure 23.48 TCLK Clock Input Timing

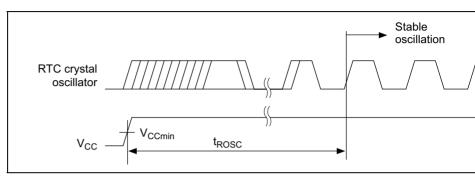



Figure 23.49 Oscillation Settling Time at RTC Crystal Oscillator Power

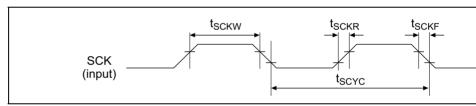



Figure 23.50 SCK Input Clock Timing

Renesas

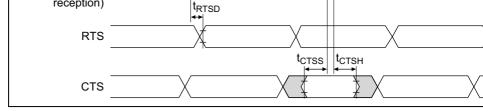



Figure 23.51 SCI I/O Timing in Clock Synchronous Mode

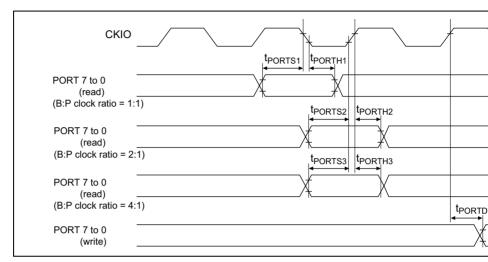



Figure 23.52 I/O Port Timing

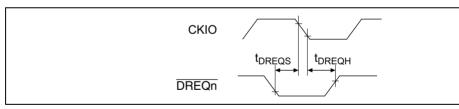
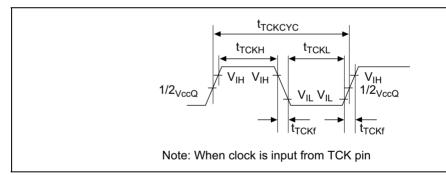



Figure 23.53 DREQ Input Timing


Rev. 5.00, 09/03, page 708 of 760

Renesas

## Table 23.9 UDI-Related Pin Timing

 $VccQ = 3.3 \pm 0.3V$ , Vcc = 1.55 to 2.15 V,  $AVcc = 3.3 \pm 0.3V$ , Ta = -20 to  $75^{\circ}C$ 

| Item                 | Symbol              | Min | Max | Unit             | Figu |
|----------------------|---------------------|-----|-----|------------------|------|
| TCK cycle time       | tтсксус             | 50  |     | ns               | 23.5 |
| TCK high pulse width | t <sub>тскн</sub>   | 12  |     | ns               |      |
| TCK low pulse width  | t <sub>TCKL</sub>   | 12  | _   | ns               |      |
| TCK rise/fall time   | t <sub>TCKf</sub>   | _   | 4   | ns               |      |
| TRST setup time      | t <sub>TRSTS</sub>  | 12  | _   | ns               | 23.5 |
| TRST hold time       | t <sub>TRSTH</sub>  | 50  | —   | t <sub>cyc</sub> |      |
| TDI setup time       | t <sub>TDIS</sub>   | 10  | —   | ns               | 23.5 |
| TDI hold time        | t <sub>TDIH</sub>   | 10  | —   | ns               |      |
| TMS setup time       | t <sub>TMSS</sub>   | 10  | —   | ns               |      |
| TMS hold time        | t <sub>TMSH</sub>   | 10  | _   | ns               |      |
| TDO delay time       | t <sub>TDOD</sub>   | _   | 16  | ns               |      |
| ASEMD0 setup time    | t <sub>ASEMDH</sub> | 12  | —   | ns               | 23.5 |
| ASEMD0 hold time     | <b>t</b> ASEMDS     | 12  | _   | ns               |      |



## Figure 23.55 TCK Input Timing

Rev. 5.00, 09/03, pag

Renesas

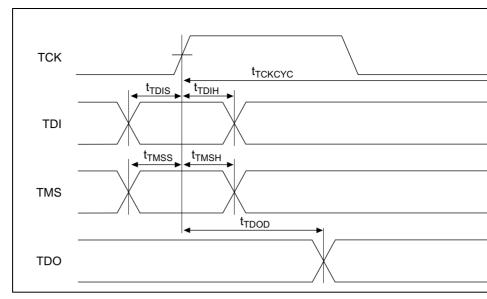



Figure 23.57 UDI Data Transfer Timing

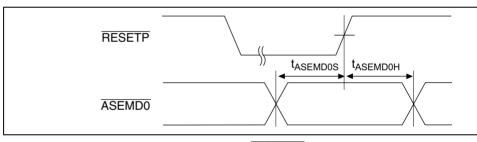
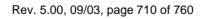




Figure 23.58 ASEMD0 Input Timing



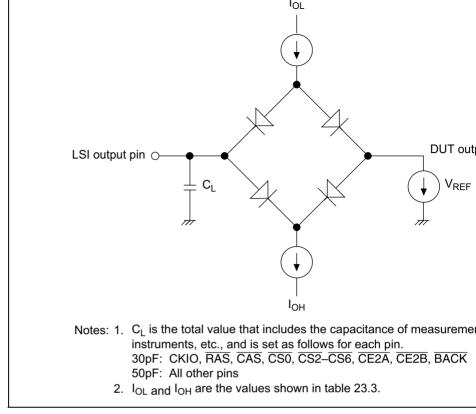



Figure 23.59 Output Load Circuit

Rev. 5.00, 09/03, pag

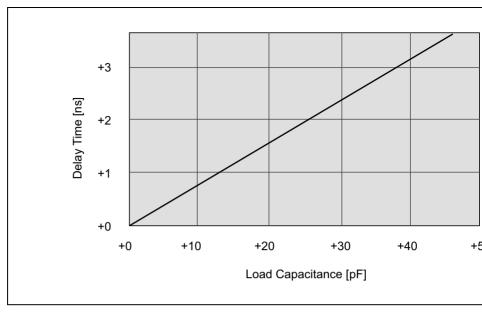



Figure 23.60 Load Capacitance vs. Delay Time

Rev. 5.00, 09/03, page 712 of 760

| Conversion time                                         | 15 | _ | —    | μ |
|---------------------------------------------------------|----|---|------|---|
| Analog input capacitance                                | —  | _ | 20   | р |
| Permissible signal-source (single-<br>source) impedance | _  | _ | 5    | k |
| Nonlinearity error                                      | _  |   | ±3.0 | L |
| Offset error                                            | _  |   | ±2.0 | L |
| Full-scale error                                        | _  |   | ±2.0 | L |
| Quantization error                                      | —  | — | ±0.5 | L |
| Absolute accuracy                                       | _  | _ | ±4.0 | L |
|                                                         |    |   |      |   |

# 23.5 D/A Converter Characteristics

Table 23.11 lists the D/A converter characteristics.

### Table 23.11 D/A Converter Characteristics

VccQ = 3.3  $\pm$  0.3 V, Vcc = 1.55 to 2.15 V, AVcc = 3.3  $\pm$  0.3 V, Ta = –20 to 75°C

| ltem              | Min | Тур  | Max  | Unit | Test C          |
|-------------------|-----|------|------|------|-----------------|
| Resolution        | 8   | 8    | 8    | bits |                 |
| Conversion time   | _   | _    | 10.0 | μs   | 20-pF o<br>load |
| Absolute accuracy | _   | ±2.5 | ±4.0 | LSB  | 2-MΩ r<br>load  |

Rev. 5.00, 09/03, pag

Rev. 5.00, 09/03, page 714 of 760

| Category       | Pin                               | Power-On<br>Reset | Manual<br>Reset | Standby   | Sleep |
|----------------|-----------------------------------|-------------------|-----------------|-----------|-------|
| Clock          | EXTAL                             | I                 | -               | I         | I     |
|                | XTAL                              | O* <sup>1</sup>   | O*1             | O*1       | O*1   |
|                | СКІО                              | IO*1              | IO*1            | IO*1      | IO*1  |
|                | EXTAL2                            | I                 | I               | I         | Ι     |
|                | XTAL2                             | 0                 | 0               | 0         | 0     |
|                | CAP1, CAP2                        |                   | _               |           | —     |
| System control | RESETP                            | I                 | I               | I         | Ι     |
|                | RESETM                            | I                 | I               | I         | Ι     |
|                | BREQ                              | I                 | I               | I         | Ι     |
|                | BACK                              | 0                 | 0               | 0         | 0     |
|                | MD[5:0]                           | I                 | I               | I         | Ι     |
|                | CA                                | I                 | I               | I         |       |
|                | STATUS[1:0]/PTJ[7:6]              | 0                 | OP*2            | OP*2      | OP*2  |
| Interrupt      | IRQ[3:0]/IRL[3:0]/<br>PTH[3:0]    | V*7               | Ι               | I         | I     |
|                | IRQ[4]/ PTH[4]                    | V*7               | I               | I         | I     |
|                | NMI                               | I                 | I               | I         | Ι     |
|                | IRLS[3:0]/PTF[3:0]/<br>PINT[11:8] | V                 | Ι               | IZ        | I     |
|                | MCS[7:0]/PTC[7:0]/<br>PINT[7:0]   | V                 | OP*2            | ZH*10 K*2 | OP*2  |
|                | TCK/PTF[4]/PINT[12]               | IV                | -               | IZ        | I     |
|                | TDI/PTF[5]/PINT[13]               | IV                | I               | IZ        | I     |
|                | TMS/PTF[6]/PINT[14]               | IV                | I               | IZ        | I     |
|                | TRST/PTF[7]/PINT[15]              | IV                | I               | IZ        | Ι     |
|                | IRQOUT                            | 0                 | 0               | 0         | 0     |

|       | CS[2:4]/PTK[0:2]            | Н | OP*2             | ZH*10 K*2                         | OP*2              |
|-------|-----------------------------|---|------------------|-----------------------------------|-------------------|
|       | CS5/CE1A/PTK[3]             | Н | OP*2             | ZH*10 K*2                         | OP*2              |
|       | CS6/CE1B                    | Н | 0                | ZH*10                             | 0                 |
|       | BS/PTK[4]                   | Н | OP*2             | ZH*10 K*2                         | OP*2              |
|       | RAS3L/PTJ[0]                | Н | OP*2             | ZOK <sup>*3</sup>                 | OP*2              |
|       | RAS3U/PTE[2]                | V | OP*2             | ZOK <sup>*3</sup>                 | OP*2              |
|       | CASL/PTJ[2]                 | Н | OP*2             | ZOK <sup>*3</sup>                 | OP*2              |
|       | CASU/PTJ[3]                 | Н | OP*2             | ZOK <sup>*3</sup>                 | OP*2              |
|       | WE0/DQMLL                   | Н | 0                | ZH*10                             | 0                 |
|       | WE1/DQMLU/WE                | Н | 0                | ZH*10                             | 0                 |
|       | WE2/DQMUL/ICIORD/<br>PTK[6] | Н | OP*2             | ZH* <sup>10</sup> K* <sup>2</sup> | OP*2              |
|       | WE3/DQMUU/ICIOWR/<br>PTK[7] | Н | OP*2             | ZH*10 K*2                         | OP*2              |
|       | RD/WR                       | Н | 0                | ZH*10                             | 0                 |
|       | RD                          | Н | 0                | ZH*10                             | 0                 |
|       | CKE/PTK[5]                  | Н | OP*2             | OK*2                              | OP*2              |
|       | WAIT                        | Z | I                | Z                                 | I                 |
| DMAC  | DREQ0/PTD[4]                | V | ZI <sup>*6</sup> | Z                                 | Ι                 |
|       | DACK0/PTD[5]                | V | OP*2             | ZK <sup>*2</sup>                  | OP*2              |
|       | DRAK0/PTD[1]                | V | OP*2             | ZH*10 K*2                         | OP*2              |
|       | DREQ1/PTD[6]                | V | ZI <sup>*6</sup> | Z                                 | Ι                 |
|       | DACK1/PTD[7]                | V | OP*2             | ZK <sup>*2</sup>                  | OP*2              |
|       | DRAK1/PTD[0]                | V | OP*2             | ZH*10 K*2                         | OP*2              |
| Timer | TCLK/PTH[7]                 | V | ZP               | IOP*4                             | IOP <sup>*4</sup> |
|       |                             |   | -                |                                   |                   |

Rev. 5.00, 09/03, page 716 of 760

|                | SCK1/SCPT[3]         | V               | ZP <sup>*2</sup> | ZK <sup>*2</sup>  | IOP*  |
|----------------|----------------------|-----------------|------------------|-------------------|-------|
| SCIF with FIFO | RxD2/SCPT[4]         | Z               | ZI*6             | Z                 | IZ*5  |
|                | TxD2/SCPT[4]         | Z               | ZO <sup>*6</sup> | ZK <sup>*2</sup>  | OZ*5  |
|                | SCK2/SCPT[5]         | V               | ZP*2             | ZK <sup>*2</sup>  | IOP*4 |
|                | RTS2/SCPT[6]         | V               | OP*2             | ZK <sup>*2</sup>  | OP*2  |
|                | CTS2/IRQ5/SCPT[7]    | V* <sup>7</sup> | ZI*6             | I                 |       |
| Port           | AUDSYNC/PTE[7]       | OV              | OP*2             | OK*2              | OP*2  |
|                | CE2B/PTE[5]          | V               | OP*2             | ZH*10 K*2         | OP*2  |
|                | CE2A/PTE[4]          | V               | OP*2             | ZH*10 K*2         | OP*2  |
|                | TDO/PTE[0]           | OV              | OP*2             | OK <sup>*2</sup>  | OP*2  |
|                | IOIS16/PTG[7]        | V               | I                | Z                 |       |
|                | PTG[5:0]             | V               | I                | Z                 |       |
|                | AUDCK/PHT[6]         | V               | I                | Z                 | Ι     |
|                | ADTRG/PTH[5]         | V*7             | I                | IZ                |       |
|                | WAKEUP/PTD[3]        | V               | OP*2             | OK*2              | OP*2  |
|                | RESETOUT/PTD[2]      | 0               | OP*2             | ZK <sup>*2</sup>  | OP*2  |
|                | AUDATA[3:0]/PTG[3:0] | OV              | OK               | OK                | OK    |
|                | CKIO2/PTG[4]         | V               | OI               | OZ                | OI    |
|                | ASEBRKAK/PTG[5]      | OV              | OI               | OZ                | OI    |
|                | ASEMD0/PTG[6]        | I               | I                | Z                 | -     |
|                | PTJ[1]               | Н               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                | PTE[1]               | V               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                | PTE[6]               | V               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                | PTE[3]               | V               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                | PTJ[4]               | Н               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                | PTJ[5]               | Н               | OP*2             | ZOK <sup>*3</sup> | OP*2  |
|                |                      |                 |                  |                   |       |

RENESAS

- E. EOM 10101 000put
- Z: High impedance
- P: Input or output depending on register setting
- K: Input pin is high impedance, output pin holds its state
- V: I/O buffer off, pull-up MOS on

Notes: 1. Depending on the clock mode (MD2-MD0 setting).

- 2. K or P when the port function is used.
- K or P when the port function is used. Z or O when the port function is not us depending on register setting.
- K or P when the port function is used. I or O when the port function is not use depending on register setting.
- 5. Depending on register setting.
- 6. I or O when the port function is used.
- 7. Input Schmitt buffers of IRQ[5.0] and ADTRG on; other input buffers off.
- 8. O when DA output is enabled; otherwise I depending on register setting.
- 9. In standby mode, Z or L depending on register setting.
- 10. In standby mode, Z or H depending on register setting.
- 11. O when DA output is enabled; Z otherwise.

Rev. 5.00, 09/03, page 718 of 760

| MD4, MD3       | 196, 195  | D6, A7     | I   | Operating mode pin (area width) |
|----------------|-----------|------------|-----|---------------------------------|
| MD2 to MD0     | 2, 1, 144 | C2, D2,G19 | I   | Operating mode pin (cloc        |
| RAS3L/PTJ[0]   | 106       | U18        | I/O | RAS (SDRAM) / I/O port          |
| PTJ[1]         | 107       | U19        | I/O | I/O port                        |
| CE2A/PTE[4]    | 103       | V17        | I/O | PCMCIA CE2A / I/O port          |
| CE2B/PTE[5]    | 104       | V16        | I/O | PCMCIA CE2B / I/O port          |
| RXD0/SCPT[0]   | 171       | B13        | I   | Serial port 0 data input / i    |
| RXD1/SCPT[2]   | 172       | C13        | I   | Serial port 1 data input / i    |
| RXD2/SCPT[4]   | 174       | B12        | I   | Serial port 2 data input / i    |
| TXD0/SCPT[0]   | 164       | C15        | 0   | Serial port 0 data output       |
| TXD1/SCPT[2]   | 166       | A14        | 0   | Serial port 1 data output       |
| TXD2/SCPT[4]   | 168       | C14        | 0   | Serial port 2 data output       |
| SCK0/SCPT[1]   | 165       | D15        | I/O | Serial port 0 clock input/c     |
| SCK1/SCPT[3]   | 167       | B14        | I/O | Serial port 1 clock input/c     |
| SCK2/SCPT[5]   | 169       | D14        | I/O | Serial port 2 clock input/c     |
| RTS2/SCPT[6]   | 170       | A13        | I/O | Serial port 2 transfer requert  |
| STATUS1/PTJ[7] | 158       | B17        | I/O | Processor state / I/O port      |
| STATUS0/PTJ[6] | 157       | B16        | I/O | Processor state / I/O port      |

Rev. 5.00, 09/03, pag

Renesas

|                                     |                               | 15, 05, W5,<br>W4, V5, V3,<br>V4                                          |     |                                                      |
|-------------------------------------|-------------------------------|---------------------------------------------------------------------------|-----|------------------------------------------------------|
| D31 to D24/                         | 13 to 18, 20,                 | F4, G1, G2,                                                               | I/O | Data bus / I/O port                                  |
| PTB[7] to PTB[0]                    | 22                            | G3, G4, H1,<br>H3, J1                                                     |     |                                                      |
| D23 to D16/<br>PTA[7] to PTA[0]     | 23 to 26, 28,<br>30 to 32     | J2, J4, J3, K2,<br>K1, L2, L1, M4                                         | I/O | Data bus / I/O port                                  |
| D15 to D0                           | 34, 36 to 44,<br>46, 48 to 52 | M2, N4, N3,<br>N2, N1, P4,<br>P3, P2, P1,<br>R4, T4, T3,<br>T1, R2, U2,T2 | I/O | Data bus                                             |
| MCS[7:0]/<br>PTC[7:0]/<br>PINT[7:0] | 177 to<br>180,185 to<br>188   | B11, D11,<br>C11, B10, D9,<br>B9, A9, D8                                  | I/O | Mask ROM chip select / I/0<br>port interrupt request |
| WAKEUP/PTD[3]                       | 182                           | D10                                                                       | I/O | Wakeup / I/O port                                    |
| RESETOUT/<br>PTD[2]                 | 184                           | C9                                                                        | I/O | Reset output / I/O port                              |
| DRAK0/PTD[1]                        | 189                           | C8                                                                        | I/O | DMA control pin / I/O port                           |
| DRAK1/PTD[0]                        | 190                           | B8                                                                        | I/O | DMA control pin / I/O port                           |
| DREQ0/PTD[4]                        | 191                           | A8                                                                        | I   | DMA transfer request 0 / ir                          |
| DREQ1/PTD[6]                        | 192                           | D7                                                                        | I   | DMA transfer request 1 / ir                          |
| AN[5:0]/PTL[5:0]                    | 204 to 199                    | C4, A5, D4,<br>C5, D5, A6                                                 | I   | Analog input pin / input por                         |
| AN[7:6]/DA[1:0]/<br>PTL[7:6]        | 207, 206                      | B3, B5                                                                    | I/O | Analog I/O pin / input port                          |
| CS6/CE1B                            | 102                           | V15                                                                       | 0   | Chip select 6 / PCMCIA CI                            |
| CS5/CE1A/<br>PTK[3]                 | 101                           | W16                                                                       | I/O | Chip select 5 / PCMCIA CI<br>port                    |
| CS4/PTK[2]                          | 100                           | U16                                                                       | I/O | Chip select 4 / I/O port                             |
| CS3/PTK[1]                          | 99                            | W15                                                                       | I/O | Chip select 3 / I/O port                             |
| ·                                   | •                             | ·                                                                         |     |                                                      |

Rev. 5.00, 09/03, page 720 of 760

|                             |     |     |     | * • • • • •                                                         |
|-----------------------------|-----|-----|-----|---------------------------------------------------------------------|
| CASU/PTJ[3]                 | 110 | T17 | I/O | CAS(SDRAM) / I/O port                                               |
| CASL/PTJ[2]                 | 108 | R18 | I/O | CAS(SDRAM) / I/O port                                               |
| DACK0/PTD[5]                | 114 | R16 | I/O | DMA transfer strobe 0 / I/                                          |
| DACK1/PTD[7]                | 115 | P19 | I/O | DMA transfer strobe 1 / I/                                          |
| RD                          | 88  | T13 | 0   | Read strobe pin                                                     |
| WE0/ DQMLL                  | 89  | U13 | 0   | D7–D0 select signal/ DQ                                             |
| WE1/DQMLU/WE                | 90  | V13 | 0   | D15–D8 select signal /<br>DQM(SDRAM)/ PCMCIA<br>WE signal           |
| WE2/DQMUL/<br>ICIORD/PTK[6] | 91  | W13 | I/O | D23–D16 select signal /<br>DQM(SDRAM) / PCMCIA<br>signal / I/O port |
| WE3/DQMUU/<br>ICIOWR/PTK[7] | 92  | T14 | I/O | D31–D24 select signal<br>/DQM(SDRAM) / PCMCI/<br>signal / I/O port  |
| RD/WR                       | 93  | U14 | 0   | Read/write select signal                                            |
| AUDSYNC/<br>PTE[7]          | 94  | V14 | I/O | AUD synchronous I/O po                                              |
| PTE[6]                      | 116 | P18 | I/O | I/O port                                                            |
| PTE[3]                      | 117 | P17 | I/O | I/O port                                                            |
| RAS3U/PTE[2]                | 118 | P16 | I/O | RAS(SDRAM) / I/O port                                               |
| PTE[1]                      | 119 | N19 | I/O | I/O port                                                            |
| TDO/PTE[0]                  | 120 | N18 | I/O | Test data output I/O port                                           |
| RESETM                      | 124 | M18 | I   | Manual reset input                                                  |
| ADTRG/PTH[5]                | 125 | M17 | I   | ADC trigger request / Inp                                           |
| IOIS16/PTG[7]               | 126 | M16 | I   | I/O for PC card / input po                                          |
| ASMD0/PTG[6]                | 127 | L19 | Ι   | ASE mode / input port                                               |
| ASEBRKAK/<br>PTG[5]         | 128 | L18 | l   | ASE break accept / input                                            |
|                             |     |     |     |                                                                     |

| PTG[1]                                |            |                       |     |                                                           |
|---------------------------------------|------------|-----------------------|-----|-----------------------------------------------------------|
| AUDATA[0]/<br>PTG[0]                  | 135        | J18                   | I   | AUD data / input port                                     |
| TRST/PTF[7]/<br>PINT[15]              | 136        | J19                   | I   | Test reset / input port / por request                     |
| TMS/PTF[6]/<br>PINT[14]               | 137        | H16                   | I   | Test mode switch / input printerrupt request              |
| TDI/PTF[5]/<br>PINT[13]               | 138        | H17                   | I   | Test data input / input port interrupt request            |
| TCK/PTF[4]/<br>PINT[12]               | 139        | H18                   | I   | Test clock / input port / por request                     |
| IRLS[3:0]/<br>PTF[3:0]/<br>PINT[11:8] | 140 to 143 | H19, G16,<br>G17, G18 | Ι   | External interrupt request /<br>/ port interrupt request  |
| AUDCK/PTH[6]                          | 151        | D16                   | Ι   | AUD clock / input port                                    |
| WAIT                                  | 123        | M19                   | Ι   | Hardware wait request                                     |
| BREQ                                  | 122        | N16                   | I   | Bus request                                               |
| BACK                                  | 121        | N17                   | 0   | Bus acknowledge                                           |
| IRQOUT                                | 160        | A16                   | 0   | Interrupt / refresh request                               |
| RESETP                                | 193        | C7                    | Ι   | Power-on reset input                                      |
| NMI                                   | 7          | C3                    | I   | Nonmaskable interrupt req                                 |
| IRQ[3:0]/IRL[3:0]/<br>PTH[3:0]        | 11 to 8    | F2, F1, E4, E3        | I   | External interrupt request / interrupt source / input por |
| IRQ4/PTH[4]                           | 12         | F3                    | I   | External interrupt request /                              |
| CTS2/IRQ5/<br>SCPT[7]                 | 176        | A11                   | I   | Serial port 2 transfer enablexternal interrupt request /  |
| TCLK/PTH[7]                           | 159        | B15                   | I/O | Clock I/O (for TMU/RTC) /                                 |
| EXTAL                                 | 156        | D18                   | Ι   | External clock / crystal osc                              |
| XTAL                                  | 155        | C18                   | 0   | Crystal oscillator pin                                    |
| CAP1                                  | 146        | F17                   | _   | External capacitance pin (f                               |
| CAP2                                  | 149        | E16                   |     | External capacitance pin (1                               |
|                                       |            |                       |     |                                                           |

Rev. 5.00, 09/03, page 722 of 760

Renesas

| СА                                             | 194                                                | B7                                                              | I               | Setting hardware standby                        |
|------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-----------------|-------------------------------------------------|
| V <sub>cc</sub> Q                              | 21, 35, 47, 59,<br>71, 85, 97,<br>111,<br>163, 183 | H4, M1, R1,<br>U3, V8, U15,<br>R19, C17,<br>A10, U12            | Power<br>supply | Power supply (3.3 V)                            |
| V <sub>CC</sub> –RTC                           | 3                                                  | E2                                                              | Power<br>supply | RTC oscillator power sup<br>(2.0/1.9/1.8/1.7 V) |
| V <sub>CC</sub> –PLL1<br>V <sub>CC</sub> –PLL2 | 145<br>150                                         | F16,<br>E17                                                     | Power<br>supply | PLL power supply (2.0/1.                        |
| AV <sub>CC</sub>                               | 205                                                | A4                                                              | Power<br>supply | Analog power supply (3.3                        |
| V <sub>SS</sub> Q                              | 19, 33, 45, 57,<br>69, 83, 95,<br>109,<br>161, 181 | H2, M3, R3,<br>T7, U4, W11,<br>W14, T19,<br>C16, C10            | Power<br>supply | Power supply (0 V)                              |
| V <sub>cc</sub>                                | 29, 81, 134,<br>154, 175                           | L3, L4, U11,<br>T11, J17, J16,<br>E18, C19,<br>C12, D12         | Power<br>supply | Internal power supply<br>(2.0/1.9/1.8/1.7 V)    |
| V <sub>SS</sub>                                | 27, 79, 132,<br>152, 153, 173                      | K3, K4, U10,<br>T10, K17,<br>K16, E19,<br>D17, D19,<br>A12, D13 | Power<br>supply | Internal power supply (0 )                      |
| V <sub>SS</sub> –RTC                           | 6                                                  | E1                                                              | Power<br>supply | RTC-oscillator power sup                        |
| V <sub>SS</sub> –PLL1<br>V <sub>SS</sub> –PLL2 | 147<br>148                                         | F18<br>F19                                                      | Power<br>supply | PLL power supply (0 V)                          |
| AV <sub>SS</sub>                               | 198, 208                                           | B6, B4                                                          | Power<br>supply | Analog power supply (0 \                        |

Note: Except in hardware standby mode, power must be supplied constantly to all po pins. In hardware standby mode, power must be supplied to Vcc-RTC and Vssleast.

Rev. 5.00, 09/03, pag

## Renesas

- CAP2: Leave unconnected
- V<sub>CC</sub>–PLL2: Power supply (2.0/1.9/1.8/1.7 V)
- $V_{SS}$ -PLL2: Power supply (0 V)
- When on-chip crystal oscillator is not used
  - XTAL: Leave unconnected
- When EXTAL pin is not used
  - EXTAL: Pull up (3.3 V)
- When A/D converter is not used
  - AN[7:0]: Leave unconnected
  - $AV_{CC}$ : Power supply (3.3 V)
  - AV<sub>SS</sub>: Power supply (0 V)
- When UDI is not used
  - ASEMD0: Pull up (3.3 V)

Rev. 5.00, 09/03, page 724 of 760

|               |   | U U                   | Ū                     | 5                     | Ū     |
|---------------|---|-----------------------|-----------------------|-----------------------|-------|
| RD/WR         | R | High                  | High                  | High                  | High  |
|               | W | Low                   | Low                   | Low                   | Low   |
| BS            |   | Enabled               | Enabled               | Enabled               | Ena   |
| RAS3U/PTE[2]  |   | High                  | High                  | High                  | High  |
| RAS3L/PTJ[0]  |   | High                  | High                  | High                  | High  |
| CASL/PTJ[2]   |   | High                  | High                  | High                  | High  |
| CASU/PTJ[3]   |   | High                  | High                  | High                  | High  |
| WE0/DQMLL     | R | High                  | High                  | High                  | High  |
|               | W | Low                   | Low                   | High                  | Low   |
| WE1/DQMLU/WE  | R | High                  | High                  | High                  | High  |
|               | W | High                  | High                  | Low                   | Low   |
| WE2/DQMUL/    | R | High                  | High                  | High                  | High  |
| ICIORD/PTK[6] | W | High                  | High                  | High                  | High  |
| WE3/DQMUU/    | R | High                  | High                  | High                  | High  |
| ICIOWR/PTK[7] | W | High                  | High                  | High                  | High  |
| CE2A/PTE[4]   |   | High                  | High                  | High                  | High  |
| CE2B/PTE[5]   |   | High                  | High                  | High                  | High  |
| CKE/PTK[5]    |   | Disabled              | Disabled              | Disabled              | Disa  |
| WAIT          |   | Enabled <sup>*1</sup> | Enabled <sup>*1</sup> | Enabled <sup>*1</sup> | Ena   |
| IOIS16/PTG[7] |   | Disabled              | Disabled              | Disabled              | Disa  |
| A25 to A0     |   | Address               | Address               | Address               | Add   |
| D7 to D0      |   | Valid data            | Valid data            | Invalid data          | Valio |
| D15 to D8     |   | High-Z <sup>*2</sup>  | Invalid data          | Valid data            | Valio |
| D31 to D16    |   | High-Z <sup>*2</sup>  | High-Z <sup>*2</sup>  | High-Z <sup>*2</sup>  | High  |
|               |   |                       |                       |                       |       |

| BS            |             | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         |
|---------------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| RAS3U/PTE[2]  |             | High            | High            | High            | High            | High            | High            |
| RAS3L/PTJ[0]  |             | High            | High            | High            | High            | High            | High            |
| CASL/PTJ[2]   |             | High            | High            | High            | High            | High            | High            |
| CASU/PTJ[3]   |             | High            | High            | High            | High            | High            | High            |
| WE0/DQMLL     | R           | High            | High            | High            | High            | High            | High            |
|               | W           | Low             | High            | High            | High            | Low             | High            |
| WE1/DQMLU/WE  | R           | High            | High            | High            | High            | High            | High            |
|               | W           | High            | Low             | High            | High            | Low             | High            |
| WE2/DQMUL/    | R           | High            | High            | High            | High            | High            | High            |
| ICIORD/PTK[6] | W           | High            | High            | Low             | High            | High            | Low             |
| WE3/DQMUU/    | R           | High            | High            | High            | High            | High            | High            |
| ICIOWR/PTK[7] | W           | High            | High            | High            | Low             | High            | Low             |
| CE2A/PTE[4]   | CE2A/PTE[4] |                 | High            | High            | High            | High            | High            |
| CE2B/PTE[5]   |             | High            | High            | High            | High            | High            | High            |
| CKE/PTK[5]    |             | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| WAIT          |             | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       |
| IOIS16/PTG[7] |             | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| A25 to A0     |             | Address         | Address         | Address         | Address         | Address         | Address         |
| D7 to D0      |             | Valid<br>data   | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D15 to D8     |             | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D23 to D16    |             | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   |
| D31 to D24    |             | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Valid<br>data   |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 726 of 760

|               | W | Low                   | Low                   | Low                   | Low   |
|---------------|---|-----------------------|-----------------------|-----------------------|-------|
| BS            | · | Enabled               | Enabled               | Enabled               | Ena   |
| RAS3U/PTE[2]  |   | High                  | High                  | High                  | High  |
| RAS3L/PTJ[0]  |   | High                  | High                  | High                  | High  |
| CASL/PTJ[2]   |   | High                  | High                  | High                  | High  |
| CASU/PTJ[3]   |   | High                  | High                  | High                  | High  |
| WE0/DQMLL     | R | High                  | High                  | High                  | High  |
|               | W | Low                   | High                  | Low                   | Low   |
| WE1/DQMLU/WE  | R | High                  | High                  | High                  | High  |
|               | W | High                  | Low                   | High                  | Low   |
| WE2/DQMUL/    | R | High                  | High                  | High                  | High  |
| ICIORD/PTK[6] | W | High                  | High                  | High                  | High  |
| WE3/DQMUU/    | R | High                  | High                  | High                  | High  |
| ICIOWR/PTK[7] | W | High                  | High                  | High                  | High  |
| CE2A/PTE[4]   |   | High                  | High                  | High                  | High  |
| CE2B/PTE[5]   |   | High                  | High                  | High                  | High  |
| CKE/PTK[5]    |   | Disabled              | Disabled              | Disabled              | Disa  |
| WAIT          |   | Enabled <sup>*1</sup> | Enabled <sup>*1</sup> | Enabled <sup>*1</sup> | Ena   |
| IOIS16/PTG[7] |   | Disabled              | Disabled              | Disabled              | Disa  |
| A25 to A0     |   | Address               | Address               | Address               | Add   |
| D7 to D0      |   | Valid data            | Invalid data          | Valid data            | Valio |
| D15 to D8     |   | High-Z <sup>*2</sup>  | Valid data            | Invalid data          | Valio |
| D31 to D16    |   | High-Z <sup>*2</sup>  | High-Z <sup>*2</sup>  | High-Z <sup>*2</sup>  | High  |
|               |   | 1                     | 1                     |                       |       |

| BS            |           | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         |
|---------------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| RAS3U/PTE[2]  |           | High            | High            | High            | High            | High            | High            |
| RAS3L/PTJ[0]  |           | High            | High            | High            | High            | High            | High            |
| CASL/PTJ[2]   |           | High            | High            | High            | High            | High            | High            |
| CASU/PTJ[3]   |           | High            | High            | High            | High            | High            | High            |
| WE0/DQMLL     | R         | High            | High            | High            | High            | High            | High            |
|               | W         | High            | High            | High            | Low             | High            | Low             |
| WE1/DQMLU/WE  | R         | High            | High            | High            | High            | High            | High            |
|               | W         | High            | High            | Low             | High            | High            | Low             |
| WE2/DQMUL/    | R         | High            | High            | High            | High            | High            | High            |
| ICIORD/PTK[6] | W         | High            | Low             | High            | High            | Low             | High            |
| WE3/DQMUU/    | R         | High            | High            | High            | High            | High            | High            |
| ICIOWR/PTK[7] | W         | Low             | High            | High            | High            | Low             | High            |
| CE2A/PTE[4]   |           | High            | High            | High            | High            | High            | High            |
| CE2B/PTE[5]   |           | High            | High            | High            | High            | High            | High            |
| CKE/PTK[5]    |           | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| WAIT          |           | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       |
| IOIS16/PTG[7] |           | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| A25 to A0     |           | Address         | Address         | Address         | Address         | Address         | Address         |
| D7 to D0      |           | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Valid<br>data   |
| D15 to D8     | D15 to D8 |                 | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   |
| D23 to D16    |           | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D31 to D24    |           | Valid<br>data   | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 728 of 760

|               | W | —                     | —            | —                     | —    |
|---------------|---|-----------------------|--------------|-----------------------|------|
| BS            |   | Enabled               | Enabled      | Enabled               | Ena  |
| RAS3U/PTE[2]  |   | High                  | High         | High                  | High |
| RAS3L/PTJ[0]  |   | High                  | High         | High                  | High |
| CASL/PTJ[2]   |   | High                  | High         | High                  | High |
| CASU/PTJ[3]   |   | High                  | High         | High                  | High |
| WE0/DQMLL     | R | High                  | High         | High                  | High |
|               | W | —                     | —            | —                     | _    |
| WE1/DQMLU/WE  | R | High                  | High         | High                  | High |
|               | W | —                     | —            | —                     | —    |
| WE2/DQMUL/    | R | High                  | High         | High                  | High |
| ICIORD/PTK[6] | W | —                     | _            | _                     | _    |
| WE3/DQMUU/    | R | High                  | High         | High                  | High |
| ICIOWR/PTK[7] | W | —                     | _            | _                     | _    |
| CE2A/PTE[4]   |   | High                  | High         | High                  | High |
| CE2B/PTE[5]   |   | High                  | High         | High                  | High |
| CKE/PTK[5]    |   | Disabled              | Disabled     | Disabled              | Disa |
| WAIT          |   | Enabled <sup>*1</sup> | Enabled*1    | Enabled <sup>*1</sup> | Ena  |
| IOIS16/PTG[7] |   | Disabled              | Disabled     | Disabled              | Disa |
| A25 to A0     |   | Address               | Address      | Address               | Add  |
| D7 to D0      |   | Valid data            | Valid data   | Invalid data          | Vali |
| D15 to D8     |   | High-Z <sup>*2</sup>  | Invalid data | Valid data            | Vali |
| D31 to D16    |   | High-Z <sup>*2</sup>  | High-Z*2     | High-Z <sup>*2</sup>  | High |

| BS            |   | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         |
|---------------|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| RAS3U/PTE[2]  |   | High            | High            | High            | High            | High            | High            |
| RAS3L/PTJ[0]  |   | High            | High            | High            | High            | High            | High            |
| CASL/PTJ[2]   |   | High            | High            | High            | High            | High            | High            |
| CASU/PTJ[3]   |   | High            | High            | High            | High            | High            | High            |
| WE0/DQMLL     | R | High            | High            | High            | High            | High            | High            |
|               | W | —               | —               | —               | —               | _               | —               |
| WE1/DQMLU/WE  | R | High            | High            | High            | High            | High            | High            |
|               | W | —               | —               | —               | —               | —               | —               |
| WE2/DQMUL/    | R | High            | High            | High            | High            | High            | High            |
| ICIORD/PTK[6] | W | —               | —               | —               | —               | —               | —               |
| WE3/DQMUU/    | R | High            | High            | High            | High            | High            | High            |
| ICIOWR/PTK[7] | W | _               | —               | —               | —               | _               | —               |
| CE2A/PTE[4]   |   | High            | High            | High            | High            | High            | High            |
| CE2B/PTE[5]   |   | High            | High            | High            | High            | High            | High            |
| CKE/PTK[5]    |   | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| WAIT          |   | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       |
| IOIS16/PTG[7] |   | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| A25 to A0     |   | Address         | Address         | Address         | Address         | Address         | Address         |
| D7 to D0      |   | Valid<br>data   | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D15 to D8     |   | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D23 to D16    |   | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   |
| D31 to D24    |   | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Valid<br>data   |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 730 of 760

|               | W | —                     | —                    | —                     | —    |
|---------------|---|-----------------------|----------------------|-----------------------|------|
| BS            |   | Enabled               | Enabled              | Enabled               | Ena  |
| RAS3U/PTE[2]  |   | High                  | High                 | High                  | High |
| RAS3L/PTJ[0]  |   | High                  | High                 | High                  | High |
| CASL/PTJ[2]   |   | High                  | High                 | High                  | High |
| CASU/PTJ[3]   |   | High                  | High                 | High                  | High |
| WE0/DQMLL     | R | High                  | High                 | High                  | High |
|               | W | —                     | —                    | —                     | _    |
| WE1/DQMLU/WE  | R | High                  | High                 | High                  | High |
|               | W | —                     | —                    | —                     | _    |
| WE2/DQMUL/    | R | High                  | High                 | High                  | High |
| ICIORD/PTK[6] | W | —                     | —                    | —                     | _    |
| WE3/DQMUU/    | R | High                  | High                 | High                  | High |
| ICIOWR/PTK[7] | W | —                     | —                    | —                     | _    |
| CE2A/PTE[4]   |   | High                  | High                 | High                  | High |
| CE2B/PTE[5]   |   | High                  | High                 | High                  | High |
| CKE/PTK[5]    |   | Disabled              | Disabled             | Disabled              | Disa |
| WAIT          |   | Enabled <sup>*1</sup> | Enabled*1            | Enabled <sup>*1</sup> | Ena  |
| IOIS16/PTG[7] |   | Disabled              | Disabled             | Disabled              | Disa |
| A25 to A0     |   | Address               | Address              | Address               | Add  |
| D7 to D0      |   | Valid data            | Invalid data         | Valid data            | Vali |
| D15 to D8     |   | High-Z <sup>*2</sup>  | Valid data           | Invalid data          | Vali |
| D31 to D16    |   | High-Z*2              | High-Z <sup>*2</sup> | High-Z <sup>*2</sup>  | High |

| BS            |           | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         | Enabled         |
|---------------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| RAS3U/PTE[2]  |           | High            | High            | High            | High            | High            | High            |
| RAS3L/PTJ[0]  |           | High            | High            | High            | High            | High            | High            |
| CASL/PTJ[2]   |           | High            | High            | High            | High            | High            | High            |
| CASU/PTJ[3]   |           | High            | High            | High            | High            | High            | High            |
| WE0/DQMLL     | R         | High            | High            | High            | High            | High            | High            |
|               | W         | _               | —               | —               | —               | —               | —               |
| WE1/DQMLU/WE  | R         | High            | High            | High            | High            | High            | High            |
|               | W         | _               | —               | —               | —               | —               | —               |
| WE2/DQMUL/    | R         | High            | High            | High            | High            | High            | High            |
| ICIORD/PTK[6] | W         | —               | —               | —               | —               | —               | —               |
| WE3/DQMUU/    | R         | High            | High            | High            | High            | High            | High            |
| ICIOWR/PTK[7] | W         | —               | —               | —               | —               | —               | —               |
| CE2A/PTE[4]   |           | High            | High            | High            | High            | High            | High            |
| CE2B/PTE[5]   |           | High            | High            | High            | High            | High            | High            |
| CKE/PTK[5]    |           | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| WAIT          |           | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       | Enabled*1       |
| IOIS16/PTG[7] |           | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        | Disabled        |
| A25 to A0     |           | Address         | Address         | Address         | Address         | Address         | Address         |
| D7 to D0      |           | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data | Valid<br>data   |
| D15 to D8     | D15 to D8 |                 | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   |
| D23 to D16    |           | Invalid<br>data | Valid<br>data   | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |
| D31 to D24    |           | Valid<br>data   | Invalid<br>data | Invalid<br>data | Invalid<br>data | Valid<br>data   | Invalid<br>data |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 732 of 760

| RD/WR         | R | High               | High               | High               | High               | High               | High               |
|---------------|---|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|               | W | Low                | Low                | Low                | Low                | Low                | Low                |
| BS            |   | Enabled            | Enabled            | Enabled            | Enabled            | Enabled            | Enabled            |
| RAS3U/PTE[2]  |   | High/Low*1         | High/Low*1         | High/Low*1         | High/Low*1         | High/Low*1         | High/Lov           |
| RAS3L/PTJ[0]  |   | Low/High*1         | Low/High*1         | Low/High*1         | Low/High*1         | Low/High*1         | Low/High           |
| CASL/PTJ[2]   |   | Low                | Low                | Low                | Low                | Low                | Low                |
| CASU/PTJ[3]   |   | High               | High               | High               | High               | High               | High               |
| WE0/DQMLL     | R | Low                | High               | High               | High               | Low                | High               |
|               | W | Low                | High               | High               | High               | Low                | High               |
| WE1/DQMLU/WE  | R | High               | Low                | High               | High               | Low                | High               |
|               | W | High               | Low                | High               | High               | Low                | High               |
| WE2/DQMUL/    | R | High               | High               | Low                | High               | High               | Low                |
| ICIORD/PTK[6] | W | High               | High               | Low                | High               | High               | Low                |
| WE3/DQMUU/    | R | High               | High               | High               | Low                | High               | Low                |
| ICIOWR/PTK[7] | W | High               | High               | High               | Low                | High               | Low                |
| CE2A/PTE[4]   |   | High               | High               | High               | High               | High               | High               |
| CE2B/PTE[5]   |   | High               | High               | High               | High               | High               | High               |
| CKE/PTK[5]    |   | High* <sup>2</sup> | High*2             | High* <sup>2</sup> | High* <sup>2</sup> | High*2             | High* <sup>2</sup> |
| WAIT          |   | Disabled           | Disabled           | Disabled           | Disabled           | Disabled           | Disabled           |
| IOIS16/PTG[7] |   | Disabled           | Disabled           | Disabled           | Disabled           | Disabled           | Disabled           |
| A25 to A0     |   | Address<br>command | Address<br>command | Address<br>command | Address<br>command | Address<br>command | Address<br>comman  |
| D7 to D0      |   | Valid<br>data      | Invalid<br>data    | Invalid<br>data    | Invalid<br>data    | Valid<br>data      | Invalid<br>data    |
| D15 to D8     |   | Invalid<br>data    | Valid<br>data      | Invalid<br>data    | Invalid<br>data    | Valid<br>data      | Invalid<br>data    |
| D23 to D16    |   | Invalid<br>data    | Invalid<br>data    | Valid<br>data      | Invalid<br>data    | Invalid<br>data    | Valid<br>data      |
| D31 to D24    |   | Invalid<br>data    | Invalid<br>data    | Invalid<br>data    | Valid<br>data      | Invalid<br>data    | Valid<br>data      |

Notes: 1. Lower 32-MB access/ Upper 32-MB access/64-MB access

2. Normally high. Low in self-refreshing.

Rev. 5.00, 09/03, pag

# Renesas

| RD/WR         | R | High               | High               | High                 | High               | High               | High               |
|---------------|---|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|
|               | W | Low                | Low                | Low                  | Low                | Low                | Low                |
| BS            |   | Enabled            | Enabled            | Enabled              | Enabled            | Enabled            | Enabled            |
| RAS3U/PTE[2]  |   | High/Low*1         | High/Low*1         | High/Low*1 High/Low* |                    | High/Low*1         | High/Low*          |
| RAS3L/PTJ[0]  |   | Low/High*1         | Low/High*1         | Low/High*1           | Low/High*1         | Low/High*1         | Low/High*          |
| CASL/PTJ[2]   |   | Low                | Low                | Low                  | Low                | Low                | Low                |
| CASU/PTJ[3]   |   | High               | High               | High                 | High               | High               | High               |
| WE0/DQMLL     | R | High               | High               | High                 | Low                | High               | Low                |
|               | W | High               | High               | High                 | Low                | High               | Low                |
| WE1/DQMLU/WE  | R | High               | High               | Low                  | High               | High               | Low                |
|               | W | High               | High               | Low                  | High               | High               | Low                |
| WE2/DQMUL/    | R | High               | Low                | High                 | High               | Low                | High               |
| ICIORD/PTK[6] | W | High               | Low                | High                 | High               | Low                | High               |
| WE3/DQMUU/    | R | Low                | High               | High                 | High               | Low                | High               |
| ICIOWR/PTK[7] | W | Low                | High               | High                 | High               | Low                | High               |
| CE2A/PTE[4]   |   | High               | High               | High                 | High               | High               | High               |
| CE2B/PTE[5]   |   | High               | High               | High                 | High               | High               | High               |
| CKE/PTK[5]    |   | High*2             | High* <sup>2</sup> | High*2               | High* <sup>2</sup> | High <sup>*2</sup> | High* <sup>2</sup> |
| WAIT          |   | Disabled           | Disabled           | Disabled             | Disabled           | Disabled           | Disabled           |
| IOIS16/PTG[7] |   | Disabled           | Disabled           | Disabled             | Disabled           | Disabled           | Disabled           |
| A25 to A0     |   | Address<br>command | Address<br>command | Address<br>command   | Address<br>command | Address<br>command | Address<br>command |
| D7 to D0      |   | Invalid<br>data    | Invalid<br>data    | Invalid<br>data      | Valid<br>data      | Invalid<br>data    | Valid<br>data      |
| D15 to D8     |   | Invalid<br>data    | Invalid<br>data    | Valid<br>data        | Invalid<br>data    | Invalid<br>data    | Valid<br>data      |
| D23 to D16    |   | Invalid<br>data    | Valid<br>data      | Invalid<br>data      | Invalid<br>data    | Valid<br>data      | Invalid<br>data    |
| D31 to D24    |   | Valid<br>data      | Invalid<br>data    | Invalid<br>data      | Invalid<br>data    | Valid<br>data      | Invalid<br>data    |
|               |   |                    |                    |                      | -                  |                    | -                  |

Notes: 1. Lower 32-MB access/ Upper 32-MB access/64-MB access

2. Normally high. Low in self-refreshing.

Rev. 5.00, 09/03, page 734 of 760

| 000 (0 00L, 000 |   | LIIGOIOG             | LIIdolod             | i ngi           |               | Linabioa             | Linabioa        | · ··g··         |
|-----------------|---|----------------------|----------------------|-----------------|---------------|----------------------|-----------------|-----------------|
| RD              | R | Low                  | Low                  | Low             | Low           | High                 | High            | High            |
|                 | W | High                 | High                 | High            | High          | High                 | High            | High            |
| RD/WR           | R | High                 | High                 | High            | High          | High                 | High            | High            |
|                 | W | Low                  | Low                  | Low             | Low           | Low                  | Low             | Low             |
| BS              |   | Enabled              | Enabled              | Enabled         | Enabled       | Enabled              | Enabled         | Enabl           |
| RAS3U/PTE[2]    |   | High                 | High                 | High            | High          | High                 | High            | High            |
| RAS3L/PTJ[0]    |   | High                 | High                 | High            | High          | High                 | High            | High            |
| CASL/PTJ[2]     |   | High                 | High                 | High            | High          | High                 | High            | High            |
| CASU/PTJ[3]     |   | High                 | High                 | High            | High          | High                 | High            | High            |
| WE0/DQMLL       | R | High                 | High                 | High            | High          | High                 | High            | High            |
|                 | W | High                 | High                 | High            | High          | High                 | High            | High            |
| WE1/DQMLU/WE    | R | High                 | High                 | High            | High          | High                 | High            | High            |
|                 | W | Low                  | Low                  | Low             | Low           | High                 | High            | High            |
| WE2/DQMUL/      | R | High                 | High                 | High            | High          | Low                  | Low             | Low             |
| ICIORD/PTK[6]   | W | High                 | High                 | High            | High          | High                 | High            | High            |
| WE3/DQMUU/      | R | High                 | High                 | High            | High          | High                 | High            | High            |
| ICIOWR/PTK[7]   | W | High                 | High                 | High            | High          | Low                  | Low             | Low             |
| CE2A/PTE[4]     |   | High                 | High                 | Low             | Low           | High                 | High            | Low             |
| CE2B/PTE[5]     |   | High                 | High                 | High            | High          | High                 | High            | High            |
| CKE/PTK[5]      |   | Disabled             | Disabled             | Disabled        | Disabled      | Disabled             | Disabled        | Disab           |
| WAIT            |   | Enabled*1            | Enabled*1            | Enabled*1       | Enabled*1     | Enabled*1            | Enabled*1       | Enabl           |
| IOIS16/PTG[7]   |   | Disabled             | Disabled             | Disabled        | Disabled      | Disabled             | Disabled        | Enabl           |
| A25 to A0       |   | Address              | Address              | Address         | Address       | Address              | Address         | Addre           |
| D7 to D0        |   | Valid<br>data        | Valid<br>data        | Invalid<br>data | Valid<br>data | Valid<br>data        | Valid<br>data   | Invalio<br>data |
| D15 to D8       |   | High-Z <sup>*2</sup> | Invalid<br>data      | Valid<br>data   | Valid<br>data | High-Z <sup>*2</sup> | Invalid<br>data | Valid<br>data   |
| D31 to D16      |   | High-Z <sup>*2</sup> | High-Z <sup>*2</sup> | High-Z*2        | High-Z*2      | High-Z*2             | High-Z*2        | High-2          |

|               | W | High                 | High                 | High                 | High                 | High                 | High                 | High            |
|---------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-----------------|
| RD/WR         | R | High                 | High                 | High                 | High                 | High                 | High                 | High            |
|               | W | Low                  | Low                  | Low                  | Low                  | Low                  | Low                  | Low             |
| BS            |   | Enabled              | Enabled              | Enabled              | Enabled              | Enabled              | Enabled              | Enable          |
| RAS3U/PTE[2]  |   | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| RAS3L/PTJ[0]  |   | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| CASL/PTJ[2]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| CASU/PTJ[3]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| WE0/DQMLL     | R | High                 | High                 | High                 | High                 | High                 | High                 | High            |
|               | W | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| WE1/DQMLU/WE  | R | High                 | High                 | High                 | High                 | High                 | High                 | High            |
|               | W | Low                  | Low                  | Low                  | Low                  | High                 | High                 | High            |
| WE2/DQMUL/    | R | High                 | High                 | High                 | High                 | Low                  | Low                  | Low             |
| ICIORD/PTK[6] | W | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| WE3/DQMUU/    | R | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| ICIOWR/PTK[7] | W | High                 | High                 | High                 | High                 | Low                  | Low                  | Low             |
| CE2A/PTE[4]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High            |
| CE2B/PTE[5]   |   | High                 | High                 | Low                  | Low                  | High                 | High                 | Low             |
| CKE/PTK[5]    |   | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disable         |
| WAIT          |   | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enable          |
| IOIS16/PTG[7] |   | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Enable          |
| A25 to A0     |   | Address              | Address              | Address              | Address              | Address              | Address              | Addres          |
| D7 to D0      |   | Valid<br>data        | Valid<br>data        | Invalid<br>data      | Valid<br>data        | Valid<br>data        | Valid<br>data        | Invalid<br>data |
| D15 to D8     |   | High-Z <sup>*2</sup> | Invalid<br>data      | Valid<br>data        | Valid<br>data        | High-Z <sup>*2</sup> | Invalid<br>data      | Valid<br>data   |
| D31 to D16    |   | High-Z <sup>*2</sup> | High-Z <sup>*2</sup> | High-Z* <sup>2</sup> | High-Z <sup>*2</sup> | High-Z* <sup>2</sup> | High-Z <sup>*2</sup> | High-Z*         |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 736 of 760

|               |   | LIIdolod             | LIIdoloa             | i ngi                |               | Linabioa             | Linabioa        | · ··g··         |
|---------------|---|----------------------|----------------------|----------------------|---------------|----------------------|-----------------|-----------------|
| RD            | R | Low                  | Low                  | Low                  | Low           | High                 | High            | High            |
|               | W | High                 | High                 | High                 | High          | High                 | High            | High            |
| RD/WR         | R | High                 | High                 | High                 | High          | High                 | High            | High            |
|               | W | Low                  | Low                  | Low                  | Low           | Low                  | Low             | Low             |
| BS            |   | Enabled              | Enabled              | Enabled              | Enabled       | Enabled              | Enabled         | Enabl           |
| RAS3U/PTE[2]  |   | High                 | High                 | High                 | High          | High                 | High            | High            |
| RAS3L/PTJ[0]  |   | High                 | High                 | High                 | High          | High                 | High            | High            |
| CASL/PTJ[2]   |   | High                 | High                 | High                 | High          | High                 | High            | High            |
| CASU/PTJ[3]   |   | High                 | High                 | High                 | High          | High                 | High            | High            |
| WE0/DQMLL     | R | High                 | High                 | High                 | High          | High                 | High            | High            |
|               | W | High                 | High                 | High                 | High          | High                 | High            | High            |
| WE1/DQMLU/WE  | R | High                 | High                 | High                 | High          | High                 | High            | High            |
|               | W | Low                  | Low                  | Low                  | Low           | High                 | High            | High            |
| WE2/DQMUL/    | R | High                 | High                 | High                 | High          | Low                  | Low             | Low             |
| ICIORD/PTK[6] | W | High                 | High                 | High                 | High          | High                 | High            | High            |
| WE3/DQMUU/    | R | High                 | High                 | High                 | High          | High                 | High            | High            |
| ICIOWR/PTK[7] | W | High                 | High                 | High                 | High          | Low                  | Low             | Low             |
| CE2A/PTE[4]   |   | High                 | High                 | Low                  | Low           | High                 | High            | Low             |
| CE2B/PTE[5]   |   | High                 | High                 | High                 | High          | High                 | High            | High            |
| CKE/PTK[5]    |   | Disabled             | Disabled             | Disabled             | Disabled      | Disabled             | Disabled        | Disab           |
| WAIT          |   | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1     | Enabled*1            | Enabled*1       | Enabl           |
| IOIS16/PTG[7] |   | Disabled             | Disabled             | Disabled             | Disabled      | Disabled             | Disabled        | Disab           |
| A25 to A0     |   | Address              | Address              | Address              | Address       | Address              | Address         | Addre           |
| D7 to D0      |   | Valid<br>data        | Invalid<br>data      | Valid<br>data        | Valid<br>data | Valid<br>data        | Invalid<br>data | Valid<br>data   |
| D15 to D8     |   | High-Z <sup>*2</sup> | Valid data           | Invalid<br>data      | Valid<br>data | High-Z <sup>*2</sup> | Valid<br>data   | Invalio<br>data |
| D31 to D16    |   | High-Z <sup>*2</sup> | High-Z <sup>*2</sup> | High-Z* <sup>2</sup> | High-Z*2      | High-Z <sup>*2</sup> | High-Z*2        | High-Z          |

RENESAS

| кр            | к | LOW                  | LOW                  | LOW                  | LOW                  | nign                 | nign                 | пıgn                |
|---------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|
|               | W | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| RD/WR         | R | High                 | High                 | High                 | High                 | High                 | High                 | High                |
|               | W | Low                  | Low                  | Low                  | Low                  | Low                  | Low                  | Low                 |
| BS            |   | Enabled              | Enabled              | Enabled              | Enabled              | Enabled              | Enabled              | Enable              |
| RAS3U/PTE[2]  |   | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| RAS3L/PTJ[0]  |   | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| CASL/PTJ[2]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| CASU/PTJ[3]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| WE0/DQMLL     | R | High                 | High                 | High                 | High                 | High                 | High                 | High                |
|               | W | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| WE1/DQMLU/WE  | R | High                 | High                 | High                 | High                 | High                 | High                 | High                |
|               | W | Low                  | Low                  | Low                  | Low                  | High                 | High                 | High                |
| WE2/DQMUL/    | R | High                 | High                 | High                 | High                 | Low                  | Low                  | Low                 |
| ICIORD/PTK[6] | W | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| WE3/DQMUU/    | R | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| ICIOWR/PTK[7] | W | High                 | High                 | High                 | High                 | Low                  | Low                  | Low                 |
| CE2A/PTE[4]   |   | High                 | High                 | High                 | High                 | High                 | High                 | High                |
| CE2B/PTE[5]   |   | High                 | High                 | Low                  | Low                  | High                 | High                 | Low                 |
| CKE/PTK[5]    |   | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disable             |
| WAIT          |   | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enabled*1            | Enable              |
| IOIS16/PTG[7] |   | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Disabled             | Enable              |
| A25 to A0     |   | Address              | Address              | Address              | Address              | Address              | Address              | Addres              |
| D7 to D0      |   | Valid<br>data        | Invalid<br>data      | Valid<br>data        | Valid<br>data        | Valid<br>data        | Invalid<br>data      | Valid<br>data       |
| D15 to D8     |   | High-Z <sup>*2</sup> | Valid<br>data        | Invalid<br>data      | Valid<br>data        | High-Z <sup>*2</sup> | Valid<br>data        | Invalid<br>data     |
| D31 to D16    |   | High-Z <sup>*2</sup> | High-Z <sup>*</sup> |
|               |   |                      | -                    | -                    | -                    |                      |                      |                     |

Notes: 1. Disabled when WCR2 register wait setting is 0.

2. Unused data pins should be switched to the port function, or pulled up.

Rev. 5.00, 09/03, page 738 of 760

| PTEL   | CCN | L | FFFFFF4 | 32 |   |
|--------|-----|---|---------|----|---|
| ТТВ    | CCN | L | FFFFFF8 | 32 |   |
| TEA    | CCN | L | FFFFFFC | 32 |   |
| MMUCR  | CCN | L | FFFFFE0 | 32 | ; |
| BASRA  | CCN | L | FFFFFE4 | 32 |   |
| BASRB  | CCN | L | FFFFFE8 | 32 |   |
| CCR    | CCN | L | FFFFFEC | 32 |   |
| CCR2   | CCN | I | 40000B0 | 32 |   |
| TRA    | CCN | L | FFFFFD0 | 32 |   |
| EXPEVT | CCN | L | FFFFFD4 | 32 | ; |
| INTEVT | CCN | L | FFFFFD8 | 32 | : |
| BARA   | UBC | L | FFFFFB0 | 32 | ; |
| BAMRA  | UBC | L | FFFFFB4 | 32 | : |
| BBRA   | UBC | L | FFFFFB8 | 16 |   |
| BARB   | UBC | L | FFFFFA0 | 32 | : |
| BAMRB  | UBC | L | FFFFFA4 | 32 | : |
| BBRB   | UBC | L | FFFFFA8 | 16 |   |
| BDRB   | UBC | L | FFFFF90 | 32 | : |
| BDMRB  | UBC | L | FFFFF94 | 32 | : |
| BRCR   | UBC | L | FFFFF98 | 16 |   |
| BETR   | UBC | L | FFFFF9C | 16 |   |
| BRSR   | UBC | L | FFFFFAC | 32 |   |
| BRDR   | UBC | L | FFFFFBC | 32 |   |
| FRQCR  | CPG | I | FFFFF80 | 16 |   |
| STBCR  | CPG | I | FFFFF82 | 8  |   |
| STBCR2 | CPG | I | FFFFF88 | 8  |   |
| WTCNT  | CPG | I | FFFFF84 | 8  |   |

Rev. 5.00, 09/03, pag

| RTCSR   | BSC | I | FFFFF6E               | 16 | 1 |
|---------|-----|---|-----------------------|----|---|
| RTCNT   | BSC | I | I FFFFF70             |    | 1 |
| RTCOR   | BSC | I | FFFFF72               | 16 | 1 |
| RFCR    | BSC | I | FFFFF74               | 16 | 1 |
| SDMR    | BSC | I | FFFFD000–<br>FFFFEFFF | _  | 8 |
| MCSCR0  | BSC | I | FFFFF50               | 16 | 1 |
| MCSCR1  | BSC | I | FFFFF52               | 16 | 1 |
| MCSCR2  | BSC | I | FFFFF54               | 16 | 1 |
| MCSCR3  | BSC | I | FFFFF56               | 16 | 1 |
| MCSCR4  | BSC | I | FFFFF58               | 16 | 1 |
| MCSCR5  | BSC | I | FFFFF5A               | 16 | 1 |
| MCSCR6  | BSC | I | FFFFF5C               | 16 | 1 |
| MCSCR7  | BSC | I | FFFFF5E               | 16 | 1 |
| R64CNT  | RTC | Р | FFFFEC0               | 8  | 8 |
| RSECCNT | RTC | Р | FFFFFEC2              | 8  | 8 |
| RMINCNT | RTC | Р | FFFFEC4               | 8  | 8 |
| RHRCNT  | RTC | Р | FFFFEC6               | 8  | 8 |
| RWKCNT  | RTC | Р | FFFFEC8               | 8  | 8 |
| RDAYCNT | RTC | Р | FFFFECA               | 8  | 8 |
| RMONCNT | RTC | Р | FFFFECC               | 8  | 8 |
| RYRCNT  | RTC | Р | FFFFECE               | 8  | 8 |
| RSECAR  | RTC | Р | FFFFED0               | 8  | 8 |
| RMINAR  | RTC | Р | FFFFFED2              | 8  | 8 |
| RHRAR   | RTC | Р | FFFFED4               | 8  | 8 |

Rev. 5.00, 09/03, page 740 of 760

| IPRB    | INTC | I | FFFFFEE4 | 16 |   |
|---------|------|---|----------|----|---|
| TOCR    | TMU  | Р | FFFFE90  | 8  |   |
| TSTR    | TMU  | Р | FFFFE92  | 8  |   |
| TCOR0   | TMU  | Р | FFFFE94  | 32 |   |
| TCNT0   | TMU  | Р | FFFFE98  | 32 |   |
| TCR0    | TMU  | Р | FFFFE9C  | 16 | , |
| TCOR1   | TMU  | Р | FFFFEA0  | 32 |   |
| TCNT1   | TMU  | Р | FFFFFEA4 | 32 |   |
| TCR1    | TMU  | Р | FFFFEA8  | 16 | , |
| TCOR2   | TMU  | Р | FFFFEAC  | 32 |   |
| TCNT2   | TMU  | Р | FFFFEB0  | 32 |   |
| TCR2    | TMU  | Р | FFFFEB4  | 16 |   |
| TCPR2   | TMU  | Р | FFFFEB8  | 32 |   |
| SCSMR   | SCI  | Р | FFFFE80  | 8  |   |
| SCBRR   | SCI  | Р | FFFFE82  | 8  |   |
| SCSCR   | SCI  | Р | FFFFE84  | 8  |   |
| SCTDR   | SCI  | Р | FFFFE86  | 8  |   |
| SCSSR   | SCI  | Р | FFFFE88  | 8  |   |
| SCRDR   | SCI  | Р | FFFFE8A  | 8  |   |
| SCSCMR  | SCI  | Р | FFFFE8C  | 8  |   |
| INTEVT2 | INTC | I | 400000   | 32 | : |
| IRR0    | INTC | I | 4000004  | 16 |   |
| IRR1    | INTC | I | 4000006  | 16 |   |
| IRR2    | INTC | I | 400008   | 16 |   |

| DAR0    | DMAC | Р | 4000024 | 32 | 16,3 |
|---------|------|---|---------|----|------|
| DMATCR0 | DMAC | Р | 4000028 | 32 | 16,3 |
| CHCR0   | DMAC | Р | 400002C | 32 | 8,16 |
| SAR1    | DMAC | Р | 4000030 | 32 | 16,3 |
| DAR1    | DMAC | Р | 4000034 | 32 | 16,3 |
| DMATCR1 | DMAC | Р | 4000038 | 32 | 16,3 |
| CHCR1   | DMAC | Р | 400003C | 32 | 8,16 |
| SAR2    | DMAC | Р | 4000040 | 32 | 16,3 |
| DAR2    | DMAC | Р | 4000044 | 32 | 16,3 |
| DMATCR2 | DMAC | Р | 4000048 | 32 | 16,3 |
| CHCR2   | DMAC | Р | 400004C | 32 | 8,16 |
| SAR3    | DMAC | Р | 4000050 | 32 | 16,3 |
| DAR3    | DMAC | Р | 4000054 | 32 | 16,3 |
| DMATCR3 | DMAC | Р | 4000058 | 32 | 16,3 |
| CHCR3   | DMAC | Р | 400005C | 32 | 8,16 |
| DMAOR   | DMAC | Р | 4000060 | 16 | 8,16 |
| CMSTR   | CMT  | Р | 4000070 | 16 | 8,16 |
| CMCSR   | CMT  | Р | 4000072 | 16 | 8,16 |
| CMCNT   | CMT  | Р | 4000074 | 16 | 8,16 |
| CMCOR   | CMT  | Р | 4000076 | 16 | 8,16 |
| ADDRAH  | A/D  | Р | 4000080 | 8  | 8,16 |
| ADDRAL  | A/D  | Р | 4000082 | 8  | 8,16 |
| ADDRBH  | A/D  | Р | 4000084 | 8  | 8,16 |
| ADDRBL  | A/D  | Р | 4000086 | 8  | 8,16 |
| ADDRCH  | A/D  | Р | 4000088 | 8  | 8,16 |

Rev. 5.00, 09/03, page 742 of 760

| DACR  | D/A  | Р | 40000A4 | 8  | 8,1 |
|-------|------|---|---------|----|-----|
| PACR  | PORT | Р | 4000100 | 16 | 16  |
| PBCR  | PORT | Р | 4000102 | 16 | 16  |
| PCCR  | PORT | Р | 4000104 | 16 | 16  |
| PDCR  | PORT | Р | 4000106 | 16 | 16  |
| PECR  | PORT | Р | 4000108 | 16 | 16  |
| PFCR  | PORT | Р | 400010A | 16 | 16  |
| PGCR  | PORT | Р | 400010C | 16 | 16  |
| PHCR  | PORT | Р | 400010E | 16 | 16  |
| PJCR  | PORT | Р | 4000110 | 16 | 16  |
| PKCR  | PORT | Р | 4000112 | 16 | 16  |
| PLCR  | PORT | Р | 4000114 | 16 | 16  |
| SCPCR | PORT | Р | 4000116 | 16 | 16  |
| PADR  | PORT | Р | 4000120 | 8  | 8   |
| PBDR  | PORT | Р | 4000122 | 8  | 8   |
| PCDR  | PORT | Р | 4000124 | 8  | 8   |
| PDDR  | PORT | Р | 4000126 | 8  | 8   |
| PEDR  | PORT | Р | 4000128 | 8  | 8   |
| PFDR  | PORT | Р | 400012A | 8  | 8   |
| PGDR  | PORT | Р | 400012C | 8  | 8   |
| PHDR  | PORT | Р | 400012E | 8  | 8   |
| PJDR  | PORT | Р | 4000130 | 8  | 8   |
| PKDR  | PORT | Р | 4000132 | 8  | 8   |
| PLDR  | PORT | Р | 4000134 | 8  | 8   |
| SCPDR | PORT | Р | 4000136 | 8  | 8   |

RENESAS

| ·'   | L                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IrDA | Р                                                    | 400014E                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SCIF | Р                                                    | 4000150                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 4000152                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 4000154                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 4000156                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 4000158                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SCIF | Р                                                    | 400015A                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 400015C                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SCIF | Р                                                    | 400015E                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| UDI  | I                                                    | 4000200                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | SCIF<br>SCIF<br>SCIF<br>SCIF<br>SCIF<br>SCIF<br>SCIF | SCIFPSCIFPSCIFPSCIFPSCIFPSCIFPSCIFPSCIFPSCIFPSCIFP | SCIF         P         4000150           SCIF         P         4000152           SCIF         P         4000154           SCIF         P         4000156           SCIF         P         4000158           SCIF         P         4000158           SCIF         P         4000158           SCIF         P         400015A           SCIF         P         400015A           SCIF         P         400015A | SCIF         P         4000150         8           SCIF         P         4000152         8           SCIF         P         4000152         8           SCIF         P         4000154         8           SCIF         P         4000156         8           SCIF         P         4000156         8           SCIF         P         4000158         16           SCIF         P         400015A         8           SCIF         P         400015C         8           SCIF         P         400015E         16 |

Notes: 1. Modules:

- CCN: Cache controllerUBC: User break controllerCPG: Clock pulse generatorBSC: Bus state controllerRTC: Realtime clockINTC: Interrupt controllerTMU: Timer unitSCI: Serial communication interface
- 2. Internal buses:
  - L: CPU, CCN, cache, TLB connected
  - I: BSC, cache, DMAC, INTC, CPG, and UDI connected
  - P: BSC and peripheral modules (RTC, TMU, SCI, SCIF, IrDA, A/D, D/A, DN PORT, CMT) connected
- The access size shown is for control register access (read/write). An incorre will be obtained if a different size from that shown is used for access.
- 4. To exclude area 1 control registers from address translation by the MMU, se bits of the logical address to 101, to locate the registers in the P2 space.
- 5. With 16-bit access, it is not possible to read data in two registers simultaneo
- 6. With 32-bit access, it is possible to read data in the register at [accessed ad simultaneously.

Rev. 5.00, 09/03, page 744 of 760

| SCSCR  | TIE  | RIE  | TE   | RE    | MPIE  | TEIE  | CKE1  | CKE0  |
|--------|------|------|------|-------|-------|-------|-------|-------|
| SCTDR  |      |      |      |       |       |       |       |       |
| SCSSR  | TDRE | RDRF | ORER | FER   | PER   | TEND  | MPB   | MPBT  |
| SCRDR  |      |      |      |       |       |       |       |       |
| SCSCMR | _    | _    | _    | _     | SDIR  | SINV  | _     | SMIF  |
| TOCR   | —    | _    | _    | —     | _     | _     | —     | TCOE  |
| TSTR   | —    | -    | -    | —     | —     | STR2  | STR1  | STR0  |
| TCOR0  |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
| TCNT0  |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
| TCR0   |      | _    | —    | —     |       |       | —     | UNF   |
|        |      |      | UNIE | CKEG1 | CKEG0 | TPSC2 | TPSC1 | TPSC0 |
| TCOR1  |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
| TCNT1  |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |
|        |      |      |      |       |       |       |       |       |

| -       |          |            |          |              |       |          |            |       |  |
|---------|----------|------------|----------|--------------|-------|----------|------------|-------|--|
|         |          |            |          |              |       |          |            |       |  |
| TCR2    |          |            | <u> </u> |              |       | <u> </u> | ICPF       | UNF   |  |
|         | ICPE1    | ICPE0      | UNIE     | CKEG1        | CKEG0 | TPSC2    | TPSC1      | TPSC0 |  |
| TCPR2   |          |            |          |              |       |          |            |       |  |
|         |          |            |          |              |       |          |            |       |  |
|         |          |            |          |              |       |          |            |       |  |
|         |          |            |          |              |       |          |            |       |  |
| R64CNT  | '        | 1 Hz       | 2 Hz     | 4 Hz         | 8 Hz  | 16 Hz    | 32 Hz      | 64 Hz |  |
| RSECCNT | '        |            | 10 sec   |              |       | 1 sec    |            |       |  |
| RMINCNT |          |            | 10 min   |              |       | 1 min    |            |       |  |
| RHRCNT  | '        | '          | 10 h     | nours        |       | 1 hour   |            |       |  |
| RWKCNT  | <u> </u> |            | <u> </u> |              |       | Г<br>Т   | Day of wee | k     |  |
| RDAYCNT | <u> </u> | —          | 10 c     | days         |       |          | day        |       |  |
| RMONCNT |          |            | │        | 10<br>months | 「     | 1 m      | onth       |       |  |
| RYRCNT  |          | 10 y       | vears    |              |       | 1 year   |            |       |  |
| RSECAR  | ENB      |            | 10 sec   |              | 1 sec |          |            |       |  |
| RMINAR  | ENB      |            | 10 min   |              |       | 1 min    |            |       |  |
| RWKAR   | ENB      | <u> </u>   | <u> </u> | <u> </u>     |       | C        | Day of wee | k     |  |
| RHRAR   | ENB      | <u> </u>   | 10 h     | nours        |       | 1 hour   |            |       |  |
| RDAYAR  | ENB      | [ <u> </u> | 10 c     | days         |       | 1 day    |            |       |  |
| RMONAR  | ENB      | _          | _        | 10<br>months |       | 1 m      | onth       |       |  |

Rev. 5.00, 09/03, page 746 of 760

|       |         | S      | CI     |         | _       | _       | _      | _      |
|-------|---------|--------|--------|---------|---------|---------|--------|--------|
| BCR1  | PULA    | PULD   | HIZMEM | HIZCNT  | ENDIAN  | A0BST1  | A0BST0 | A5BST1 |
|       | A5BST0  | A6BST1 | A6BST0 | DRAMTP2 | DRAMTP1 | DRAMTP0 | A5PCM  | A6PCM  |
| BCR2  | —       | —      | A6SZ1  | A6SZ0   | A5SZ1   | A5SZ0   | A4SZ1  | A4SZ0  |
|       | A3SZ1   | A3SZ0  | A2SZ1  | A2SZ0   | -       | —       | —      | —      |
| WCR1  | WAITSEL | —      | A6IW1  | A6IW0   | A5IW1   | A5IW0   | A4IW1  | A4IW0  |
|       | A3IW1   | A3IW0  | A2IW1  | A2IW0   | _       | _       | A0IW1  | A0IW0  |
| WCR2  | A6W2    | A6W1   | A6W0   | A5W2    | A5W1    | A5W0    | A4W2   | A4W1   |
|       | A4W0    | A3W1   | A3W0   | A2W1    | A2W0    | A0W2    | A0W1   | A0W0   |
| MCR   | TPC1    | TPC0   | RCD1   | RCD0    | TRWL1   | TRWL0   | TRAS1  | TRAS0  |
|       | RASD    | AMX3   | AMX2   | AMX1    | AMX0    | RFSH    | RMODE  | —      |
| PCR   | A6W3    | A5W3   | —      | —       | A5TED2  | A6TED2  | A5TEH2 | A6TEH2 |
|       | A5TED1  | A5TED0 | A6TED1 | A6TED0  | A5TEH1  | A5TEH0  | A6TEH1 | A6TEH0 |
| RTCSR | —       | —      | —      | —       | _       | —       | —      | —      |
|       | CMF     | CMIE   | CKS2   | CKS1    | CKS0    | OVF     | OVIE   | LMTS   |
| RTCNT | —       | —      | —      | —       | _       | —       | —      | —      |
|       |         |        |        |         |         |         |        |        |
| RTCOR | —       | _      | _      | _       | _       | _       | _      | _      |
|       |         |        |        |         |         |         |        |        |

RENESAS

| WTCSR | TME    | WT/IT  | RSTS   | WOVF   | IOVF | CKS2 | CKS1 | CKS0 |
|-------|--------|--------|--------|--------|------|------|------|------|
| BDRB  |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
| BDMRB |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
| BRCR  |        |        |        |        | _    |      |      | _    |
|       | _      |        | BASMA  | BASMB  |      | _    | _    | _    |
|       | SCMFCA | SCMFCB | SCMFDA | SCMFDB | PCTE | PCBA | _    | —    |
|       | DBEB   | PCBB   | _      | —      | SEQ  | _    | _    | ETBE |
| BARB  |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
| BAMRB | _      |        | _      | _      | _    | BASM | BAM  | BAM  |
| BBRB  | _      |        | _      | _      | _    | _    | —    | —    |
|       | CDB1   | CDB0   | IDB1   | IDB0   | RWB1 | RWB0 | SZB1 | SZB0 |
| BARA  |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |
|       |        |        |        |        |      |      |      |      |

Rev. 5.00, 09/03, page 748 of 760

| BRSR   | SVF   | PID2  | PID1  | PID0  | BSA27 | BSA26 | BSA25 | BSA24 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | BSA23 | BSA22 | BSA21 | BSA20 | BSA19 | BSA18 | BSA17 | BSA16 |
|        | BSA15 | BSA14 | BSA13 | BSA12 | BSA11 | BSA10 | BSA9  | BSA8  |
|        | BSA7  | BSA6  | BSA5  | BSA4  | BSA3  | BSA2  | BSA1  | BSA0  |
| BRDR   | DVF   |       | —     | —     | BDA27 | BDA26 | BDA25 | BDA24 |
|        | BDA23 | BDA22 | BDA21 | BDA20 | BDA19 | BDA18 | BDA17 | BDA16 |
|        | BDA15 | BDA14 | BDA13 | BDA12 | BDA11 | BDA10 | BDA9  | BDA8  |
|        | BDA7  | BDA6  | BDA5  | BDA4  | BDA3  | BDA2  | BDA1  | BDA0  |
| TRA    | —     |       | —     | —     | —     | —     | —     | —     |
|        | —     | _     | —     | —     | —     | —     | —     | —     |
|        | —     | _     | —     | —     | —     | —     |       |       |
|        |       |       |       |       |       |       | _     | _     |
| EXPEVT | —     | -     | —     | —     | —     | —     | —     | —     |
|        | _     | -     | —     | —     | —     | —     | —     | —     |
|        | —     | _     | —     | —     |       |       |       |       |
|        |       |       |       |       |       |       |       |       |
| INTEVT | —     | _     | _     | _     | _     | _     | —     | —     |
|        | —     | _     | —     | —     | —     | —     | —     | —     |
|        | —     | -     | _     | —     |       |       |       |       |
|        |       |       |       |       |       |       |       |       |
| MMUCR  | —     |       | —     | —     | —     | —     | —     | —     |
|        | _     |       | _     | _     | _     | _     | _     | _     |
|        | —     | _     | —     | —     | _     | —     | _     | SV    |
|        | —     | _     | RC    | RC    | —     | TF    | IX    | AT    |

Renesas

|         | l |    | '        |    |   |          | W3LOAD | W3LOCI   |
|---------|---|----|----------|----|---|----------|--------|----------|
|         |   |    |          |    |   | <b> </b> |        |          |
|         |   |    |          |    |   | <b> </b> | W2LOAD | W2LOCI   |
| PTEH    |   |    |          |    |   | <u> </u> |        | <u> </u> |
|         |   |    |          |    |   |          |        | <u> </u> |
|         |   |    |          |    |   |          | _      | _ !      |
|         |   |    |          |    |   |          |        |          |
| PTEL    |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          | _      | V        |
|         |   | PR | PR       | SZ | С | D        | SH     | <u> </u> |
| ТТВ     |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
| TEA     |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
| INTEVT2 |   |    |          |    |   |          |        |          |
|         |   |    |          |    |   |          |        |          |
|         | l |    | '        |    |   |          |        |          |
|         |   |    | '        |    |   | <b> </b> |        |          |
|         |   |    | <u> </u> |    |   |          |        |          |

Rev. 5.00, 09/03, page 750 of 760

|         | IRQ31S     | IRQ30S           | IRQ21S  | IRQ20S     | IRQ11S    | IRQ10S   | IRQ01S   | IRQ00S |
|---------|------------|------------------|---------|------------|-----------|----------|----------|--------|
| ICR2    | PINT15S    | PINT14S          | PINT13S | PINT12S    | PINT11S   | PINT10S  | PINT9S   | PINT8S |
|         | PINT7S     | PINT6S           | PINT5S  | PINT4S     | PINT3S    | PINT2S   | PINT1S   | PINT0S |
| PINTER  | PINT15E    | PINT14E          | PINT13E | PINT12E    | PINT11E   | PINT10E  | PINT9E   | PINT8E |
|         | PINT7E     | PINT6E           | PINT5E  | PINT4E     | PINT3E    | PINT2E   | PINT1E   | PINT0E |
| IPRC    |            | IRQ3             | level   |            |           | IRQ2     | level    |        |
|         |            | IRQ1 level       |         |            |           | IRQ0     | level    |        |
| IPRD    |            | PINT0 to 7 level |         |            |           | PINT8 to | 15 level |        |
|         |            | IRQ5             | level   |            |           | IRQ4     | level    |        |
| IPRE    | DMAC level |                  |         | IrDA level |           |          |          |        |
|         | SCIF level |                  |         |            | A/D level |          |          |        |
| SAR0    |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
| DAR0    |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
| DMATCR0 | —          |                  |         | —          | —         |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |
|         |            |                  |         |            |           |          |          |        |

Renesas

| DAR1    |     |     |     |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
| DMATCR1 | —   |     | _   | —   | —   | —   | —   | —   |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
| CHCR1   |     |     |     |     |     |     |     |     |
| CHCRI   | —   |     |     |     |     | -   | _   |     |
|         | _   | —   | —   | _   | —   | RL  | AM  | AL  |
|         | DM1 | DM0 | SM1 | SM0 | RS3 | RS2 | RS1 | RS0 |
|         | —   | DS  | ТМ  | TS1 | TS0 | IE  | TE  | DE  |
| SAR2    |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
| DAR2    |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
| DMATCR2 | _   |     |     |     |     | _   |     | _   |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
|         |     |     |     |     |     |     |     |     |
| I       | 1   | 1   |     | 1   | 1   | 1   | 1   | r   |

Rev. 5.00, 09/03, page 752 of 760

| DAR3    |     |          |          |     |          |     |      |      |
|---------|-----|----------|----------|-----|----------|-----|------|------|
|         |     |          |          |     |          |     |      |      |
|         |     | İ        | İ        |     |          |     |      |      |
|         |     |          |          |     |          |     |      |      |
| DMATCR3 |     | <u> </u> | <u> </u> |     |          |     |      |      |
|         |     |          |          |     |          |     |      |      |
|         |     |          |          |     |          |     |      |      |
|         |     |          |          |     | <u> </u> |     |      |      |
| CHCR3   |     |          |          |     | —        | —   | _    | _    |
|         | '   | <u> </u> | <u> </u> | DI  |          |     | _    |      |
|         | DM1 | DM0      | SM1      | SM0 | RS3      | RS2 | RS1  | RS0  |
|         | —   | _        | ТМ       | TS1 | TS0      | IE  | TE   | DE   |
| DMAOR   | —   | —        | —        | _   | —        | _   | PR1  | PR0  |
|         |     | <u> </u> | <u> </u> |     |          | AE  | NMIF | DME  |
| CMSTR   | —   | —        |          |     |          | _   | _    | _    |
|         |     | <u> </u> | <u> </u> |     |          |     | —    | STR  |
| CMCSR   | —   | _        | <u> </u> | _   |          |     |      |      |
|         | CMF | —        | —        |     | —        |     | CKS1 | CKS0 |
| CMCNT   |     |          |          |     |          |     |      |      |
|         |     | '        | '        |     |          |     |      |      |
| CMCOR   |     | '        | '        |     |          |     |      |      |
|         |     | '        | '        |     |          |     |      |      |
| ADDRAH  | AD9 | AD8      | AD7      | AD6 | AD5      | AD4 | AD3  | AD2  |
| ADDRAL  | AD1 | AD0      | —        | —   | —        | —   | —    | —    |

Renesas

| ADCR  | TRGE1 | TRGE2 | SCN  | RESVD1 | RESVD2 |      | —    | _    |
|-------|-------|-------|------|--------|--------|------|------|------|
| DADR0 |       |       |      |        |        |      |      |      |
| DADR1 |       |       |      |        |        |      |      |      |
| DACR  | DAOE1 | DAOE0 | DAE  | —      |        |      | —    | _    |
| PACR  | PA7M  | PA7M  | PA6M | PA6M   | PA5M   | PA5M | PA4M | PA4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PA3M  | PA3M  | PA2M | PA2M   | PA1M   | PA1M | PA0M | PA0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
| PBCR  | PB7M  | PB7M  | PB6M | PB6M   | PB5M   | PB5M | PB4M | PB4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PB3M  | PB3M  | PB2M | PB2M   | PB1M   | PB1M | PB0M | PB0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
| PCDR  | PC7M  | PC7M  | PC6M | PC6M   | PC5M   | PC5M | PC4M | PC4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PC3M  | PC3M  | PC2M | PC2M   | PC1M   | PC1M | PC0M | PC0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
| PDCR  | PD7M  | PD7M  | PD6M | PD6M   | PD5M   | PD5M | PD4M | PD4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PD3M  | PD3M  | PD2M | PD2M   | PD1M   | PD1M | PD0M | PD0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
| PECR  | PE7M  | PE7M  | PE6M | PE6M   | PE5M   | PE5M | PE4M | PE4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PE3M  | PE3M  | PE2M | PE2M   | PE1M   | PE1M | PE0M | PE0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
| PFCR  | PF7M  | PF7M  | PF6M | PF6M   | PF5M   | PF5M | PF4M | PF4M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |
|       | PF3M  | PF3M  | PF2M | PF2M   | PF1M   | PF1M | PF0M | PF0M |
|       | D1    | D0    | D1   | D0     | D1     | D0   | D1   | D0   |

Rev. 5.00, 09/03, page 754 of 760

| PJCR  | PJ7M   | PJ7M   | PJ6M   | PJ6M   | PJ5M   | PJ5M   | PJ4M        | PJ4M   |
|-------|--------|--------|--------|--------|--------|--------|-------------|--------|
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
|       | PJ3M   | PJ3M   | PJ2M   | PJ2M   | PJ1M   | PJ1M   | PJ0M        | PJ0M   |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
| PKCR  | PK7M   | PK7M   | PK6M   | PK6M   | PK5M   | PK5M   | PK4M        | PK4M   |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
|       | РК3М   | PK3M   | PK2M   | PK2M   | PK1M   | PK1M   | PK0M        | PK0M   |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
| PLCR  | PL7M   | PL7M   | PL6M   | PL6M   | PL5M   | PL5M   | PL4M        | PL4M   |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
|       | PL3M   | PL3M   | PL2M   | PL2M   | PL1M   | PL1M   | <b>PL0M</b> | PL0M   |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
| SCPCR | SCP7M  | SCP7M  | SCP6M  | SCP6M  | SCP5M  | SCP5M  | SCP4M       | SCP4M  |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
|       | SCP3M  | SCP3M  | SCP2M  | SCP2M  | SCP1M  | SCP1M  | SCP0M       | SCP0M  |
|       | D1     | D0     | D1     | D0     | D1     | D0     | D1          | D0     |
| PADR  | PA7DT  | PA6DT  | PA5DT  | PA4DT  | PA3DT  | PA2DT  | PA1DT       | PA0DT  |
| PBDR  | PB7DT  | PB6DT  | PB5DT  | PB4DT  | PB3DT  | PB2DT  | PB1DT       | PB0DT  |
| PCDR  | PC7DT  | PC6DT  | PC5DT  | PC4DT  | PC3DT  | PC2DT  | PC1DT       | PC0DT  |
| PDDR  | PD7DT  | PD6DT  | PD5DT  | PD4DT  | PD3DT  | PD2DT  | PD1DT       | PD0DT  |
| PEDR  | PE7DT  | PE6DT  | PE5DT  | PE4DT  | PE3DT  | PE2DT  | PE1DT       | PE0DT  |
| PFDR  | PF7DT  | PF6DT  | PF5DT  | PF4DT  | PF3DT  | PF2DT  | PF1DT       | PF0DT  |
| PGDR  | PG7DT  | PG6DT  | PG5DT  | PG4DT  | PG3DT  | PG2DT  | PG1DT       | PG0DT  |
| PHDR  | PH7DT  | PH6DT  | PH5DT  | PH4DT  | PH3DT  | PH2DT  | PH1DT       | PH0DT  |
| PJDR  | PJ7DT  | PJ6DT  | PJ5DT  | PJ4DT  | PJ3DT  | PJ2DT  | PJ1DT       | PJ0DT  |
| PKDR  | PK7DT  | PK6DT  | PK5DT  | PK4DT  | PK3DT  | PK2DT  | PK1DT       | PK0DT  |
| PLDR  | PL7DT  | PL6DT  | PL5DT  | PL4DT  | PL3DT  | PL2DT  | PL1DT       | PL0DT  |
| SCPDR | SCP7DT | SCP6DT | SCP5DT | SCP4DT | SCP3DT | SCP2DT | SCP1DT      | SCP0DT |

Renesas

|         | ER    | TEND  | TDFE  | BRK   | FER  | PER   | RDF   | DR   |
|---------|-------|-------|-------|-------|------|-------|-------|------|
| SCFRDR1 |       |       |       |       |      |       |       |      |
| SCFCR1  | RTRG1 | RTRG0 | TTRG1 | TTRG0 | MCE  | TFRST | RFRST | LOOP |
| SCFDR1  | —     | -     | -     | T4    | Т3   | T2    | T1    | Т0   |
|         | —     | -     | -     | R4    | R3   | R2    | R1    | R0   |
| SCSMR2  | _     | CHR   | PE    | O/E   | STOP | —     | CKS1  | CKS0 |
| SCBRR2  |       |       |       |       |      |       |       |      |
| SCSCR2  | TIE   | RIE   | TE    | RE    |      | —     | CKE1  | CKE0 |
| SCFTDR2 |       |       |       |       |      |       |       |      |
| SCSSR2  | PER3  | PER2  | PER1  | PER0  | FER3 | FER2  | FER1  | FER0 |
|         | ER    | TEND  | TDFE  | BRK   | FER  | PER   | RDF   | DR   |
| SCFRDR2 |       |       |       |       |      |       |       |      |
| SCFCR2  | RTRG1 | RTRG0 | TTRG1 | TTRG0 | MCE  | TFRST | RFRST | LOOP |
| SCFDR2  | —     | _     | _     | T4    | Т3   | T2    | T1    | Т0   |
|         | _     | _     |       | R4    | R3   | R2    | R1    | R0   |

Legend

MMU: Memory management unit

UBC: User break controller

CPG: Clock pulse generator

BSC: Bus state controller

RTC: Realtime clock

INTC: Interrupt controller

TMU: Timer unit

SC1: Serial communication interface controller

IrDA: Serial communication interface with IrDA

SCIF: Serial communication interface with FIFO

CCN: Cache controller

DMAC: Direct memory access controller

ADC: Analog to Digital converter

DAC: Digital to Analog converter

PORT: Port controller

UDI: User debugging interface

Rev. 5.00, 09/03, page 756 of 760

| 1.9±0.15 V               |         | HD04177093F107B  | (FP-208C               |
|--------------------------|---------|------------------|------------------------|
|                          |         | HD6417709SBP167B | 240-pin C<br>(BP-240A  |
| 1.8+0.25 V<br>1.8–0.15 V | 133 MHz | HD6417709SF133B  | 208-pin pl<br>(FP-208C |
|                          |         | HD6417709SBP133B | 240-pin C<br>(BP-240A  |
| 1.7+0.25 V<br>1.7–0.15 V | 100 MHz | HD6417709SF100B  | 208-pin pl<br>(FP-208C |
|                          |         | HD6417709SBP100B | 240-pin C<br>(BP-240A  |



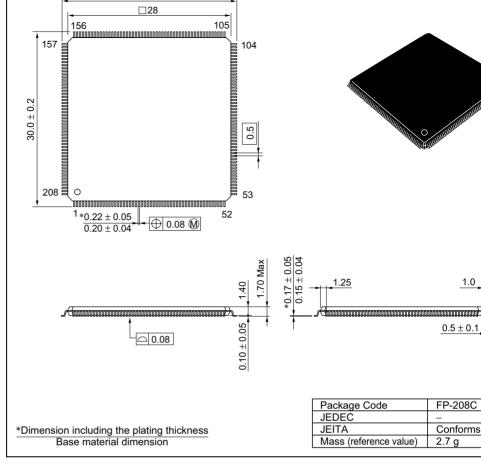



Figure D.1 Package Dimensions (FP-208C)

Rev. 5.00, 09/03, page 758 of 760

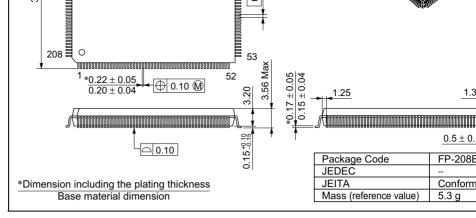



Figure D.2 Package Dimensions (FP-208E)

RENESAS

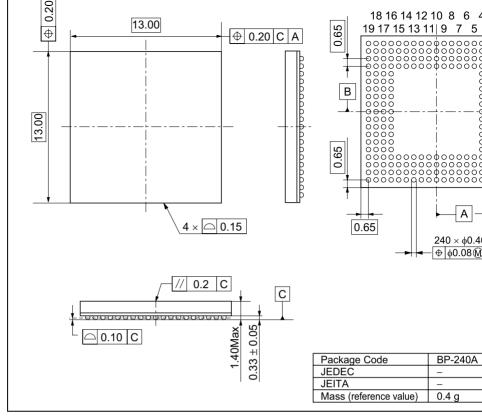



Figure D.3 Package Dimensions (BP-240A)

Rev. 5.00, 09/03, page 760 of 760

## SH7709S Group Hardware Manual

| Publication Date: | 1st Edition, September 2001                      |
|-------------------|--------------------------------------------------|
|                   | Rev.5.00, September 18, 2003                     |
| Published by:     | Sales Strategic Planning Div.                    |
|                   | Renesas Technology Corp.                         |
| Edited by:        | Technical Documentation & Information Department |
|                   | Renesas Kodaira Semiconductor Co., Ltd.          |

©2001, 2003 Renesas Technology Corp. All rights reserved. Printed in J

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-000



### **RENESAS SALES OFFICES**

http://www.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44- (1628) 585 100, Fax: <44- (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852- 2265-6688, Fax: <852-2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1. Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200. Fax: <65> 6278-8001

SH7709S Group Hardware Manual



Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0081-0500O

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 32-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

MB91F575BHSPMC-GSE1 MB91F594BSPMC-GSE1 PIC32MX120F032B-50I/ML MB91F464AAPMC-GSE2 MB91F577BHSPMC-GSE1 SPC5604EEF2MLH MB91F528USCPMC-GSE2 MB91F248PFV-GE1 MB91F594BPMC-GSE1 MB91243PFV-GS-136E1 MB91F577BHSPMC1-GSE1 PIC32MM0032GPL020-E/ML PIC32MM0032GPL020-E/SS MEC1632X-AUE PIC32MM0016GPL020-E/ML PIC32MM0016GPL020-E/SS PIC32MM0016GPL028-E/SS PIC32MM0016GPL028-E/SO PIC32MM0016GPL028-E/ML PIC32MM0032GPL028-E/SS PIC32MM0032GPL028-E/SO PIC32MM0032GPL028-E/ML PIC32MM0032GPL028-E/MV PIC32MM0064GPL028-E/M6 PIC32MM0064GPL036-E/M2 PIC32MM0016GPL028-E/M6 PIC32MM0032GPL028-E/M6 MB91F526KSEPMC-GSE1 PIC32MM0064GPL028-E/SP PIC32MM0032GPL036-E/M2 TLE9872QTW40XUMA1 FT902L-T R5F564MLCDFB#31 R5F523E5ADFL#30 R5F524TAADFF#31 MCF51AC256ACPUE PIC32MM0064GPL028-I/ML PIC32MM0064GPL028-I/SP PIC32MM0064GPL028-I/SO PIC32MX120F032D-I/TL PIC32MX130F064D-I/ML PIC32MZ2064DAB169-I/HF PIC32MZ2064DAB288-I/4J ATUC256L4U-AUT R5F56318CDBG#U0 PIC32MX150F128C-I/TL PIC32MX170F256B-50IML PIC32MX130F064C-ITL PIC32MX230F064D-IML PIC32MM0032GPL028-I/ML