Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8S/2117R Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8S Family / H8S/2100 Series H8S/2117R R4F2117R

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics

Rev.2.00 2009.09

- and careful attention to additional and different information to be disclosed by Renesas such as that disclose through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended applicatio Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which requir especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communicat transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed bel (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers we elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renes Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, r injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is ver high. You should implement safety measures so that Renesas products may not be easily detached from you products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Rev. 2.00 Sep. 28, 2009 Page ii of xl REJ09B0452-0200

- occur due to the false recognition of the pin state as an input signal. Unused pir be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of regis settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, t of pins are not guaranteed from the moment when power is supplied until the re process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power function are not guaranteed from the moment when power is supplied until the reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of funct not access these addresses; the correct operation of LSI is not guaranteed if the accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has stable. When switching the clock signal during program execution, wait until the tar signal has stabilized.

- When the clock signal is generated with an external resonator (or from an extern oscillator) during a reset, ensure that the reset line is only released after full stal the clock signal. Moreover, when switching to a clock signal produced with an e resonator (or by an external oscillator) while program execution is in progress, v the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number that the change will not lead to problems.

 The characteristics of MPU/MCU in the same group but having different part nu differ because of the differences in internal memory capacity and layout pattern changing to products of different part numbers, implement a system-evaluation each of the products.

RENESAS

Rev. 2.00 Sep. 28, 2009 REJ09

Rev. 2.00 Sep. 28, 2009 Page iv of xl REJ09B0452-0200

When designing an application system that includes this LSI, take all points to note account. Points to note are given in their contexts and at the final part of each sect in the section giving usage notes.

The list of revisions is a summary of major points of revision or addition for earlier It does not cover all revised items. For details on the revised points, see the actual in the manual.

The following documents have been prepared for the H8S/2117R Group. Before usin the documents, please visit our web site to verify that you have the most up-to-date a version of the document.

Document Type	Contents	Document Title	Docu
Data Sheet	Overview of hardware and electrical characteristics		_
Hardware Manual	Hardware specifications (pin assignments, memory maps, peripheral specifications, electrical characteristics, and timing charts) and descriptions of operation	H8S/2117R Group Hardware Manual	This r
Software Manual	Detailed descriptions of the CPU and instruction set	H8S/2600 Series H8S/2000 Series Software Manual	REJ0
Application Note	Examples of applications and sample programs	The latest versions are ava web site.	ilable fi
Renesas Technical Update	Preliminary report on the specifications of a product, document, etc.	-	

RENESAS

Rev. 2.00 Sep. 28, 2009 REJ09

hexa	decimal numbers are giv mples] Binary: B' Hexadecimal: H	ren as H'nnnn or 0xn '11 or 11		umber is obviously binary), mal numbers are given as nr
Án o	tion for active-low verbar on the name indic nple] WDTOVF	cates that a signal or	pin is active-le	OW.
		(4)	(2	2)
	CMCSR indicates compared mut clock. Generation of a W 14.3 Operation of a W 14.3.1 Interval Count Op	VDTOVF <u>signal or interru</u>	r disables interrup nt initializes the T	ts, and selects the counter CNT value to 0.
	When an internal clock is selec CMSTR is set to 1, CMCNT s CMCNT and the compare mat and the CMF flag in CMCSR a f/4 clock is selected.	cted with the CKS1 and C starts incrementing using t tch constant register (CMC	he selected clock. COR) match, CMC	When the values in CNT is cleared to H'0000
		RENESA	72	Rev. 0.50, 10/04, page 416 of 914
				(3)
Note:	The bit names and sent with the contents of this		figure are exa	mples and have nothing to de

Rev. 2.00 Sep. 28, 2009 Page vi of xl REJ09B0452-0200

	 1 R Reserved This bit is always read as 1.
=	- 0
	e: The bit names and sentences in the above figure are examples, and have nothing to do with the conte manual.
	Bit Indicates the bit number or numbers. In the case of a 32-bit register, the bits are arranged in order from 31 to 0. In the case of a 16-bit register, the bits are arranged in order from 15 to 0.
	Bit name Indicates the name of the bit or bit field. When the number of bits has to be clearly indicated in the field, appropriate notation is included (e.g., ASID[3:0]). A reserved bit is indicated by "". Certain kinds of bits, such as those of timer counters, are not assigned bit names. In such
	cases, the entry under Bit Name is blank. Initial value Indicates the value of each bit immediately after a power-on reset, i.e., the initial value. 0: The initial value is 0 1: The initial value is 1 -: The initial value is undefined
	R/W For each bit and bit field, this entry indicates whether the bit or field is readable or writable or both writing to and reading from the bit or field are impossible. The notation is as follows:
	 R/W: The bit or field is readable and writable. R/(W): The bit or field is readable and writable. However, writing is only performed to flag clearing. R: The bit or field is readable. "R" is indicated for all reserved bits. When writing to the register, write the value under Initial Value in the bit chart to reserved bits or fields. W: The bit or field is writable.
	Description Describes the function of the bit or field and specifies the values for writing.

RENESAS

Rev. 2.00 Sep. 28, 2009

TPU	16-bit timer pulse unit
WDT	Watchdog timer

• Abbreviations other than those listed above

Description
Asynchronous communication interface adapter
Bits per second
Cyclic redundancy check
Direct memory access
Direct memory access controller
Global System for Mobile Communications
High impedance
Inter Equipment Bus (IEBus is a trademark of NEC Electronics Corpo
Input/output
Infrared Data Association
Least significant bit
Most significant bit
No connection
Phase-locked loop
Pulse width modulation
Special function register
Subscriber Identity Module
Universal asynchronous receiver/transmitter
Voltage-controlled oscillator

Rev. 2.00 Sep. 28, 2009 Page viii of xl REJ09B0452-0200

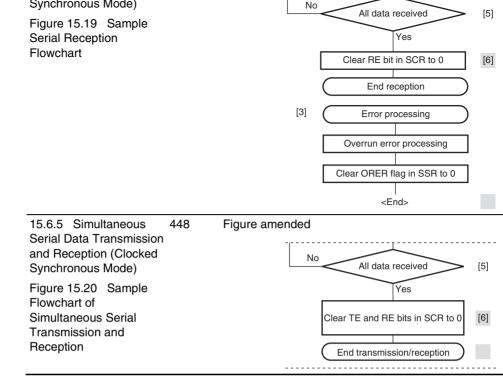
40	Tabi	e amende	ea		
	Bit	Bit Name	Initial Value	R/W Descriptio	on
	6	UI	Undefined	R/W User Bit or	Interrupt Mask Bit
					ad or written by software us C, and XORC instructions.
178	Title	amendeo	ł		
189	Tabl	e amende	ed		
	Port			Signal Selection Register Settings	Internal Module Settings
	P4 6	PWX0_OE	PWX0		PWMX.DACR.OEA = 1
		PWMU4B_C	E PWMU48	3	PWMU_B.PWMCONB.PW PWMU_B.PWMCOND.CN
	4		TMO1		Except TMR_1.TCSR.OS[
		PWMU2B_C	E PWMU28	3	PWMU_B.PWMCONB.PW PWMU_B.PWMCOND.CN
191	Tabl	e amende	ed		
	Port			Signal Selection Register Settings	Internal Module Settings
	PB 2	PWMU0B_C	E PWMU08	3	PWMU_B.PWMCONB.PWM PWMU_B.PWMCONC.CNT
192	Tabl	e amende	ed		
	Port			Signal Selection	s Internal Module Settings
					PWMU_A.PWMCONB.PW PWMU_A.PWMCOND.CN
	4	PWMU2A_C	E PWMU24	4	PWMU_A.PWMCONB.PW PWMU_A.PWMCOND.CN
	0	PWMU0A_C	E PWMU04	Ą	PWMU_A.PWMCONB.PW PWMU_A.PWMCONC.CN
	178 189 191	Bit 6 178 Title 189 Tabl Port 6 191 Tabl Port 6 191 Tabl Port 74 Port 74 Tabl 9 Port 74 Prot 74 Prot 74	Bit Bit Name 6 UI 178 Title amended 178 Title amended 189 Table amended Output Specificatio Port Signal Name P4 6 PWMU4B_O 4 TMO1_OE PWMU4B_O 4 TMO1_OE PWMU2B_O 191 Table amended Output Specificatio Specificatio Output Specificatio Specificatio Port Signal Name PB 2 192 Table amended Output Specificatio Specificatio Specificatio PB 2 PWMU4D_O Output Specificatio Specificatio Port Signal Name PF 6 PWMU4A_O 4 PWMU2A_O	Bit Bit Name Initial Value 6 UI Undefined 178 Title amended 178 Title amended Output Specification Signal Name Port Signal Name P4 6 PWX0_OE PWMU4B_OE PWMU4B 4 TMO1_OE TMO1 PWMU2B_OE PWMU4B Output Signal Name Signal Name Signal Name 191 Table amended Output 192 Table amended Signal Name PB 2 PWMU0B_OE PWMU0E 192 Table amended Signal Name PB 2 PWMU2A_OE PWMU4B PF 6 PWMU4A_OE Output Signal Name Signal Name Signal Name Signal Name PF 6 PWMU4A_OE PWMU4A Output Output Signal Name Signal Name Signal Name PF 6 PWMU4A_OE PWMU4A Output	Bit Bit Name Initial Value R/W Description Description 6 UI Undefined R/W Description 178 Title amended Output Specification Signal Name Output Signal Signal Selection Name Port Signal Name Signal Selection Register Settings P4 6 PWXQ_OE PWX0 PWMU48_OE PWMU48 4 TM01_OE 191 Table amended Signal Signal Selection Register Settings P4 6 PWXQ_OE PWMU48 4 TM01_OE TM01 PWMU2B_OE PWMU2B Signal Selection 191 Table amended Name PB 2 PWMU08_OE PWMU2B 192 Table amended Name PB 2 PWMU08_OE PWMU08 192 Table amended Name Signal Signal Selection PB 6 PWMU4A_OE PWMU4A Register Settings

Rev. 2.00 Sep. 28, 2009

REJ09

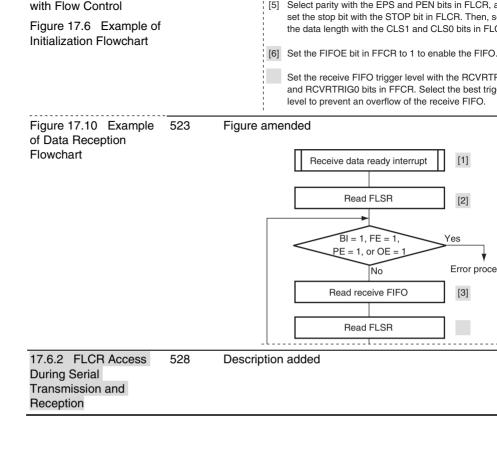
		PWMHEG setting example 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 H'7F
		H'82 Position of additional pulse
10.3.3 Timer I/O Control Register (TIOR)	253	Table amended
Table 10.13 TIORL_0 (channel 0)		Bit 3 Bit 2 Bit 1 Bit 0 IOC3 IOC2 IOC1 IOC0
11.3.6 TCM Status Register (TCMCSR)	312	Table amended Bit Bit Name Initial Value R/W Description 0 0 R/W Reserved The initial value should not be changed.
14.3.2 Timer Control/Status Register (TCSR)	394	Table amended Initial Description Bit Bit Name Value R/W Description 4 0 R/W Reserved The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page x of xl REJ09B0452-0200



15.3 Register Descriptions	406	Table amended				
Table 15.2 Register		Channel Register Name	Abbreviation	R/W	Initial Value	Ac
Configuration		Channel 1 Serial mode register_1	SMR_1	R/W	H'00	H'
Comgaration		Channel 2 Serial mode register_2	SMR_2	R/W	H'00	H'
15.4.6 Serial Data Reception (Asynchronous Mode)	433	Figure amended				
Figure 15.9 Sample		All	data receive	d	>	[5]
Serial Reception			Yes			
Flowchart (1)		Clear	RE bit in SCF	R to 0		[6]
		E	nd reception		\supset	
15.5.1 Multiprocessor Serial Data Transmission	437	Figure amended				,
Figure 15.11 Sample Multiprocessor Serial Transmission Flowchart		Clear DR to 0 an	d set DDR to	1		
		Clear TE bit i	n SCR to 0			[5]
			•			
		End transi	mission	\supset		
15.5.2 Multiprocessor Serial Data Reception	439	Figure amended				
Figure 15.13 Sample Multiprocessor Serial		No All data received	$>_{(Err}$	ror pro	[5] cessir	ng
Reception Flowchart (1)		Yes	\sim	tinued		
		Clear RE bit in SCR to	0 [6]			
		End reception				ege Lo

RENESAS


Rev. 2.00 Sep. 28, 2009

REJ09

Rev. 2.00 Sep. 28, 2009 Page xii of xl REJ09B0452-0200

Renesas

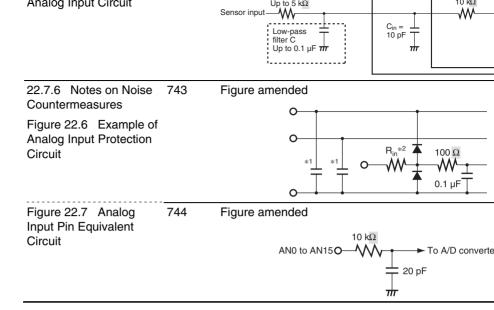
Rev. 2.00 Sep. 28, 2009 F REJ09

should not be changed.

19.3.6 Keyboard Buffer Transmit Data Register (KBTR)	598	Table amended
		Keyboard Buffer Transmit Data Register 7 to 0 Initialized to H'FF at reset.
19.4.1 Receive Operation	565	Figure amended
Figure 19.3 Sample Receive Processing		KCLKI No and KDI bits both 1?
Flowchart		Yes Keyboard side in data transmission state. Execute receive abord processing.
		Receive enabled state [3]
19.4.9 KCLK Fall Interrupt Operation	608	Note amended Note: * The KBF setting timing is the same as the tir
Figure 19.14 Example of KCLK Input Fall Interrupt Operation		KBF setting and KCLK automatic I/O inhibit I generation in figure 19.11. When the KBF bir as the KCLK input fall interrupt flag, the auto inhibit function does not operate.
19.5.4 Medium-Speed	614	Description amended
Mode		In medium-speed mode, the PS2 operates with the n speed clock. For normal operation of the PS2, set the speed clock to a frequency of 300 kHz or higher.

Rev. 2.00 Sep. 28, 2009 Page xiv of xl REJ09B0452-0200

	Reg	ister Name			Abbreviatio	on Slave	Host	Value	Ac
	Bidir	ectional data	register (WMW	TWR0MW	R	W	H'00	H'l
	Bidir	ectional data	register (SW	TWR0SW	W	R	H'00	H'I
625	Tab	ole amer	nded						
			Initial						
	Bit	Bit Name	Value	Slave He	ost Descript	on			
	0	LSCIB	0	R/W —	 LSCI outplace 	out Bit			
					bit . F	or details			
627	Tab	ole amer	nded						
			Initial	R/V	V				
	Bit	Bit Name	Value	Slave	Host Descrip	tion			
	3	IBFIE3	0	R/W	— IDR3 ar	d TWR F	Receive	e Compl	ete
					Enables LSI).	or disab	les IBF	13 interr	rupt
					0: Input	data regi	ster ID	R3 and	τw
					comp	lete inter	rupt ree	quests o	disat
					1: [Whe	n TWRE	= 0 in l	_ADR3]	
									ceiv
					[Whe	n TWRE	= 1 in	LADR3]	I
		625 Tab <u>Bidi</u> 625 Tab <u>0</u> 627 Tab <u>Bit</u> <u>Bit</u>	625 Table amer 625 LSCIB 627 Table amer 627 Table amer Bit Bit Name	Bidirectional data register (Bidirectional data register (Bitial Bit Name 625 Table amended 627 Table amended Bit Bit Name Initial Value 627 Table amended Bit Bit Name Initial Value	625 Table amended Bidirectional data register 0MW Bidirectional data register 0SW 625 Table amended Bit Bit Name Initial Value R/W 0 LSCIB 0 R/W - 627 Table amended Initial Slave Hereit R/W - 627 Table amended Initial Slave Slave R/W Bit Bit Name Initial Value Slave	Bidirectional data register 0MW TWR0MW Bidirectional data register 0SW TWR0SW 625 Table amended Bit Bit Name Initial Value RW Descripti 0 LSCIB 0 R/W LSCI outpoint 627 Table amended Controls in bit F Bit Bit Name Initial R/W Esclorent Controls in bit 3 IBFIE3 0 R/W IDR3 an Enables LSI). 0: Input 0 IBFIE3 0 R/W IDR3 an Enables LSI). 0: Input 1 INFIE3 0 R/W IDR3 an Enables LSI). 0: Input 1 INFIE3 0 R/W IDR3 an Enables LSI). 0: Input 1 INFIE3 INFIE3 INFIE3 INFIE3 INFIE3 INFIE3	Bidirectional data register 0NW TWR0NW R Bid Bid </td <td>Bit/ Bidirectional data register 0SW TWR0MW R W Bidirectional data register 0SW TWR0SW W R 625 Table amended Initial R/W Description 0 LSCIB 0 R/W LSCI output Bit Controls LSCI output Bit For details, refer 627 Table amended Initial R/W Slave Host Description 627 Table amended Initial R/W Slave Host Description 627 Table amended Initial R/W Slave Host Description 3 IBFIE3 0 R/W IDR3 and TWR Receive Enables or disables IBF LSI). 0: Input data register ID complete interrupt requests en [When TWRE = 1 in Input data register (II interrupt requests en [When TWRE = 1 in Input data register (II</td> <td>Bidirectional data register 0MW TWR0MW Image: Wight of Wigh</td>	Bit/ Bidirectional data register 0SW TWR0MW R W Bidirectional data register 0SW TWR0SW W R 625 Table amended Initial R/W Description 0 LSCIB 0 R/W LSCI output Bit Controls LSCI output Bit For details, refer 627 Table amended Initial R/W Slave Host Description 627 Table amended Initial R/W Slave Host Description 627 Table amended Initial R/W Slave Host Description 3 IBFIE3 0 R/W IDR3 and TWR Receive Enables or disables IBF LSI). 0: Input data register ID complete interrupt requests en [When TWRE = 1 in Input data register (II interrupt requests en [When TWRE = 1 in Input data register (II	Bidirectional data register 0MW TWR0MW Image: Wight of Wigh


Renesas

Rev. 2.00 Sep. 28, 2009 REJ09

			id the stat /R0MW. <i>A</i> d.				
			egisters se see sectio LADR3H	on 20.3.7	, LPC Cł		0
20.3.12 Status Registers 1 to 4 (STR1	644	Table am	ended	R/W			
to STR4)		Bit Bit Nan	ne Initial Valu	e Slave Ho	st Descriptio	n	
• STR4		0 OBF4	0	R/(W)* R	When t When t 1: [Setting	g conditions] he host reads he slave write	s 0 to the C
21.4.5 FSI Memory	716	Figure an	nended				
Cycle (LPC-SPI Command Transfer) Figure 21.13 FSI Command Read (Example)			FSIGP FSIGP	STR1 GPR1 R2 to D GPRE GPRF		EC CPU	U
21.5 Reset Conditions	723, 724	Table am	ended				
Table 21.8 Range of Initialization of FSI in Each Mode		Register Nan FSILSTR1	Bits 7, 6, 4, and 3 Bit 2	System Reset Initialized	LPC Reset Initialized Initialized	Retained Retained	LPC Abo Retained Retained
			Bits 5, 1, and 0	Initialized	Retained	Retained	Retained
		FSISTR	Bits 6 and 5	Initialized	Retained	Retained	Retained

Rev. 2.00 Sep. 28, 2009 Page xvi of xl REJ09B0452-0200

RENESAS

Rev. 2.00 Sep. 28, 2009 P REJ09

		 The user boot memory MAT is initiated at a power in user boot mode: 8K bytes
		 Three on-board programming modes
		Boot mode: Using the on-chip SCI-1, the user MA programmed/erased. In boot mode, the bit rate be host and this LSI can be adjusted automatically.
		User program mode: Using a desired interface, th MAT can be programmed/erased.
		User boot mode: The User boot program of The or interface can be made and The User MAT can be programmed.
24.2 Mode Transition	751	Note replaced
Diagram Table 24.1 Differences between Boot Mode, User Program Mode, and Programmer Mode		Notes: 2. First, the reset vector is fetched from the e program storage MAT. After the flash men related registers are checked, the reset ve fetched from the user boot MAT.
	752	Description amended
		• The user boot MAT can be programmed or erased
		boot mode and programmer mode.
		 boot mode and programmer mode. In boot mode, the user boot MAT are totally erased the user MAT or user boot MAT can be programmer means of commands. Note that the contents of the cannot be read until this state. Boot mode can be used for programming only the brand then programming the user MAT in user boot
		 boot mode and programmer mode. In boot mode, the user boot MAT are totally erased the user MAT or user boot MAT can be programmer means of commands. Note that the contents of the cannot be read until this state. Boot mode can be used for programming only the b and then programming the user MAT in user boot Another way is to program only the user MAT since
		 boot mode and programmer mode. In boot mode, the user boot MAT are totally erased the user MAT or user boot MAT can be programmer means of commands. Note that the contents of the cannot be read until this state. Boot mode can be used for programming only the k and then programming the user MAT in user boot a Another way is to program only the user MAT since mode is not used. In user boot mode, boot operation of the optional in can be performed with mode pin settings different from the set is a set in the s

REJ09B0452-0200

stored in the on-chip RAM other than the flash m Table 24.10 Usable 794 Table amended Area for Programming in User Program Mode			4 3 2 1 0	MS4 MS3 MS2 MS1 MS0	0 0/1*' 0 0/1*' 0	RW* ² RW* ² RW* ² RW* ² RW* ²	24.10, Switc MAT. (The u user program selected by programmer H'AA: User when Initial H'00: Initial user b [Programma	switch the MA ching between user boot MAT FMATS. The u d in boot mode boot MAT is se the value of th value when ini voot mode (use able condition] tate in the on-or-	User MAT a cannot be p f the user b user boot M. o or program elected (use ese bits is o titated in use tiated in a m or MAT is se
24.8.4 Storable Areas for On-Chip Program and Program Data 793 Description amended • In an operating mode in which the external addres not accessible, such as single-chip mode, the reap procedure programs should be transferred to the RAM before programming/erasing starts (downlod determined). • The flash memory is not accessible during programming/erasing. Programming/erasing is ex- the program downloaded to the on-chip RAM. The procedure program that initiates operation Table 24.10 Usable Area for Programming in User Program Mode 794 Item On-Chip RAM. User MAT.			Note	added					
 In an operating mode in which the external address not accessible, such as single-chip mode, the record procedure programs should be transferred to the RAM before programming/erasing starts (downlow determined). The flash memory is not accessible during programming/erasing. Programming/erasing is exist the program downloaded to the on-chip RAM. The procedure program that initiates operation shot stored in the on-chip RAM other than the flash memory is not accessible Area for Programming in User Program Mode 			Note	s: *1 1	The valu	ue is 1	in user bo	oot mode	and 0 c
and Program Data and Program Data ot accessible, such as single-chip mode, the rec procedure programs should be transferred to t RAM before programming/erasing starts (downlo determined). • The flash memory is not accessible during programming/erasing. Programming/erasing is et the program downloaded to the on-chip RAM. The procedure program that initiates operation sho stored in the on-chip RAM other than the flash m Table 24.10 Usable 794 Area for Programming in User Program Mode Item On-Chip RAM User MAT User MAT	24.8.4 Storable Areas	793	Desc	ription	amend	ed			
programming/erasing. Programming/erasing is exit the program downloaded to the on-chip RAM. The procedure program that initiates operation sho stored in the on-chip RAM other than the flash m Table 24.10 Usable 794 Area for Programming in User Program Mode Storable/Executable Area Storable/Executable Area Item On-Chip RAM User MAT User MAT			not pro RA	acces cedure M befo	sible, su e progra pre prog	uch as ms	single-ch should be	ip mode, transferr	the req ed to th
Area for Programming in User Program Mode <u>Item</u> On-Chip RAM User MAT User MAT			pro the pro	gramm progra cedure	ning/era am dowi e progra	, sing. F nloade m that	Programm d to the o initiates o	ing/erasir n-chip RA	AM. The shou
User Program Mode	Table 24.10 Usable	794	Table	e amer	ided				
	u					-	Storable/Exe	cutable Area	Sel
Decision of initialization result O O O			Item			I	On-Chip RAM	User MAT	User MA
Operation for initialization error O O O Operation for disabling interrupts O O O O						· · · · · · · · · · · · · · · · · · ·			

RENESAS

Rev. 2.00 Sep. 28, 2009 F REJ09

		ltem	RAM	MAT	User MAT	MAT	s
		Determination of initialization result	0	0		0	
		Initialization error processing	0	0		0	
		Disabling interrupts	0	0		0	
Table 24.13 Usable Area for Erasure in User	797	Table amended	Storable	/Executable	Area	Selected N	ЛАТ
Boot Mode				-		-	E
		Item	On-Chip RAM	User Boot MAT	User MAT	User Boot MAT	P
		Determination of initialization result	0	0		0	
		Initialization error processing	0	0		0	
		Disabling interrupts	0	0		0	
24.12 Standard Serial	802	Description amende	d				
Communication Interface		2. Inquiry/selection s	state				ļ
Specifications for Boot Mode		In this state, the b commands from the and bit rate are set the program is may by the command for state. The programer erasure to the on- user boot MATs b	he hos elected ade to e for a tra m trans -chip R	t. The d . After s enter the ansition sfers the AM and	evice na election progration to the progration to the programination libraries erases	ime, cloo of these mming/e rogramn s require	ck e s era nin ed

Rev. 2.00 Sep. 28, 2009 Page xx of xl REJ09B0452-0200

(3) Inquiry and Selection 811States(f) Operating ClockFrequency Inquiry	 Description amended Minimum value of operating clock frequency (two minimum value of the divided clock frequency. The minimum and maximum values of the operati frequency represent the values in MHz, valid to the hundredths place of MHz, and multiplied by 100. the value is 17.00 MHz, it will be 2000, which is H Maximum value (two bytes): Maximum value amondivided clock frequencies. There are as many pairs of minimum and maximu as there are operating clock frequencies.
 (8) Programming/Erasing 823 State 3. Programming/Erasing State Information (c) 128-Byte Programming 	Description amended • ERROR: (one byte): Error code H'11: Checksum Error H'2A: Address Error The address is not within the specified MA' H'53: Programming error A programming error has occurred and pro- cannot be continued.
(f) Memory Read 826	Description amended • Area (one byte) H'00: User boot MAT H'01: User MAT An address error occurs when the area set incorrect.

RENESAS

Rev. 2.00 Sep. 28, 2009 F REJ09

	Po	ort 7		AV _{cc} × 0.7			AV _{cc} + 0.3		
		Ports A, G, PE4, PE2 to PE0, P97, and P52					$V_{cc} \times 0.7$ — 5.5		
Table 28.2 DC	961	Figure ame	ended						
Characteristics (4) Using		Item		Symbol	Min.	Тур.	Max.	Unit	т
FSI Function		Output high voltage	PB7 to PB4	V _{OH}	$V_{\rm cc} - 0.5$	-	-	V	I,
					$V_{cc} - 1.0$	_	_		I,
		Output low voltage	-	V _{OL}	_	_	0.4		I,
28.3.2 Control Signal Timing Figure 28.8 Interrupt Input Timing	967	Figure ame	ended	1	KINi (i = 0 to 1 WUEi (i = 8 to 1	,			

All trademarks and registered trademarks are the property of their respective owners.

Rev. 2.00 Sep. 28, 2009 Page xxii of xl REJ09B0452-0200

	1.4.1	Pin Assignments
	1.4.2	Pin Assignment in Each Operating Mode
	1.4.3	Pin Functions
Secti	ion 2 C	PU
2.1	Feature	S
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU
	2.1.2	Differences from H8/300 CPU
	2.1.3	Differences from H8/300H CPU
2.2	CPU O	perating Modes
	2.2.1	Normal Mode
	2.2.2	Advanced Mode
2.3	Addres	s Space
2.4	Registe	rs
	2.4.1	General Registers
	2.4.2	Program Counter (PC)
	2.4.3	Extended Control Register (EXR)
	2.4.4	Condition-Code Register (CCR)
	2.4.5	Multiply-Accumulate Register (MAC)
	2.4.6	Initial Values of CPU Registers
2.5	Data Fo	ormats
	2.5.1	General Register Data Formats
	2.5.2	Memory Data Formats
2.6	Instruct	tion Set
	2.6.1	Table of Instructions Classified by Function
	2.6.2	Basic Instruction Formats
2.7	Addres	sing Modes and Effective Address Calculation
	2.7.1	Register Direct—Rn
	2.7.2	Register Indirect—@ERn

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

Sect	ion 3 MCU Operating Modes
3.1	Operating Mode Selection
3.2	Register Descriptions
	3.2.1 Mode Control Register (MDCR)
	3.2.2 System Control Register (SYSCR)
	3.2.3 Serial Timer Control Register (STCR)
	3.2.4 System Control Register 3 (SYSCR3)
3.3	Operating Mode Descriptions
	3.3.1 Mode 2
3.4	Address Map
	•
Sect	ion 4 Exception Handling
4.1	Exception Handling Types and Priority
4.2	Exception Sources and Exception Vector Table
4.3	Reset
	4.3.1 Reset Exception Handling
	4.3.2 Interrupts Immediately after Reset
	4.3.3 On-Chip Peripheral Modules after Reset is Cancelled
4.4	Interrupt Exception Handling
4.5	Trap Instruction Exception Handling
4.6	Exception Handling by Illegal Instruction
4.7	Stack Status after Exception Handling
4.8	Usage Note
Sect	ion 5 Interrupt Controller
5.1	Features
5.2	Input/Output Pins
5.3	Register Descriptions
	5.3.1 Interrupt Control Registers A to D (ICRA to ICRD)

Rev. 2.00 Sep. 28, 2009 Page xxiv of xl REJ09B0452-0200

5.4	Interrup	pt Sources
	5.4.1	External Interrupt Sources
	5.4.2	Internal Interrupt Sources
5.5	Interrup	pt Exception Handling Vector Tables
5.6	Interrup	pt Control Modes and Interrupt Operation
	5.6.1	Interrupt Control Mode 0
	5.6.2	Interrupt Control Mode 1
	5.6.3	Interrupt Exception Handling Sequence
	5.6.4	Interrupt Response Times
5.7	Addres	s Breaks
	5.7.1	Features
	5.7.2	Block Diagram
	5.7.3	Operation
	5.7.4	Usage Notes
5.8	Usage 1	Notes
	5.8.1	Conflict between Interrupt Generation and Disabling
	5.8.2	Instructions for Disabling Interrupts
	5.8.3	Interrupts during Execution of EEPMOV Instruction
	5.8.4	Vector Address Switching
	5.8.5	External Interrupt Pin in Software Standby Mode and Watch Mode
	5.8.6	Noise Canceller Switching
	5.8.7	IRQ Status Register (ISR)
		us Controller (BSC)
6.1	Registe	r Descriptions
	6.1.1	Bus Control Register (BCR)
	6.1.2	Wait State Control Register (WSCR)

Renesas

Rev. 2.00 Sep. 28, 2009 P REJ09

	7.1.8	Noise Cancel Cycle Setting Register (PnNCCS) (n = 6, C, and G)
	7.1.9	Port Nch-OD Control Register (PnNOCR) (n = C, D, and F to J)
	7.1.10	Pin Functions
7.2	Output	Buffer Control
	7.2.1	Port 1
	7.2.2	Port 2
	7.2.3	Port 3
	7.2.4	Port 4
	7.2.5	Port 5
	7.2.6	Port 6
	7.2.7	Port 7
	7.2.8	Port 8
	7.2.9	Port 9
	7.2.10	Port A
	7.2.11	Port B
	7.2.12	Port C
	7.2.13	Port D
	7.2.14	Port E
	7.2.15	Port F
	7.2.16	Port G
	7.2.17	Port H
	7.2.18	Port I
	7.2.19	Port J
7.3	Change	e of Peripheral Function Pins
	7.3.1	Port Control Register 0 (PTCNT0)
	7.3.2	Port Control Register 1 (PTCNT1)
	7.3.3	Port Control Register 2 (PTCNT2)
		-

Rev. 2.00 Sep. 28, 2009 Page xxvi of xl REJ09B0452-0200

8.4	Operat	ion
	8.4.1	Single-Pulse Mode (8 Bits, 16 Bits)
	8.4.2	Pulse Division Mode
8.5	Usage	Note
	8.5.1	Setting Module Stop Mode
	8.5.2	Note on Using 16-Bit Single-Pulse PWM Timer
Sect	ion 9 14	4-Bit PWM Timer (PWMX)
9.1	Feature	°S
9.2	Input/C	Output Pins
9.3	Registe	r Descriptions
	9.3.1	PWMX (D/A) Counter (DACNT)
	9.3.2	PWMX (D/A) Data Registers A and B (DADRA and DADRB)
	9.3.3	PWMX (D/A) Control Register (DACR)
	9.3.4	Peripheral Clock Select Register (PCSR)
9.4	Bus Ma	aster Interface
9.5	Operat	on
9.6	Usage	Notes
	9.6.1	Module Stop Mode Setting
Sect	ion 10	16-Bit Timer Pulse Unit (TPU)
10.1	Feature	⁵ S
10.2	Input/C	Output Pins
10.3	Registe	r Descriptions
	10.3.1	Timer Control Register (TCR)
	10.3.2	Timer Mode Register (TMDR)
	10.3.3	Timer I/O Control Register (TIOR)
	10.3.4	Timer Interrupt Enable Register (TIER)
	10.3.5	Timer Status Register (TSR)

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

	10.5.4	PWM Modes
	10.5.5	Phase Counting Mode
10.6	Interru	pts
	10.6.1	Interrupt Source and Priority
	10.6.2	A/D Converter Activation
10.7	Operati	ion Timing
	10.7.1	Input/Output Timing
		Interrupt Signal Timing
10.8	Usage 1	Notes
	10.8.1	Input Clock Restrictions
	10.8.2	Caution on Period Setting
	10.8.3	Conflict between TCNT Write and Clear Operations
	10.8.4	Conflict between TCNT Write and Increment Operations
	10.8.5	Conflict between TGR Write and Compare Match
	10.8.6	Conflict between Buffer Register Write and Compare Match
	10.8.7	Conflict between TGR Read and Input Capture
	10.8.8	Conflict between TGR Write and Input Capture
	10.8.9	Conflict between Buffer Register Write and Input Capture
	10.8.10	Conflict between Overflow/Underflow and Counter Clearing
	10.8.11	Conflict between TCNT Write and Overflow/Underflow
	10.8.12	2 Multiplexing of I/O Pins
	10.8.13	Module Stop Mode Setting
Secti	ion 11	16-Bit Cycle Measurement Timer (TCM)
11.1	Feature	
11.2	Input/C	Dutput Pins
11.3	Registe	r Descriptions
	11.3.1	TCM Timer Counter (TCMCNT)
		TCM Cycle Upper Limit Register (TCMMLCM)

Rev. 2.00 Sep. 28, 2009 Page xxviii of xl REJ09B0452-0200

RENESAS

	11.6.1	Conflict between TCMCNT Write and Count-Up Operation
	11.6.2	Conflict between TCMMLCM Write and Compare Match
		Conflict between TCMICR Read and Input Capture
	11.6.4	Conflict between Edge Detection in Cycle Measurement Mode and
		Writing to TCMMLCM or TCMMINCM
	11.6.5	Conflict between Edge Detection in Cycle Measurement Mode and
		Clearing of TCMMDS Bit in TCMCR
	11.6.6	Settings of TCMCKI and TCMMCI
	11.6.7	Setting for Module Stop Mode
Secti	on 12 1	16-Bit Duty Period Measurement Timer (TDP)
12.1	Feature	S
12.2	Input/C	Output Pins
12.3		r Descriptions
	12.3.1	TDP Timer Counter (TDPCNT)
	12.3.2	TDP Pulse Width Upper Limit Register (TDPWDMX)
	12.3.3	TDP Pulse Width Lower Limit Register (TDPWDMN)
		TDP Cycle Upper Limit Register (TDPPDMX)
	12.3.5	TDP Cycle Lower Limit Register (TDPPDMN)
	12.3.6	TDP Input Capture Register (TDPICR)
	12.3.7	TDP Input Capture Buffer Register (TDPICRF)
	12.3.8	TDP Status Register (TDPCSR)
		TDP Control Register 1 (TDPCR1)
	12.3.10	TDP Control Register 2 (TDPCR2)
	12.3.11	TDP Interrupt Enable Register (TDPIER)
12.4		on
	12.4.1	Timer Mode
	12.4.2	Cycle Measurement Mode
12.5	Interrup	ot Sources

RENESAS

Rev. 2.00 Sep. 28, 2009 Pa REJ09

Secti	ion 13 8-Bit Timer (TMR)
13.1	Features
13.2	Input/Output Pins
13.3	Register Descriptions
	13.3.1 Timer Counter (TCNT)
	13.3.2 Time Constant Register A (TCORA)
	13.3.3 Time Constant Register B (TCORB)
	13.3.4 Timer Control Register (TCR)
	13.3.5 Timer Control/Status Register (TCSR)
	13.3.6 Time Constant Register C (TCORC)
	13.3.7 Input Capture Registers R and F (TICRR and TICRF)
	13.3.8 Timer Connection Register I (TCONRI)
	13.3.9 Timer Connection Register S (TCONRS)
	13.3.10 Timer XY Control Register (TCRXY)
13.4	Operation
	13.4.1 Pulse Output
13.5	Operation Timing
	13.5.1 TCNT Count Timing
	13.5.2 Timing of CMFA and CMFB Setting at Compare-Match
	13.5.3 Timing of Timer Output at Compare-Match
	13.5.4 Timing of Counter Clear at Compare-Match
	13.5.5 TCNT External Reset Timing
	13.5.6 Timing of Overflow Flag (OVF) Setting
13.6	TMR_0 and TMR_1 Cascaded Connection
	13.6.1 16-Bit Count Mode
	13.6.2 Compare-Match Count Mode
13.7	TMR_Y and TMR_X Cascaded Connection
	13.7.1 16-Bit Count Mode
	13.7.2 Compare-Match Count Mode

Rev. 2.00 Sep. 28, 2009 Page xxx of xl REJ09B0452-0200

RENESAS

Secti	on 14	Watchdog Timer (WDT)		
14.1	Features			
14.2	Input/Output Pins			
14.3	Register Descriptions			
	14.3.1	Timer Counter (TCNT)		
	14.3.2	Timer Control/Status Register (TCSR)		
14.4	-			
	14.4.1	Watchdog Timer Mode		
	14.4.2	Interval Timer Mode		
14.5	Interrupt Sources			
14.6	-			
	14.6.1	Notes on Register Access		
	14.6.2	Conflict between Timer Counter (TCNT) Write and Increment		
	14.6.3	Changing Values of CKS2 to CKS0 Bits		
	14.6.4	Changing Value of PSS Bit		
	14.6.5	Switching between Watchdog Timer Mode and Interval Timer Mode		
Secti	ion 15 \$	Serial Communication Interface (SCI)		
15.1	Features			
15.2	Input/Output Pins			
15.3				
	15.3.1	Receive Shift Register (RSR)		
	15.3.2	Receive Data Register (RDR)		
	15.3.3	Transmit Data Register (TDR)		
		Transmit Shift Register (TSR)		
	15.3.5	Serial Mode Register (SMR)		
	15.3.6	Serial Control Register (SCR)		
	15.3.7	Serial Status Register (SSR)		
	15.3.8	Smart Card Mode Register (SCMR)		

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

	15.5.2	Multiprocessor Serial Data Reception	
15.6	6 Operation in Clocked Synchronous Mode		
	15.6.1	Clock	
	15.6.2	SCI Initialization (Clocked Synchronous Mode)	
		Serial Data Transmission (Clocked Synchronous Mode)	
	15.6.4	Serial Data Reception (Clocked Synchronous Mode)	
	15.6.5	Simultaneous Serial Data Transmission and Reception	
		(Clocked Synchronous Mode)	
15.7 Smart Card Interface Description		Card Interface Description	
	15.7.1	Sample Connection	
	15.7.2	Data Format (Except in Block Transfer Mode)	
	15.7.3	Block Transfer Mode	
	15.7.4	Receive Data Sampling Timing and Reception Margin	
	15.7.5	Initialization	
	15.7.6	Serial Data Transmission (Except in Block Transfer Mode)	
	15.7.7	Serial Data Reception (Except in Block Transfer Mode)	
	15.7.8	Clock Output Control	
15.8	8 Interrupt Sources		
	15.8.1	Interrupts in Normal Serial Communication Interface Mode	
	15.8.2	Interrupts in Smart Card Interface Mode	
15.9	.9 Usage Notes		
	15.9.1	Module Stop Mode Setting	
	15.9.2	Break Detection and Processing	
	15.9.3	Mark State and Break Sending	
	15.9.4	Receive Error Flags and Transmit Operations	
		(Clocked Synchronous Mode Only)	
	15.9.5	Relation between Writing to TDR and TDRE Flag	
	15.9.6	SCI Operations during Mode Transitions	
	15.9.7	Notes on Switching from SCK Pins to Port Pins	

Rev. 2.00 Sep. 28, 2009 Page xxxii of xl REJ09B0452-0200

RENESAS

	16.3.5	Bit Rate Register (BRR)		
	16.3.6	Receive Data Register 0 to 17 (CIRRDR0 to CIRRDR17)		
	16.3.7	Header Minimum/Maximum High-Level Period Register		
		(HHMIN and HHMAX)		
	16.3.8	Header Minimum/Maximum Low-Level Period Register (HLMIN/HLM		
	16.3.9	Data Level 1 Minimum/Maximum Period Register (DT1MIN/DT1MAX		
	16.3.10	Data Level 0 Minimum/Maximum Period Register (DT0MIN/DT0MAX		
	16.3.11	Repeat Header Minimum/Maximum Low-Level Period Register (RMIN/RMAX)		
16.4	Operation			
	1	Determination of Signal Type by Low/High-Level Period		
		Operation of FIFO Register		
		Operation in Watch Mode		
	16.4.4	Switching between System Clock and Sub Clock		
16.5		Canceler Circuit		
16.6	Reset C	Conditions		
16.7	Interrup	rupt Sources		
16.8	-	age Note		
	U			
Sect	ion 17 S	Serial Communication Interface with FIFO (SCIF)		
17.1	Features			
17.2	Input/Output Pins			
17.3	Register Descriptions			
	17.3.1	Receive Shift Register (FRSR)		
	17.3.2	Receive Buffer Register (FRBR)		
	17.3.3	Transmitter Shift Register (FTSR)		
	17.3.4	Transmitter Holding Register (FTHR)		
		Divisor Latch H, L (FDLH, FDLL)		
		Interrupt Enable Register (FIER)		

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

	17.4.3	Initialization of the SCIF			
	17.4.4	Data Transmission/Reception with Flow Control			
	17.4.5	Data Transmission/Reception Through the LPC Interface			
17.5	Interrupt Sources				
17.6	Usage 1	Note			
	17.6.1	Power-Down Mode When LCLK is Selected for SCLK			
	17.6.2	FLCR Access During Serial Transmission and Reception			
Sect	ion 18]	I ² C Bus Interface (IIC)			
18.1	Features				
18.2	Input/Output Pins				
18.3					
	e	I ² C Bus Data Register (ICDR)			
		Slave Address Register (SAR)			
		Second Slave Address Register (SARX)			
		I ² C Bus Mode Register (ICMR)			
	18.3.5	I ² C Bus Control Register (ICCR)			
	18.3.6	I ² C Bus Status Register (ICSR)			
		I ² C Bus Control Initialization Register (ICRES)			
		I ² C Bus Extended Control Register (ICXR)			
18.4	Operati	ion			
	18.4.1	I ² C Bus Data Format			
	18.4.2	Initialization			
	18.4.3	Master Transmit Operation			
	18.4.4	Master Receive Operation			
	18.4.5	Slave Receive Operation			
	18.4.6	Slave Transmit Operation			
		IRIC Setting Timing and SCL Control			
	18.4.8	Noise Canceler			

Rev. 2.00 Sep. 28, 2009 Page xxxiv of xl

REJ09B0452-0200

RENESAS

	19.3.3	Keyboard Control Register H (KBCRH)					
	19.3.4	Keyboard Control Register L (KBCRL)					
	19.3.5	Keyboard Data Buffer Register (KBBR)					
	19.3.6	Keyboard Buffer Transmit Data Register (KBTR)					
19.4	Operati	on					
	19.4.1	Receive Operation					
	19.4.2	Transmit Operation					
	19.4.3	Receive Abort					
	19.4.4	KCLKI and KDI Read Timing					
	19.4.5	KCLKO and KDO Write Timing					
	19.4.6	KBF Setting Timing and KCLK Control					
	19.4.7	Receive Timing					
	19.4.8	Operation during Data Reception					
	19.4.9	KCLK Fall Interrupt Operation					
	19.4.10 First KCLK Falling Interrupt						
19.5	Usage Notes						
	19.5.1	KBIOE Setting and KCLK Falling Edge Detection					
	19.5.2	KD Output by KDO bit (KBCRL) and by Automatic Transmission					
	19.5.3	Module Stop Mode Setting					
	19.5.4	Medium-Speed Mode					
	19.5.5	Transmit Completion Flag (KBTE)					
Secti	on 20 l	LPC Interface (LPC)					
20.1	Feature	S					
20.2	Input/C	Output Pins					
20.3	Registe	r Descriptions					
	20.3.1	Host Interface Control Registers 0 and 1 (HICR0 and HICR1)					
	20.3.2	Host Interface Control Registers 2 and 3 (HICR2 and HICR3)					
	20.3.3	Host Interface Control Register 4 (HICR4)					

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

	20.3.15	SERIRQ Control Register 2 (SIRQCR2)				
	20.3.16	SERIRQ Control Register 3 (SIRQCR3)				
	20.3.17	SERIRQ Control Register 4 (SIRQCR4)				
	20.3.18	SCIF Address Register (SCIFADRH, SCIFADRL)				
	20.3.19	Host Interface Select Register (HISEL)				
20.4	Operati	on				
	20.4.1	LPC interface Activation				
	20.4.2	LPC I/O Cycles				
	20.4.3	Gate A20				
	20.4.4	LPC Interface Shutdown Function (LPCPD)				
	20.4.5	LPC Interface Serialized Interrupt Operation (SERIRQ)				
	20.4.6	LPC Interface Clock Start Request				
	20.4.7	SCIF Control from LPC Interface				
20.5	Interru	ot Sources				
	20.5.1	IBFI1, IBFI2, IBFI3, IBFI4, OBEI, and ERRI				
	20.5.2	SMI, HIRQ1, HIRQ3, HIRQ4, HIRQ5, HIRQ6, HIRQ7, HIRQ8, HIRQ9,				
		HIRQ10, HIRQ11, HIRQ12, HIRQ13, HIRQ14, and HIRQ15				
20.6	Usage 1	Note				
	20.6.1	Data Conflict				
Secti	on 21]	FSI Interface				
21.1	Feature	·S				
21.2	Input/Output Pins					
21.3						
	21.3.1	FSI Control Register 1 (FSICR1)				
		FSI Control Register 2 (FSICR2)				
	21.3.3	FSI Byte Count Register (FSIBNR)				
		FSI Instruction Register (FSIINS)				
		FSI Instruction Register (FSIRDINS)				
		δ 、 ,				

Rev. 2.00 Sep. 28, 2009 Page xxxvi of xl

REJ09B0452-0200

RENESAS

	21.3.15	FSI LPC Command Status Register 2 (FSILSTR2)					
	21.3.16	FSI General-Purpose Registers 1 to F (FSIGPR1 to FSIGPRF)					
21.3.17 FSI LPC Control Register (SLCR)							
	21.3.18	FSI Address Registers H, M, and L (FSIARH, FSIARM, and FSIARL)					
21.3.19 FSI Write Data Registers HH, HL, LH, and LL							
		(FSIWDRHH, FSIWDRHL, FSIWDRLH, and FSIWDRLL)					
21.4	Operati	on					
	21.4.1	LPC/FW Memory Cycles					
	21.4.2	SPI Flash Memory Transfer					
	21.4.3	Flash Memory Instructions					
	21.4.4	FSI Memory Cycle (Direct Transfer between LPC and SPI)					
	21.4.5	FSI Memory Cycle (LPC-SPI Command Transfer)					
	21.4.6	SPI Flash Memory Write Operation Mode					
21.5	Reset C	Conditions					
21.6	Interru	pt Sources					
21.7	Usage 1	Note					
	21.7.1	Longword Transfer in FW Memory Write Cycles					
Secti		A/D Converter					
22.1	Feature	S					
22.2	Input/C	Output Pins					
22.3	Registe	r Descriptions					
	22.3.1	A/D Data Registers A to H (ADDRA to ADDRH)					
	22.3.2	A/D Control/Status Register (ADCSR)					
	22.3.3	A/D Control Register (ADCR)					
22.4	Operati	on					
	22.4.1	Single Mode					
	22.4.2	Scan Mode					
	22.4.3	Input Sampling and A/D Conversion Time					

Renesas

Rev. 2.00 Sep. 28, 2009 Pag REJ09

Section 23 RAM								
Section 24 Flash Memory								
	eatures							
24.2 M	Iode Transition Diagram							
	lash Memory MAT Configuration							
24.4 Bl	lock Structure							
	rogramming/Erasing Interface							
24.6 In	nput/Output Pins							
24.7 Re	egister Descriptions							
24	4.7.1 Programming/Erasing Interface Registers							
24	4.7.2 Programming/Erasing Interface Parameters							
24.8 Or	n-Board Programming Mode							
24	4.8.1 Boot Mode							
24	4.8.2 User Program Mode							
24	4.8.3 User Boot Mode							
24	4.8.4 Storable Areas for On-Chip Program and Program Data							
24.9 Pr	rotection							
24	4.9.1 Hardware Protection							
24	4.9.2 Software Protection							
24	4.9.3 Error Protection							
	witching between User MAT and User Boot MAT							
	rogrammer Mode							
24.12 St	1.12 Standard Serial Communication Interface Specifications for Boot Mode							
24.13 Us	sage Notes							
Section	n 25 Clock Pulse Generator							
25.1 Os	scillator							

Rev. 2.00 Sep. 28, 2009 Page xxxviii of xl REJ09B0452-0200

26.1	Register	Descriptions					
	26.1.1	Standby Control Register (SBYCR)					
	26.1.2	Low-Power Control Register (LPWRCR)					
	26.1.3	Module Stop Control Registers H, L, A, and B (MSTPCRH, MSTPCRL,					
		MSTPCRA, MSTPCRB)					
26.2	Mode T	ransitions and LSI States					
26.3	Medium	n-Speed Mode					
26.4	Sleep M	lode					
26.5	Softwar	e Standby Mode					
26.6		Mode					
26.7	Module	Stop Mode					
26.8	Usage N	Votes					
	26.8.1	I/O Port Status					
	26.8.2	Current Consumption when Waiting for Oscillation Stabilization					
Secti		ist of Registers					
27.1	-	Addresses (Address Order)					
27.2	U	Bits					
27.3	-	States in Each Operating Mode					
27.4		Selection Condition					
27.5	Register	Addresses (Classification by Type of Module)					
Secti		Electrical Characteristics					
28.1		e Maximum Ratings					
28.2	DC Characteristics						
28.3	AC Cha	racteristics					
	28.3.1	Clock Timing					
	28.3.2	Control Signal Timing					
	28.3.3	Timing of On-Chip Peripheral Modules					

Renesas

Rev. 2.00 Sep. 28, 2009 Pag REJ09

Rev. 2.00 Sep. 28, 2009 Page xl of xl REJ09B0452-0200

FIFO, an I²C bus interface, an A/D converter, and various types of timers. Together, the realize low-cost system configurations. The power consumption of these modules is kep dynamically by power-down modes. The on-chip ROM is a flash memory (F-ZTATTM*) capacity of 160 Kbytes.

Note: * F-ZTATTM is a trademark of Renesas Technology Corp.

1.1.1 Applications

Examples of the applications of this LSI include PC peripheral equipment, office autom equipment, and industrial equipment.

Rev. 2.00 Sep. 28, 2009 P REJ09

CPU	CPU	16-bit high-speed H8S/2600 CPU (CISC type)
		Upward-compatibility with H8/300, H8/300H, and H8S object level
		General-register architecture (sixteen 16-bit general re
		Eight addressing modes
		4-Gbyte address space
		Program: 4 Gbytes available
		Data: 4 Gbytes available
	·	 69 basic instructions (bit arithmetic and logic instruction multiply and divide instructions, bit manipulation instruct multiply-and-accumulate instructions, and others)
	·	 Minimum instruction execution time: 50.0 ns (for an AE instruction while system clock φ = 20 MHz and V_{cc} = 3.0 to 3.6 V)
		• On-chip multiplier ($16 \times 16 \rightarrow 32$ bits)
		• Supports multiply-and-accumulate instructions $(16 \times 16 + 32 \rightarrow 32 \text{ bits})$
	Operating mode	Advanced and single-chip modes

Rev. 2.00 Sep. 28, 2009 Page 2 of 994 REJ09B0452-0200

Note: MDU is not available as a pin and is internally fixed

		 Power-down state (transition to the power-down state the SLEEP instruction)
Interrupt (source)	Interrupt controller	 41 external interrupt pins (NMI, IRQ15 to IRQ0 (ExIRQ ExIRQ6), KIN15 to KIN0, and WUE15 to WUE8)
	•	66 internal interrupt sources
		• Two interrupt control modes (specified by the system register)
		 Two levels of interrupt priority orders specifiable (by s interrupt control register)
	•	 Independent vector addresses
Clock	Clock pulse	Two clock generation circuits
	generator (CPG)	 Clock pulse generator and subclock input circuit
	(CFG)	System clock (ϕ) synchronization: 8 to 20 MHz
		 Five power-down modes: Medium-speed mode, sleep watch mode, software standby mode, and module sto
A/D converter	A/D converter (ADC)	 10-bit resolution × 16 input channels Sample and hold function included Conversion time: 4 μs per channel (with A/D conversion ADCLK at 10 MHz operation) Two operating modes: single mode and scan mode Three methods to start A/D conversion: software and (TPU/TMR) triggers

Renesas

Rev. 2.00 Sep. 28, 2009 P REJ09

16-bit timer pulse unit (TPU)	•	Selectable from eight counter input clocks for each cha Maximum 8-pulse inputs/outputs The following operations can be set.
		 Counter clear operation
		 Multiple timer counters (TCNT) can be written to simultaneously.
		 Simultaneous clearing by compare match and input possible
		 Register simultaneous input/output possible by cou synchronous operation
		 Maximum of 7-phase PWM output possible by com with synchronous operation
	•	Supports buffer operation and phase counting mode (to phase encoder input) for some channels
	•	Supports input capture function
	•	Supports output compare function (waveform output at compare match)
16-bit cycle	•	16 bits × four channels
measurem- ent timer	•	Selectable from seven clocks: six internal clocks and or external clock
(TCM)	•	Capable of measuring the periods of input waveforms
16-bit duty	•	16 bits \times three channels
period measurem-	•	Selectable from seven clocks: six internal clocks and o external clock
ent timer (TDP)	•	Capable of measuring the periods and pulse width of in waveforms

Rev. 2.00 Sep. 28, 2009 Page 4 of 994 REJ09B0452-0200

RENESAS

	cation interface with FIFO (SCIF)	 Full-duplex communication capability On-chip baud rate generator allows any bit rate to be Direct control from the LPC host
Smart card/ SIM	Serial communi- cation interface (SCI)	 Two channels (choice of asynchronous or clocked synserial communication mode) Full-duplex communication capability Selection of the desired bit rate and LSB-first or MSB-transfer The SCI module supports a smart card (SIM) interface
High- performance communication	l ² C bus interface (IIC)	 Three channels (two channels are switchable between and output pin) Two types of communication formats I²C bus format: addressing format with an acknowledg master/slave operation Clocked synchronous serial format: non-addressing for without an acknowledge bit, for master operation only
	Keyboard buffer control unit (PS2) LPC interface (LPC)	 Four channels Conforms to PS/2 interface specifications Direct bus drive Interrupt and error detection Four channels Serial transfer of cycle type, address, and data in synchronization with the PCI clock Supports LPC interface I/O read and I/O write cycles Supports the shutdown function (LPCPD) of the LPC interface I/O read

RENESAS

Rev. 2.00 Sep. 28, 2009 P REJ09

	 Input/output pins: 112 pins (TFP-144V and TLP-145V) 128 pins (BP-176V)
	 76 pull-up resistors for TFP-144V and TLP-145V, and 8 up resistors for BP-176V
	 40 pins with LED drive capability
	24 on-chip noise cancellers
Package	 144-pin thin QFP package (PTQP0144LC-A) (old code: TFP-144V, package dimensions: 16 × 16 mr pitch: 0.40 mm)
	 176-pin BGA package (PLBG0176GA-A) (old code: BP-176V, package dimensions: 13 × 13 mm pitch: 0.80 mm)
	 145-pin TLP package (PTLG0145JB-A)
	(package dimensions: 9×9 mm, pin pitch: 0.65 mm)
	Lead- (Pb-) free version
Operating frequency/	Operating frequency: 8 to 20 MHz
Power supply voltage	• Power supply voltage: Vcc = 3.0 to 3.6 V, AVcc = 3.0 to
	Supply current:
	25 mA (typ.) (Vcc = 3.3 V, AVcc = 3.3 V, ϕ = 20 MHz)
Operating peripheral temperature (°C)	 –20 to +75°C (regular specifications)

Rev. 2.00 Sep. 28, 2009 Page 6 of 994 REJ09B0452-0200

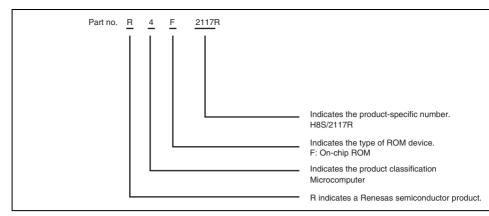


Figure 1.1 How to Read the Product Name Code

Rev. 2.00 Sep. 28, 2009 P REJ09

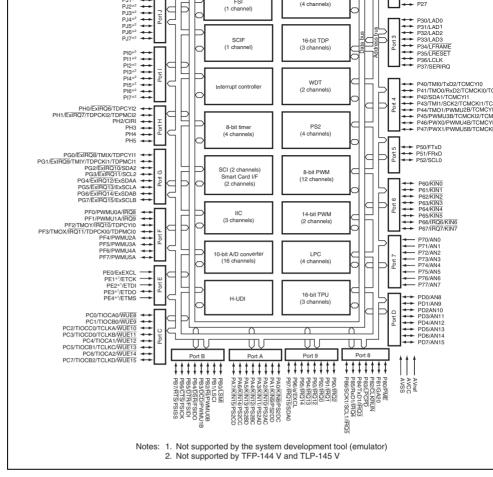


Figure 1.2 Internal Block Diagram

Rev. 2.00 Sep. 28, 2009 Page 8 of 994 REJ09B0452-0200

RENESAS

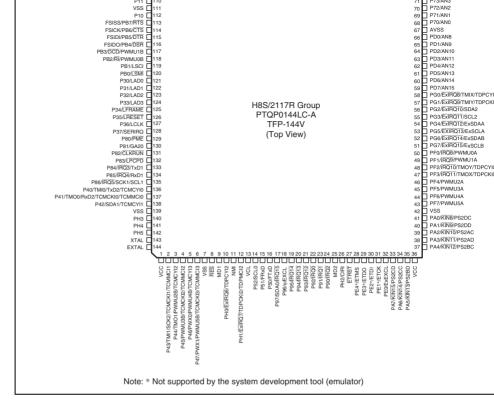


Figure 1.3 Pin Assignments (TFP-144V)

Rev. 2.

Rev. 2.00 Sep. 28, 2009 P REJ09

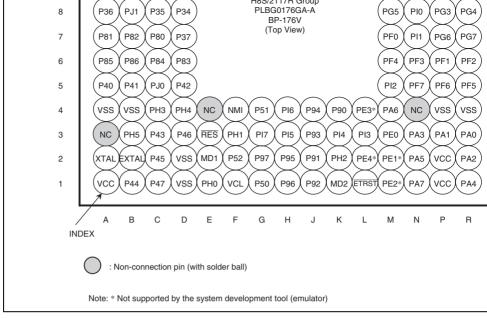


Figure 1.4 Pin Assignments (BP-176V)

Rev. 2.00 Sep. 28, 2009 Page 10 of 994 REJ09B0452-0200

8	P34	PB0	P32	P35			2117R (_G0145,			PG2	PD3	PG0
7	P80	P33	P82	P36		(Top View)					PD7	PG6
6	P84	P81	P86	P37						PG4	PG7	PF2
5	P41	P85	VSS	P83	NC					PF0	PF3	PF4
4	РНЗ	P42	PH5	P40	P52	P96	P95	P94	P90	PE4 [*]	PF6	PF7
3	XTAL	PH4	P47	RES	NMI	P51	P91	ETRST	PE1 [*]	PA6	VSS	PA2
2	EXTAL	P45	P44	VSS	PH0	PH1	P50	P92	PH2	PE2 [*]	PA7	PA3
1	P43	vcc	P46	MD1	VCL	P97	P93	MD2	PE3	PE0	PA5	vcc
INDEX	A	В	С	D	E	F	G	Н	J	К	L	М
: NC Pin												
Note: * Not supported by the systen development tool (emulator)												

Figure 1.5 Pin Assignments (TLP-145V)

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

4	C2	B2	P45/PWMU3B/TCMCKI2/TCMMCI2
5	D3	C1	P46/PWX0/PWMU4B/TCMCYI3
6	C1	C3	P47/PWX1/PWMU5B/TCMCKI3/TCMMCI3
7	D2	D2	VSS
	E4		NC
8	E3	D3	RES
	D1	_	VSS
9	E2	D1	MD1
10	E1	E2	PH0/ExIRQ6/TDPCYI2
11	F4	E3	NMI
12	F3	F2	PH1/ExIRQ7/TDPCKI2/TDPMCI2
13	F1	E1	VCL
14 (N)	F2 (N)	E4 (N)	P52/SCL0
15	G4	F3	P51/FRxD
	G3 (N)	_	PI7
16	G1	G2	P50/FTxD
17 (N)	G2 (N)	F1 (N)	P97/SDA0/IRQ15
	H4 (N)		PI6
	H3 (N)	—	PI5
18	H1	F4	P96/ø/EXCL
19	H2	G4	P95/IRQ14
20	J4	H4	P94/IRQ13
21	J3	G1	P93/IRQ12

Rev. 2.00 Sep. 28, 2009 Page 12 of 994 REJ09B0452-0200

RENESAS

27 L1 H3 ETRST 28 (T) L2 (T) K4 (T) PE4*/ETMS 29 L4 J1 PE3*/ETDO 30 (T) M1 (T) K2 (T) PE2*/ETDI 31 (T) M2 (T) J3 (T) PE1*/ETCK 32 (T) M3 (T) K1 (T) PE0/ExEXCL 33 (N) N1 (N) L2 (N) PA7/KINT5/PS2CD 34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC P2 - VCC 33 (N) N1 (N) PA3/KIN17/PS2AD 38 (N) N3 (N) M2 (N) PA3/KIN17/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD - - 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS - - M5 (N) - PI2 </th <th></th> <th>L3 (N)</th> <th></th> <th>PI3</th>		L3 (N)		PI3
29 L4 J1 PE3*/ETDO 30 (T) M1 (T) K2 (T) PE2*/ETDI 31 (T) M2 (T) J3 (T) PE1*/ETCK 32 (T) M3 (T) K1 (T) PE0/ExEXCL 33 (N) N1 (N) L2 (N) PA7/KIN15/PS2CD 34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC P2 VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA4/KIN17/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) - PI2 R4 - VSS 43 N5 M4 PF7/PWMU5A	27	L1	H3	ETRST
30 (T) M1 (T) K2 (T) PE2*/ETDI 31 (T) M2 (T) J3 (T) PE1*/ETCK 32 (T) M3 (T) K1 (T) PE0/ExEXCL 33 (N) N1 (N) L2 (N) PA7/KIN15/PS2CD 34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC - P2 - VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) - PI2 R4 - VSS 43 N5 M4 PF7/PWMU5A	28 (T)	L2 (T)	K4 (T)	PE4*/ETMS
31 (T) M2 (T) J3 (T) PE1*/ETCK 32 (T) M3 (T) K1 (T) PE0/ExEXCL 33 (N) N1 (N) L2 (N) PA7/KIN15/PS2CD 34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC P2 VCC 37 (N) R1 (N) N2 (N) PA3/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) PI2 R4 VSS 43 N5 M4 PF7/PWMU5A	29	L4	J1	PE3*/ETDO
32 (T) M3 (T) K1 (T) PE0/ExEXCL 33 (N) N1 (N) L2 (N) PA7/KIN15/PS2CD 34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC - P2 - VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA4/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD - N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS - M5 (N) - PI2 - R4 - VSS 43 N5 M4 PF7/PWMU5A	30 (T)	M1 (T)	K2 (T)	PE2*/ETDI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 (T)	M2 (T)	J3 (T)	PE1*/ETCK
34 (N) M4 (N) K3 (N) PA6/KIN14/PS2CC 35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC - P2 - VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA4/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD - N4 - NC 41 (N) R3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS - M5 (N) - PI2 - R4 - VSS 43 N5 M4 PF7/PWMU5A	32 (T)	M3 (T)	K1 (T)	PE0/ExEXCL
35 (N) N2 (N) L1 (N) PA5/KIN13/PS2BD 36 P1 M1 VCC - P2 - VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD - N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS - M5 (N) - PI2 - R4 - VSS 43 N5 M4 PF7/PWMU5A	33 (N)	N1 (N)	L2 (N)	PA7/KIN15/PS2CD
36 P1 M1 VCC — P2 — VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD — N4 — NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS — M5 (N) — PI2 — R4 — VSS 43 N5 M4 PF7/PWMU5A	34 (N)	M4 (N)	K3 (N)	PA6/KIN14/PS2CC
P2 VCC 37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) - PI2 R4 - VSS 43 N5 M4 PF7/PWMU5A	35 (N)	N2 (N)	L1 (N)	PA5/KIN13/PS2BD
37 (N) R1 (N) N2 (N) PA4/KIN12/PS2BC 38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) PI2 R4 VSS 43 N5 M4 PF7/PWMU5A	36	P1	M1	VCC
38 (N) N3 (N) M2 (N) PA3/KIN11/PS2AD 39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD - N4 - NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS - M5 (N) - PI2 - R4 - VSS 43 N5 M4 PF7/PWMU5A		P2		VCC
39 (N) R2 (N) M3 (N) PA2/KIN10/PS2AC 40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) PI2 R4 VSS 43 N5 M4 PF7/PWMU5A	37 (N)	R1 (N)	N2 (N)	PA4/KIN12/PS2BC
40 (N) P3 (N) N1 (N) PA1/KIN9/PA2DD N4 NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) PI2 R4 VSS 43 N5 M4 PF7/PWMU5A	38 (N)	N3 (N)	M2 (N)	PA3/KIN11/PS2AD
N4 NC 41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) PI2 R4 VSS 43 N5 M4 PF7/PWMU5A	39 (N)	R2 (N)	M3 (N)	PA2/KIN10/PS2AC
41 (N) R3 (N) N3 (N) PA0/KIN8/PA2DC 42 P4 L3 VSS M5 (N) Pl2 R4 VSS 43 N5 M4 PF7/PWMU5A	40 (N)	P3 (N)	N1 (N)	PA1/KIN9/PA2DD
42 P4 L3 VSS - M5 (N) - Pl2 - R4 - VSS 43 N5 M4 PF7/PWMU5A		N4		NC
M5 (N) Pl2 R4 VSS 43 N5 M4 PF7/PWMU5A	41 (N)	R3 (N)	N3 (N)	PA0/KIN8/PA2DC
R4 VSS 43 N5 M4 PF7/PWMU5A	42	P4	L3	VSS
43 N5 M4 PF7/PWMU5A		M5 (N)		PI2
	_	R4		VSS
44 P5 L4 PF6/PWMU4A	43	N5	M4	PF7/PWMU5A
	44	P5	L4	PF6/PWMU4A

Renesas

Rev. 2.00 Sep. 28, 2009 Pa REJ09

_	N7 (N)	—	PI1
51 (N)	R7 (N)	L6 (N)	PG7/ExIRQ15/ExSCLB
52 (N)	P7 (N)	M7 (N)	PG6/ExIRQ14/ExSDAB
53 (N)	M8 (N)	N6 (N)	PG5/ExIRQ13/ExSCLA
	N8 (N)	_	PIO
54 (N)	R8 (N)	K6 (N)	PG4/ExIRQ12/ExSDAA
55 (N)	P8 (N)	K7 (N)	PG3/ExIRQ11/SCL2
_	M9 (N)	_	NC
56 (N)	N9 (N)	K8 (N)	PG2/ExIRQ10/SDA2
57 (N)	R9 (N)	N7 (N)	PG1/ExIRQ9/TMIY/TDPCKI1/TDPMCI1
58 (N)	P9 (N)	M8 (N)	PG0/ExIRQ8/TMIX/TDPCYI1
59	M10	L7	PD7/AN15
60	N10	K9	PD6/AN14
61	R10	N8	PD5/AN13
62	P10	M9	PD4/AN12
63	N11	L8	PD3/AN11
64	R11	K10	PD2/AN10
65	P11	N9	PD1/AN9
66	M11	M10	PD0/AN8
67	R12	L9	AVSS
_	P12		AVSS
68	N12	N10	P70/AN0
69	R13	M11	P71/AN1

Rev. 2.00 Sep. 28, 2009 Page 14 of 994 REJ09B0452-0200

RENESAS

75	P15	L12	P77/AN7
76	N14	M12	AVCC
_	M13		NC
_	N15	_	AVCC
77	M14	L11	AVref
_	L12	E5	NC
_	M15		AVref
78	L13	L13	P60/KINO
79	L14	K12	P61/KIN1
80	L15	K11	P62/KIN2
81	K12	J12	P63/KIN3
82	K13	K13	P64/KIN4
	K15		PJ7
83	K14	J10	P65/KIN5
84	J12	J11	P66/IRQ6/KIN6
85	J13	H12	P67/IRQ7/KIN7
86	J15	H10	VCC
	J14		PJ6
87	H12	J13	PC7/TIOCB2/TCLKD/WUE15
88	H13	H11	PC6/TIOCA2/WUE14
89	H15	G12	PC5/TIOCB1/TCLKC/WUE13
90	H14	G10	PC4/TIOCA1/WUE12
91	G12	H13	PC3/TIOCD0/TCLKB/WUE11

RENESAS

Rev. 2.00 Sep. 28, 2009 Pa

REJ09

96	F14	E10	P27
97	E13	F13	P26
98	E15	E12	P25
99	E14	E13	P24
100	E12	F11	P23
101	D15	D12	P22
102	D14	E11	P21
103	D13	D13	P20
104	C15	D10	P17
105	D12	C12	P16
106	C14	C13	P15
107	B15	D11	P14
108	B14	B13	P13
109	A15	A12	P12
110	C13	A13	P11
_	A14		PJ4
111	B13	B11	VSS
_	C12	—	PJ3
_	A13		VSS
112	B12	B12	P10
113	D11	A11	PB7/RTS/FSISS
114	A12	C11	PB6/CTS/FSICK
115	C11	B10	PB5/DTR/FSIDI

Rev. 2.00 Sep. 28, 2009 Page 16 of 994 REJ09B0452-0200

RENESAS

121	D9	A9	P30/LAD0
122	C9	D9	P31/LAD1
123	A9	C8	P32/LAD2
124	B9	B7	P33/LAD3
125	D8	A8	P34/LFRAME
126	C8	D8	P35/LRESET
127	A8	D7	P36/LCLK
	B8		PJ1
128	D7	D6	P37/SERIRQ
129	C7	A7	P80/PME
130	A7	B6	P81/GA20
131	B7	C7	P82/CLKRUN
132	D6	D5	P83/LPCPD
133	C6	A6	P84/IRQ3/TxD1
134	A6	B5	P85/IRQ4/RxD1
135 (N)	B6 (N)	C6 (N)	P86/IRQ5/SCK1/SCL1
_	C5		PJO
136	A5	D4	P40/TMI0/TxD2/TCMCYI0
137	B5	A5	P41/TMO0/RxD2/TCMCKI0/TCMMCI0
138 (N)	D5 (N)	B4 (N)	P42/SDA1/TCMCYI1
139	A4	C5	VSS
_	B4		VSS
140	C4	A4	PH3

Rev. 2.00 Sep. 28, 2009 Pa RENESAS

REJ09

tolerance.

(T) in Pin No. indicates the pin has 5 V input tolerance.

* This pin is not supported by the system development tool (emulator).

Rev. 2.00 Sep. 28, 2009 Page 18 of 994 REJ09B0452-0200

						internal step-down power this pin to VSS through a capacitor (that is located pin) to stabilize internal a power.	
	VSS	7, 42, 95, 111, 139	D1, D2, P4, R4, F12, F13, B13, A13, A4, B4	D2, L3, F10, B11, C5	Input	Ground pins. Connect a pins to the system powe (0 V).	
Clock	XTAL	143	A2	A3	Input	For connection to a crys	
	EXTAL	144	B2	A2	Input	resonator. An external c supplied from the EXTA an example of crystal re connection, see section Pulse Generator.	
	φ	18	H1	F4	Output	Supplies the system clorexternal devices.	
	EXCL	18	H1	F4	Input	32.768 kHz external sub	
	ExEXCL	32	М3	K1	Input	should be supplied. To the external clock is inp selected from the EXC ExEXCL pin.	
Operating mode control	MD2 MD1	25 9	K1 E2	H1 D1	Input	These pins set the opera Inputs at these pins sho changed during operation	
System control	RES	8	E3	D3	Input	Reset pin. When this pir chip is reset.	

Rev. 2.00 Sep. 28, 2009 Pa

RENESAS

REJ09

			02,01	00, 04		
	ExIRQ15 to ExIRQ6	51 to 58, 12, 10	R7, P7, M8, R8, P8, N9, R9, P9, F3, E1	L6, M7, N6, K6, K7, K8, N7, M8, F2, E2	Input	
H-UDI	ETRST* ²	27	L1	H3	Input	Interface pins for emulat
	ETMS	28	L2	K4	Input	Reset by holding the $\overline{\text{ET}}$
	ETDO	29	L4	J1	Output	low level regardless of th activation. At this time, th
	ETDI	30	M1	K2	Input	pin should be held low le
	ETCK	31	M2	J3	Input	clocks of ETCK. Then, t the H-UDI, the ETRST p set to high level and the ETMS, and ETDI should appropriately. In the nor operation without activa UDI, pins ETCK, ETMS ETDO should be pulled level. The ETRST pin is inside the chip.
8-bit timer (TMR_0, TMR_1,	TMO0 TMO1 TMOX TMOY	137 3 47 48	B5 B1 N6 R6	A5 C2 L5 M6	Output	Waveform output pins w compare function
TMR_X, TMR_Y)	TMIO TMI1 TMIX TMIY	136 2 58 57	A5 C3 P9 R9	D4 A1 M8 N7	Input	Counter event input and input pins

Rev. 2.00 Sep. 28, 2009 Page 20 of 994 REJ09B0452-0200

RENESAS

	TIOCB1	89	H15	G12	Output	compare output/PW pins for TGRA_1 an
	TIOCA2 TIOCB2	88 87	H13 H12	H11 J13	Input/ Output	Input capture input/o compare output/PW pins for TGRA_2 an
measure- ment timer	TCMCKI3 to TCMCKI0	6, 4, 2, 137	C1, C2, C3, B5	C3, B2, A1, A5	Input	Timer external clock
(TCM)	TCMMCI3 to TCMMCI0	6, 4, 2, 137	C1, C2, C3, B5	C3, B2, A1, A5	Input	Cycle measurement input pins
	TCMCYI3 to TCMCYI0	5, 3, 138, 136	D3, B1, D5, A5	C1, C2, B4, D4	Input	Timer input capture
16-bit duty period measure-	TDPCKI2 to TDPCKI0	12, 57, 47	F3, R9, N6	F2, N7, L5	Input	Timer external clock
ment timer (TDP)	TDPMCI2 to TDPMCI0	12, 57, 47	F3, R9, N6	F2, N7, L5	Input	Cycle measurement input pins
	TDPCYI2 to TDPCYI0	10, 58, 47	E1, P9, R6	E2, M8, M6	Input	Timer input capture
8-bit PWM timer U (PWMU)	PWMU5A to PWMU0A PWMU5B to PWMU0B	43 to 46, 49, 50, 6 to 3, 117, 118	N5, P5, R5, M6, P6, M7, C1, D3, C2, B1, A11, D10	M4, L4, N4, M5, N5, K5, C3, C1, B2, C2, A10, B9	Output	PWM timer pulse ou

Rev. 2.00 Sep. 28, 2009 Pa

Renesas

REJ09

					•	SCK2 is NMOS pusl
Keyboard buffer control unit (PS2)	PS2AC PS2BC PS2CC PS2DC	39 37 34 41	R2 R1 M4 R3	M3 N2 K3 N3	Input/ Output	Synchronous clock input/output pins for keyboard buffer cont
	PS2AD PS2BD PS2CD PS2DD	38 35 33 40	N3 N2 N1 P3	M2 L1 L2 N1	Input/ Output	Data input/output pir keyboard buffer cont
Keyboard control	KIN15 to KIN0	33 to 35, 37 to 41, 85 to 78	N1, M4, N2, R1, N3, R2, P3, R3, J13, J12, K14, K13, K12, L15, L14, L13	L2, K3, L1, N2, M2, M3, N1, N3, H12, J11, J10, K13, J12, K11, K12, L13	Input	Input pins for matrix Normally, KIN15 to F function as key scan and P17 to P10 and P20 function as key outputs. Thus, comp a maximum of 16 ou inputs, a 256-key ma be configured.
	WUE15 to WUE8	87 to 94	H12, H13, H15, H14, G12, G13, G15, G14		Input	Wake-up event input Same wake up as ke up can be performed various sources.

Rev. 2.00 Sep. 28, 2009 Page 22 of 994 REJ09B0452-0200

		010			011	mpat	input pin
		RTS	113	D11	A11	Output	Transmission requ
	LPC Interface	LAD3 to LAD0	124 to 121	B9, A9, C9, D9	B7, C8, D9, A9	Input/ Output	LPC command, ac and data input/out
	(LPC)	LFRAME	125	D8	A8	Input	Input pin indicating cycle start and for termination of an a LPC cycle
		LRESET	126	C8	D8	Input	Input pin indicating reset
		LCLK	127	A8	D7	Input	LPC clock input pi
		SERIRQ	128	D7	D6	Input/ Output	LPC serial host in (HIRQ1 to HIRQ1 input/output pin
		LSCI, LSMI, PME	119, 120, 129	A10, B10, C7	C9, B8, A7	Input/ Output	LPC auxiliary outp Functionally, they general I/O ports.
		GA20	130	A7	B6	Input/ Output	GATE A20 control output pin. Output monitoring input is
		CLKRUN	131	B7	C7	Input/ Output	Input/output pin th requests the start operation when LO stopped.
		LPCPD	132	D6	D5	Input	Input pin that cont module shutdown

Rev. 2.00 Sep. 28, 2009 Pa REJ09

Renesas

converter	ANO	75 to 68	R10, P10, N11, R11, P11, M11, P15, N13, R15, P14, R14, P13, R13, N12	M9, L8, K10, N9, M10, L12, N13, M13, N12, N11, L10, M11, N10		
	AVCC	76	N14, N15	M12	Input	Analog power supp the A/D converter.
						When the A/D conv not used, this pin sl connected to the sy power supply (+3 V
	AVref	77	M14, M15	L11	Input	Reference power so for the A/D converte
						When the A/D conv not used, this pin sl connected to the sy power supply (+3 V
	AVSS	67	R12, P12	L9	Input	Ground pin for the converter. This pin connected to the sy power supply (0 V).

Rev. 2.00 Sep. 28, 2009 Page 24 of 994 REJ09B0452-0200

	SDA2 ExSDAA ExSDAB	56 54 52	N9 R8 P7	K8 K6 M7		To which pin the c input or output can selected from the SDA1, ExSDAA, a ExSDAB pins.
I/O port	P17 to P10	104 to 110, 112	C15, D12, C14, B15, B14, A15, C13, B12	D10, C12, C13, D11, B13, A12, A13, B12	Input/ Output	8-bit input/output
	P27 to P20	96 to 103	F14, E13, E15, E14, E12, D15, D14, D13	E10, F13, E12, E13, F11, D12, E11, D13	Input/ Output	8-bit input/output
	P37 to P30	128 to 121	D7, A8, C8, D8, B9, A9, C9, D9	D6, D7, D8, A8, B7, C8, D9, A9	Input/ Output	8-bit input/output
	P47 to P40	6 to 2, 138 to 136	C1, D3, C2, B1, C3, D5, B5, A5	C3, C1, B2, C2, A1, B4, A5, D7	Input/ Output	8-bit input/output (The output type of NMOS push-pull.)
	P52 to	14 to 16	F2, G4, G1	E4, F3,	Input/	3-bit input/output
	P50			G2	Output	(The output type on NMOS push-pull.)
	P67 to P60	85 to 78	J13, J12, K14, K13, K12, L15, L14, L13	H12, J11, J10, K13, J12, K11, K12, L13	Input/ Output	8-bit input/output

Rev. 2.00 Sep. 28, 2009 Pa

RENESAS

REJ09

P90		H2, J4, J3, J1, J2, K4	G4, H4, G1, H2, G3, J4	Output	(The output type of NMOS push-pull.)
PA7 to PA0	33 to 35, 37 to 41	N1, M4, N2, R1, N3, R2, P3, R3	L2, K3, L1, N2, M2, M3, N1, N3	Input/ Output	8-bit input/output pi
					(The output type of PA0 is NMOS push
PB7 to PB0	113 to 120	D11, A12, C11, B11, A11, D10, A10, B10	A11, C11, B10, C10, A10, B9, C9, B8	Input/ Output	8-bit input/output pi
PC7 to PC0	87 to 94	H12, H13, H15, H14, G12, G13, G15, G14	J13, H11, G12, G10, H13, F12, G13, G11	Input/ Output	8-bit input/output pi
PD7 to PD0	59 to 66	M10, N10, R10, P10, N11, R11, P11, M11	L7, K9, N8, M9, L8, K10, N9, M10	Input/ Output	8-bit input/output pi
PE4 to PE0* ¹	28 to 32	L2, L4, M1, M2, M3	K4, J1, K2, J3, K1	Input	5-bit input pins
PF7 to PF0	43 to 50	N5, P5, R5, M6, N6, R6, P6, M7	M4, L4, N4, M5, L5, M6, N5, K5	Input/ Output	8-bit input/output pi
PG7 to PG0	51 to 58	R7, P7, M8, R8, P8, N9, R9, P9	L6, M7, N6, K6, K7, K8, N7, M8	•	8-bit input/output pi
					(The output type of PG0 is NMOS push

Rev. 2.00 Sep. 28, 2009 Page 26 of 994 REJ09B0452-0200

RENESAS

- Notes: 1. Pins PE4 to PE1 are not supported by the system development tool (emulato
 - Following precautions are required on the power-on reset signal that is applie ETRST pin.

The reset signal should be applied on power supply.

Set apart the power-on reset circuit from this LSI to prevent the ETRST pin of emulator from affecting the operation of this LSI.

Set apart the power-on reset circuit from this LSI to prevent the system reset from affecting the ETRST pin of the emulator.

Rev. 2.00 Sep. 28, 2009 Pa REJ09

Rev. 2.00 Sep. 28, 2009 Page 28 of 994 REJ09B0452-0200

- Upward-compatible with H8/300 and H8/300H CPUs
 - Can execute H8/300 and H8/300H CPUs object programs
- General-register architecture
 - Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-b
- Sixty-nine basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
 - Multiply-and-accumulate instruction
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]

RENESAS

- Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
- Immediate [#xx:8, #xx:16, or #xx:32]
- Program-counter relative [@(d:8,PC) or @(d:16,PC)]
- Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes
- High-speed operation
 - All frequently-used instructions execute in one or two states
 - 8/16/32-bit register-register add/subtract: 1 state
 - 8×8 -bit register-register multiply: 2 states

Rev. 2.00 Sep. 28, 2009 Pa REJ09 Note: * Normal mode is not available in this LSI.

2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are shown below.

• Register configuration

The MAC register is supported by the H8S/2600 CPU only.

• Basic instructions

The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported by the I CPU only.

• The number of execution states of the MULXU and MULXS instructions;

		Execution States		
Instruction	Mnemonic	H8S/2600	H8S/2000	
MULXU	MULXU.B Rs, Rd	2*	12	
	MULXU.W Rs, ERd	2*	20	
MULXS	MULXS.B Rs, Rd	3*	13	
	MULXS.W Rs, ERd	3*	21	
CLRMAC	CLRMAC	1*	Not supported	
LDMAC	LDMAC ERs,MACH	1*		
	LDMAC ERs,MACL	1*		
STMAC	STMAC MACH, ERd	1*		
	STMAC MACI,ERd	1*		

Note: * This becomes one state greater immediately after a MAC instruction. In addition, there are differences in address space, CCR and EXR register fun and power-down modes, etc., depending on the model.

Rev. 2.00 Sep. 28, 2009 Page 30 of 994 REJ09B0452-0200

RENESAS

- Enhanced addressing
 - The addressing modes have been enhanced to make effective use of the 16-Mbyt space.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - Signed multiply and divide instructions have been added.
 - A multiply-and-accumulate instruction has been added.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

2.1.3 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2600 CPU has the following enhancemen

- More control registers
 - One 8-bit and two 32-bit control registers have been added.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - A multiply-and-accumulate instruction has been added.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

Linear access to a 64-kbyte maximum address space is provided.

• Extended Registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-b segments of 32-bit registers. When En is used as a 16-bit register it can contain any variable when the corresponding general register (Rn) is used as an address register. If the gen register is referenced in the register indirect addressing mode with pre-decrement (@-post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corre extended register (En) will be affected.

Instruction Set

All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses

In normal mode the top area starting at H'0000 is allocated to the exception vector table branch address is stored per 16 bits. The exception vector table structure in normal most shown in figure 2.1. For details of the exception vector table, see section 4, Exception Handling.

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instrusted uses an 8-bit absolute address included in the instruction code to specify a memory op that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the area from H'H'00FF. Note that the first part of this range is also used for the exception vector table

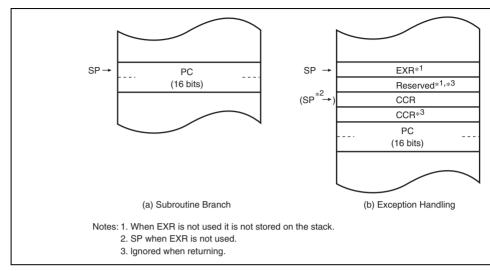
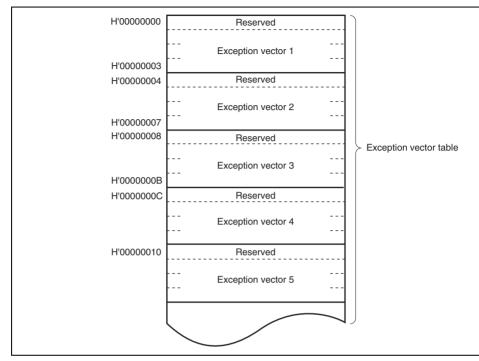
Stack Structure

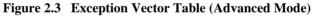
When the program counter (PC) is pushed onto the stack in a subroutine call, and the condition-code register (CCR), and extended control register (EXR) are pushed onto t in exception handling, they are stored as shown in figure 2.2. EXR is not pushed onto in interrupt control mode 0. For details, see section 4, Exception Handling.

Note: Normal mode is not available in this LSI.

Rev. 2.00 Sep. 28, 2009 Page 32 of 994 REJ09B0452-0200

Figure 2.1 Exception Vector Table (Normal Mode)


Figure 2.2 Stack Structure in Normal Mode

Enterprise verse and menory maneer Branen radiesses

In advanced mode, the top area starting at H'00000000 is allocated to the exception vertable in units of 32 bits. In each 32 bits, the upper 8 bits are ignored and a branch address stored in the lower 24 bits (figure 2.3). For details of the exception vector table, see set Exception Handling.

Rev. 2.00 Sep. 28, 2009 Page 34 of 994 REJ09B0452-0200

Exception Handling.

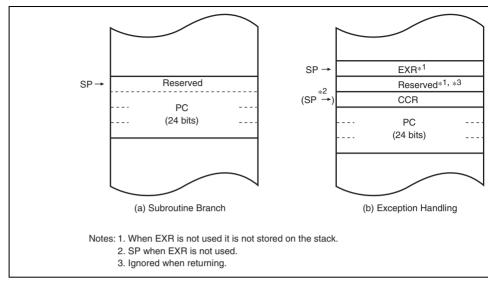


Figure 2.4 Stack Structure in Advanced Mode

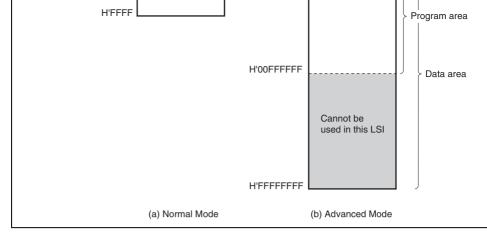
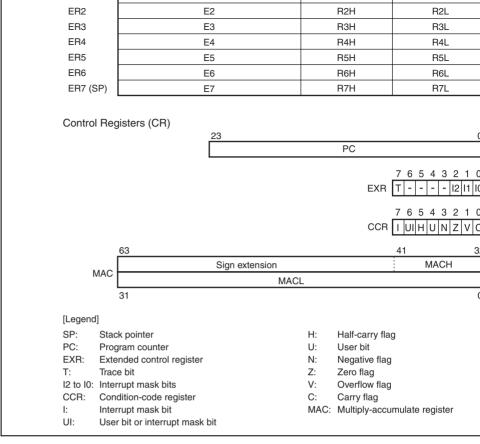



Figure 2.5 Memory Map

Rev. 2.00 Sep. 28, 2009 Page 36 of 994 REJ09B0452-0200

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R RL (R0L to R7L). These registers are functionally equivalent, providing a maximum of s bit registers.

The usage of each register can be selected independently.

General register ER7 has the function of stack pointer (SP) in addition to its general-regist function, and is used implicitly in exception handling and subroutine calls. Figure 2.8 sho stack.

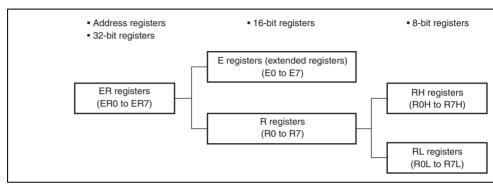
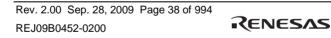



Figure 2.7 Usage of General Registers

Figure 2.8 Stack

2.4.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. T of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (instruction is fetched, the least significant PC bit is regarded as 0).

2.4.3 Extended Control Register (EXR)

EXR is an 8-bit register that manipulates the LDC, STC, ANDC, ORC, and XORC instructions when these instructions, except for the STC instruction, are executed, all interrupts inclusion will be masked for three states after execution is completed.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	Т	0	R/W	Trace Bit
				This bit has no effect on the operation of the
6 to 3	_	All 1	_	Reserved
				These bits are always read as 1.
2	12	1	R/W	Interrupt Request Mask Bits 2 to 0
1	l1	1	R/W	These bits have no effect on the operation of
0	10	1	R/W	

RENESAS

7	I	1	R/W	Interrupt Mask Bit
				Masks interrupts other than NMI when set to 1 accepted regardless of the I bit setting. The I b 1 at the start of an exception-handling sequence details, refer to section 5, Interrupt Controller.
6	UI	Undefined	R/W	User Bit or Interrupt Mask Bit
				Can be read or written by software using the L ANDC, ORC, and XORC instructions.
5	Н	Undefined	R/W	Half-Carry Flag
				When the ADD.B, ADDX.B, SUB.B, SUBX.B, C or NEG.B instruction is executed, this flag is set there is a carry or borrow at bit 3, and cleared otherwise. When the ADD.W, SUB.W, CMP.W NEG.W instruction is executed, the H flag is set there is a carry or borrow at bit 11, and cleared otherwise. When the ADD.L, SUB.L, CMP.L, o instruction is executed, the H flag is set to 1 if t carry or borrow at bit 27, and cleared to 0 other
4	U	Undefined	R/W	User Bit
				Can be read or written by software using the L ANDC, ORC, and XORC instructions.
3	Ν	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of d sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to 0 indicate non-zero data.

Rev. 2.00 Sep. 28, 2009 Page 40 of 994 REJ09B0452-0200

• Shift and rotate instructions, to indicate a

The carry flag is also used as a bit accumulat manipulation instructions.

2.4.5 Multiply-Accumulate Register (MAC)

This 64-bit register stores the results of multiply-and-accumulate operations. It consists bit registers denoted MACH and MACL. The lower 10 bits of MACH are valid; the upp a sign extension.

2.4.6 Initial Values of CPU Registers

Reset exception handling loads the CPU's program counter (PC) from the vector table, of trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other C and the general registers are not initialized. In particular, the stack pointer (ER7) is not in The stack pointer should therefore be initialized by an MOV.L instruction executed immafter a reset.

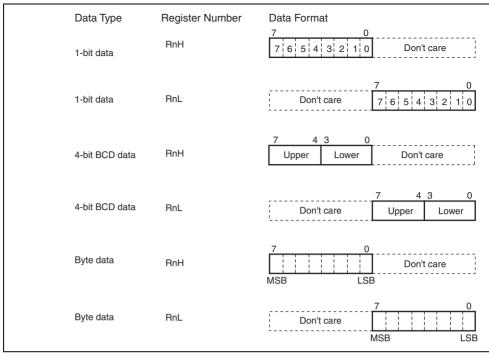


Figure 2.9 General Register Data Formats (1)

Rev. 2.00 Sep. 28, 2009 Page 42 of 994 REJ09B0452-0200

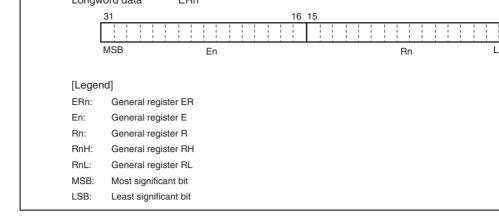


Figure 2.9 General Register Data Formats (2)

Data Type	Address	Data Format							
		7	-			<u> </u>	_		0
1-bit data	Address L	7	6	5	4	3	2	1	0
Byte data	Address L	MSB	1			I I I	1	1	LSB
Word data	Address 2M Address 2M+1	MSB				1 1 1 1 1			LSB
Longword data	Address 2N Address 2N+1	MSB							
	Address 2N+2 Address 2N+3							<u> </u>	LSB

Figure 2.10 Memory Data Formats

Rev. 2.00 Sep. 28, 2009 Page 44 of 994 REJ09B0452-0200

Arithmetic operation		ADD, SUB, CMP, NEG	B/W
		ADDX, SUBX, DAA, DAS	В
		INC, DEC	B/W
		ADDS, SUBS	L
		MULXU, DIVXU, MULXS, DIVXS	B/W
		EXTU, EXTS	W/L
		TAS* ⁴	В
		MAC, LDMAC, STMAC, CLRMAC	
	Logic operations	AND, OR, XOR, NOT	B/W
	Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	B/W
	Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В
	Branch	Bcc* ² , JMP, BSR, JSR, RTS	_
	System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	_
	Block data transfer	EEPMOV	_

Notes: B-byte; W-word; L-longword.

- POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+,Rn and MOV.W POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+,ERn and MOV.L ERn,@-SP.
- 2. Bcc is the general name for conditional branch instructions.
- 3. Cannot be used in this LSI.
- 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS in:

ERn	General register (32-bit register)
MAC	Multiply-accumulate register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
-	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical XOR
\rightarrow	Move
~	NOT (logical complement)

Rev. 2.00 Sep. 28, 2009 Page 46 of 994 REJ09B0452-0200

MOVFPE	В	Cannot be used in this LSI.
MOVTPE	В	Cannot be used in this LSI.
POP	W/L	@SP+ \rightarrow Rn Pops a general register from the stack. POP.W Rn is identical MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+,
PUSH	W/L	Rn → @–SP Pushes a general register onto the stack. PUSH.W Rn is ident MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, ϕ
LDM	L	@SP+ \rightarrow Rn (register list) Pops two or more general registers from the stack.
STM	L	Rn (register list) \rightarrow @–SP Pushes two or more general registers onto the stack.
Note: *	Refers to the	e operand size.
	B: Byte	
	W: Word	

L: Longword

RENESAS

DEC		Increments or decrements a general register by 1 or 2. (Byte or can be incremented or decremented by 1 only.)
ADDS SUBS	L	$Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd, Rd \pm 4 \rightarrow Rd$ Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit
DAA DAS	В	Rd decimal adjust \rightarrow Rd Decimal-adjusts an addition or subtraction result in a general re referring to the CCR to produce 4-bit BCD data.
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registe 8 bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.
DIVXU	B/W	Rd ÷ Rs → Rd Performs unsigned division on data in two general registers: eit bits ÷ 8 bits → 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 16-bit quotient and 16-bit remainder.
Note: *	Refers to the	operand size.

B: Byte

W: Word

L: Longword

Rev. 2.00 Sep. 28, 2009 Page 48 of 994 REJ09B0452-0200

			Takes the two's complement (arithmetic complement) of data general register.
EXTU		W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros left.
EXTS		W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign
TAS* ²		В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @ERd) Tests memory contents, and sets the most significant bit (bit 7</bit>
MAC		_	$(EAs) \times (EAd) + MAC \rightarrow MAC$ Performs signed multiplication on memory contents and adds to the multiply-accumulate register. The following operations c performed: 16 bits × 16 bits + 32 bits \rightarrow 32 bits, saturating 16 bits × 16 bits + 42 bits \rightarrow 42 bits, non-saturating
CLRMAC			$0 \rightarrow MAC$ Clears the multiply-accumulate register to zero.
LDMAC STMAC		L	$Rs \rightarrow MAC$, $MAC \rightarrow Rd$ Transfers data between a general register and a multiply-accurregister.
Note: 1.	Ref	ers to the	operand size.
	B:	Byte	
	W:	Word	
	L:	Longword	d
0	~ '	-	EDO ED4 ED4 or EDE about d he was d where we implate TAC in

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS in:

RENESAS

NOT	B/W/L	\sim (Rd) \rightarrow (Rd) Takes the one's complement (logical complement) of general re contents.
Note: *	Refers to the B: Byte W: Word L: Longwor	operand size. d

Table 2.6Shift Instructions

Instructio	n	Size*	Function
SHAL SHAR		B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shifts are possible.
SHLL SHLR		B/W/L	Rd (shift) \rightarrow Rd Performs a logical shift on general register contents. 1-bit or 2-bit shifts are possible.
ROTL ROTR		B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents. 1-bit or 2-bit rotations are possible.
ROTXL ROTXR		B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents through the carry flag. 1-bit or 2-bit rotations are possible.
Note: *	Ref	ers to the c	operand size.
	B:	Byte	
	W:	Word	
	L:	Longword	

Rev. 2.00 Sep. 28, 2009 Page 50 of 994 REJ09B0452-0200

RENESAS

		Inverts a specified bit in a general register or memory operand number is specified by 3-bit immediate data or the lower three general register.
BTST	В	~(<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand a or clears the Z flag accordingly. The bit number is specified by immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land ($ bit-No.> of <ead>) $\rightarrow C$ ANDs the carry flag with a specified bit in a general register or operand and stores the result in the carry flag.</ead>
BIAND	В	$C \wedge [\sim(\text{sbit-No.> of })] \rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a gene register or memory operand and stores the result in the carry f The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor ($ bit-No.> of <ead>) $\rightarrow C$ ORs the carry flag with a specified bit in a general register or r operand and stores the result in the carry flag.</ead>
BIOR	В	$C \vee [\sim (of)] \rightarrow C$ ORs the carry flag with the inverse of a specified bit in a gener or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.
Note: *	Refers to the	e operand size.

B: Byte

RENESAS

		carry flag.
BILD	В	\sim (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or n operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow$ (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general regi memory operand.</ead></bit-no.>
BIST	В	\sim C \rightarrow (<bit-no.> of <ead>) Transfers the inverse of the carry flag value to a specified bit in general register or memory operand. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refers to the	operand size.
	B: Byte	

Rev. 2.00 Sep. 28, 2009 Page 52 of 994 REJ09B0452-0200

	BCC(BHS)	Carry clear (high or same)	C = 0
	BCS(BLO)	Carry set (low)	C = 1
	BNE	Not equal	Z = 0
	BEQ	Equal	Z = 1
	BVC	Overflow clear	V = 0
	BVS	Overflow set	V = 1
	BPL	Plus	N = 0
	BMI	Minus	N = 1
	BGE	Greater or equal	$N \oplus V = 0$
	BLT	Less than	N ⊕ V = 1
	BGT	Greater than	$Z_{\vee}(N \oplus V) = 0$
	BLE	Less or equal	$Z_{\vee}(N \oplus V) = 1$
	Branches unconditionally to a specified address.		
	Branches to a subroutine at a specified address.		
	Branches to a subroutine at a specified address.		
	Returns from a subroutine		

JMP BSR JSR RTS

Renesas

		Transfers CCR or EXR contents to a general register or memor Although CCR and EXR are 8-bit registers, word-size transfers performed between them and memory. The upper 8 bits are va		
ANDC	В	$\label{eq:CCR} CCR \land \#IMM \to CCR, \ EXR \land \#IMM \to EXR \\ \ Logically \ ANDs \ the \ CCR \ or \ EXR \ contents \ with \ immediate \ data.$		
ORC	В	$\label{eq:CCR} CCR \lor \#IMM \to CCR, \ EXR \lor \#IMM \to EXR \\ \ Logically \ ORs \ the \ CCR \ or \ EXR \ contents \ with \ immediate \ data.$		
XORC	В	CCR ⊕ #IMM → CCR, EXR ⊕ #IMM → EXR Logically XORs the CCR or EXR contents with immediate data.		
NOP		$PC + 2 \rightarrow PC$ Only increments the program counter.		
Note: * Refers to the operand size.				

B: Byte

W: Word

Rev. 2.00 Sep. 28, 2009 Page 54 of 994 REJ09B0452-0200

else next;

Transfers a data block. Starting from the address set in ER5, t data for the number of bytes set in R4L or R4 to the address la in ER6.

Execution of the next instruction begins as soon as the transfe completed.

Some instructions have two operation fields.

• Register Field

Specifies a general register. Address registers are specified by 3 bits, and data register bits or 4 bits. Some instructions have two register fields. Some have no register field.

• Effective Address Extension

8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.

• Condition Field

Specifies the branching condition of Bcc instructions.

(1) O	peration field c	only				
	ор				NOP, RTS, etc.	
(2) Operation field and register fields						
	o	р	rn	rm	ADD.B Rn, Rm, etc.	
(3) Operation field, register fields, and effective address extension						
		ор	rn	rm	MOV.B @(d:16, Rn), Rm, etc.	
	EA(disp)					
(4) Operation field, effective address extension, and condition field						
	ор	сс	EA(o	disp)	BRA d:16, etc.	

Figure 2.11 Instruction Formats (Examples)

Rev. 2.00 Sep. 28, 2009 Page 56 of 994 REJ09B0452-0200

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16,ERn)/@(d:32,ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24/@a
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

2.7.1 Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register contain operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

2.7.2 Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn) which conta address of the operand on memory. If the address is a program instruction address, the lebits are valid and the upper 8 bits are all assumed to be 0 (H'00).

Renesas

address register. The value added is 1 for byte access, 2 for word transfer instruction, or 4 longword transfer instruction. For the word or longword transfer instructions, the register should be even.

Register indirect with pre-decrement—@-**ERn:** The value 1, 2, or 4 is subtracted from address register (ERn) specified by the register field in the instruction code, and the result address of a memory operand. The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for word transfer instruction, or 4 for longword transfer instruction. For the word or longword transfer instructions, the register value should be experimented or longword transfer instructions.

2.7.5 Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32

The instruction code contains the absolute address of a memory operand. The absolute ad may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32). Table 2.12 indicates the accessible absolute address ranges.

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bits (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The up bits are all assumed to be 0 (H'00).

Rev. 2.00 Sep. 28, 2009 Page 58 of 994 REJ09B0452-0200

2.7.6 Immediate—#xx:8, #xx:16, or #xx:32

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate dat operand.

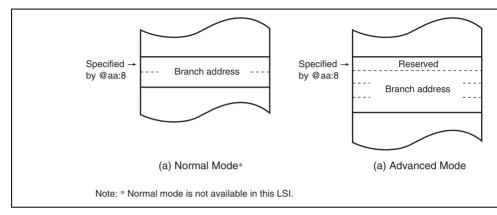
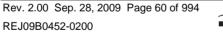
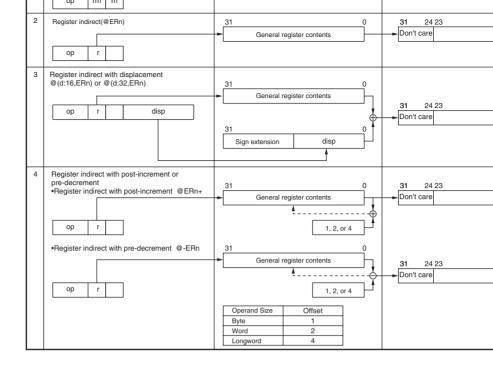
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some manipulation instructions contain 3-bit immediate data in the instruction code, specifyin number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifyin vector address.

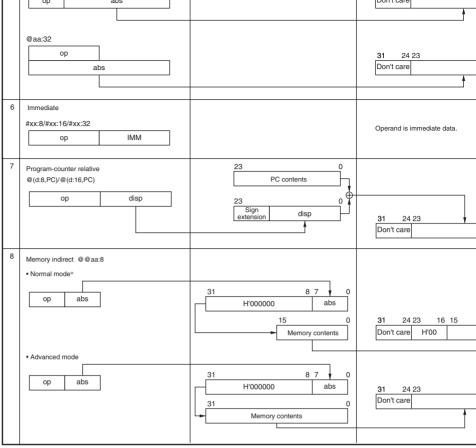
2.7.7 Program-Counter Relative—@(d:8, PC) or @(d:16, PC)

This mode is used in the Bcc and BSR instructions. An 8-bit or 16-bit displacement composite the instruction is sign-extended and added to the 24-bit PC contents to generate a branch Only the lower 24 bits of this branch address are valid; the upper 8 bits are all assumed to (H'00). The PC value to which the displacement is added is the address of the first byte of instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value be an even number.

If an odd address is specified in word or longword memory access, or as a branch address least significant bit is regarded as 0, causing data to be accessed or instruction code to be at the address preceding the specified address. (For further information, see section 2.5.2, Data Formats.)

Note: Normal mode is not available in this LSI.


Figure 2.12 Branch Address Specification in Memory Indirect Mode

RENESAS

Note: * Normal mode is not available in this LSI.

Rev. 2.00 Sep. 28, 2009 Page 62 of 994 REJ09B0452-0200

• Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the processing flow due to an exception source, such as a reset, trace, interrupt, or trap in The CPU fetches a start address (vector) from the exception vector table and branche address. For further details, refer to section 4, Exception Handling.

• Program Execution State

In this state, the CPU executes program instructions in sequence.

• Program Stop State

This is a power-down state in which the CPU stops operating. The program stop stat when a SLEEP instruction is executed or the CPU enters software standby mode. For details, refer to section 26, Power-Down Modes.

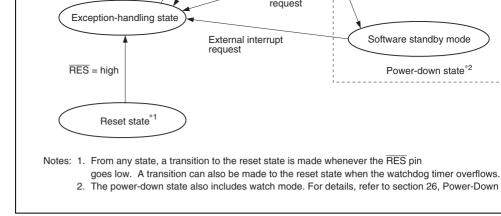


Figure 2.13 State Transitions

Rev. 2.00 Sep. 28, 2009 Page 64 of 994 REJ09B0452-0200

beforenand.

RENESAS

Rev. 2.00 Sep. 28, 2009 Page 66 of 994 REJ09B0452-0200

Mode	MD2	MD1	MD0*	Mode	Description	On-0
2	0	1	0	Advanced	Single-chip mode	Enat
4	1	0	0		Flash memory programming/erasing	—
6	1	1	0	Emulation	On-chip emulation mode	Enat

Note: * MD0 is not available as a pin and is internally fixed to 0.

Modes 2 is single-chip mode.

Modes 0, 1, 3, 5 and 7 are not available in this LSI. Modes 4 and 6 are operating modes special purpose. Thus, mode pins should be set to enable mode 2 in the normal program state. Mode pin settings should not be changed during operation. After a reset is cancele mode pin inputs should be latched by reading MDCR.

Mode 4 is a boot mode for programming or erasing the flash memory. For details, see see Flash Memory.

Mode 6 is an on-chip emulation mode. In this mode, this LSI is controlled by an on-chip (E10A) via the JTAG, thus enabling on-chip emulation.

v					
System control register 3	SYSCR3	R/W	H'60	H'FE7D	8

3.2.1 Mode Control Register (MDCR)

MDCR is used to set an operating mode and to monitor the current operating mode.

		1.141.1		
Bit	Bit Name	Initial Value	R/W	Description
7	EXPE	0	R/W	Reserved
				The initial value should not be changed.
6 to 3		All 0	R	Reserved
				The initial value should not be changed.
2	MDS2	*	R	Mode Select 2 and 1
1	MDS1	*	R	These bits indicate the input levels at mode pir and MD1) (the current operating mode). The M MDS1 bits correspond to the MD2 and MD1 pir respectively. These bits are read-only bits and be written to.
				The input levels of the mode pins (MD2 and M latched into these bits when MDCR is read. Th latches are canceled by a reset.
0	_	0	R	Reserved
				The initial value should not be changed.

Note: * The initial values are determined by the settings of the MD2 and MD1 pins.

Rev. 2.00 Sep. 28, 2009 Page 68 of 994 REJ09B0452-0200

Э		0	ĸ	Interrupt Control Select Mode 1 and 0
4	INTM0	0	R/W	These bits select the interrupt control mode o interrupt controller.
				For details on the interrupt control modes, se 5.6, Interrupt Control Modes and Interrupt Op
				00: Interrupt control mode 0
				01: Interrupt control mode 1
				10: Setting prohibited
				11: Setting prohibited
3	XRST	1	R	External Reset
				Indicates the reset source. A reset is caused external reset input, or when the watchdog tir overflows.
				0: A reset is caused when the watchdog time
				1: A reset is caused by an external reset
2	NMIEG	0	R/W	NMI Edge Select
				Selects the valid edge of the NMI interrupt inp
				0: An interrupt is requested at the falling edge input
				1: An interrupt is requested at the rising edge input

Renesas

				 TMR_Y in areas from H'(FF)FFF0 to H'(FF) from H'(FF)FFFC to H'(FF)FFFF 1: Enables CPU access for the keyboard matri interrupt registers and input pull-up MOS co register in areas from H'(FF)FFF0 to H'(FF)I from H'(FF)FFFC to H'(FF)FFFF When the RELOCATE bit is set to 1, this bit is
				For details, see section 3.2.4, System Control 3 (SYSCR3) and section 27, List of Registers.
0	RAME	1	R/W	RAM Enable
				Enables or disables on-chip RAM.
				0: On-chip RAM is disabled
				1: On-chip RAM is enabled

Rev. 2.00 Sep. 28, 2009 Page 70 of 994 REJ09B0452-0200

				details on the transfer rate, see table 18.4.
4	IICE	0	R/W	I ² C Master Enable
				When the RELOCATE bit is cleared to 0, ena disables CPU access for IIC registers (ICCR, ICDR/SARX, ICMR/SAR, and ICRES), PWM (DADRAH/DACR, DADRAL, DADRBH/DACN DADRBL/DACNTL), and SCI registers (SMR SCMR).
				 0: SCI_1 registers are accessed in areas fro H'(FF)FF88 to H'(FF)FF89 and from H'(FF H'(FF)FF8F. SCI_2 registers are accessed in areas fro H'(FF)FFA0 to H'(FF)FFA1 and from H'(FI) H'(FF)FFA7. Access is prohibited in areas from H'(FF)F H'(FF)FFD9 and from H'(FF)FFDE to H'(FF)
				 IIC_1 registers are accessed in areas from H'(FF)FF88 to H'(FF)FF89 and from H'(FF H'(FF)FF8F. PWMX registers are accessed in areas from H'(FF)FFA0 to H'(FF)FFA1 and from H'(FI H'(FF)FFA7. IIC_0 registers are accessed in areas from H'(FF)FFD8 to H'(FF)FFD9 and from H'(F H'(FF)FFD7. ICRES is accessed in areas of H'(FF)FEE When the RELOCATE bit is set to 1, this bit is
				When the RELOCATE bit is set to 1, this bit is
				For details, see section 3.2.4, System Contro 3 (SYSCR3) and section 27, List of Registers

Renesas

				 H'(FF)FEA8 to H'(FF)FEAE is reserved. When RELOCATE is 1, control registers of µ down state and peripheral modules are accer an area from H'(FF)FF80 to H'(FF)FF87. Are H'(FF)FEA8 to H'(FF)FEAE is reserved. 1: When RELOCATE is 0, control registers of 1 memory are accessed in an area from H'(FF)FEAE. Area from H'(FF)FF80 to H'(FF)FEAE. Area from H'(FF)FF80 to H'(FF) reserved. When RELOCATE is 1, control registers of µ down state and peripheral modules are accer an area from H'(FF)FF80 to H'(FF)FF80 to H'(FF)FF80 to H'(FF)FF80. Co registers of flash memory are accessed in an area from H'(FF)FF80 to H'(FF)FF87. Co registers of flash memory are accessed in an area from H'(FF)FF80 to H'(FF)FF87.
_				from H'(FF)FEA8 to H'(FF)FEAE.
2	IICS	0	R/(W)	I ² C Extra Buffer Select
				Specifies bits 7 to 4 of port A as output buffers SLC and SDA. These pins are used to implem interface only by software.
				0: PA7 to PA4 are normal input/output pins.
				1: PA7 to PA4 are input/output pins enabling b driving.
1	ICKS1	0	R/W	Internal Clock Source Select 1 and 0
0	ICKS0	0	R/W	These bits select a clock to be input to the time (TCNT) and a count condition together with bit to CKS0 in the timer control register (TCR). Fo see section 13.3.4, Timer Control Register (TC

Rev. 2.00 Sep. 28, 2009 Page 72 of 994 REJ09B0452-0200

RENESAS

				0: H8S/2140B Group compatible vector mode
				1: Extended vector mode
				For details, see section 5, Interrupt Controller
5	RELOCATE	1	R/W	Register Address Map Select
				Selects compatible mode or extended mode fregister map. When extended mode is selected for the regist CPU access for registers can be controlled w using the KINWUE bit in SYSCR or the IICE to STCR to switch the registers to be accessed.
				0: H8S/2140B Group compatible register map
				1: Extended register map mode
				For details, see section 27, List of Registers.
4 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

Note: * Switch the modes when an interrupt occurrence is disabled.

3.3 Operating Mode Descriptions

3.3.1 Mode 2

The CPU can access a 16-Mbyte address space in either advanced mode or single-chip r on-chip ROM is enabled.

Renesas

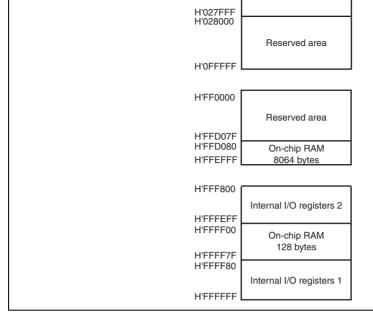


Figure 3.1 Address Map

Rev. 2.00 Sep. 28, 2009 Page 74 of 994 REJ09B0452-0200

High ♠	Reset	Starts immediately after a low-to-high transition o pin, or when the watchdog timer overflows.				
	Illegal instruction	Exception handling starts when an undefined cod executed.				
	Interrupt	Starts when execution of the current instruction of handling ends, if an interrupt request has been iss Interrupt detection is not performed on completior ORC, XORC, or LDC instruction execution, or on completion of reset exception handling.				
	Direct transition	Starts when a direct transition occurs as the resul SLEEP instruction execution.				
Low	Trap instruction	Started by execution of a trap (TRAPA) instruction instruction exception handling requests are accep times in the program execution state.				

RENESAS

Exception Sourc	e	Number	Advanced Mode
Reset		0	H'000000 to H'000003
Reserved for syst	em use	1	H'000004 to H'000007
		 3	 H'00000C to H'00000F
Illegal instruction		4	H'000010 to H'000013
Reserved for syst	em use	5	H'000014 to H'000017
Direct transition		6	H'000018 to H'00001B
External interrupt	(NMI)	7	H'00001C to H'00001F
Trap instruction (f	our sources)	8	H'000020 to H'000023
		9	H'000024 to H'000027
		10	H'000028 to H'00002B
		11	H'00002C to H'00002F
Reserved for system	em use	12	H'000030 to H'000033
		15	H'00003C to H'00003F
External interrupt	IRQ0	16	H'000040 to H'000043
	IRQ1	17	H'000044 to H'000047
	IRQ2	18	H'000048 to H'00004B
	IRQ3	19	H'00004C to H'00004F
	IRQ4	20	H'000050 to H'000053
	IRQ5	21	H'000054 to H'000057
	IRQ6, KIN7 to KIN0	22	H'000058 to H'00005B
	IRQ7, KIN15 to KIN8	23	H'00005C to H'00005F

Rev. 2.00 Sep. 28, 2009 Page 76 of 994 REJ09B0452-0200

RENESAS

		5	5	H'0000DC to	H'0000D
External interrupt	IRQ8	5	6	H'0000E0 to	H'0000E3
	IRQ9	5	57	H'0000E4 to	H'0000E7
	IRQ10	5	8	H'0000E8 to	H'0000E
	IRQ11	5	9	H'0000EC to	H'0000E
	IRQ12	6	60	H'0000F0 to	H'0000F3
	IRQ13	6	51	H'0000F4 to	H'0000F7
	IRQ14	6	62	H'0000F8 to	H'0000FE
	IRQ15	6	3	H'0000FC to	H'0000FI
Internal interrupt*		6	64	H'000100 to	H'000103
		1	 27	H'0001FC to	 H'0001Fl
Note: * For deta	ails on the internal interrunt ve	ctor	table see se	ection 5.5 Inte	arrunt Evo

Note: * For details on the internal interrupt vector table, see section 5.5, Interrupt Exce Handling Vector Tables.

001F 0023 0027 002B 002F
027 028
002B
-
002F
033
003F
043
047
04B
004F
053
057
05B
005F
063
077
07B
007F
083
0087

Rev. 2.00 Sep. 28, 2009 Page 78 of 994 REJ09B0452-0200

RENESAS

	127	H'0001FC to H'0001FF
Internal interrupt*	64	H'000100 to H'000103
IRQ15	63	H'0000FC to H'0000FF
IRQ14	62	H'0000F8 to H'0000FB
IRQ13	61	H'0000F4 to H'0000F7
10040	04	

Note: * For details on the internal interrupt vector table, see section 5.5, Interrupt Exce Handling Vector Tables.

4.3 Reset

A reset has the highest exception priority. When the $\overline{\text{RES}}$ pin goes low, all processing has this LSI enters the reset state. To ensure that this LSI is reset, hold the $\overline{\text{RES}}$ pin low for a ms at power-on. To reset the chip during operation, hold the $\overline{\text{RES}}$ pin low for at least 20 reset initializes the internal state of the CPU and the registers of on-chip peripheral mod chip can also be reset by overflow of the watchdog timer. For details, see section 14, Wa Timer (WDT).

4.3.1 Reset Exception Handling

When the $\overline{\text{RES}}$ pin goes high after being held low for the necessary time, this LSI starts exception handling as follows:

- 1. The internal state of the CPU and the registers of the on-chip peripheral modules are and the I bit in CCR is set to 1.
- 2. The reset exception handling vector address is read and transferred to the PC, and the program execution starts from the address indicated by the PC.

RENESAS

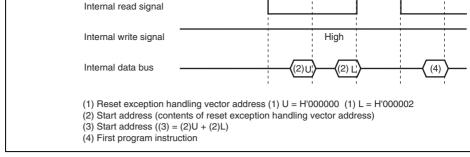


Figure 4.1 Reset Sequence (Mode 2)

4.3.2 Interrupts Immediately after Reset

If an interrupt is accepted immediately after a reset and before the stack pointer (SP) is in the PC and CCR will not be saved correctly, leading to a program crash. To prevent this, interrupt requests, including NMI, are disabled immediately after a reset. Since the first in of a program is always executed immediately after a reset, make sure that this instruction initializes the SP (example: MOV.L #xx: 32, SP).

4.3.3 On-Chip Peripheral Modules after Reset is Cancelled

After a reset is cancelled, the module stop control registers (MSTPCRH, MSTPCRL, MS MSTPCRB) are initialized, and all modules except the DTC operate in module stop mode. Therefore, the registers of on-chip peripheral modules cannot be read from or written to. I from and write to these registers, clear module stop mode. For details on module stop mo section 26, Power-Down Modes.

Rev. 2.00 Sep. 28, 2009 Page 80 of 994 REJ09B0452-0200

2. A vector address corresponding to the interrupt source is generated, the start address from the vector table to the PC, and program execution starts from that address.

4.5 Trap Instruction Exception Handling

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap exception handling can be executed at all times in the program execution state.

Trap instruction exception handling is conducted as follows:

- 1. The values in the program counter (PC) and condition code register (CCR) are saved stack.
- 2. A vector address corresponding to the interrupt source is generated, the start address from the vector table to the PC, and program execution starts from that address.

The TRAPA instruction fetches a start address from a vector table corresponding to a venumber from 0 to 3, as specified in the instruction code.

Table 4.4 shows the status of CCR after execution of trap instruction exception handling

Table 4.4 Status of CCR after Trap Instruction Exception Handling

	CCR			
Interrupt Control Mode	I	UI		
0	Set to 1	Retains value prior to ex		
1	Set to 1	Set to 1		

RENESAS

the PC, and program execution starts from that address.

Table 4.5 shows the state of CCR after execution of illegal instruction exception handling

		CCR
Interrupt Control Mode	I	UI
0	Set to 1	Retains the previous valu
1	Set to 1	Set to 1

 Table 4.5
 Status of CCR after Illegal Instruction Exception Handling

Illegal instruction code is not detected for fields that do not affect the definition of the ins such as an effective address extension (EA) and register fields. In addition, the instruction instructions consisting of multiple words are detected individually and are not detected as combinations of instruction codes.

Do not execute instruction codes that are not defined. The contents of general registers ar guaranteed after the execution of an undefined instruction code or exception handling by illegal instruction. The value of the stack pointer at the time of exception handling by the instruction and the saved contents of the PC are also not guaranteed.

Rev. 2.00 Sep. 28, 2009 Page 82 of 994 REJ09B0452-0200

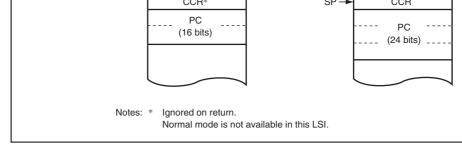


Figure 4.2 Stack Status after Exception Handling

Use the following instructions to restore registers:

POP.W Rn (or MOV.W @SP+, Rn) POP.L ERn (or MOV.L @SP+, ERn)

Setting SP to an odd value may lead to a malfunction. Figure 4.3 shows an example of who occurs when the SP value is odd.

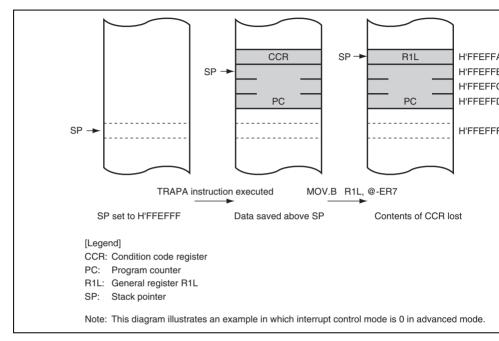


Figure 4.3 Operation when SP Value Is Odd

Rev. 2.00 Sep. 28, 2009 Page 84 of 994 REJ09B0452-0200

levels for an interrupt requests excluding from and address breaks.

• Three-level interrupt mask control

By means of the interrupt control mode, I and UI bits in CCR and ICR, 3-level interrupt control is performed.

• Forty-one external interrupt pins

NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or fall detection can be selected for NMI. Falling-edge, rising-edge, or both-edge detection, sensing, can be independently selected for $\overline{IRQ15}$ to $\overline{IRQ0}$. When the EIVS bit in the control register 3 (SYSCR3) is cleared to 0, the IRQ6 interrupt is generated by $\overline{IRQ6}$ to $\overline{KIN0}$. The IRQ7 interrupt is generated by $\overline{IRQ7}$ or $\overline{KIN15}$ to $\overline{KIN8}$. When the EIVS the system control register 3 (SYSCR3) is set to 1, interrupts are requested on the fall of $\overline{KIN15}$ to $\overline{KIN0}$. For $\overline{WUE15}$ to $\overline{WUE8}$, either rising-edge or falling-edge detection selected individually for each pin regardless of the EIVS bit setting.

• Two interrupt vector addresses are selectable

H8S/2140B Group compatible interrupt vector addresses or extended interrupt vector addresses are selected depending on the EIVS bit in system control register 3 (SYSC extended mode, independent vector addresses are assigned for the interrupt vector ad KIN7 to KIN0 or KIN15 to KIN8 interrupts.

• General ports for $\overline{IRQ15}$ to $\overline{IRQ6}$ input are selectable

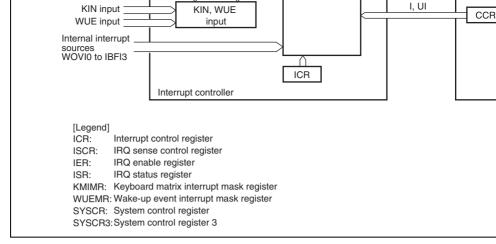


Figure 5.1 Block Diagram of Interrupt Controller

Rev. 2.00 Sep. 28, 2009 Page 86 of 994 REJ09B0452-0200

		pin the IRQ15 to IRQ6 interrupt is input can be selected individually for each pin. the IRQm and ExIRQm pins. (n = 15 to 6)
KIN15 to KIN0	Input	Maskable external interrupt pins
		When EIVS = 0, falling-edge or level-sensing can b selected.
		When EIVS = 1, an interrupt is requested at the fall
WUE15 to WUE8	Input	Maskable external interrupt pins
		Either rising edge or falling edge detection can be s for each pin.

Renesas

Interrupt control registers B	ICKR	R/W	H.00	H'FEE9	8
Interrupt control registers C	ICRC	R/W	H'00	H'FEEA	8
Interrupt control registers D	ICRD	R/W	H'00	H'FE87	8
Address break control register	ABRKCR	R/W		H'FEF4	8
Break address registers A	BARA	R/W	H'00	H'FEF5	8
Break address registers B	BARB	R/W	H'00	H'FEF6	8
Break address registers C	BARC	R/W	H'00	H'FEF7	8
IRQ sense control register 16H	ISCR16H	R/W	H'00	H'FEFA	8
IRQ sense control register 16L	ISCR16L	R/W	H'00	H'FEFB	8
IRQ sense control register H	ISCRH	R/W	H'00	H'FEEC	8
IRQ sense control register L	ISCRL	R/W	H'00	H'FEED	8
IRQ enable register 16	IER16	R/W	H'00	H'FEF8	8
IRQ enable register	IER	R/W	H'00	H'FFC2	8
IRQ status register 16	ISR16	R/W	H'00	H'FEF9	8
IRQ status register	ISR	R/W	H'00	H'FEEB	8
Keyboard matrix interrupt mask	KMIMRA	R/W	H'FF	H'FFF3	8
register A				H'FE83*1	
Keyboard matrix interrupt mask	KMIMR	R/W	H'BF	H'FFF1	8
register			H'FF* ²	H'FE81* ¹	
Wake-up event interrupt mask registers	WUEMR	R/W	H'00	H'FE45	8
IRQ sense port select register 16	ISSR16	R/W	H'00	H'FEFC	8
IRQ sense port select register	ISSR	R/W	H'00	H'FEFD	8

Rev. 2.00 Sep. 28, 2009 Page 88 of 994 REJ09B0452-0200

RENESAS

5.3.1 Interrupt Control Registers A to D (ICRA to ICRD)

The ICR registers set interrupt control levels for interrupts other than NMI. The correspondence between interrupt sources and ICRA to ICRD settings is shown in tables 5.2 and 5.3.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	ICRn7 to ICRn0	All 0	R/W	Interrupt Control Level
				0: Corresponding interrupt source is inte control level 0 (no priority)
				1: Corresponding interrupt source is inte control level 1 (priority)
Mater				

Note: n: A to D

			0		
3	ICRn3	IRQ6, IRQ7	TMR_0	IIC_1, IIC_2	TPU_0
2	ICRn2	—	TMR_1	FSI	TPU_1
1	ICRn1	WDT_0	TMR_X, TMR_Y	LPC, FSI	TPU_2
0	ICRn0	WDT_1	PS2	—	—

Note: n: A to D

--: Reserved. The initial value should not be changed.

Table 5.4Correspondence between Interrupt Source and ICR
(Extended Vector Mode: EIVS = 1)

			Re	gister	
Bit	Bit Name	ICRA	ICRB	ICRC	ICRD
7	ICRn7	IRQ0	A/D converter	SCIF	IRQ8 to I
6	ICRn6	IRQ1	TCM_0, TCM_1, TCM_2, TCM_3	SCI_1	IRQ12 to
5	ICRn5	IRQ2, IRQ3	TDP_0, TDP_1, TDP_2	SCI_2	KIN0 to K
4	ICRn4	IRQ4, IRQ5	CIR	IIC_0	WUE8 to
3	ICRn3	IRQ6, IRQ7	TMR_0	IIC_1, IIC_2	TPU_0
2	ICRn2	—	TMR_1	FSI	TPU_1
1	ICRn1	WDT_0	TMR_X, TMR_Y	LPC, FSI	TPU_2
0	ICRn0	WDT_1	PS2		_

Note: n: A to D

--: Reserved. The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 90 of 994 REJ09B0452-0200

RENESAS

				When an exception handling is executed for ar break interrupt.
				[Setting condition]
				When an address specified by BARA to BARC prefetched while the BIE bit is set to 1.
6 to 1		All 0	R	Reserved
				These bits are always read as 0 and cannot be
0	BIE	0	R/W	Break Interrupt Enable
				Enables or disables address break.
				0: Disabled
				1: Enabled

• BARB

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	A15 to A8	All 0	R/W	Addresses 15 to 8
				The A15 to A8 bits are compared with A15 to internal address bus.

• BARC

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	A7 to A1	All 0	R/W	Addresses 7 to 1
				The A7 to A1 bits are compared with A7 to A7 internal address bus.
0	_	0	R	Reserved
				This bit is always read as 0 and cannot be mo

Rev. 2.00 Sep. 28, 2009 Page 92 of 994 REJ09B0452-0200

4	IRQ14SCA	0	R/W 00:	Interrupt request generated at low leve
3	IRQ13SCB	0	R/W	or ExIRQn input
2	IRQ13SCA	0	R/W	Interrupt request generated at falling e IRQn or ExIRQn input
1	IRQ12SCB	0	R/W 10:	Interrupt request generated at rising e
0	IRQ12SCA	0	R/W	IRQn or ExIRQn input
			11:	Interrupt request generated at both fal rising edges of IRQn or ExIRQn input
			(n =	= 15 to 12)
			Not	e: The IRQn or ExIRQn pin is selecter sense port select register 16 (ISSF

Renesas

0	IRQOSCA	0	R/W	IRQn or ExIRQn input
				11: Interrupt request generated at both falli rising edges of IRQn or ExIRQn input
				(n = 11 to 8)
				Note: The IRQn or ExIRQn pin is selected sense port select register 16 (ISSR)

• ISCRH

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ7SCB	0	R/W	IRQn Sense Control B
6	IRQ7SCA	0	R/W	IRQn Sense Control A
5	IRQ6SCB	0	R/W	BA
4	IRQ6SCA	0	R/W	00: Interrupt request generated at low level
3	IRQ5SCB	0	R/W	 or ExIRQn input
2	IRQ5SCA	0	R/W	01: Interrupt request generated at falling ed _ IRQn or ExIRQn input
1	IRQ4SCB	0	R/W	10: Interrupt request generated at rising ed
0	IRQ4SCA	0	R/W	IRQn or ExIRQn input
				11: Interrupt request generated at both falli rising edges of IRQn or ExIRQn input
				(n = 7 to 4)
				Note: The IRQn or ExIRQn pin is selected IRQ sense port select register (ISSI ExIRQ5 and ExIRQ4 pins are not s

Rev. 2.00 Sep. 28, 2009 Page 94 of 994 REJ09B0452-0200

RENESAS

0	IRQ0SCA	0	R/W	IRQn input
				11: Interrupt request generated at both fal rising edges of IRQn input
				(n = 3 to 0)

Renesas

4	IRQ12E	0	R/W (····································
3	IRQ11E	0	R/W
2	IRQ10E	0	R/W
1	IRQ9E	0	R/W
0	IRQ8E	0	R/W

• IER

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ7E	0	R/W	IRQn Enable
6	IRQ6E	0	R/W	The IRQn interrupt request is enabled whe
5	IRQ5E	0	R/W	is 1.
4	IRQ4E	0	R/W	(n = 7 to 0)
3	IRQ3E	0	R/W	
2	IRQ2E	0	R/W	
1	IRQ1E	0	R/W	
0	IRQ0E	0	R/W	

Rev. 2.00 Sep. 28, 2009 Page 96 of 994 REJ09B0452-0200

				Note:	The IRQn or ExIRQn pin is selected IRQ sense port select register 16
				(n = 1	5 to 8)
					oth-edge detection is set
					kecuted when falling-edge, rising-edg
					hen IRQn interrupt exception handli
0	IKQOF	0	R/(W)*	E	xIRQn input is high
0	IRQ8F	0	. ,	w	hen low-level detection is set and \overline{IR}
1	IRQ9F	0	R/(W)*	• W	hen interrupt exception handling is
2	IRQ10F	0	R/(W)*		RQnF = 1
3	IRQ11F	0	R/(W)*		/hen writing 0 to IRQnF flag after rea
4	IRQ12F	0	R/(W)*		······································

Note: * Only 0 can be written for clearing the flag.

0	IRQ0	F C) R/(W)*		Ren low-level detection is set and inc
				e>	hen IRQn interrupt exception handlin ecuted when falling-edge, rising-edge oth-edge detection is set 7 to 0)
				Note:	The IRQn or ExIRQn pin is selected IRQ sense port select register (ISS ExIRQ5 to ExIRQ0 pins are not sup
Note:	* 0	ly 0 can b	be written for clearing t	he flac	

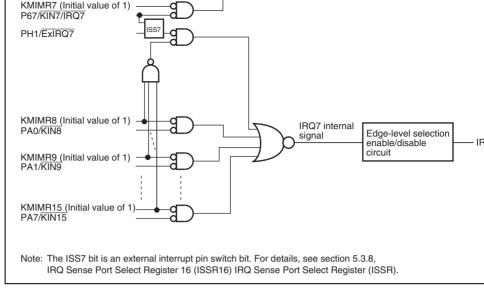
Note: * Only 0 can be written for clearing the flag.

Rev. 2.00 Sep. 28, 2009 Page 98 of 994 REJ09B0452-0200

0		1		These bits chable of disable a key-sensin
5	KMIMR13	1	R/W	interrupt request (KIN15 to KIN8).
4	KMIMR12	1	R/W	0: Enables a key-sensing input interrupt re
3	KMIMR11	1	R/W	1: Disables a key-sensing input interrupt r
2	KMIMR10	1	R/W	
1	KMIMR9	1	R/W	
0	KMIMR8	1	R/W	

• KMIMR

Bit Name	Initial Value	R/W	Description
KMIMR7	1	R/W	Keyboard Matrix Interrupt Mask
KMIMR6	0/1*	R/W	These bits enable or disable a key-sensin
KMIMR5	1	R/W	interrupt request (KIN7 to KIN0).
KMIMR4	1	R/W	0: Enables a key-sensing input interrupt re
KMIMR3	1	R/W	1: Disables a key-sensing input interrupt r
KMIMR2	1	R/W	When the EIVS bit in SYSCR3 is cleared
KMIMR1	1	R/W	KMIMR6 bit also simultaneously controls and disabling of the IRQ6 interrupt reques
KMIMR0	1	R/W	case, the initial value of the KMIMR6 bit is the EIVS bit is set to 1, the initial value of KMIMR6 bit becomes 1.
	KMIMR7 KMIMR6 KMIMR5 KMIMR4 KMIMR3 KMIMR2 KMIMR1	KMIMR71KMIMR60/1*KMIMR51KMIMR41KMIMR31KMIMR21KMIMR11	KMIMR7 1 R/W KMIMR6 0/1* R/W KMIMR5 1 R/W KMIMR4 1 R/W KMIMR3 1 R/W KMIMR1 1 R/W


Note: * The initial value is 0 when EIVS = 0 and the initial value is 1 when EIVS = 1.

RENESAS

0 WUEMR8 1 R/W

Rev. 2.00 Sep. 28, 2009 Page 100 of 994 REJ09B0452-0200

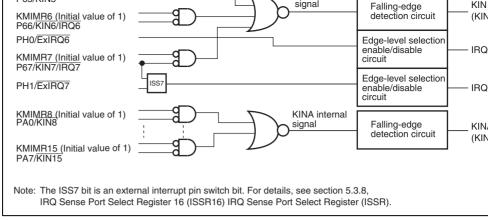


Figure 5.2 Relation between IRQ7/IRQ6 Interrupts and KIN15 to KIN0 Inter KMIMR, and KMIMRA

(H8S/2140B Group Compatible Vector Mode: EIVS = 0)

Figure 5.3 Relation between IRQ7 and IRQ6 Interrupts, KIN15 to KIN0 Interr KMIMR, and KMIMRA (Extended Vector Mode: EIVS = 1)

In extended vector mode, the initial value of the KMIMR6 bit is 1. Accordingly, it does not disable the $\overline{IRQ6}$ pin interrupt. The interrupt input from the $\overline{ExIRQ6}$ pin becomes the l interrupt request.

Rev. 2.00 Sep. 28, 2009 Page 102 of 994 REJ09B0452-0200

6	ISS14	0	R/W	0: P95/IRQ14 is selected
				1: PG6/ExIRQ14 is selected
5	ISS13	0	R/W	0: P94/IRQ13 is selected
				1: PG5/ExIRQ13 is selected
4	ISS12	0	R/W	0: P93/IRQ12 is selected
				1: PG4/ExIRQ12 is selected
3	ISS11	0	R/W	0: PF3/IRQ11 is selected
				1: PG3/ExIRQ11 is selected
2	ISS10	0	R/W	0: PF2/IRQ10 is selected
				1: PG2/ExIRQ10 is selected
1	ISS9	0	R/W	0: PF1/IRQ9 is selected
				1: PG1/ExIRQ9 is selected
0	ISS8	0	R/W	0: PF0/IRQ8 is selected
				1: PG0/ExIRQ8 is selected

• ISSR

Bit	Bit Name	Initial Value	R/W	Description
7	ISS7	0	R/W	0: P67/IRQ7 is selected
				1: PH1/ExIRQ7 is selected
6 to 0	_	0	R/W	Reserved
				The initial values should not be changed.

RENESAS

6	WUE14SC	0	R/W	These bits select the source that generates
5	WUE13SC	0	R/W	interrupt request at wake-up event interrup (WUE15 to WUE8).
4	WUE12SC	0	R/W	0: Interrupt request generated at falling ed
3	WUE11SC	0	R/W	WUEn input
2	WUE10SC	0	R/W	1: Interrupt request generated at rising edg
1	WUE9SC	0	R/W	WUEn input
0	WUE8SC	0	R/W	(n = 15 to 8)

• WUESR

Bit	Bit Name	Initial Value	R/W	Description
7	WUE15F	0	R/(W)*	Wake-Up Input Interrupt (WUE15 to WUE8
6	WUE14F	0	R/(W)*	Request Flag Register
5	WUE13F	0	R/(W)*	These bits are status flags that indicate tha up input interrupts (WUE15 to WUE8) are
4	WUE12F	0	R/(W)*	requested.
3	WUE11F	0	R/(W)*	[Setting condition]
2	WUE10F	0	R/(W)*	 When a wake-up input interrupt is gene
1	WUE9F	0	R/(W)*	[Clearing condition]
0	WUE8F	0	R/(W)*	When 0 is written after reading 1

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 104 of 994 REJ09B0452-0200

5.4 Interrupt Sources

5.4.1 External Interrupt Sources

The interrupt sources of external interrupts are NMI, IRQ15 to IRQ0, KIN15 to KIN0 at to WUE8. These interrupts can be used to restore this LSI from software standby mode.

(1) NMI Interrupt

The nonmaskable external interrupt NMI is the highest-priority interrupt, and is always regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or f edge on the NMI pin.

(2) IRQ15 to IRQ0 Interrupts:

Interrupts IRQ15 to IRQ0 are requested by an input signal at pins $\overline{\text{IRQ15}}$ to $\overline{\text{IRQ0}}$ or pin $\overline{\text{ExIRQ15}}$ to $\overline{\text{ExIRQ6}}$. Interrupts IRQ15 to IRQ0 have the following features:

- The interrupt exception handling for interrupt requests IRQ15 to IRQ0 can be started independent vector address.
- Using ISCR, it is possible to select whether an interrupt is generated by a low level, edge, rising edge, or both edges, at pins IRQ15 to IRQ0 or pins ExIRQ15 to ExIRQ6
- Enabling or disabling of interrupt requests IRQ15 to IRQ0 can be selected with IER.
- The status of interrupt requests IRQ15 to IRQ0 is indicated in ISR. ISR flags can be 0 by software.

RENESAS

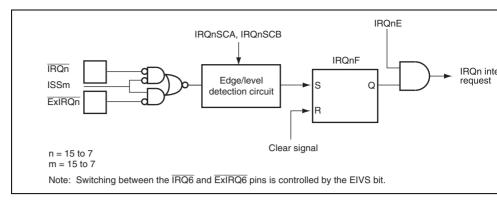


Figure 5.4 Block Diagram of Interrupts IRQ15 to IRQ0

(3) KIN15 to KIN0 Interrupts

Interrupts KIN15 to KIN0 are requested by the input signals on pins $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$. Fur interrupts KIN15 to KIN0 change as follows according to the setting of the EIVS bit in sy control register 3 (SYSCR3).

- H8S/2140B Group compatible vector mode (EIVS = 0 in SYSCR3)
 - Interrupts KIN15 to KIN8 correspond to interrupt IRQ7, and interrupts KIN7 to K correspond to interrupt IRQ6. The pin conditions for generating an interrupt reque whether the interrupt request is enabled, interrupt control level setting, and status of interrupt request for the above interrupts are in accordance with the settings and st the relevant interrupts IRQ7 and IRQ6.
 - KIN15 to KIN0 interrupt requests can be masked by using KMIMRA and KMIMI
 - If the KIN7 to KIN0 pins are specified to be used as key-sensing interrupt input pi interrupt sensing condition for the corresponding interrupt source (IRQ6 or IRQ7) set to low-level sensing or falling-edge sensing.

Rev. 2.00 Sep. 28, 2009 Page 106 of 994 REJ09B0452-0200

An IRQ6 interrupt is enabled only by input to the ExIRQ6 pin. The IRQ6 pin is of available for a KIN interrupt input, and functions as the $\overline{KIN6}$ pin. The initial val KMIMR6 bit is 1. For the IRQ7 interrupt, either the IRQ7 pin or ExIRQ7 pin car selected as the input pin using the ISS7 bit. The IRQ7 interrupt is not affected by settings of bits KMIMR15 to KMIMR8. The detection of interrupts KIN15 to KI not depend on whether the relevant pin has been set for input or output. Therefore pin is used as an external interrupt input pin, clear the DDR bit of the correspond 0 so it is not used as an I/O pin for another function.

(4) WUE15 to WUE8 Interrupts

Interrupt requests WUE15 to WUE8 can be configured regardless of the setting of the E system control register 3 (SYSCR3).

A block diagram of interrupts WUE15 to WUE8 is shown in figure 5.5.

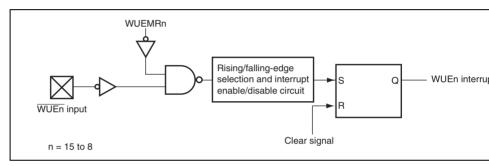


Figure 5.5 Block Diagram of Interrupts WUE15 to WUE8

Rev. 2.00 Se

5.5 Interrupt Exception Handling Vector Tables

Tables 5.4 and 5.5 list interrupt exception handling sources, vector addresses, and interru priorities. H8S/2140B Group compatible vector mode or extended vector mode can be se the vector addresses by the EIVS bit in system control register 3 (SYSCR3).

For default priorities, the lower the vector number, the higher the priority. Modules set at priority will conform to their default priorities. Priorities within a module are fixed.

An interrupt control level can be specified for a module to which an ICR bit is assigned. I requests from modules that are set to interrupt control level 1 (priority) by the interrupt collevel and the I and UI bits in CCR are given priority and processed before interrupt reque modules that are set to interrupt control level 0 (no priority).

Origin of			Vector Address	
Interrupt Source	Name	Vector Number	Advanced Mode	ICR
External pin	NMI	7	H'00001C	_
	IRQ0	16	H'000040	ICRA7
	IRQ1	17	H'000044	ICRA6
	IRQ2 IRQ3	18 19	H'000048 H'00004C	ICRA5
	IRQ4 IRQ5	20 21	H'000050 H'000054	ICRA4
	IRQ6, KIN7 to KIN0 IRQ7, KIN15 to KIN8	22 23	H'000058 H'00005C	ICRA3

Table 5.5Interrupt Sources, Vector Addresses, and Interrupt Priorities
(H8S/2140B Group Compatible Vector Mode)

Rev. 2.00 Sep. 28, 2009 Page 108 of 994 REJ09B0452-0200

RENESAS

External pin	WUE15 to WUE8	33	H'000084	ICRD4
TPU_0	TGI0A (TGR0A input capture/compare match)	34	H'000088	ICRD3
	TGI0B (TGR0B input capture/compare match)	35	H'00008C	
	TGIOC (TGR0C input capture/compare match)	36	H'000090	
	TGI0D (TGR0D input capture/compare match)	37	H'000094	
	TGIOV (Overflow 0)	38	H'000098	
TPU_1	TGI1A (TGR1A input capture/compare match)	39	H'00009C	ICRD2
	TGI1B (TGR1B input capture/compare match)	40	H'0000A0	
	TGI1V (Overflow 1)	41	H'0000A4	
	TGI1U (Underflow 1)	42	H'0000A8	
TPU_2	TGI2A (TGR2A input capture/compare match)	43	H'0000AC	ICRD1
	TGI2B (TGR2B input capture/compare match)	44	H'0000B0	
	TGI2V (Overflow 2)	45	H'0000B4	
	TGI2U (Underflow 2)	46	H'0000B8	
_	Reserved for system use	47	H'0000BC	—
TCM_0	TICI0 (Input capture) TCMI0 (Compare match) TOVMI0 (Cycle overflow) TUDI0 (Cycle underflow) TOVI0 (Overflow)	48	H'0000C0	ICRB6
TCM_1	TICI1 (Input capture) TCMI1 (Compare match) TOVMI1 (Cycle overflow) TUDI1 (Cycle underflow) TOVI1 (Overflow)	49	H'0000C4	

Rev. 2.00 Sep. 28, 2009 Pag

Renesas

REJ09

TDP_0	TCI0 (Input capture) TCMI0 (Compare match) TPDMXI0 (Cycle overflow) TPDMNI0 (Cycle underflow) TWDMNI0 (Pulse width lower limit underflow) TWDMXI0 (Pulse width upper limit overflow) TOVI0 (Overflow)	52	H'0000D0	ICRB5
TDP_1	TICI1 (Input capture) TCMI1 (Compare match) TPDMXI1 (Cycle overflow) TPDMNI1 (Cycle underflow) TWDMNI1 (Pulse width lower limit underflow) TWDMXI1 (Pulse width upper limit overflow) TOVI1 (Overflow)	53	H'0000D4	
TDP_2	TICI2 (Input capture) TCMI2 (Compare match) TPDMXI2 (Cycle overflow) TPDMNI2 (Cycle underflow) TWDMNI2 (Pulse width lower limit underflow) TWDMXI2 (Pulse width upper limit overflow) TOVI2 (Overflow)	54	H'0000D8	
_	Reserved for system use	55	H'0000DC	_
External pin	IRQ8 IRQ9 IRQ10 IRQ11	56 57 58 59	H'0000E0 H'0000E4 H'0000E8 H'0000EC	ICRD7
	IRQ12 IRQ13 IRQ14 IRQ15	60 61 62 63	H'0000F0 H'0000F4 H'0000F8 H'0000FC	ICRD6

Rev. 2.00 Sep. 28, 2009 Page 110 of 994 REJ09B0452-0200

RENESAS

IMR_Y	CIMIBY (Compare match B)	73	H'000124	
	OVIY (Overflow)	74	H'000128	
	ICIX (Input capture)	75	H'00012C	
	CMIAX (Compare match A)	76	H'000130	
	CMIBX (Compare match B)	77	H'000134	
	OVIX (Overflow)	78	H'000138	
FSI	FSII (Transmission/reception completion)	79	H'00013C	ICRC2
_	Reserved for system use	80	H'000140	
	-	81	H'000144	
SCIF	SCIF (SCIF interrupt)	82	H'000148	ICRC7
_	Reserved for system use	83	H'00014C	—
SCI_1	ERI1 (Reception error 1)	84	H'000150	ICRC6
—	RXI1 (Reception completion 1)	85	H'000154	
	TXI1 (Transmission data empty 1)	86	H'000158	
	TEI1 (Transmission end 1)	87	H'00015C	
SCI_2	ERI2 (Reception error)	88	H'000160	ICRC5
	RXI2 (Reception completion)	89	H'000164	
	TXI2 (Transmission data empty 2)	90	H'000168	
	TEI2 (Transmission end 2)	91	H'00016C	
IIC_0	IICI0 (1-byte transmission/reception completion)	92	H'000170	ICRC4
CIR	RENDI (Reception end) OVEI (Overrun error) REPI (Repeat detection) FREI (Framing error) ABI (Abort) HEADFI (Header detection)	93	H'000174	ICRB4
IIC_1	IICI1 (1-byte transmission/reception completion)	94	H'000178	ICRC3
IIC_2	IICI2 (1-byte transmission/reception completion)	95	H'00017C	

_	D)/KBCD (1st KCLKD)	103	HUUUI9C	
FSI	LFSII (Command reception)/(Write reception)	104	H'0001A0	ICRC1
_	Reserved for system use	105	H'0001A4	_
LPC	OBEI (ODR1 to 4 transmission completion)	106	H'0001A8	ICRC1
	IBFI4 (IDR4 reception completion)	107	H'0001AC	
	ERR1 (Transfer error, etc.)	108	H'0001B0	
	IBFI1 (IDR1 reception completion)	109	H'0001B4	
	IBFI2 (IDR2 reception completion)	110	H'0001B8	
	IBFI3 (IDR3 reception completion)	111	H'0001BC	
_	Reserved for system use	112 107	H'0001C0	
		127	H'0001FC	

Rev. 2.00 Sep. 28, 2009 Page 112 of 994 REJ09B0452-0200

	IRQ4	20	H'000050	ICRA4
	IRQ5	21	H'000054	
	IRQ6	22	H'000058	ICRA3
	IRQ7	23	H'00005C	
_	Reserved for system use	24	H'000060	_
WDT_0	WOVI0 (Interval timer)	25	H'000064	ICRA1
WDT_1	WOVI1 (Interval timer)	26	H'000068	ICRA0
_	Address break	27	H'00006C	_
A/D converter	ADI (A/D conversion end)	28	H'000070	ICRB7
_	Reserved for system use	29	H'000074	_
External pin	KIN7 to KIN0	30	H'000078	ICRD5
	KIN15 to KIN8	31	H'00007C	
_	Reserved for system use	32	H'000080	_
External pin	WUE15 to WUE8	33	H'000084	ICRD4
TPU_0	TGI0A (TGR0A input	34	H'000088	ICRD3
	capture/compare match) TGI0B (TGR0B input capture/compare match)	35	H'00008C	
	TGI0C (TGR0C input capture/compare match)	36	H'000090	
	TGI0D (TGR0D input capture/compare match)	37	H'000094	
	TGI0V (Overflow 0)	38	H'000098	
TPU_1	TGI1A (TGR1A input	39	H'00009C	ICRD2
	capture/compare match) TGI1B (TGR1B input capture/compare match)	40	H'0000A0	
	TGI1V (Overflow 1)	41	H'0000A4	
	TGI1U (Underflow 1)	42	H'0000A8	

	TODIO (Cycle underflow) TOVIO (Overflow)			
TCM_1	TICI1 (Input capture) TCMI1 (Compare match) TOVMI1 (Cycle overflow) TUDI1 (Cycle underflow) TOVI1 (Overflow)	49	H'0000C4	_
TCM_2	TICl2 (Input capture) TCMI2 (Compare match) TOVMI2 (Cycle overflow) TUDI2 (Cycle underflow) TOVI2 (Overflow)	50	H'0000C8	_
TCM_3	TICI3 (Input capture) TCMI3 (Compare match) TOVMI3 (Cycle overflow) TUDI3 (Cycle underflow) TOVI3 (Overflow)	51	H'0000CC	_
TDP_0	TICI0 (Input capture) TCMI0 (Compare match) TPDMXI0 (Cycle overflow) TPDMNI0 (Cycle underflow) TWDMNI0 (Pulse width lower limit underflow) TWDMXI0 (Pulse width upper limit overflow) TOVI0 (Overflow)	52	H'0000D0	ICRB5
TDP_1	TICI1 (Input capture) TCMI1 (Compare match) TPDMXI1 (Cycle overflow) TPDMNI1 (Cycle underflow) TWDMNI1 (Pulse width lower limit underflow) TWDMXI1 (Pulse width upper limit overflow) TOVI1 (Overflow)	53	H'0000D4	-

Rev. 2.00 Sep. 28, 2009 Page 114 of 994 REJ09B0452-0200

External	IRQ8	56	H'0000E0	ICRD7
pin	IRQ9	57	H'0000E4	
	IRQ10	58	H'0000E8	
	IRQ11	59	H'0000EC	
	IRQ12	60	H'0000F0	ICRD6
	IRQ13	61	H'0000F4	
	IRQ14	62	H'0000F8	
	IRQ15	63	H'0000FC	
TMR_0	CMIA0 (Compare match A)	64	H'000100	ICRB3
	CMIB0 (Compare match B)	65	H'000104	
	OVI0 (Overflow)	66	H'000108	
_	Reserved for system use	67	H'00010C	_
TMR_1	CMIA1 (Compare match A)	68	H'000110	ICRB2
	CMIB1 (Compare match B)	69	H'000114	
	OVI1 (Overflow)	70	H'000118	
_	Reserved for system use	71	H'00011C	_
TMR_X	CMIAY (Compare match A)	72	H'000120	ICRB1
TMR_Y	CMIBY (Compare match B)	73	H'000124	
	OVIY (Overflow)	74	H'000128	
	ICIX (Input capture)	75	H'00012C	
	CMIAX (Compare match A)	76	H'000130	
	CMIBX (Compare match B)	77	H'000134	
	OVIX (Overflow)	78	H'000138	
FSI	FSII (Transmission/reception	79	H'00013C	ICRC2
	completion)			
	Reserved for system use	80	H'000140	
		81	H'000144	
SCIF	SCIF (SCIF interrupt)	82	H'000148	ICRC7
	Reserved for system use	83	H'00014C	_
SCI_1	ERI1 (Reception error 1)	84	H'000150	ICRC6
	RXI1 (Reception completion 1)	85	H'000154	
	TXI1 (Transmission data empty 1)	86	H'000158	
	TEI1 (Transmission end 1)	87	H'00015C	

RENESAS

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

	ABI (Abort) HEADFI (Header detection)			
IIC_1	IICI1 (1-byte transmission/reception completion)	94	H'000178	ICRC3
IIC_2	IICI2 (1-byte transmission/reception completion)	95	H'00017C	
PS2	KBIA (Reception completion A)	96	H'000180	ICRB0
	KBIB (Reception completion B)	97	H'000184	
	KBIC (Reception completion C)	98	H'000188	
	KBTIA (Transmission completion A)/ KBCA (1st KCLKA)	99	H'00018C	
	KBTIB (Transmission completion B)/ KBCB (1st KCLKB)	100	H'000190	
	KBTIC (Transmission completion C)/ KBCC (1st KCLKC)	101	H'000194	
	KBID (Reception completion D)	102	H'000198	
	KBTID (Transmission completion D)/KBCD (1st KCLKD)	103	H'00019C	
FSI	LFSII (Command reception)/(Write reception)	104	H'0001A0	ICRC1
	Reserved for system use	105	H'0001A4	—
LPC	OBEI (ODR1 to 4 transmission completion)	106	H'0001A8	ICRC1
	IBFI4 (IDR4 reception completion)	107	H'0001AC	
	ERR1 (Transfer error, etc.)	108	H'0001B0	
	IBFI1 (IDR1 reception completion)	109	H'0001B4	
	IBFI2 (IDR2 reception completion)	110	H'0001B8	
	IBFI3 (IDR3 reception completion)	111	H'0001BC	
_	Reserved for system use	112 	H'0001C0	_
		127	H'0001FC	

Rev. 2.00 Sep. 28, 2009 Page 116 of 994 REJ09B0452-0200

RENESAS

Mode			1.09.01010	Mask Dits	Description
0	0	0	ICR	I	Interrupt mask control is perfo the I bit. Priority levels can be ICR.
1	0	1	ICR	I, UI	3-level interrupt mask control performed by the I and UI bits levels can be set with ICR.

Figure 5.6 shows a block diagram of the priority determination circuit.

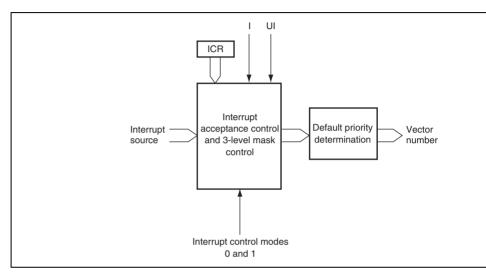
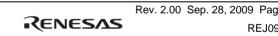



Figure 5.6 Block Diagram of Interrupt Control Operation

			priority)
	1	*	NMI and address break interrupts
1	0	*	All interrupts (interrupt control level 1 ha priority)
	1	0	NMI, address break, and interrupt contr interrupts
		1	NMI and address break interrupts

[Legend]

*: Don't care

(2) Default Priority Determination

The priority is determined for the selected interrupt, and a vector number is generated.

If the same value is set for ICR, acceptance of multiple interrupts is enabled, and so only interrupt source with the highest priority according to the preset default priorities is select has a vector number generated.

Interrupt sources with a lower priority than the accepted interrupt source are held pending

Rev. 2.00 Sep. 28, 2009 Page 118 of 994 REJ09B0452-0200

- O: Interrupt operation control is performed
- IM: Used as an interrupt mask bit
- PR: Priority is set
- —: Not used

5.6.1 Interrupt Control Mode 0

In interrupt control mode 0, interrupt requests other than NMI and address break are ma ICR and the I bit of CCR in the CPU. Figure 5.7 shows a flowchart of the interrupt acce operation.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, a interrupt request is sent to the interrupt controller.
- 2. According to the interrupt control level specified in ICR, the interrupt controller only an interrupt request with interrupt control level 1 (priority), and holds pending an int request with interrupt control level 0 (no priority). If several interrupt requests are iss interrupt request with the highest priority is accepted according to the priority order, interrupt handling is requested to the CPU, and other interrupt requests are held pend
- 3. If the I bit in CCR is set to 1, the interrupt controller holds pending interrupt requests than NMI and address break. If the I bit is cleared to 0, any interrupt request is accepted as the set of the set o
- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC the stack shows the address of the first instruction to be executed after returning from interrupt handling routine.
- 6. Next, the I bit in CCR is set to 1. This masks all interrupts except for NMI and addre interrupts.

RENESAS

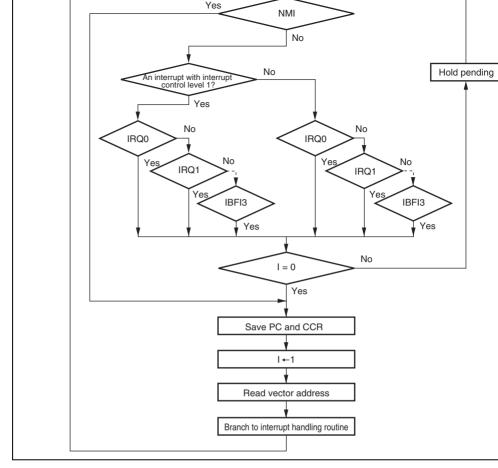


Figure 5.7 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Contro

Rev. 2.00 Sep. 28, 2009 Page 120 of 994 REJ09B0452-0200 to 1, and ICRA to ICRD are set to H'20, H'00, H'00, and H'00, respectively (IRQ2 and I interrupts are set to interrupt control level 1, and other interrupts are set to interrupt control 0) is shown below. Figure 5.8 shows a state transition diagram.

- All interrupt requests are accepted when I = 0. (Priority order: NMI > IRQ2 > IRQ3 break > IRQ0 > IRQ1 ...)
- Only NMI, IRQ2, IRQ3, and address break interrupt requests are accepted when I = 0.
- Only NMI and address break interrupt requests are accepted when I = 1 and UI = 1.

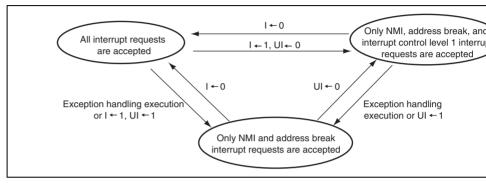


Figure 5.8 State Transition in Interrupt Control Mode 1

An interrupt request with interrupt control level 0 is accepted when the I bit is cleared When both the I and UI bits are set to 1, only NMI and address break interrupt reques accepted, and other interrupts are held pending.

When the I bit is cleared to 0, the UI bit does not affect acceptance of interrupt reques

- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC the stack shows the address of the first instruction to be executed after returning from interrupt handling routine.
- 6. The I and UI bits in CCR are set to 1. This masks all interrupts except for NMI and ad break interrupts.
- The CPU generates a vector address for the accepted interrupt request and starts exect the interrupt handling routine at the address indicated by the contents of the vector add the vector table.

Rev. 2.00 Sep. 28, 2009 Page 122 of 994 REJ09B0452-0200

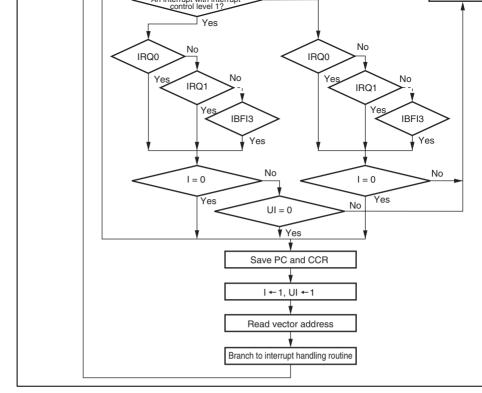


Figure 5.9 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Contr

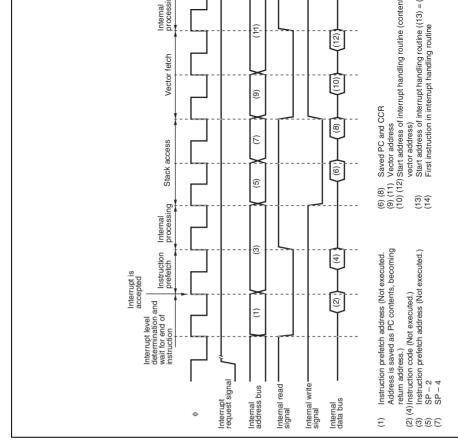


Figure 5.10 Interrupt Exception Handling

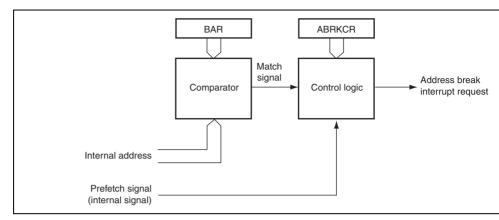
Rev. 2.00 Sep. 28, 2009 Page 124 of 994 REJ09B0452-0200

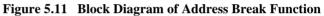
RENESAS

3	Saving of PC and CCR in stack	2
4	Vector fetch	2
5	Instruction fetch*3	2
6	Internal processing*4	2
	Total (using on-chip memory)	12 to 32
	· · · · · · · · · · · · · · · · · · ·	

Notes: 1. Two states in case of internal interrupt.

2. Refers to MULXS and DIVXS instructions.


3. Prefetch after interrupt acceptance and prefetch of interrupt handling routine.


4. Internal processing after interrupt acceptance and internal processing after ve

5.7.2 Block Diagram

Figure 5.11 shows a block diagram of the address break function.

Rev. 2.00 Sep. 28, 2009 Page 126 of 994 REJ09B0452-0200

- 1. Set the break address in bits A23 to A1 in BAR.
- 2. Set the BIE bit in ABRKCR to 1 to enable address breaks. An address break will not requested if the BIE bit is cleared to 0.

When the setting condition occurs, the CMF flag in ABRKCR is set to 1 and an interrup requested. If necessary, the source should be identified in the interrupt handling routine.

5.7.4 Usage Notes

- With the address break function, the address at which the first instruction byte is local should be specified as the break address. Occurrence of the address break condition recognized for other addresses.
- If a branch instruction (Bcc, BSR) jump instruction (JMP, JSR), RTS instruction, or instruction is located immediately before the address set in BAR, execution of this in will output a prefetch signal for that address, and an address break may be requested be prevented by not making a break address setting for an address immediately follo of these instructions, or by determining within the interrupt handling routine whether handling was initiated by a genuine condition occurrence.
- As an address break interrupt is generated by a combination of the internal prefetch s address, the timing of the start of interrupt exception handling depends on the conter execution cycle of the instruction at the set address and the preceding instruction. Fig shows some address timing examples.

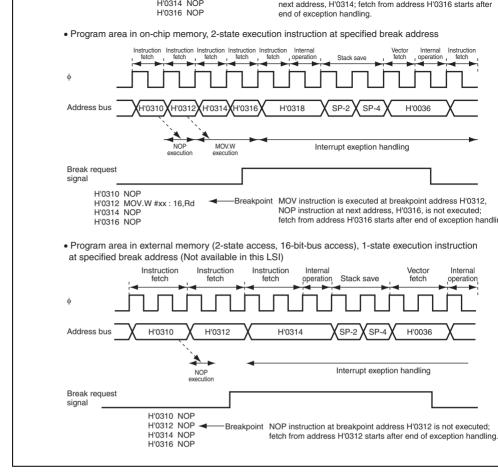


Figure 5.12 Examples of Address Break Timing

Rev. 2.00 Sep. 28, 2009 Page 128 of 994 REJ09B0452-0200 handling will be executed for the higher-priority interrupt, and the lower-priority interru ignored. The same rule is also applied when an interrupt source flag is cleared to 0. Figu shows an example where the CMIEA bit in TCR of the TMR is cleared to 0. The above will not occur if an interrupt enable bit or interrupt source flag is cleared to 0 while the i disabled.

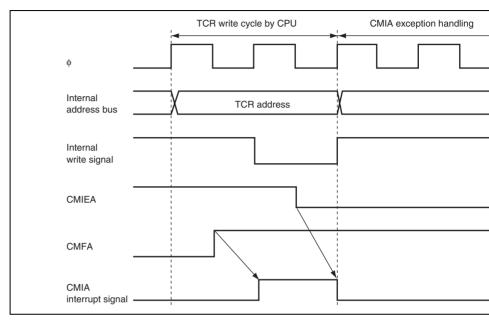


Figure 5.13 Conflict between Interrupt Generation and Disabling

Rev. 2.00 S

With the EEPMOV.B instruction, an interrupt request including NMI issued during data to not accepted until data transfer is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during data transfer, in exception handling starts at a break in the transfer cycles. The PC value saved on the star case is the address of the next instruction. Therefore, if an interrupt is generated during ex of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W MOV.W R4,R4 BNE L1

5.8.4 Vector Address Switching

Switching between H8S/2140B Group compatible vector mode and extended vector mod done in a state with no interrupts occurring.

If the EIVS bit in SYSCR3 is changed from 0 to 1 when interrupt input is enabled becaus $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$ and $\overline{\text{WUE15}}$ to $\overline{\text{WUE8}}$ pins are set at low level, a falling edge is detected causing an interrupt to be generated. The vector mode must be changed when interrupt in disabled, that is the $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$ and $\overline{\text{WUE15}}$ to $\overline{\text{WUE8}}$ pins are set at high level.

Rev. 2.00 Sep. 28, 2009 Page 130 of 994 REJ09B0452-0200

The noise canceller should be switched when the external input pins ($\overline{IRQ7}$, $\overline{IRQ6}$, \overline{ExIR} ExIRQ8, $\overline{KIN7}$ to $\overline{KIN0}$, and $\overline{WUE15}$ to $\overline{WUE8}$) are high.

5.8.7 IRQ Status Register (ISR)

Since IRQnF may be set to 1 according to the pin state after reset, the ISR should be reareset, and then write 0 in IRQnF (n = 15 to 0).

Rev. 2.00 Sep. 28, 2009 Page 132 of 994 REJ09B0452-0200

Table 0.1 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	N N
Bus control register	BCR	R/W	H'D3	H'FFC6	8
Wait state control register	WSCR	R/W	H'F3	H'FFC7	8

6.1.1 Bus Control Register (BCR)

Bit	Bit Name	Initial Value	R/W	Description
7	_	1	R/W	Reserved
				The initial value should not be changed.
6	ICIS0	1	R/W	Idle Cycle Insertion
				The initial value should not be changed.
5	BRSTRM	0	R/W	Burst ROM Enable
				The initial value should not be changed.
4	BRSTS1	1	R/W	Burst Cycle Select 1
				The initial value should not be changed.
3	BRSTS0	0	R/W	Burst Cycle Select 0
				The initial value should not be changed.
2		0	R/W	Reserved
				The initial value should not be changed.
1	IOS1	1	R/W	IOS Select 1 and 0
0	IOS0	1	R/W	The initial value should not be changed.

RENESAS

3	WMS1	0	R/W	Wait Mode Select 1 and 0
2	WMS0	0	R/W	The initial value should not be changed.
1	WC1	1	R/W	Wait Count 1 and 0
0	WC0	1	R/W	The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 134 of 994 REJ09B0452-0200

In addition, ports 1 to 3, C, and D can drive a LED (5 mA sink current). P52, P97, P86, A, G, and I are NMOS push-pull outputs and 5-V tolerant inputs. PE4 and PE2 to PE0 a tolerant inputs.

Ports I and J are not supported by TFP-144V and TLP-145V.

		2	P12	_	_	-	
		1	P11	—	—	-	
		0	P10	_	—	-	
Port 2	General I/O	7	P27	—		0	0
	port	6	P26	—			
		5	P25	_	_		
		4	P24	—		-	
		3	P23	—			
		2	P22	—			
		1	P21	—		_	
		0	P20	—		-	
Port 3	General I/O	7	P37/SERIRQ	—		0	0
	port also functioning as	6	P36	LCLK			
	LPC	5	P35	LRESET		-	
	input/output	4	P34	LFRAME		-	
		3	P33/LAD3			_	
		2	P32/LAD2	_	_	-	
		1	P31/LAD1	_	_	-	
		0	P30/LAD0	_	_	-	
-							

Rev. 2.00 Sep. 28, 2009 Page 136 of 994 REJ09B0452-0200

	TMR_1, IIC_1, and			TCMMCI1			
	SCI_2	2	P42/SDA1	TCMCYI1			
	inputs/outputs	1	P41	RxD2/TCMCKI0/ TCMMCI0	TMO0		
		0	P40	TMI0/TCMCYI0	TxD2		
Port 5	General I/O	2	P52/SCL0	—	_	_	_
	port also functioning as	1	P51	FRxD	_		
	IIC_0 and	0	P50	—	FTxD		
	SCIF inputs/outputs						
	inputs/outputs						
Port 6		7	P67	KIN7/IRQ7	_	0	—
	port also functioning as	6	P66	KIN6/IRQ6	_		
	interrupt input		P65	KIN5	—		
	and keyboard	4	P64	KIN4	_		
	input	3	P63	KIN3	_		
		2	P62	KIN2	_		
		1	P61	KIN1	_	-	
		0	P60	KIN0	_		

		1	—	P71/AN1		
		0	_	P70/AN0	_	-
Port 8	General I/O port also	6	P86/SCK1/ SCL1	ÎRQ5	—	
	functioning as interrupt	5	P85	RxD1/IRQ4		_
	input, IIC_1,	4	P84	IRQ3	TxD1	
	SCI_1, and	3	P83	LPCPD		
	LPC inputs/outputs	2	P82/CLKRUN	_		
		1	P81/GA20	_	_	_
		0	P80/PME	_	_	
Port 9	General I/O	7	P97/SDA0	IRQ15		0 —
	port also functioning as	6	P96	EXCL	ф	(P95 to P90)
	external sub- clock, interrupt input, IIC_0 input/output, and system clock output	5	P95	IRQ14	—	
		4	P94	IRQ13	_	-
		3	P93	IRQ12	—	
		2	P92	IRQ0	_	_
		1	P91	IRQ1		-
		0	P90	IRQ2		-

Rev. 2.00 Sep. 28, 2009 Page 138 of 994 REJ09B0452-0200

		1	PA1/PS2DD	KIN9	_		
		0	PA0/PS2DC	KIN8	_		
Port B	General I/O	7	PB7		RTS/FSISS	0	_
	port also functioning as	6	PB6	CTS	FSICK	-	
	LPC, SCIF	5	PB5	FSIDI	DTR	-	
	and FSI inputs/outputs	4	PB4	DSR	FSIDO	-	
	and PWMU	3	PB3	DCD	PWMU1B	-	
	output	2	PB2	RI	PWMU0B	-	
		1	PB1/LSCI	_	_	-	
		0	PB0/LSMI		_	-	
Port C	General I/O	7	PC7/TIOCB2	TCLKD/WUE15	—	0	0
	port also functioning as	6	PC6/TIOCA2	WUE14	_	-	
	wake-up input		PC5/TIOCB1	TCLKC/WUE13	—	-	
	and TPU input/output	4	PC4/TIOCA1	WUE12	_	-	
		3	PC3/TIOCD0	TCLKB/WUE11	—	-	
		2	PC2/TIOCC0	TCLKA/WUE10	_	-	
		1	PC1/TIOCB0	WUE9	_		
		0	PC0/TIOCA0	WUE8	_	-	

		1	PD1	AN9	_					
		0	PD0	AN8	_					
Port E	General input	4	_	PE4* ¹ /ETMS	_	—	_			
	port also functioning as	3	_	PE3*1	ETDO					
	external sub-	2	_	PE2* ¹ /ETDI	_					
	clock input, emulator input/output	-	1	_	PE1* ¹ /ETCK	_				
		0	_	PE0/ExEXCL	_					
Port F	General I/O	7	PF7	—	PWMU5A	0	_			
	port also functioning as	•	•	port also functioning as	6	PF6	—	PWMU4A		
	interrupt and	5	PF5	—	PWMU3A					
	TDP inputs, TMR_X,	4	PF4	—	PWMU2A					
	TMR_Y, and PWM outputs	3	PF3	TDPCKI0/ TDPMCI0/IRQ11	TMOX					
		2	PF2	TDPCYI0//IRQ10	TMOY					
		1	PF1	IRQ9	PWMU1A					
		0	PF0	IRQ8	PWMU0A					

Rev. 2.00 Sep. 28, 2009 Page 140 of 994 REJ09B0452-0200

	IICO TO IICZ					
	inputs/outputs	1	PG1	TMIY1/ TDPCKI1/TDPMCI1/ ExIRQ9	_	
		0	PG0	TMIX/TDPCYI1 ExIRQ8	—	_
Port H		5	PH5		_	0 —
	port also functioning as	4	PH4	—	_	
	interrupt and	3	PH3	—	_	
	TDP and CIR inputs	2	PH2	CIRI	_	
		1	PH1	TDPCKI2/ TDPMCI1/ ExIRQ7	_	_
		0	PH0	TDPCYI2/ ExIRQ6	—	_
Port I	General I/O	7	PI7* ²		_	
	port	6	PI6* ²		_	_
		5	PI5* ²		_	_
		4	PI4* ²	—	_	
		3	PI3* ²	_	_	
		2	PI2* ²	_	_	_
		1	PI1* ²		_	_
		0	PI0* ²	—	—	

1	PJ1* ²	_	_
0	PJ0*2	—	_

Notes: 1. Not supported by the system development tool (emulator).

2. Not supported by TFP-144V and TLP-145V.

Rev. 2.00 Sep. 28, 2009 Page 142 of 994 REJ09B0452-0200

Port 3	8	0	0	0*	0	_	_	_	_	_
Port 4	8	0	0	O* ²	_	_	_	_	_	_
Port 5	3	0	0	O* ²	_	_	_	_	_	_
Port 6	8	0	0	O* ²	_	0	_	0	0	0
Port 7	8	_	_	0	_		_	_	—	_
Port 8	7	0	0	O* ²	_	_	_	_	_	_
Port 9	8	0	0	O* ²	0		_	_	—	_
Port A	8	0	_	0	_	_	0	_	_	_
Port B	8	0	_	0	O* ²	_	0	_	_	_
Port C	8	0	_	0	O* ²	_	0	0	0	0
Port D	8	0	_	0	O* ²	_	0	_	_	_
Port E	5	—	_	0	_	_	_	_	_	_
Port F	8	0	_	0	O* ²	_	0	_	_	_
Port G	8	0	_	0	_	_	0	0	0	0
Port H	6	0	_	0	O* ²	_	0	_	_	_
Port I	8* ¹	0	_	0	—	_	0	_	_	_
Port J	8* ¹	0	_	0	0	_	0	_	_	_

[Legend]

O: Register exists

--: No register exists

Notes: 1. Not supported by TFP-144V and TLP-145V.

2. Valid only when the PORTS bit in the port control register 2 (PTCNT2) is 1.

RENESAS

6	Pn6DDR	0	W
5	Pn5DDR	0	W
4	Pn4DDR	0	W
3	Pn3DDR	0	W
2	Pn2DDR	0	W
1	Pn1DDR	0	W
0	Pn0DDR	0	W

these bits are set to 1 and act as input port cleared to 0.

Note: These bits cannot be set with bit man instructions such as BSET and BCLF

(2) PORTS = 1

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7DDR	0	R/W	The corresponding pins act as output ports
6	Pn6DDR	0	R/W	these bits are set to 1 and act as input port – cleared to 0.
5	Pn5DDR	0	R/W	
4	Pn4DDR	0	R/W	_
3	Pn3DDR	0	R/W	_
2	Pn2DDR	0	R/W	_
1	Pn1DDR	0	R/W	_
0	Pn0DDR	0	R/W	_

Rev. 2.00 Sep. 28, 2009 Page 144 of 994 REJ09B0452-0200

4	Pn4DR	0	R/W	for pins corresponding to PnDDR bits set
3	Pn3DR	0	R/W	reads out the states of pins correspon — PnDDR bits cleared to 0.
2	Pn2DR	0	R/W	
1	Pn1DR	0	R/W	-
0	Pn0DR	0	R/W	-

7.1.3 Input Data Register (PnPIN) (n = 1 to 9 and A to J)

PIN is an 8-bit read-only register that reflects the port pin state. A write to PIN is invalid upper five bits in P5PIN, the upper one bit in P8PIN, the upper three bits in PEPIN, and two bits in PHPIN are reserved.

Bits P1PIN to P9PIN are valid only when PORTS in PTCNT2 is 1.

Bit Name	Initial Value	R/W	Description
Pn7PIN	Undefined*	R	When this register is read, the pin states a
Pn6PIN	Undefined*	R	returned.
Pn5PIN	Undefined*	R	-
Pn4PIN	Undefined*	R	-
Pn3PIN	Undefined*	R	
Pn2PIN	Undefined*	R	-
Pn1PIN	Undefined*	R	-
Pn0PIN	Undefined*	R	-
	Pn7PIN Pn6PIN Pn5PIN Pn4PIN Pn3PIN Pn2PIN Pn1PIN	Pn6PINUndefined*Pn5PINUndefined*Pn4PINUndefined*Pn3PINUndefined*Pn2PINUndefined*Pn1PINUndefined*	Pn7PINUndefined*RPn6PINUndefined*RPn5PINUndefined*RPn4PINUndefined*RPn3PINUndefined*RPn2PINUndefined*RPn1PINUndefined*R

Note: * The initial values of these pins are determined in accordance with the states of to Pn0.

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7PCR	0	R/W	For pins in the input state corresponding t
6	Pn6PCR	0	R/W	this register that have been set to 1, the ir up MOSs are turned on.
5	Pn5PCR	0	R/W	
4	Pn4PCR	0	R/W	
3	Pn3PCR	0	R/W	_
2	Pn2PCR	0	R/W	_
1	Pn1PCR	0	R/W	_
0	Pn0PCR	0	R/W	_

Rev. 2.00 Sep. 28, 2009 Page 146 of 994 REJ09B0452-0200

	•		
	Port input	Off	On/Off
Port 6	Port output		Off
(KMPCR)	Port input	Off	On/Off
Port 9	Port output	Off	
	Port input	Off	On/Off
Port J	Port output		Off
	Port input	Off	On/Off

[Legend]

Off: The input pull-up MOS is always off.

On/Off: On when PnDDR = 0 and PnPCR = 1; otherwise off.

	Port input	Off	On/Off	
Port F	Port output	Off		
	Port input	Off	On/Off	
Port H	Port output		Off	
	Port input	Off	On/Off	

[Legend]

Off: The input pull-up MOS is always off.

On/Off: On when the pin is in the input state, PnDDR = 0, and PnODR = 1; otherwise off (v PORTS = 0).

On when the pin is in the input state, PnDDR = 0, and PnPCR = 1; otherwise off (v PORTS = 1).

Rev. 2.00 Sep. 28, 2009 Page 148 of 994 REJ09B0452-0200

2	Pn2ODR	0	R/W
1	Pn10DR	0	R/W
0	Pn00DR	0	R/W

7.1.6 Noise Canceler Enable Register (PnNCE) (n = 6, C, and G)

NCE enables or disables the noise cancel circuit at port n pins in bit units.

Bit	Bit Name	Initial Value	R/W	Description
7	Pn7NCE	0	R/W	Noise cancel circuit is enabled when a b
6	Pn6NCE	0	R/W	register is set to 1, and the pin setting sta _ fetched in P6DR or PnPIN in the samplir
5	Pn5NCE	0	R/W	set by the PnNCCS.
4	Pn4NCE	0	R/W	_
3	Pn3NCE	0	R/W	_
2	Pn2NCE	0	R/W	_
1	Pn1NCE	0	R/W	_
0	Pn0NCE	0	R/W	_

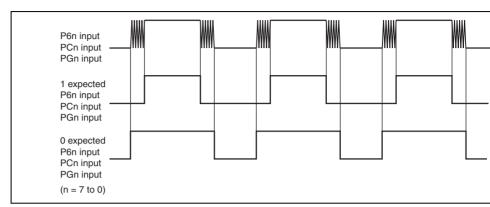
RENESAS

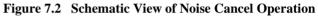
2	Pn2NCMC	0	R/W
1	Pn1NCMC	0	R/W
0	Pn0NCMC	0	R/W

7.1.8 Noise Cancel Cycle Setting Register (PnNCCS) (n = 6, C, and G)

NCCS controls the sampling cycles of the noise canceler.

Bit	Bit Name	Initial Value	R/W	Descri	ption	
7 to 3	_	Undefined	R/W	Reserv	ed	
					ad value is ur always be 0.	ndefined. The write val
2	PnNCCK2	0	R/W			ampling cycles of the r
1	PnNCCK1	0	R/W	cancele		
0	PnNCCK0	0	R/W	−When ¢	o is 10 MHz	
				000:	0.80 μs	φ/2
				001:	12.8 μs	φ/32
				010:	3.3 ms	φ/8192
				011:	6.6 ms	φ/16384
				100:	13.1 ms	ф/32768
				101:	26.2 ms	ф/65536
				110:	52.4 ms	φ/131072
				111:	104.9 ms	ф/262144


Rev. 2.00 Sep. 28, 2009 Page 150 of 994


RENESAS

REJ09B0452-0200

Figure 7.1 Noise Cancel Circuit

3	Pn3NOCR	0	R/W
2	Pn2NOCR	0	R/W
1	Pn1NOCR	0	R/W
0	Pn0NOCR	0	R/W

(High level driver is disabled)

Rev. 2.00 Sep. 28, 2009 Page 152 of 994 REJ09B0452-0200

N-ch. driver	Off		On	Off	On
P-ch. driver	Off		Off	On O	
Input pull-up MOS	Off	On		C	Off
Pin function	Input pin		Output pin		ut pin

(2) PORTS = 1

DDR	0				1
NOCR	_		(C	1
ODR	—		0	1	0
PCR	0 1			-	
N-ch. Driver	0	Off		Off	On
P-ch. Driver	0	Off	Off	On	0
Input pull-up MOS	Off On			C	Off
Pin Function	Inpu	ıt pin		Outp	ut pin

Renesas

(1) P17 to P10

The pin function is switched as shown below according to the P1nDDR bit setting.

		Setting
		I/O Port
Module Name	Pin Function	P1nDDR
I/O port	P1n output	1
	P1n input (initial setting)	0

7.2.2 Port 2

(1) P27 to P20

The pin function is switched as shown below according to the P2nDDR bit setting.

		Setting
		I/O Port
Module Name	Pin Function	P2nDDR
I/O port	P2n output	1
	P2n input (initial setting)	0

Rev. 2.00	Sep. 28, 2009	Page 154 of 994
REJ09B04	52-0200	

		Setting		
Module		Logical expression	I/O Port	
Name	Pin Function	LPCENABLE	P3nDDR	
LPC	LPC output	1	—	
I/O port	P3n output	0	1	
	P3n input (initial setting)	0	0	

7.2.4 Port 4

(1) P47/PWX1/PWMU5B/TCMCKI3/TCMMCI3

The pin function is switched as shown below according to the combination of the PWM PWMU and the P47DDR bit.

			Setting	
Module		PWMX	PWMU	I/O Port
Name	Pin Function	PWX1_OE	PWMU5B_OE	P47DDR
PWMX	PWX1 output	1	—	—
PWMU	PWMU5B output	0	1	1
I/O port	P47 output	0	0	1
	P47 input (initial setting)	0	—	0

RENESAS

1/O port	P46 output	0	0	1
	P46 input (initial setting)	0	_	0

(3) P45/PWMU3B/TCMCKI2/TCMMCI2

The pin function is switched as shown below according to the combination of the PWMX P45DDR bit.

		Setting	
Module		PWMU	I/O Port
Name	Pin Function	PWMU3B_OE	P45DDR
PWMU	PWMU3B output	1	1
I/O port	P45 output	0	1
	P45 input (initial setting)	—	0

Rev. 2.00 Sep. 28, 2009 Page 156 of 994 REJ09B0452-0200

0	0	I
0		0
	0	0 —

(5) P43/TMI1/SCK2/TCMCKI1/TCMMCI1

The pin function is switched as shown below according to the combination of the SCI as P43DDR bit.

		Setting		
Module		SCI	I/O Port	
Name	Pin Function	SCK2_OE	P43DDR	
SCI	SCK2 input/output	1	—	
I/O port	P43 output	0	1	
	P43 input (initial setting)	0	0	

RENESAS

	0	I
P42 input (initial setting)	0	0

Note: To use this pin as SDA1, clear the IIC1AS and IIC1BS bits in PTCNT1 to 0. The or format for SDA1 is NMOS output only and direct bus drive is possible. When this p as the P42 output pin, the output format is NMOS push-pull.

(7) P41/TMO0/RxD2/TCMCKI0/TCMMCI0

The pin function is switched as shown below according to the combination of the TMR a P41DDR bit.

		Setting		
Module		TMR	SCI	I/O Port
Name	Pin Function	TMO0_OE	RE	P41DDR
TMR	TMO0 output	1	0	_
SCI	RxD2 input	0	1	—
I/O port	P41 output	0	0	1
	P41 input (initial setting)	0	0	0

Note: To use this pin as TMO0 output, clear the RE bit in SCR of the SCI2 to 0.

Rev. 2.00 Sep. 28, 2009 Page 158 of 994 REJ09B0452-0200

P40 input	0	0	
(initial setting)			

7.2.5 Port 5

(1) P52/SCL0

The pin function is switched as shown below according to the combination of the IICOA IICOBS bits in PTCNT1, ICE bit in ICCR of IIC_0, and the P52DDR bit.

		Setting	
Module		IIC_0	I/O Port
Name	Pin Function	SCL0_OE	P52DDR
IIC	SCL0 output	1	_
I/O port	P52 output	0	1
	P52 input (initial setting)	0	0

Note: To use this pin as SCL0, clear the IIC0AS and IIC0BS bits in PTCNT1 to 0. The of format for SCL0 is NMOS output only and direct bus drive is possible. When this as the P52 output pin, the output format is NMOS push-pull.

RENESAS

I/O port	P51 output	0	1
	P51 input (initial setting)	0	0

(3) P50/FTxD

The pin function is switched as shown below according to the SCIFOE1 bit in SCIFCR o SCIF, the SCIFE bit in HICR5, and the P50DDR bit.

SCIFENABLE = 1: SCIFOE1 + SCIFE

		Setting	
Module		Logical Expression	I/O Port
Name	Pin Function	SCIFENABLE	P50DDR
SCIF	FTxD output	1	—
I/O port	P50 output	0	1
	P50 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Page 160 of 994 REJ09B0452-0200

Module Name		I/O Port
	Pin Function	P67DDR
I/O port	P67 output	1
	P67 input (initial setting)	0

(2) P66/KIN6/IRQ6

When the KMIM6 bit in KMIMR of the interrupt controller is cleared to 0, this pin can the $\overline{\text{KIN6}}$ input pin. When the EIVS bit in SYSCR3 is cleared to 0 and the IRQ6E bit in interrupt controller is set to 1, this pin can be used as the $\overline{\text{IRQ6}}$ input pin.

The pin function is switched as shown below according to the state of the P66DDR bit.

	Pin Function	Setting
Module Name		I/O Port
		P66DDR
I/O port	P66 output	1
	P66 input (initial setting)	0

RENESAS

7.2.7 Port 7

(1) P77/AN7, P76/AN6, P75/AN5, P74/AN4, P73/AN3, P72/AN2, P71/AN1, P70/AN

Module Name	Pin Function
A/D converter	ANn/P7n input

(I

(

Rev. 2.00 Sep. 28, 2009 Page 162 of 994 REJ09B0452-0200

Name	Pin Function	SCK1_OE	SCL1_OE	P86DDR
SCI	SCK1 input/output	1	0	_
IIC	SCL1 input/output	0	1	
I/O port	P86 output	0	0	1
	P86 input (initial setting)	0	0	0

Note: To use this pin as SCL1 input/output, be sure that SCK1_OE is 0. To use this pin the IIC1AS and IIC1BS bits in PTCNT1 must be cleared to 0. The output format for NMOS output only and direct bus drive is possible. When this pin is used as the P pin or SCK1 output pin, the output format is NMOS push-pull.

(2) P85/IRQ4/RxD1

The pin function is switched as shown below according to the state of the P85DDR bit.

		Setting	
Module		SCI	I/O Port
Name	Pin Function	RE	P85DDR
SCI	RxD1 input	1	_
I/O port	P85 output	0	1
	P85 input (initial setting)	0	0

RENESAS

P84 Input	0	0	
(initial setting)			

(4) P83/LPCPD

The pin function is switched as shown below according to the combination of the FSILIE SLCR of FSI, the SCIFE bit in HICR5 and the LPC4E bit in HICR4 of the LPC, LPC3E bits in HICR0, and the P83DDR bit. LPCENABLE in the following table is expressed by following logical expression.

LPCENABLE = 1 : FSILIE + SCIFE + LPC4E + LPC3E + LPC2E + LPC1E

		Setting	
Module		Logical Expression	I/O Port
Name	Pin Function	LPCENABLE	P83DDR
LPC	LPCPD input	1	—
I/O port	P83 output	0	1
	P83 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Page 164 of 994 REJ09B0452-0200

Name	Pin Function	LPCENABLE	P82DDR
LPC	CLKRUN output	1	_
I/O port	P82 output	0	1
	P82 input (initial setting)	0	0

(6) P81/GA20

The pin function is switched as shown below according to the combination of the register of the LPC and the P81DDR bit.

		Setting	
Module		LPC	I/O Port
Name	Pin Function	GA20_OE	P81DDR
LPC	GA20 output	1	_
I/O port	P81 output	0	1
	P81 input (initial setting)	0	0

Renesas

P80 input	0	0
(initial setting)		

7.2.9 Port 9

(1) P97/IRQ15/SDA0

The pin function is switched as shown below according to the combination of the IICOAS IICOBS bits in PTCNT1, ICE bit in ICCR of IIC_0, and the P97DDR bit. When the ISS1 ISSR16 is cleared to 0 and the IRQ15E bit in IER16 of the interrupt controller is set to 1, can be used as the IRQ15 input pin.

		Setting	
Module		IIC_0	I/O Port
Name	Pin Function	SDA0_OE	P97DDR
IIC	SDA0 input/output	: 1	—
I/O port	P97 output	0	1
	P97 input (initial setting)	0	0

Note: To use this pin as SDA0, clear the IICOAS and IICOBS bits in PTCNT1 to 0. The or format for SDA0 is NMOS output only and direct bus drive is possible. When this p as the P97 output pin, the output format is NMOS push-pull.

Rev. 2.00 Sep. 28, 2009 Page 166 of 994 REJ09B0452-0200

(3) P95/IRQ14, P94/IRQ13, P93/IRQ12, P92/IRQ0, P91/IRQ1, P90/IRQ2

The pin function is switched as shown below according to the state of the P9nDDR bit. ISSm bit in ISSR (ISSR16) is cleared to 0 and the IRQmE bit in IER (IER16) of the intercontroller is set to 1, this pin can be used as the IRQm input pin.

		Setting
Module		I/O Port
Name	Pin Function	P9nDDR
I/O port	P9n output	1
	P9n input (initial setting)	0

(m = 14 tc)

Module			
Name	Pin Function	PS2_OE	PAnDDR
PS2	PS2 input/output	1	_
I/O port	PAn output	0	1
	PAn input (initial setting)	0	0

(n = 7 to 0, m

Note: When the KBIOE bit is set to 1, this pin functions as an NMOS open-drain output, bus drive is possible.

When the IICS bit in STCR is set to 1, the output format for PA7 to PA4 is NMOS of drain, and direct bus drive is possible.

Rev. 2.00 Sep. 28, 2009 Page 168 of 994 REJ09B0452-0200

F5I	FSISS output	1		
SCIF	RTS output	0	1	_
I/O port	PB7 output	0	0	1
	PB7 input (initial setting)	0	0	0

(2) PB6/CTS/FSICK

The pin function is switched as shown below according to the FSIE bit in FSICR1 of FS PB6DDR bit.

			Setting
Module Name	Pin Function	FSI	I/O Port
		FSICK_OE	PB6DDR
FSI	FSICK output	1	_
I/O port	PB6 output	0	1
	PB6 input (initial setting)	0	0

Renesas

1/O port	PB5 output	0	0	1
	PB5 input (initial setting)	0	0	0

(4) PB4/DSR/FSIDO

The pin function is switched as shown below according to the state of the FSIE bit in FSI FSI and the PB4DDR bit.

		Setting	
Module Name		FSI	I/O Port
	Pin Function	FSIDO_OE	PB4DDR
FSI	FSIDO output	1	—
I/O port	PB4 output	0	1
	PB4 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Page 170 of 994 REJ09B0452-0200

(6) PB2/RI/PWMU0B

The pin function is switched as shown below according to the combination of the register of the PWMU and the PB2DDR bit.

	Setting		Setting
Module Name	Pin Function	PWMU	I/O Port
		PWMU0B_OE	PB2DDR
PWMU	PWMU0B output	1	1
I/O port	PB2 output	0	1
	PB2 input (initial setting)	—	0

RENESAS

PBT input	0	0
(initial setting)		

(8) PB0/LSMI

The pin function is switched as shown below according to the combination of the register of the LPC and the PB0DDR bit.

		Setting	
Module Name		LPC I/O Port	
	Pin Function	LSMI_OE	PB0DDR
LPC	LSMI output	1	—
I/O port	PB0 output	0	1
	PB0 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Page 172 of 994 REJ09B0452-0200

counting mode and IOB3 in TIOR_2 is set to 1.

			Setting	
Module Name		TPU	I/O Port	
	Pin Function	TIOCB2_OE	PC7DDR	
TPU	TIOCB2 output	1	_	
I/O port	PC7 output	0	1	
	PC7 input (initial setting)	0	0	

(2) $PC6/\overline{WUE14}/TIOCA2$

The pin function is switched as shown below according to the combination of the register of the TPU and the PC6DDR bit. When the WUEMR14 bit in WUEMR of the interrupt is cleared to 0, this pin can be used as the $\overline{WUE14}$ input pin.

This pin functions as TIOCA2 input when TPU channel 2 timer operating mode is set to operation or phase counting mode and IOA3 in TIOR_2 is set to 1.

		Setting	
Module		TPU	I/O Port
Name	Pin Function	TIOCA2_OE	PC6DDR
TPU	TIOCA2 output	1	—
I/O port	PC6 output	0	1
	PC6 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Pag RENESAS REJ09

		Setting		
Module Name		TPU	I/O Port	
	Pin Function	TIOCB1_OE	PC5DDR	
TPU	TIOCB1 output	1	—	
I/O port	PC5 output	0	1	
	PC5 input (initial setting)	0	0	

(4) $PC4/\overline{WUE12}/TIOCA1$

The pin function is switched as shown below according to the combination of the register of the TPU and the PC4DDR bit. When the WUEMR12 bit in WUEMR of the interrupt of is cleared to 0, this pin can be used as the $\overline{WUE12}$ input pin.

This pin functions as TIOCA1 input when TPU channel 1 timer operating mode is set to poperation or phase counting mode and IOA3 to IOA0 in TIOR_1 are set to B'10xx. (x: Do

		Setting	
Module		TPU	I/O Port
Name	Pin Function	TIOCA1_OE	PC4DDR
TPU	TIOCA1 output	1	—
I/O port	PC4 output	0	1
	PC4 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Pa	ge 174 of 994
REJ09B0452-0200	

		Setting		
Module		TPU	I/O Port	
Name	Pin Function	TIOCD0_OE	PC3DDR	
TPU	TIOCD0 output	1	—	
I/O port	PC3 output	0	1	
	PC3 input (initial setting)	0	0	

(6) PC2/WUE10/TIOCC0/TCLKA

The pin function is switched as shown below according to the combination of the register of the TPU and the PC2DDR bit. When the WUEMR10 bit in WUEMR of the interrupt is cleared to 0, this pin can be used as the $\overline{WUE10}$ input pin.

This pin functions as TCLKA input when TPSC2 to TPSC0 in any of TCR_0 to TCR_2 B'100 or when channel 1 is set to phase counting mode.

This pin functions as TIOCC0 input when TPU channel 0 timer operating mode is set to operation or phase counting mode and IOC3 to IOC0 in TIOR_0 are set to B'10xx. (x: D

	Setting	
	TPU	I/O Port
Pin Function	TIOCC0_OE	PC2DDR
TIOCC0 output	1	—
PC2 output	0	1
PC2 input (initial setting)	0	0
	TIOCC0 output PC2 output PC2 input	Pin Function TIOCC0_OE TIOCC0 output 1 PC2 output 0 PC2 input 0

RENESAS

Module	TPO		
Name	Pin Function	TIOCB0_OE	PC1DDR
TPU	TIOCB0 output	1	_
I/O port	PC1 output	0	1
	PC1 input (initial setting)	0	0

(8) PC0/WUE8/TIOCA0

The pin function is switched as shown below according to the combination of the register of the TPU and the PC0DDR bit. When the WUEMR8 bit in WUEMR of the interrupt co is cleared to 0, this pin can be used as the $\overline{WUE8}$ input pin.

This pin functions as TIOCA0 input when TPU channel 0 timer operating mode is set to poperation or phase counting mode and IOA3 to IOA0 in TIORH_0 are set to B'10xx. (x: a care.)

		Setting	
Module		TPU	I/O Port
Name	Pin Function	TIOCA0_OE	PC0DDR
TPU	TIOCA0 output	1	—
I/O port	PC0 output	0	1
	PC0 input (initial setting)	0	0

Rev. 2.00 Sep. 28, 2009 Page 176 of 994 REJ09B0452-0200

Name	Pin Function	PDnDDR
I/O port	PDn output	1
	PDn input (initial setting)	0

7.2.14 Port E

(1) PE4/ETMS, PE3/ETDO, PE2/ETDI, PE1/ETCK

The pin function is switched as shown below according to the operating mode.

		Setting	
Module		On-Chip Emulation Mode	Single-Chip Mode
Name	Pin Function	Emulator Input/Output	PEn input
Operating mode	On-chip emulation mode	1	
	Single-chip mode	0	1

Note: These pins are not supported by the system development tool (emulator).

RENESAS

7.2.15 Port F

(1) PF7/PWMU5A, PF6/PWMU4A, PF5/PWMU3A, PF4/PWMU2A

The pin function is switched as shown below according to the combination of the register of the PWMU and the PFnDDR bit.

		Setting	
Module		PWMU	I/O Port
Name	Pin Function	PWMUmA_OE	PFnDDR
PWMU	PWMUmA output	1	1
I/O port	PFn output	0	1
	PFn input (initial setting)	_	0

(n = 5 to 2, n

Rev. 2.00 Sep. 28, 2009 Page 178 of 994 REJ09B0452-0200

Module	dule	TMR	I/O Port
Name	Pin Function	TMOX_OE	PF3DDR
TMR	TMOX output	1	—
I/O port	PF3 output	0	1
	PF3 input (initial setting)	0	0

(3) PF2/TMOY/IRQ10/TDPCYI0

The pin function is switched as shown below according to the combination of the register of the TMR and the PF2DDR bit. When the TDPIPE bit in TDPIER_0 of TDP0 is set to can be used as the TDPCYI0 input pin. When the ISS10 bit in ISSR16 is cleared to 0 an IRQ10E bit in IER16 of the interrupt controller is set to 1, this pin can be used as the \overline{IR} pin.

		Setting	
Module		TMR	I/O Port
Name	Pin Function	TMOY_OE	PF2DDR
TMR	TMOY output	1	_
I/O port	PF2 output	0	1
	PF2 input (initial setting)	0	0

RENESAS

NO por	111 Odiput	0	I
	PF1 input (initial setting)	_	0

(5) PF0/IRQ8/PWMU0A

The pin function is switched as shown below according to the combination of the register of the PWMU and the PF1DDR bit. When the ISS8 bit in ISSR16 is cleared to 0 and the bit in IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{IRQ8}$ input p

		Setting	
Module		PWMU	I/O Port
Name	Pin Function	PWMU0A_OE	PF0DDR
PWMU	PWMU0A output	1	1
I/O port	PF0 output	0	1
	PF0 input (initial setting)	—	0

Rev. 2.00 Sep. 28, 2009 Page 180 of 994 REJ09B0452-0200

Hanno			
PTCNT1	ExSCLB input/output	1	_
I/O port	PG7 output	0	1
	PG7 input (initial setting)	0	0

Note: The output format for ExSCLB is NMOS output only, and direct bus drive is possi this pin is used as the PG7 output pin, the output format is NMOS push-pull.

(2) PG6/ExSDAB/ExIRQ14

The pin function is switched as shown below according to the combination of the register of PTCNT1 and the PG6DDR bit. When the ISS14 bit in ISSR16 is set to 1 and the IRQ IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ14 input p

		Setting		
Module		PTCNT1	I/O Port	
Name	Pin Function	ExSDAB_OE	PG6DDR	
PTCNT1	ExSDAB input/output	1	_	
I/O port	PG6 output	0	1	
	PG6 input (initial setting)	0	0	

Note: The output format for ExSDAB is NMOS output only, and direct bus drive is possi this pin is used as the PG6 output pin, the output format is NMOS push-pull.

RENESAS

I/O port	PG5 output	0	1
	PG5 input (initial setting)	0	0

Note: The output format for ExSCLA is NMOS output only, and direct bus drive is possib this pin is used as the PG5 output pin, the output format is NMOS push-pull.

(4) PG4/ExSDAA/ExIRQ12

The pin function is switched as shown below according to the combination of the register of PTCNT1 and the PG4DDR bit. When the ISS12 bit in ISSR16 is set to 1 and the IRQ1 IER16 of the interrupt controller is set to 1, this pin can be used as the $\overline{\text{ExIRQ12}}$ input pin

		Setting		
Module		PTCNT1	I/O Port	
Name	Pin Function	ExSDAA_OE	PG4DDR	
PTCNT1	ExSDAA input/output	1	_	
I/O port	PG4 output	0	1	
	PG4 input (initial setting)	0	0	

Note: The output format for ExSDAA is NMOS output only, and direct bus drive is possib this pin is used as the PG4 output pin, the output format is NMOS push-pull.

Rev. 2.00 Sep. 28, 2009 Page 182 of 994 REJ09B0452-0200

10 port	1 00 001001	0	I
	PG3 input (initial setting)	0	0

Note: The output format for SCL2 is NMOS output only, and direct bus drive is possible this pin is used as the PG3 output pin, the output format is NMOS push-pull.

(6) $PG2/SDA2/\overline{ExIRQ10}$

The pin function is switched as shown below according to the combination of the register of the IIC and the PG2DDR bit. When the ISS10 bit in ISSR16 is set to 1 and the IRQ10 IER16 of the interrupt controller is set to 1, this pin can be used as the ExIRQ10 input p

		Setting		
Module		IIC	I/O Port	
Name	Pin Function	SDA2_OE	PG2DDR	
IIC	SDA2 input/outp	ut 1	—	
I/O port	PG2 output	0	1	
	PG2 input (initial setting)	0	0	

Note: The output format for SDA2 is NMOS output only, and direct bus drive is possible this pin is used as the PG2 output pin, the output format is NMOS push-pull.

RENESAS

Name	Pin Function	PG1DDR
I/O port	PG1 output	1
	PG1 input (initial setting)	0

(8) PG0/ExIRQ8/TMIX/TDPCYI1

The pin function is switched as shown below according to the state of the PG0DDR bit. V TDPIPE bit in TDPIER_1 of the TDP is set to 1, this pin is used as the TDPCYI1 input p the ISS8 bit in ISSR16 is set to 1 and the IRQ8E bit in IER16 of the interrupt controller is this pin can be used as the ExIRQ8 input pin.

Module Name	Pin Function	Setting
		I/O Port
		PG0DDR
I/O port	PG0 output	1
	PG0 input (initial setting)	0

Rev. 2.00 Sep. 28, 2009 Page 184 of 994 REJ09B0452-0200

PHn input	0	
(initial setting)		

(2) PH2/CIRI

The pin function is switched as shown below according to the combination of the register of CIR and the PH2DDR bit.

		Setting	
Module		CIR	I/O Port
Name	Pin Function	CIRI	PH2DDR
CIR	CIRI input	1	—
I/O port	PH2 output	0	1
	PH2 input (initial setting)	0	0

RENESAS

Name	Pin Function	PH1DDR
I/O port	PH1 output	1
	PH1 input (initial setting)	0

(4) $PH0/\overline{ExIRQ6}/TDPCYI2$

The pin function is switched as shown below according to the state of the PH0DDR bit. V TDPIPE bit in TDPIER_2 of the TDP is set to 1, this pin is used as the TDPCY12 input p the EIVS bit in SYSCR3 is set to 1 and the IRQ6E bit in IER of the interrupt controller is this pin can be used as the ExIRQ6 input pin.

		Setting
Module		I/O Port
Name	Pin Function	PH0DDR
I/O port	PH0 output	1
	PH0 input (initial setting)	0

Rev. 2.00 Sep. 28, 2009 Page 186 of 994 REJ09B0452-0200

PIn input	0	
(initial setting)		

Note: The output format for PIn is NMOS push-pull.

7.2.19 Port J

(1) PJ7, PJ6, PJ5, PJ4, PJ3, PJ2, PJ1, PJ0

The pin function is switched as shown below according to the state of the PJnDDR bit.

		Setting
Module		I/O Port
Name	Pin Function	PJnDDR
I/O port	PJn output	1
	PJn input (initial setting)	0

RENESAS

	2	FIZ_OE	F12	
	1	P11_OE	P11	
	0	P10_0E	P10	
P2	7	P27_OE	P27	
	6	P26_OE	P26	
	5	P25_OE	P25	
	4	P24_OE	P24	
	3	P23_OE	P23	
	2	P22_OE	P22	
	1	P21_OE	P21	
	0	P20_OE	P20	
P3	7	SERIRQ_OE	SERIRQ	FSI.SLCR.FSILIE,
	6	P36_OE	P36	LPC.HICR5.SCIFE, HICR4.LPC4E
	5	P35_OE	P35	HICR0.LPC[3E:1E]
	4	P34_OE	P34	LPCENABLE = 1: FSILIE + SCIFE + LPC3E + LPC2E + LPC1E
	3	LAD3_OE	LAD3	
	2	LAD2_OE	LAD2	
	1	LAD1_OE	LAD1	
	0	LAD0_OE	LAD0	

Rev. 2.00 Sep. 28, 2009 Page 188 of 994 REJ09B0452-0200

	_	PWMU2B_OE	PWMU2B		PWMU_B.PWMCONB.PWM2E = PWMU_B.PWMCOND.CNTMD23
	3	SCK2_OE	SCK2		SCI_2.SCR.CKE[1:0] = 01/10/11 - = 1
	2	SDA1_OE	SDA1	PTCNT1.IIC1AS	$ICE \bullet \overline{IIC1AS} \bullet \overline{IIC1BS} = 1$
				PTCNT1.IIC1BS	
	1	TMO0_OE	TMO0		Except TMR_0.TCSR.OS[3:0] = 0
	0	TxD2_OE	TxD2		SCI_2.SCR.TE = 1
P5	2	SCL0_OE	SCL0	PTCNT1.IIC1AS	$ICE \bullet \overline{IICOAS} \bullet \overline{IICOBS} = 1$
				PTCNT1.IIC1BS	
	1	P51_OE	P51		
	0	FTxD_OE	FTxD		SCIF.SCIFCR.SCIFOE1, LPC.HIC
					SCIFENABLE = 1: SCIFOE1 + SC
P6	7	P67_OE	P67		
	6	P66_OE	P66		
	5	P65_OE	P65		
	4	P64_OE	P64		
	3	P63_OE	P63		
	2	P62_OE	P62		
	1	P61_OE	P61		
	0	P60_OE	P60		

	2	CLKRUN_OE	CLKRUN		FSI.SLCR.FSILIE,
					LPC.HICR5.SCIFE, HICR4.LPC4E, HICR0.LPC[3E:1E]
					LPCENABLE = 1: FSILIE + SCIFE + LPC3E + LPC2E + LPC1E
	1	GA20_OE	GA20		LPC.HICR0.FGA20E = 1
	0	PME_OE	PME		LPC.HICR0.PMEE = 1
P9	7	SDA0_OE	SDA	PTCNT1.IIC0AS	$ICE \bullet \overline{IICOAS} \bullet \overline{IICOBS} = 1$
				PTCNT1.IIC0BS	
	6	∳_OE	ф		
	5	P95_OE	P95		
	4	P94_OE	P94		
	3	P93_OE	P93		
	2	P92_OE	P92		
	1	P91_OE	P91		
	0	P90_OE	P90		
PA	7	PS2CD_OE	PS2CD		PS2_2.KBCRH.KBIOE = 1
	6	PS2CC_OE	PS2CC		PS2_2.KBCRH.KBIOE = 1
	5	PS2BD_OE	PS2BD		PS2_1.KBCRH.KBIOE = 1
	4	PS2BC_OE	PS2BC		PS2_1.KBCRH.KBIOE = 1
	3	PS2AD_OE	PS2AD		PS2_0.KBCRH.KBIOE = 1
	2	PS2AC_OE	PS2AC		PS2_0.KBCRH.KBIOE = 1
	1	PS2DD_OE	PS2DD		PS2_3.KBCRH.KBIOE = 1
	0	PS2DC_OE	PS2DC		PS2_3.KBCRH.KBIOE = 1
-					

Rev. 2.00 Sep. 28, 2009 Page 190 of 994 REJ09B0452-0200

RENESAS

SCIFOE=1: (SCIFE • SCIFOE1	• S
SCIFE • SCIFOE0)	

				SCIFE • SCIFUEU)
	4	FSIDO_OE	FSIDO	FSI.FSICR1.FSIE = 1
	3	3 PWMU1B_OE PWMU1B		PWMU_B.PWMCONB.PWM1E = 1
	2	PWMU0B_OE	PWMU0B	PWMU_B.PWMCONB.PWM0E = 1 PWMU_B.PWMCONC.CNTMD01 =
	1	LSCI_OE	LSCI	LPC.HICR0.LSCIE = 1
	0	LSMI_OE	LSMI	LPC.HICR0.LSMIE = 1
PC	7	TIOCB2_OE	TIOCB2	TPU.TIOR2.IOB3 = 0, TPU.TIOR2.IOB[1:0] = 01/10/11
	6	TIOCA2_OE	TIOCA2	TPU.TIOR2.IOA3 = 0, TPU.TIOR2.IOA[1:0] = 01/10/11
	5	TIOCB1_OE	TIOCB1	TPU.TIOR1.IOB3 = 0, TPU.TIOR1.IOB[1:0] = 01/10/11
	4	TIOCA1_OE	TIOCA1	TPU.TIOR1.IOA3 = 0, TPU.TIOR1.IOA[1:0] = 01/10/11
	3	TIOCD0_OE	TIOCD0	TPU.TIOR0.IOD3 = 0, TPU.TIOR0.IOD[1:0] = 01/10/11
	2	TIOCC0_OE	TIOCC0	TPU.TIOR0.IOC3 = 0, TPU.TIOR0.IOC[1:0] = 01/10/11
	1	TIOCB0_OE	TIOCB0	TPU.TIOR0.IOB3 = 0, TPU.TIOR0.IOB[1:0] = 01/10/11
	0	TIOCA0_OE	TIOCA0	TPU.TIOR0.IOA3 = 0, TPU.TIOR0.IOA[1:0] = 01/10/11

	0	PD0_OE	PD0			
PF	7	PWMU5A_OE	PWMU5A	PWMU_A.PWMCONB.PWM5E = 1		
	6	PWMU4A_OE	PWMU4A	PWMU_A.PWMCONB.PWM4E = 1 PWMU_A.PWMCOND.CNTMD45 =		
	5	PWMU3A_OE	PWMU3A	PWMU_A.PWMCONB.PWM3E = 1		
	4	PWMU2A_OE	PWMU2A	PWMU_A.PWMCONB.PWM2E = 1 PWMU_A.PWMCOND.CNTMD23 =		
	3	TMOX_OE	ТМОХ	Except TMR_X.TCSR.OS[3:0] = 00		
	2 TMOY_OE		TMOY	Except TMR_Y.TCSR.OS[3:0] = 00		
	1 PWMU1A_OE		PWMU1A	PWMU_A.PWMCONB.PWM1E = 1		
	0 PWMU0A_OE		PWMU0A	PWMU_A.PWMCONB.PWM0E = 1 PWMU_A.PWMCONC.CNTMD01 =		
PG	7	ExSCLB_OE	ExSCLB	PTCNT1.IIC1BS or PTCNT1.IIC0BS		
	6	ExSDAB_OE	ExSDAB	PTCNT1.IIC1BS or PTCNT1.IIC0BS		
	5	ExSCLA_OE	ExSCLA	PTCNT1.IIC1AS or PTCNT1.IIC0AS		
	4	ExSDAA_OE	ExSDAA	PTCNT1.IIC1AS or PTCNT1.IIC0AS		
	3	SCL2_OE	SCL2	IIC_2.ICCR.ICE = 1		
	2	SDA2_OE	SDA2	IIC_2.ICCR.ICE = 1		
	1	PG1_OE	PG1			
	0	PG0_OE	PG0			

Rev. 2.00 Sep. 28, 2009 Page 192 of 994 REJ09B0452-0200

	6	PI6_OE	PI6
	5	PI5_OE	PI5
	4	PI4_OE	PI4
	3	PI3_OE	PI3
	2	PI2_OE	PI2
	1	PI1_OE	PI1
	0	PI0_OE	PIO
PJ	7	PJ7_OE	PJ7
	6	PJ6_OE	PJ6
	5	PJ5_OE	PJ5
	4	PJ4_OE	PJ4
	3	PJ3_OE	PJ3
	2	PJ2_OE	PJ2
	1	PJ1_OE	PJ1
	0	PJ0_OE	PJO

- Port control register 0 (PTCNT0)
- Port control register 1 (PTCNT1)
- Port control register 2 (PTCNT2)

7.3.1 Port Control Register 0 (PTCNT0)

PTCNT0 selects ports that also function as the external sub-clock input pin.

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	_	All 0	R/W	Reserved
				The initial value should not be changed.
0	EXCLS	0	R/W	0: P96/EXCL is selected
				1: PH0/ExEXCL is selected

Rev. 2.00 Sep. 28, 2009 Page 194 of 994 REJ09B0452-0200

				1	0:	Selects PG7/ExSCLB a PG6/ExSDAB
				1	1:	Setting prohibited
4	_	0	R/W	Reserve	d	
5	—	0		The initia	al value :	should not be changed.
3	IIC0BS	0	R/W	These bi	ts selec	t input/output pins for IIC_0
2	IIC0AS	0	R/W	IIC0BS	IIC0A	S
				0	0:	Selects P52/SCL0 and I
				0	1:	Selects PG5/ExSCLA a PG4/ExSDAA
				1	0:	Selects PG7/ExSCLB a PG6/ExSDAB
				1	1:	Setting prohibited
1		0	R/W	Reserve	d	
0	_	0	R/W	The initia	al value	should not be changed.

Note: Do not set input/output of IIC_0 and IIC_1 for one pin at the same time.

Renesas

5	RxD2RS	0	R/W	0: RxD2 direct input
				1: RxD2 inverted input
4	TxD1RS	0	R/W	0: TxD1 direct output
				1: TxD1 inverted output
3	RxD1RS	0	R/W	0: RxD1 direct input
				1: RxD1 inverted input
2	_	0	R/W	Reserved
				The initial value should not be changed.
1	PORTS	0	R/W	0: Existing port specification
				1: New port specification
0	_	0	R/W	Reserved
_				The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 196 of 994 REJ09B0452-0200

- Selectable from four types of counter input clock
 Selection of four internal clock signals (φ, φ/2, φ/4, and φ/8)
 - Independent operation and variable cycle for each channel

Cascaded connection of two channels is possible.

Operation of channel 1 (higher order) and channel 0 (lower order) as a 16-bit single-PWM timer

Operation of channel 3 (higher order) and channel 2 (lower order) as a 16-bit single-PWM timer

Operation of channel 5 (higher order) and channel 4 (lower order) as a 16-bit single-PWM timer

• 8-bit single pulse mode

Operates at a maximum carrier frequency of 78.1 kHz (at 20 MHz operation) Pulse output settable with a duty cycle from 0/255 to 255/255

PWM output enable/disable control, and selection of direct or inverted PWM output

• 16-bit single pulse mode

Two channels are cascade-connected for operation in this mode. Operates at a maximum carrier frequency of 305.1 Hz (at 20 MHz operation) Pulse output settable with a duty cycle from 0/65535 to 65535/65535 PWM output enable/disable control, and selection of direct or inverted PWM output

• 8-bit pulse division mode

Operable at a maximum carrier frequency of 1.25 MHz (at 20 MHz operation) Pulse output settable with a duty cycle from 0/16 to 15/16

PWM output enable/disable control, and selection of direct or inverted PWM output

RENESAS

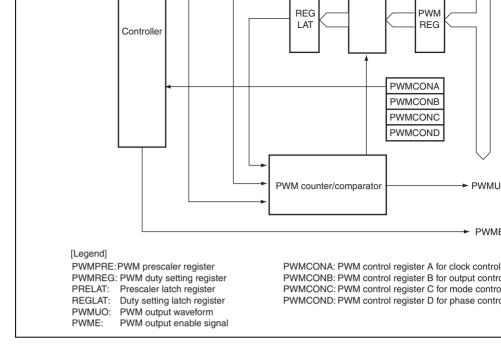


Figure 8.1 Block Diagram of PWMU Timer

Rev. 2.00 Sep. 28, 2009 Page 198 of 994 REJ09B0452-0200

				division)
	2	PWMU2A	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	3	PWMU3A	Output	PWM pulse output (8-bit single pulse, 16-bit single pulse, 8-bi division)
	4	PWMU4A	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	5	PWMU5A	Output	PWM pulse output (8-bit single pulse, 16-bit single pulse, 8-bi division)
Channel B	0	PWMU0B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	1	PWMU1B	Output	PWM pulse output (8-bit single pulse, 16-bit single pulse, 8-bi division)
	2	PWMU2B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	3	PWMU3B	Output	PWM pulse output (8-bit single pulse, 16-bit single pulse, 8-bi division)
	4	PWMU4B	Output	PWM pulse output (8-bit single pulse, 8-bit pulse division)
	5	PWMU5B	Output	PWM pulse output (8-bit single pulse, 16-bit single pulse, 8-bi division)

PWM control register B_A (for output control)	PWMCONB_A	R/W	H'00	H'FD0D
PWM control register C_A (for mode control)	PWMCONC_A	R/W	H'00	H'FD0E
PWM control register D_A (for phase control)	PWMCOND_A	R/W	H'00	H'FD0F
PWM prescaler register 0_A	PWMPRE0_A	R/W	H'00	H'FD01
PWM prescaler register 1_A	PWMPRE1_A	R/W	H'00	H'FD03
PWM prescaler register 2_A	PWMPRE2_A	R/W	H'00	H'FD05
PWM prescaler register 3_A	PWMPRE3_A	R/W	H'00	H'FD07
PWM prescaler register 4_A	PWMPRE4_A	R/W	H'00	H'FD09
PWM prescaler register 5_A	PWMPRE5_A	R/W	H'00	H'FD0B
PWM duty setting register 0_A	PWMREG0_A	R/W	H'00	H'FD00
PWM duty setting register 1_A	PWMREG1_A	R/W	H'00	H'FD02
PWM duty setting register 2_A	PWMREG2_A	R/W	H'00	H'FD04
PWM duty setting register 3_A	PWMREG3_A	R/W	H'00	H'FD06
PWM duty setting register 4_A	PWMREG4_A	R/W	H'00	H'FD08
PWM duty setting register 5_A	PWMREG5_A	R/W	H'00	H'FD0A

Rev. 2.00 Sep. 28, 2009 Page 200 of 994 REJ09B0452-0200

PWM prescaler register 0_B	PWMPRE0_B	R/W	H'00	H'FD11
PWM prescaler register 1_B	PWMPRE1_B	R/W	H'00	H'FD13
PWM prescaler register 2_B	PWMPRE2_B	R/W	H'00	H'FD15
PWM prescaler register 3_B	PWMPRE3_B	R/W	H'00	H'FD17
PWM prescaler register 4_B	PWMPRE4_B	R/W	H'00	H'FD19
PWM prescaler register 5_B	PWMPRE5_B	R/W	H'00	H'FD1B
PWM duty setting register 0_B	PWMREG0_B	R/W	H'00	H'FD10
PWM duty setting register 1_B	PWMREG1_B	R/W	H'00	H'FD12
PWM duty setting register 2_B	PWMREG2_B	R/W	H'00	H'FD14
PWM duty setting register 3_B	PWMREG3_B	R/W	H'00	H'FD16
PWM duty setting register 4_B	PWMREG4_B	R/W	H'00	H'FD18
PWM duty setting register 5_B	PWMREG5_B	R/W	H'00	H'FD1A

_				Thes mod	se bits are always read as 0 and canno ified.
5 to 0	-	All 0	R	Rese	erved
				1	1: Internal clock $\phi/8$ is selected
				1	0: Internal clock $\phi/4$ is selected
				0	1: Internal clock

8.3.2 PWM Control Register B (PWMCONB)

PWMCONB controls enabling and disabling of the PWM output and counter operation o channel.

Bit	Bit Name	Initial Value	R/W	Description
7, 6		All 0	R/W	Reserved
				The initial value should not be changed.
5	PWM5E	0	R/W	PWMU5 Output Enable
				 PWMU5 output and counter operation a disabled.
				 PWMU5 output and counter operation a enabled.

Rev. 2.00 Sep. 28, 2009 Page 202 of 994 REJ09B0452-0200

				 PWMU4 output and counter operation enabled.
3	PWM3E	0	R/W	PWMU3 Output Enable
				 PWMU3 output and counter operation disabled.
				 PWMU3 output and counter operation enabled.
2	PWM2E	0	R/W	PWMU2 Output Enable
				8-bit single-pulse/pulse division mode
				 PWMU2 output and counter operation disabled.
				 PWMU2 output and counter operation enabled.
				16-bit single-pulse mode
				 PWMU2 output and counter operation disabled.
				1: PWMU2 output and counter operation enabled.
1	PWM1E	0	R/W	PWMU1 Output Enable
				 PWMU1 output and counter operation disabled.
				1: PWMU1 output and counter operation enabled.

- aloabioa.
- 1: PWMU0 output and counter operation a enabled.

Rev. 2.00 Sep. 28, 2009 Page 204 of 994 REJ09B0452-0200

				1: Channels 0 and 1 are in 16-bit counter (Upper: channel 1, lower: channel 0).
				Note: When the 16-bit counter is selected, s single pulse mode.
5	PWMSL5	0	R/W	Channel 5 Operating Mode Select
				0: Single-pulse mode
				1: Pulse division mode (Specify 8-bit count
4	PWMSL4	0	R/W	Channel 4 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit coun
3	PWMSL3	0	R/W	Channel 3 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit count
2	PWMSL2	0	R/W	Channel 2 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit coun
1	PWMSL1	0	R/W	Channel 1 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit coun
0	PWMSL0	0	R/W	Channel 0 Operating Mode Select
				0: Single pulse mode
				1: Pulse division mode (Specify 8-bit coun

				0: PWMU4 direct output
				1: PWMU4 inverted output
5	PH3S	0	R/W	Channel 3 Output Phase Select
				0: PWMU3 direct output
				1: PWMU3 inverted output
4	PH2S	0	R/W	Channel 2 Output Phase Select
				0: PWMU2 direct output
				1: PWMU2 inverted output
3	PH1S	0	R/W	Channel 1 Output Phase Select
				0: PWMU1 direct output
				1: PWMU1 inverted output
2	PH0S	0	R/W	Channel 0 Output Phase Select
				0: PWMU0 direct output
				1: PWMU0 inverted output
1	CNTMD45	0	R/W	Channels 4 and 5 Counter Select
				0: Channels 4 and 5 are in 8-bit counter op
				1: Channels 4 and 5 are in 16-bit counter c (Upper: channel 5, lower: channel 4).
				Note: When the 16-bit counter is selected, s single pulse mode.
0	CNTMD23	0	R/W	Channels 2 and 3 Counter Select
				0: Channels 2 and 3 are in 8-bit counter op
				1: Channels 2 and 3 are in 16-bit counter c (Upper: channel 2, lower: channel 3).
				Note: When the 16-bit counter is selected, s single pulse mode.

Rev. 2.00 Sep. 28, 2009 Page 206 of 994 REJ09B0452-0200

RENESAS

Operation) when $\phi = 20$ MHz

				Carrier Freq	uency
Internal Clock		PWM Conv	ersion Period	Single Pulse	e Mode
Frequency	Resolution	Min.	Max.	Min.	Мах
φ	50 ns	12.8 μs	3.3 ms	306.4 Hz	78.4
φ/2	100 ns	25.5 μs	6.5 ms	153.2 Hz	39.2
φ/4	200 ns	51.2 μs	13.1 ms	76.6 Hz	19.6
ф/8	400 ns	102 μs	26.1 ms	38.3 Hz	9.8

Rev. 2.00

Internal Cloc	Κ				
Frequency	Resolution	Min.	Max.	Min.	Max.
¢	50 ns	3.3 ms	838.9 ms	1.2 Hz	305.1
ф/2	100 ns	6.5 ms	1.7 s	0.6 Hz	152.6
φ/4	200 ns	13.1 ms	3.4 s	0.3 Hz	76.3
ф/8	400 ns	26.2 ms	6.7 s	0.15 Hz	38.1

(3) 8-Bit Pulse Division Mode

PWM cycle = $[16 \times (n + 1)]$ / internal clock frequency ($0 \le n \le 255$)

PWM conversion cycle = $[256 \times (n + 1)]$ / internal clock frequency $(0 \le n \le 255)$

Table 8.5Resolution, PWM Conversion Period, and Carrier Frequency when $\phi =$
(at 8-bit counter operation)

Internal Clock		PWM Conve	rsion Period	Carrier Frequency (1/PW	
Frequency	Resolution	Min.	Max.	Min.	Max.
φ	50 ns	12.8 μs	3.3ms	4882.8Hz	1250.0 k
φ/2	100 ns	25.6 μs	6.6ms	2441.4Hz	625.0 kH
φ/4	200 ns	51.2 μs	13.1ms	1220.7Hz	312.5 kH
ф/8	400 ns	102.4 μs	26.2ms	610.4Hz	156.3 kH

Rev. 2.00	Sep. 28, 2009	Page 208 of 994
REJ09B04	52-0200	

When the PWMREG value is m, the high period of the output pulse is calculated as following the period of the perio

Output pulse high period = (PWM cycle \times m) / 255 (0 \le m \le 255)

(2) 16-Bit Single Pulse Mode

Directly set the high period of the pulse for PWM output. With cascade-connected PWM registers, the duty cycle of the PWM output pulse is specified as a value from 0/65535 to 65535/65535.

When the PWMREG value is m, the high period of the output pulse is calculated as following

Output pulse high period = (PWM cycle \times m) / 65535 (0 \leq m \leq 65535)

Set the respective high-level pulse periods by using the following register combinations connection): PWMREG1 (higher order) and PWMREG0 (lower order), PWMREG3 (higher order) and PWMREG2 (lower order), and PWMREG5 (higher order) and PWMREG4 (lower order)).

(3) 8-Bit Pulse Division Mode

Specify the basic pulse duty cycle and the number of additional pulses for PWM output. higher-order four bits of the PWMREG setting specify the duty cycle of the basic pulse 15/16 with a resolution of 1/16, and the lower-order four bits specify the number of puls added within the conversion period comprising the basic pulses.

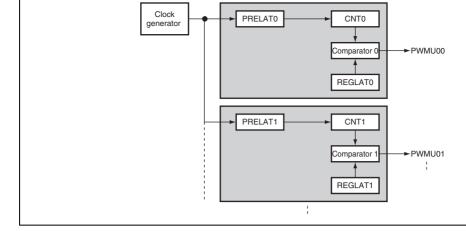


Figure 8.2 Block Diagram of 8-Bit Single Pulse Mode

Rev. 2.00 Sep. 28, 2009 Page 210 of 994 REJ09B0452-0200

Figure 8.3 Block Diagram of 16-bit Single Pulse Mode

Renesas

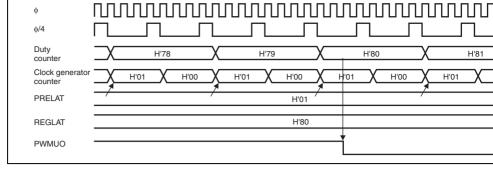


Figure 8.4 Example of Duty Counter and Clock Generator Counter Operati (When PWMPRE = H'01 and PWMREG = H'80 with $\phi/4$ Selected as Count Clock

The following shows the duty counter value and PWMU output timing.

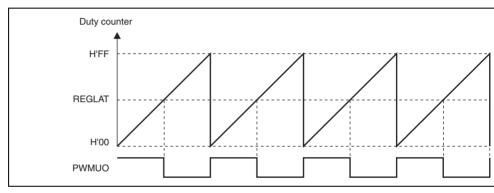
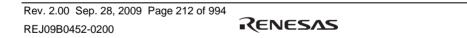



Figure 8.5 Duty Counter Value and PWMU Output Timing

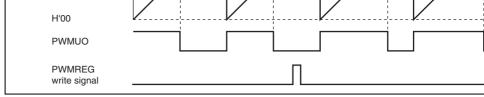


Figure 8.6 PWMU Output Waveform When PWMREG Value is Change

When the PWMPRE value is changed during PWM output, the PWM cycle changes fro cycle. When the clock generator counter underflows, the PWMPRE value is loaded into The following shows the PRELAT update timing when the PWMPRE value is changed.

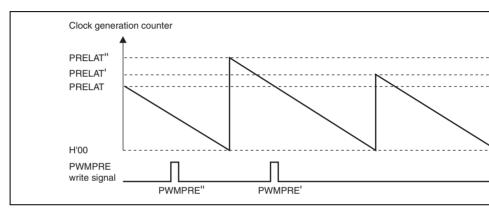
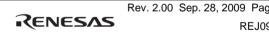
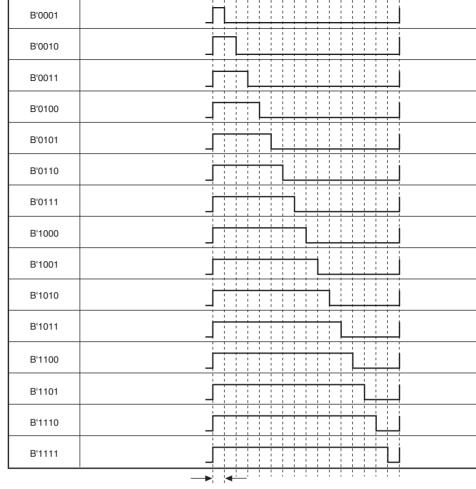




Figure 8.7 PRELAT Update Timing When PWMPRE Value is Changed

Resolution

Rev. 2.00 Sep. 28, 2009 Page 214 of 994 REJ09B0452-0200

B'0000													
B'0001													
B'0010							0						
B'0011							0				0		
B'0100			0				0				0		
B'0101			0				0				0		0
B'0110			0		0		0				0		0
B'0111			0		0		0		0		0		0
B'1000	0		0		0		0		0		0		0
B'1001	0		0		0		0		0		0		0
B'1010	0		0		0	0	0		0		0		0
B'1011	0		0		0	0	0		0	0	0		0
B'1100	0	0	0		0	0	0		0	0	0		0
B'1101	0	0	0		0	0	0		0	0	0	0	0
B'1110	0	0	0	0	0	0	0		0	0	0	0	0
B'1111	0	0	0	0	0	0	0	0	0	0	0	0	0

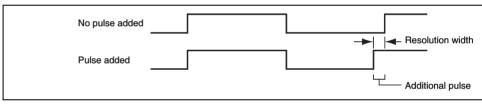


Figure 8.8 Example of Additional Pulse Timing (Upper 4 Bits in PWMREG = 1

+ : Position of additional pulse

A duty cycle of 0/256 to 255/256 is output as a low-ripple waveform by combining basic pulses and additional pulses.

Figure 8.9 Example of WMU Setting

(2) Example of Circuit for Use as D/A Converter

The following shows an example of a circuit in which PWMU output pulses are used as a converter. When a low-pass filter is connected externally to the LSI, low-ripple analog ou be generated. If pulse division mode is used, a D/A output with even less ripple is available

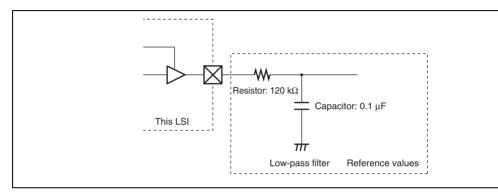
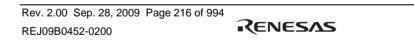



Figure 8.10 Example of Circuit for Use as a D/A Converter

When the duty cycle is to be changed in usage of a 16-bit single-pulse PWM timer, the I lower-order eight bits must be individually written to the respective PWMREGn (n = 0) registers. There will thus be a time lag between the write operations, and this may lead t output of a pulse waveform with a duty cycle other than the intended one during the comperiod.

Also, care must be taken to ensure that there are no interrupts while writing to PWMRE progress, since interrupt processing can lead to the continued output of pulses with a due other than the intended one.

Rev. 2.00 Sep. 28, 2009 Page 218 of 994 REJ09B0452-0200

• Two base cycle settings

The base cycle can be set equal to $T \times 64$ or $T \times 256$, where T is the resolution.

• Sixteen operation clocks (by combination of eight resolution settings and two base c settings)

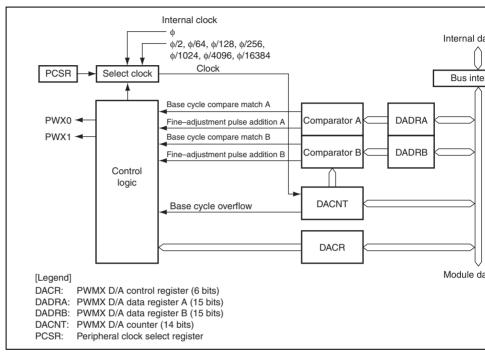


Figure 9.1 shows a block diagram of the PWM (D/A) module.

Figure 9.1 PWMX (D/A) Block Diagram

Renesas

9.3 Register Descriptions

The PWMX (D/A) module has the following registers. The PWMX (D/A) registers are as the same addresses with other registers. The registers are selected by the IICE bit in the stimer control register (STCR). For details on the module stop control register, see section Module Stop Control Registers H, L, A, and B (MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB).

Table 9.2 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Da Wi
PWMX (D/A) counter H	DACNTH	R/W	H'00	H'FFA6 H'FEA6*	8
PWMX (D/A) counter L	DACNTL	R/W	H'03	H'FFA7 H'FEA7*	8
PWMX (D/A) data register AH	DADRAH	R/W	H'FF	H'FFA0 H'FEA0*	8
PWMX (D/A) data register AL	DADRAL	R/W	H'FF	H'FFA1 H'FEA1*	8
PWMX (D/A) data register BH	DADRBH	R/W	H'FF	H'FFA6 H'FEA6*	8
PWMX (D/A) data register BL	DADRBL	R/W	H'FF	H'FFA7 H'FEA7*	8
PWMX (D/A) control register	DACR	R/W	H'30	H'FFA0 H'FEA0*	8
Peripheral clock select register	PCSR	R/W	H'00	H'FF82	8
					1040

Notes: The same addresses are shared by DADRA and DACR, and by DADRB and DAC Switching is performed by the REGS bit in DACNT or DADRB.

 Upper address: when RELOCATE = 0 Lower address: when RELOCATE = 1

Rev. 2.00 Sep. 28, 2009 Page 220 of 994

REJ09B0452-0200

RENESAS

Bit (CPU):	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Bit (counter):	7	6	5	4	3	2	1	0	8	9	10	11	12	13
[

• DACNTH

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	DACNT7 to DACNT0	All 0	R/W	Upper Up-Counter

• DACNTL

Bit	Bit Name	Initial Value	R/W	Description
7 to 2	DACNT 8 to DACNT 13	All 0	R/W	Lower Up-Counter
1	_	1	R	Reserved
				Always read as 1 and cannot be modified.
0	REGS	1	R/W	Register Select
				DADRA and DACR, and DADRB and DACNT located at the same addresses. The REGS bi which registers can be accessed.
				0: DADRA and DADRB can be accessed
				1: DACR and DACNT can be accessed

Renesas

14	DA12	1	R/W	These bits set a digital value to be converted to						
13	DA11	1	R/W	analog value.						
12	DA10	1	R/W	In each base cycle, the DACNT value is contin						
11	DA9	1	R/W	compared with the DADR value to determine the cycle of the output waveform, and to decide whether the output waveform and the output waveform and the decide whether the output waveform and the output waveform						
10	DA8	1	R/W	output a fine-adjustment pulse equal in width to						
9	DA7	1	R/W	resolution. To enable this operation, this regist be set within a range that depends on the CFS						
8	DA6	1	R/W	the DADR value is outside this range, the PWN						
7	DA5	1	R/W	is held constant.						
6	DA4	1	R/W	A channel can be operated with 12-bit precisio						
5	DA3	1	R/W	fixing DA0 and DA1 to 0. The two data bits compared with DACNT12 and DACNT13 or						
4	DA2	1	R/W							
3	DA1	1	R/W							
2	DA0	1	R/W							
1	CFS	1	R/W	Carrier Frequency Select						
				0: Base cycle = resolution (T) × 64 The range of DA13 to DA0: H'0100 to H'3FF						
				1: Base cycle = resolution (T) \times 256 The range of DA13 to DA0: H'0040 to H'3FF						
0		1	R	Reserved						
				Always read as 1 and cannot be modified.						

Rev. 2.00 Sep. 28, 2009 Page 222 of 994 REJ09B0452-0200

9	DA7			be set within a range that depends on the				
8	DA6	1	R/W	the DADR value is outside this range, the PW				
7	DA5	1	R/W	is held constant.				
6	DA4	1	R/W	A channel can be operated with 12-bit precisi				
5	DA3	1	R/W	fixing DA0 and DA1 to 0. The two data bits ar compared with DACNT12 and DACNT13 of D				
4	DA2	1	R/W					
3	DA1	1	R/W					
2	DA0	1	R/W					
1	CFS 1		R/W	Carrier Frequency Select				
				0: Base cycle = resolution (T) × 64 DA13 to DA0 range = H'0100 to H'3FFF				
				1: Base cycle = resolution (T) × 256 DA13 to DA0 range = H'0040 to H'3FFF				
0	REGS	1	R/W	Register Select				
	U KEGS			DADRA and DACR, and DADRB and DACNT located at the same addresses. The REGS bi which registers can be accessed.				
				0: DADRA and DADRB can be accessed				
				1: DACR and DACNT can be accessed				

				0. DAGNT operates as a 14-bit up-counter
				1: DACNT halts at H'0003
5		1	R	Reserved
4	—	1	R	Always read as 1 and cannot be modified.
3	OEB	0	R/W	Output Enable B
				Enables or disables output on PWMX (D/A) ch
				0: PWMX (D/A) channel B output (at the PWX pin) is disabled
				1: PWMX (D/A) channel B output (at the PWX pin) is enabled
2	OEA	0	R/W	Output Enable A
				Enables or disables output on PWMX (D/A) ch
				0: PWMX (D/A) channel A output (at the PWX) pin) is disabled
				1: PWMX (D/A) channel A output (at the PWX) pin) is enabled
1	OS	0	R/W	Output Select
				Selects the phase of the PWMX (D/A) output.
				0: Direct PWMX (D/A) output
				1: Inverted PWMX (D/A) output
0	CKS	0	R/W	Clock Select
				Selects the PWMX (D/A) resolution. Eight kind resolution can be selected.
				0: Operates at resolution (T) = system clock cy (t _{cvc})
				1: Operates at resolution (T) = system clock cy $(t_{cyc}) \times 2, \times 64, \times 128, \times 256, \times 1024, \times 4096, 16384.$

Rev. 2.00 Sep. 28, 2009 Page 224 of 994 REJ09B0452-0200

RENESAS

				DACK OF PWWIX being 1.
				See table 9.3.
3 to 1	—	All 0	R/W	Reserved
				The initial value should not be changed.
0	PWCKXC	0	R/W	PWMX clock select
				This bit selects a clock cycle with the CKS bit of PWMX being 1.
				See table 9.3.

Table 9.3Clock Select of PWMX

PWCKXC	PWCKXB	PWCKXA	Resolution (T)
0	0	0	Operates on the system clock cycle $(t_{\scriptscriptstyle cyc})$
0	0	1	Operates on the system clock cycle $(t_{_{cyc}})$
0	1	0	Operates on the system clock cycle $(t_{\mbox{\tiny cyc}})$
0	1	1	Operates on the system clock cycle $(t_{\mbox{\tiny cyc}})$
1	0	0	Operates on the system clock cycle $(t_{\mbox{\tiny cyc}})$
1	0	1	Operates on the system clock cycle ($t_{\scriptscriptstyle cyc}$)
1	1	0	Operates on the system clock cycle $(t_{\mbox{\tiny cyc}})$
1	1	1	Setting prohibited

Renesas

combined 16-bit value is written in the register.

• Read

When the upper byte is read from, the upper-byte value is transferred to the CPU and lower-byte value is transferred to TEMP. Next, when the lower byte is read from, the byte value in TEMP is transferred to the CPU.

These registers should always be accessed 16 bits at a time with a MOV instruction, and byte should always be accessed before the lower byte. Correct data will not be transferred the upper byte or only the lower byte is accessed. Also note that a bit manipulation instruction cannot be used to access these registers.

Example 1: Write to DACNT

MOV.W R0, @DACNT ; Write R0 contents to DACNT

Example 2: Read DADRA

MOV.W @DADRA, R0 ; Copy contents of DADRA to R0

Rev. 2.00 Sep. 28, 2009 Page 226 of 994 REJ09B0452-0200

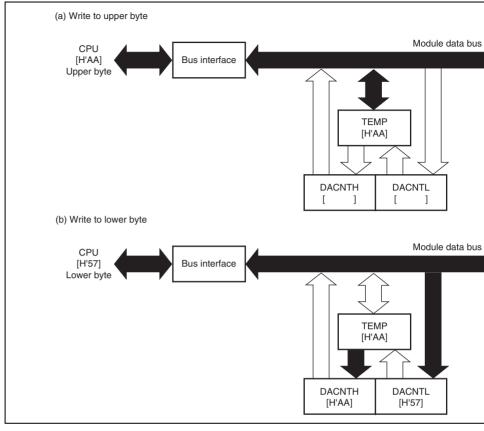


Figure 9.2 DACNT Access Operation (1) [CPU → DACNT (H'AA57) Write

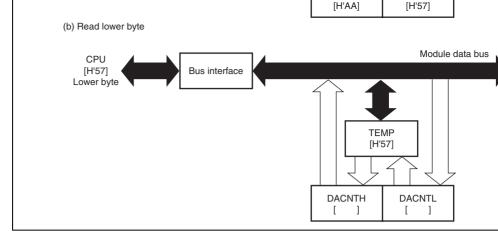


Figure 9.2 DACNT Access Operation (2) [DACNT → CPU (H'AA57) Readin

Rev. 2.00 Sep. 28, 2009 Page 228 of 994 REJ09B0452-0200

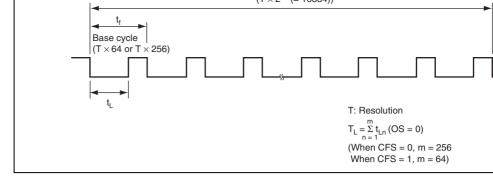


Figure 9.3 PWMX (D/A) Operation

Table 9.5 summarizes the relationships between the CKS and CFS bit settings and the rebase cycle, and conversion cycle. The PWM output remains fixed unless DA13 to DA0 contain at least a certain minimum value. The relationship between the OS bit and the or waveform is shown in figures 9.4 and 9.5.

_						(µs)		DA13 to 0 = H'0000 to H'003F (Data value) × T	12			0	0 2
				(φ)		/78.1kHz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	05
0	0	0	1	0.1	0	6.4	1.64	Always low/high output	14				1
						(μs)	(ms)	DA13 to $0 = H'0000$ to $H'00FF$ (Data value) $\times T$	12			0	0 4
						/156.2kHz		DA13 to $0 = H'0100$ to H'3FFF	10	0	0	0	0 1
					1	25.6	-	Always low/high output	14				1
						(μs)		DA13 to $0 = H'0000$ to $H'003F$ (Data value) × T	12			0	0 4
				(φ/2)		/39.1kHz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	0 1
0	0	1	1	3.2	0	204.8	52.4	Always low/high output	14				5
						(μs)	(ms)	DA13 to $0 = H'0000$ to H'00FF (Data value) × T	12			0	0 1
						/4.9kHz		DA13 to $0 = H'0100$ to H'3FFF	10	0	0	0	0 3
					1	819.2	-	Always low/high output	14				5
						(µs)		DA13 to $0 = H'0000$ to $H'003F$ (Data value) $\times T$	12			0	0 1
				(¢/64)		/1.2kHz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	0 3
0	1	0	1	6.4	0	409.6	104.9	Always low/high output	14				1
						(μs)	(ms)	DA13 to $0 = H'0000$ to H'00FF (Data value) × T	12			0	0 2
						/2.4kHz		DA13 to $0 = H'0100$ to H'3FFF	10	0	0	0	06
					1	1638.4	-	Always low/high output	14				1
						(μs)		DA13 to $0 = H'0000$ to $H'003F$ (Data value) × T	12			0	0 2
				(¢/128)		/610.4kHz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	ο 6

Rev. 2.00 Sep. 28, 2009 Page 230 of 994 REJ09B0452-0200

				(φ/256)		/305.2kH z		DA13 to 0 = H'0040 to H'3FFF	10	0	0	0	0
1	0	0	1	51.2	0	3.3	838.9	Always low/high output	14				
						(ms)	(ms)	DA13 to 0 = H'0000 to H'00FF (Data value) × T	12			0	0
						/305.2Hz		DA13 to $0 = H'0100$ to H'3FFF	10	0	0	0	0
					1	13.1	-	Always low/high output	14				
						(ms)		DA13 to 0 = H'0000 to H'003F (Data value) × T	12			0	0
				(¢/1024)		/76.3Hz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	0
1	0	1	1	204.8	0	13.1	3.4	Always low/high output	14				
			(ms)	(ms)	(s)	DA13 to 0 = H'0000 to H'00FF (Data value) × T	12			0	0		
			/76.3Hz		DA13 to 0 = H'0100 to H'3FFF	10	0	0	0	0			
			1	52.4	-	Always low/high output	14						
						(ms)		DA13 to 0 = H'0000 to H'003F (Data value) × T DA13 to 0 = H'0040 to H'3FFF	12			0	0
				(¢/4096)		/19.1Hz			10	0	0	0	0
1	1	0	1	819.2	0	52.4	13.4	Always low/high output	14				
						(ms)	(s)	DA13 to 0 = H'0000 to H'00FF (Data value) × T	12			0	0
						/19.1Hz		DA13 to $0 = H'0100$ to H'3FFF	10	0	0	0	0
					1	209.7	-	Always low/high output	14				
				(ms)		DA13 to 0 = H'0000 to H'003F (Data value) × T	12			0	0		
				(\phi/16384)		/4.8Hz		DA13 to $0 = H'0040$ to H'3FFF	10	0	0	0	0
1	1	1	1	Setting prohibited	_	_	_	_	_	_	_	_	_

Note: * Indicates the conversion cycle when specific DA3 to DA0 bits are fixed.

Renesas

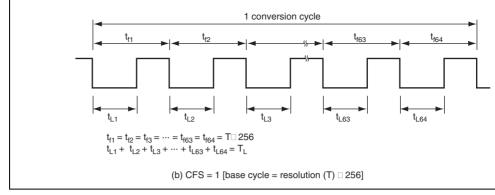


Figure 9.4 Output Waveform (OS = 0, DADR corresponds to T_L)

Rev. 2.00 Sep. 28, 2009 Page 232 of 994 REJ09B0452-0200

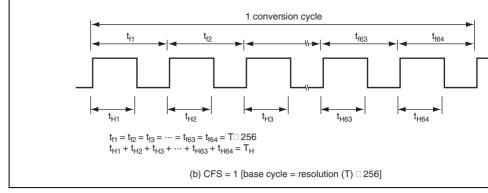


Figure 9.5 Output Waveform (OS = 1, DADR corresponds to T_{μ})

An example of the additional pulses when CFS = 1 (base cycle = resolution (T) × 256) a (inverted PWM output) is described below. When CFS = 1, the upper eight bits (DA13 + DADR determine the duty cycle of the base pulse while the subsequent six bits (DA5 to determine the locations of the additional pulses as shown in figure 9.6.

Table 9.6 lists the locations of the additional pulses.

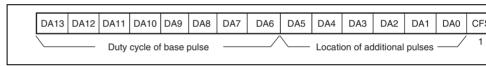


Figure 9.6 D/A Data Register Configuration when CFS = 1

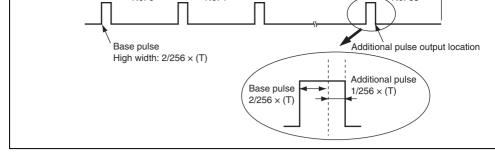


Figure 9.7 Output Waveform when DADR = H'0207 (OS = 1)

However, when CFS = 0 (base cycle = resolution (T) × 64), the duty cycle of the base pu determined by the upper six bits and the locations of the additional pulses by the subseque bits with a method similar to as above.

Rev. 2.00 Sep. 28, 2009 Page 234 of 994 REJ09B0452-0200

					┢		Bae	o nuls	o No				1	1	1			L				L	L	1		1	L	1	1	L	L				L		l	L	l	L	L	L	L
Ľ	wer6	6 bits		Η	0	-	2	e	4	9	~	8	6	10 1	1	2 13	4	15	16 1	7 18	19	20 2	21 22	2 23	24	25 2	26 2.	7 26	3 29	90	31 3	2 33	34	35	36 3	37 3	8 39	40	41	42 4	<u> </u>	45	46
00	00	00	00	0 -			T		+	+			+	+	+	+	T		+	+		+	+	+			+	+			+	+	T		+	+	+	+		+	+		
0	0	0		0	- 01				+	+				+	+	+			+			+	+	+			+	+		Ĺ	6	+			$^{+}$	+	+			+	+		
0	0	0	-	-		Ц	П	H	Η	Н	Ц		Η	Η	Н	Н	Д		Н	Ц		Η	Н	Н		Η	Η	Н		Ē	Ь	Н	Д		H	Η		Ц		Н	Н	Ц	
	0		0	-7 U	4	\downarrow	T		+	+	1		+	+	+	+	Ţ	0	+	+		+	+	+		+	+	+	1	Ť	0	+	T		+	+	+	4		+	+	\downarrow	
				- 0	0.00		T	t	+	+			+	+	+	+	T	bc	+	+		+	+	0			+	+	1	T	blo	+	T		+	+	+	1		+	+		
0		•	•	-			ſ	t	╀	╀	L		t	╀	╀	+	ſ	b	╀	1		t	╀			t	╀	+	ſ	ť		╀	ſ	t	t	┢	P		t	+	╀		
	ŗ	c	- c	0	0		Γ	t	+	╀	Ċ		t	+	╀	+	ſ	b	╀	+		t	╀) C		t	+	╀		t		╀	ſ		t	╀	P		t	+	╀		
0	-	0	0		0		Γ	t	+	+	þ		t	+	╀	+	Γ	bc	╀	\vdash		t	╀	P		t	╀	+		ť		+	L		t	┝	P		t	+	╞		
0	F	0		0	0	L	ſ	t	t	┞	þ		t	t	┢	┞	ſ	c	┝	\vdash		t	┞			t	f	L	ſ	Ĺ		┞	ſ		t	┢			Ĺ	t	┝		
0	ŀ	c	•	-	+-		ſ	t	╀	╀	þ	t	t	╀	╀	╀	ſ	k	╀	1		t	╀	×		t	r		ſ	Í	k	╀	ſ	t	t	┢	×		t	f	┢		
	1-	- 1	- c	0	- ~	1	Γ	t	+	+	pþ		t	f	t	+	ſ	b	+	+		t	+) 		t	10	+	1	t		+	Γ		t	╀	P		t	Ŧ			
	-		0	-	100			t	+	+)C		t	Ŧ		+		b	+	+		t	+	PC		t	10			Í		+	F		t	╈)C			Ŧ			
	-	•	, .	0	2 4	1	Γ	t	+	╀	p		t	眷		+	ſ		╀	\downarrow	С	t	╀			t	10		1	Í		╀	L		t	┢	20		t	f			
	ŀ	•			1 4	1	Γ	t	+	╀	k		t	↑	╁	+	ľ	k	+	+	k	t	+	X		t	Ť	Ŧ	1	ľ	╈	╀	I	¢	t	╉	X		t	f	╁	1	
	- <		- <		2 4	+	T	c	+	+	γĒ		t	千		+	T	k	+	+	c	t	+	p		t	<u>ار</u>	t	Ļ	Í	b	+	T	bc	t	+	PC		t	Ŧ	╁	1	
	^				> ~	1	T	1	+	╀	k		t	쒸		+	ľ	k	+	+	þ	t	+	Y		t	10	+	T	Í		╀	I	o	t	+	Y		t	Ŧ	╁	1	T
			> •	- <	- 0	1	I	3	+	+	×		t	쒸		+	I	2	+	+	2	t	+	Y		t	1		4	Т	5	+	I	2	t	+	Y		t	Ť	\downarrow	1	
				- +	0 0	+	I	5	+	+	<u>y</u> č		t	Ŧ	1	+	T	2	+	+	20	t	+	24		t	4		4	Т	5	+	I	20	$^{+}$	+	Y		t	Ť		4	
		,	- <	- <	5 9	1	I	3	+	+	<u>y</u> k		t	Ť		4	Ţ	20	+	+	20	$^{+}$	+	24		t	4		2	Т	50	+	I	20	$^{+}$	+	P		t	Ť		20	
	<u> </u>	-			2 7	4	I	5	+	+	y		t	Ŧ	1	7	Ţ	5	+	+	D	t	+	7		t	4		2	Т	5	+	I	20	t	+	7		1	1		20	
- ' > (2	-	э,	- 0		4	I	2	+	+	Þ	1	†	1		þ	Ţ	3	+	+	2	ť	+	2		1	4	+	2	Т	1	+	I	þ	+	+	9		1	7		2	
5	2	-	-	0	N	\downarrow	Ţ	5	+	+	2	1	†	4		9	Ţ	0	+	\downarrow	0	Ť		9		1	4		9	Т	0	+	Ţ	0	f	+	9		1	4		9	
0	-	-	-	-	20		Ţ	0	ť	+	q		+	f		액	Ţ	5	+	4	D	Ť		익		1	4		2	Т	2	+	Ţ	D			2			f		2	
-	-	0	0	Ň 0	4		1	0	4		0		1	4		9	1	0	+		0	-	_	익		1	4		0	Т	0	+	1	0	1		익			4		9	
0	-	0	0	(i) 	ŝ			0	4		0			4		9		0			0	-	0	9					0	Τ	0			0			9			4		0	
-	-	0		Ñ 0	9			0	4		0			4	0	9	1	0	+		0	1	0	9		0			0	Τ	0	_		0		0	0			4		0	
0	-	0	-	1	5			0	4		0			Ч	0	0		0			0	Ĭ	0	0		0			0		0	-		0	Ĭ	0	0		0	1		0	
0	-	-	0	0 2	8			0	Η		0		0	Н		0		0			0	Ť		0		0		Ц	0		6			0	Ĭ	0	0		0	Ħ		0	
-	-	-	0	éù T	g.		1	0	4		0		0	4		악		0	+		0	1		9		0			0		0	+	1	0			9		0	4		0	
0	-	-		ο Ο				0	4		2		5	4		9		0	4		0	-	_	9		0			0	Т	0	+		0	1		9		0	4		0	
-	-	-	-	€ 1	-		1	0	4		<u> </u>		5	٩	_	9	1	0	4		0	1	0	9		0			0	Т	0	9	1	0	1	0	9		0	4		9	
-	•	0	0	е 0	N	2	1	5	4		0		0	4		9	1	0	4		0	1	1	9		0			0	Т	0	9	1	0	1	1	9		0	4		9	
-	0	0	0	е́ 	2	이	Ţ	0	f		Ъ		5	4	1	9	Ţ	0	4		0	1	1	9		d			q		0	9	Ţ	0	1	1	9		0	4		0	
-	•	0	-	е) О	4	이	Ţ	0	4		2		5	4	1	9	Ţ	0	4		0	1	1	9		d			9	Ы	0	9	Ţ	0	1	1	9		0	4		0	
-	9	•	-	-	52	9	Ţ	0	Ŧ		2		5	4	1	q			4		d	1	1	q		đ			q	d	d	9	Ţ	d	٦	4	q		d	4		q	0
-	•	-	0	τ Ο	9	9	1	0	Ť		2		5	4	1	9	J		4		0	1	1	9		d			q	d	d	9	1	d	1	d	9		0	4		9	
-	0		0	€ -		0		0	4		2		Ы	٩		9	Ō				0	-	0	9		0			0	0	0	9		0	1	0	9		0	۲		0	
0 T	0	-	-	с О		0		0	4		0		0	Ч	0	9	Ō		U	_	0	Ĩ	0	0		0			0	0	0	0		0	-				0	Y		0	
0 F	0	-		÷	6	0		0	ř		0		0	Γ		0	0				0		0	0		0			0	0	0	0		0					0	F		0	
-	-	0	0	0	9	0		0	Ħ				0	H		0	0		μ		0	Ĕ	0	0		0		L	0	0	6	0		0	Ĕ				0	Ĕ		0	
-	-	0	0	1	=	0		0	F				0	۲		0	ō				0	Ĕ	00	0		0			0	0	0	0		0	Ē				0	۲		0	
0 -	-	0		0	24	0		0	۲				þ	۲		р	0		μ		0	Ĕ	0	0		ŏ	0		0	0	6	р		0	Ĕ				0	۲		0	
0 	-	0		-	2	0		0	f				þ	۲	6	ρ	0		۲		0	ľ	0	0		ŏ	6		0	6	6	ρ		0	ľ							0	
0 	-	-	0	0	4	þ		0	۲				0	0	6	ρ	0		β		0	ľ	00	0		ŏ	b		0	Ь	6	ρ		0	ľ						6	þ	
0 	-	-	0	-	5	þ		0	F				Ī	6	6	0	0		P	-	0	ľ	0	0		ŏ	0		0	0	0	ρ		0	ľ							0	
0 -	F	-	-	0	9	þ	ſ	c	f							P	C		ľ			ť	C	C		ĬČ			C	c	t.	f	ſ	c	T							c	
-	ŀ	-	-	4		C	ſ	b	f				k	ĥ	t	pic	c		f			f		C		č	c		C	k		p			f							c	
-	- c	c	c	0	ď	þ	Γ	k	f					k		10	0		10			T					olc		þ			10			Ť							0	
•				· ·	2 0	卜		k	f				k	1 k		X	2		19			Ť				Ż	10		k	k		Y			Ť							×	
•	<u>،</u>		, ,	- 0	2 5	忄		<u>_</u>	Ŧ				k	ار		¥	k		4			Ť		X		أر	20			2	1	¥			Ť						╁	×	
•			• •		2 2	×			Ŧ					1		¥	k		Ŧ			Ť	ж Х	X		k	b			k	1	¥			Ť								
•		, -		- 0	0	卜		1	╀			T	k	俞			k		10			T								k	<u>k</u>	Y			Ť								
•	ľ	•			19	¥		5	Ŧ			Ī			10	1	1		4			Ť	20				5			5		1			Ť			1					
- +	4		5 -	- <	2 .	꺅		志	ť				đ	1	4	3	4		ť			1	1	3		đ	d			d	a	4			Ť			1					30
	각	Ŧ	-	0	4	꺅		5	ť				đ	ď	đ	3			4			đ		3		đ	d			d	đ	4			1			1				<u>d</u>	d
-	-	-	-	-	2	아		d	4		q		ð	đ					4			ð		9		ð	n.	-		0	0	9			ð							0	0
 	0	0	0	ۍ ٥	9	0		ŏ	d	0	9		õ	d	2	0			9			ð	0	0		ð	0	-		0	0	9		0	ŏ	d						0	0
-	-	0	0	- 2	<u></u>	0	0	ŏ	0	0	0		ó	0		0						õ	0	0		õ	0	0		0	0	0		0	0	0						0	0
1	-	0	-	2 <u>2</u>	89	0	0	0	0	0	0			0	00	0	0	0			0	0	00	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0	00	0	0
1	-	0	-	1	6	0	0	0	0	0	0			0	00	0	0	0			0	0	00	0	0	ŏ	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
1	-	-	0	0 6	0	0	0	0	0	0	0				00	0	0	0			-	0		0	0	ō	0		0	0	0	0		0	0	0	-	0	0	0	0	0	0

Rev. 2.00 Sep. 28, 2009 Page 236 of 994 REJ09B0452-0200

- channel 1
- The following operations can be set for each channel:
 - Waveform output at compare match
 - Input capture function
 - Counter clear operation
 - Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture possible
 - Register simultaneous input/output possible by counter synchronous operation
 - Maximum of 7-phase PWM output possible by combination with synchronous of
- Buffer operation settable for channel 0
- Phase counting mode settable independently for each of channels 1 and 2
- Fast access via internal 16-bit bus
- 13 interrupt sources
- Automatic transfer of register data
- A/D converter conversion start trigger can be generated

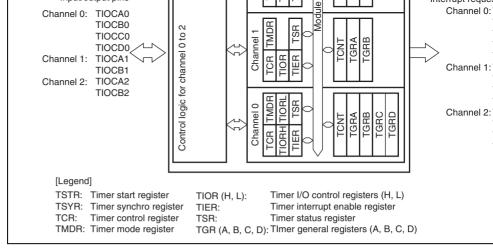


Figure 10.1 Block Diagram of TPU

Rev. 2.00 Sep. 28, 2009 Page 238 of 994 REJ09B0452-0200

		TCLKD		TCLKC
General reg	gisters	TGRA_0	TGRA_1	TGRA_2
(TGR)		TGRB_0	TGRB_1	TGRB_2
	gisters/buffer	TGRC_0	_	_
registers		TGRC_0		
I/O pins		TIOCA0	TIOCA1	TIOCA2
		TIOCB0	TIOCB1	TIOCB2
		TIOCC0		
		TIOCD0		
Counter cle	ear function	TGR compare match or input capture	TGR compare match or input capture	TGR compare m input capture
Compare	0 output	0	0	0
match output	1 output	0	0	0
output	Toggle output	0	0	0
Input captu	re function	0	0	0
Synchrono	us operation	0	0	0
PWM mode	Э	0	0	0
Phase cour	nting mode	_	0	0
Buffer oper	ation	0	—	

- Compare match or input capture 0D
- Overflow

[Legend]

O: Enable

—: Disable

Rev. 2.00 Sep. 28, 2009 Page 240 of 994 REJ09B0452-0200

	TCLKD	Input	External clock D input pin (Channel 2 phase counting mode B phase in
0	TIOCA0	I/O	TGRA_0 input capture input/output compare output/PWM output pin
	TIOCB0	I/O	TGRB_0 input capture input/output compare output/PWM output pin
	TIOCC0	I/O	TGRC_0 input capture input/output compare output/PWM output pin
	TIOCD0	I/O	TGRD_0 input capture input/output compare output/PWM output pin
1	TIOCA1	I/O	TGRA_1 input capture input/output compare output/PWM output pin
	TIOCB1	I/O	TGRB_1 input capture input/output compare output/PWM output pin
2	TIOCA2	I/O	TGRA_2 input capture input/output compare output/PWM output pin
	TIOCB2	I/O	TGRA_2 input capture input/output compare output/PWM output pin

			1.	1100		0
	Timer I/O control register L_0	TIORL_0	R/W	H'00	H'FE53	8
	Timer interrupt enable register_0	TIER_0	R/W	H'40	H'FE54	8
	Timer status register_0	TSR_0	R/W	H'C0	H'FE55	8
	Timer counter_0	TCNT_0	R/W	H'0000	H'FE56	16
	Timer general register A_0	TGRA_0	R/W	H'FFFF	H'FE58	16
	Timer general register B_0	TGRB_0	R/W	H'FFFF	H'FE5A	16
	Timer general register C_0	TGRC_0	R/W	H'FFFF	H'FE5C	16
	Timer general register D_0	TGRD_0	R/W	H'FFFF	H'FE5E	16
Channel 1	Timer control register_1	TCR_1	R/W	H'00	H'FD40	8
	Timer mode register_1	TMDR_1	R/W	H'C0	H'FD41	8
	Timer I/O control register _1	TIOR_1	R/W	H'00	H'FD42	8
	Timer interrupt enable register_1	TIER_1	R/W	H'40	H'FD44	8
	Timer status register_1	TSR_1	R/W	H'C0	H'FD45	8
	Timer counter_1	TCNT_1	R/W	H'0000	H'FD46	16
	Timer general register A_1	TGRA_1	R/W	H'FFFF	H'FD48	16
	Timer general register B_1	TGRB_1	R/W	H'FFFF	H'FD4A	16
Channel 2	Timer control register_2	TCR_2	R/W	H'00	H'FE70	8
	Timer mode register_2	TMDR_2	R/W	H'C0	H'FE71	8
	Timer I/O control register_2	TIOR_2	R/W	H'00	H'FE72	8
	Timer interrupt enable register_2	TIER_2	R/W	H'40	H'FE74	8
	Timer status register_2	TSR_2	R/W	H'C0	H'FE75	8
	Timer counter_2	TCNT_2	R/W	H'0000	H'FE76	16

Rev. 2.00 Sep. 28, 2009 Page 242 of 994 REJ09B0452-0200

RENESAS

The TCR registers control the TCNT operation for each channel. The TPU has a total of TCR registers, one for each channel (channel 0 to 2). TCR register settings should be may when TCNT operation is stopped.

		Initial		
Bit	Bit Name	value	R/W	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	These bits select the TCNT counter clearing
5	CCLR0	0	R/W	See tables 10.4 and 10.5 for details.
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge. When clock is counted using both edges, the input d is divided in 2 ($\phi/4$ both edges = $\phi/2$ rising edge phase counting mode is used on channels 1, 5, this setting is ignored and the phase counting setting has priority. Internal clock edge select when the input clock is $\phi/4$ or slower. This set ignored if the input clock is $\phi/1$ and rising edg selected.
				00: Count at rising edge
				01: Count at falling edge
				1x: Count at both edges
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT counter clock. Th
0	TPSC0	0	R/W	source can be selected independently for ead See tables 10.6 to 10.8 for details.
[Leger	nd]			
x:	Don't care			

RENESAS

			synchronous/clearing synchronol operation* ¹
1	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRC compare match/input capture* ²
	1	0	TCNT cleared by TGRD compare match/input capture* ²
		1	TCNT cleared by counter clearing another channel performing syncl clearing/synchronous operation* ¹

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR t

2. When TGRC or TGRD is used as a buffer register. TCNT is not cleared becau buffer register setting has priority, and compare match/input capture dose not of

Table 10.5 CCLR2 to CCLR0 (channels 1 and 2)

Channel	Bit 7 Reserved* ²	Bit 6 CCLR1	Bit 5 CCLR0	Description
1, 2	0	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRA compare match/input capture
		1	0	TCNT cleared by TGRB compare match/input capture
			1	TCNT cleared by counter clearing another channel performing syncl clearing/synchronous operation* ¹
Notes: 1	Synchronous or	paration sattin	a is performe	d by setting the SVNC bit in TSVP t

Notes: 1. Synchronous operation setting is performed by setting the SYNC bit in TSYR t 2. Bit 7 is reserved in channels 1 and 2. It is always read as 0 and cannot be mod

Rev. 2.00 Sep. 28, 2009 Page 244 of 994 REJ09B0452-0200

RENESAS

1	0	External clock: counts on TCLK
	1	External clock: counts on TCLKI

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
1	0	0	0	Internal clock: counts on $\boldsymbol{\phi}$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLK
			1	External clock: counts on TCLK
		1	0	Internal clock: counts on $\phi/256$
			1	Setting prohibited

Table 10.7 TPSC2 to TPSC0 (channel 1)

Note: This setting is ignored when channel 1 is in phase counting mode.

RENESAS

1	0	External clock: counts on TCLKC
	1	Internal clock: counts on \u00f6/1024

Note: This setting is ignored when channel 2 is in phase counting mode.

Rev. 2.00 Sep. 28, 2009 Page 246 of 994 REJ09B0452-0200

5	BFB	0	R/W	Buffer Operation B
				Specifies whether TGRB is to operate in the r way, or TGRB and TGRD are to be used toge buffer operation. When TGRD is used as a bu register. TGRD input capture/output compare generation. Because channels 1 and 2 have r bit 5 is reserved. It is always read as 0 and ca modified.
				0: TGRB operates normally
				1: TGRB and TGRD used together for buffer
4	BFA	0	R/W	Buffer Operation A
				Specifies whether TGRA is to operate in the r way, or TGRA and TGRC are to be used toge buffer operation. When TGRC is used as a bu register, TGRC input capture/output compare generated. Because channels 1 and 2 have n bit 4 is reserved. It is always read as 0 and ca modified.
				0: TGRA operates normally
				1: TGRA and TGRC used together for buffer
3	MD3	0	R/W	Modes 3 to 0
2	MD2	0	R/W	These bits are used to set the timer operating
1	MD1	0	R/W	MD3 is a reserved bit. In a write, the write val
0	MD0	0	R/W	always be 0. See table 10.9 for details.

		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	×	×	×	Setting prohibited

x: Don't care

Notes: 1. MD3 is reserved bit. In a write, it should be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 shou be written to MD2.

Rev. 2.00 Sep. 28, 2009 Page 248 of 994 REJ09B0452-0200

Bit	Bit Name	Initial value	R/W	Description
7	IOB3	0	R/W	I/O Control B3 to B0
6	IOB2	0	R/W	Specify the function of TGRB.
5	IOB1	0	R/W	
4	IOB0	0	R/W	
3	IOA3	0	R/W	I/O Control A3 to A0
2	IOA2	0	R/W	Specify the function of TGRA.
1	IOA1	0	R/W	
0	IOA0	0	R/W	

• TIORL_0

Bit	Bit Name	Initial value	R/W	Description
7	IOD3	0	R/W	I/O Control D3 to D0
6	IOD2	0	R/W	Specify the function of TGRD.
5	IOD1	0	R/W	
4	IOD0	0	R/W	
3	IOC3	0	R/W	I/O Control C3 to C0
2	IOC2	0	R/W	Specify the function of TGRC.
1	IOC1	0	R/W	
0	IOC0	0	R/W	

Renesas

			1		Initial output is 0 output
					Toggle output at compare ma
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare ma
1	0	0	0	Input capture register	Capture input source is TIOC Input capture at rising edge
			1		Capture input source is TIOC Input capture at falling edge
		1	×		Capture input source is TIOC Input capture at both edges
	1	×	×		Setting prohibited
[] ogon	d1				

×: Don't care

Rev. 2.00 Sep. 28, 2009 Page 250 of 994 REJ09B0452-0200

	1	×	×		Setting prohibited
					Input capture at both edges
		1	×		Capture input source is TIOC
					Input capture at falling edge
			1		Capture input source is TIOC
				register	Input capture at rising edge
1	0	0	0	Input capture	Capture input source is TIOC
					Toggle output at compare ma
			1		Initial output is 1 output
					1 output at compare match
		1	0		Initial output is 1 output
					0 output at compare match
			1		Initial output is 1 output
	1	0	0		Output disabled
					Toggle output at compare ma
			1		Initial output is 0 output

×: Don't care

RENESAS

			1		Initial output is 0 output
					Toggle output at compare ma
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare ma
1	0	0	0	Input capture register*	Capture input source is TIOCI Input capture at rising edge
			1		Capture input source is TIOCI Input capture at falling edge
		1	×		Capture input source is TIOCI Input capture at both edges
	1	×	×		Setting prohibited

×: Don't care

Note: When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, setting is invalid and input capture/output compare is not generated.

Rev. 2.00 Sep. 28, 2009 Page 252 of 994 REJ09B0452-0200

			1		Initial output is 0 output
					Toggle output at compare ma
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare ma
1	0	0	0	Input capture register*	Capture input source is TIOC Input capture at rising edge
			1		Capture input source is TIOC Input capture at falling edge
		1	×		Capture input source is TIOC Input capture at both edges
	1	×	×		Setting prohibited

×: Don't care

Note: * When the BFA bit in TMDR_0 is set to 1and TGRC_0 is used as a buffer regisered setting is invalid and input capture/output compare is not generated.

RENESAS

	1	×	×		Setting prohibited
		1	×		Capture input source is TIOC Input capture at both edges
			1		Capture input source is TIOC Input capture at falling edge
1	0	0	0	Input capture register	Capture input source is TIOC Input capture at rising edge
					Toggle output at compare ma
			1		Initial output is 1 output
					1 output at compare match
		1	0		Initial output is 1 output
					0 output at compare match
			1		Initial output is 1 output
	1	0	0		Output disabled
					Toggle output at compare ma
			1		Initial output is 0 output

×: Don't care

Rev. 2.00 Sep. 28, 2009 Page 254 of 994 REJ09B0452-0200

			1		Initial output is 0 output
					Toggle output at compare m
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare m
1	0	0	0	Input capture register	Capture input source is TIOC Input capture at rising edge
			1		Capture input source is TIOC Input capture at falling edge
		1	×		Capture input source is TIOC Input capture at both edges
	1	×	×		Setting prohibited
[] a man					

×: Don't care

			1		Initial output is 0 output
					Toggle output at compare ma
	1	0	0		Output disabled
			1		Initial output is 1 output
					0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare ma
1	х	0	0	Input capture register	Capture input source is TIOCI Input capture at rising edge
			1		Capture input source is TIOCI Input capture at falling edge
		1	×		Capture input source is TIOCI Input capture at both edges
-					

×: Don't care

Rev. 2.00 Sep. 28, 2009 Page 256 of 994 REJ09B0452-0200

			1		Initial output is 0 output
					Toggle output at compare ma
	1	0	0		Output disabled
			1		Initial output is 1 output
			_		0 output at compare match
		1	0		Initial output is 1 output
					1 output at compare match
			1		Initial output is 1 output
					Toggle output at compare ma
1	×	0	0	Input capture register	Capture input source is TIOC Input capture at rising edge
			1		Capture input source is TIOC Input capture at falling edge
		1	×		Capture input source is TIOC Input capture at both edges

×: Don't care

Renesas

				o. , (B controloion start request generation alot
				1: A/D conversion start request generation ena
6		1	R	Reserved
				This bit is always read as 1 and cannot be mo
5	TCIEU	0	R/W	Underflow Interrupt Enable
				Enables or disables interrupt requests (TCIU) I TCFU flag when the TCFU flag in TSR is set to channels 1 and 2. In channel 0, bit 5 is reserve
				0: Interrupt requests (TCIU) by TCFU disabled
				1: Interrupt requests (TCIU) by TCFU enabled
4	TCIEV	0	R/W	Overflow Interrupt Enable
				Enables or disables interrupt requests (TCIV) to TCFV flag when the TCFV flag in TSR is set to
				0: Interrupt requests (TCIV) by TCFV disabled
				1: Interrupt requests (TCIV) by TCFV enabled
3	TGIED	0	R/W	TGR Interrupt Enable D
				Enables or disables interrupt requests (TGID) I TGFD bit when the TGFD bit in TSR is set to 1 channel 0. In channels 1 and 2, bit 3 is reserve always read as 0 and cannot be modified.
				0: Interrupt requests (TGID) by TGFD disabled
				1: Interrupt requests (TGID) by TGFD enabled

Rev. 2.00 Sep. 28, 2009 Page 258 of 994 REJ09B0452-0200

				TGFB bit when the TGFB bit in TSR is set to
				0: Interrupt requests (TGIB) by TGFB disable
				1: Interrupt requests (TGIB) by TGFB enabled
0	TGIEA	0	R/W	TGR Interrupt Enable A
				Enables or disables interrupt requests (TGIA) TGFA bit when the TGFA bit in TSR is set to
				0: Interrupt requests (TGIA) by TGFA disable
				1: Interrupt requests (TGIA) by TGFA enabled

				0: TCNT counts down
				1: TCNT counts up
6	_	1	R	Reserved
				This bit is always read as 1 and cannot be mod
5	TCFU	0	R/(W)*	Underflow Flag
				Status flag that indicates that TCNT underflow occurred when channels 1 and 2 are set to pha counting mode.
				In channel 0, bit 5 is reserved. It is always read and cannot be modified.
				[Setting condition]
				When the TCNT value underflows (change from to H'FFFF)
				[Clearing condition]
				When 0 is written to TCFU after reading TCFU
4	TCFV	0	R/(W) *	Overflow Flag
				Status flag that indicates that TCNT overflow h occurred.
				[Setting condition]
				When the TCNT value overflows (change from to H'0000)
				[Clearing condition]
				When 0 is written to TCFV after reading TCFV

Rev. 2.00 Sep. 28, 2009 Page 260 of 994 REJ09B0452-0200

				 when TCNT value is transferred to TGRE capture signal while TGRD is functioning capture register [Clearing condition] When 0 is written to TGFD after reading TGF
2	TGFC	0	R/(W)*	Input Capture/Output Compare Flag C
				Status flag that indicates the occurrence of To capture or compare match in channel 0.
				In channels 1 and 2, bit 2 is reserved. It is alw as 0 and cannot be modified.
				[Setting conditions]
				• When the TCNT = TGRC while TGRC is f as output compare register
				 When TCNT value is transferred to TGRC capture signal while TGRC is functioning a capture register
				[Clearing condition]
				When 0 is written to TGFC after reading TGF

				capture register
				[Clearing condition]
				When 0 is written to TGFB after reading TGFB
0	TGFA	0	R/(W)*	Input Capture/Output Compare Flag A
				Status flag that indicates the occurrence of TG capture or compare match. The write value sho always be 0 to clear this flag.
				[Setting conditions]
				 When TCNT = TGRA while TGRA is function output compare register
				 When TCNT value is transferred to TGRA capture signal while TGRA is functioning a capture register
				[Clearing condition]
				When 0 is written to TGFA after reading TGFA
		<u> </u>	<u> </u>	

Note: * The write value should always be 0 to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 262 of 994 REJ09B0452-0200

registers are initialized to H'FFFF by a reset. The TGR registers cannot be accessed in 8 they must always be accessed as a 16-bit unit. TGR buffer register combinations are TG TGRC and TGRB—TGRD.

10.3.8 Timer Start Register (TSTR)

TSTR is an 8-bit readable/writable register that selects operation/stoppage for channels (TCNT of a channel performs counting when the corresponding bit in TSTR is set to 1. V setting the operating mode in TMDR or setting the count clock in TCR, first stop the TC counter.

		Initial		
Bit	Bit Name	value	R/W	Description
7 to 3	_	0	R	Reserved
				The initial value should not be changed.
2	CST2	0	R/W	Counter Start 2 to 0 (CST2 to CST0)
1	CST1	0	R/W	These bits select operation or stoppage for T
0	CST0	0	R/W	If 0 is written to the CST bit during operation v TIOC pin designated for output, the counter s the TIOC pin output compare output level is re
				If TIOR is written to when the CST bit is clear the pin output level will be changed to the set output value.
				0: TCNT_n count operation is stopped
				1: TCNT_n performs count operation
				(n = 2 to 0)

RENESAS

Z	STNCZ	0	R/VV	Timer Synchro 2 to 0
1	SYNC 1	0	R/W	These bits select whether operation is indepen
0	SYNC 0	0	R/W	or synchronized with other channels. When synchronous operation is selected, sync presetting of multiple channels, and synchrono clearing through counter clearing on another cl are possible. To set synchronous operation, the SYNC bits f least two channels must be set to 1. To set synchronous clearing, in addition to the SYNC TCNT clearing source must also be set by mea bits CCLR2 to CCLR0 in TCR.
				 TCNT_n operates independently (TCNT presetting /clearing is unrelated to ot channels)
				1: TCNT_n performs synchronous operation TCNT synchronous presetting/synchronous is possible
				(n = 2 to 0)

Rev. 2.00 Sep. 28, 2009 Page 264 of 994 REJ09B0452-0200

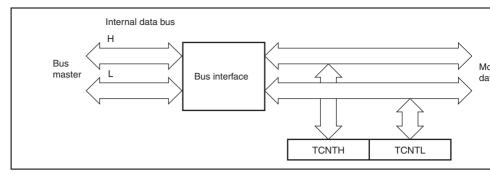


Figure 10.2 16-Bit Register Access Operation [Bus Master ↔ TCNT (16 Bi

10.4.2 8-Bit Registers

Registers other than TCNT and TGR are 8-bit. As the data bus to the CPU is 16 bits wid registers can be read and written to in 16-bit units. They can also be read and written to units.

Examples of 8-bit register access operation are shown in figures 10.3, 10.4, and 10.5.

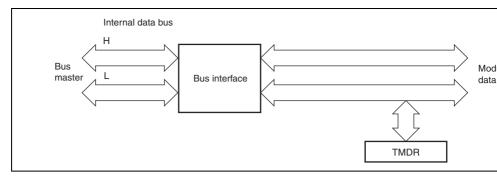


Figure 10.4 8-Bit Register Access Operation [Bus Master ↔ TMDR (Lower 8]

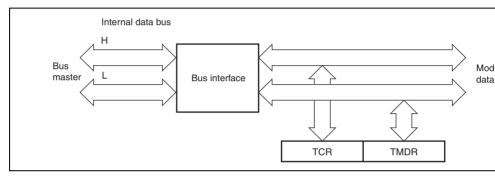


Figure 10.5 8-Bit Register Access Operation [Bus Master ↔ TCR and TMDR (1

channel starts counting. TCNT can operate as a free-running counter, periodic counter, a

(a) Example of count operation setting procedure

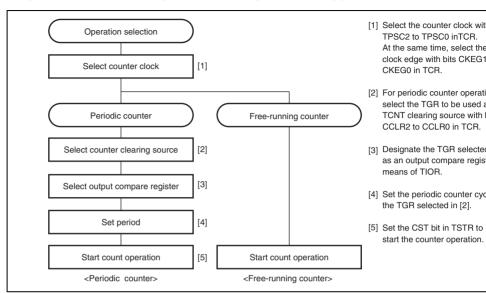


Figure 10.6 shows an example of the count operation setting procedure.

Figure 10.6 Example of Counter Operation Setting Procedure

Renesas

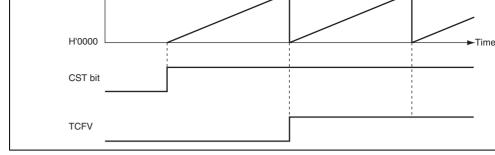


Figure 10.7 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the channel performs periodic count operation. The TGR register for setting the period is des as an output compare register, and counter clearing by compare match is selected by mea CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts up-count ope periodic counter when the corresponding bit in TSTR is set to 1. When the count value m the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000. If the value corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After compare match, TCNT starts counting up again from H'0000. Figure 10.8 illustrates period counter operation.

Rev. 2.00 Sep. 28, 2009 Page 268 of 994 REJ09B0452-0200

(2) Waveform Output by Compare Match

The TPU can perform 0, 1, or toggle output from the corresponding output pin using conmatch.

(a) Example of setting procedure for waveform output by compare match

Figure 10.9 shows an example of the setting procedure for waveform output by compare

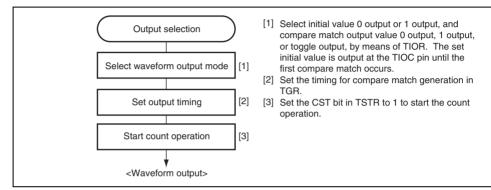


Figure 10.9 Example of Setting Procedure for Waveform Output by Compare

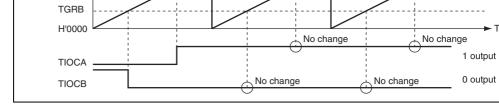


Figure 10.10 Example of 0 Output/1 Output Operation

Figure 10.11 shows an example of toggle output.

In this example TCNT has been designated as a periodic counter (with counter clearing p by compare match B), and settings have been made so that output is toggled by both com match A and compare match B.

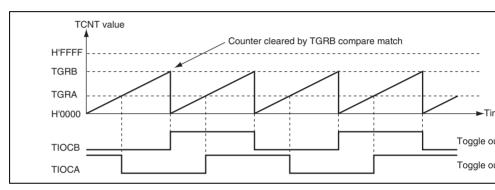
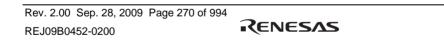



Figure 10.11 Example of Toggle Output Operation

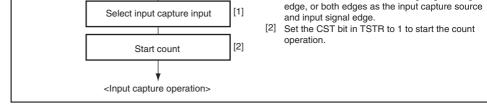


Figure 10.12 Example of Input Capture Operation Setting Procedure

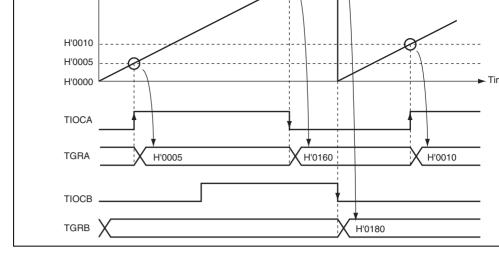


Figure 10.13 Example of Input Capture Operation

Rev. 2.00 Sep. 28, 2009 Page 272 of 994 REJ09B0452-0200

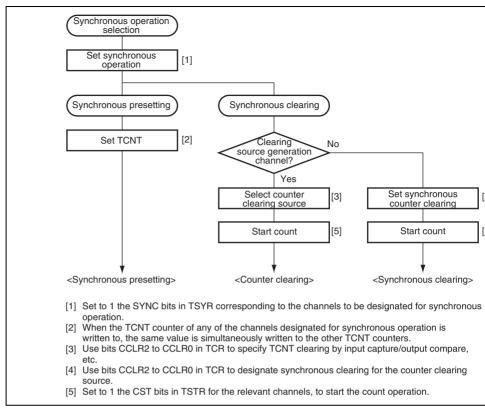


Figure 10.14 Example of Synchronous Operation Setting Procedure

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

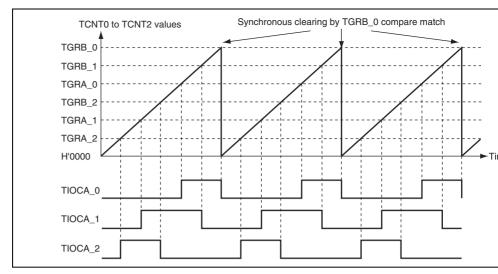


Figure 10.15 Example of Synchronous Operation

Rev. 2.00 Sep. 28, 2009 Page 274 of 994 REJ09B0452-0200

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding transferred to the timer general register. This operation is illustrated in figure 10.16.

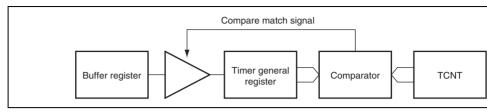


Figure 10.16 Compare Match Buffer Operation

• When TGR is an input capture register

When input capture occurs, the value in TCNT is transferred to TGR and the value p held in the timer general register is transferred to the buffer register. This operation i illustrated in figure 10.17.

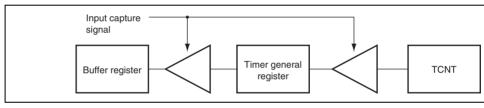


Figure 10.17 Input Capture Buffer Operation

Figure 10.18 Example of Buffer Operation Setting Procedure

Rev. 2.00 Sep. 28, 2009 Page 276 of 994 REJ09B0452-0200

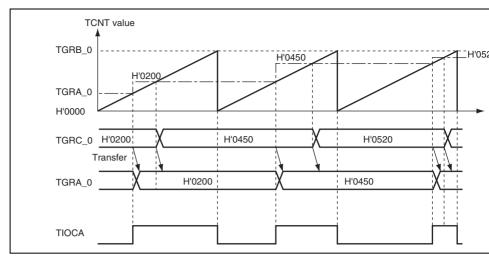


Figure 10.19 Example of Buffer Operation (1)

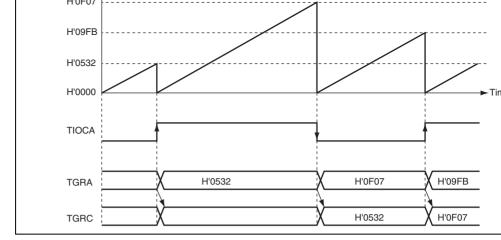


Figure 10.20 Example of Buffer Operation (2)

Rev. 2.00 Sep. 28, 2009 Page 278 of 994 REJ09B0452-0200

TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare ma and D. The initial output value is the value set in TGRA or TGRC. If the set values of TGRs are identical, the output value does not change when a compare match occurs. mode 1, a maximum 4-phase PWM output is possible.

• PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty The output specified in TIOR is performed by means of compare matches. Upon couclearing by a synchronization register compare match, the output value of each pin is value set in TIOR. If the set values of the cycle and duty registers are identical, the ovalue does not change when a compare match occurs. In PWM mode 2, a maximum PWM output is possible by combined use with synchronous operation. The correspobetween PWM output pins and registers is shown in table 10.19.

2	TGRA_2	TIOCA2	TIOCA2
	TGRB_2		TIOCB2

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the per

(1) Example of PWM Mode Setting Procedure

Figure 10.21 shows an example of the PWM mode setting procedure.

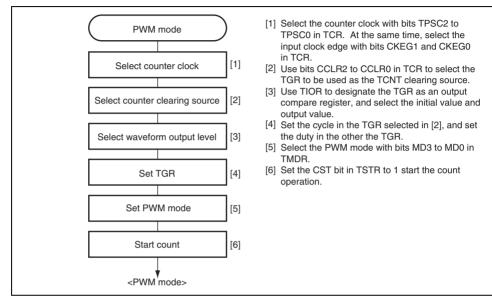


Figure 10.21 Example of PWM Mode Setting Procedure

Rev. 2.00 Sep. 28, 2009 Page 280 of 994 REJ09B0452-0200

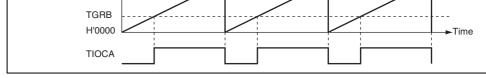


Figure 10.22 Example of PWM Mode Operation (1)

Figure 10.23 shows an example of PWM mode 2 operation. In this example, synchronou operation is designated for channels 0 and 1, TGRB_1 compare match is set as the TCN source, and 0 is set for the initial output value and 1 for the output value of the other TG (TGRA_0 to TGRD_0, TGRA_1), to output a 5-phase PWM waveform. In this case, the in TGRB_1 is used as the cycle, and the values set in the other TGRs as the duty.

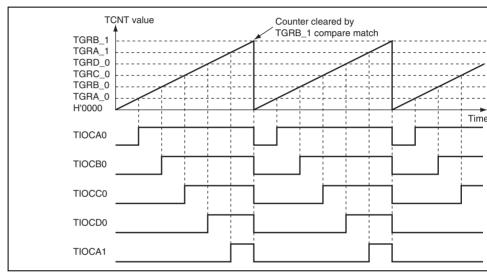


Figure 10.23 Example of PWM Mode Operation (2)

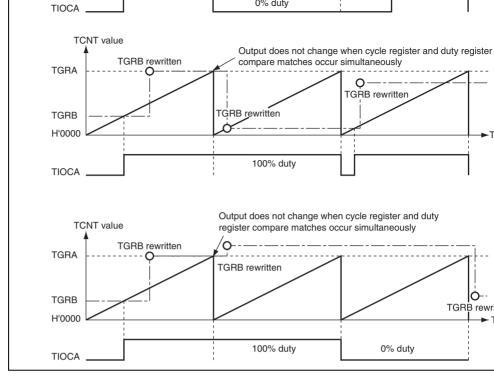
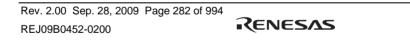



Figure 10.24 Example of PWM Mode Operation (3)

provides an indication of whether TCNT is counting up or down. Table 10.20 shows the correspondence between external clock pins and channels.

		External Clock Pins
Channels	A-Phase	B-Phase
When channel 1 is set to phase counting mode	TCLKA	TCLKB
When channel 2 is set to phase counting mode	TCLKC	TCLKD

Table 10.20 Phase Counting Mode Clock Input Pins

(1) Example of Phase Counting Mode Setting Procedure

Figure 10.25 shows an example of the phase counting mode setting procedure.

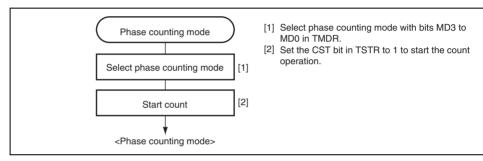
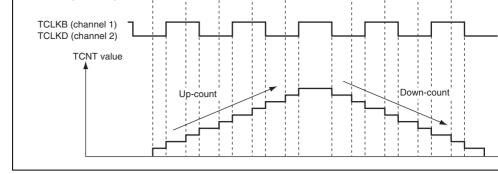


Figure 10.25 Example of Phase Counting Mode Setting Procedure



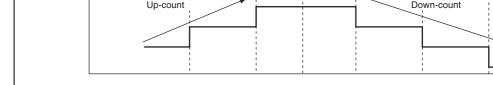

Figure 10.26 Example of Phase Counting Mode 1 Operation

Table 10.21 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	_ _	Up-count
Low level	₹.	-
	Low level	
₹_	High level	-
High level	₹_	Down-count
Low level	_ _	_
_ _	High level	_
Ĩ.	Low level	
[Legend]		
F: Rising edge		
L: Falling edge		

Rev. 2.00 Sep. 28, 2009 Page 284 of 994 REJ09B0452-0200

Table 10.22 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	_ F	Don't care
Low level	₹_	Don't care
<u> </u>	Low level	Don't care
T_	High level	Up-count
High level	₹_	Don't care
Low level	_ F	Don't care
<u> </u>	High level	Don't care
T_	Low level	Down-count
[Legend]		

Rising edge

[Leg _▲ : ▼_: Falling edge

RENESAS

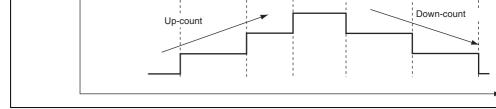
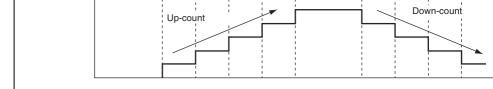


Figure 10.28 Example of Phase Counting Mode 3 Operation


Table 10.23 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	<u> </u>	Don't care
Low level	T	Don't care
<u> </u>	Low level	Don't care
₹	High level	Up-count
High level	T	Down-count
Low level	_ F	Don't care
<u> </u>	High level	Don't care
T	Low level	Don't care
[Legend]		

▲ :Rising edge▲ :Falling edge

Rev. 2.00 Sep. 28, 2009 Page 286 of 994 REJ09B0452-0200

Figure 10.29 Example of Phase Counting Mode 4 Operation

Table 10.24 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channel 1)	TCLKB (Channel 1)	
TCLKC (Channel 2)	TCLKD (Channel 2)	Operation
High level	Ā	Up-count
Low level	₹_	
<u> </u>	Low level	Don't care
T_	High level	
High level	₹_	Down-count
Low level	_ _	
<u> </u>	High level	Don't care
₹	Low level	
[Legend]		
: Rising edge		

L: Falling edge

RENESAS

changed by the interrupt controller, but the priority order within a channel is fixed. For de section 5, Interrupt Controller. Table 10.25 lists the TPU interrupt sources.

Channel	Name	Interrupt Source	Interrupt Flag	Ρ
0	TGI0A	TGRA_0 input capture/compare match	TGFA	Н
	TGI0B	TGRB_0 input capture/compare match	TGFB	
	TGI0C	TGRC_0 input capture/compare match	TGFC	
	TGI0D	TGRD_0 input capture/compare match	TGFD	
	TCI0V	TCNT_0 overflow	TCFV	
1	TGI1A	TGRA_1 input capture/compare match	TGFA	
	TGI1B	TGRB_1 input capture/compare match	TGFB	
	TCI1V	TCNT_1 overflow	TCFV	
	TCI1U	TCNT_1 underflow	TCFU	
2	TGI2A	TGRA_2 input capture/compare match	TGFA	
	TGI2B	TGRB_2 input capture/compare match	TGFB	
	TCI2V	TCNT_2 overflow	TCFV	
	TCI2U	TCNT_2 underflow	TCFU	Lo
Note: *	This tabl	e shows the initial state immediately after a	reset. The relative ch	nanne

Table 10.25 TPU Interrupts

Note: * This table shows the initial state immediately after a reset. The relative channe priorities

can be changed by the interrupt controller.

Rev. 2.00 Sep. 28, 2009 Page 288 of 994 REJ09B0452-0200

the rer , mug to of rme rr e mus three of errich motor up is, one for each enament

(3) Underflow Interrupt

An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TS 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared by the TCFU flag to 0. The TPU has two underflow interrupts, one each for channels 1 and

10.6.2 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a ch the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurrent TGRA input capture/compare match on a particular channel, a request to start A/D conversent to the A/D converter. If the TPU conversion start trigger has been selected on the A converter side at this time, A/D conversion is started. In the TPU, a total of three TGRA capture/compare match interrupts can be used as A/D converter conversion start sources each channel.

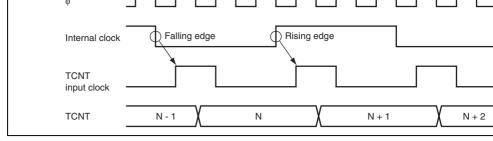


Figure 10.30 Count Timing in Internal Clock Operation

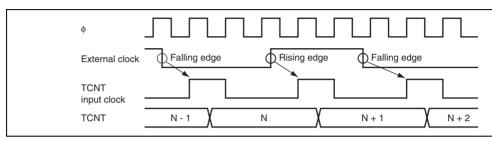


Figure 10.31 Count Timing in External Clock Operation

Rev. 2.00 Sep. 28, 2009 Page 290 of 994 REJ09B0452-0200

прит сюск	
TCNT	N X N+1
TGR	Ν
Compare match signal	
TIOC pin	χ

Figure 10.32 Output Compare Output Timing

Input Capture Signal Timing (3)

Figure 10.33 shows input capture signal timing.

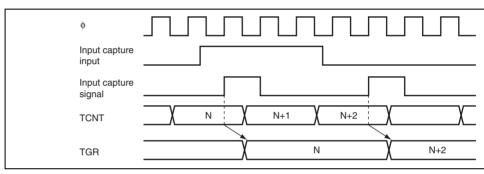


Figure 10.33 Input Capture Input Signal Timing

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

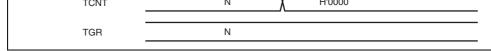


Figure 10.34 Counter Clear Timing (Compare Match)

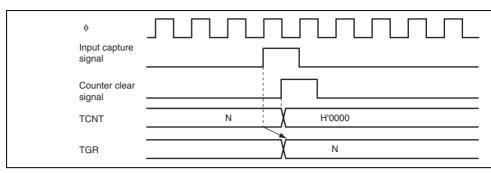


Figure 10.35 Counter Clear Timing (Input Capture)

Rev. 2.00 Sep. 28, 2009 Page 292 of 994 REJ09B0452-0200

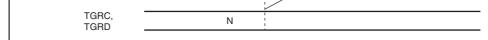


Figure 10.36 Buffer Operation Timing (Compare Match)

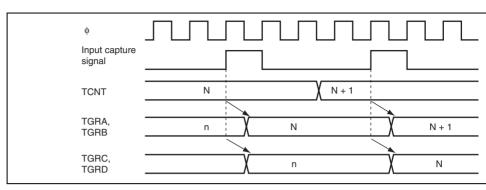


Figure 10.37 Buffer Operation Timing (Input Capture)

TCNT	N X N + 1
TGR	Ν
Compare match signal	
TGF flag	
TGI interrupt	

Figure 10.38 TGI Interrupt Timing (Compare Match)

(2) TGF Flag Setting Timing in Case of Input Capture

Figure 10.39 shows the timing for setting of the TGF flag in TSR by input capture occurr TGI interrupt request signal timing.

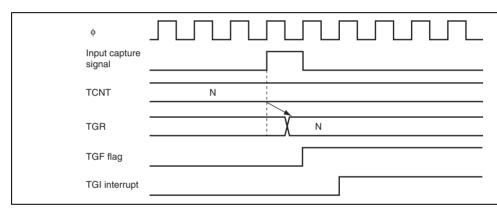
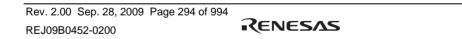



Figure 10.39 TGI Interrupt Timing (Input Capture)

()			
Overflow signal			
TCFV flag			_
TCIV interrupt			

Figure 10.40 TCIV Interrupt Setting Timing

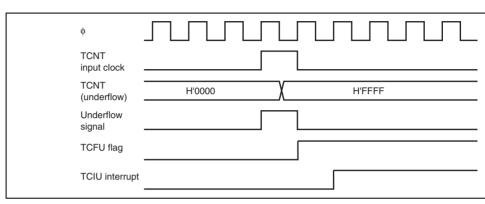


Figure 10.41 TCIU Interrupt Setting Timing

Write signal	
Status flag	
Interrupt request signal	

Figure 10.42 Timing for Status Flag Clearing by CPU

Rev. 2.00 Sep. 28, 2009 Page 296 of 994 REJ09B0452-0200

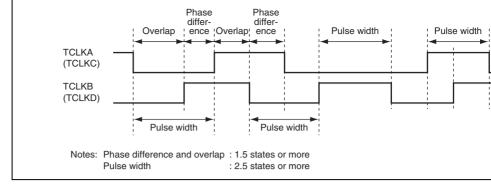


Figure 10.43 Phase Difference, Overlap, and Pulse Width in Phase Counting

10.8.2 Caution on Period Setting

When counter clearing by compare match is set, TCNT is cleared in the final state in whe matches the TGR value (the point at which the count value matched by TCNT is update Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\phi}{(N+1)}$$

Where f: Counter frequency \$\overline{0}\$: Operating frequency N: TGR set value

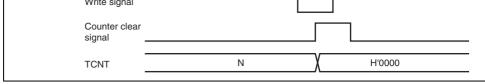


Figure 10.44 Conflict between TCNT Write and Clear Operations

10.8.4 Conflict between TCNT Write and Increment Operations

If incrementing occurs in the T_2 state of a TCNT write cycle, the TCNT write takes prece and TCNT is not incremented. Figure 10.45 shows the timing in this case.

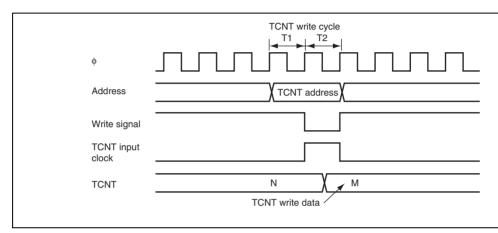
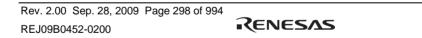



Figure 10.45 Conflict between TCNT Write and Increment Operations

Address -	
- Write signal	
Compare match signal	Prohibited
TCNT	N X N+1
TGR	N X M
	TGR write data

Figure 10.46 Conflict between TGR Write and Compare Match

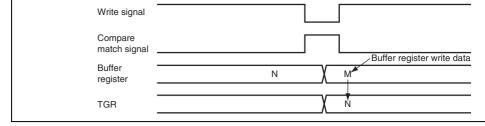


Figure 10.47 Conflict between Buffer Register Write and Compare Match

10.8.7 Conflict between TGR Read and Input Capture

If the input capture signal is generated in the T1 state of a TGR read cycle, the data that is will be the data after input capture transfer. Figure 10.48 shows the timing in this case.

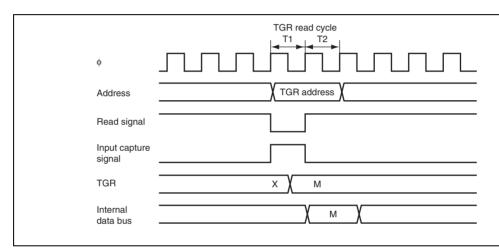


Figure 10.48 Conflict between TGR Read and Input Capture

Rev. 2.00 Sep. 28, 2009 Page 300 of 994 REJ09B0452-0200

Address -	
- Write signal	
Input capture signal	
TCNT	М
TGR	м

Figure 10.49 Conflict between TGR Write and Input Capture

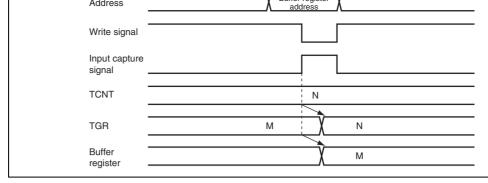


Figure 10.50 Conflict between Buffer Register Write and Input Capture

Rev. 2.00 Sep. 28, 2009 Page 302 of 994 REJ09B0452-0200

TCNT	
Counter clear signal	
TGF	
TCFV	Disabled

Figure 10.51 Conflict between Overflow and Counter Clearing

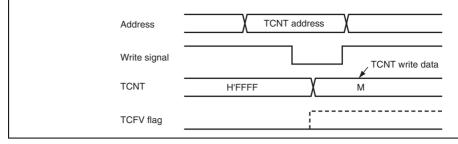


Figure 10.52 Conflict between TCNT Write and Overflow

10.8.12 Multiplexing of I/O Pins

In this LSI, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB in with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLK pin with the TIOCB2 I/O pin. When an external clock is input, compare match output she be performed from a multiplexed pin.

10.8.13 Module Stop Mode Setting

TPU operation can be enabled or disabled by the module stop control register. In the initi TPU operation is disabled. Access to TPU registers is enabled when module stop mode is cancelled. For details, see section 26, Power-Down Modes.

Rev. 2.00 Sep. 28, 2009 Page 304 of 994 REJ09B0452-0200

- 16-bit resolution
- Selectable counter clock
 - Any of seven internal clocks or an external clock
- Five interrupt sources
 - Counter overflow
 - Cycle upper limit overflow
 - Cycle lower limit underflow
 - Compare match
 - Triggering of input capture

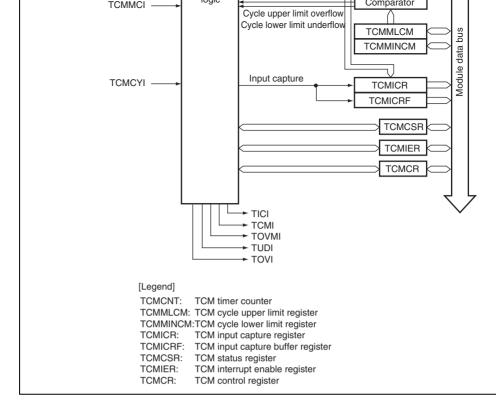


Figure 11.1 Block Diagram of the TCM

Rev. 2.00 Sep. 28, 2009 Page 306 of 994 REJ09B0452-0200

1		input	External counter clock input
	(TCMMCI1)		Cycle measurement control input
	TCMCYI1	Input	External event input
2	TCMCKI2	Input	External counter clock input
	(TCMMCI2)		Cycle measurement control input
	TCMCYI2	Input	External event input
3	TCMCKI3	Input	External counter clock input
	(TCMMCI3)		Cycle measurement control input
	TCMCYI3	Input	External event input

11.3 Register Descriptions

The TCMs have the following registers.

Table 11.2 Register Configuration

				Initial	
Channel	Register Name	Abbreviation	R/W	Value	Address
Channel 0	TCM timer counter_0	TCMCNT_0	R/W	H'0000	H'FBC0
	TCM cycle upper limit register_0	TCMMLCM_0	R/W	H'FFFF	H'FBC2
	TCM cycle lower limit register_0	TCMMINCM_0	R/W	H'0000	H'FBCC
	TCM input capture register_0	TCMICR_0	R	H'0000	H'FBC4
	TCM input capture buffer register_0	TCMICRF_0	R	H'0000	H'FBC6
	TCM status register_0	TCMCSR_0	R/W	H'00	H'FBC8
	TCM control register_0	TCMCR_0	R/W	H'00	H'FBC9
	TCM interrupt enable register_0	TCMIER_0	R/W	H'00	H'FBCA

RENESAS

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

	Civi interrupt enable register_1	ICMIER_I	R/W	H UU	HFBDA
Channel 2	TCM timer counter_2	TCMCNT_2	R/W	H'0000	H'FBE0
	TCM cycle upper limit register_2	TCMMLCM_2	R/W	H'FFFF	H'FBE2
	TCM cycle lower limit register_2	TCMMINCM_2	R/W	H'0000	H'FBEC
	TCM input capture register_2	TCMICR_2	R	H'0000	H'FBE4
	TCM input capture buffer register_2	TCMICRF_2	R	H'0000	H'FBE6
	TCM status register_2	TCMCSR_2	R/W	H'00	H'FBE8
	TCM control register_2	TCMCR_2	R/W	H'00	H'FBE9
	TCM interrupt enable register_2	TCMIER_2	R/W	H'00	H'FBEA
Channel 3	TCM timer counter_3	TCMCNT_3	R/W	H'0000	H'FBF0
	TCM cycle upper limit register_3	TCMMLCM_3	R/W	H'FFFF	H'FBF2
	TCM cycle lower limit register_3	TCMMINCM_3	R/W	H'0000	H'FBFC
	TCM input capture register_3	TCMICR_3	R	H'0000	H'FBF4
	TCM input capture buffer register_3	TCMICRF_3	R	H'0000	H'FBF6
	TCM status register_3	TCMCSR_3	R/W	H'00	H'FBF8
	TCM control register_3	TCMCR_3	R/W	H'00	H'FBF9
	TCM interrupt enable register_3	TCMIER_3	R/W	H'00	H'FBFA

Rev. 2.00 Sep. 28, 2009 Page 308 of 994 REJ09B0452-0200

1

In timer mode, TCMCNT is always writable. TCMCNT cannot be modified in cycle me mode. TCMCNT should always be accessed in 16-bit units and cannot be accessed in 8-TCMCNT is initialized to H'0000.

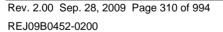
11.3.2 TCM Cycle Upper Limit Register (TCMMLCM)

TCMMLCM is a 16-bit readable/writable register. TCMMLCM is available as a comparegister when the TCMMDS bit in TCMCR is cleared (operation is in timer mode). TCM is available as a cycle upper limit register when the TCMMDS bit in TCMCR is set to 1 is in cycle measurement mode).

In timer mode, the value in TCMMLCM is constantly compared with that in TCMCNT, values match, CMF in TCMCSR is set to 1. However, comparison is disabled in the sec a cycle of writing to TCMMLCM.

In cycle measurement mode, a value that sets an upper limit on the measurement period in TCMMLCM. When the second edge (first edge of the following cycle) of the measur period is detected, the value in TCMCNT is transferred to TCMICR. At this time, the va TCMICR and TCMMLCM are compared. The MAXOVF flag in TCMCSR is set to 1 if in TCMICR is greater than that in TCMMLCM. TCMMLCM should always be accessed units and cannot be accessed in 8-bit units. TCMMLCM is initialized to H'FFFF.

accessed in 16-bit units and cannot be accessed in 8-bit units. TCMMINCM is initialized H'0000.


11.3.4 TCM Input Capture Register (TCMICR)

TCMICR is a 16-bit read-only register. In timer mode, the value in TCMCNT is transferr TCMICR on the edge selected by the IEDG bit in TCMCR. At the same time, the ICPF fi TCMCSR is set to 1. In cycle measurement mode, the value in TCMCNT is transferred to TCMICR on detection of the second edge of the measurement period. At this time, the IC in TCMCSR is set to 1. TCMICR should always be accessed in 16-bit units and cannot be accessed in 8-bit units. TCMICR is initialized to H'0000.

11.3.5 TCM Input Capture Buffer Register (TCMICRF)

TCMICRF is a 16-bit read only register. TCMICRF can be used as TCMICR buffer regis When input capture is generated, the value in TCMICR is transferred to TCMICRF.

TCMICR and TCMICRF should always be accessed in 16-bit units and cannot be accessed bit units. TCMICRF is initialized to H'0000.

				H 0000)
				[Clearing condition]
				Reading OVF when OVF = 1 and then writing 0 to
6	MAXOVF	0	R/(W)*	Measurement Period Upper Limit Overflow
				This flag indicates that the measured number of c the waveform for measurement in cycle measurer has reached the upper limit set in TCMMLCM, can overflow.
				[Setting condition]
				A greater value for TCMICR than TCMMLCM
				[Clearing condition]
				Reading MAXOVF when MAXOVF = 1 and then w MAXOVF
5	CMF	0	R/(W)*	Compare Match Flag (only valid in timer mode)
				[Setting condition]
				When the values in TCMCNT and TCMMLCM ma
				[Clearing condition]
				Reading CMF when CMF = 1 and then writing 0 to
				Note: CMF is not set in cycle measurement mode when the values in TCMCNT and TCMMLC
4	CKSEG	0	R/W	External Clock Edge Select
				When bits CKS2 to CKS0 in TCMCR are set to B' bit selects the edge for counting of external count edge.
				0: Count falling edges of the external clock.
				1: Count rising edges of the external clock.

				[Setting condition]
				Generation of the input capture signal
				[Clearing condition]
				Reading ICPF when ICPF = 1 and then writing 0 to
2	MINUDF	0	R/(W)*	Measurement Period Lower Limit Underflow
				This flag indicates that the measured number of cy- the waveform for measurement in cycle measurem has reached the lower limit set in TCMMINCM, cau underflow.
				[Setting condition]
				A smaller value for TCMICR than TCMMINCM
				[Clearing condition]
				Reading MINUDF when MINUDF = 1 and then writ MINUDF
1	MCICTL	0	R/W	TCMMCI Input Polarity Inversion
				0: TCMMCI input is inverted for use.
				1: TCMMCI input is directly used.
				Note: Change this bit when CST = 0 and TCMMDS
0		0	R/W	Reserved
				The initial value should not be changed.
Note:	* Only 0 d	can be w	ritten to c	lear the flag.

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 312 of 994 REJ09B0452-0200

				operation stops.
				Clear this bit and thus return TCMCNT to H'0000 i initialization for cycle measurement mode.
6	POCTL	0	R/W	TCMCYI Input Polarity Reversal
				0: Use the TCMCYI input directly
				1: Use the inverted TCMCYI input
				Note: Modify this bit while CST = 0 and TCMMDS
5	CPSPE	0	R/W	Input Capture Stop Enable
				Controls whether or not counting up by TCMCNT a capture operation stop or continue when either of or MINUDF is set to 1 in cycle measurement mode does not affect operation in timer mode.
				0: Counting up and input-capture operation contin the flag is set to 1.
				1: Counting up and input-capture operation are dis when the flag is set to 1.

				1: Selects the falling edge of the TCMCYI input
				POCTL = 1
				0: Selects the falling edge of the TCMCYI input
				1: Selects the rising edge of the TCMCYI input
3	TCMMDS	0	R/W	TCM Mode Select
				Selects the TCM operating mode.
				0: Timer mode The TCM provides compare match and input cap facilities.
				1: Cycle measurement mode Setting this bit to 1 starts counting by TCMCNT. should be initialized to H'0000. Clear the CST in to 0 before setting to cycle measurement mode.
2	CKS2	0	R/W	Clock Select 2, 1, 0
1	CKS1	0	R/W	Selects the clock signal for input to TCMCNT.
0	CKS0	0	R/W	Note: Modify this bit when CST = 0 and TCMMDS =
				000: Count
				001: Count
				010: Count
				011: Count
				100: Count
				101: Count
				110: Count ø/256 internal clock
				111: Count external clock (select the external clock with CKSEG in TCMCSR.)

Rev. 2.00 Sep. 28, 2009 Page 314 of 994 REJ09B0452-0200

6	MAXOVIE	0	R/W	Cycle Upper Limit Overflow Interrupt Enable
				Enables or disables the issuing of interrupt reques setting of the MAXOVF flag in TCMCSR to 1.
				0: Disable interrupt requests by MAXOVF
				1: Enable interrupt requests by MAXOVF
5	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables the issuing of interrupt reques the CMF bit in TCMCSR is set to 1.
				0: Disable interrupt requests by CMF
				1: Enable interrupt requests by CMF
4	TCMIPE	0	R/W	Input Capture Input Enable
				Enables or disables input to the pin. When using in capture mode and cycle measurement mode, set 1.
				0: Disable input
				1: Enable input
				Note: Modify this bit when CST = 0 and TCMMDS
3	ICPIE	0	R/W	Input Capture Interrupt Enable
				Enables or disables interrupt requests when the IC TCMCSR is set to 1.
				0: Disable interrupt requests by ICPF
				1: Enable interrupt requests by ICPF

			 The TCMMCI signal is not used (cycle measurer always performed).
	1: The TCMMCI signal is used. When MCICTL in TCMCSR is 0, cycle measurer performed only while TCMMCI is low. When MC cycle measurement is performed only while TCM high.		
			Note: Change this bit when $CST = 0$ and $TCMMDS$
0	 0	R	Reserved
			This bit is always read as 0 and cannot be modified

Rev. 2.00 Sep. 28, 2009 Page 316 of 994 REJ09B0452-0200

the CST bit in TCMCR is set to 1. When TCMCNT overflows (the value changes from H'0000), the OVF bit in TCMCSR is set to 1 and an interrupt request is generated if the in TCMIER is 1. Figure 11.2 shows an example of free running counter operation. In ad figure 11.3 shows TCMCNT count timing of external clock operation. The external clock have a pulse width of no less than 1.5 cycles. The counter will not operate correctly if the are narrower than this.

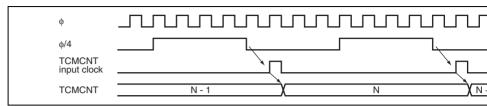


Figure 11.2 Example of Free Running Counter Operation

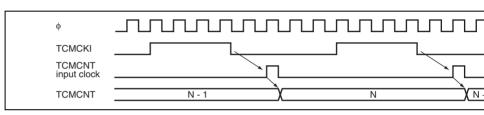


Figure 11.3 Count Timing of External Clock Operation (Falling Edges)

Renesas

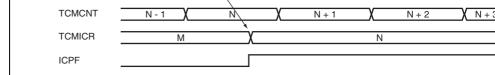


Figure 11.4 Input Capture Operation Timing (Sensing of Rising Edges)

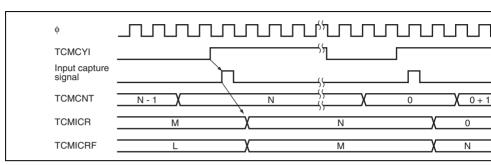


Figure 11.5 Buffer Operation of Input Capture

Rev. 2.00 Sep. 28, 2009 Page 318 of 994 REJ09B0452-0200

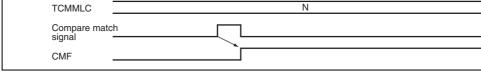


Figure 11.6 Timing of CMF Flag Setting on a Compare Match

11.4.2 Cycle Measurement Mode

When the TCMMDS bit in TCMCR is set to 1, the TCM operates in cycle measurement

(1) Counter Operation

Setting the TCMMDS bit in TCMCR to 1 selects cycle measurement mode, in which co proceeds regardless of the setting of the CST bit in TCMCR. TCMCNT is cleared to H'd detection of the first edge in the measurement period and counts up from there. Figure 1 an example of counter operation in cycle measurement mode.

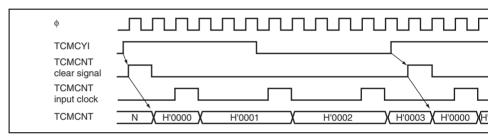


Figure 11.7 Example of Counter Operation in Cycle Measurement Mode

RENESAS

TCMCSR is set to 1. If TCMICR is smaller than TCMMINCM, the MINUDF bit in TCM set to 1. If generation of the corresponding interrupt request is enabled by the setting in T the request is generated. In addition, on detection of the third edge, TCMCNT is cleared t H'0000, and the next round of measurement starts.

When the CPSPE bit in TCMCR has been cleared to 0, the next round of cycle measurem start, even if the MAXOVF/MINUDF flag is set to 1.

If the MAXOVF/MINUDF flag is set to 1 while the CPSPE bit in TCMCR is set to 1, con by TCMCNT stops and so does cycle measurement. Subsequently clearing MAXOVF/M to 0 automatically clears TCMCNT to H'0000, and counting up for cycle measurement is restarted.

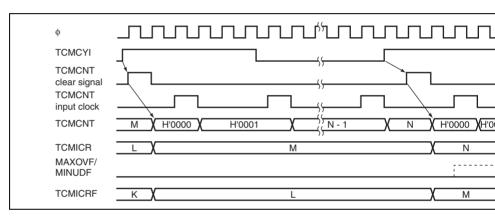
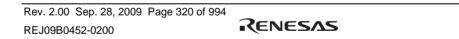



Figure 11.8 shows an example of timing in speed measurement.

Figure 11.8 Example of Timing in Cycle Measurement

Figure 11.9 Example of Timing in Cycle Measurement when the CMMS Bit is

(3) Determination of External Event (TCMCYI) Stoppage

The timer overflow flag can be used to determine the external event (TCMCYI) stopped Either of two sets of conditions represents the external event stopped state.

The external event can be considered to have stopped when a timer overflow is generate the period from the start of cycle measurement mode to detection of the first edge (rising as selected with the IEDG bit in TCMCR).

Figure 11.10 shows an example of the timing of the external event stopped state (1).

φ	
TCMCYI	Start of measurement
TCMMDS	
TCMCNT	H'0000 X H'FFFF X H'0000 X X N X H'0000 X H'0001 XH'0
OVF	Contemporary and an external event standard state
MAXOVF/ MINUDF	

Figure 11.10 Example of Timing in External Event Stopped State (1)

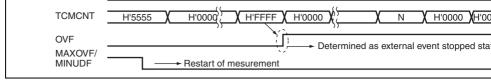


Figure 11.11 Example of Timing in External Event Stopped State (2)

Rev. 2.00 Sep. 28, 2009 Page 322 of 994 REJ09B0452-0200

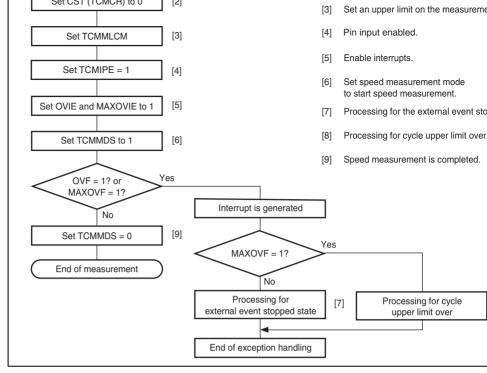


Figure 11.12 Example of Cycle Measurement Mode Settings

Channel	Name Interrupt Source		пцентирі над	Г
TCM_0	TICI0	TCMICR_0 input capture	ICPF_0	H
	TCMI0	TCMMLCM_0 compare match	CMF_0	
	TOVMI0	TCMMLCM_0 overflow	MAXOVF_0	
	TUDI0	TCMMINCM_0 underflow	MINUDF_0	
	TOVI0	TCMCNT_0 overflow	OVF_0	
TCM_1	TICI1	TCMICR_1 input capture	ICPF_1	
	TCMI1	TCMMLCM_1 compare match	CMF_1	
	TOVMI1	TCMMLCM_1 overflow	MAXOVF_1	
	TUDI1	TCMMINCM_1 underflow	MINUDF_1	
	TOVI1	TCMCNT_1 overflow	OVF_1	
TCM_2	TICI2	TCMICR_2 input capture	ICPF_2	
	TCMI2	TCMMLCM_2 compare match	CMF_2	
	TOVMI2	TCMMLCM_2 overflow	MAXOVF_2	
	TUDI2	TCMMINCM_2 underflow	MINUDF_2	
	TOVI2	TCMCNT_2 overflow	OVF_2	
TCM_3	TICI3	TCMICR_3 input capture	ICPF_3	
	TCMI3	TCMMLCM_3 compare match	CMF_3	
	TOVMI3	TCMMLCM_3 overflow	MAXOVF_3	
	TUDI3	TCMMINCM_3 underflow	MINUDF_3	
	TOVI3	TCMCNT_3 overflow	OVF_3	Lo

Rev. 2.00 Sep. 28, 2009 Page 324 of 994

REJ09B0452-0200

RENESAS

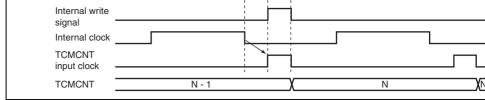


Figure 11.13 Conflict between TCMCNT Write and Count-Up Operatio

11.6.2 Conflict between TCMMLCM Write and Compare Match

When a conflict between TCMMLCM write and a compare match should occur in the set of a cycle of writing to TCMMLCM, writing to TCMMLCM takes priority and the commatch signal is inhibited. Figure 11.14 shows the timing of this conflict.

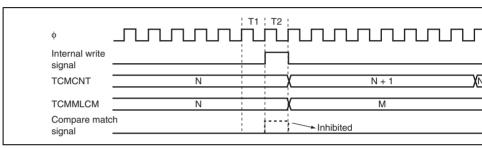


Figure 11.14 Conflict between TCMMLCM Write and Compare Match

RENESAS

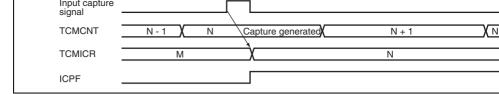


Figure 11.15 Conflict between TCMICR Read and Input Capture

11.6.4 Conflict between Edge Detection in Cycle Measurement Mode and Writing TCMMLCM or TCMMINCM

If the selected edge of TCMCYI is detected in the second half of a cycle of writing to the (TCMMLCM or TCMMINCM) in cycle measurement mode, the detected edge signal is by one cycle of the system clock (ϕ).

Figure 11.16 shows the timing of this conflict.

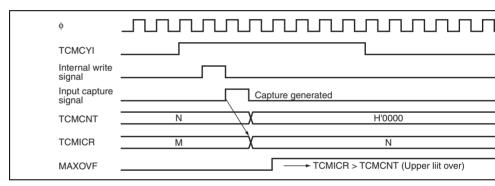


Figure 11.16 Conflict between Edge Detection and Register Write (Cycle Measurement Mode)

Rev. 2.00 Sep. 28, 2009 Page 326 of 994 REJ09B0452-0200

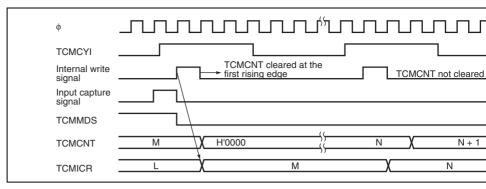


Figure 11.17 Conflict between Edge Detection and Clearing of TCMMD (to Switch from Cycle Measurement Mode to Timer Mode)

11.6.6 Settings of TCMCKI and TCMMCI

TCMCKI and TCMMCI are multiplexed on the same pin of this LSI. Therefore, the sele external clock and the TCMMCI signal cannot be used at the same time. Do not make the CKS2 to CKS0 = B'111 and CMMS = B'1.

11.6.7 Setting for Module Stop Mode

The module-stop control register can be used to select either continuation or stoppage of operation in module-stopped mode. The default setting is for TCM operation to stop. TC registers become accessible on release from module stop mode. For details, see section 2 Down Modes.

Renesas

Rev. 2.00 Sep. 28, 2009 Page 328 of 994 REJ09B0452-0200

- 16-bit resolution
- Selectable counter clock Any of seven internal clocks or an external clock can be selected.
- Seven interrupt sources Counter overflow
 Cycle upper limit overflow
 Cycle lower limit underflow
 Pulse width upper limit overflow
 Pulse width lower limit underflow
 Compare match
 Generation of input capture

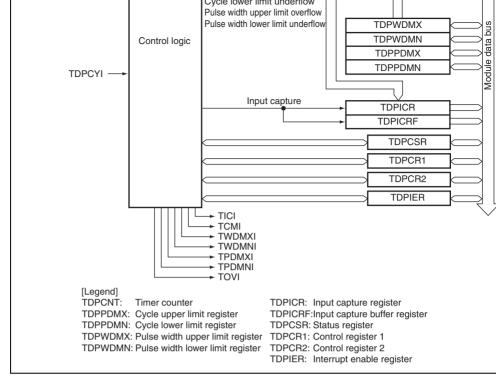


Figure 12.1 Block Diagram of TDP

Rev. 2.00 Sep. 28, 2009 Page 330 of 994 REJ09B0452-0200

	(TDPMCI1)	·	Cycle measurement control input
	TDPCYI1	Input	External event input
2	TDPCKI2 (TDPMCI2)	Input	External counter clock input Cycle measurement control input
	TDPCYI2	Input	External event input

12.3 Register Descriptions

The TDP has the following registers.

Table 12.2 Register Configuration

				Initial	
Channel	Register Name	Abbreviation	R/W	Value	Addres
Channel 0	TDP timer counter_0	TDPCNT_0	R/W	H'0000	H'FB40
	TDP pulse width upper limit register_0	TDPWDMX_0	R/W	H'FFFF	H'FB42
	TDP pulse width lower limit register_0	TDPWDMN_0	R/W	H'0000	H'FB44
	TDP cycle upper limit register_0	TDPPDMX_0	R/W	H'FFFF	H'FB46
	TDP cycle lower limit register_0	TDPPDMN_0	R/W	H'0000	H'FB50
	TDP input capture register_0	TDPICR_0	R	H'0000	H'FB48
	TDP input capture buffer register_0	TDPICRF_0	R	H'0000	H'FB4A
	TDP status register_0	TDPCSR_0	R/W	H'00	H'FB4C
	TDP control register1_0	TDPCR1_0	R/W	H'00	H'FB4D
	TDP control register2_0	TDPCR2_0	R/W	H'00	H'FB4F
	TDP interrupt enable register_0	TDPIER_0	R/W	H'00	H'FB4E

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

RENESAS

	· D· ····pat captaro banon registor				
	TDP status register_1	TDPCSR_1	R/W	H'00	H'FB6C
	TDP control register1_1	TDPCR1_1	R/W	H'00	H'FB6D
	TDP control register2_1	TDPCR2_1	R/W	H'00	H'FB6F
	TDP interrupt enable register_1	TDPIER_1	R/W	H'00	H'FB6E
Channel 2	TDP timer counter_2	TDPCNT_2	R/W	H'0000	H'FB80
	TDP pulse width upper limit register_2	TDPWDMX_2	R/W	H'FFFF	H'FB82
	TDP pulse width lower limit register_2	TDPWDMN_2	R/W	H'0000	H'FB84
	TDP cycle upper limit register_2	TDPPDMX_2	R/W	H'FFFF	H'FB86
	TDP cycle lower limit register_2	TDPPDMN_2	R/W	H'0000	H'FB90
	TDP input capture register_2	TDPICR_2	R	H'0000	H'FB88
	TDP input capture buffer register_2	TDPICRF_2	R	H'0000	H'FB8A
	TDP status register_2	TDPCSR_2	R/W	H'00	H'FB8C
	TDP control register 1_2	TDPCR1_2	R/W	H'00	H'FB8D
	TDP control register 2_2	TDPCR2_2	R/W	H'00	H'FB8F
	TDP interrupt enable register_2	TDPIER_2	R/W	H'00	H'FB8E

Rev. 2.00 Sep. 28, 2009 Page 332 of 994 REJ09B0452-0200

In timer mode, TDPCNT is always writable. In cycle measurement mode, TDPCNT can modified. TDPCNT must always be accessed in 16-bit units and cannot be accessed in 8 TDPCNT is initialized to H'0000.

12.3.2 TDP Pulse Width Upper Limit Register (TDPWDMX)

TDPWDMX is a 16-bit readable/writable register. When the TDPMDS bit in TDPCR1 is (timer mode), TDPWDMX is available as a compare match register. When the TDPMD TDPCR1 is set to 1 (cycle measurement mode), TDPWDMX is available as a pulse wid limit register.

In timer mode, the TDPWDMX value is continually compared with the TDPCNT value values match, the CMF flag in TDPCSR is set to 1. Note, however, that comparison is d the second half of a write cycle to TDPWDMX.

In cycle measurement mode, TDPWDMX can be used to set the upper limit value of the measurement pulse width. When the second edge (the second edge of this period) of the measurement period is detected, the TDPCNT value is transferred to TDPICR and the v TDPICR and TDPWDMX are compared. If the TDPICR value is greater than the TDPV value, the TWDMXOVF flag in TDPCSR is set to 1. TDPWDMX must always be access bit units and cannot be accessed in 8-bit units. TDPWDMX is initialized to H'FFFF.

12.3.4 TDP Cycle Upper Limit Register (TDPPDMX)

TDPPDMX is a 16-bit readable/writable register. When the TDPMDS bit in TDPCR1 is (cycle measurement mode), TDPPDMX is available as a cycle upper limit register.

In cycle measurement mode, TDPPDMX can be used to set the upper limit value of measurement period. When the third edge (the first edge of the next period) of the measurement period detected, the TDPCNT value is transferred to TDPICR and the values of TDPICR and TI are compared. If the TDPICR value is greater than the TDPPDMX value, the TPDMXOV TDPCSR is set to 1. TDPPDMX must always be accessed in 16-bit units and cannot be a in 8-bit units. TDPPDMX is initialized to H'FFFF.

12.3.5 TDP Cycle Lower Limit Register (TDPPDMN)

TDPPDMN is a 16-bit readable/writable register. When the TDPMDS bit in TDPCR1 is (cycle measurement mode), TDPPDMN is available as a cycle lower limit register.

In cycle measurement mode, TDPPDMN can be used to set the lower limit value of measurement period. When the third edge (the first edge of the next period) of the measurement period detected, the TDPCNT value is transferred to TDPICR and the values of TDPICR and TI are compared. If the TDPICR value is less than the TDPPDMN value, the TPDMNUDF transferred to 1. TDPPDMN must always be accessed in 16-bit units and cannot be a in 8-bit units. TDPPDMN is initialized to H'0000.

Rev. 2.00 Sep. 28, 2009 Page 334 of 994 REJ09B0452-0200

TDPICRF is a 16-bit read-only register. TDPICRF can be used as a TDPICR buffer regi When input capture occurs, the TDPICR value is transferred to TDPICRF.

TDPICRF must always be accessed in 16-bit units and cannot be accessed in 8-bit units TDPICRF is initialized to H'0000.

12.3.8 TDP Status Register (TDPCSR)

TDPCSR indicates the status flags and selects the external clock edge.

Bit	Bit Name	Initial Value	R/W	Description
7	OVF	0	R/(W)*	Timer Overflow
				This flag indicates a TDPCNT overflow.
				[Setting condition]
				• TDPCNT overflow (H'FFFF changes to H'000
				[Clearing condition]
				• Reading OVF when OVF = 1 and then writing
6	TWDMXOVF	0	R/(W)*	Pulse Width Upper Limit Overflow
				This flag indicates that the waveform pulse width in cycle measurement mode has exceeded the u specified in TDPWDMX.
				[Setting condition]
				• When TDPICR is greater than TDPWDMX
				[Clearing condition]
				 Reading TWDMXOVF when TWDMXOVF = 1 writing 0 to TWDMXOVF

Renesas

4	TPDMXOVF	0	R/(W)*	Cycle Upper Limit Overflow
				This flag indicates that the waveform period meas cycle measurement mode has exceeded the upper specified in TDPPDMX.
				[Setting condition]
				• When TDPICR is greater than TDPPDMX
				[Clearing condition]
				 Reading TPDMXOVF when TPDMXOVF = 1 a writing 0 to TPDMXOVF
3	ICPF	0	R/(W)*	Input Capture Generation
				In timer mode, this flag indicates that the value in was transferred to TDPICR when an input captur was generated. This flag is set when the input ca signal selected by the IEDG bit is generated on t TDPCYI input pin.
				In cycle measurement mode, this flag indicates to value in TDPCNT was transferred to TDPICR who rising or falling edge of the PWM waveform was
				[Setting condition]
				When an input capture signal is generated
				[Clearing condition]
				 Reading ICPF when ICPF = 1 and then writin ICPF

Rev. 2.00 Sep. 28, 2009 Page 336 of 994 REJ09B0452-0200

				TDPCNT value matches the TDPWDMX
				is not set to 1.
1	CKSEG	0	R/(W)*	External Clock Edge Select
				When CKS2 to CKS0 in TDPCR1 are set to B'1 (external clock), this bit selects the edge for couexternal count clock edges.
				0: Falling edges of the external clock are counted
				1: Rising edges of the external clock are counted
0	TPDMNUDF	0	R/(W)*	Cycle Lower Limit Underflow
				This flag indicates that the waveform period me cycle measurement mode is below the lower lin in TDPPDMN.
				[Setting condition]
				When TDPICR is less than TDPPDMN
				[Clearing condition]
				 Reading TPDMNUDF when TPDMNUDF = writing 0 to TPDMNUDF
NI (· * Only 0 con			4 4

Note: * Only 0 can be written to clear the flag.

Renesas

				capture operation stops.
				Clear this bit to initialize TDPCNT to H'0000 befor to cycle measurement mode.
6	POCTL	0	R/W	TDPCYI Input Polarity Inversion
				0: TDPCYI input is used directly
				1: TDPCYI input is inverted for use
				Note: Change this bit when CST = 0 and TDPMDS
5	CPSPE	0	R/W	Input Capture Stop Enable
				Controls whether counting up by TDPCNT and inp capture operation stop or continue when any of th TPDMXOVF, TPDMNUDF, TWDMXOVF, and TW flags is set to 1 in cycle measurement mode. This not affect operation in timer mode.
				0: Counting up and input-capture operation contin any of the flags is set to 1.
				1: Counting up and input-capture operation stop w of the flags is set to 1.

Rev. 2.00 Sep. 28, 2009 Page 338 of 994 REJ09B0452-0200

				1. The holing edge of TET e Trimparie colocida
				When POCTL = 1
				0: The rising edge of TDPCYI input is selected
				1: The falling edge of TDPCYI input is selected
3	TDPMDS	0	R/W	TDP Mode Select
				Selects the TDP operating mode.
				0: Timer mode In timer mode, the operating mode is input cap compare match.
				1: Cycle measurement mode Setting this bit to 1 starts counting by TDPCNT CST bit in TDPCR1 to initialize TDPCNT to Ho before setting cycle measurement mode.
2	CKS2	0	R/W	Clock Select 2, 1, 0
1	CKS1	0	R/W	These bits select the clock signal for input to TDI
0	CKS0	0	R/W	not select the external clock in level control meas mode.
				000: Counts the ϕ internal clock
				001: Counts the $\phi/2$ internal clock
				010: Counts the $\phi/4$ internal clock
				011: Counts the $\phi/8$ internal clock
				100: Counts the $\phi/16$ internal clock
				101: Counts the $\phi/32$ internal clock
				110: Counts the $\phi/64$ internal clock
				111: Counts the external clock
				(Select the external clock edge with CKSEG in T
				Note: Change this bit when CST = 0 and TDPMI

				1: The TDPMCI signal is used (cycle measurement performed only while the TDPMCI signal is high
				Note: Change this bit when CST = 0 and TDPMD
6	MCICTL	0	R/W	TDPMCI Input Polarity Inversion
				0: TDPMCI input is used directly
				1: TDPMCI input is inverted for use
				Note: Change this bit when CST = 0 and TDPMD
5 to 1		0	R/W	Reserved
				The initial value should not be changed.
0		0	R	Reserved
				This bit is always read as 0 and cannot be modifie

Rev. 2.00 Sep. 28, 2009 Page 340 of 994 REJ09B0452-0200

				o. o vi interrupt requeete are aleablea
				1: OVF interrupt requests are enabled
6	TWDMXIE	0	R/W	Pulse Width Upper Limit Overflow Interrupt Enab
				Enables or disables the issuing of TWDMXOVF in requests when the TWDMXOVF flag in TDPCSR
				0: TWDMXOVF interrupt requests are disabled
				1: TWDMXOVF interrupt requests are enabled
5	TWDMNIE	0	R/W	Pulse Width Lower Limit Underflow Interrupt Ena
				Enables or disables the issuing of TWDMNUDF requests when the TWDMNUDF flag in TDPCSF
				0: TWDMNUDF interrupt requests are disabled
				1: TWDMNUDF interrupt requests are enabled
4	TPDMXIE	0	R/W	Cycle Upper Limit Overflow Interrupt Enable
				Enables or disables the issuing of TPDMXOVF in requests when the TPDMXOVF flag in TDPCSR
				0: TPDMXOVF interrupt requests are disabled
				1: TPDMXOVF interrupt requests are enabled
3	ICPIE	0	R/W	Input Capture Interrupt Enable
				Enables or disables the issuing of ICPF interrupt when the ICPF flag in TDPCSR is set to 1.
				0: ICPF interrupt requests are disabled
				1: ICPF interrupt requests are enabled
2	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables the issuing of CMF interrupt when the CMF flag in TDPCSR is set to 1.
				0: CMF interrupt requests are disabled
				1: CMF interrupt requests are enabled
				Rev. 2.00 Sep. 28, 2009 Pag

RENESAS

Enables or disables the issuing of TPDMNUDF intrequests when the TPDMNUDF flag in TDPCSR is 0: TPDMNUDF interrupt requests are disabled

1: TPDMNUDF interrupt requests are enabled

Rev. 2.00 Sep. 28, 2009 Page 342 of 994 REJ09B0452-0200

The TDP operates as a free-running counter in timer mode. The TDP starts counting up CST bit in TDPCR1 is set to 1. When TDPCNT overflows (H'FFFF changes to H'0000) bit in TDPCSR is set to 1 and an interrupt request is generated if the OVIE bit in TDPIE Figure 12.2 shows an example of free-running counter operation. In addition, figure 12.3 TDPCNT count timing for external clock operation. Note that the external clock require width of at least 1.5 cycles. The counter will not operate correctly if the pulses are narro this.

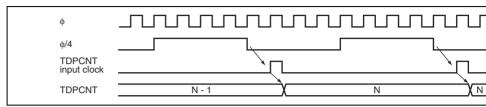


Figure 12.2 Example of Free-Running Counter Operation

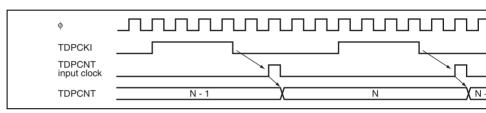


Figure 12.3 Count Timing of External Clock Operation (Falling Edges)

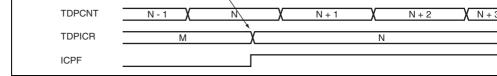


Figure 12.4 Example of Input Capture Operation Timing (Selection of Rising E

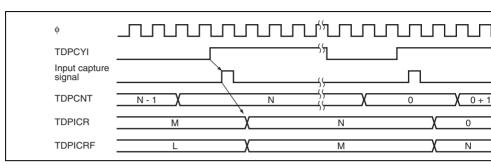


Figure 12.5 Example of Buffer Operation for Input Capture

Rev. 2.00 Sep. 28, 2009 Page 344 of 994 REJ09B0452-0200

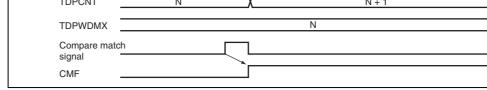


Figure 12.6 Timing of CMF Flag Setting on Compare Match

12.4.2 Cycle Measurement Mode

The TDP operates in cycle measurement mode when the TDPMDS bit in TDPCR1 is se

(1) Counter Operation

TDPCNT counts up in cycle measurement mode regardless of the setting of the CST bit TDPCR1. TDPCNT is cleared to H'0000 when the first edge in the measurement period detected, from which state it counts up. Figure 12.7 shows an example of counter operat cycle measurement mode.

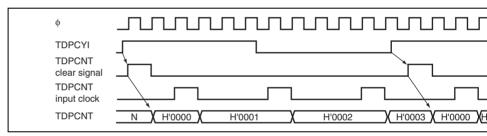


Figure 12.7 Example of Counter Operation in Cycle Measurement Mode

RENESAS

values in TDPWDMX and TDPWDMN. If TDPIR is greater than TDPWDMX or less that TDPWDMN, the TWDMXOVF or TWDMNUDF flag, respectively, in TDPCSR is set to When the third edge is detected, the value in TDPCNT is transferred to TDPICR. At this value in TDPICR is compared with the values in TDPPDMX and TDPPDMN. If TDPICI greater than TDPPDMX or less than TDPPDMN, the TPDMXOVF or TPDMNUDF flag respectively, in TDPCSR is set to 1. Generation of the corresponding interrupt request is by the setting in TDPIER. Also, when the third edge is detected, TDPCNT is cleared to H and the next round of measurement starts.

When the CPSPE bit in TDPCR1 is cleared to 0, the next round of cycle measurement wiregardless of whether any of these flags is set to 1.

If any of these flags is set to 1 while the CPSPE bit in TDPCR1 is set to 1, counting up by TDPCNT stops and cycle measurement also stops. Subsequently clearing the correspondent to 0 automatically clears TDPCNT to H'0000, and counting up for cycle measurement is a

Rev. 2.00 Sep. 28, 2009 Page 346 of 994 REJ09B0452-0200

TDPPDMX/TDI	PPDMN					:
TDPICRF	к (L	X	М	X	1

Figure 12.8 Example of Timing in Cycle Measurement

When the PMMS bit in TDPCR2 is set to 1, cycle measurement is performed only while TDPMCI signal is high. Figure 12.9 shows an example of timing in cycle measurement PMMS bit is set to 1.

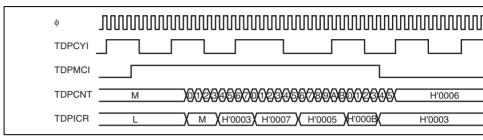


Figure 12.9 Example of Timing in Cycle Measurement (PMMS Bit = 1).

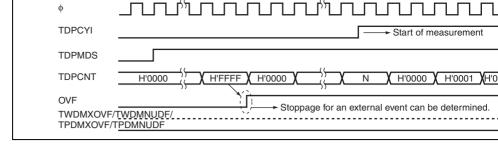


Figure 12.10 Example of Timing for Stoppage for an External Event (1)

When any of the TWDMXOVF, TWDMNUDF, TPDMXOVF, and TPDMNUDF flags is while the CPSPE bit in TDPCR1 is 1, cycle measurement stops. Thereafter, when the corresponding flag is cleared, cycle measurement restarts. When the timer overflows befor first edge is detected after the restart of cycle measurement, it is possible to determine sto an external event.

Figure 12.11 shows an example of the timing for this type of stoppage for an external eve

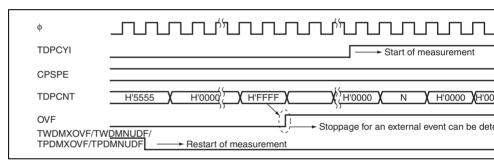
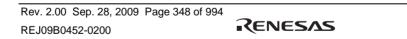



Figure 12.11 Example of Timing for Stoppage for an External Event (2)

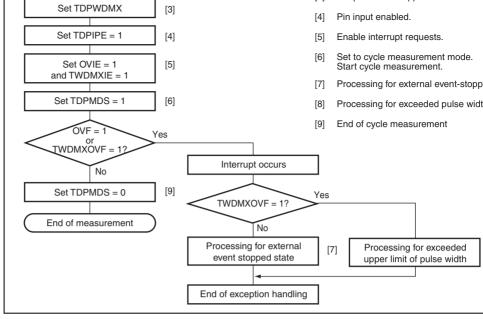


Figure 12.12 Example of Cycle Measurement Mode Settings (for Pulse Width Upper-Limit Value)

	TCMI0	TDPWDMX_0 compare match	CMF_0
	TWDMXI0	TDPWDMX_0 overflow	TWDMXOVF_0
	TWDMNI0	TDPWDMN_0 underflow	TWDMNUDF_0
	TPDMXI0	TDPPDMX_0 overflow	TPDMXOVF_0
	TPDMNI0	TDPPDMN_0 underflow	TPDMNUDF_0
	TOVIO	TDPCNT_0 overflow	OVF_0
TDP_1	TICI1	TDPICR_1 input capture	ICPF_1
	TCMI1	TDPWDMX_1 compare match	CMF_1
	TWDMXI1	TDPWDMX_1 overflow	TWDMXOVF_1
	TWDMNI1	TDPWDMN_1 underflow	TWDMNUDF_1
	TPDMXI1	TDPPDMX_1 overflow	TPDMXOVF_1
	TPDMNI1	TDPPDMN_1 underflow	TPDMNUDF_1
	TOVI1	TDPCNT_1 overflow	OVF_1
TDP_2	TICI2	TDPICR_1 input capture	ICPF_2
	TCMI2	TDPWDMX_2 compare match	CMF_2
	TWDMXI2	TDPWDMX_2 overflow	TWDMXOVF_2
	TWDMNI2	TDPWDMN_2 underflow	TWDMNUDF_2
	TPDMXI2	TDPPDMX_2 overflow	TPDMXOVF_2
	TPDMNI2	TDPPDMN_2 underflow	TPDMNUDF_2
	TOVI2	TDPCNT_2 overflow	OVF_2

Rev. 2.00 Sep. 28, 2009 Page 350 of 994 REJ09B0452-0200



Figure 12.13 Conflict between TDPCNT Write and Counting Up

12.6.2 Conflict between TDPPDMX Write and Compare Match

If a conflict between a TDPPDMX write and a compare match occurs in the second half TDPPDMX write cycle, writing to TDPPDMX takes precedence and the compare match inhibited. Figure 12.14 shows the timing of this conflict.

Figure 12.14 Conflict between TDPPDMX Write and Compare Match

RENESAS

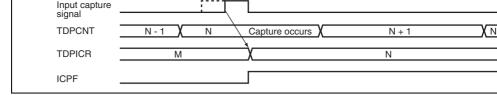


Figure 12.15 Conflict between Input Capture and TDPICR Read

12.6.4 Conflict between Edge Detection in Cycle Measurement Mode and Writing Upper Limit or Lower Limit Register

If the edge of TDPCYI is detected in the second half of a cycle of writing to any of the up limit/lower limit registers (TDPPDMX, TDPPDMN, TDPWDMX, and TDPWDMN) in a measurement mode, the detected edge signal is delayed by one cycle of the system clock

Figure 12.16 shows the timing of this conflict.

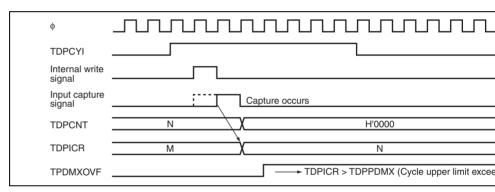


Figure 12.16 Conflict between Edge Detection and Register Write (Cycle Measurement Mode)

Rev. 2.00 Sep. 28, 2009 Page 352 of 994 REJ09B0452-0200

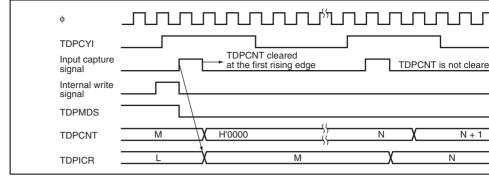


Figure 12.17 Conflict between Edge Detection and TDPMDS Bit Clearing (In S from Cycle Measurement Mode to Timer Mode)

12.6.6 Settings for TDPCKI and TDPMCI

TDPCKI and TDPMCI are multiplexed on the same pin of this LSI. Therefore, the select external clock and the TDPMCI signal cannot be used at the same time. Do not make the CKS2 to CKS0 = B'111 and PMMS = B'1.

12.6.7 Setting for Module Stop Mode

The module-stop control register can be used to specify whether to continue or stop TDI operation. The default setting is for the TDP operation to stop. The TDP registers become accessible on release from module stop mode. For details, see section 26, Power-Down 20, Power-Dow

Rev. 2.00 Sep. 28, 2009 Page 354 of 994 REJ09B0452-0200

Selection of clock sources

The counter input clock can be selected from six internal clocks and an external cloc

• Selection of three ways to clear the counters

The counters can be cleared on compare-match A, compare-match B, or by an extern signal.

• Timer output controlled by two compare-match signals

The timer output signal in each channel is controlled by two independent comparenario signals, enabling the timer to be used for various applications, such as the generation output or PWM output with an arbitrary duty cycle.

- Cascading of two channels
 - Cascading of TMR_0 and TMR_1

Operation as a 16-bit timer can be performed using TMR_0 as the upper half and as the lower half (16-bit count mode).

TMR_1 can be used to count TMR_0 compare-match occurrences (compare-mat mode).

- Cascading of TMR_Y and TMR_X

Operation as a 16-bit timer can be performed using TMR_Y as the upper half and as the lower half (16-bit count mode).

TMR_X can be used to count TMR_Y compare-match occurrences (compare-ma mode).

• Multiple interrupt sources for each channel

TMR_0, TMR_1, and TMR_Y: Three types of interrupts: Compare-match A, compa match B, and overflow

TMR_X: Four types of interrupts: Compare-match A, compare match B, overflow, and input capture

RENESAS

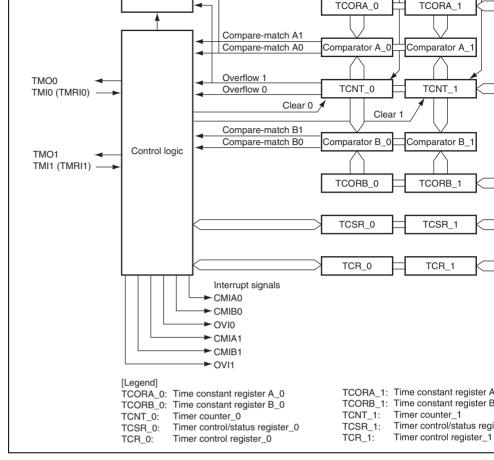


Figure 13.1 Block Diagram of 8-Bit Timer (TMR_0 and TMR_1)

Rev. 2.00 Sep. 28, 2009 Page 356 of 994 REJ09B0452-0200

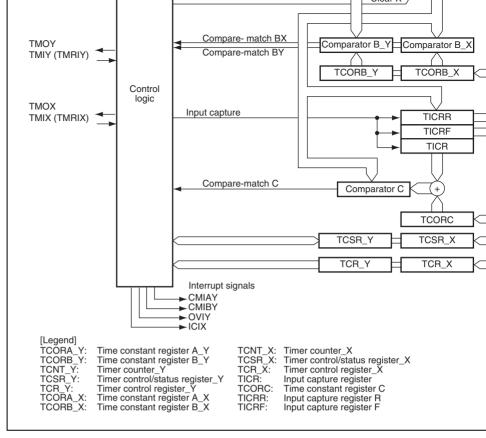


Figure 13.2 Block Diagram of 8-Bit Timer (TMR_Y and TMR_X)

	TMI1 (TMCI1/TMRI1)	Input	External clock input/external reset inpu counter
TMR_Y	TMIY (TMCIY/TMRIY)	Input	External clock input/external reset inpu counter
	TMOY	Output	Output controlled by compare-match
TMR_X	TMOX	Output	Output controlled by compare-match
	TMIX (TMCIX/TMRIX)	Input	External clock input/external reset inpu counter

Rev. 2.00 Sep. 28, 2009 Page 358 of 994 REJ09B0452-0200

	Time constant register A_0	TCORA_0	R/W	H'FF	H'FFCC
	Time constant register B_0	TCORB_0	R/W	H'FF	H'FFCE
	Timer control register_0	TCR_0	R/W	H'00	H'FFC8
	Timer control/status register_0	TCSR_0	R/W	H'00	H'FFCA
Channel 1	Timer counter_1	TCNT_1	R/W	H'00	H'FFD1
	Time constant register A_1	TCORA_1	R/W	H'FF	H'FFCD
	Time constant register B_1	TCORB_1	R/W	H'FF	H'FFCF
	Timer control register_1	TCR_1	R/W	H'00	H'FFC9
	Timer control/status register_1	TCSR_1	R/W	H'10	H'FFCB
Channel Y	Timer counter_Y	TCNT_Y	R/W	H'00	H'FFF4 H'FECC*
	Time constant register A_Y	TCORA_Y	R/W	H'FF	H'FFF2 H'FECA*
	Time constant register B_Y	TCORB_Y	R/W	H'FF	H'FFF3 H'FECB*
	Timer control register_Y	TCR_Y	R/W	H'00	H'FFF0 H'FEC8*
	Timer control/status register_Y	TCSR_Y	R/W	H'00	H'FFF1 H'FEC9*
	Timer connection register S	TCONRS	R/W	H'00	H'FFFE
	Upper address: when RELOCAT Lower address: when RELOCAT				

		1				
Inp		Input capture register F	TICRF	R	H'00	H'FFF3
		Timer connection register I	TCONRI	R/W	H'00	H'FFFC
Comm	ion	Timer XY control register	TCRXY	R/W	H'00	H'FEC6
Note:	Som	e of the registers of TMR X and		the same	addrass	The registers

Note: Some of the registers of TMR_X and TMR_Y use the same address. The registers switched by the TMRX/Y bit in TCONRS. TCNT_Y, TCORA_Y, TCORB_Y, and TCR_Y can be accessed when the RELOC/SYSCR3 and the KINWUE bit in SYSCR are cleared to 0 and the TMRX/Y bit in T is set to 1, or when the RELOCATE bit in SYSCR3 is set to 1. TCNT_X, TCORA_X TCORB_X, and TCR_X can be accessed when the RELOCATE bit in SYSCR3, the KINWUE bit in SYSCR, and the TMRX/Y bit in TCONRS are cleared to 0, or when RELOCATE bit in SYSCR3 is set to 1.

13.3.1 Timer Counter (TCNT)

Each TCNT is an 8-bit readable/writable up-counter. TCNT_0 and TCNT_1 (or TCNT_2 TCNT_Y) comprise a single 16-bit register, so they can be accessed together by word acc clock source is selected by the CKS2 to CKS0 bits in TCR. TCNT can be cleared by an e reset input signal, compare-match A signal or compare-match B signal. The method of cl can be selected by the CCLR1 and CCLR0 bits in TCR. When TCNT overflows (changes H'FF to H'00), the OVF bit in TCSR is set to 1. TCNT is initialized to H'00.

Rev. 2.00 Sep. 28, 2009 Page 360 of 994 REJ09B0452-0200

13.3.3 Time Constant Register B (TCORB)

TCORB is an 8-bit readable/writable register. TCORB_0 and TCORB_1 (or TCORB_X TCORB_Y) comprise a single 16-bit register, so they can be accessed together by word TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag B (CMFB) in TCSR is set to 1. Note however that co is disabled during the T_2 state of a TCORB write cycle. The timer output from the TMO freely controlled by these compare-match B signals and the settings of output select bits OS2 in TCSR. TCORB is initialized to H'FF.

				0: CMFB interrupt request (CMIB) is disabled
				1: CMFB interrupt request (CMIB) is enabled
6	CMIEA	0	R/W	Compare-Match Interrupt Enable A
				Selects whether the CMFA interrupt request (C enabled or disabled when the CMFA flag in TC set to 1.
				0: CMFA interrupt request (CMIA) is disabled
				1: CMFA interrupt request (CMIA) is enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				Selects whether the OVF interrupt request (OV enabled or disabled when the OVF flag in TCS to 1.
				0: OVF interrupt request (OVI) is disabled
				1: OVF interrupt request (OVI) is enabled
4	CCLR1	0	R/W	Counter Clear 1 and 0
3	CCLR0	0	R/W	These bits select the method by which the time counter is cleared.
				00: Clearing is disabled
				01: Cleared on compare-match A
				10: Cleared on compare-match B
				11: Cleared on rising edge of external reset inp
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	These bits select the clock input to TCNT and
0	CKS0	0	R/W	condition, together with the ICKS1 and ICKS0 STCR. For details, see table 13.3.

Rev. 2.00 Sep. 28, 2009 Page 362 of 994 REJ09B0452-0200

RENESAS

	0	1	0		1	Increments at falling edge of in clock $\phi/32$
	0	1	1	_	0	Increments at falling edge of in clock $\phi/1024$
	0	1	1	—	1	Increments at falling edge of in clock $\phi/256$
	1	0	0	—	_	Increments at overflow signal f TCNT_1*
TMR_1	0	0	0	_	_	Disables clock input
	0	0	1	0	—	Increments at falling edge of in clock $\phi/8$
	0	0	1	1	—	Increments at falling edge of in clock $\phi/2$
	0	1	0	0	_	Increments at falling edge of in clock $\phi/64$
	0	1	0	1	_	Increments at falling edge of in clock $\phi/128$
	0	1	1	0	—	Increments at falling edge of in clock $\phi/1024$
	0	1	1	1	—	Increments at falling edge of in clock \u00f6/2048
	1	0	0		—	Increments at compare-match TCNT_0*

Rev. 2.00 Sep. 28, 2009 Page 364 of 994 REJ09B0452-0200

-

-

0	0	1	_	1	Increments at
0	1	0	—	1	Increments at
0	1	1	_	1	Increments at
1	0	0	_	1	Increments at overflow signal fr TCNT_X*
1	0	1	_	x	Increments at rising edge of ex
1	1	0	_	x	Increments at falling edge of ex clock
1	1	1	_	х	Increments at both rising and fa edges of external clock

0	1	0	1	_	Increments at
0	1	1	1	_	Increments at \u00f6/8192
1	0	0	1	_	Increments at compare-match A TCNT_Y*
1	0	1	x	_	Increments at rising edge of exte clock
1	1	0	х	_	Increments at falling edge of external clock
1	1	1	х	_	Increments at both rising and fall edges of external clock

Note: * If the TMR_Y clock input is set as the TCNT_X overflow signal and the TMR_> input is set as the TCNT_Y compare-match signal simultaneously, a count-up cannot be generated. These settings should not be made.

[Legend]

x: Don't care

—: Invalid

Rev. 2.00 Sep. 28, 2009 Page 366 of 994 REJ09B0452-0200

				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in
6	CMFA	0	R/(W)*	
				[Setting condition]
				When the values of TCNT_0 and TCORA_0
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in
5	OVF	0		Timer Overflow Flag
				[Setting condition]
				When TCNT_0 overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OV
4	ADTE	0	R/W	A/D Trigger Enable
				Enables or disables A/D converter start reque compare-match A.
				0: A/D converter start requests by compare-r are disabled
				1: A/D converter start requests by compare-r are enabled
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMO0 pin output be changed by compare-match B of TCORB TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

• TCSR_1

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_1 and TCORB_1 m
				[Clearing condition]
				Read CMFB when CMFB = 1, then write 0 in C
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_1 and TCORA_1 m
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in C
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_1 overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OVF
4	_	1	R	Reserved
				This bit is always read as 1 and cannot be mod

Rev. 2.00 Sep. 28, 2009 Page 368 of 994 REJ09B0452-0200

1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMO1 pin output I be changed by compare-match A of TCORA_ TCNT_1.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
N.L. /				1 · ·

• TCSR_X

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When the values of TCNT_X and TCORB_X
				[Clearing condition]
				Read CMFB when $CMFB = 1$, then write 0 in
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_X and TCORA_X
				[Clearing condition]
				Read CMFA when CMFA = 1, then write 0 in

RENESAS

				external reset signal in that order.
				[Clearing condition]
				Read ICF when ICF = 1, then write 0 in ICF
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMOX pin output le be changed by compare-match B of TCORB_X TCNT_X.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the TMOX pin output le be changed by compare-match A of TCORA_> TCNT_X.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

Rev. 2.00 Sep. 28, 2009 Page 370 of 994 REJ09B0452-0200

				[Setting condition]
				When the values of TCNT_Y and TCORA_Y
				[Clearing condition]
				Read CMFA when $CMFA = 1$, then write 0 in
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_Y overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OV
4	ICIE	0	R/W	Input Capture Interrupt Enable
				Enables or disables the ICF interrupt request when the ICF bit in TCSR_X is set to 1.
				0: ICF interrupt request (ICIX) is disabled
				1: ICF interrupt request (ICIX) is enabled
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the TMOY pin output be changed by compare-match B of TCORB_TCNT_Y.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)

13.3.6 Time Constant Register C (TCORC)

TCORC is an 8-bit readable/writable register. The sum of contents of TCORC and TICR compared with TCNT. When a match is detected, a compare-match C signal is generated However, comparison at the T_2 state in the write cycle to TCORC and at the input capture TICR is disabled. TCORC is initialized to H'FF.

13.3.7 Input Capture Registers R and F (TICRR and TICRF)

TICRR and TICRF are 8-bit read-only registers. While the ICST bit in TCONRI is set to contents of TCNT are transferred at the rising edge and falling edge of the external reset i (TMRIX) in that order. The ICST bit is cleared to 0 when one capture operation ends. TICTICRF are initialized to H'00.

Rev. 2.00 Sep. 28, 2009 Page 372 of 994 REJ09B0452-0200

			pulse by means of a single capture operation control of the ICST bit. When a rising edge fo a falling edge is detected on TMRIX after the is set to 1, the contents of TCNT at those poir captured into TICRR and TICRF, respectively ICST bit is cleared to 0.
			[Clearing condition]
			When a rising edge followed by a falling edge detected on TMRIX
			[Setting condition]
			When 1 is written in ICST after reading ICST
3 to 0 —	All 0	R/W	Reserved
			The initial values should not be modified.

13.3.9 Timer Connection Register S (TCONRS)

TCONRS selects whether to access TMR_X or TMR_Y registers.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TMRX/Y	0	R/W	TMR_X/TMR_Y Access Select
				For details, see table 13.4.
				0: The TMR_X registers are accessed at add H'(FF)FFF0 to H'(FF)FFF5
				1: The TMR_Y registers are accessed at add H'(FF)FFF0 to H'(FF)FFF5
6 to 0		All 0	R/W	Reserved
				The initial values should not be modified.

RENESAS

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

TCRXY selects the TMR_X and TMR_Y output pins and inte	nternal clock.
--	----------------

Bit	Bit Name	Initial Value	R/W	Description
7, 6	—	All 0	R/W	Reserved
				The initial value should not be changed.
5	CKSX	0	R/W	TMR_X Clock Select
				For details about selection, see table 13.3.
4	CKSY	0	R/W	TMR_Y Clock Select
				For details about selection, see table 13.3.
3 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 374 of 994 REJ09B0452-0200

According to the above settings, the waveforms with the TCORA cycle and TCORB put can be output without the intervention of software.

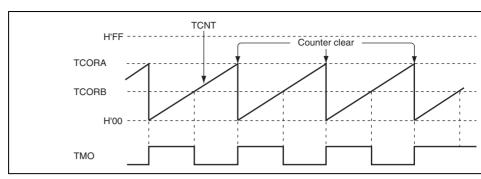


Figure 13.3 Pulse Output Example

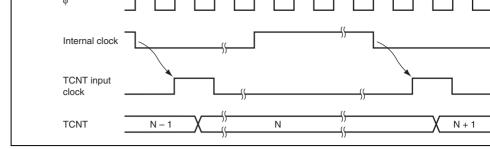


Figure 13.4 Count Timing for Internal Clock Input

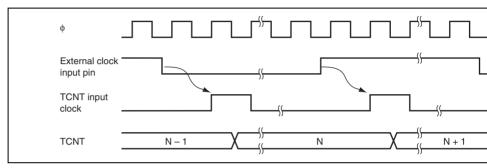
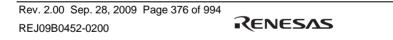



Figure 13.5 Count Timing for External Clock Input (Both Edges)

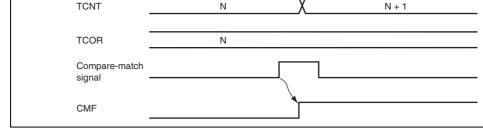


Figure 13.6 Timing of CMF Setting at Compare-Match

13.5.3 Timing of Timer Output at Compare-Match

When a compare-match signal occurs, the timer output changes as specified by the OS3 bits in TCSR. Figure 13.7 shows the timing of timer output when the output is set to tog compare-match A signal.

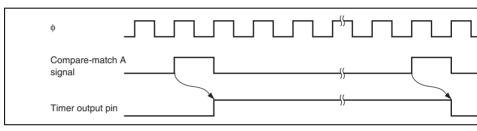


Figure 13.7 Timing of Toggled Timer Output by Compare-Match A Sign

Rev. 2.00 Sep. 28, 2009 Pag RENESAS REJ09

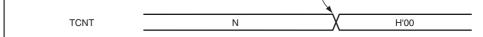


Figure 13.8 Timing of Counter Clear by Compare-Match

13.5.5 TCNT External Reset Timing

TCNT is cleared at the rising edge of an external reset input, depending on the settings of CCLR1 and CCLR0 bits in TCR. The width of the clearing pulse must be at least 1.5 state 13.9 shows the timing of clearing the counter by an external reset input.

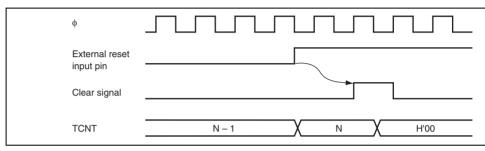


Figure 13.9 Timing of Counter Clear by External Reset Input

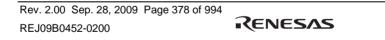


Figure 13.10 Timing of OVF Flag Setting

Renesas

- Setting of compare-match flags
 - The CMF flag in TCSR_0 is set to 1 when a 16-bit compare-match occurs.
 - The CMF flag in TCSR_1 is set to 1 when a lower 8-bit compare-match occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR_0 have been set for counter clear at compa the 16-bit counter (TCNT_0 and TCNT_1 together) is cleared when a 16-bit comp match occurs. The 16-bit counter (TCNT_0 and TCNT_1 together) is also cleared counter clear by the TMI0 pin has been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR_1 are ignored. The lower 8 bit be cleared independently.
- Pin output
 - Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR_0 is in accord the 16-bit compare-match conditions.
 - Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR_1 is in accord the lower 8-bit compare-match conditions.

13.6.2 Compare-Match Count Mode

When bits CKS2 to CKS0 in TCR_1 are B'100, TCNT_1 counts the occurrence of compa A for TMR_0. TMR_0 and TMR_1 are controlled independently. Conditions such as sett CMF flag, generation of interrupts, output from the TMO pin, and counter clearing are in accordance with the settings for each or TMR_0 and TMR_1.

Rev. 2.00 Sep. 28, 2009 Page 380 of 994 REJ09B0452-0200

occupying the lower 8 bits.

- Setting of compare-match flags
 - The CMF flag in TCSR_Y is set to 1 when an upper 8-bit compare-match occurs
 - The CMF flag in TCSR_X is set to 1 when a lower 8-bit compare-match occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR_Y have been set for counter clear at comp match, only the upper eight bits of TCNT_Y are cleared. The upper eight bits of are also cleared when counter clear by the TMRIY pin has been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR_X are enabled, and the lowe TCNT_X can be cleared by the counter.
- Pin output
 - Control of output from the TMOY pin by bits OS3 to OS0 in TCSR_Y is in acco with the upper 8-bit compare-match conditions.
 - Control of output from the TMOX pin by bits OS3 to OS0 in TCSR_X is in acco with the lower 8-bit compare-match conditions.

13.7.2 Compare-Match Count Mode

When bits CKS2 to CKS0 in TCR_X are set to B'100 and the CKSX bit in TCRXY is set TCNT_X counts the occurrence of compare-match A for TMR_Y. TMR_X and TMR_Y controlled independently. Conditions such as setting of the CMF flag, generation of inter output from the TMO pin, and counter clearing are in accordance with the settings for each channel.

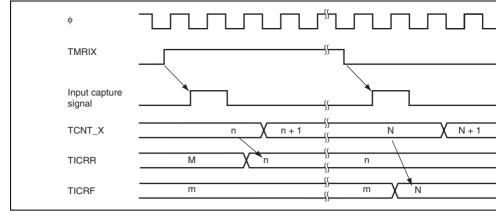


Figure 13.11 Timing of Input Capture Operation

If the input capture signal is input while TICRR and TICRF are being read, the input capt signal is delayed by one system clock (ϕ) cycle. Figure 13.12 shows the timing of this operation.

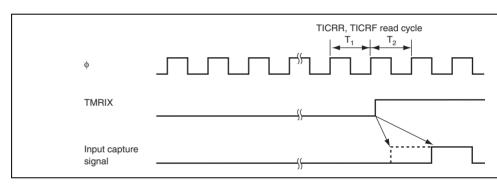
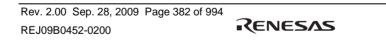



Figure 13.12 Timing of Input Capture Signal (Input capture signal is input during TICRR and TICRF read)

Renesas

Channel	Name	Interrupt Source	Interrupt Flag	Pric
TMR_0	CMIA0	TCORA_0 compare-match	CMFA	High
	CMIB0	TCORB_0 compare-match	CMFB	1
	OVI0	TCNT_0 overflow	OVF	
TMR_1	CMIA1	TCORA_1 compare-match	CMFA	
	CMIB1	TCORB_1 compare-match	CMFB	
	OVI1	TCNT_1 overflow	OVF	
TMR_Y	CMIAY	TCORA_Y compare-match	CMFA	
	CMIBY	TCORB_Y compare-match	CMFB	
	OVIY	TCNT_Y overflow	OVF	
TMR_X	ICIX	Input capture	ICF	
	CMIAX	TCORA_X compare-match	CMFA	
	CMIBX	TCORB_X compare-match	CMFB	
	OVIX	TCNT_X overflow	OVF	Low

Rev. 2.00 Sep. 28, 2009 Page 384 of 994 REJ09B0452-0200

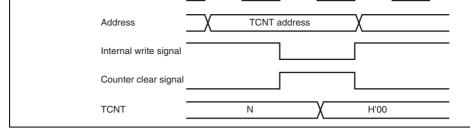


Figure 13.13 Conflict between TCNT Write and Clear

13.9.2 Conflict between TCNT Write and Count-Up

If a count-up occurs during the T_2 state of a TCNT write cycle as shown in figure 13.14, counter write takes priority and the counter is not incremented.

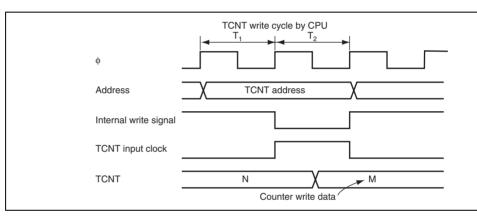


Figure 13.14 Conflict between TCNT Write and Count-Up

Rev. 2.00 Sep. 28, 2009 Pag RENESAS REJ09

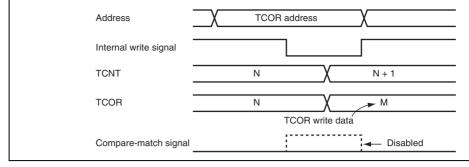
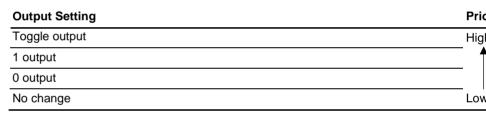
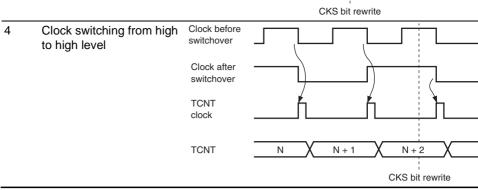



Figure 13.15 Conflict between TCOR Write and Compare-Match

13.9.4 Conflict between Compare-Matches A and B

If compare-matches A and B occur at the same time, the operation follows the output stat defined for compare-match A or B, according to the priority of the timer output shown in 13.7.

Table 13.7 Timer Output Priorities



Erroneous incrementation can also happen when switching between internal and externa

No.	Timing of Switchover by Means of CKS1 and CKS0 Bits		ck Operation
1	Clock switching from low to low level*1	Clock before switchover	
		Clock after switchover	
		TCNT clock	
		TCNT	<u>N</u> X N + 1 X
			CKS bit rewrite
2	Clock switching from low to high level* ²	Clock before switchover	
	-	Clock after switchover	
		TCNT clock	
		TCNT	<u>N X N+1 X N+2 X</u>
			CKS bit rewrite

 Table 13.8
 Switching of Internal Clocks and TCNT Operation

- Notes: 1. Includes switching from low to stop, and from stop to low.
 - 2. Includes switching from stop to high.
 - 3. Includes switching from high to stop.
 - 4. Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

Rev. 2.00 Sep. 28, 2009 Page 388 of 994 REJ09B0452-0200

mode. For details, see section 26, Power-Down Modes.

Rev. 2.00 Sep. 28, 2009 Page 390 of 994 REJ09B0452-0200

14.1 Features

- Selectable from eight (WDT_0) or 16 (WDT_1) counter input clocks.
- Switchable between watchdog timer mode and interval timer mode

Watchdog Timer Mode:

• If the counter overflows, whether an internal reset or an internal NMI interrupt is ge can be selected.

Interval Timer Mode:

• If the counter overflows, an interval timer interrupt (WOVI) is generated.

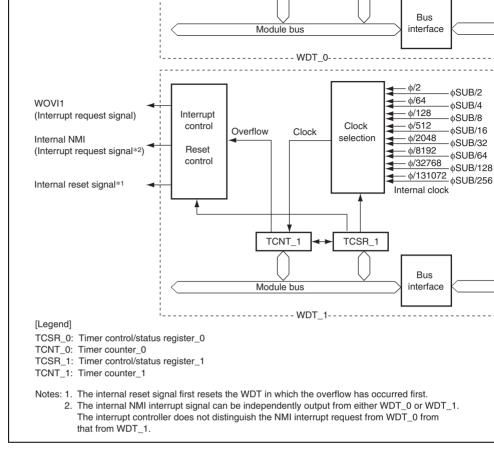


Figure 14.1 Block Diagram of WDT

Rev. 2.00 Sep. 28, 2009 Page 392 of 994 REJ09B0452-0200

RENESAS

14.3 **Register Descriptions**

The WDT has the following registers. To prevent accidental overwriting, TCSR and TC to be written to in a method different from normal registers. For details, see section 14.6 on Register Access. For details on the system control register, see section 3.2.2, System Register (SYSCR).

Table 14.2 Register Configuration

Channel	Register Name	Abbreviation	R/W	Initial Value	Address	D W
Channel 0	Timer counter_0	TCNT_0	R/W	H'00	H'FFA8	1
					H'FFA9*	8
	Timer control/status	TCSR_0	R/W	H'00	H'FFA8	1
	register_0				H'FFA8*	8
Channel 1	Timer counter_1	TCNT_1	R/W	H'00	H'FFEA	1
					H'FFEB*	8
	Timer control/status	TCSR_1	R/W	H'00	H'FFEA	1
	register_1				H'FFEA*	8
Note: *	Address in the upper	cell: when writing	g.			

Address in the lower cell: when reading

RENESAS

• TCSR_0

		Initial		
Bit	Bit Name	Value	R/W	Description
7	OVF	0	R/(W)*	Overflow Flag
				Indicates that TCNT has overflowed (changes H'FF to H'00).
				[Setting condition]
				When TCNT overflows (changes from H'FF to
				When internal reset request generation is sele watchdog timer mode, OVF is cleared automat the internal reset.
				[Clearing conditions]
				 When TCSR is read when OVF = 1, then 0 to OVF
				• When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watchdo or interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting.
				When this bit is cleared, TCNT stops counting initialized to H'00.
4	_	0	R/W	Reserved
				The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 394 of 994 REJ09B0452-0200

RENESAS

000: φ/2 (frequency: 25.6 μs) 001: φ/64 (frequency: 819.2 μs) 010: φ/128 (frequency: 1.6 ms) 011: φ/512 (frequency: 6.6 ms) 100: φ/2048 (frequency: 26.2 ms) 101: φ/8192 (frequency: 104.9 ms) 110: φ/32768 (frequency: 419.4 ms) 111: φ/131072 (frequency: 1.68 s)

Note: * Only 0 can be written, to clear the flag.

Renesas

				the internal reset.
				[Clearing conditions]
				When TCSR is read when OVF = 1^{*^2} , then 0 is to OVF
				When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watchdo or interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting.
				When this bit is cleared, TCNT stops counting initialized to H'00.
4	PSS	0	R/W	Prescaler Select
				Selects the clock source to be input to TCNT.
				0: Counts the divided cycle of ϕ -based presca
				1: Counts the divided cycle of
3	RST/NMI	0	R/W	Reset or NMI
				Selects to request an internal reset or an NMI when TCNT has overflowed.
				0: An NMI interrupt is requested
				1: An internal reset is requested

Rev. 2.00 Sep. 28, 2009 Page 396 of 994 REJ09B0452-0200

RENESAS

011: ¢/512 (frequency: 6.6 ms)
100: φ/2048 (frequency: 26.2 ms)
101:
110:
111:
When PSS = 1:
000:
001:
010:
011:
100:
101:
110:
111:

Notes: 1. Only 0 can be written, to clear the flag.

 When OVF is polled with the interval timer interrupt disabled, OVF = 1 must be least twice.

RENESAS

LSI is issued for 518 system clocks as shown in figure 14.2. If the RST/ $\overline{\text{NMI}}$ bit is cleared when the TCNT overflows, an NMI interrupt request is generated.

An internal reset request from the watchdog timer and a reset input from the $\overline{\text{RES}}$ pin are processed in the same vector. Reset source can be identified by the XRST bit status in SY If a reset caused by a signal input to the $\overline{\text{RES}}$ pin occurs at the same time as a reset caused WDT overflow, the $\overline{\text{RES}}$ pin reset has priority and the XRST bit in SYSCR is set to 1.

An NMI interrupt request from the watchdog timer and an interrupt request from the NM processed in the same vector. Do not handle an NMI interrupt request from the watchdog and an interrupt request from the NMI pin at the same time.

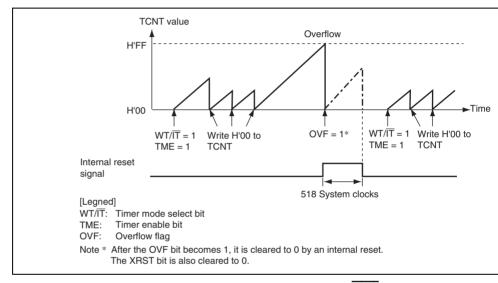


Figure 14.2 Watchdog Timer Mode (RST/NMI = 1) Operation

Rev. 2.00 Sep. 28, 2009 Page 398 of 994 REJ09B0452-0200

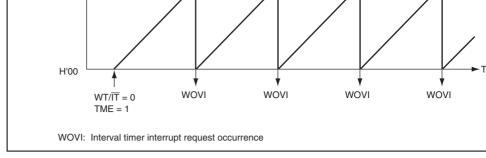


Figure 14.3 Interval Timer Mode Operation

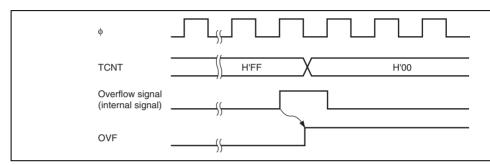


Figure 14.4 OVF Flag Set Timing

Name	interrupt Source	interrupt Flag
WOVI	TCNT overflow	OVF

14.6 Usage Notes

14.6.1 Notes on Register Access

The watchdog timer's registers, TCNT and TCSR differ from other registers in being more difficult to write to. The procedures for writing to and reading from these registers are give below.

(1) Writing to TCNT and TCSR (Example of WDT_0)

These registers must be written to by a word transfer instruction. They cannot be written byte transfer instruction.

TCNT and TCSR both have the same write address. Therefore, satisfy the relative conditions shown in figure 14.5 to write to TCNT or TCSR. To write to TCNT, the higher bytes must the value H'5A and the lower bytes must contain the write data before the transfer instruct execution. To write to TCSR, the higher bytes must contain the value H'A5 and the lower must contain the write data.

Rev. 2.00 Sep. 28, 2009 Page 400 of 994 REJ09B0452-0200

(2) Reading from $1C_1(1)$ and $1C_5K$ (Example of $(1D_1_0)$)

These registers are read in the same way as other registers. The read address is H'FFA8 and H'FFA9 for TCNT.

14.6.2 Conflict between Timer Counter (TCNT) Write and Increment

If a timer counter clock pulse is generated during the T_2 state of a TCNT write cycle, the takes priority and the timer counter is not incremented. Figure 14.6 shows this operation

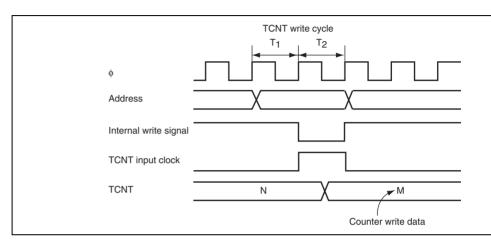
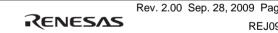



Figure 14.6 Conflict between TCNT Write and Increment

14.6.5 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from/to watchdog timer to/from interval timer, while the WDT is operating, errors could occur in the operation. Software must stop the watchdog timer (by the TME bit to 0) before switching the mode.

Rev. 2.00 Sep. 28, 2009 Page 402 of 994 REJ09B0452-0200

15.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability The transmitter and receiver are mutually independent, enabling transmission and rebe executed simultaneously. Double-buffering is used in both the transmitter and the enabling continuous transmission and continuous reception of serial data.
- On-chip baud rate generator allows any bit rate to be selected The External clock can be selected as a transfer clock source (except for the smart ca interface).
- Choice of LSB-first or MSB-first transfer (except in the case of asynchronous mode
- Four interrupt sources

Four interrupt sources — transmit-end, transmit-data-empty, receive-data-full, and re error — that can issue requests.

Asynchronous Mode:

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in case framing error
- Multiprocessor communication capability

RENESAS

Figure 15.1 shows a block diagram of SCI.

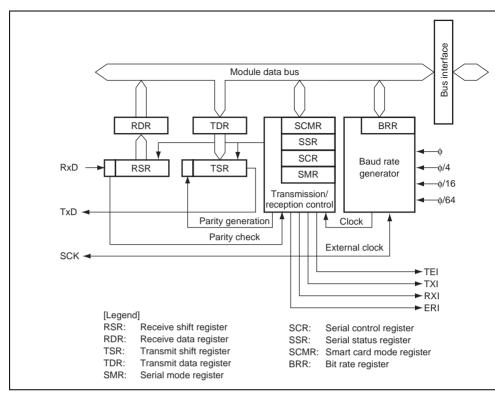


Figure 15.1 Block Diagram of SCI

Rev. 2.00 Sep. 28, 2009 Page 404 of 994 REJ09B0452-0200

RENESAS

	TxD2	Output	Channel 2 transmit data output
	RxD2	Input	Channel 2 receive data input
2	SCK2	Input/Output	Channel 2 clock input/output

Note: * Pin names SCK, RxD, and TxD are used in the text for all channels, omitting channel designation.

Renesas

Channel 1	Serial mode register_1	SMR_1	R/W	H'00	H'FF88	8
	Bit rate register_1	BRR_1	R/W	H'FF	H'FF89	8
	Serial control register_1	SCR_1	R/W	H'00	H'FF8A	8
	Transmit data register_1	TDR_1	R/W	H'FF	H'FF8B	8
	Serial status register_1	SSR_1	R/W	H'84	H'FF8C	8
	Receive data register_1	RDR_1	R	H'00	H'FF8D	8
	Smart card mode register_1	SCMR_1	R/W	H'F2	H'FF8E	8
Channel 2	2 Serial mode register_2	SMR_2	R/W	H'00	H'FFA0	8
	Bit rate register_2	BRR_2	R/W	H'FF	H'FFA1	8
	Serial control register_2	SCR_2	R/W	H'00	H'FFA2	8
	Transmit data register_2	TDR_2	R/W	H'FF	H'FFA3	8
	Serial status register_2	SSR_2	R/W	H'84	H'FFA4	8
	Receive data register_2	RDR_2	R	H'00	H'FFA5	8
	Smart card mode register_2	SCMR_2	R/W	H'F2	H'FFA6	8

Rev. 2.00 Sep. 28, 2009 Page 406 of 994 REJ09B0452-0200

receive operations be performed. After confirming that the RDRF bit in SSR is set to 1, for only once. RDR cannot be written to by the CPU. The initial value of RDR is H'00.

15.3.3 Transmit Data Register (TDR)

TDR is an 8-bit register that stores transmit data. When the SCI detects that TSR is emp transfers the transmit data written in TDR to TSR and starts transmission. The double-but structures of TDR and TSR enable continuous serial transmission. If the next transmit d already been written to TDR when one frame of data is transmitted, the SCI transfers the data to TSR to continue transmission. Although TDR can be read from or written to by t all times, to achieve reliable serial transmission, write transmit data to TDR for only one confirming that the TDRE bit in SSR is set to 1. The initial value of TDR is H'FF.

15.3.4 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the transfers transmit data from TDR to TSR, and then sends the data to the TxD pin. TSR of directly accessed by the CPU.

				0: Asynchronous mode
				1: Clocked synchronous mode
6	CHR	0	R/W	Character Length (enabled only in asynchromode)
				0: Selects 8 bits as the data length.
				1: Selects 7 bits as the data length. LSB-first and the MSB of TDR is not transmitted in transmission.
				In clocked synchronous mode, a fixed data 8 bits is used.
5	PE	0	R/W	Parity Enable (enabled only in asynchronou
				When this bit is set to 1, the parity bit is add transmit data before transmission, and the is checked in reception. For a multiprocess parity bit addition and checking are not perf regardless of the PE bit setting.
4	O/Ē	0	R/W	Parity Mode (enabled only when the PE bit asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchron mode)
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				In reception, only the first stop bit is checke second stop bit is 0, it is treated as the star the next transmit frame.

Rev. 2.00 Sep. 28, 2009 Page 408 of 994 REJ09B0452-0200

RENESAS

10: $\phi/16$ clock (n = 2) 11: $\phi/64$ clock (n = 3) For the relation between the bit rate regist and the baud rate, see section 15.3.9, Bit Register (BRR). n is the decimal display o of n in BRR (see section 15.3.9, Bit Rate I (BRR)).

• Bit Functions in Smart Card Interface Mode (when SMIF in SCMR = 1)

Bit	Bit Name	Initial Value	R/W	Description
7	GM	0	R/W	GSM Mode
				Setting this bit to 1 allows GSM mode ope GSM mode, the TEND set timing is put for 11.0 etu* from the start and the clock outp function is appended. For details, see sec 15.7.8, Clock Output Control.
6	BLK	0	R/W	Setting this bit to 1 allows block transfer m operation. For details, see section 15.7.3, Transfer Mode.
5	PE	0	R/W	Parity Enable (valid only in asynchronous
				When this bit is set to 1, the parity bit is ac transmit data before transmission, and the is checked in reception. Set this bit to 1 in card interface mode.

RENESAS

				mode.
				00: 32 clock cycles (S = 32)
				01:64 clock cycles (S = 64)
				10: 372 clock cycles (S = 372)
				11:256 clock cycles (S = 256)
				For details, see section 15.7.4, Receive Da Sampling Timing and Reception Margin. S described in section 15.3.9, Bit Rate Regist (BRR).
1	CKS1	0	R/W	Clock Select 1 and 0
0	CKS0	0	R/W	These bits select the clock source for the bagenerator.
				00: φ clock (n = 0)
				01: ∲/4 clock (n = 1)
				10: φ/16 clock (n = 2)
				11: φ/64 clock (n = 3)
				For the relation between the bit rate register and the baud rate, see section 15.3.9, Bit F Register (BRR). n is the decimal display of of n in BRR (see section 15.3.9, Bit Rate R (BRR)).

Note: * etu: Element Time Unit (time taken to transfer one bit)

Rev. 2.00 Sep. 28, 2009 Page 410 of 994 REJ09B0452-0200

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt re- enabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI inter requests are enabled.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is en
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enab
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled on the MP bit in SMR is 1 in asynchronous m
				When this bit is set to 1, receive data in wi multiprocessor bit is 0 is skipped, and sett RDRF, FER, and ORER status flags in SS disabled. On receiving data in which the multiprocessor bit is 1, this bit is automatic cleared and normal reception is resumed. details, see section 15.5, Multiprocessor Communication Function.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, a TEI interrupt re- enabled.

	Clocked synchronous mode
	0x: Internal clock (SCK pin functions as clo output.)
	1x External clock (SCK pin functions as clo input.)
[Legend]	

Rev. 2.00 Sep. 28, 2009 Page 412 of 994 REJ09B0452-0200

x:

Don't care

4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is ena
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled when the MP bit in SMR is 1 in asynchro mode)
				Write 0 to this bit in smart card interface
2	TEIE	0	R/W	Transmit End Interrupt Enable
				Write 0 to this bit in smart card interface
1	CKE1	0	R/W	Clock Enable 1 and 0
0	CKE0	0	R/W	Controls the clock output from the SCK p GSM mode, clock output can be dynamic switched. For details, see section 15.7.8, Output Control.
				• When GM in SMR = 0
				00: Output disabled (SCK pin functions a
				01: Clock output
				1x: Reserved
				• When GM in SMR = 1
				00: Output fixed to low
				01: Clock output
				10: Output fixed to high
				11: Clock output
[Lege	endl			

[Legend]

x: Don't care

			[Setting conditions]
			• When the TE bit in SCR is 0
			 When data is transferred from TDR to TDR is ready for data write
			[Clearing condition]
			When 0 is written to TDRE after reading
RDRF	0	R/(W)*	Receive Data Register Full
			Indicates that receive data is stored in RD
			[Setting condition]
			When serial reception ends normally and data is transferred from RSR to RDR
			[Clearing condition]
			When 0 is written to RDRF after reading I
			The RDRF flag is not affected and retains previous value when the RE bit in SCR is to 0.
ORER	0	R/(W)*	Overrun Error
			[Setting condition]
			When the next serial reception is complet RDRF = 1
			[Clearing condition]
			When 0 is written to ORER after reading 1

Rev. 2.00 Sep. 28, 2009 Page 414 of 994 REJ09B0452-0200

parity error is detected during r
condition]
is written to PER after reading
End
conditions]
n the TE bit in SCR is 0
n TDRE = 1 at transmission of
I-byte serial transmit character
condition]
is written to TDRE after reading
essor Bit
es the multiprocessor bit in the hen the RE bit in SCR is cleare state is retained.
essor Bit Transfer
pres the multiprocessor bit to be nit frame.

Note: * Only 0 can be written to clear the flag.

Renesas

				When 0 is written to TDRE after reading T
6	RDRF	0	R/(W)*1	Receive Data Register Full
				Indicates that receive data is stored in RD
				[Setting condition]
				When serial reception ends normally and data is transferred from RSR to RDR
				[Clearing condition]
				When 0 is written to RDRF after reading F
				The RDRF flag is not affected and retains previous value when the RE bit in SCR is 0.
5	ORER	0	R/(W)*1	Overrun Error
				[Setting condition]
				When the next serial reception is complete RDRF = 1
				[Clearing condition]
				When 0 is written to ORER after reading 0
4	ERS	0	R/(W)*1	Error Signal Status
				[Setting condition]
				When a low error signal is sampled
				[Clearing condition]
				When 0 is written to ERS after reading ER

Rev. 2.00 Sep. 28, 2009 Page 416 of 994 REJ09B0452-0200

				[Setting conditions]
				• When both TE and EPS in SCR are
				 When ERS = 0 and TDRE = 1 after a time passed after the start of 1-byte of transfer. The set timing depends on the register setting as follows.
				 When GM = 0 and BLK = 0, 2.5 etu* transmission start
				 When GM = 0 and BLK = 1, 1.5 etu* transmission start
				 When GM = 1 and BLK = 0, 1.0 etu* transmission start
				 When GM = 1 and BLK = 1, 1.0 etu* transmission start
				[Clearing condition]
				When 0 is written to TDRE after reading
1	MPB	0	R	Multiprocessor Bit
				Not used in smart card interface mode.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
				Write 0 to this bit in smart card interface
Notes:	1. Only 0 c	an be written to	clear the f	lag.

2. etu: Element Time Unit (time taken to transfer one bit)

RENESAS

				0: TDR contents are transmitted with LS Receive data is stored as LSB first in
				1: TDR contents are transmitted with MS Receive data is stored as MSB first in
				The SDIR bit is valid only when the 8-bit format is used for transmission/receptior the 7-bit data format is used, data is alwa transmitted/received with LSB-first.
2	SINV	0	R/W	Smart Card Data Invert
				Specifies inversion of the data logic leve SINV bit does not affect the logic level of parity bit. When the parity bit is inverted, O/\overline{E} bit in SMR.
				0: TDR contents are transmitted as they Receive data is stored as it is in RDR.
				 TDR contents are inverted before beir transmitted. Receive data is stored in form in RDR.
1		1	R	Reserved
				This bit is always read as 1 and cannot b modified.
0	SMIF	0	R/W	Smart Card Interface Mode Select
				When this bit is set to 1, smart card inter mode is selected.
				0: Normal asynchronous or clocked sync mode
				1: Smart card interface mode

Rev. 2.00 Sep. 28, 2009 Page 418 of 994 REJ09B0452-0200

RENESAS

Mode			Bit Rate	Erroi	ſ				
Asynchro	onous mode	1	$\phi \times 10^6$	Error (%	$b = \{ \frac{\phi \times 10^6}{B \times 64 \times 2^{2n}} $				
			$B = \frac{\phi \times 10^{\circ}}{64 \times 2^{2n-1} \times (N+1)}$)	$B \times 64 \times 2^{2n} \times (N)$				
Clocked	synchronou	s mode	_ φ × 10 ⁶						
			$B = \frac{\phi \times 10^{6}}{8 \times 2^{2n-1} \times (N+1)}$						
Smart ca	ard interface	mode	$\phi \times 10^6$		$\phi \times 10^6$				
			$B = \frac{\phi \times 10^{\circ}}{S \times 2^{2n+1} \times (N+1)}$	_ Error (%	$f_{0} = \left\{ \frac{\phi \times 10^{6}}{B \times S \times 2^{2n+1} \times (N)} \right\}$				
[Legend]	B:	Bit rate (bi	it/s)						
	N:	BRR settir	ng for baud rate gene	erator ($0 \le N \le 255$)				
	φ:	Operating	frequency (MHz)						
	n and S: Determined by the SMR settings shown in the following table								
	SMR Settin	ıg		SMR Settir	1g				
-	CKS1	CKS0	n	BCP1	BCP0				
-	<u>^</u>								

UNU I	01100		DOIT	2010	
0	0	0	 0	0	÷
0	1	1	0	1	(
1	0	2	1	0	
1	1	3	1	1	2

Table 15.4 shows sample N settings in BRR in normal asynchronous mode. Table 15.5 s maximum bit rate settable for each frequency. Table 15.7 and 15.9 show sample N settin BRR in clocked synchronous mode and smart card interface mode, respectively. In smart interface mode, the number of basic clock cycles S in a 1-bit data transfer time can be set For details, see section 15.7.4, Receive Data Sampling Timing and Reception Margin. T and 15.8 show the maximum bit rates with external clock input.

RENESAS

1200	0	207	0.16	0	200	0.00	I	04	0.16	I	//
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	155
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11
38400	_	_		0	7	0.00	0	7	1.73	0	9

Operating Frequency ϕ (MHz)

	12.288			14			14.7456			1	
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N
110	2	217	0.08	2	248	-0.17	3	64	0.70	3	70
150	2	159	0.00	2	181	0.16	2	191	0.00	2	20
300	2	79	0.00	2	90	0.16	2	95	0.00	2	10
600	1	159	0.00	1	181	0.16	1	191	0.00	1	20
1200	1	79	0.00	1	90	0.16	1	95	0.00	1	10
2400	0	159	0.00	0	181	0.16	0	191	0.00	0	20
4800	0	79	0.00	0	90	0.16	0	95	0.00	0	10
9600	0	39	0.00	0	45	-0.93	0	47	0.00	0	51
19200	0	19	0.00	0	22	-0.93	0	23	0.00	0	25
31250	0	11	2.40	0	13	0.00	0	14	-1.70	0	15
38400	0	9	0.00			_	0	11	0.00	0	12

[Legend]

—: Can be set, but there will be a degree of error.

Note: * Make the settings so that the error does not exceed 1%.

Rev. 2.00 Sep. 28, 2009 Page 420 of 994

REJ09B0452-0200

RENESAS

1200	I	111	0.00	1	110	0.16	I	127	0.00	I	123
2400	0	223	0.00	0	233	0.16	0	255	0.00	1	64
4800	0	111	0.00	0	116	0.16	0	127	0.00	0	129
9600	0	55	0.00	0	58	-0.69	0	63	0.00	0	64
19200	0	27	0.00	0	28	1.02	0	31	0.00	0	32
31250	0	16	1.20	0	17	0.00	0	19	-1.70	0	19
38400	0	16	0.00	0	14	-2.34	0	15	0.00	0	15

[Legend]

—: Can be set, but there will be a degree of error.

Note: * Make the settings so that the error does not exceed 1%.

Table 15.5 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (bit/s)	n	N	φ (MHz)	Maximum Bit Rate (bit/s)	n
8	250000	0	0	14.7456	460800	0
9.8304	307200	0	0	16	500000	0
10	312500	0	0	17.2032	537600	0
12	375000	0	0	18	562500	0
12.288	384000	0	0	19.6608	614400	0
14	437500	0	0	20	625000	0

RENESAS

		Operating Frequency φ (MHz)								
		8		10		16		2		
Bit Rate (bit/s)	n	Ν	n	Ν	n	Ν	n			
110										
250	3	124		_	3	249				
500	2	249	_	_	3	124				
1k	2	124		_	2	249				
2.5k	1	199	1	249	2	99	2			
5k	1	99	1	124	1	199	1			
10k	0	199	0	249	1	99	1			
25k	0	79	0	99	0	159	0			
50k	0	39	0	49	0	79	0			
100k	0	19	0	24	0	39	0			
250k	0	7	0	9	0	15	0			
500k	0	3	0	4	0	7	0			
1M	0	1			0	3	0			
2.5M			0	0*			0			
5M							0			

 Table 15.7
 BRR Settings for Various Bit Rates (Clocked Synchronous Mode)

[Legend]

Blank: Setting prohibited.

—: Can be set, but there will be a degree of error.

*: Continuous transfer or reception is not possible.

Rev. 2.00 Sep. 28, 2009 Page 422 of 994

REJ09B0452-0200

RENESAS

		Operating Frequency φ (MHz)									
		10.00		13.00		14.2848			16.		
Bit Rate (bit/s)	n	Ν	Error (%)	n	Ν	Error (%)	n	Ν	Error ('	%) n	Ν
9600	0	1	30	0	1	-8.99	0	1	0.00	0	1

		Operating Frequency φ (MHz)							
		18	3.00	20.00					
Bit Rate (bit/s)	n	Ν	Error (%)	n	Ν	Error (%)			
9600	0	2	-15.99	0	2	-6.65			

Table 15.10 Maximum Bit Rate for Each Frequency (Smart Card Interface Mode,

φ (MHz)	Maximum Bit Rate (bit/s)	n	N	Maximum Bit Rate ∳ (MHz) (bit/s) n
10.00	13441	0	0	16.00 21505 0
13.00	17473	0	0	18.00 24194 0
14.2848	19200	0	0	20.00 26882 0

RENESAS

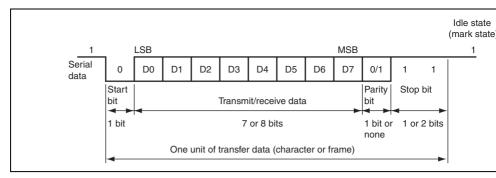


Figure 15.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Rev. 2.00 Sep. 28, 2009 Page 424 of 994 REJ09B0452-0200

0	0	0	0	S	8-bit data	STO	P
0	0	0	1	s	8-bit data	STO	PST
0	1	0	0	s	8-bit data	Р	ST
0	1	0	1	s	8-bit data	P	ST
	0	0	0	s	7-bit data STO	 P	
1				s [7-bit data STO	PSTO	 P
1	0	0	1	s [7-bit data	STO	
1	1	0	0				
1	1	0	1	S	7-bit data P	STO	pist
0	_	1	0	S	8-bit data	MPE	3 ST
0	_	1	1	s	8-bit data	MPE	з
1	_	1	0	S	7-bit data MP	B STO	P
1	_	1	1	S	7-bit data MP	з вто	PST

[Legend] S: S

Start bit

STOP: Stop bit

P: Parity bit MPB: Multiprocessor bit

RENESAS

- M: Reception margin (%)
- N: Ratio of bit rate to clock (N = 16)
- D: Clock duty (D = 0.5 to 1.0)
- L: Frame length (L = 9 to 12)
- F: Absolute value of clock rate deviation

Assuming values of F = 0 and D = 0.5 in formula (1), the reception margin is determined formula below.

 $M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$

However, this is only the computed value, and a margin of 20% to 30% should be allowe system design.

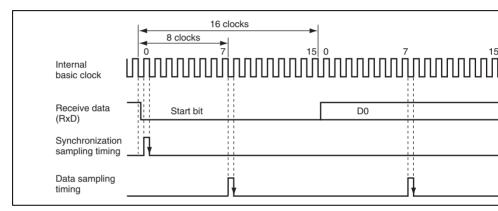
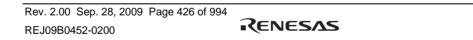



Figure 15.3 Receive Data Sampling Timing in Asynchronous Mode

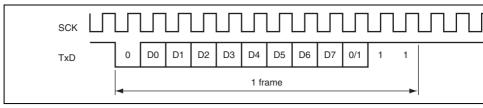
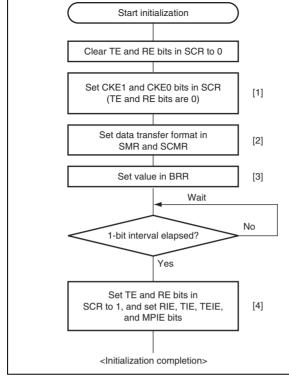
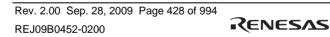



Figure 15.4 Relation between Output Clock and Transmit Data Phase (Asynchronous Mode)


 Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE, to 0.

When the clock is selected in asynchronous mode, it is output immediately after SCR settings are made.

- [2] Set the data transfer format in SMR and SCMR.
- [3] Write a value corresponding to the bit rate to BRR. Not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1. Also set the RIE, TIE, TEIE, and MPIE bits.

Setting the TE and RE bits enables the TxD and RxD pins to be used.

Figure 15.5 Sample SCI Initialization Flowchart

- be enabled.
- 3. Data is sent from the TxD pin in the following order: start bit, transmit data, parity b multiprocessor bit (may be omitted depending on the format), and stop bit.
- 4. The SCI checks the TDRE flag at the timing for sending the stop bit.
- 5. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, a serial transmission of the next frame is started.
- 6. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then state" is entered in which 1 is output. If the TEIE bit in SCR is set to 1 at this time, a interrupt request is generated.

Figure 15.7 shows a sample flowchart for transmission in asynchronous mode.

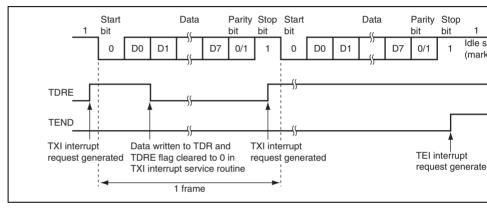
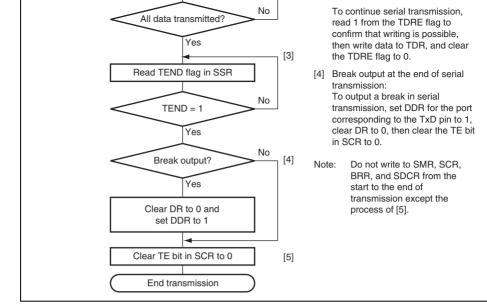



Figure 15.6 Example of Operation in Transmission in Asynchronous Moo (Example with 8-Bit Data, Parity, One Stop Bit)

RENESAS

Rev. 2.00 Sep. 28, 2009 Page 430 of 994 REJ09B0452-0200

- 3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transfer RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is genera
- 4. If a framing error (when the stop bit is 0) is detected, the FER bit in SSR is set to 1 a data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrequest is generated.
- 5. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data i transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt rea generated. Because the RXI interrupt routine reads the receive data transferred to RI reception of the next receive data has finished, continuous reception can be enabled.

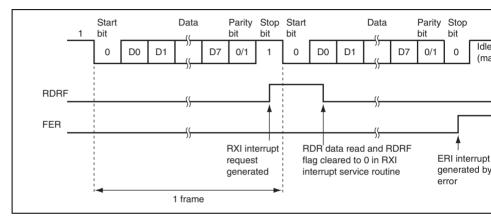


Figure 15.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

-					
1	1	1	1	Lost	Overrun error + framin parity error
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	0	1	Lost	Overrun error + parity
1	1	1	0	Lost	Overrun error + framin
0	0	0	1	Transferred to RDR	Parity error
0	0	1	0	Transferred to RDR	Framing error

Note: * The RDRF flag retains the state it had before data reception.

Rev. 2.00 Sep. 28, 2009 Page 432 of 994 REJ09B0452-0200

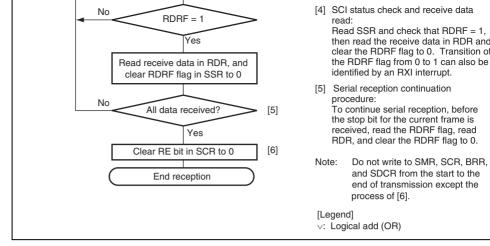


Figure 15.9 Sample Serial Reception Flowchart (1)

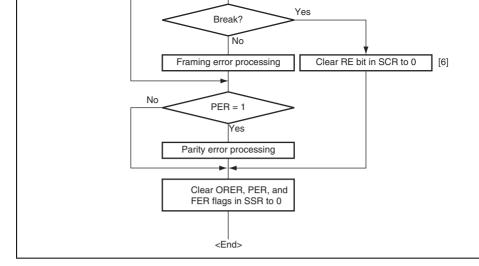


Figure 15.9 Sample Serial Reception Flowchart (2)

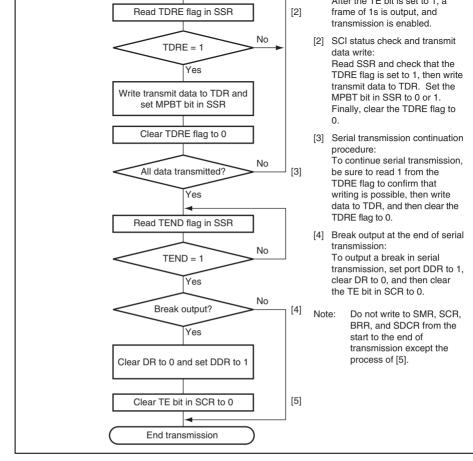
Rev. 2.00 Sep. 28, 2009 Page 434 of 994 REJ09B0452-0200

15.10 shows an example of inter-processor communication using the multiprocessor for transmitting station first sends the ID code of the receiving station with which it wants to serial communication as data with a 1 multiprocessor bit added. It then sends transmit data with a 0 multiprocessor bit added. When data with a 1 multiprocessor bit is received, the station compares that data with its own ID. The station whose ID matches then receives sent next. Stations whose ID does not match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is set transfer of receive data from RSR to RDR, error flag detection, and setting the RDRF, F ORER status flags in SSR to 1 are prohibited until data with a 1 multiprocessor bit is reception of a receive character with a 1 multiprocessor bit, the MPB bit in SSR is set to MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SC 1 at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is invalid. All other bit are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

receiving station specification receiving station specification specification


Data transmission cycle =receiving station specified by ID

[Legend] MPB: Multiprocessor bit

Figure 15.10 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Rev. 2.00 Sep. 28, 2009 Page 436 of 994 REJ09B0452-0200

RENESAS

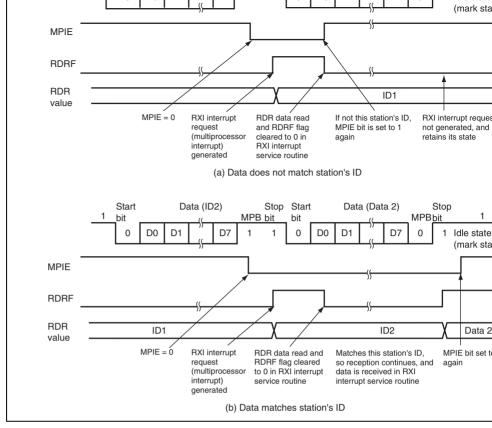


Figure 15.12 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 2.00 Sep. 28, 2009 Page 438 of 994 REJ09B0452-0200

RENESAS

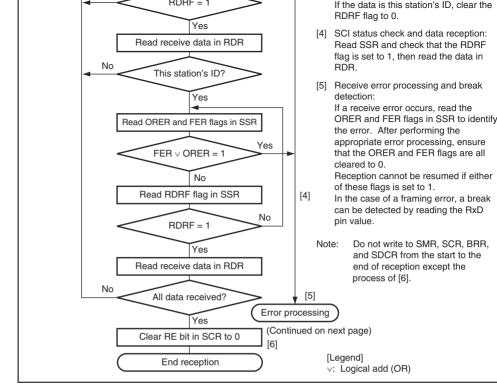


Figure 15.13 Sample Multiprocessor Serial Reception Flowchart (1)

Rev. 2.00 S

Figure 15.13 Sample Multiprocessor Serial Reception Flowchart (2)

Rev. 2.00 Sep. 28, 2009 Page 440 of 994 REJ09B0452-0200

previous receive data can be read during reception, enabling continuous data transfer.

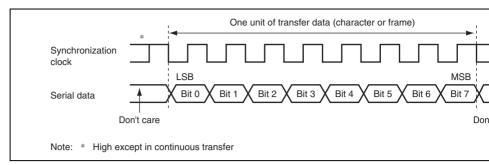
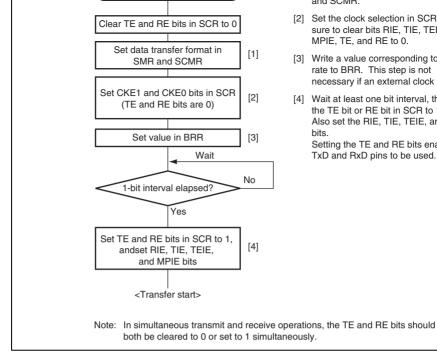



Figure 15.14 Data Format in Synchronous Communication (LSB-First)

15.6.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting of t and CKE0 bits in SCR. When the SCI is operated on an internal clock, the synchronizat is output from the SCK pin. Eight synchronization clock pulses are output in the transfe character, and when no transfer is performed the clock is fixed high.

- [2] Set the clock selection in SCR. Be sure to clear bits RIE, TIE, TEIE, MPIE, TE, and RE to 0.
- [3] Write a value corresponding to the bit rate to BRR. This step is not necessary if an external clock is used.
- [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to 1. Also set the RIE, TIE, TEIE, and MPIE Setting the TE and RE bits enables the

Figure 15.15 Sample SCI Initialization Flowchart

Rev. 2.00 Sep. 28, 2009 Page 442 of 994 REJ09B0452-0200

- 8-bit data is sent from the TxD pin synchronized with the output clock when output mode has been specified and synchronized with the input clock when use of an exter has been specified.
- 4. The SCI checks the TDRE flag at the timing for sending the last bit.
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial trans of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TxD pin main output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI interr is generated. The SCK pin is fixed high.

Figure 15.17 shows a sample flowchart for serial data transmission. Even if the TDRE f cleared to 0, transmission will not start while a receive error flag (ORER, FER, or PER) Make sure to clear the receive error flags to 0 before starting transmission. Note that cle RE bit to 0 does not clear the receive error flags.

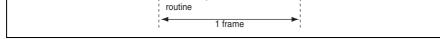


Figure 15.16 Sample SCI Transmission Operation in Clocked Synchronous M

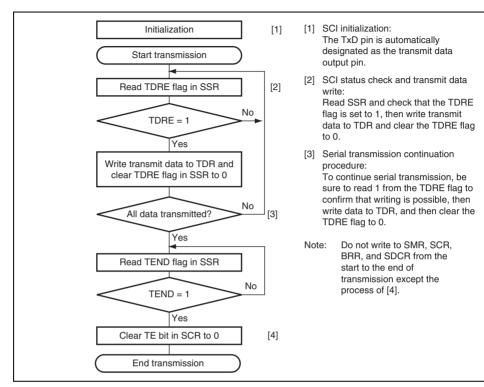


Figure 15.17 Sample Serial Transmission Flowchart

Rev. 2.00 Sep. 28, 2009 Page 444 of 994 REJ09B0452-0200

- 3. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt rec generated. Because the RXI interrupt routine reads the receive data transferred to RI reception of the next receive data has finished, continuous reception can be enabled.

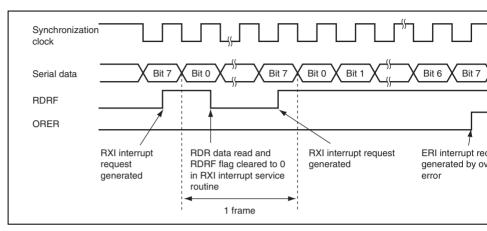
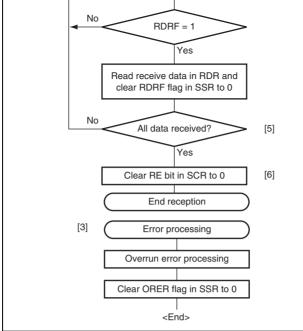



Figure 15.18 Example of SCI Receive Operation in Clocked Synchronous M

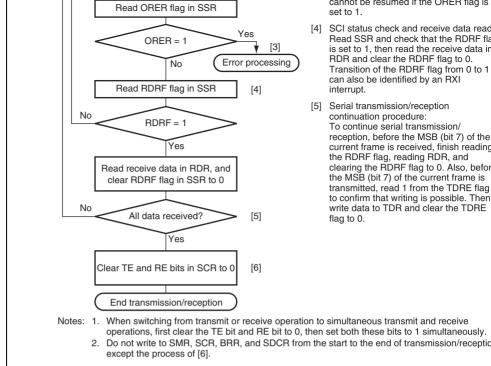
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear th FER, PER, and RDRF bits to 0 before resuming reception. Figure 15.19 shows a sample for serial data reception.

data in RDR and clear the RDRF flag to 0.

Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt.

[5] Serial reception continuation procedure: To continue serial reception, before the MSB (bit 7) of the current frame is received, reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0 should be finished.

Note: Do not write to SMR, SCR, BRR, and SDCR from the start to the end of reception except the process of [6].


Figure 15.19 Sample Serial Reception Flowchart

Rev. 2.00 Sep. 28, 2009 Page 446 of 994 REJ09B0452-0200

simultaneously set the TE and RE bits to 1 with a single instruction.

- cannot be resumed if the ORER flag is set to 1.
- [4] SCI status check and receive data read Read SSR and check that the RDRF fla is set to 1, then read the receive data in RDR and clear the RDRF flag to 0. Transition of the RDRF flag from 0 to 1 can also be identified by an RXI interrupt.
- [5] Serial transmission/reception continuation procedure: To continue serial transmission/ reception, before the MSB (bit 7) of the current frame is received, finish reading the RDRF flag, reading RDR, and clearing the RDRF flag to 0. Also, befor the MSB (bit 7) of the current frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to TDR and clear the TDRE flag to 0.

Figure 15.20 Sample Flowchart of Simultaneous Serial Transmission and Rece

Rev. 2.00 Sep. 28, 2009 Page 448 of 994 REJ09B0452-0200

and TE bits in SCR to 1 with the IC card not connected enables closed transmission/rece allowing self diagnosis. To supply the IC card with the clock pulses generated by the SC the SCK pin output to the CLK pin of the IC card. A reset signal can be supplied via the port of this LSI.

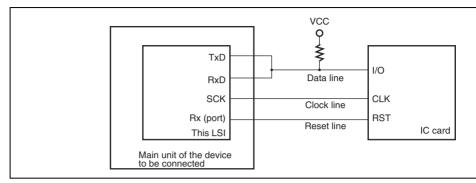
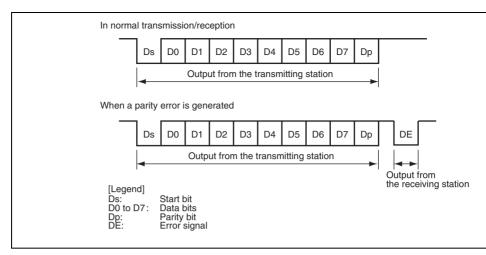
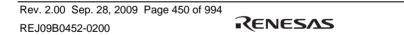



Figure 15.21 Pin Connection for Smart Card Interface

after two or more etu.



For communication with the IC cards of the direct convention and inverse convention typ follow the procedure below.

(Z						A A		
	Ds	D0 D1	D2	D3 D4	D5	D6 D7	Dp	

Figure 15.23 Direct Convention (SDIR = SINV = $O/\overline{E} = 0$)

For the inverse convention type, logic levels 1 and 0 correspond to states A and Z, respe and data is transferred with MSB-first as the start character, as shown in figure 15.24. The data in the start character in the figure is H'3F. When using the inverse convention type, both the SDIR and SINV bits in SCMR. The parity bit is logic level 0 to produce even p which is prescribed by the smart card standard, and corresponds to state Z. Since the SIN this LSI only inverts data bits D7 to D0, write 1 to the O/\overline{E} bit in SMR to invert the parity both transmission and reception.

15.7.3 Block Transfer Mode

Block transfer mode is different from normal smart card interface mode in the following

- If a parity error is detected during reception, no error signal is output. Since the PER SSR is set by error detection, clear the bit before receiving the parity bit of the next f
- During transmission, at least 1 etu is secured as a guard time after the end of the part before the start of the next frame.
- Since the same data is not re-transmitted during transmission, the TEND flag in SSR 11.5 etu after transmission start.
- Although the ERS flag in block transfer mode displays the error signal status as in ne smart card interface mode, the flag is always read as 0 because no error signal is tran

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100 [\%] \quad \dots \quad \text{Formula}$$

- M: Reception margin (%) N: Ratio of bit rate to clock (N = 32, 64, 372, 256) D: Clock duty (D = 0 to 1.0) L: Frame length (L = 10)
- F: Absolute value of clock rate deviation

Assuming values of F = 0, D = 0.5, and N = 372 in formula (1), the reception margin is determined by the formula below.

M = (0.5 - 1 / 2 × 372) × 100 [%] = 49.866%

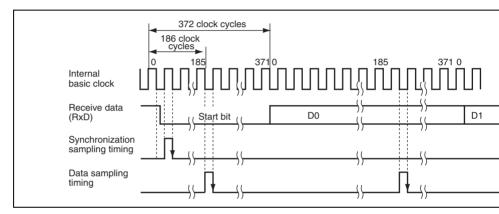
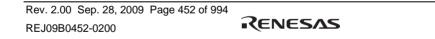



Figure 15.25 Receive Data Sampling Timing in Smart Card Interface Mod (When Clock Frequency is 372 Times the Bit Rate)

- TxD and KxD pins are changed from port pins to SCI pins, placing the pins into high impedance state.
- 5. Set the value corresponding to the bit rate in BRR.
- 6. Set the CKE1 and CKE0 bits in SCR appropriately. Clear the TIE, RIE, TE, RE, MF TEIE bits to 0 simultaneously. When the CKE0 bit is set to 1, the SCK pin is allowe clock pulses.
- 7. Set the TIE, RIE, TE, and RE bits in SCR appropriately after waiting for at least 1 b Setting prohibited the TE and RE bits to 1 simultaneously except for self diagnosis.

To switch from reception to transmission, first verify that reception has completed, and the SCI. At the end of initialization, RE and TE should be set to 0 and 1, respectively. R completion can be verified by reading the RDRF flag or PER and ORER flags. To switch transmission to reception, first verify that transmission has completed, and initialize the the end of initialization, TE and RE should be set to 0 and 1, respectively. Transmission completion can be verified by reading the TEND flag.

15.7.6 Serial Data Transmission (Except in Block Transfer Mode)

Data transmission in smart card interface mode (except in block transfer mode) is different that in normal serial communication interface mode in that an error signal is sampled an re-transmitted. Figure 15.26 shows the data re-transfer operation during transmission.

- If an error signal from the receiving end is sampled after one frame of data has been transmitted, the ERS bit in SSR is set to 1. Here, an ERI interrupt request is generate RIE bit in SCR is set to 1. Clear the ERS bit to 0 before the next parity bit is sampled
- 2. For the frame in which an error signal is received, the TEND bit in SSR is not set to re-transferred from TDR to TSR allowing automatic data retransmission.

RENESAS

request to be generated at error occurrence.

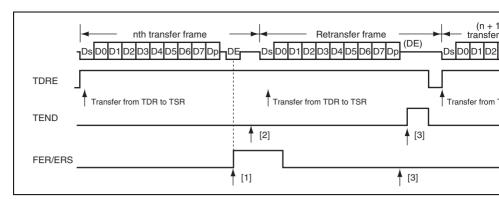


Figure 15.26 Data Re-transfer Operation in SCI Transmission Mode

Note that the TEND flag is set in different timings depending on the GM bit setting in SM which is shown in figure 15.27.

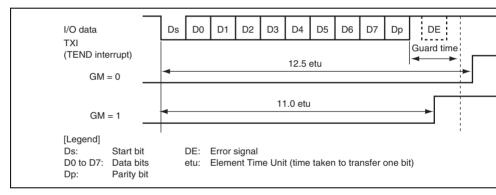


Figure 15.27 TEND Flag Set Timings during Transmission

Rev. 2.00 Sep. 28, 2009 Page 454 of 994 REJ09B0452-0200

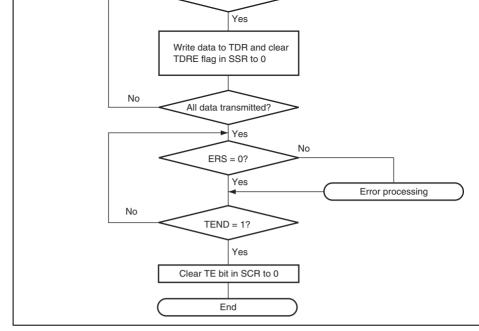


Figure 15.28 Sample Transmission Flowchart

request is generated if the RIE bit in SCR is set.

Figure 15.30 shows a sample flowchart for reception. In reception, setting the RIE bit to a an RXI interrupt request to be generated when the RDRF flag is set to 1. If an error occur reception, i.e., either the ORER or PER flag is set to 1, a transmit/receive error interrupt (request is generated and the error flag must be cleared. Even if a parity error occurs and F to 1 in reception, receive data is transferred to RDR, thus allowing the data to be read.

Note: For operations in block transfer mode, see section 15.4, Operation in Asynchrono

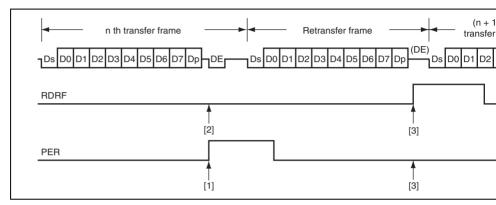
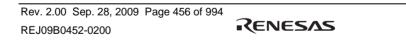



Figure 15.29 Data Re-transfer Operation in SCI Reception Mode

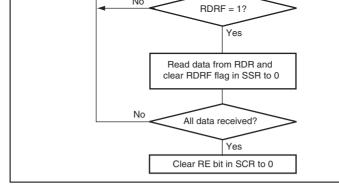


Figure 15.30 Sample Reception Flowchart

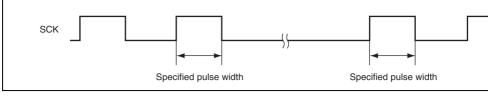


Figure 15.31 Clock Output Fixing Timing

At power-on and transitions to/from software standby mode, use the following procedure the appropriate clock duty ratio.

(1) At Power-On

To secure the appropriate clock duty ratio simultaneously with power-on, use the following procedure.

- 1. Initially, port input is enabled in the high-impedance state. To fix the potential level, u pull-up or pull-down resistor.
- 2. Fix the SCK pin to the specified output using the CKE1 bit in SCR.
- 3. Set SMR and SCMR to enable smart card interface mode.
- 4. Set the CKE0 bit in SCR to 1 to start clock output.

Rev. 2.00 Sep. 28, 2009 Page 458 of 994 REJ09B0452-0200

(3) At Transition from Software Standby Mode to Smart Card Interface Mode

- 1. Cancel software standby mode.
- 2. Write 1 to the CKE0 bit in SCR to start clock output. A clock signal with the appropriatio is then generated.

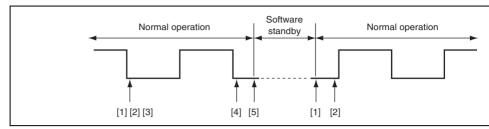


Figure 15.32 Clock Stop and Restart Procedure

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated.

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to 1 interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt has priority acceptance. However, note that if the TDRE and TEND flags are cleared simultaneously TXI interrupt routine, the SCI cannot branch to the TEI interrupt routine later.

Channel	Name	Interrupt Source	Interrupt Flag
1	ERI1	Receive error	ORER, FER, PER
	RXI1	Receive data full	RDRF
	TXI1	Transmit data empty	TDRE
	TEI1	Transmit end	TEND
2	ERI2	Receive error	ORER, FER, PER
	RXI2	Receive data full	RDRF
	TXI2	Transmit data empty	TDRE
	TEI2	Transmit end	TEND

Table 15.13 SCI Interrupt Sources

Rev. 2.00 Sep. 28, 2009 Page 460 of 994 REJ09B0452-0200

	TXI1	Transmit data empty	TEND
2	ERI2	Receive error, error signal detection	ORER, PER, ERS
	RXI2	Receive data full	RDRF
	TXI2	Transmit data empty	TEND

In transmission, the TEND and TDRE flags in SSR are simultaneously set to 1, thus gen TXI interrupt request. If an error occurs, the SCI automatically re-transmits the same da re-transmission, the TEND flag remains 0. Therefore, the SCI automatically transmits the specified number of bytes, including re-transmission in the case of error. However, the H in SSR, which is set at error occurrence, is not automatically cleared; the ERS flag must by previously setting the RIE bit in SCR to 1 to enable an ERI interrupt request to be ge error occurrence.

In reception, an RXI interrupt request is generated when the RDRF flag in SSR is set to error occurs, the RDRF flag is not set but the error flag is set. Therefore, an ERI interrup is issued to the CPU instead; the error flag must be cleared.

When framing error detection is performed, a break can be detected by reading the RxD p directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag in SS and the PER flag may also be set. Note that, since the SCI continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

15.9.3 Mark State and Break Sending

When the TE bit in SCR is 0, the TxD pin is used as an I/O port whose direction (input of and level are determined by DR and DDR of the port. This can be used to set the TxD pin state (high level) or send a break during serial data transmission. To maintain the commu line at mark state until TE is set to 1, set both DDR and DR to 1. Since the TE bit is clear this point, the TxD pin becomes an I/O port, and 1 is output from the TxD pin. To send a during serial transmission, first set DDR to 1 and DR to 0, and then clear the TE bit to 0. TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission s TxD pin becomes an I/O port, and 0 is output from the TxD pin.

15.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous Mod

Transmission cannot be started when a receive error flag (ORER, FER, or RER) is SSR is even if the TDRE flag in SSR is cleared to 0. Be sure to clear the receive error flags to 0 starting transmission. Note also that the receive error flags cannot be cleared to 0 even if bit in SCR is cleared to 0.

15.9.5 Relation between Writing to TDR and TDRE Flag

Data can be written to TDR irrespective of the TDRE flag status in SSR. However, if the is written to TDR when the TDRE flag is 0, that is, when the previous data has not been transferred to TSR yet, the previous data in TDR is lost. Be sure to write transmit data to after verifying that the TDRE flag is set to 1.

Rev. 2.00 Sep. 28, 2009 Page 462 of 994 REJ09B0452-0200

write to TDR, clear TDRE in this order, and then start transmission. To transmit data in transmission mode, initialize the SCI first.

Figure 15.33 shows a sample flowchart for mode transition during transmission. Figures 15.35 show the pin states during transmission.

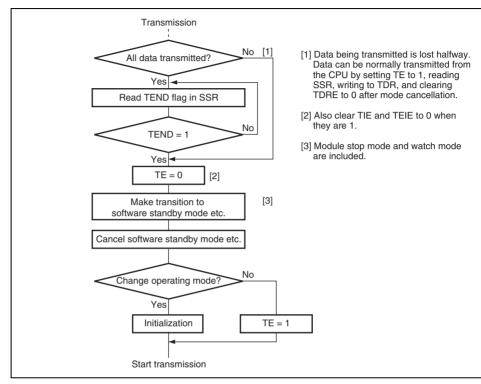


Figure 15.33 Sample Flowchart for Mode Transition during Transmissio

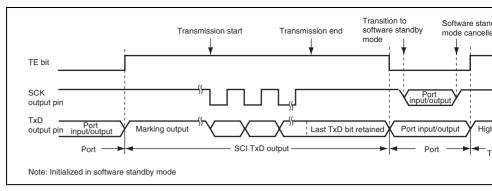


Figure 15.35 Pin States during Transmission in Clocked Synchronous Mod (Internal Clock)

Rev. 2.00 Sep. 28, 2009 Page 464 of 994 REJ09B0452-0200

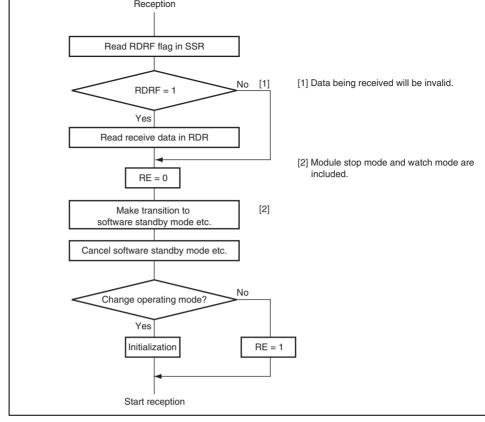


Figure 15.36 Sample Flowchart for Mode Transition during Reception

Rev. 2.00 S

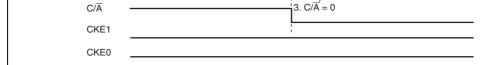


Figure 15.37 Switching from SCK Pins to Port Pins

To prevent the low pulse output that is generated when switching the SCK pins to the point specify the SCK pins for input (pull up the SCK/port pins externally), and follow the problem with DDR = 1, DR = 1, $C/\overline{A} = 1$, CKE1 = 0, CKE0 = 0, and TE = 1.

- 1. End serial data transmission
- 2. TE bit = 0
- 3. CKE1 bit = 1
- 4. C/A bit = 0 (switch to port output)
- 5. CKE1 bit = 0

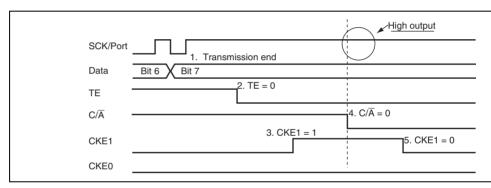
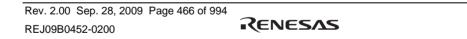
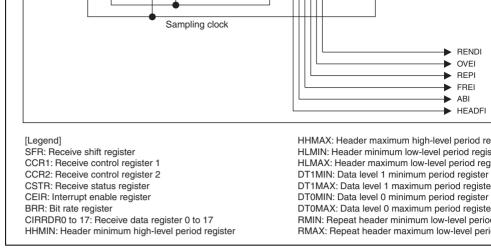



Figure 15.38 Prevention of Low Pulse Output at Switching from SCK Pins to Po


Rev. 2.00 Sep. 28, 2009 Page 468 of 994 REJ09B0452-0200

- Noise canceling function Input noise can be filtered out by using a maximum of four stages of filters.
- Polarity inversion of the input signal supported
- 18-byte FIFO incorporated
- Six interrupt sources: receive end, framing error, overrun error, repeat detection, abore generation, and header detection
 Interrupt sources can be specified by checking each flag.

Figure 16.1 is a block diagram of the CIR.

Rev. 2.00 Sep. 28, 2009 Page 470 of 994 REJ09B0452-0200

Table 16.2 shows the CIR register configuration.

Register Name	Abbreviation	R/W	Initial Value
Receive control register 1	CCR1	R/W	H'00
Receive control register 2	CCR2	R/W	H'00
Receive status register	CSTR	R/W	H'00
Interrupt enable register	CEIR	R/W	H'00
Bit rate register	BRR	R/W	H'FF
Receive data register 0 to 17	CIRRDR0 to CIRRDR17	R	H'00
Header minimum high-level period register	HHMIN	R/W	H'0000
Header maximum high-level period register	HHMAX	R/W	H'0000
Header minimum low-level period register	HLMIN	R/W	H'00
Header maximum low-level period register	HLMAX	R/W	H'00
Data level 0 minimum period register	DTOMIN	R/W	H'00
Data level 0 maximum period register	DTOMAX	R/W	H'00
Data level 1 minimum period register	DT1MIN	R/W	H'00
Data level 1 maximum period register	DT1MAX	R/W	H'00

Table 16.2 List of Register Addresses

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7	CIRE	0	R/W	CIR Receive Enable
				0: The CIR reception is disabled.
				1: The CIR reception is enabled (Port is CIRI pin).
6	SRES	0	R/W	CIR Software Reset
				Controls initialization of the internal sequence CIR.
				0: Normal operation
				1: The internal sequencer is cleared.
				Writing 1 to this bit generates a clear signal for internal sequencer in the corresponding mode resulting in the initialization of the CIR's interr
5	CPHS	0	R/W	Input Signal Polarity Select
				0: CIR input signal is used as is.
				1: CIR input signal is inverted before use.
4	MLS	0	R/W	Receive Data Format Select
				0: LSB-first data is received.
				1: MSB-first data is received.

CCR1 enable/disable the CIR reception, controls a software reset of the CIR, select the per the CIR input signals, and select the reference clock for CIR reception.

Rev. 2.00 Sep. 28, 2009 Page 472 of 994 REJ09B0452-0200

1	CLK1	0	R/W	Reference Clock
0	CLK0	0	R/W	00: Internal clock ϕ
				01: Internal clock φ/2
				10: Internal clock φ/4
				11: subclock φsub

16.3.2 Receive Control Register 2 (CCR2)

CCR2 consists of the bits that select the CIR communication format.

Bit	Bit Name	Initial Value	R/W	Description
7	TFM1	0	R/W	Reception Signal Format Select
6	TFM0	0	R/W	00: NEC format (4 bytes are used) (Address, address, command, and con stored in CIRRDR.)
				01: NEC format (2 bytes are used) (Address and command are stored in (
				10: Setting prohibited
				11: Setting prohibited
5 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

RENESAS

				[Clearing condition]
				When the CIR has finished data reception.
6	CIRRDRF	0	R	Receive Data Register Full
				Indicates whether CIRRDR contains a recei or not. This bit cannot be modified.
				[Setting condition]
				When a receive data is stored into CIRRDR
				[Clearing condition]
				When a receive data has been read from CI
5	REPF	0	R/W*	Repeat Detection Flag
				Indicates a repeat is generated.
				[Setting condition]
				When a repeat is detected.
				[Clearing condition]
				When writing 0 after reading REPF = 1.
4	OVRF	0	R/W*	Overrun Error Flag
				Indicates CIRRDR overflows.
				[Setting condition]
				When the next data is stored in CIRRDR wh CIRRDR is full.
				[Clearing condition]
				When writing 0 after reading OVRF = 1.

Rev. 2.00 Sep. 28, 2009 Page 474 of 994 REJ09B0452-0200

				(transfer format) is detected.
				[Setting condition]
				When data other than logic 0 or 1 is detect
				[Clearing condition]
				When writing 0 after reading ABF = 1.
1	FRF	0	R/W*	Framing Error Flag
				[Setting condition]
				• When a stop is detected during data re-
				• When the time period of a stop is too sh
				[Clearing condition]
				When writing 0 after reading FRF = 1.
0	HEADF	0	R/W*	Header Detection Flag
				[Setting condition]
				When a header is detected.
				[Clearing condition]
				When writing 0 after reading HEADF = 1.
Noto:		be writter	a ta claar tha	flog

Note: * Only 0 can be written to clear the flag.

Renesas

_				1: REPI interrupt request is enabled.
4	OVEIE	0	R/W	Overrun Error Interrupt Enable
				0: OVEI interrupt request is disabled.
				1: OVEI interrupt request is enabled.
3	RENDIE	0	R/W	Receive End Interrupt Enable
				0: RENDI interrupt request is disabled.
				1: RENDI interrupt request is enabled.
2	ABIE	0	R/W	Abort Interrupt Enable
				0: ABI interrupt request is disabled.
				1: ABI interrupt request is enabled.
1	FREIE	0	R/W	Framing Error Interrupt Enable
				0: FREI interrupt request is disabled.
				1: FREI interrupt request is enabled.
0	HEADFIE	0	R/W	Header Detection Interrupt Enable
				0: HEADFI interrupt request is disabled.
				1: HEADFI interrupt request is enabled.

Rev. 2.00 Sep. 28, 2009 Page 476 of 994 REJ09B0452-0200

The following formula is used for calculating the bit rate, and the following table shows setting examples to obtain a target bit rate.

B = T / (N + 1)

- B: Bit rate (bits/s)
- T: Frequency of the reference clock (Hz) set by the CLK1 and CLK0 bits in CCR1 (ϕ , ϕ ϕ sub)
- N: Set value in BRR ($0 \le N \le 255$)

Carrier Frequency	ф	CLK1 and CLK0 Setting	BRR Setting Value	Bit Rate (Kbit/s)	Devia Targe Frequ
38kHz	20 MHz	φ	H'FF	78.1	51.36
		ф/2	H'FF	39.1	2.72%
		φ/4	H'83	37.9	-0.32
	10 MHz	φ	H'FF	39.1	2.72%
		φ/2	H'83	37.9	-0.32
		ф/4	H'41	37.9	-0.32
	8 MHz	φ	H'D2	37.9	-0.23
		ф/2	H'69	37.7	-0.70
		φ/4	H'34	37.7	-0.70
	_	φsub	H'00	32.8	2.34%

Table 16.3 Setting Example of BRR

16.3.7 Header Minimum/Maximum High-Level Period Register (HHMIN and HI

HHMIN and HHMAX control the noise canceler circuit, and specify the minimum and n high-level period for a header or repeat header, and low-level period for a stop.

• HHMIN

Bit Name	Initial Value	R/W	Description
RFMBN4 to	All 0	R	Receive Byte Counter
RFMBN0			The RFMBN value is incremented by 1 (+1) time a byte is received. However, when RFM reaches B'10011, an overrun error occurs. A time, a receive data is not stored in CIRRDR
			When CIRRDR is read after the CIR has fini receiving (CIRBUSY = 0), RFMBN is decren by 1 (-1). When CIRRDR is read while RFM B'00000, an undefined value is read. When is read during the CIR reception, an undefin- is read and RFMBN is not decremented.
_	0	R/W	Reserved
			The initial value should not be changed.
HHMIN9 to HHMIN0	All 0	R/W	Specifies the minimum high-level period for or repeat header and the minimum low-level for a stop.
	RFMBN4 to RFMBN0	Bit Name Value RFMBN4 to RFMBN0 All 0	Bit NameValueR/WRFMBN4 to RFMBN0All 0R0R/WHHMIN9 toAll 0R/W

Rev. 2.00 Sep. 28, 2009 Page 478 of 994 REJ09B0452-0200

RENESAS

13	FLIE	0		Noise Canceler Circuit Enable
				0: Disables the noise canceler circuit
				1: Enables the noise canceler circuit
12	FLTCK1	0	R/W	Division Ratio Select for Noise Canceler C
11	FLTCK0	0	R/W	Clock
				Divides the frequency of the sampling clock reception selected by BRR.
				00: Not divided
				01: Divided by 2
				10: Divided by 4
				11: Divided by 8
10		0	R/W	Reserved
				The initial value should not be changed.
9 to 0	HHMAX9 to HHMAX0	All 0	R/W	Specifies the maximum high-level period for header or repeat header and the maximum period for a stop.

• HLMAX

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	HLMAX7 to HLMAX0	H'00	R/W	Specifies the maximum low-level period for a

16.3.9 Data Level 1 Minimum/Maximum Period Register (DT1MIN/DT1MAX)

DT1MIN and DT1MAX specify the minimum and maximum low-level period for logic 1

• DT1MIN

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	DT1MIN7 to DT1MIN0	H'00	R/W	Specifies the minimum low-level period for lo

• DT1MAX

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	DT1MAX7 to DT1MAX0	H'00	R/W	Specifies the maximum low-level period for I

Rev. 2.00 Sep. 28, 2009 Page 480 of 994 REJ09B0452-0200

• DT0MAX

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	DT0MAX7 to DT0MAX0	H'00	R/W	Specifies the maximum low/high-level period 0, high-level period for logic 1, and high-lev for a stop/repeat.

16.3.11 Repeat Header Minimum/Maximum Low-Level Period Register (RMIN/

RMIN and RMAX specify the minimum and maximum low-level period for a repeat he

• RMIN

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	RMIN7 to RMIN0	H'00	R/W	Specifies the minimum low-level period for header.

• RMAX

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	RMAX7 to RMAX0	H'00	R/W	Specifies the maximum low-level period for header.

RENESAS

Figure 16.2 NEC Format

(1) Header, Address, and Command

When a 9-ms high level and the following 4.5-ms low level are detected, they are recognisheder. For addresses and commands, when both of a high-level period and the following level period are 0.56 ms, they are recognized as logic 0. When a high-level period is 0.56 the following low-level period is 1.78 ms, they are recognized as logic 1.

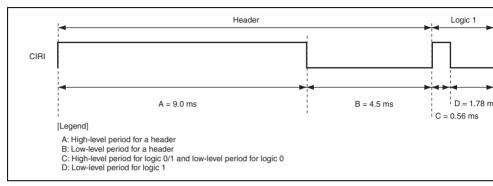
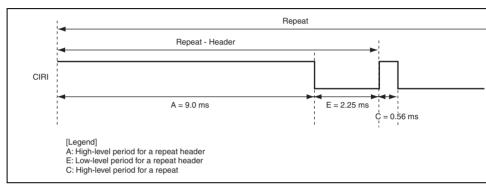


Figure 16.3 Header, Address, and Command

Rev. 2.00 Sep. 28, 2009 Page 482 of 994 REJ09B0452-0200



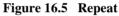

[Legend] A: Low-level period for a stop C: High-level period for logic 0/1, low-level period for logic 0, and high-level period for a stop D: Low-level period for logic 1

Figure 16.4 Stop

(3) Repeat

When a key of the remote controller remains pressed, the command is sent only once, for a repeat signal. When a 9-ms high level and the following 2.25-ms low level are detecter recognized as a repeat header.

- (ϕ , $\phi/2$, $\phi/4$, or ϕ sub)
- N: Setting value in BRR ($0 \le N \le 255$)
- M: Value in the maximum/minimum value setting register

Rev. 2.00 Sep. 28, 2009 Page 484 of 994 REJ09B0452-0200

level period for a stop					
Minimum low-level period for a header	HLMIN	В	H'3D	3.20 ms	3.15 ms
Maximum low-level period for a header	HLMAX	В	H'6F	5.82 ms	5.85 ms
Minimum value of low/high- level period for logic 0, high- level period for logic 1, and high-level period for a burst	DTOMIN	С	H'07	0.37 ms	0.39 ms
Maximum value of low/high- level period for logic 0, high- level period for logic 1, and high-level period for a burst	DTOMAX	С	H'0D	0.68 ms	0.73 ms
Minimum low-level period for logic 1	DT1MIN	D	H'0F	0.78 ms	0.78 ms
Maximum low-level period for logic 1	DT1MAX	D	H'1B	1.42 ms	1.46 ms
Minimum low-level period for a repeat header	RMIN	E	H'1F	1.62 ms	1.58 ms
Maximum low-level period for a repeat header	RMAX	E	H'37	2.88 ms	2.92 ms

Note: The above table shows the values when the system clock is 10MHz, CLK1, CLK0 and BRR = H'82 (when the error is 30%).

RENESAS

1	Byte 0	1	Byte 0
2	H'00	2	Byte 1
3	H'00	3	Byte 2
4	H'00	4	H'00
18	H'00	18	H'00

Operation when FIFO Data is Received

Fi	First read			econd read		Third read		
	Number of bytes	FIFO Contents		Number of bytes	FIFO Contents		Number of bytes	FIFO
	1	Byte 1		1	Byte 2		1	H'00
	2	Byte 2		2	H'00		2	H'00
	3	H'00		3	H'00		3	H'00
	4	H'00		4	H'00		4	H'00
	•				•			
					•			
	18	H'00		18	H'00		18	H'00

Figure 16.7

Operation when FIFO Data is Read

Rev. 2.00 Sep. 28, 2009 Page 486 of 994 REJ09B0452-0200

RENESAS

- Select the subclock (ϕ sub) as the operating clock for the CIR module.
- Enable the CIR header-detected interrupt.

For a transition from watch mode to high-speed mode, the CIR module generates an interdetection of a received header, in accord with the settings before the transition.

The module is released from watch mode when the interrupt is generated, and makes the to the high- or medium-speed mode.

16.4.4 Switching between System Clock and Sub Clock

If the operating clock is switched from the system clock to the subclock (ϕ sub) while the module is operating, operation may not proceed correctly. To switch the operating clock to stop the CIR module (by clearing the CIRE bit) beforehand.

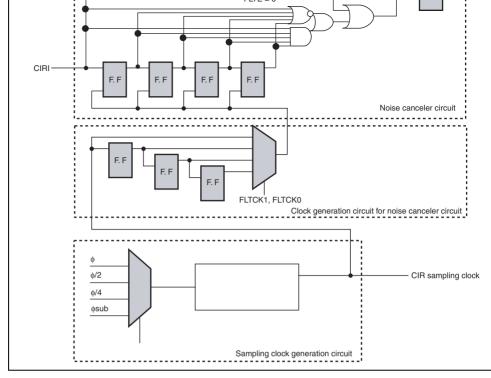


Figure 16.8 Noise Canceler Circuit

Rev. 2.00 Sep. 28, 2009 Page 488 of 994 REJ09B0452-0200

				4	64.5
	Divided by 2	25.8 μs	0	25.8	
				2	77.4
				4	129
		Divided by 4	51.6 μs	0	51.6
				2	154
				4	258
		Divided by 8	103.2 μs	0	103
				2	309
				4	516
 φsub	H'00	Not divided	31.3 μs	0	31.3
				1	62.5
				2	93.8
				3	125
				4	156
		Divided by 2	62.5 μs	0	62.5
				2	187
				4	312
		Divided by 4	125 μs	0	125
				2	375
				4	625
		Divided by 8	250 μs	0	250
				2	750
				4	1.25

	CEIK		CIKKDK	CSIK	BIUCK
System reset	Initialized	Initialized	Initialized	Initialized	Initialized
SRES software reset	Retained	Initialized	Initialized	Initialized	Initialized
Abort	Retained	Retained	Retained	Retained * (CIRBUSY is initialized.)	Initialized

16.7 Interrupt Sources

The CIR has six interrupt source flags for this LSI. Setting the corresponding enable bit t enables the relevant interrupt request to be issued. Since the six interrupt requests are all one vector address, it is necessary for the CPU to check the interrupt request flags in order determine which interrupt source has caused the interrupt to be requested.

Table 16.7Interrupt Sources

Interrupt Name	Interrupt Source	Interrupt Enal	
RENDI	REND	Receive end	RENDIE
OVEI	OVRF	Overrun error	OVEIE
REPI	REPF	Repeat detection	REPIE
FREI	FRF	Framing error	FREIE
ABI	ABF	Abort	ABIE
HEADFI	HEADF	Header detection	HEADFIE

Rev. 2.00 Sep. 28, 2009 Page 490 of 994 REJ09B0452-0200

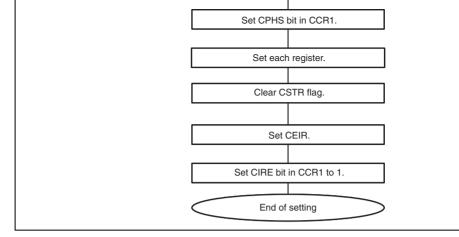


Figure 16.9 CIR Setting Flow

The CPHS bit in CCR1 should be set before starting reception. When the CIRI pin is hig idle state, set the CPHS bit to 1. When it is low in the idle state, clear the bit to 0. The B register is initialized to H'FF by setting the SRES bit in CCR1 to 1. After setting each re the CIR, set the CIRE bit in CCR1 to 1 to enable the CIR reception.

(2) Switching between System Clock and Sub Clock

The CIR is capable of remote-control reception by using the sub clock in watch mode. E switching between the system clock and the sub clock, the CIR must be stopped by clear CIRE bit to 0.

Renesas

Rev. 2.00 Sep. 28, 2009 Page 492 of 994 REJ09B0452-0200

In addition, the SCIF can be connected to the LPC interface for direct control from the I

17.1 Features

• Full-duplex communication:

The transmitter and receiver are independent, enabling transmission and reception to executed simultaneously. Both the transmitter and receiver use 16-stage FIFO buffer enabling continuous transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected
- Modem control function
- Data length: Selectable from 5, 6, 7, and 8 bits
- Parity: Selectable from even parity, odd parity, and no parity
- Stop bit length: Selectable from 1, 1.5, and 2 bits
- Receive error detection: Parity, overrun, and framing errors
- Break detection

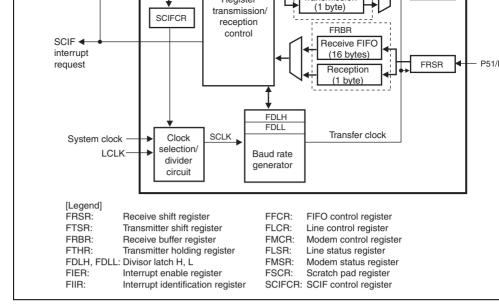


Figure 17.1 Block Diagram of SCIF

Rev. 2.00 Sep. 28, 2009 Page 494 of 994 REJ09B0452-0200

RTS	PB7	Output	Transmission request output
CTS	PB6	Input	Transmission permission input
DTR	PB5	Output	Data terminal ready output
DSR	PB4	Input	Data set ready input
DCD	PB3	input	Data camer detect input

Renesas

	Appreviation			Address
Host interface control register 5	HICR5	R/W	H'00	H'FFFE33 8
Module stop control register B	MSTPCRB	R/W	H'00	H'FFFE7F 8
Receive buffer register	FRBR	R	H'00	H'FFFC20 8
Transmitter holding register	FTHR	W	_	_
Divisor latch L	FDLL	R/W	H'00	_
Interrupt enable register	FIER	R/W	H'00	H'FFFC21 8
Divisor latch H	FDLH	R/W	H'00	_
Interrupt identification register	FIIR	R	H'01	H'FFFC22 8
FIFO control register	FFCR	W	H'00	_
Line control register	FLCR	R/W	H'00	H'FFFC23 8
Modem control register	FMCR	R/W	H'00	H'FFFC24 8
Line status register	FLSR	R	H'60	H'FFFC25 8
Modem status register	FMSR	R	_	H'FFFC26 8
Scratch pad register	FSCR	R/W	H'00	H'FFFC27 8
SCIF control register	SCIFCR	R/W	H'00	H'FFFC28 8
SCIF address register H	SCIFADRH	R/W	H'03	H'FFFDC4 8
SCIF address register L	SCIFADRL	R/W	H'F8	H'FFFDC5 8
Serial IRQ control register 4	SIRQCR4	R/W	H'00	H'FFFE3B 8

Rev. 2.00 Sep. 28, 2009 Page 496 of 994 REJ09B0452-0200

17.3.1 Receive Shift Register (FRSR)

FRSR is a register that receives data and converts serial data input from the FRxD pin to data. It stores the data in the order received from the LSB (bit 0). When one frame of ser has been received, the data is transferred to FRBR.

FRSR cannot be read from the CPU/LPC interface.

17.3.2 Receive Buffer Register (FRBR)

FRBR is an 8-bit read-only register that stores received serial data. It can read data correcte the DR bit in FLSR is set.

When the FIFO is disabled, the data in FRBR must be read before the next data is received data is received before the remaining data is read, the data is overwritten, resulting in an error.

When this register is read with the FIFO enabled, the first buffer of the receive FIFO is a When the receive FIFO becomes full, the subsequent receive data is lost, resulting in an error.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to	All 0	R	Stores received serial data.
	bit 0			The data is 16 bytes when the FIFO is en

RENESAS

DLAB bit in FLCR is 0. Write transmit data while the THRE bit in FLCR is set to 1.

Data can be written to FTHR when the THRE bit is set with the FIFO disabled. If data is FTHR when the THRE bit is not set, the data is overwritten.

While the THRE bit is set with the FIFO enabled, up to 16 bytes of data can be written. It written with the FIFO full, the written data is lost.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	_	W	Stores serial data to be transmitted.
				The data is 16 bytes when the FIFO is ena

17.3.5 Divisor Latch H, L (FDLH, FDLL)

The FDLH and FDLL are registers used to set the baud rate. They are accessible when the bit in FLCR is 1. Frequency division ranging from 1 to $(2^{16} - 1)$ can be set with these registers the frequency divider circuit stops when both of FDLH and FDLL are 0 (initial value).

• FDLH

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	All 0	R/W	Upper 8 bits of divisor latch

Rev. 2.00 Sep. 28, 2009 Page 498 of 994	-
REJ09B0452-0200	RENESAS

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 0	R	Reserved
				This bit is always read as 0 and cannot be
3	EDSSI	0	R/W	Modem Status Interrupt Enable
				0: Modem status interrupt disabled
				1: Modem status interrupt enabled
2	ELSI	0	R/W	Receive Line Status Interrupt Enable
				0: Receive line status interrupt disabled
_				1: Receive line status interrupt enabled
1	ETBEI	0	R/W	FTHR Empty Interrupt Enable
				0: FTHR empty interrupt disabled
				1: FTHR empty interrupt enabled
0	ERBFI	0	R/W	Receive Data Ready Interrupt Enable
				A character timeout interrupt is included v FIFO is enabled.
				0: Receive data ready interrupt disabled
				1: Receive data ready interrupt enabled

is 0.

Renesas

				These bits are always read as 0 and canno modified.
3	INTID2	0	R	Interrupt ID2, ID1, ID0
2	INTID1	0	R	These bits Indicate the interrupt of the high
1	INTID0	0	R	priority among the pending interrupts.
				000: Modem status
				001: FTHR empty
				010: Receive data ready
				011: Receive line status
				110: Character timeout (when the FIFO is e
0	INTPEND	1	R	Interrupt Pending
				Indicates whether one or more interrupts an pending.
				0: Interrupt pending
				1: No interrupt pending

Rev. 2.00 Sep. 28, 2009 Page 500 of 994 REJ09B0452-0200

							remaining, FIFO trigger level	receive below level.
	1	1	0	0	2	Character timeout (with FIFO enabled)	No data is input to or output from the receive FIFO for the 4-character time period while one or more characters remain in the receive FIFO.	FRBR
	0	0	1	0	3	FTHR empty	FTHR empty	FIIR re FTHR
,	0	0	0	0	4 (low)	Modem status	CTS, DSR, RI, DCD	FMSR

				10: 8 bytes
				11: 14 bytes
5, 4	-		—	Reserved
				These bits cannot be modified.
3	DMAMODE	0		DMA Mode
				This bit is not supported and cannot be more
2	XMITFRST	0	W	Transmit FIFO Reset
				The transmit FIFO data is cleared when 1 is However, FTSR data is not cleared. This bis automatically cleared.
1	RCVRFRST	0	W	Receive FIFO Reset
				The receive FIFO data is cleared when 1 is However, FRSR data is not cleared.
				This bit is automatically cleared.
0	FIFOE	0	W	FIFO Enable
				0: Transmit/receive FIFOs disabled
				All bytes of these FIFOs are cleared.
				1: Transmit/receive FIFOs enabled

Rev. 2.00 Sep. 28, 2009 Page 502 of 994 REJ09B0452-0200

				1. FULL and FULH access enabled
6	BREAK	0	R/W	Break Control
				Generates a break by driving the serial ou FTxD low.
				The break state is released by clearing thi
				0: Break released
				1: Break generated
5 STICK PARITY		0	R	Stick Parity
			These bits are not supported in this LSI.	
			These bits are always read as 0 and cann modified.	
4	EPS	0	R/W	Parity Select
				Selects even or odd parity when the PEN
				0: Odd parity
				1: Even parity
3	PEN	0	R/W	Parity Enable
				Selects whether to add a parity bit for data transmission and whether to perform a par for data reception.
				0: No parity bit added/parity check disable
				1: Parity bit added/parity check enabled

length.
00: Data length is 5 bits
01: Data length is 6 bits
10: Data length is 7 bits
11: Data length is 8 bits

17.3.10 Modem Control Register (FMCR)

FMCR controls output signals.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 1 and canno modified.
4	LOOP	0	R/W	Loopback Test
	BACK			The transmit data output is internally conne the receive data input, and the transmit data pin (FRxD) becomes 1. The receive data in disconnected from external sources. The fo control input pins (DSR, CTS, RI, and DCD disconnected from external sources, and th internally connected to the four modem con signals (DTR, RTS, OUT1, and OUT2), res The transmit data is received immediately in loopback mode. Enabling/disabling of interr by the OUT2LOOP bit in SCIFCR and FIER
				0: Loopback function disabled
				1: Loopback function enabled

Rev. 2.00 Sep. 28, 2009 Page 504 of 994 REJ09B0452-0200

				No effect on operation
				Loopback test
				Internally connected to the \overline{RI} input pin.
1	RTS	0	R/W	Request to Send
				Controls the $\overline{\text{RTS}}$ output.
				0: RTS output is high level
				1: RTS output is low level
0	DTR	0	R/W	Data Terminal Ready
				Controls the $\overline{\text{DTR}}$ output.
				0: DTR output is high level
				1: DTR output is low level

Renesas

				When FRBR is read or FLSR is read while no remaining data that could cause an error FIFO clear.
				1: A receive FIFO error
				[Setting condition]
				When at least one data error (parity error, error, or break interrupt) has occurred in th
6	TEMT	1	R	Transmitter Empty
				Indicates whether transmit data remains.
				When the FIFO is disabled
				0: Transmit data remains in FTHR or FTSF
				[Clearing condition]
				Transmit data is written to FTHR.
				1: No transmit data remains in FTHR and
				[Setting condition]
				When no transmit data remains in FTHR a
				When the FIFO is enabled
				0: Transmit data remains in the transmit F FTSR.
				[Clearing condition]
				Transmit data is written to FTHR.
				1: No transmit data remains in the transmi and FTSR.
				[Setting condition]
				When no transmit data remains in the tran and FTSR

Rev. 2.00 Sep. 28, 2009 Page 506 of 994 REJ09B0452-0200

				[Setting condition]
				When the transmit FIFO becomes empty
				When the FIFO is disabled
				0: Transmit data remains in FTHR.
				[Clearing condition]
				Transmit data is written to FTHR
				1: No transmit data in FTHR
				[Setting condition]
				When data transfer from FTHR to FTSR completed
4	BI	0	R	Break Interrupt
				Indicates detection of the receive data br When the FIFO is enabled, a break interr in any receive data in the FIFO, and this when the receive data is in the first FIFO Reception of the next data starts after the receive data becomes mark and a valid s received.
				0: Break signal not detected
				[Clearing condition]
				FLSR read
				1: Break signal detected
				[Setting condition]
				When input receive data stays at space (for a reception time exceeding the length frame

				[Clearing condition]
				FLSR read
				1: A framing error
				[Setting condition]
				Invalid stop bit in the receive data
2	PE	0	R	Parity Error
				This bit indicates a parity error in the receive when the PEN bit in FLCR is 1. When the enabled, this error occurs in any receive da FIFO, and this bit is set when the receive of the first FIFO buffer.
				0: No parity error
				[Clearing condition]
				FLSR read
				If this bit is set during an overrun error, rea twice.
				1: A parity error
				[Setting condition]
				Detection of parity error in receive data

Rev. 2.00 Sep. 28, 2009 Page 508 of 994 REJ09B0452-0200

				FIFO data is retained, but the last receive lost.
				0: No overrun error
				[Clearing condition]
				FLSR read
				1: An overrun error
				[Setting condition]
				Occurrence of an overrun error
0	DR	0	R	Data Ready
				Indicates that receive data is stored in FF FIFO.
				0: No receive data
				[Clearing condition]
				FRBR is read or all of the FIFO data is re
				1: Receive data remains.
				[Setting condition]
				Reception of data

				Indicates the inverted state of the \overline{DSR} inp
4	CTS	Undefined	R	Clear to Send
				Indicates the inverted state of the $\overline{\text{CTS}}$ input
3	DDCD	0	R	Delta Data Carrier Indicator
				Indicates a change in the $\overline{\text{DCD}}$ input signa DDCD bit is read.
				0: No change in the DCD input signal after read
				[Clearing condition]
				FMSR read
				1: A change in the DCD input signal after F read
				[Setting condition]
				A change in the $\overline{\text{DCD}}$ input signal
2	TERI	0	R	Trailing Edge Ring Indicator
				Indicates a rise in the \overline{RI} input signal after the bit is read.
				0: No change in the \overline{RI} input signal after FN
				[Clearing condition]
				FMSR read
				1: A rise in the \overline{RI} input signal after FMSR
				[Setting condition]
				A rise in the \overline{RI} input pin

Rev. 2.00 Sep. 28, 2009 Page 510 of 994 REJ09B0452-0200

				[Setting condition]
				A change in the $\overline{\text{DSR}}$ input signal
0	DCTS	0	R	Delta Clear to Send Indicator
				Indicates a change in the $\overline{\text{CTS}}$ input signa DCTS bit is read.
				0: No change in the CTS input signal afte read
				[Clearing condition]
				FMSR read
				1: A change in the CTS input signal after read
				[Setting condition]
				A change in the $\overline{\text{CTS}}$ input signal

17.3.13 Scratch Pad Register (FSCR)

FSCR is not used for SCIF control, but is used to temporarily store program data.

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	Bit 7 to bit 0	All 0	R/W	Temporarily stores program data.

RENESAS

4	OUT2LOOP	0	R/W	Enables or disables interrupts during a loo test.
				0: Interrupt enabled
				1: Interrupt disabled
3	CKSEL1	0	R/W	These bits select the clock (SCLK) to be in
2	CKSEL0	0	R/W	baud rate generator.
				00: LCLK divided by 18
				01: System clock divided by 11
				10: Reserved for LCLK (not selectable)
				11: Reserved for system clock (not selecta
1	SCIFRST	0	R/W	Resets the baud rate generator, FRSR, an
				0: Normal operation
				1: Reset
0	REGRST	0	R/W	Resets registers (except SCIFCR) accessi the H8S CPU or LPC interface.
				0: Normal operation
				1: Reset

Rev. 2.00 Sep. 28, 2009 Page 512 of 994 REJ09B0452-0200

and P50 pins are set to PORT.

Renesas

CKSEL1,			0,010111		
CKSEL0	(33 MHz) div	ided by 18	(20 MHz) divided by 11		(10 MHz) divide
Baud rate	FDLH, FDLL (Hex)	Error (%)	FDLH, FDLL (Hex)	Error (%)	FDLH, FDLL (Hex)
50	0900	0.54 %	0900	1.36 %	0480
75	0600	0.54 %	0600	1.36 %	0300
110	0417	0.54 %	0417	1.36 %	<u> </u>
300	0180	0.54 %	0180	1.36 %	00C0
600	00C0	0.54 %	00C0	1.36 %	0060
1200	0060	0.54 %	0060	1.36 %	0030
1800	0040	0.54 %	0040	1.36 %	0020
2400	0030	0.54 %	0030	1.36 %	0018
4800	0018	0.54 %	0018	1.36 %	000C
9600	000C	0.54 %	000C	1.36 %	0006
14400	0008	0.54 %	0008	1.36 %	0004
19200	0006	0.54 %	0006	1.36 %	0003
38400	0003	0.54 %	0003	1.36 %	·
57600	0002	0.54 %	0002	1.36 %	0001
115200	0001	0.54 %	0001	1.36 %	

Rev. 2.00 Sep. 28, 2009 Page 514 of 994 REJ09B0452-0200

endoling continuous data transmission and reception.

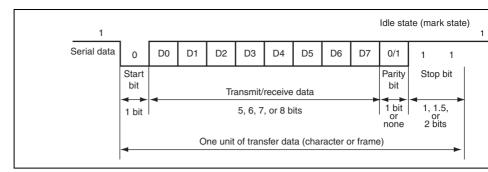


Figure 17.2 Data Format in Serial Transmission/Reception (Example with 8-Bit Data, Parity and 2 Stop Bits)

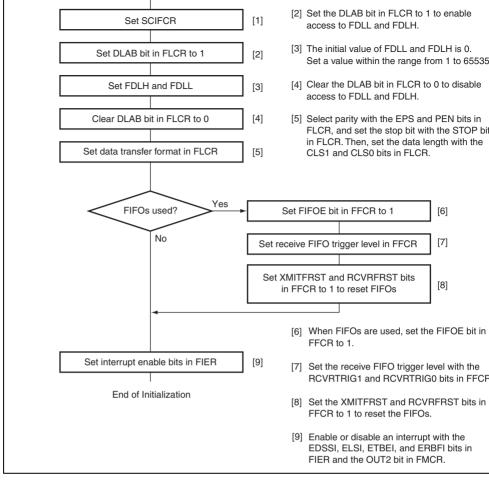
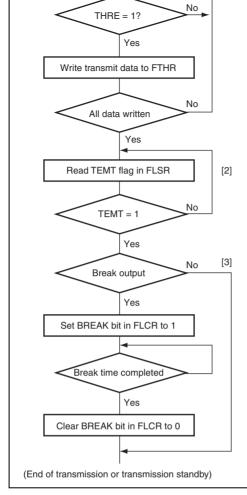
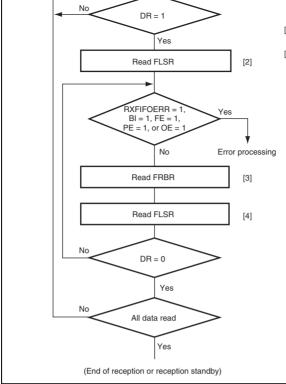



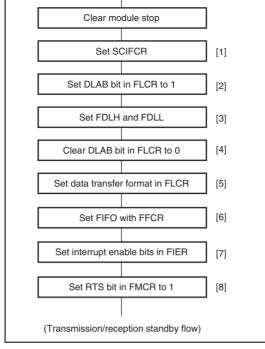
Figure 17.3 Example of Initialization Flowchart

Rev. 2.00 Sep. 28, 2009 Page 516 of 994 REJ09B0452-0200



- T to ensure that all transmit data has been transmi
- [3] To output a break at the end of serial transmission BREAK bit in FLCR to 1. After completion of the b clear the BREAK bit in FLCR to 0 to clear the brea

Figure 17.4 Example of Data Transmission Flowchart



- set to 1, a receive line status interrupt occurs.
- [3] Read the receive data in FRBR.
- [4] Check the DR flag in FLSR. When the DR flag is cleared to 0 and all data has been read, data recept is complete.

Figure 17.5 Example of Data Reception Flowchart

- the SCIFOE1 and SCIFOE0 bits in SCIFCR.
- [2] Set the DLAB bit in FLCR to 1 to enable access FDLL and FDLH.
- [3] The initial value of FDLL and FDLH is 0. Set a value within the range from 1 to 65535.
- [4] Clear the DLAB bit in FLCR to 0 to disable acce FDLL and FDLH.
- [5] Select parity with the EPS and PEN bits in FLCF set the stop bit with the STOP bit in FLCR. Then the data length with the CLS1 and CLS0 bits in I
- [6] Set the FIFOE bit in FFCR to 1 to enable the FIF

Set the receive FIFO trigger level with the RCVF and RCVRTRIG0 bits in FFCR. Select the best to level to prevent an overflow of the receive FIFO.

- [7] Set the EDSSI and ERBFI bits in FIER to 1 to er modem status interrupt and receive data ready i
- [8] Set the RTS bit in FMCR to 1.

Figure 17.6 Example of Initialization Flowchart

Figure 17.7 Example of Data Transmission/Reception Standby Flowchart

Rev. 2.00 Sep. 28, 2009 Page 520 of 994 REJ09B0452-0200

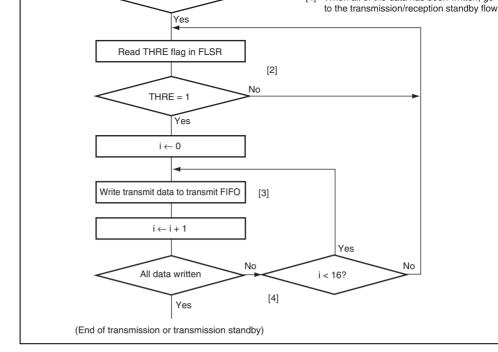


Figure 17.8 Example of Data Transmission Flowchart

Rev. 2.00 Sep. 28, 2009 Pag REJ09

3-

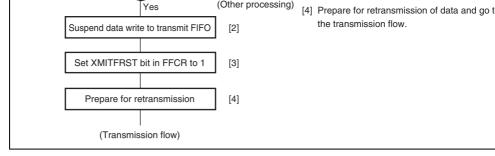


Figure 17.9 Example of Data Transmission Suspension Flowchart

Rev. 2.00 Sep. 28, 2009 Page 522 of 994 REJ09B0452-0200

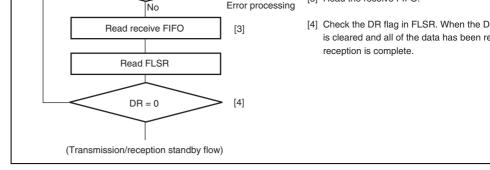
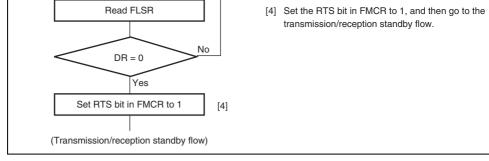



Figure 17.10 Example of Data Reception Flowchart

Rev. 2.00 Sep. 28, 2009 Page 524 of 994 REJ09B0452-0200

LPC Inter	face I/O A				SCI	
Bits 15 to 3	Bit 2	Bit 1	Bit 0	R/W	Condition	Reg
SCIFADR (bits 15 to 3)	0	0	0	R	FLCR[7] = 0	FRE
				W	FLCR[7] = 0	FTF
				R/W	FLCR[7] = 1	FDL
SCIFADR (bits 15 to 3)	0	0	1	R/W	FLCR[7] = 0	FIE
				R/W	FLCR[7] = 1	FDL
SCIFADR (bits 15 to 3)	0	1	0	R		FIIF
				W		FFC
SCIFADR (bits 15 to 3)	0	1	1	R/W		FLC
SCIFADR (bits 15 to 3)	1	0	0	R/W		FM
SCIFADR (bits 15 to 3)	1	0	1	R		FLS
SCIFADR (bits 15 to 3)	1	1	0	R		FM
SCIFADR (bits 15 to 3)	1	1	1	R/W	_	FSC

	SCSIRQ3 to 0					
SCIFCR	SCIFOE1, SCIFOE0, OUT2LOOP, CKSEL1, CKSEL0, SCIFRST, REGRST	Initialized	Retained	Retained	Retained	Retained
FRBR	Bits 7 to 0	Initialized	Retained	Initialized	Initialized	Retained
FTHR	Bits 7 to 0	Initialized	Retained	Initialized	Initialized	Retained
FDLL	Bits 7 to 0	Initialized	Retained	Initialized	Initialized	Retained
FDLH	Bits 7 to 0	Initialized	Retained	Initialized	Initialized	Retained
FIIR	FIFOE1, FIFOE0, INTID2 to INTID0, INTPEND	Initialized	Retained	Initialized	Initialized	Retained
FFCR	RCVRTRIG1, RCVRTRIG0, XMITFRST, RCVRFRST, FIFOE	Initialized	Retained	Initialized	Initialized	Retained
FLCR	DLAB, TREAK, EPS, PEN, STOP, CLS1, CLS0	Initialized	Retained	Initialized	Initialized	Retained

Rev. 2.00 Sep. 28, 2009 Page 526 of 994 REJ09B0452-0200

FSCR	Bits 7 to 0	Initialized	Retained	Initialized	Initialized	Retained
SCIF transmissio		Initialized	Initialized	Retained	Initialized	Retained
n sequence (inner state)						

Receive line status	Overrun error, parity error, framing error, break interrupt
Receive data ready	Acceptance of receive data, FIFO trigger level
Character timeout (when FIFO is enabled)	No data is input to or output from the receive FIFO for the 4- character time period while one or more characters remain in the receive FIFO.
FTHR empty	FTHR empty
Modem status	CTS, DSR, RI, DCD

Table 17.10 shows the interrupt source, vector address, and interrupt priority.

Table 17.10 Interrupt Source, Vector Address, and Interrupt Priority

Interrupt		Vector	Vector	
Origin of Interrupt Source	Interrupt Name	Number	Address	
SCIF	SCIF (SCIF interrupt)	82	H'000148	

17.6 Usage Note

17.6.1 Power-Down Mode When LCLK Is Selected for SCLK

To switch to watch mode or software standby mode when LCLK divided by 18 has been for SCLK, use the shutdown function of the LPC interface to stop LCLK.

17.6.2 FLCR Access During Serial Transmission and Reception

Set FLCR to its initial value and do not write to it during serial transmission or reception.

Rev. 2.00 Sep. 28, 2009 Page 528 of 994 REJ09B0452-0200

- Clocked synchronous serial format: non-addressing format without an acknowled master operation only
- Conforms to Philips I²C bus interface (I²C bus format)
- Two ways of setting slave address (I²C bus format)
- Start and stop conditions generated automatically in master mode (l²C bus format)
- Selection of the acknowledge output level in reception (I²C bus format)
- Automatic loading of an acknowledge bit in transmission (l²C bus format)
- Wait function in master mode (I²C bus format)
 - A wait can be inserted by driving the SCL pin low after data transfer, excluding acknowledgement.
 - The wait can be cleared by clearing the interrupt flag.
- Wait function (I²C bus format)
 - A wait request can be generated by driving the SCL pin low after data transfer.
 - The wait request is cleared when the next transfer becomes possible.
- Interrupt sources
 - Data transfer end (including when a transition to transmit mode with I²C bus forr when ICDR data is transferred from ICDRT to ICDRS or from ICDRS to ICDRI during a wait state)
 - Address match: When any slave address matches or the general call address is re slave receive mode with I²C bus format (including address reception after loss of arbitration)
 - Arbitration lost
 - Start condition detection (in master mode)
 - Stop condition detection (in slave mode)

RENESAS

Figure 18.1 shows a block diagram of the I^2C bus interface. Figure 18.2 shows an example pin connections to external circuits. Since I^2C bus interface I/O pins are different in struct normal port pins, they have different specifications for permissible applied voltages. For see section 28, Electrical Characteristics.

Rev. 2.00 Sep. 28, 2009 Page 530 of 994 REJ09B0452-0200

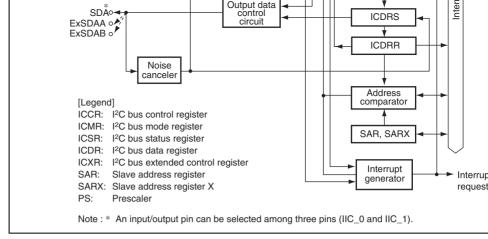


Figure 18.1 Block Diagram of I²C Bus Interface

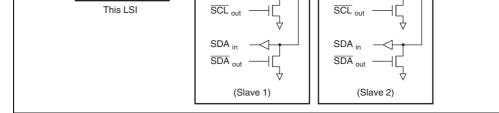


Figure 18.2 I²C Bus Interface Connections (Example: This LSI as Master)

Rev. 2.00 Sep. 28, 2009 Page 532 of 994 REJ09B0452-0200

0	SCL0	Input/Output	Serial clock input/output pin of IIC_0
	SDA0	Input/Output	Serial data input/output pin of IIC_0
1	SCL1	Input/Output	Serial clock input/output pin of IIC_1
	SDA1	Input/Output	Serial data input/output pin of IIC_1
2	SCL2	Input/Output	Serial clock input/output pin of IIC_2
	SDA2	Input/Output	Serial data input/output pin of IIC_2
_	ExSCLA	Input/Output	Serial clock input/output pin of IIC_0
	ExSDAA	Input/Output	Serial data input/output pin of IIC_0
	ExSCLB	Input/Output	Serial clock input/output pin of IIC_0
	ExSDAB	Input/Output	Serial data input/output pin of IIC_0

Note: * In the text, the channel subscript is omitted, and only SCL and SDA are used

RENESAS

Channel	Register Name	Appreviation	R/W	value	Address
Channel 0	I ² C bus extended control register_0	ICXR_0	R/W	H'00	H'FED4 8
	I ² C bus control register_0	ICCR_0	R/W	H'01	H'FFD8 8
	I ² C bus status register_0	ICSR_0	R/W	H'00	H'FFD9 8
	l ² C bus data register_0	ICDR_0	R/W	_	H'FFDE 8
	Second slave address register_0	SARX_0	R/W	H'01	H'FFDE 8
	I ² C bus mode register_0	ICMR_0	R/W	H'00	H'FFDF 8
	Slave address register_0	SAR_0	R/W	H'00	H'FFDF 8
	I ² C bus control initialization register_0	ICRES_0	R/W	H'0F	H'FEE6 8
Channel 1	I ² C bus extended control register_1	ICXR_1	R/W	H'00	H'FED5 8
	I ² C bus control register_1	ICCR_1	R/W	H'01	H'FF88 8 H'FED0*
	I ² C bus status register_1	ICSR_1	R/W	H'00	H'FF89 8 H'FED1*
	I ² C bus data register_1	ICDR_1	R/W	_	H'FF8E H'FECE*
	Second slave address register_1	SARX_1	R/W	H'01	H'FF8E H'FECE*
	I ² C bus mode register_1	ICMR_1	R/W	H'00	H'FF8F H'FECF*
	Slave address register_1	SAR_1	R/W	H'00	H'FF8F H'FECF*

Rev. 2.00 Sep. 28, 2009 Page 534 of 994 REJ09B0452-0200

		register_2		
Note:	*	Upper address: when RELOCA	TE = 0	

* Opper address: when RELOCATE = 0 Lower address: when RELOCATE = 1

Renesas

and the TRS bit is automatically changed to 1.

In transmit mode (TRS = 1), transmit data can be written to ICDRT when the ICDRE flag After the transmit data has been written to ICDRT, the ICDRE flag is cleared to 0. Then, ICDRS becomes empty on completion of the previous transmission, the data are automatic transferred from ICDRT to ICDRS and the ICDRE flag is set to 1. As long as ICDRS corr data to be transmitted or data being transmitted, data written to ICDRT are retained there

In receive mode (TRS = 0), data is not transferred from ICDRT to ICDRS. Thus, do not v ICDRT when in this mode.

In receive mode (TRS = 0), data received in ICDRR can be read when the ICDRF flag is the data has been read from ICDRR, the ICDRF flag is cleared to 0. Each time ICDRS condata on completion of one round of reception, the data is automatically transferred from I ICDRR and the ICDRF flag is set to 1. If ICDRR contains receive data that hasn't been ready further receive data is retained in ICDRS.

Since data are not transferred from ICDRS to ICDRR in transmit mode (TRS = 1), do not ICDRR in transmit mode (excluding the case where final receive data is read out in the recommended operation flow of master receive mode).

If the number of bits in a frame, excluding the acknowledge bit, is less than eight, transm and receive data are stored differently. Transmit data should be written justified toward th side when MLS = 0 in ICMR, and toward the LSB side when MLS = 1. Receive data bits be read from the LSB side when MLS = 0, and from the MSB side when MLS = 1.

ICDR can be written to and read from only when the ICE bit is set to 1 in ICCR. The initial of ICDR is undefined.

Rev. 2.00 Sep. 28, 2009 Page 536 of 994 REJ09B0452-0200

6	SVA5	0	R/W	Set a slave address.
5	SVA4	0	R/W	
4	SVA3	0	R/W	
3	SVA2	0	R/W	
2	SVA1	0	R/W	
1	SVA0	0	R/W	
0	FS	0	R/W	Format Select
				Selects the communication format together w FSX bit in SARX. See table 18.3.
				This bit should be set to 0 when general call a recognition is performed.

6	SVAX5	0	R/W	Set the second slave address.
0	SVAND	0	r////	Set the second slave address.
5	SVAX4	0	R/W	
4	SVAX3	0	R/W	
3	SVAX2	0	R/W	
2	SVAX1	0	R/W	
1	SVAX0	0	R/W	
0	FSX	1	R/W	Format Select X
				Selects the communication format together wit bit in SAR. See table 18.3.

Rev. 2.00 Sep. 28, 2009 Page 538 of 994 REJ09B0452-0200

		General call address recognized						
1	0	I ² C bus format						
		SAR slave address ignored						
		SARX slave address recognized						
		General call address ignored						
	1	Clocked synchronous serial format						
		SAR and SARX slave addresses ignored						
		General call address ignored						

- I^2C bus format: addressing format with an acknowledge bit
- Clocked synchronous serial format: non-addressing format without an acknowledge master mode only

				Set this bit to 0 when the IC bus format is use
6	WAIT	0	R/W	Wait Insertion Bit
				This bit is valid only in master mode with the I ² format.
				 Data and the acknowledge bit are transferre consecutively with no wait inserted.
				1: After the fall of the clock for the final data bit clock), the IRIC flag is set to 1 in ICCR, and state begins (with SCL at the low level). Whe IRIC flag is cleared to 0 in ICCR, the wait en the acknowledge bit is transferred.
				For details, see section 18.4.7, IRIC Setting Ti SCL Control.
5	CKS2	0	R/W	Transfer Clock Select 2 to 0
4	CKS1	0	R/W	These bits are used only in master mode.
3	CKS0	0	R/W	These bits select the required transfer rate, tog with the IICX2 (IIC_2), IICX1 (IIC_1), and IICX bits in STCR. See table 18.4.

Rev. 2.00 Sep. 28, 2009 Page 540 of 994 REJ09B0452-0200

I C Bus Format	Clocked Synchronous Sena
000: 9 bits	000: 8 bits
001: 2 bits	001: 1 bits
010: 3 bits	010: 2 bits
011: 4 bits	011: 3 bits
100: 5 bits	100: 4 bits
101: 6 bits	101: 5 bits
110: 7 bits	110: 6 bits
111: 8 bits	111: 7 bits

0	0	1	1	ф/64	125 kHz	156 kHz	250 kHz	313 I
0	1	0	0	φ/80	100 kHz	125 kHz	200 kHz	250 I
0	1	0	1	ф /10 0	80.0 kHz	100 kHz	160 kHz	200 I
0	1	1	0	φ/112	71.4 kHz	89.3 kHz	143 kHz	179 I
0	1	1	1	φ /128	62.5 kHz	78.1 kHz	125 kHz	156 l
1	0	0	0	φ/56	143 kHz	179 kHz	286 kHz	357 I
1	0	0	1	φ/80	100 kHz	125 kHz	200 kHz	250 I
1	0	1	0	ф/96	83.3 kHz	104 kHz	167 kHz	208 I
1	0	1	1	ф/128	62.5 kHz	78.1 kHz	125 kHz	156 I
1	1	0	0	φ /16 0	50.0 kHz	62.5 kHz	100 kHz	125 I
1	1	0	1	φ/200	40.0 kHz	50.0 kHz	80.0 kHz	100 I
1	1	1	0	ф/224	35.7 kHz	44.6 kHz	71.4 kHz	89.3
1	1	1	1	ф/256	31.3 kHz	39.1 kHz	62.5 kHz	78.1

Notes: n = 0, 1, or 2

Correct operation cannot be guaranteed since the transfer rate is beyond the linterface specification (normal mode: maximum 100 kHz, high-speed mode: m 400 kHz).

Rev. 2.00 Sep. 28, 2009 Page 542 of 994 REJ09B0452-0200

				SE		and the ports function as the SC output pins. ICMR and ICDR ca		
6	IEIC	0	R/W	I ² C B	us Interfa	ace Interrupt Enable		
				0: Dis CF		terrupts from the I ² C bus interfac		
					ables inte PU.	errupts from the I ² C bus interfac		
5	MST	0	R/W	Maste	er/Slave	Select		
4	TRS	0	R/W	Trans	smit/Rece	eive Select		
				MST TRS				
				0	0:	Slave receive mode		
				0	1:	Slave transmit mode		
				1	0:	Master receive mode		
				1	1:	Master transmit mode		
				Both these bits will be cleared by hardware w lose in a bus contention in master mode with bus format. In slave receive mode with I ² C bu the R/W bit in the first frame immediately after condition sets these bits in receive mode or the mode automatically by hardware.				
				until t after d	ransfer is	f the TRS bit during transfer is a s completed, and the changeov on of the transfer (at the rising e		

				MST clearing condition 2)
				[TRS clearing conditions]
				 When 0 is written by software (except for T setting condition 3)
				 When 0 is written in TRS after reading TRS TRS setting condition 3)
				 When lost in bus contention in I²C bus form master mode
				[TRS setting conditions]
				 When 1 is written by software (except for T clearing condition 3)
				 When 1 is written in TRS after reading TRS TRS clearing condition 3)
				 When 1 is received as the R/W bit after the frame address matching in I²C bus format s mode
3	ACKE	0	R/W	Acknowledge Bit Decision and Selection
				0: The value of the acknowledge bit is ignored, continuous transfer is performed. The value received acknowledge bit is not indicated by ACKB bit in ICSR, which is always 0.
				1: If the received acknowledge bit is 1, continu transfer is halted.
				Depending on the receiving device, the acknow bit may be significant, in indicating completion processing of the received data, for instance, of be fixed at 1 and have no significance.
			·	

Rev. 2.00 Sep. 28, 2009 Page 544 of 994 REJ09B0452-0200

 Writing to the BBSY flag is disabled. [BBSY setting condition] When the SDA level changes from high to low the condition of SCL = high, assuming that th condition has been issued. [BBSY clearing condition] When the SDA level changes from low to high the condition of SCL = high, assuming that th condition has been issued. To issue a start/stop condition, use the MOV instruction. The I²C bus interface must be set in master tr mode before the issue of a start condition. Se 1 and TRS to 1 before writing 1 in BBSY and The BBSY flag can be read to check whether bus (SCL, SDA) is busy or free. The SCP bit is always read as 1. If 0 is written is not stored.

Note: * The value in BBSY flag does not change even if written.

Renesas

[Setting conditions]

All operating modes:

- When a start condition is detected in transr and the ICDRE flag is set to 1
- When data is transferred from ICDRT to IC transmit mode and the ICDRE flag is set to
- When data is transferred from ICDRS to IC receive mode and the ICDRF flag is set to
- If 1 is received as the acknowledge bit (who ACKE bit is 1 in transmit mode) at the com data transmission

I²C bus format master mode:

- When a wait is inserted between the data a acknowledge bit when the WAIT bit is 1
- When the AL flag is set to 1 after bus arbitr lost while the ALIE bit is 1

I²C bus format slave mode:

- When the slave address (SVA or SVAX) m after the reception of the first frame followir start condition and the AAS flag or AASX fl to 1
- When the general call address is detected reception of the first frame following the sta condition and the ADZ flag is set to 1 (the F SAR is 0)
- When a stop condition is detected (when th or ESTP flag is set to 1) while the STOPIM

Rev. 2.00 Sep. 28, 2009 Page 546 of 994 REJ09B0452-0200

the IRIC flag. [Clearing condition]

• When 0 is written in IRIC after reading IRI

Note: * Only 0 can be written to clear the flag.

Renesas

1													
	1	0	0	0	0	0↓	0	0↓	0↓	0	_	0	Idle state (fla required)
1	1	1↑	0	0	1↑	0	0	0	0	0	_	1↑	Start condition
1	_	1	0	0	_	0	0	0	0	_	_	_	Wait state
1	1	1	0	0	—	0	0	0	0	1↑	_	_	Transmissio (ACKE=1 an
1	1	1	0	0	1↑	0	0	0	0	0	_	1↑	Transmissio ICDRE=0
1	1	1	0	0	—	0	0	0	0	0	_	0↓	ICDR write v above state
1	1	1	0	0	_	0	0	0	0	0	_	1	Transmissio ICDRE=1
1	1	1	0	0	—	0	0	0	0	0	_	0↓	ICDR write v above state condition de
1	1	1	0	0	1↑	0	0	0	0	0	_	1↑	Automatic da from ICDRT with the abo
1	0	1	0	0	1↑	0	0	0	0	_	1↑	_	Reception er ICDRF=0
1	0	1	0	0	—	0	0	0	0	_	0↓	_	ICDR read w above state
1	0	1	0	0	_	0	0	0	0	-	1	_	Reception er
1	0	1	0	0	—	0	0	0	0	_	0↓	_	ICDR read w above state
1	0	1	0	0	1↑	0	0	0	0	_	1↑	_	Automatic da from ICDRS with the abo

Rev. 2.00 Sep. 28, 2009 Page 548 of 994 REJ09B0452-0200

0	I	I	0	0	_	_	_	_	0	11	_	_	and ACKB=1)
0	1	1	0	0	1↑/0 *²	_	—	—	0	0	_	1↑	Transmission end ICDRE=0
0	1	1	0	0	—	_	0↓	0↓	0	0	—	0↓	ICDR write with th state
0	1	1	0	0	_	_	—	—	1	0		1	Transmission end ICDRE=1
0	1	1	0	0	—	_	0↓	0↓	0	0		0↓	ICDR write with th state
0	1	1	0	0	1↑/0 *²	_	0	0	0	0		1↑	Automatic data tra ICDRT to ICDRS above state
0	0	1	0	0	1↑/0 *²	—	_	—	_	_	1↑	_	Reception end wi
0	0	1	0	0	_	—	0↓	0↓	0↓	_	0↓	_	ICDR read with th state
0	0	1	0	0	—	—	—	—	—		1	—	Reception end wi
0	0	1	0	0	_	—	0↓	0↓	0↓	_	0↓	_	ICDR read with th state
0	0	1	0	0	1↑/0 *²	_	0	0	0	_	1↑	_	Automatic data tra ICDRS to ICDRR above state
0	_	0↓	11/0 *3	0/1↑ *³	_	—	—	—	_	_	_	0↓	Stop condition de

[Legend]

0: 0-state retained

1: 1-state retained

-: Previous state retained

 $0\downarrow$: Cleared to 0

11: Set to 1

Notes: 1. Set to 1 when 1 is received as a R/\overline{W} bit following an address.

- 2. Set to 1 when the AASX bit is set to 1.
- 3. When ESTP=1, STOP is 0, or when STOP=1, ESTP is 0.

Rev. 2.00 Sep. 28, 2009 Page 550 of 994

REJ09B0452-0200

RENESAS

				[Clearing conditions]
				When 0 is written in ESTP after reading E
				• When the IRIC flag in ICCR is cleared to
6	STOP	0	R/(W)*	Normal Stop Condition Detection Flag
				This bit is valid in I ² C bus format slave mode.
				[Setting condition]
				When a stop condition is detected after frame completion.
				[Clearing conditions]
				• When 0 is written in STOP after reading S
				When the IRIC flag is cleared to 0
5	IRTR	0	R/(W)*	I ² C Bus Interface Continuous Transfer Interru Request Flag
				Indicates that the I ² C bus interface has issued interrupt request to the CPU, and the source is completion of reception/transmission of one fi When the IRTR flag is set to 1, the IRIC flag is to 1 at the same time.
				[Setting conditions]
				I ² C bus format slave mode:
				 When the ICDRE or ICDRF flag in ICDR is when AASX = 1
				Master mode or clocked synchronous serial for mode with I ² C bus format:
				• When the ICDRE or ICDRF flag is set to 1
				[Clearing conditions]
				• When 0 is written after reading IRTR = 1
				• When the IRIC flag is cleared to 0 while IC
-				

				when o is written in whom after reading w
				When a start condition is detected
				In master mode
3	AL	0	R/(W)*	Arbitration Lost Flag
				Indicates that arbitration was lost in master mo
				[Setting conditions]
				When ALSL=0
				• If the internal SDA and SDA pin disagree a of SCL in master transmit mode
				• If the internal SCL line is high at the fall of master mode
				When ALSL=1
				• If the internal SDA and SDA pin disagree a of SCL in master transmit mode
				 If the SDA pin is driven low by another devised before the l²C bus interface drives the SDA after the start condition instruction was exemaster transmit mode
				[Clearing conditions]
				• When ICDR is written to (transmit mode) or from (receive mode)
				• When 0 is written in AL after reading AL =

Rev. 2.00 Sep. 28, 2009 Page 552 of 994 REJ09B0452-0200

				[Clearing conditions]
				• When ICDR is written to (transmit mode) of from (receive mode)
				• When 0 is written in AAS after reading AA
				In master mode
1	ADZ	0	R/(W)*	General Call Address Recognition Flag
				In I ² C bus format slave receive mode, this flag 1 if the first frame following a start condition is general call address (H'00).
				[Setting condition]
				When the general call address (one frame inc R/\overline{W} bit is H'00) is detected in slave receive m FS = 0 or FSX = 0
				[Clearing conditions]
				• When ICDR is written to (transmit mode) of from (receive mode)
				• When 0 is written in ADZ after reading AD
				In master mode
				If a general call address is detected while FS= FSX=0, the ADZ flag is set to 1; however, the call address is not recognized (AAS flag is no

ACKE = 1 in transmit mode

[Clearing conditions]

• When 0 is received as the acknowledge bit ACKE = 1 in transmit mode

When 0 is written to the ACKE bit

Receive mode:

Sets the acknowledge data to be returned to th transmitting device.

0: Returns 0 as acknowledge data after data re

1: Returns 1 as acknowledge data after data re

When this bit is read, the value loaded from the line (returned by the receiving device) is read in transmission (when TRS = 1). In reception (when = 0), the value set by internal software is read.

When this bit is written, acknowledge data that returned after receiving is rewritten regardless TRS value.

Note: When, in transmit mode, this bit has bee overwritten by a bit manipulation instruction wit value other than that of the ACKB flag in ICSR value of the ACKB bit as the acknowledge data for receive mode is overwritten by this value. T always reset the acknowledge data when switc receive mode.

Write 0 to the ACKE bit to clear the ACKB flag the following cases:

in master mode—before transmission is ended stop condition is generated; and

in slave mode—before transmission is ended a is released to allow a master device to issue a condition.

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 554 of 994 REJ09B0452-0200

RENESAS

2		1 VV	
1	CLR1	1 W	
0	CLR0	1 W	01
			0100: Setting prohibited
			0101: IIC_0 internal latch cleared
			0110: IIC_1 internal latch cleared
			0111: IIC_0 and IIC_1 internal latches cleare
			1: Invalid setting
			Controls initialization of the internal state of II (ICRES_2)
			00: Setting prohibited
			0100: Setting prohibited
			0101: IIC_2 internal latch cleared
			0110: Setting prohibited
			0111: IIC_2 internal latch cleared
			1: Invalid setting
			When a write operation is performed on these clear signal is generated for the internal latch the corresponding module, and the internal so IIC module is initialized.
			These bits can only be written to; they are alw as 1. Write data to this bit is not retained.
			To perform IIC clearance, bits CLR3 to CLR0 written to simultaneously using an MOV instru- not use a bit manipulation instruction such as
			When clearing is required again, all the bits n written to in accordance with the setting.
Note:	* This bit	is always read as	; 1.

				when the stop condition is detected (STOP = ESTP = 1) in slave mode.
				1: Disables IRIC flag setting and interrupt gene when the stop condition is detected.
6	HNDS	0	R/W	Enables or disables handshake control in rece for the selection of reception with handshaking
				0: Disables handshake control
				1: Enables handshake control
				Note: When the IIC module is in use, be sure t bit to 1.
				When the HNDS bit is cleared to 0 and a round reception is completed with ICDRR empty (the flag is 0), successive reception will proceed win next round of reception. At the same time, a cle continuously supplied over the SCL line.
				In this case, the sequence of operations should such that unnecessary clock cycles are not our the bus after reception of the last of the data.
				When the HNDS bit is set to 1, SCL is fixed low clock output stops on completion of reception. released and reception of the next frame is en- reading the receive data from ICDR.

Rev. 2.00 Sep. 28, 2009 Page 556 of 994 REJ09B0452-0200

- from ICDRS to ICDRR.
- When data is received successfully while 0 (at the rise of the 9th clock pulse).
- (2) When ICDR is read successfully in receiv after data was received while ICDRF = 1.

[Clearing conditions]

- When ICDR (ICDRR) is read.
- When 0 is written to the ICE bit.
- When the IIC is internally initialized using to CLR0 bits in DDCSWR.

When ICDRF is set due to the condition (2) al ICDRF is temporarily cleared to 0 when ICDR is read; however, since data is transferred fro to ICDRR immediately, ICDRF is set to 1 aga

Note that ICDR cannot be read successfully i mode (TRS = 1) because data is not transferr ICDRS to ICDRR. Be sure to read data from I receive mode (TRS = 0).

[Setting conditions]

- When the start condition is detected from the line state with I²C bus format or serial format
- When data is transferred from ICDRT to IC
 - When data transmission completed whi ICDRE = 0 (at the rise of the 9th clock p
 - When data is written to ICDR in transm after data transmission was completed ICDRE = 1.

[Clearing conditions]

- When data is written to ICDR (ICDRT).
- When the stop condition is detected with I² format or serial format.
- When 0 is written to the ICE bit.
- When the IIC is internally initialized using th to CLR0 bits in DDCSWR.

Note that if the ACKE bit is set to 1 with I²C bus thus enabling acknowledge bit decision, ICDRI set when data transmission is completed while acknowledge bit is 1.

When ICDRE is set due to the condition (2) ab ICDRE is temporarily cleared to 0 when data is to ICDR (ICDRT); however, since data is trans from ICDRT to ICDRS immediately, ICDRE is a again. Do not write data to ICDR when TRS = because the ICDRE flag value is invalid during time.

Rev. 2.00 Sep. 28, 2009 Page 558 of 994 REJ09B0452-0200

RENESAS

				IIC bus interface outputs at the rise of SCI the SCL pin is driven low by another devic
				1: When the SDA pin state disagrees with the IIC bus interface outputs at the rise of SCI the SDA line is driven low by another devi state or after the start condition instruction executed.
1	FNC1	0	R/W	Function 1, 0
0	FNC0	0	R/W	These bits cancel some restrictions on usage
				FNC0 FNC1
				0 0: Restrictions on operation canceled
				0 1: Setting prohibited
				1 0: Setting prohibited
				1 1: Restrictions on operation remaining
				Note: When the IIC module is used, make su both of the bits to 1.

....

Figure 18.5 shows the I^2C bus timing.

The symbols used in figures 18.3 to 18.5 are explained in table 18.7.

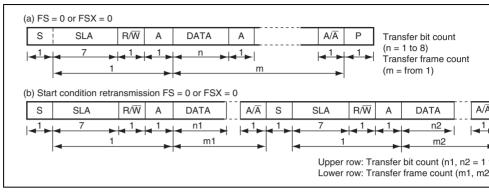


Figure 18.3 I²C Bus Data Format (I²C Bus Format)

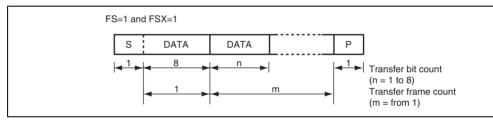
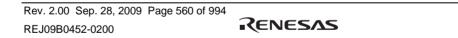



Figure 18.4 I²C Bus Data Format (Serial Format)

S	Start condition. The master device drives SDA from high to low while SCL is		
SLA	Slave address. The master device selects the slave device.		
R/W	Indicates the direction of data transfer: from the slave device to the master of when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0.		
A	Acknowledge. The receiving device drives SDA low to acknowledge a transf slave device returns acknowledge in master transmit mode, and the master returns acknowledge in master receive mode.)		
DATA	Transferred data. The bit length of transferred data is set with the BC2 to BC ICMR. The MSB first or LSB first is switched with the MLS bit in ICMR.		
Р	Stop condition. The master device drives SDA from low to high while SCL is		

OCTIOE = TITOTOTT	
Set ICE = 0 in ICCR	Enable SAR and SARX to be accessed
Set SAR and SARX	Set the first and second slave addresses and IIC communication form (SVA6 to SVA0, FS, SVAX6 to SVAX0, and FSX)
Set ICE = 1 in ICCR	Enable ICMR and ICDR to be accessed Use SCL/SDA pin as an IIC port
Set ICSR	Set acknowledge bit (ACKB)
Set STCR	Set transfer rate (IICX)
Set ICMR	Set communication format, wait insertion, and transfer rate (MLS, WAIT, CKS2 to CKS0)
Set ICXR	Enable interrupt, set communication operation (STOPIM, HNDS, ALIE, ALSL, FNC1, and FNC0) Be sure to set as follows: HNDS = 1, FNC1 = 1, and FNC0 = 1.
Set ICCR	Set interrupt enable, transfer mode, and acknowledge decision (IEIC, MST, TRS, and ACKE)
< Start transmit/receive operation >	>

Figure 18.6 Sample Flowchart for IIC Initialization

Note: Be sure to modify the ICMR register after transmit/receive operation has been co If the ICMR register is modified during transmit/receive operation, bit counter Be BC0 will be modified erroneously, thus causing incorrect operation.

18.4.3 Master Transmit Operation

In I²C bus format master transmit mode, the master device outputs the transmit clock and data, and the slave device returns an acknowledge signal.

Figure 18.7 shows the sample flowchart for the operations in master transmit mode.

Rev. 2.00 Sep. 28, 2009 Page 562 of 994 REJ09B0452-0200

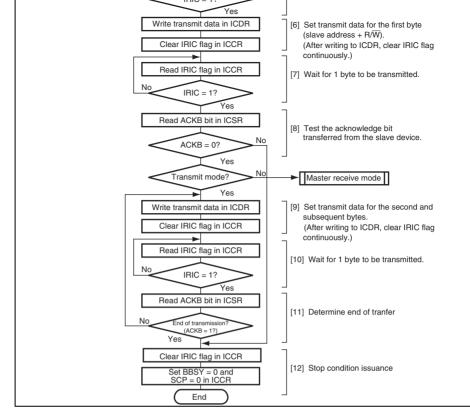


Figure 18.7 Sample Flowchart for Operations in Master Transmit Mode

RENESAS

With the I[°]C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the findata following the start condition indicates the 7-bit slave address and transmit/received direction (R/\overline{W}).

To determine the end of the transfer, the IRIC flag is cleared to 0. After writing to ICI IRIC continuously so no other interrupt handling routine is executed. If the time for transmission of one frame of data has passed before the IRIC clearing, the end of transcannot be determined. The master device sequentially sends the transmission clock are data written to ICDR. The selected slave device (i.e. the slave device with the matching address) drives SDA low at the 9th transmit clock pulse and returns an acknowledge statement.

- 7. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of th transmit clock pulse. After one frame has been transmitted, SCL is automatically fixed synchronization with the internal clock until the next transmit data is written.
- 8. Read the ACKB bit in ICSR to confirm that ACKB is cleared to 0. When the slave de not acknowledged (ACKB bit is 1), operate step [12] to end transmission, and retry th transmit operation.
- 9. Write the transmit data to ICDR.

As indicating the end of the transfer, the IRIC flag is cleared to 0. Perform the ICDR the IRIC flag clearing sequentially, just as in step [6]. Transmission of the next frame performed in synchronization with the internal clock.

- 10. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of th transmit clock pulse. After one frame has been transmitted, SCL is automatically fixed synchronization with the internal clock until the next transmit data is written.
- 11. Read the ACKB bit in ICSR.

Confirm that the slave device has been acknowledged (ACKB bit is 0). When there is to be transmitted, go to step [9] to continue the next transmission operation. When the device has not acknowledged (ACKB bit is set to 1), operate step [12] to end transmission operation.

Rev. 2.00 Sep. 28, 2009 Page 564 of 994 REJ09B0452-0200

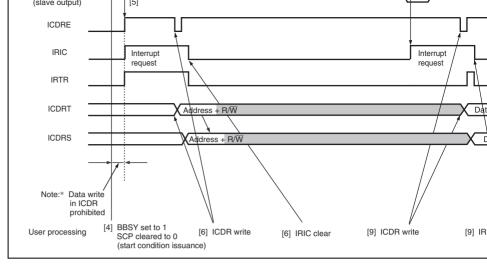


Figure 18.8 Example of Operation Timing in Master Transmit Mode (MLS = W

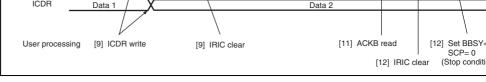
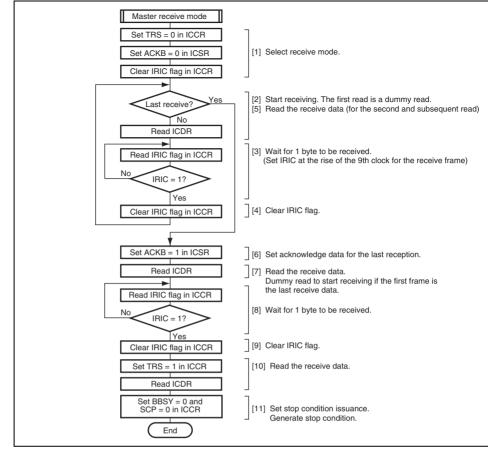



Figure 18.9 Example of Stop Condition Issuance Operation Timing in Master Transmit Mode (MLS = WAIT = 0)

Rev. 2.00 Sep. 28, 2009 Page 566 of 994 REJ09B0452-0200

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

setting the ICDRF, IRIC, and IRTR flags to 1. If the IEIC bit has been set to 1, an interrequest is sent to the CPU.

The master device drives SCL low from the fall of the 9th receive clock pulse to the I reading.

4. Clear the IRIC flag to determine the next interrupt.

Go to step [6] to halt reception operation if the next frame is the last receive data.

5. Read ICDR receive data. This clears the ICDRF flag to 0. The master device outputs receive clock continuously to receive the next data.

Data can be received continuously by repeating steps [3] to [5].

- 6. Set the ACKB bit to 1 so as to return the acknowledge data for the last reception.
- 7. Read ICDR receive data. This clears the ICDRF flag to 0. The master device outputs receive clock to receive data.
- 8. When one frame of data has been received, the ICDRF, IRIC, and IRTR flags are set rise of the 9th receive clock pulse.
- 9. Clear the IRIC flag to 0.
- 10. Read ICDR receive data after setting the TRS bit. This clears the ICDRF flag to 0.
- 11. Clear the BBSY bit and SCP bit to 0 in ICCR. This changes SDA from low to high wind is high, and generates the stop condition.

Rev. 2.00 Sep. 28, 2009 Page 568 of 994 REJ09B0452-0200

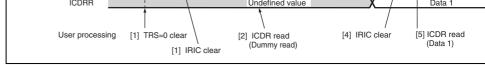


Figure 18.11 Example of Operation Timing in Master Receive Mode (MLS = WAIT = 0)

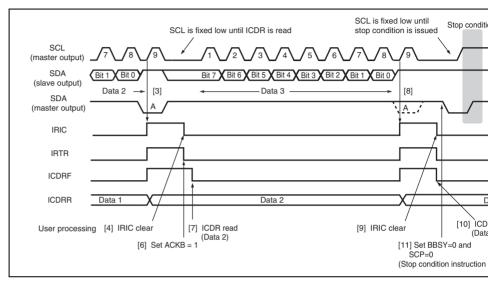
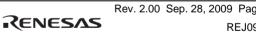



Figure 18.12 Example of Stop Condition Issuance Operation Timing in Master Receive Mode (MLS = WAIT = 0)

Rev. 2.00 Sep. 28, 2009 Page 570 of 994 REJ09B0452-0200

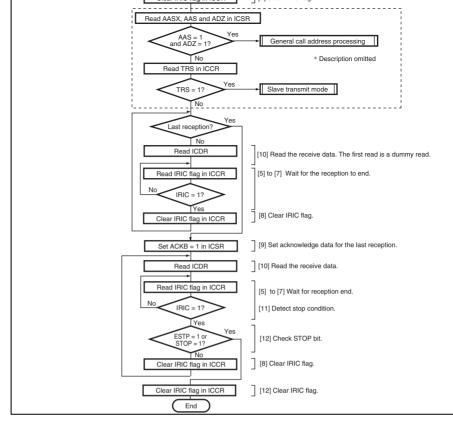


Figure 18.13 Sample Flowchart for Operations in Slave Receive Mode

Rev. 2.

- operates as the slave device specified by the master device. If the 8th data bit (R/\overline{W}) is TRS bit remains cleared to 0, and slave receive operation is performed. If the 8th data (R/\overline{W}) is 1, the TRS bit is set to 1, and slave transmit operation is performed. When the address does not match, receive operation is halted until the next start condition is det
- 5. At the 9th clock pulse of the receive frame, the slave device returns the data in the AC as an acknowledge signal.
- At the rise of the 9th clock pulse, the IRIC flag is set to 1. If the IEIC bit has been set interrupt request is sent to the CPU.
 If the AASX bit has been set to 1, IRTR flag is also set to 1.
- At the rise of the 9th clock pulse, the receive data is transferred from ICDRS to ICDR setting the ICDRF flag to 1. The slave device drives SCL low from the fall of the 9th
- 8. Confirm that the STOP bit is cleared to 0, and clear the IRIC flag to 0.
- 9. If the next frame is the last receive frame, set the ACKB bit to 1.

clock pulse until data is read from ICDR.

10. If ICDR is read, the ICDRF flag is cleared to 0, releasing the SCL bus line. This enab master device to transfer the next data.

Receive operations can be performed continuously by repeating steps [5] to [10].

- 11. When the stop condition is detected (SDA is changed from low to high when SCL is BBSY flag is cleared to 0 and the STOP bit is set to 1. If the STOPIM bit has been cle 0, the IRIC flag is set to 1.
- 12. Confirm that the STOP bit is set to 1, and clear the IRIC flag to 0.

Rev. 2.00 Sep. 28, 2009 Page 572 of 994 REJ09B0452-0200

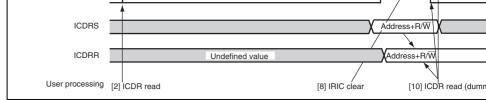


Figure 18.14 Example of Slave Receive Mode Operation Timing (1) (MLS =

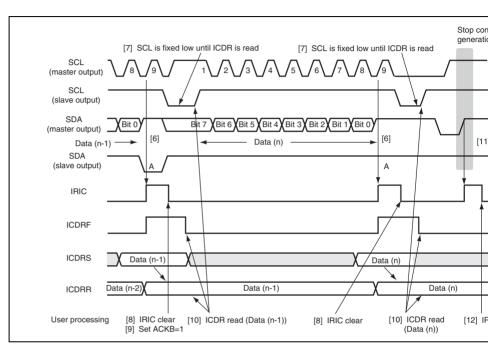
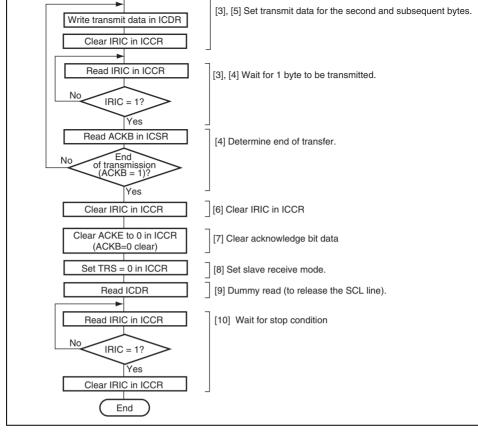
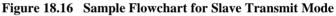
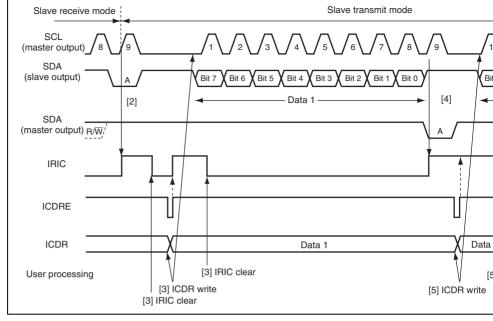




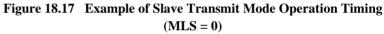
Figure 18.15 Example of Slave Receive Mode Operation Timing (2) (MLS =

Rev. 2.00 Sep. 28, 2009 Pag RENESAS REJ09

Rev. 2.00 Sep. 28, 2009 Page 574 of 994 REJ09B0452-0200

until ICDR data is written, to disable the master device to output the next transfer clo


3. After clearing the IRIC flag to 0, write data to ICDR. At this time, the ICDRE flag is 0. The written data is transferred to ICDRS, and the ICDRE and IRIC flags are set to The slave device sequentially sends the data written into ICDRS in accordance with output by the master device.


The IRIC flag is cleared to 0 to detect the end of transmission. Processing from the I register writing to the IRIC flag clearing should be performed continuously. Prevent interrupt processing from being inserted.

- 4. The master device drives SDA low at the 9th clock pulse, and returns an acknowledge As this acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used to determine whether the transfer operation was performed successfully. When one franchas been transmitted, the IRIC flag in ICCR is set to 1 at the rise of the 9th transmit pulse. When the ICDRE flag is 0, the data written into ICDR is transferred to ICDRS transmission starts, and the ICDRE and IRIC flags are set to 1 again. If the ICDRE f been set to 1, this slave device drives SCL low from the fall of the 9th transmit clock is written to ICDR.
- 5. To continue transmission, write the next data to be transmitted into ICDR. The ICDI cleared to 0. The IRIC flag is cleared to 0 to detect the end of transmission. Processing the ICDR writing to the IRIC flag clearing should be performed continuously. Preve other interrupt processing from being inserted.

Transmit operations can be performed continuously by repeating steps [4] and [5].

Rev. 2.00 Sep. 28, 2009 Page 576 of 994 REJ09B0452-0200

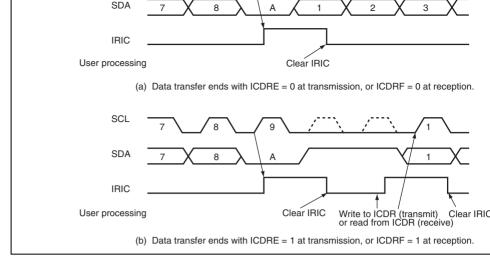


Figure 18.18 IRIC Setting Timing and SCL Control (1)

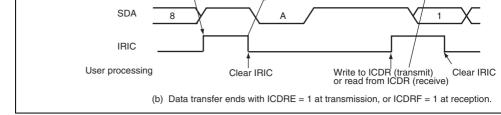


Figure 18.19 IRIC Setting Timing and SCL Control (2)

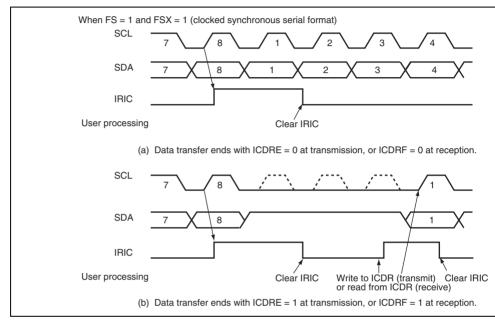
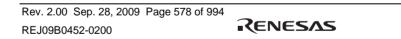



Figure 18.20 IRIC Setting Timing and SCL Control (3)

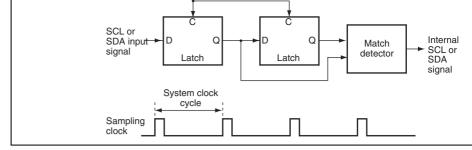


Figure 18.21 Block Diagram of Noise Canceler

18.4.9 Initialization of Internal State

The IIC has a function for forcible initialization of its internal state if a deadlock occurs communication.

Initialization is executed in accordance with the setting of bits CLR3 to CLR0 in ICRES clearing ICE bit. For details on the setting of bits CLR3 to CLR0, see section 18.3.7, I²C Control Initialization Register (ICRES).

(1) Scope of Initialization

The initialization executed by this function covers the following items:

- ICDRE and ICDRF internal flags
- Transmit/receive sequencer and internal operating clock counter
- Internal latches for retaining the output state of the SCL and SDA pins (wait, clock, output, etc.)

RENESAS

- Interrupt flags and interrupt sources are not cleared, and so flag clearing measures mu taken as necessary.
- Basically, other register flags are not cleared either, and so flag clearing measures mu taken as necessary.
- When initialization is executed by ICRES, the write data for bits CLR3 to CLR0 is no retained. To perform IIC clearance, bits CLR3 to CLR0 must be written to simultaneousing an MOV instruction. Do not use a bit manipulation instruction such as BCLR.
- Similarly, when clearing is required again, all the bits must be written to simultaneou accordance with the setting.
- If a flag clearing setting is made during transmission/reception, the IIC module will st transmitting/receiving at that point and the SCL and SDA pins will be released. When transmission/reception is started again, register initialization, etc., must be carried out necessary to enable correct communication as a system.

The value of the BBSY bit cannot be modified directly by this module clear function, but stop condition pin waveform is generated according to the state and release timing of the SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other bit flags may also have an effect.

To prevent problems caused by these factors, the following procedure should be used whe initializing the IIC state.

- 1. Execute initialization of the internal state according to the setting of bits CLR3 to CLI ICE bit clearing.
- 2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the bit to 0, and wait for two transfer rate clock cycles.
- 3. Re-execute initialization of the internal state according to the setting of bits CLR3 to ICE bit clearing.
- 4. Initialize (re-set) the IIC registers.

Rev. 2.00 Sep. 28, 2009 Page 580 of 994 REJ09B0452-0200

0	IICI0	IEIC	l ^c C bus interface interrupt request	IRIC	
1	IICI1	IEIC	I ² C bus interface interrupt request	IRIC	
2	IICI2	IEIC	I ² C bus interface interrupt request	IRIC	l

ICDRR)

Table 18.9 shows the timing of SCL and SDA outputs in synchronization with the interclock. Timings on the bus are determined by the rise and fall times of signals affected bus load capacitance, series resistance, and parallel resistance.

Item	Symbol	Output Timing	Unit	No
SCL output cycle time	t _{sclo}	$28t_{cyc}$ to $256t_{cyc}$	ns	See
SCL output high pulse width	t _{sclho}	0.5t _{sclo}	ns	28.
SCL output low pulse width	t _{scllo}	0.5t _{sclo}	ns	refe
SDA output bus free time	t _{BUFO}	$0.5t_{\scriptscriptstyle SCLO} - 1t_{\scriptscriptstyle cyc}$	ns	
Start condition output hold time	t _{staho}	$0.5t_{\rm sclo}-1t_{\rm cyc}$	ns	_
Retransmission start condition output setup time	t _{staso}	1t _{sclo}	ns	_
Stop condition output setup time	t _{stoso}	$0.5t_{sclo} + 2t_{cyc}$	ns	_
Data output setup time (master)	t _{sdaso}	$1t_{scllo} - 3t_{cyc}$	ns	_
Data output setup time (slave)	_	$1t_{_{SCLL}} - (6t_{_{cyc}} \text{ or } 12t_{_{cyc}}^*)$		_
Data output hold time	t _{sdaho}	3t _{cyc}	ns	_

Table 18.9 I²C Bus Timing (SCL and SDA Outputs)

Note: * $6t_{cvc}$ when IICX is 0, $12t_{cvc}$ when 1.

Rev. 2.00 Sep. 28, 2009 Page 582 of 994 REJ09B0452-0200

RENESAS

IICX	t _{cyc} Indication		C Bus Specification (Max.)	φ = 8 MHz	φ = 10 MHz	φ = 16 MHz
0	7.5 t _{cyc}	Standard mode	1000	937	750	468
		High-speed mode	300	300	300	300
1	17.5 t _{cyc}	Standard mode	1000	1000	1000	1000
_		High-speed mode	300	300	300	300

5. The I²C bus interface specifications for the SCL and SDA rise and fall times are und and 300 ns. The I²C bus interface SCL and SDA output timing is prescribed by t_{eye} , a table 18.11. However, because of the rise and fall times, the I²C bus interface specifi may not be satisfied at the maximum transfer rate. Table 18.11 shows output timing calculations for different operating frequencies, including the worst-case influence of fall times.

 t_{BUFO} fails to meet the I²C bus interface specifications at any frequency. The solution is to provide coding to secure the necessary interval (approximately 1 µs) between issu stop condition and issuance of a start condition, or (b) to select devices whose input permits this output timing for use as slave devices connected to the I²C bus.

 t_{scllo} in high-speed mode and t_{sTASO} in standard mode fail to satisfy the I²C bus interfaces specifications for worst-case calculations of t_{sr}/t_{sr} . Possible solutions that should be investigated include (a) adjusting the rise and fall times by means of a pull-up resisted capacitive load, (b) reducing the transfer rate to meet the specifications, or (c) selection whose input timing permits this output timing for use as slave devices connected to the bus.

RENESAS

BUFO	U.5 L _{SCLO} - I L _{cyc}	Standard mode	-1000	4700	3013*	3900*	3939*
	(—t _{sr})	High-speed mode	-300	1300	825* ¹	850* ¹	888*1
t _{staho}	0.5 t_{sclo} -1 t_{cyc}	Standard mode	-250	4000	4625	4650	4688
	(t _{sf})	High-speed mode	-250	600	875	900	938
t _{staso}	$1 t_{sclo} (-t_{sr})$	Standard mode	-1000	4700	9000	9000	9000
		High-speed mode	-300	600	2200	2200	2200
t _{stoso}	$0.5 t_{sclo} + 2 t_{cyc}$	Standard mode	-1000	4000	4250	4200	4125
	(—t _{sr})	High-speed mode	-300	600	1200	1150	1075
t _{sdaso}	$1 t_{\rm SCLLO}^{*^3} - 3 t_{\rm cyc}$	Standard mode	-1000	250	3325	3400	3513
(master)	(—t _{sr})	High-speed mode	-300	100	625	700	813
t _{sdaso}	1 $t_{scll}^{*^3}$	Standard mode	-1000	250	2200	2500	2950
(slave)	$-12 t_{cyc}^{*^2}$						
	(t _{Sr})	High-speed mode	-300	100	-500*1	-200*1	250
t _{sdaho}	3 t _{cyc}	Standard mode	0	0	375	300	188
		High-speed mode	0	0	375	300	188

Notes: 1. Does not meet the l²C bus interface specification. Remedial action such as the is necessary: (a) secure a start/stop condition issuance interval; (b) adjust the fall times by means of a pull-up resistor and capacitive load; (c) reduce the tran (d) select slave devices whose input timing permits this output timing.

The values in the above table will vary depending on the settings of the IICX b CKS0 to CKS2. Depending on the frequency it may not be possible to achieve maximum transfer rate; therefore, whether or not the I²C bus interface specifica met must be determined in accordance with the actual setting conditions.

Value when the IICX bit is set to 1. When the IICX bit is cleared to 0, the value 6 t_{cv}).

 Calculated using the I²C bus specification values (standard mode: 4700 ns mir speed mode: 1300 ns min.).

Rev. 2.00 Sep. 28, 2009 Page 584 of 994 REJ09B0452-0200

RENESAS

master device in slave transmit mode (TRS = 1), the IRIC flag may be set after the IG is set and 1 received as the acknowledge bit value (ACKB = 1), thus causing an intersource even when the address does not match.

To use the I²C bus interface module in slave mode, be sure to follow the procedures

- A. When having received 1 as the acknowledge bit value for the last transmit data a of a series of transmit operation, clear the ACKE bit in ICCR once to initialize th bit to 0.
- B. Set receive mode (TRS = 0) before the next start condition is input in slave mode Complete transmit operation by the procedure shown in figure 18.16, in order to from slave transmit mode to slave receive mode.

18.6.1 Module Stop Mode Setting

The IIC operation can be enabled or disabled using the module stop control register. The setting is for the IIC operation to be halted. Register access is enabled by canceling mode mode. For details, see section 26, Power-Down Modes.

Rev. 2.00 Sep. 28, 2009 Page 586 of 994 REJ09B0452-0200

- Conforms to PS/2 interface specifications
- Direct bus drive (via the KCLK and KD pins)
- Interrupt sources: on completion of data reception/transmission, on detection of cloc edge, and on detection of the first falling edge of a clock
- Error detection: parity error, stop bit monitoring, and receive notify monitoring

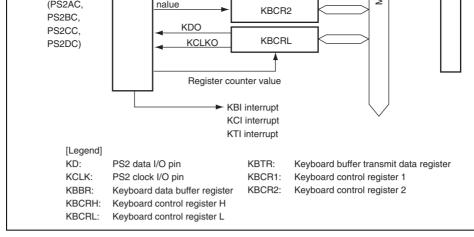


Figure 19.1 Block Diagram of PS2

Rev. 2.00 Sep. 28, 2009 Page 588 of 994 REJ09B0452-0200

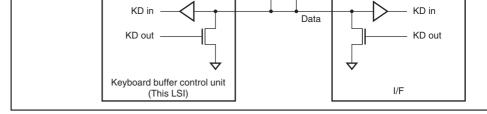


Figure 19.2 PS2 Connection

19.2 Input/Output Pins

Table 19.1 lists the input/output pins used by the keyboard buffer control unit.

Channel	Name	Abbreviation*	I/O	Function
0	PS2 clock I/O pin (KCLK0)	PS2AC	I/O	PS2 clock inp
	PS2 data I/O pin (KD0)	PS2AD	I/O	PS2 data inpu
1	PS2 clock I/O pin (KCLK1)	PS2BC	I/O	PS2 clock inp
	PS2 data I/O pin (KD1)	PS2BD	I/O	PS2 data inpu
2	PS2 clock I/O pin (KCLK2)	PS2CC	I/O	PS2 clock inp
	PS2 data I/O pin (KD2)	PS2CD	I/O	PS2 data inpu
3	PS2 clock I/O pin (KCLK3)	PS2DC	I/O	PS2 clock inp
	PS2 data I/O pin (KD3)	PS2DD	I/O	PS2 data inpu
Note: *	These are the external I/O pin r	names. In the text.	clock I/O p	ins are referred t

 Table 19.1
 Pin Configuration

ote: * These are the external I/O pin names. In the text, clock I/O pins are referred and data I/O pins as KD, omitting the channel designations.

RENESAS

	register_0	_			
	Keyboard control register H_0	KBCRH_0	R/W	H'70	H'FED8 8
	Keyboard control register L_0	KBCRL_0	R/W	H'70	H'FED9 8
	Keyboard data buffer register_0	KBBR_0	R	H'00	H'FEDA 8
Channel 1	Keyboard control register 1_1	KBCR1_1	R/W	H'00	H'FEC2 8
	Keyboard control register 2_1	KBCR2_1	R/W	H'F0	H'FEDF 8
	Keyboard buffer transmit data register_1	KBTR_1	R/W	H'FF	H'FEC3 8
	Keyboard control register H_1	KBCRH_1	R/W	H'70	H'FEDC 8
	Keyboard control register L_1	KBCRL_1	R/W	H'70	H'FEDD 8
	Keyboard data buffer register_1	KBBR_1	R	H'00	H'FEDE 8
Channel 2	Keyboard control register 1_2	KBCR1_2	R/W	H'00	H'FEC4 8
	Keyboard control register 2_2	KBCR2_2	R/W	H'F0	H'FEE3 8
	Keyboard buffer transmit data register_2	KBTR_2	R/W	H'FF	H'FEC5 8
	Keyboard control register H_2	KBCRH_2	R/W	H'70	H'FEE0 8
	Keyboard control register L_2	KBCRL_2	R/W	H'70	H'FEE1 8
	Keyboard data buffer register_2	KBBR_2	R	H'00	H'FEE2 8
Channel 3	Keyboard control register 1_3	KBCR1_3	R/W	H'00	H'FED2 8
	Keyboard control register 2_3	KBCR2_3	R/W	H'F0	H'FFE3
	Keyboard buffer transmit data register_3	KBTR_3	R/W	H'FF	H'FED3
	Keyboard control register H_3	KBCRH_3	R/W	H'70	H'FFE0
	Keyboard control register L_3	KBCRL_3	R/W	H'70	H'FFE1
	Keyboard data buffer register_3	KBBR_3	R	H'00	H'FFE2

Rev. 2.00 Sep. 28, 2009 Page 590 of 994

REJ09B0452-0200

RENESAS

				When 0 is written
				When the KBTE is set to 1
				When the KBIOE is cleared to 0
				1: Starts data transmission
				[Setting condition]
				When 1 is written after reading the KBTS = 0
6	PS	0	R/W	Transmit Parity Selection
				Selects even or odd parity.
				0: Selects odd parity
				1: Selects even parity
5	KCIE	0	R/W	First KCLK Falling Interrupt Enable
				Selects whether an interrupt at the first falling KCLK is enabled or disabled.
				0: Disables first KCLK falling interrupt
				1: Enables first KCLK falling interrupt
4	KTIE	0	R/W	Transmit Completion Interrupt Enable
				Selects whether a transmit completion interre enabled or disabled.
				0: Disables transmit completion interrupt
				1: Enables transmit completion interrupt
3		0	_	Reserved
				The initial value should not be changed.

				standby mode or watch mode is cancelled. (Hinternal flag is set.)
1	KBTE	0	R/(W)*	Transmit Completion Flag
				Indicates that data transmission is completed KTIE and KBTE are set to 1, requests the CP interrupt.
				0: [Clearing condition]
				After reading KBTE = 1, 0 is written
				1: [Setting Condition]
				When all KBTR data has been transmitted (S eleventh rising edge of the KCLK signal)
0	KTER	0	R	Transmit Error
				Stores a notification of receive completion. Va when KBTE = 1.
				0: 0 received as a notification of receive comp
				1: 1 received as a notification of receive comp

Note: * Only 0 can be written for clearing the flag.

Rev. 2.00 Sep. 28, 2009 Page 592 of 994 REJ09B0452-0200

3	TXCR3	0	R	Transmit Counter
2	TXCR2	0	R	Indicates bit of transmit data. Counter is incre
1	TXCR1	0	R	at the falling edge of KCLK. The transmit cou
0	TXCR0	0	R	initialized by a reset, when the KBTS is clear the KBIOE is cleared to 0, or the KBTE is se
				0000: Clear
				0001: KBT0
				0010: KBT1
				0011: KBT2
				0100: KBT3
				0101: KBT4
				0110: KBT5
				0111: KBT6
				1000: KBT7
				1001: Parity bit
				1010: Stop bit
				1011: Transmit completion notification

				 The keyboard buffer control unit is enabled transmission and reception (KCLK and KD pins are in the bus drive state)
6	KCLKI	1	R	Keyboard Clock In
				Monitors the KCLK I/O pin. This bit cannot be modified.
				0: KCLK I/O pin is low
				1: KCLK I/O pin is high
5	KDI	1	R	Keyboard Data In
				Monitors the KDI I/O pin. This bit cannot be m
				0: KD I/O pin is low
				1: KD I/O pin is high
4	KBFSEL	1	R/W	Keyboard Buffer Register Full Select
				Selects whether the KBF bit is used as the ke buffer register full flag or as the KCLK fall inte flag. When KBF bit is used as the KCLK fall ir flag, the KBE bit in KBCRL should be cleared disable reception.
				0: KBF bit is used as KCLK fall interrupt flag
				1: KBF bit is used as keyboard buffer register
3	KBIE	0	R/W	Keyboard Interrupt Enable
				Enables or disables interrupts from the keybo buffer control unit to the CPU.
				0: Interrupt requests are disabled
				1: Interrupt requests are enabled

Rev. 2.00 Sep. 28, 2009 Page 594 of 994 REJ09B0452-0200

			······································
			been transferred to KBBR while KBFSEL (keyboard buffer register full flag)
			 When a KCLK falling edge is detected when KBFSEL = 0 (KCLK interrupt flag)
PER	0	R/(W)*	Parity Error
			Indicates that an odd parity error has occurre
			0: [Clearing condition]
			Read PER when PER =1, then write 0 in PE
			1: [Setting condition]
			When an odd parity error occurs
KBS	0	R	Keyboard Stop
			Indicates the receive data stop bit. Valid only KBF = 1.
			0: 0 stop bit received
			1: 1 stop bit received
-			

Note: * Only 0 can be written for clearing the flag.

RENESAS

_				1: Loading of receive data into KBBR is enable
6	KCLKO	1	R/W	Keyboard Clock Out
				Controls PS2 clock I/O pin output.
				0: PS2 clock I/O pin is low
				1: PS2 clock I/O pin is high
5	KDO	1	R/W	Keyboard Data Out
				Controls PS2 data I/O pin output.
				0: PS2 data I/O pin is low
				1: PS2 data I/O pin is high
				When the start bit (KDO) is automatically clea (KDO = 1) by means of automatic transmission written after reading 1.
4	_	1	_	Reserved
				This bit is always read as 1 and cannot be mo

Rev. 2.00 Sep. 28, 2009 Page 596 of 994 REJ09B0452-0200

0010: KB0
0011: KB1
0100: KB2
0101: KB3
0110: KB4
0111: KB5
1000: KB6
1001: KB7
1010: Parity bit
1011: —
 11:

3	KB3	0	R
2	KB2	0	R
1	KB1	0	R
0	KB0	0	R

19.3.6 Keyboard Buffer Transmit Data Register (KBTR)

Bit	Bit Name	Initial Value	R/W	Description
7	KBT7	1	R/W	Keyboard Buffer Transmit Data Register 7 to
6	KBT6	1	R/W	Initialized to H'FF at reset.
5	KBT5	1	R/W	
4	KBT4	1	R/W	
3	KBT3	1	R/W	
2	KBT2	1	R/W	
1	KBT1	1	R/W	
0	KBT0	1	R/W	

KBTR stores transmit data.

Rev. 2.00 Sep. 28, 2009 Page 598 of 994 REJ09B0452-0200

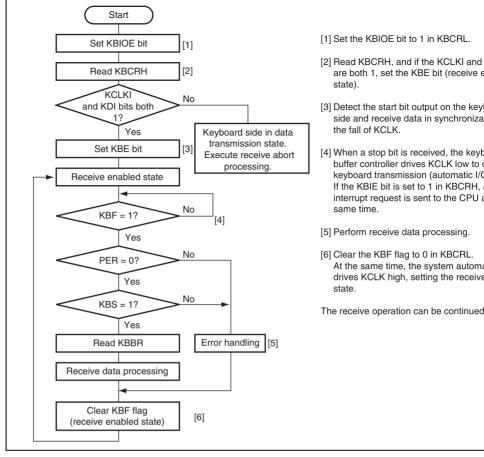


Figure 19.3 Sample Receive Processing Flowchart

RENESAS

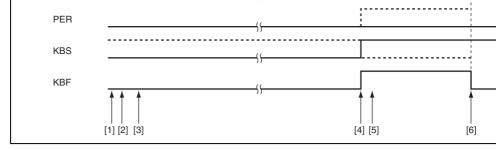


Figure 19.4 Receive Timing

Rev. 2.00 Sep. 28, 2009 Page 600 of 994 REJ09B0452-0200

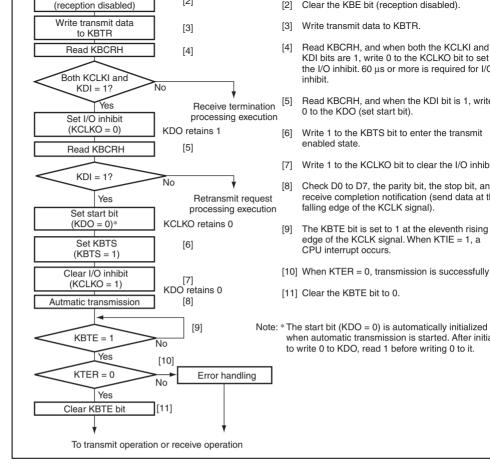


Figure 19.5 Sample Transmit Processing Flowchart

RENESAS

Figure 19.6 Transmit Timing

19.4.3 Receive Abort

This LSI (system side) can forcibly abort transmission from the device connected to it (ke side) in the event of a protocol error, etc. In this case, the system holds the clock low. Durreception, the keyboard also outputs a clock for synchronization, and the clock is monitor the keyboard output clock is high. If the clock is low at this time, the keyboard judges that an abort request from the system, and data transmission from the keyboard is aborted. The system can abort reception by holding the clock low for a certain period. A sample receive processing flowchart is shown in figure 19.7, and the receive abort timing in figure 19.8.

Rev. 2.00 Sep. 28, 2009 Page 602 of 994 REJ09B0452-0200

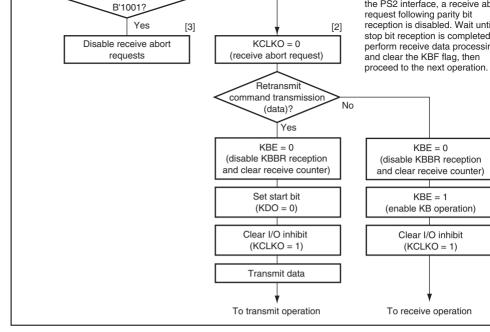


Figure 19.7 Sample Receive Abort Processing Flowchart (1)

the data is transmitted.

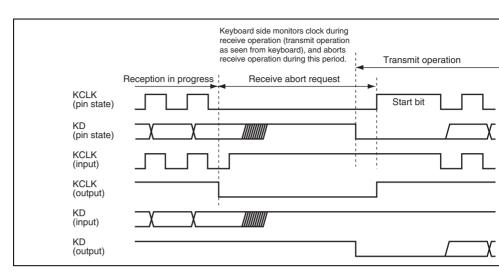


Figure 19.7 Sample Receive Abort Processing Flowchart (2)

Figure 19.8 Receive Abort and Transmit Start (Transmission/Reception Switchover) Timing

Rev. 2.00 Sep. 28, 2009 Page 604 of 994 REJ09B0452-0200

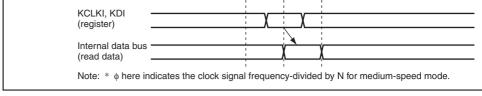


Figure 19.9 KCLKI and KDI Read Timing

19.4.5 KCLKO and KDO Write Timing

Figure 19.10 shows the KLCKO and KDO write timing and the KCLK and KD pin state

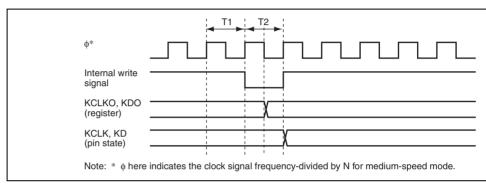


Figure 19.10 KCLKO and KDO Write Timing

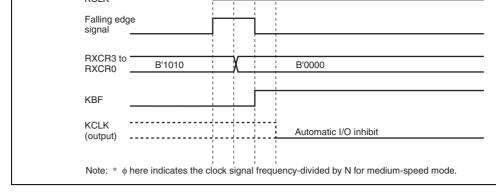


Figure 19.11 KBF Setting and KCLK Automatic I/O Inhibit Generation Tim

Rev. 2.00 Sep. 28, 2009 Page 606 of 994 REJ09B0452-0200

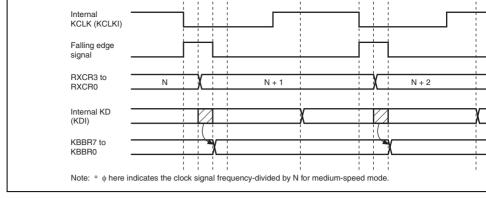


Figure 19.12 Receive Counter and KBBR Data Load Timing

19.4.8 Operation during Data Reception

If the KBS bit in KBCRH is set to 1 with other keyboard buffer control units in reception KCLK is automatically pulled down. Figure 19.13 shows receive timing and the KCLK

Note: * Period from the first falling edge of KCLK to completion of reception (KBF

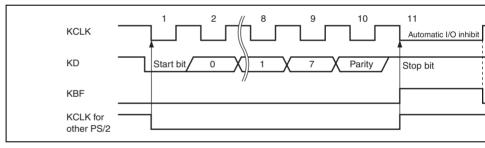
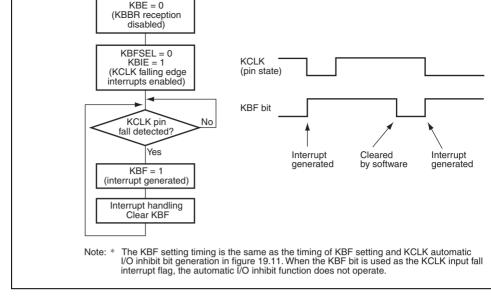



Figure 19.13 Receive Timing and KCLK

Rev. 2.00 Sep. 28, 2009 Page 608 of 994 REJ09B0452-0200

from B'0000 to B'0001.

Transmission

When both KBIOE and KBTS are set to 1, the KCIF is set after the first falling edge has been detected.

At this time, if KCIE is set to 1, the CPU is requested an interrupt.

KCIF is set at the same time when the TXCR3 to TXCR0 bits in KBCR2 are increm B'0000 to B'0001.

• Determining interrupt generation

By checking the KBE, KBTS, and KBTE bits, it can be determined whether the first falling interrupt is occurred during reception or transmission.

During reception: KBE = 1

During transmission: KBTS = 1 or KBTE = 1 (Check KBTE = 1 because the KBTS automatically cleared after transfer has been completed.)

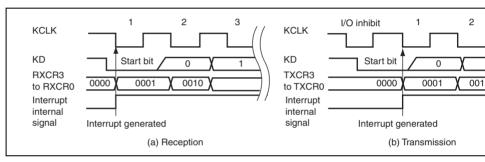


Figure 19.15 Timing of First KCLK Interrupt

In the first KCLK interrupt handling routine, the KCIF bit is checked. If the KCIF indicates that the interrupt is generated after software standby mode and watch mobeen cancelled.

- When software standby mode or watch mode is cancelled by receiving a receive c reception is ignored. Execute reception terminating processing by an interrupt han routine, and then request retransfer.
- When transition to software standby mode or watch mode is made and the mode is canceled by a first KCLK falling interrupt during data transmission, state before performing mode transition is held immediately after canceling the mode. Therefor initialization by an interrupt handling routine is required. Precautions as (b) and (c are shown in figure 19.17 should be applied on interrupt generation.
- Priority of canceling software standby mode and watch mode is decided by the set ICR.
- The interrupt signal path and flag setting of the first KCLK interrupt in normal opdiffer from those in software standby mode and watch mode. Figure 19.6 shows the interrupt signal paths of the first KCLK interrupt.

Signal A: Interrupt signal in normal operation

Signal B: Interrupt signal in software standby mode and watch mode

— KCLK is input directly to the interrupt control block, not through the PS2, in softw standby mode and watch mode, and then an interrupt is generated by detection of edge. Therefore, the KCIF flag is not set. In this case, a flag that is in the interrupt block is set. The internal flag is automatically cleared after an interrupt request is the CPU. Figure 19.18 shows setting and clearing timing.

Rev. 2.00 Sep. 28, 2009 Page 610 of 994 REJ09B0452-0200

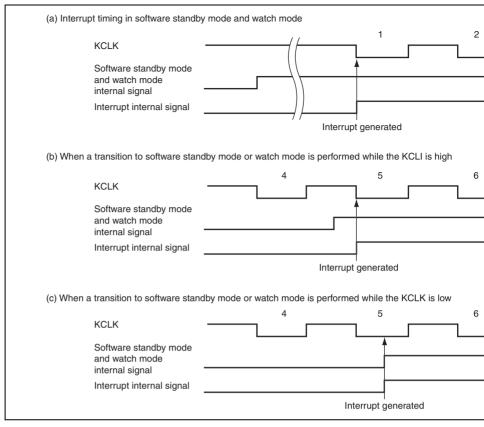
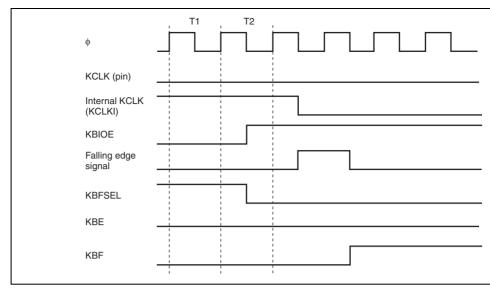


Figure 19.17 Interrupt Timing in Software Standby Mode and Watch Mo


Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

Watch Mode

Rev. 2.00 Sep. 28, 2009 Page 612 of 994 REJ09B0452-0200

Renesas

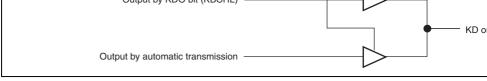
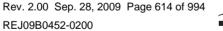


Figure 19.20 KDO Output

19.5.3 Module Stop Mode Setting


Keyboard buffer control unit operation can be enabled or disabled using the module stop register. The initial setting is for keyboard buffer control unit operation to be halted. Reg access is enabled by canceling module stop mode. For details, see section 26, Power-Dow Modes.

19.5.4 Medium-Speed Mode

In medium-speed mode, the PS2 operates with the medium-speed clock. For normal oper the PS2, set the medium-speed clock to a frequency of 300 kHz or higher.

19.5.5 Transmit Completion Flag (KBTE)

When TXCR3 to TXCR0 are 1011 (transmit completion notification) and then the TXCR TXCR0 are initialized by clearing KBIOE or KBTS to 0, the transmit completion flag (K set. In this case, KTER is invalid.

20.1 Features

- Supports LPC interface I/O read and I/O write cycles
 - Uses four signal lines (LAD3 to LAD0) to transfer the cycle type, address, and d
 - Uses three control signals: clock (LCLK), reset (\overline{LRESET}), and frame (\overline{LFRAMI})
- Four register sets comprising data and status registers
 - The basic register set comprises three bytes: an input register (IDR), output regis and status register (STR).
 - I/O addresses from H'0000 to H'FFFF are selected for channels 1 to 4.
 - A fast Gate A20 function is provided for channel 1.
 - For channel 3, sixteen bidirectional data register bytes can be manipulated in add the basic register set.
- Supports SCIF
 - The LPC interface is connected to the SCIF, allowing direct control of the SCIF LPC host.
- Supports SERIRQ
 - Host interrupt requests are transferred serially on a single signal line (SERIRQ).
 - On channel 1, HIRQ1 and HIRQ12 can be generated.
 - On channels 2, 3 and 4, SMI, HIRQ6, and HIRQ9 to HIRQ11 can be generated.
 - In the SCIF, HIRQ1, SMI, and HIRQ3 to HIRQ15 can be generated.
 - Operation can be switched between quiet mode and continuous mode.
 - The CLKRUN signal can be manipulated to restart the PCI clock (LCLK).
- Power-down modes and interrupts
 - The LPC module can be shut down by inputting the \overline{LPCPD} signal.
 - Three pins, $\overline{\text{PME}}$, $\overline{\text{LSMI}}$, and LSCI, are provided for general input/output.

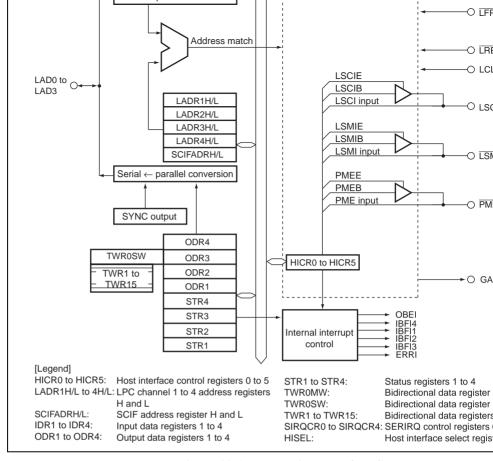


Figure 20.1 Block Diagram of LPC

Rev. 2.00 Sep. 28, 2009 Page 616 of 994 REJ09B0452-0200

RENESAS

				termination signal
LPC reset	LRESET	P35	Input*1	LPC interface reset signa
LPC clock	LCLK	P36	Input	33-MHz PCI clock signal
Serialized interrupt request	SERIRQ	P37	I/O* ¹	Serialized host interrupt resignal in synchronization
LSCI general output	LSCI	PB1	Output* ^{1, *2}	General output
LSMI general output	LSMI	PB0	Output* ^{1,} * ²	General output
PME general output	PME	P80	Output* ^{1,} * ²	General output
GATE A20	GA20	P81	Output* ^{1,} * ²	Gate A20 control signal o
LPC clock run	CLKRUN	P82	I/O* ^{1, *2}	LCLK restart request sign serial host interrupt is req
LPC power-down	LPCPD	P83	Input*1	LPC module shutdown sig

Notes: 1. Pin state monitoring input is possible in addition to the LPC interface control input/output function.

2. Only 0 can be output. If 1 is output, the pin is in the high-impedance state, so external resistor is necessary to pull the signal up to VCC.

Renesas

Host Interface control register 2	HICKZ	R/W			HFE4Z	ð
Host interface control register 3	HICR3	R		—	H'FE43	8
Host interface control register 4	HICR4	R/W		H'00	H'FDD9	8
Host interface control register 5	HICR5	R/W		H'00	H'FE33	8
LPC channel 1 address register H	LADR1H	R/W		H'00	H'FDC0	8
LPC channel 1 address register L	LADR1L	R/W		H'60	H'FDC1	8
LPC channel 2 address register H	LADR2H	R/W		H'00	H'FDC2	8
LPC channel 2 address register L	LADR2L	R/W		H'62	H'FDC3	8
LPC channel 3 address register H	LADR3H	R/W	_	H'00	H'FE34	8
LPC channel 3 address register L	LADR3L	R/W	—	H'00	H'FE35	8
LPC channel 4 address register H	LADR4H	R/W	—	H'00	H'FDD4	8
LPC channel 4 address register L	LADR4L	R/W	_	H'00	H'FDD5	8
Input data register 1	IDR1	R	W	H'00	H'FE38	8
Input data register 2	IDR2	R	W	H'00	H'FE3C	8
Input data register 3	IDR3	R	W	H'00	H'FE30	8
Input data register 4	IDR4	R	W	H'00	H'FDD6	8
Output data register 1	ODR1	R/W	R	H'00	H'FE39	8
Output data register 2	ODR2	R/W	R	H'00	H'FE3D	8
Output data register 3	ODR3	R/W	R	H'00	H'FE31	8
Output data register 4	ODR4	R/W	R	H'00	H'FDD7	8
Status register 1	STR1	R/W	R	H'00	H'FE3A	8
Status register 2	STR2	R/W	R	H'00	H'FE3E	8
Status register 3	STR3	R/W	R	H'00	H'FE32	8
Status register 4	STR4	R/W	R	H'00	H'FDD8	8

Rev. 2.00 Sep. 28, 2009 Page 618 of 994 REJ09B0452-0200

RENESAS

Bidirectional data register 6	TWR6	R/W	R/W	H'00	H'FE26
Bidirectional data register 7	TWR7	R/W	R/W	H'00	H'FE27
Bidirectional data register 8	TWR8	R/W	R/W	H'00	H'FE28
Bidirectional data register 9	TWR9	R/W	R/W	H'00	H'FE29
Bidirectional data register 10	TWR10	R/W	R/W	H'00	H'FE2A
Bidirectional data register 11	TWR11	R/W	R/W	H'00	H'FE2B
Bidirectional data register 12	TWR12	R/W	R/W	H'00	H'FE2C
Bidirectional data register 13	TWR13	R/W	R/W	H'00	H'FE2D
Bidirectional data register 14	TWR14	R/W	R/W	H'00	H'FE2E
Bidirectional data register 15	TWR15	R/W	R/W	H'00	H'FE2F
SERIRQ control register 0	SIRQCR0	R/W		H'00	H'FE36
SERIRQ control register 1	SIRQCR1	R/W		H'00	H'FE37
SERIRQ control register 2	SIRQCR2	R/W		H'00	H'FDDA
SERIRQ control register 3	SIRQCR3	R/W		H'00	H'FDDB
SERIRQ control register 4	SIRQCR4	R/W		H'00	H'FE3B
Host interface select register	HISEL	R/W	_	H'03	H'FE3F
SCIF address register H	SCIFADRH	R/W		H'03	H'FDC4
SCIF address register L	SCIFADRL	R/W		H'F8	H'FDC5

Notes: R/W in the register description means as follows:

1. R/W slave indicates access from the slave (this LSI).

2. R/W host indicates access from the host.

RENESAS

- _ ~~ LPC2E 0 R/W Enable or disable the LPC interface function. LPC interface is enabled (one of the three bits LPC1E R/W 0 1), processing for data transfer between the sl LSI) and the host is performed using pins LAD LADO, LFRAME, LRESET, LCLK, SERIRQ, C and LPCPD. LPC3E 0: LPC channel 3 operation is disabled No address (LADR3) matches for IDR3, O STR3, or TWR0 to TWR15 1: LPC channel 3 operation is enabled LPC2E 0: LPC channel 2 operation is disabled No address (LADR2) matches for IDR2, O
 - 1: LPC channel 2 operation is enabled
 - LPC1E

STR2

- LPC channel 1 operation is disabled No address (LADR1) matches for IDR1, O STR1
- 1: LPC channel 1 operation is enabled

Rev. 2.00 Sep. 28, 2009 Page 620 of 994 REJ09B0452-0200

6

5

				GA20 pin output is open-drain (external p
				resistor (Vcc) required)
3	SDWNE	0	R/W —	LPC Software Shutdown Enable
				Controls LPC interface shutdown. For details LPC shutdown function, and the scope of init by an LPC reset and an LPC shutdown, see 20.4.4, LPC Interface Shutdown Function (LF
				0: Normal state, LPC software shutdown se enabled
				[Clearing conditions]
				Writing 0
				LPC hardware reset or LPC software reset
				 LPC hardware shutdown release (rising e LPCPD signal)
				 LPC hardware shutdown state setting ena Hardware shutdown state when LPCPD s low level
				[Setting condition]
				Writing 1 after reading SDWNE = 0

				1	1	:	PME output enabled, PME output is high-impedance
1	LSMIE	0	R/W —	LSMI or	utput E	nal	ble
				bit in HI	CR1. Ī	_SN	tput in combination with the l II pin output is open-drain, al esistor (Vcc) is needed.
				LSMIE	LSM	IB	
				0	Х	:	LSMI output disabled, othe of pin is enabled
				1	0	:	LSMI output enabled, LSM output goes to 0 level
				1	1	:	LSMI output enabled, LSM output is Hi-Z
0	LSCIE	0	R/W —	LSCI ou	utput E	nat	ble
				in HICR	1. LSC	CI p	tput in combination with the L in output is open-drain, and a esistor (Vcc) is needed.
				LSCIE	LSC	IB	
				0	Х	:	LSCI output disabled, other of pin is enabled
				1	0	:	LSCI output enabled, LSCI output goes to 0 level
				1	1	:	LSCI output enabled, LSCI output is high-impedance
-	end]						

[Legend]

X: Don't care

Rev. 2.00 Sep. 28, 2009 Page 622 of 994 REJ09B0452-0200

RENESAS

					 Cycle type or address indeterminate during t cycle
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					LPC hardware shutdown or LPC software sh
					Forced termination (abort) of transfer cycle s processing
					 Normal termination of transfer cycle subject t processing
					1: LPC interface is performing transfer cycle pro
					[Setting condition]
					Match of cycle type and address
6	CLKREQ	0	R	—	LCLK Request
					Indicates that the LPC interface's SERIRQ output requesting a restart of LCLK.
					0: No LCLK restart request
					[Clearing conditions]
					LPC hardware reset or LPC software reset
					LPC hardware shutdown or LPC software sh
					 There are no further interrupts for transfer to in quiet mode in which SERIRQ is set to com mode
					1: LCLK restart request issued
					[Setting condition]
					In quiet mode, SERIRQ interrupt output become necessary while LCLK is stopped

				1: SERIRQ transfer processing in progress
				[Setting condition]
				Start of SERIRQ transfer frame
4	LRSTB	0	R/W —	LPC Software Reset Bit
				Resets the LPC interface. For the scope of initializ an LPC reset, see section 20.4.4, LPC Interface S Function (LPCPD).
				0: Normal state
				[Clearing conditions]
				Writing 0
				LPC hardware reset
				1: LPC software reset state
				[Setting condition]
				Writing 1 after reading LRSTB = 0

Rev. 2.00 Sep. 28, 2009 Page 624 of 994 REJ09B0452-0200

				LPC hardware shutdown
				(falling edge of LPCPD signal when SDWNE
				LPC hardware shutdown release
				(rising edge of \overline{LPCPD} signal when SDWNE
				1: LPC software shutdown state
				[Setting condition]
				Writing 1 after reading SDWNB = 0
2	PMEB	0	R/W —	PME Output Bit
				Controls PME output in combination with the PM For details, refer to description on the PMEE bit
1	LSMIB	0	R/W —	LSMI Output Bit
				Controls LSMI output in combination with the LS For details, refer to description on the LSMIE bit
0	LSCIB	0	R/W —	LSCI output Bit
				Controls LSCI output in combination with the LS For details, refer to description on the LSCIE bit
			,	

Renesas

Bit	Bit Name	Value	Slave	Host	Description
7	GA20	Undefined	R	_	GA20 Pin Monitor
6	LRST	0	R/(W)*	_	LPC Reset Interrupt Flag
					This bit is a flag that generates an ERRI inter when an LPC hardware reset occurs.
					0: [Clearing condition]
					Writing 0 after reading LRST = 1
					1: [Setting condition]
					LRESET pin falling edge detection
5	SDWN	0	R/(W)*		LPC Shutdown Interrupt Flag
					This bit is a flag that generates an ERRI inter when an LPC hardware shutdown request is generated.
					0: [Clearing conditions]
					• Writing 0 after reading SDWN = 1
					LPC hardware reset
					(IRESET pin falling edge detection)
					• LPC software reset (LRSTB = 1)
					1: [Setting condition]
					LPCPD pin falling edge detection

Rev. 2.00 Sep. 28, 2009 Page 626 of 994 REJ09B0452-0200

					 LPC software reset (LRSTB = 1)
					LPC hardware shutdown
					(SDWNE = 1 and LPCPD pin falling edg detection)
					• LPC software shutdown (SDWNB = 1)
					1: [Setting condition]
					LFRAME pin falling edge detection during L transfer cycle
3	IBFIE3	0	R/W	_	IDR3 and TWR Receive Complete interrupt
					Enables or disables IBFI3 interrupt to the sl LSI).
					0: Input data register IDR3 and TWR recei
					complete interrupt requests disabled
					1: [When TWRE = 0 in LADR3]
					Input data register (IDR3) receive co interrupt requests enabled
					[When TWRE = 1 in LADR3]
					Input data register (IDR3) and TWR
					complete interrupt requests enabled
2	IBFIE2	0	R/W		IDR2 Receive Complete interrupt Enable
					Enables or disables IBFI2 interrupt to the sl LSI).
					0: Input data register (IDR2) receive comple interrupt requests disabled
					1: Input data register (IDR2) receive comple interrupt requests enabled

Enables or disables ERRI interrupt to the sla LSI).

0: Error interrupt requests disabled

1: Error interrupt requests enabled

Note: * Only 0 can be written to bits 6 to 4, to clear the flag.

• HICR3

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	LFRAME	Undefined	R		LFRAME Pin Monitor
6	CLKRUN	Undefined	R		CLKRUN Pin Monitor
5	SERIRQ	Undefined	R		SERIRQ Pin Monitor
4	LRESET	Undefined	R		LRESET Pin Monitor
3	LPCPD	Undefined	R	_	LPCPD Pin Monitor
2	PME	Undefined	R		PME Pin Monitor
1	LSMI	Undefined	R		LSMI Pin Monitor
0	LSCI	Undefined	R	_	LSCI Pin Monitor

Rev. 2.00 Sep. 28, 2009 Page 628 of 994 REJ09B0452-0200

				0: LPC channel 4 is disabled
				For IDR4, ODR4, and STR4, address match is not occurred.
				1: LPC channel 4 enabled
5	IBFIE4	0	R/W —	IDR4 Receive Completion Interrupt Enable
				Enables or disables IBFI4 interrupt to the s LSI).
				 Input data register (IDR4) receive comp interrupt requests disabled
				 Input data register (IDR4) receive com interrupt requests enabled
4 to	0 —	All 0	R/W —	Reserved
				The initial value should not be changed.

6	OBEI	0	R/W —	Output Buffer Empty Interrupt Flag
				0: [Clearing conditions]
				• Writing 0 after reading OBEI = 1
				LPC hardware reset or LPC software re
				1: [Setting condition]
				When one of OBF1, OBF2, OBF3A, OBF3 OBF4 is cleared
5 to 4		All 0	R/W —	Reserved
				The initial value bit should not be changed.
3	SCIFE	0	R/W —	SCIF Enable
				Enables or disables access from the LPC h the SCIF.
				0: Disables access from the LPC host of th
				1: Enables access from the LPC host of the
2 to 0		All 0	R/W —	Reserved
				The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 630 of 994 REJ09B0452-0200

-		-	
5	Bit 13	0	R/W —
4	Bit 12	0	R/W —
3	Bit 11	0	R/W —
2	Bit 10	0	R/W —
1	Bit 9	0	R/W —
0	Bit 8	0	R/W —

• LADR1L

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
7	Bit 7	0	R/W —	Channel 1 Address Bits 7 to 3
6	Bit 6	1	R/W —	Set the LPC channel 1 host address.
5	Bit 5	1	R/W —	
4	Bit 4	0	R/W —	
3	Bit 3	0	R/W —	
2	Bit 2	0	R/W —	Reserved
				This bit is ignored when an address match decided.
1	Bit 1	0	R/W —	Channel 1 Address Bits 1 and 0
0	Bit 0	0	R/W —	Set the LPC channel 1 host address.

20.3.6 LPC Channel 2 Address Registers H and L (LADR2H and LADR2L)

LADR2 sets the LPC channel 2 host address. The LADR2 contents must not be changed channel 2 is operating (while LPC2E is set to 1).

• LADR2H

		Initial	R/	W		
Bit	Bit Name	Value	Slave	Host	Description	
7	Bit 15	0	R/W		Channel 2 Address Bits 15 to 8	
6	Bit 14	0	R/W	—	Set the LPC channel 2 host address.	
5	Bit 13	0	R/W	_		
4	Bit 12	0	R/W	—		
3	Bit 11	0	R/W	_		
2	Bit 10	0	R/W	_		
1	Bit 9	0	R/W	—		
0	Bit 8	0	R/W			

Rev. 2.00 Sep. 28, 2009 Page 632 of 994 REJ09B0452-0200

				This bit is ignored when an address match i
1	Bit 1	1	R/W —	Channel 2 Address Bits 1 and 0
0	Bit 0	0	R/W —	Set the LPC channel 2 host address.

• Host select register

	Transfer			
Bits 5 to 3	Bit 2	Bits 1 and 0	Cycle	Host Select Re
Bits 15 to 3 in LADR2	0	Bits 1 and 0 in LADR2	I/O write	IDR2 write (dat
Bits 15 to 3 in LADR2	1	Bits 1 and 0 in LADR2	I/O write	IDR2 write (cor
Bits 15 to 3 in LADR2	0	Bits 1 and 0 in LADR2	I/O read	ODR2 read
Bits 15 to 3 in LADR2	1	Bits 1 and 0 in LADR2	I/O read	STR2 read

Note: * When channel 2 is used, the content of LADR2 must be set so that the addre channels 1, 3, 4, and SCIF are different.

6	Bit 14	0	R/W	_	Set the LPC channel 3 host address.
5	Bit 13	0	R/W	—	
4	Bit 12	0	R/W		
3	Bit 11	0	R/W	—	
2	Bit 10	0	R/W		
1	Bit 9	0	R/W	—	
0	Bit 8	0	R/W	—	

• LADR3L

			R/		
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 7	0	R/W		Channel 3 Address Bits 7 to 3
6	Bit 6	0	R/W	_	Set the LPC channel 3 host address.
5	Bit 5	0	R/W	—	
4	Bit 4	0	R/W		
3	Bit 3	0	R/W	—	
2	_	0	R/W	_	Reserved
					The initial value should not be changed.
1	Bit 1	0	R/W	_	Channel 3 Address Bit 1
					Sets the LPC channel 3 host address.
0	TWRE	0	R/W	_	Bidirectional Data Register Enable
					Enables or disables bidirectional data regist operation.
					0: TWR operation is disabled
					TWR-related I/O address match determin halted
					1: TWR operation is enabled

Rev. 2.00 Sep. 28, 2009 Page 634 of 994

REJ09B0452-0200

RENESAS

Bit 4	Bit 3	0	Bit 1	0	I/O read	ODR3 read
Bit 4	Bit 3	1	Bit 1	0	I/O read	STR3 read
$\overline{\text{Bit}} \overline{4}$	0	0	0	0	I/O write	TWR0MW write
$\overline{\text{Bit}} \overline{4}$	0	0	0	1	I/O write	TWR1 to TWR15 write
	:	:	:	:		
	1	1	1	1		
$\overline{\text{Bit}} \overline{4}$	0	0	0	0	I/O read	TWR0SW read
$\overline{\text{Bit}} \overline{4}$	0	0	0	1	I/O read	TWR1 to TWR15 read
	:	:	:	:		
	1	1	1	1		

Note: * When channel 3 is used, the content of LADR3 must be set so that the addre channels 1, 2, 4, and SCIF are different.

0	DIL 14	0	R/ VV	 Set the LFC channel 4 host address.
5	Bit 13	0	R/W	
4	Bit 12	0	R/W	
3	Bit 11	0	R/W	
2	Bit 10	0	R/W	
1	Bit 9	0	R/W	
0	Bit 8	0	R/W	

• LADR4L

			R/	w	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	Bit 7	0	R/W		Channel 4 Address Bits 7 to 3
6	Bit 6	0	R/W		Set the LPC channel 4 host address.
5	Bit 5	0	R/W	_	
4	Bit 4	0	R/W	_	
3	Bit 3	0	R/W		
2	Bit2	0	R/W	_	Reserved
					This bit is ignored when an address match is decided.
1	Bit 1	0	R/W		Channel 4 Address Bits 1 and 0
0	Bit 0	0	R/W		Set the LPC channel 4 host address.

Rev. 2.00 Sep. 28, 2009 Page 636 of 994 REJ09B0452-0200

RENESAS

20.3.9 Input Data Registers 1 to 4 (IDR1 to IDR4)

IDR1 to IDR4 are 8-bit read-only registers for the slave (this LSI), and 8-bit write-only is for the host. The registers selected from the host according to the I/O address are shown following table. Data transferred in an LPC I/O write cycle is written to the selected reg value of bit 2 of the I/O address is latched into the C/\overline{D} bit in STR, to indicate whether the information is a command or data. The initial values of IDR1 to IDR4 are H'00.

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 2 Bit 1		Cycle	Host Register Se
Bits 15 to 4	Bit 3	0	Bit 1	Bit 0	I/O write	IDRn write, C/Dn
Bits 15 to 4	Bit 3	1	Bit 1	Bit 0	I/O write	IDRn write, C/Dn

n = 1 to 4

20.3.10 Output Data Registers 1 to 4 (ODR1 to ODR4)

ODR1 to ODR4 are 8-bit readable/writable registers for the slave (this LSI), and 8-bit registers for the host. The registers selected from the host according to the I/O address a in the following table. In an LPC I/O read cycle, the data in the selected register is trans the host. The initial values of ODR1 to ODR4 are H'00.

		I/O Addres	Transfer			
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Register Se
Bits 15 to 4	Bit 3	0	Bit1	Bit 0	I/O read	ODRn read

n = 1 to 4

RENESAS

Attempts by the slave to write to 1 wrob w are invalid.

When the slave has access rights, TWR0SW is selected in TWR0 and the state of TWR0S returned when the slave reads TWR0MW. Attempts by the host to write to TWR0MW ar

For the registers selected from the host according to the I/O address, see section 20.3.7, L Channel 3 Address Registers H and L (LADR3H and LADR3L).

Data transferred in an LPC I/O write cycle is written to the selected register; in an LPC I/C cycle, the data in the selected register is transferred to the host. The initial values of TWF TWR15 are H'00.

20.3.12 Status Registers 1 to 4 (STR1 to STR4)

STR1 to STR4 are 8-bit registers that indicate status information during LPC interface pr The registers selected from the host according to the I/O address are shown in the followi In an LPC I/O read cycle, the data in the selected register is transferred to the host.

		Transfer				
Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Register Sele
Bits 15 to 4	Bit 3	1	Bit1	Bit 0	I/O read	STRn read
n 1 to 1						

n = 1 to 4

Rev. 2.00 Sep. 28, 2009 Page 638 of 994 REJ09B0452-0200

					address is written into this bit to indicate w IDR1 contains data or a command.			
					0: Content of input data register (IDR1) is a			
					1: Content of input data register (IDR1) is a command			
2	DBU12	0	R/W	R	Defined by User			
					The user can use this bit as necessary.			
1	IBF1	0	R	R	Input Buffer Full			
					This bit is an internal interrupt source to the (this LSI). The IBF1 flag setting and clearin conditions are different when the fast Gate used. For details, see table 20.5.			
					0: [Clearing condition]			
					When the slave reads IDR1			
					1: [Setting condition]			
_				_	When the host writes to IDR1 in I/O write of			
0	OBF1	0	R/(W)*	R	Output Buffer Full			
					0: [Clearing conditions]			
					• When the host reads ODR1 in I/O read			
					• When the slave writes 0 to the OBF1 b			
					1: [Setting condition]			
					When the slave writes to ODR1			
Note	Note: * Only 0 can be written to clear the flag.							

Note: • Only 0 can be written to clear the flag.

Renesas

					address is written into this bit to indicate wh IDR2 contains data or a command.
					0: Content of input data register (IDR2) is a
					1: Content of input data register (IDR2) is a command
2	DBU22	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF2	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the (this LSI).
					0: [Clearing condition]
					When the slave reads IDR2
					1: [Setting condition]
					When the host writes to IDR2 in I/O write cy
0	OBF2	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					• When the host reads ODR2 in I/O read
					• When the slave writes 0 to the OBF2 bit
					1: [Setting condition]
					When the slave writes to ODR2
Note: * Only 0 can be written to clear the flag					

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 640 of 994 REJ09B0452-0200

				When the host writes to TWR15 in I/O write
6	OBF3B	0	R/(W)* R	Bidirectional Data Register Output Buffer
				0: [Clearing conditions]
				• When the host reads TWR15 in I/O reads
				• When the slave writes 0 to the OBF3B
				1: [Setting condition]
				When the slave writes to TWR15
5	MWMF	0	R R	Master Write Mode Flag
				0: [Clearing condition]
				When the slave reads TWR15
				1: [Setting condition]
				When the host writes to TWR0 in I/O write while SWMF = 0
4	SWMF	0	R/(W)* R	Slave Write Mode Flag
				In the event of simultaneous writes by the and the slave, the master write has priority
				0: [Clearing conditions]
				• When the host reads TWR15 in I/O rea
				• When the slave writes 0 to the SWMF
				1: [Setting condition]
				When the slave writes to TWR0 while MW

					The user can use this bit as necessary.	
1	IBF3A	0	R	R	Input Buffer Full	
					This bit is an internal interrupt source to the (this LSI).	
					0: [Clearing condition]	
					When the slave reads IDR3	
					1: [Setting condition]	
					When the host writes to IDR3 in I/O write c	
0	OBF3A	0	R/(W)*	R	Output Buffer Full	
					0: [Clearing conditions]	
					• When the host reads ODR3 in I/O read	
					• When the slave writes 0 to the OBF3 bi	
					1: [Setting condition]	
					When the slave writes to ODR3	
Mate	Note: * Only 0 can be written to clear the flag					

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 642 of 994 REJ09B0452-0200

					address is written into this bit to indicate w IDR3 contains data or a command.
					0: Content of input data register (IDR3) is a
					1: Content of input data register (IDR3) is a command
2	DBU32	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF3	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the (this LSI).
					0: [Clearing condition]
					When the slave reads IDR3
					1: [Setting condition]
					When the host writes to IDR3 in I/O write of
0	OBF3	0	R/(W) [*]	* R	Output Buffer Full
					0: [Clearing conditions]
					• When the host reads ODR3 in I/O read
					• When the slave writes 0 to the OBF3 b
					1: [Setting condition]
					When the slave writes to ODR3
Note	e: * Onlv	0 can be v	written to cle	ear th	e flag.

Note: * Only 0 can be written to clear the flag.

Renesas

					address is written into this bit to indicate wh IDR4 contains data or a command.
					0: Content of input data register (IDR4) is a
					1: Content of input data register (IDR4) is a command
2	DBU42	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF4	0	R	R	Input Buffer Full
					This bit is an internal interrupt source to the (this LSI).
					0: [Clearing condition]
					When the slave reads IDR4
					1: [Setting condition]
					When the host writes to IDR4 in I/O write cy
0	OBF4	0	R/(W)*	R	Output Buffer Full
					0: [Clearing conditions]
					• When the host reads ODR4 in I/O read
					• When the slave writes 0 to the OBF4 bit
					1: [Setting condition]
					When the slave writes to ODR4
Note	- ∗ Only	0 can be writ	tton to clc	or th	

Note: * Only 0 can be written to clear the flag.

Rev. 2.00 Sep. 28, 2009 Page 644 of 994 REJ09B0452-0200

					0: Continuous mode
					[Clearing conditions]
					LPC hardware reset, LPC software reset.
					Specification by SERIRQ transfer cycle frame
					1: Quiet mode
					[Setting condition]
					Specification by SERIRQ transfer cycle sto
6	SELREQ	0	R/W		Start Frame Initiation Request Select
					Selects the condition of a start frame initiat request when a host interrupt request is cle quiet mode.
					0: Start frame initiation is requested when a interrupt requests are cleared
					1: Start frame initiation is requested when a more interrupt requests are cleared
5	IEDIR2	0	R/W	_	Interrupt Enable Direct Mode 2
					Selects whether an SERIRQ interrupt gene LPC channel 2 is affected only by a host in enable bit or by an OBF flag in addition to bit.
					0: A host interrupt is generated when both bit and the corresponding OBF flag are
					1: A host interrupt is generated when the e is set

				• Clearing OBF3B to 0 (when IEDIR3 = 0)
				1: [When IEDIR3 = 0]
				Host SMI interrupt request by setting OE is enabled
				[When IEDIR3 = 1]
				Host SMI interrupt is requested
				[Setting condition]
				Writing 1 after reading SMIE3B = 0
3	SMIE3A	0	R/W —	Host SMI Interrupt Enable 3A
				Enables or disables an SMI interrupt reques OBF3A is set by an ODR3 write.
				 Host SMI interrupt request by OBF3A ar SMIE3A is disabled
				[Clearing conditions]
				Writing 0 to SMIE3A
				LPC hardware reset, LPC software reset
				 Clearing OBF3A to 0 (when IEDIR3 = 0)
				1: [When IEDIR3 = 0]
				Host SMI interrupt request by setting is
				[When IEDIR3 = 1]
				Host SMI interrupt is requested
				[Setting condition]
				Writing 1 after reading SMIE3A = 0

Rev. 2.00 Sep. 28, 2009 Page 646 of 994 REJ09B0452-0200

					• Clearing OBF2 to 0 (when IEDIR2 = 0)
					1: [When IEDIR2 = 0]
					Host SMI interrupt request by setting C is enabled
					[When IEDIR2 = 1]
					Host SMI interrupt is requested
					[Setting condition]
					Writing 1 after reading SMIE2 = 0
1	IRQ12E1	0	R/W	_	Host IRQ12 Interrupt Enable 1
					Enables or disables an HIRQ12 interrupt re when OBF1 is set by an ODR1 write.
					0: HIRQ12 interrupt request by OBF1 and is disabled
					[Clearing conditions]
					Writing 0 to IRQ12E1
					• LPC hardware reset, LPC software res
					Clearing OBF1 to 0
					1: HIRQ12 interrupt request by setting OBI enabled
					[Setting condition]
					Writing 1 after reading IRQ12E1 = 0

Clearing OBF1 to 0
 1: HIRQ1 interrupt request by setting OBF1 enabled
 [Setting condition]
 Writing 1 after reading IRQ1E1 = 0

Rev. 2.00 Sep. 28, 2009 Page 648 of 994 REJ09B0452-0200

			•	Clearing cond Writing 0 to LPC hardw Clearing 0 : [When IED HIRQ11 in is enabled [When IED	o IRQ11E3 vare reset, LP 0BF3A to 0 (wh 0IR3 = 0] terrupt reques	C software res nen IEDIR3 = (t by setting OE ested
			[Setting condit	tion]	
			V	Vriting 1 after	reading IRQ1	1E3 = 0
6 IRC	10E3 () R/W	E V C (4 - 1	inables or dis when OBF3A in IRQE10E3 Clearing cond Writing 0 to LPC hardw Clearing O : [When IED HIRQ10 in is enabled [When IED HIRQ10 in Setting condit	is set by an O terrupt reques 3 is disabled ditions] o IRQ10E3 vare reset, LP0 0BF3A to 0 (wh 0IR3 = 0] terrupt reques 0IR3 = 1] terrupt is requ	Q10 interrupt re DR3 write. t by OBF3A ar C software res nen IEDIR3 = 0 t by setting OE ested
			REI	NESAS	Rev. 2.00 Se	o. 28, 2009 Pag REJ09

				• Clearing OBF3A to 0 (when IEDIR3 = 0)
				1: [When IEDIR3 = 0]
				HIRQ9 interrupt request by setting OBF3 enabled
				[When IEDIR3 = 1]
				HIRQ9 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ9E3 = 0
4	IRQ6E3	0	R/W —	Host IRQ6 Interrupt Enable 3
				Enables or disables an HIRQ6 interrupt requested when OBF3A is set by an ODR3 write.
				0: HIRQ6 interrupt request by OBF3A and is disabled
				[Clearing conditions]
				Writing 0 to IRQ6E3
				LPC hardware reset, LPC software rese
				• Clearing OBF3A to 0 (when IEDIR3 = 0)
				1: [When IEDIR3 = 0]
				HIRQ6 interrupt request by setting OBF3 enabled
				[When IEDIR3 = 1]
				HIRQ6 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ6E3 = 0

Rev. 2.00 Sep. 28, 2009 Page 650 of 994 REJ09B0452-0200

RENESAS

				• Clearing OBF2 to 0 (when IEDIR2 = 0)
				1: [When IEDIR2 = 0]
				HIRQ11 interrupt request by setting Of enabled
				[When IEDIR2 = 1]
				HIRQ11 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ11E2 = 0
2	IRQ10E2	0	R/W —	Host IRQ10 Interrupt Enable 2
				Enables or disables an HIRQ10 interrupt re when OBF2 is set by an ODR2 write.
				0: HIRQ10 interrupt request by OBF2 and IRQE10E2 is disabled
				[Clearing conditions]
				Writing 0 to IRQ10E2
				 LPC hardware reset, LPC software res
				• Clearing OBF2 to 0 (when IEDIR2 = 0)
				1: [When IEDIR2 = 0]
				HIRQ10 interrupt request by setting OE enabled
				[When IEDIR2 = 1]
				HIRQ10 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ10E2 = 0

				• Clearing OBF2 to 0 (when IEDIR2 = 0)
				1: [When IEDIR2 = 0]
				HIRQ9 interrupt request by setting OBF2 enabled
				[When IEDIR2 = 1]
				HIRQ9 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ9E2 = 0
0	IRQ6E2	0	R/W —	Host IRQ6 Interrupt Enable 2
				Enables or disables an HIRQ6 interrupt requested when OBF2 is set by an ODR2 write.
				 HIRQ6 interrupt request by OBF2 and IF is disabled
				[Clearing conditions]
				Writing 0 to IRQ6E2
				 LPC hardware reset, LPC software reset
				• Clearing OBF2 to 0 (when IEDIR2 = 0)
				1: [When IEDIR2 = 0]
				HIRQ6 interrupt request by setting OBF2 enabled
				[When IEDIR2 = 1]
				HIRQ6 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ6E2 = 0

Rev. 2.00 Sep. 28, 2009 Page 652 of 994 REJ09B0452-0200

				bit.
				 A host interrupt is generated when both enable bit and the corresponding OBF set
				1: A host interrupt is generated when the is set
6	IEDIR4	0	R/W —	Interrupt Enable Direct Mode 4
				Selects whether an SERIRQ interrupt gene LPC channel 4 is affected only by a host ir enable bit or by an OBF flag in addition to bit.
				 A host interrupt is generated when both enable bit and the corresponding OBF set
				1: A host interrupt is generated when the is set

			• Clearing OBF4 to 0 (when IEDIR4 = 0)
			1: [When IEDIR4 = 0]
			HIRQ11 interrupt request by setting OBF enabled
			[When IEDIR4 = 1]
			HIRQ11 interrupt is requested
			[Setting condition]
			Writing 1 after reading IRQ11E4 = 0
4	IRQ10E4 0	R/W —	Host IRQ10 Interrupt Enable 4
			Enables or disables an HIRQ10 interrupt reo when OBF4 is set by an ODR4 write.
			 HIRQ10 interrupt request by OBF4 and IRQE10E4 is disabled
			[Clearing conditions]
			Writing 0 to IRQ10E4
			LPC hardware reset, LPC software reset
			• Clearing OBF4 to 0 (when IEDIR4 = 0)
			1: [When IEDIR4 = 0]
			HIRQ10 interrupt request by setting OBF enabled
			[When IEDIR4 = 1]
			HIRQ10 interrupt is requested
			[Setting condition]
			Writing 1 after reading IRQ10E4 = 0

Rev. 2.00 Sep. 28, 2009 Page 654 of 994 REJ09B0452-0200

				 Clearing OBF4 to 0 (when IEDIR4 = 0) 1. [When IEDIR4 - 0]
				 [When IEDIR4 = 0] HIRQ9 interrupt request by setting OBI enabled
				[When IEDIR4 = 1]
				HIRQ9 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ9E4 = 0
2	IRQ6E4	0	R/W —	Host IRQ6 Interrupt Enable 4
				Enables or disables an HIRQ6 interrupt rec when OBF4 is set by an ODR4 write.
				0: HIRQ6 interrupt request by OBF4 and l is disabled
				[Clearing conditions]
				Writing 0 to IRQ6E4
				 LPC hardware reset, LPC software reset
				• Clearing OBF4 to 0 (when IEDIR4 = 0)
				1: [When IEDIR4 = 0]
				HIRQ6 interrupt request by setting OBF enabled
				[When IEDIR4 = 1]
				HIRQ6 interrupt is requested
				[Setting condition]
				Writing 1 after reading IRQ6E4 = 0

				• Clearing OBF4 to 0 (when IEDIR4 = 0)
				1: [When IEDIR4 = 0]
				Host SMI interrupt request by setting OE is enabled
				[When IEDIR4 = 1]
				Host SMI interrupt is requested
				[Setting condition]
				Writing 1 after reading SMIE4 = 0
0	—	0	R/W —	Reserved
				The initial value should not be changed.

20.3.16 SERIRQ Control Register 3 (SIRQCR3)

SIRQCR3 contains bits that select the host interrupt request outputs.

		Initial	R/W		
Bit	Bit Name	Value	Slave	Host	Description
7	SELIRQ15	0	R/W		Host IRQ Interrupt Select
6	SELIRQ14	0	R/W		These bits select the state of the output on t
5	SELIRQ13	0	R/W		SERIRQ pins.
4	SELIRQ8	0	R/W		0: SERIRQ pin output is in the Hi-Z state
3	SELIRQ7	0	R/W		1: SERIRQ pin output is low
2	SELIRQ5	0	R/W		
1	SELIRQ4	0	R/W	_	
0	SELIRQ3	0	R/W		

Rev. 2.00 Sep. 28, 2009 Page 656 of 994 REJ09B0452-0200

RENESAS

1	SCSIRQ1	0	R/W		0000: No host interrupt request
0	SCSIRQ0	0	R/W	_	0001: HIRQ1
					0010: SMI
					0011: HIRQ3
					0100: HIRQ4
					0101: HIRQ5
					0110: HIRQ6
					0111: HIRQ7
					1000: HIRQ8
					1001: HIRQ9
					1010: HIRQ10
					1011: HIRQ11
					1100: HIRQ12
					1101: HIRQ13
					1110: HIRQ14
					1111: HIRQ15

ю	_	0	R/W	_	These bits set the nost addresses of the SC
5	_	0	R/W		-
4		0	R/W		-
3		0	R/W		
2	_	0	R/W	_	-
1		1	R/W		-
0		1	R/W		-

• SCIFADRL

		Initial	R/W	
Bit	Bit Name	Value	Slave Host	Description
7	_	1	R/W —	SCIF Addresses 7 to 0
6	_	1	R/W —	These bits set the host addresses of the SC
5		1	R/W —	-
4		1	R/W —	-
3		1	R/W —	-
2		0	R/W —	-
1	_	0	R/W —	-
0		0	R/W —	-

Note: When the SCIF is in use, set different addresses in the SCIFADR for channels 1, 2 and 4.

Rev. 2.00 Sep. 28, 2009 Page 658 of 994 REJ09B0452-0200

RENESAS

					Registers 1 to 4 (STR1 to STR4).
					0: Bits 7 to 4 in STR3 indicate processing s the LPC interface.
					1: [When TWRE = 1]
					Bits 7 to 4 in STR3 indicate processing the LPC interface.
					[When TWRE = 0]
					Bits 7 to 4 in STR3 are readable/writabl which user can use as necessary
6	SELIRQ11	0	R/W	_	Host IRQ Interrupt Select
5	SELIRQ10	0	R/W	_	These bits select the state of the output on
4	SELIRQ9	0	R/W		SERIRQ pins.
3	SELIRQ6	0	R/W		0: [When host interrupt request is cleared]
2	SELSMI	0	R/W		SERIRQ pin output is in the Hi-Z state
1	SELIRQ12	1	R/W		[When host interrupt request is set]
0	SELIRQ1	1	R/W		SERIRQ pin output is low
					1: [When host interrupt request is cleared]
					SERIRQ pin output is low
					[When host interrupt request is set]
					SERIRQ pin output is in the Hi-Z state.

Renesas

Use the following procedure to activate the LPC interface after a reset release.

- 1. Read the signal line status and confirm that the LPC module can be connected. Also c the LPC module is initialized internally.
- 2. When using channels 1, 2 and 4, set LADR1, LADR2, and LADR4 to determine the I address.
- When using channel 3, set LADR3 to determine the I/O address and whether bidirecti registers are to be used.
- 4. Set the enable bit (LPC4E to LPC1E) for the channel to be used.
- 5. Set the enable bits (FGA20E, PMEE, LSMIE, and LSCIE) for the additional function used.
- 6. Set the selection bits for other functions (SDWNE, IEDIR).
- 7. As a precaution, clear the interrupt flags (LRST, SDWN, ABRT, OBF, and OBEI). Ro or TWR15 to clear IBF.
- 8. Set receive complete interrupt enable bits (IBFIE4 to IBFIE1, ERRIE, and OBEI) as n

Rev. 2.00 Sep. 28, 2009 Page 660 of 994 REJ09B0452-0200

In an I/O read cycle or I/O write cycle, transfer is carried out using LAD3 to LAD0 in the following order, in synchronization with LCLK. The host can be made to wait by sendir value other than B'0000 in the slave's synchronization return cycle, but with the LPC of value of B'0000 always returns.

If the received address matches the host address in an LPC register (IDR, ODR, STR, ar the LPC interface enters the busy state; it returns to the idle state by output of a state con turnaround. Register and flag changes are made at this timing, so in the event of a transf forced termination (abort), registers and flags are not changed.

The timing of the LFRAME, LCLK, and LAD signals is shown in figures 20.2 and 20.3

6	Address 4	Host	Bits 3 to 0	Address 4	Host	Bi
7	Turnaround (recovery)	Host	1111	Data 1	Host	Bi
8	Turnaround	None	ZZZZ	Data 2	Host	Bi
9	Synchronization	Slave	0000	Turnaround (recovery)	Host	11
10	Data 1	Slave	Bits 3 to 0	Turnaround	None	ZZ
11	Data 2	Slave	Bits 7 to 4	Synchronization	Slave	00
12	Turnaround (recovery)	Slave	1111	Turnaround (recovery)	Slave	11
13	Turnaround	None	ZZZZ	Turnaround	None	ZZ

Rev. 2.00 Sep. 28, 2009 Page 662 of 994 REJ09B0452-0200

Figure 20.2 Typical **LFRAME** Timing

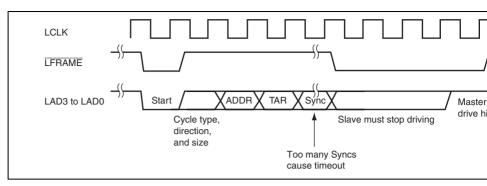


Figure 20.3 Abort Mechanism

Output of the Gate A20 signal can be controlled by an H'D1 command and data. When the (this LSI) receives data, it normally reads IDR1 in the interrupt handling routine activated IBFI1 interrupt. At this time, firmware copies bit 1 of data following an H'D1 command a outputs it on pin GA20.

(2) Fast Gate A20 Operation

The internal state of pin GA20 is initialized to 1 since the initial value of the FGA20E bit When the FGA20E bit is set to 1, pin P81/GA20 functions as the output of the fast GA20 The state of pin GA20 can be monitored by reading bit GA20 in HICR2.

The initial output from this pin is 1, which is the initial value. Afterward, the host can mathe output from this pin by sending commands and data. This function is only available v IDR1. The LPC decodes commands input from the host. When an H'D1 host command is detected, bit 1 of the data following the host command is output from pin GA20. This operators does not depend on firmware or interrupts, and is faster than the regular processing using interrupts. Table 20.4 shows the conditions that set and clear pin GA20. Figure 20.4 show GA20 output flow. Table 20.5 indicates the GA20 output signal values.

Rev. 2.00 Sep. 28, 2009 Page 664 of 994 REJ09B0452-0200

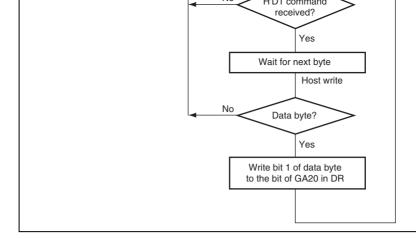


Figure 20.4 GA20 Output

I		0	Q (0)	
1	H'D1 command	0	Q	Turn-on sequer
0	1 data* ¹	0	1	(abbreviated for
1/0	Command other than H'FF and H'D1	1	Q (1)	
1	H'D1 command	0	Q	Turn-off sequer
0	0 data* ²	0	0	(abbreviated for
1/0	Command other than H'FF and H'D1	1	Q (0)	
1	H'D1 command	0	Q	Cancelled sequ
1	Command other than H'D1	1	Q	
1	H'D1 command	0	Q	Retriggered sec
1	H'D1 command	0	Q	
1	H'D1 command	0	Q	Consecutively e
0	Any data	0	1/0	sequences
1	H'D1 command	0	Q (1/0)	

Notes: 1. Any data with bit 1 set to 1.

2. Any data with bit 1 cleared to 0.

Rev. 2.00 Sep. 28, 2009 Page 666 of 994 REJ09B0452-0200

for exiting software standby mode before clearing the shutdown state with the \overline{LPCPD} s

If the SDWNE bit has been set to 1 beforehand, the LPC hardware shutdown state is ent same time as the \overline{LPCPD} signal falls, and prior preparation is not possible. If the LPC so shutdown state is set by means of the SDWNB bit, on the other hand, the LPC software state cannot be cleared at the same time as the rising edge of the \overline{LPCPD} signal. Taking points into consideration, the following operating procedure uses a combination of LPC shutdown and LPC hardware shutdown.

- 1. Clear the SDWNE bit to 0.
- 2. Set the ERRIE bit to 1 and wait for an interrupt by the SDWN flag.
- 3. When an ERRI interrupt is generated by the SDWN flag, check the LPC interface in status flags and perform any necessary processing.
- 4. Set the SDWNB bit to 1 to set LPC software standby mode.
- 5. Set the SDWNE bit to 1 and make a transition to LPC hardware standby mode. The bit is cleared automatically.
- 6. Check the state of the <u>LPCPD</u> signal to make sure that the <u>LPCPD</u> signal has not rise steps 3 to 5. If the signal has risen, clear SDWNE to 0 to return to the state in step 1.
- 7. If software standby mode has been set, exit software standby mode by some means independent of the LPC.
- 8. When a rising edge is detected in the $\overline{\text{LPCPD}}$ signal, the SDWNE bit is automatically to 0. If the slave has been placed in sleep mode, the mode is exited by means of $\overline{\text{LRE}}$ signal input, on completion of the LPC transfer cycle, or by some other means.

RENESAS

PB1	Δ	I/O	Hi-Z, only when LSCIE = 1
PB0	Δ	I/O	Hi-Z, only when $LSMIE = 1$
P80	Δ	I/O	Hi-Z, only when PMEE = 1
P81	Δ	I/O	Hi-Z, only when FGA20E = 1
P82	0	Input	Hi-Z
P83	Х	Input	Needed to clear shutdown state
	PB0 P80 P81 P82	PB0 Δ P80 Δ P81 Δ P82 O	PB0 Δ I/O P80 Δ I/O P81 Δ I/O P82 O Input

[Legend]

O: Pin that is shutdown by the shutdown function

- Δ : Pin that is shutdown only when the LPC function is selected by register setting
- X: Pin that is not shutdown

In the LPC shutdown state, the LPC's internal state and some register bits are initialized. of priority of LPC shutdown and reset states is as follows.

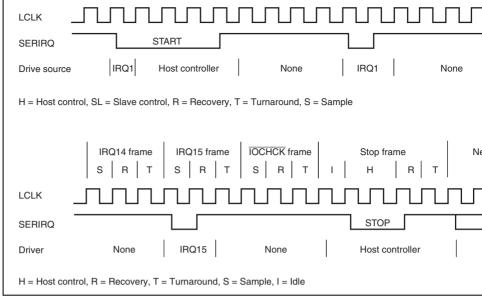
- System reset (reset by RES pin input, or WDT overflow)
 All register bits, including bits LPC4E to LPC1E, are initialized.
- LPC hardware reset (reset by LRESET pin input)
 LRSTB, SDWNE, and SDWNB bits are cleared to 0.
- LPC software reset (reset by LRSTB) SDWNE and SDWNB bits are cleared to 0.
- LPC hardware shutdown SDWNB bit is cleared to 0.
- 5. LPC software shutdown

The scope of the initialization in each mode is shown in table 20.7.

Rev. 2.00 Sep. 28, 2009 Page 668 of 994 REJ09B0452-0200

Host interrupt enable bits (IRQ1E1, IRQ12E1, SMIE2, IRQ6E2, IRQ9E2 to IRQ11E2, SMIE3B, SMIE3A, IRQ6E3, IRQ9E3 to IRQ11E3, SELREQ, SMIE4, IRQ6E4, IRQ9E4 to IRQ11E4, IEDIR2 to IEDIR4), Q/C flag	Initialized	Initialized I
LRST flag	Initialized (0)	Can be set/cleared
SDWN flag	Initialized (0)	Initialized (0)
LRSTB bit	Initialized (0)	HR: 0 (SR: 1 s
SDWNB bit	Initialized (0)	Initialized (0)
SDWNE bit	Initialized (0)	Initialized (0)
LPC interface operation control bits (LPC4E to LPC1E, FGA20E, LADR1 to LADR4, IBFIE1 to IBFIE4, PMEE, PMEB, LSMIE, LSMIB, LSCIE, LSCIB, TWRE, SELSTR3, SELIRQ1, SELSMI, SELIRQ3 to SELIRQ15, OBEIE, SCIFE, IDR1 to IDR4, ODR1 to ODR4, TWR0 to TWR15, SCSIRQ0 to SCSIRQ3, and SCIFADRH/L)	Initialized	Retained I
LRESET signal	Input (port	Input I
LPCPD signal	function	Input I
LAD3 to LAD0, IFRAME, LCLK, SERIRQ, CLKRUN signals	-	Input I
PME, LSMI, LSCI, GA20 signals (when function is selected)	_	Output I
PME, LSMI, LSCI, GA20 signals (when function is not selected)	-	Port function
Note: System reset: Reset by RES pin input, or WDT overflo LPC reset: Reset by LPC hardware reset (HR) or LPC LPC shutdown: Reset by LPC hardware shutdown (HS)	software res	• •

Renesas


REJ09

LRESET)	1		/
			<u> </u>	

Figure 20.5 Power-Down State Termination Timing

Rev. 2.00 Sep. 28, 2009 Page 670 of 994 REJ09B0452-0200

Figure 20.6 SERIRQ Timing

The serialized interrupt transfer cycle frame configuration is as follows. Two of the state comprising each frame are the recover state in which the SERIRQ signal is returned to t at the end of the frame, and the turnaround state in which the SERIRQ signal is not drive recover state must be driven by the host or slave that was driving the preceding state.

4	IRQ3	Slave	3	Drive possible in SCIF
5	IRQ4	Slave	3	Drive possible in SCIF
6	IRQ5	Slave	3	Drive possible in SCIF
7	IRQ6	Slave	3	Drive possible in LPC channels 2, 3, 4 SCIF
8	IRQ7	Slave	3	Drive possible in SCIF
9	IRQ8	Slave	3	Drive possible in SCIF
10	IRQ9	Slave	3	Drive possible in LPC channels 2, 3, 4 SCIF
11	IRQ10	Slave	3	Drive possible in LPC channels 2, 3, 4 SCIF
12	IRQ11	Slave	3	Drive possible in LPC channels 2, 3, 4 SCIF
13	IRQ12	Slave	3	Drive possible in LPC channel 1 and
14	IRQ13	Slave	3	Drive possible in SCIF
15	IRQ14	Slave	3	Drive possible in SCIF
16	IRQ15	Slave	3	Drive possible in SCIF
17	IOCHCK	Slave	3	
18	Stop	Host	Undefined	First, 1 or more idle states, then 2 or 3 0-driven by host 2 states: Quiet mode next 3 states: Continuous mode next

Rev. 2.00 Sep. 28, 2009 Page 672 of 994 REJ09B0452-0200

20.4.6 LPC Interface Clock Start Request

A request to restart the clock (LCLK) can be sent to the host by means of the $\overline{\text{CLKRUN}}$ LPC data transfer and SERIRQ in continuous mode, a clock restart is never requested si transfer cycles are initiated by the host. With SERIRQ in quiet mode, when a host interr request is generated the $\overline{\text{CLKRUN}}$ signal is driven and a clock (LCLK) restart request is the host. The timing for this operation is shown in figure 20.7.

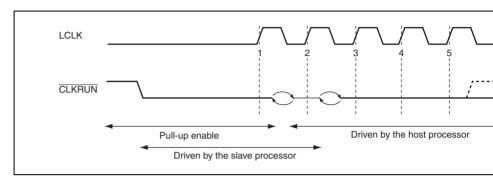


Figure 20.7 Clock Start Request Timing

Cases other than SERIRQ in quiet mode when clock restart is required must be handled different protocol, using the PME signal, etc.

20.4.7 SCIF Control from LPC Interface

Setting the SCIFE bit in HICR5 to 1 allows the LPC host to communicate with the SCIF the LPC interface can access the registers of the module SCIF other than SCIFCR. For c transmission and reception, see section 17, Serial Communication Interface with FIFO (

Interrupt	Description	
IBFI1	When IBFIE1 is set to 1 and IDR1 reception is completed	
IBFI2	When IBFIE2 is set to 1 and IDR2 reception is completed	
IBFI3	When IBFIE3 is set to 1 and IDR3 reception is completed, or when TWR IBFIE3 are set to 1 and reception is completed up to TWR15	
IBFI4	When IBFIE4 is set to 1 and IDR4 reception is completed	
OBEI	When OBEIE is set to 1 with OBEI set to 1.	
ERRI	When ERRIE is set to 1 and one of LRST, SDWN and ABRT is set to 1	

 Table 20.9
 Receive Complete Interrupts and Error Interrupt

Rev. 2.00 Sep. 28, 2009 Page 674 of 994 REJ09B0452-0200

linked to the host interrupt request enable bits. When the OBF flag is cleared to 0 by a re ODR or TWR15 by the host in the corresponding LPC channel, the corresponding host is enable bit is automatically cleared to 0, and the host interrupt request is cleared.

When the IEDIR bit is set to 1 in SIRQCR, a host interrupt is requested by the only upon interrupt enable bits. The host interrupt enable bit is not cleared when OBF is cleared. T SMIE1, SMIE2, SMIE3A and SMIE3B, SMIE4, IRQ6En, IRQ9En, IRQ10En, and IRQ their respective functional differences. In order to clear a host interrupt request, it is nece clear the host interrupt enable bit. (n = 2 to 4.)

When the SCIF channels are used, clearing the DDCD bit in FMSR of the SCIF clears a interrupt request.

Table 20.10 summarizes the methods of setting and clearing these bits when the LPC chused, and table 20.11 summarizes the methods of setting and clearing these bits when the channels are used. Figure 20.8 shows the processing flowchart.

	SMIE3A and writes 1	reads ODR3
	• writes to TWR15, then reads 0 from bit SMIE3B and writes 1	• writes 0 to bit SMIE3B, reads TWR15
	• writes to ODR4, then reads 0 from bit SMIE4 and writes 1	 writes 0 to bit SMIE4, or reads ODR4
SMI (IEDIR2 = 1, IEDIR3 = 1, or IEDIR4 = 1)	Internal CPU	Internal CPU
	• reads 0 from bit SMIE2, then writes 1	writes 0 to bit SMIE2
	• reads 0 from bit SMIE3A, then writes 1	• writes 0 to bit SMIE3A
	• reads 0 from bit SMIE3B, then writes 1	• writes 0 to bit SMIE3B
	• reads 0 from bit SMIE4, then writes 1	• writes 0 to bit SMIE4
HIRQi (i = 6, 9, 10, 11) (IEDIR2 = 0, IEDIR3 = 0, or IEDIR4 = 0)	Internal CPU	Internal CPU
	 writes to ODR2, then reads 0 from bit IRQiE2 and writes 1 	 writes 0 to bit IRQiE2, or reads ODR2
	 writes to ODR3, then reads 0 from bit IRQiE3 and writes 1 	 CPU writes 0 to bit IRQ host reads ODR3
	 writes to ODR4, then reads 0 from bit IRQiE4 and writes 1 	 CPU writes 0 to bit IRQ host reads ODR4
HIRQi (i = 6, 9, 10, 11) (IEDIR2 = 1, IEDIR3 = 1, or IEDIR4 = 1)	Internal CPU	Internal CPU
	• reads 0 from bit IRQiE2, then writes 1	• writes 0 to bit IRQiE2
	• reads 0 from bit IRQiE3, then writes 1	writes 0 to bit IRQiE3
	• reads 0 from bit IRQiE4, then writes 1	• writes 0 to bit IRQiE4

Rev. 2.00 Sep. 28, 2009 Page 676 of 994 REJ09B0452-0200

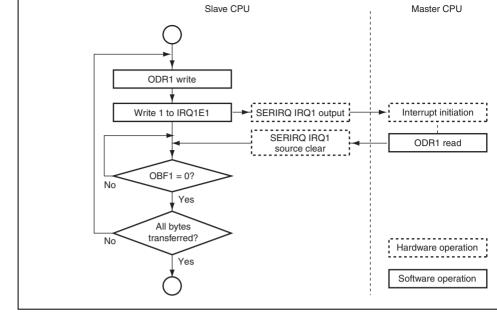


Figure 20.8 HIRQ Flowchart (Example of Channel 1)

registers (TWR). MWMF and SWMF are provided in STR to handle this situation. After to TWR0, MWMF and SWMF must be used to confirm that the write authority for TWR TWR15 has been obtained.

Table 20.12 shows host address examples for LADR3 and registers, IDR3, ODR3, STR3 TWR0MW, TWR0SW, and TWR1 to TWR15.

Rev. 2.00 Sep. 28, 2009 Page 678 of 994 REJ09B0452-0200

TWR3	H'A253	H'3FC3
TWR4	H'A254	H'3FC4
TWR5	H'A255	H'3FC5
TWR6	H'A256	H'3FC6
TWR7	H'A257	H'3FC7
TWR8	H'A258	H'3FC8
TWR9	H'A259	H'3FC9
TWR10	H'A25A	H'3FCA
TWR11	H'A25B	H'3FCB
TWR12	H'A25C	H'3FCC
TWR13	H'A25D	H'3FCD
TWR14	H'A25E	H'3FCE
TWR15	H'A25F	H'3FCF

Rev. 2.00 Sep. 28, 2009 Page 680 of 994 REJ09B0452-0200

- Supports communications between this LSI and SPI hash memory.
- Can operate as a master.
- Transfer clock selectable from system clock ϕ or LCLK.
- Four interrupt sources: Transmit end, receive data full, and command and write receive interrupts
- Direct transfer between LPC and SPI: Supports Read instruction, and Byte/Page-Pro AAI-Program instructions.
- LPC-SPI command transfer: Supports instructions other than above.
- Supports LPC/FW memory cycles of the LPC interface.
- Supports byte, word, and longword transfers of FW memory cycles.
- Provides independent LPC communication enable bits
- Supports LPC reset and LPC shut-down.

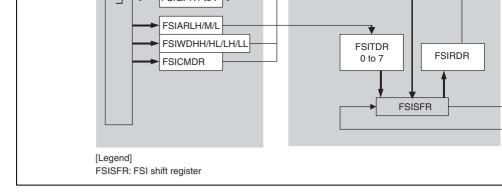


Figure 21.1 FSI Block Diagram

Rev. 2.00 Sep. 28, 2009 Page 682 of 994 REJ09B0452-0200

For details on the input/output pins of the LPC interface, see section 20.2, Input/Output

Table 21.2 shows the initial state of the FSI input/output pins when the FSIE bit in the F register is set to 1.

Table 21.2	Initial State of FSI Pins (when FSIE = 1)	
1 able 21.2	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	

Pin Name	Symbol	Pin State When FSIE is Set to 1
FSI slave select	FSISS	Outputs high level.
FSI clock	FSICK	Outputs high level or low level depending on CF CPOS.
FSI master data input	FSIDI	Inputs data.
FSI master data output	FSIDO	Outputs high level.

FSI byte count register	FSIBINK	R/W		H 00	F
FSI instruction register	FSIINS	R/W	—	H'00	H
FSI read instruction register	FSIRDINS	R/W		H'00	ŀ
FSI program instruction register	FSIPPINS	R/W		H'00	H
FSI status register	FSISTR	R/W		H'00	H
FSI transmit data register 0	FSITDR0	R/W		H'00	ŀ
FSI transmit data register 1	FSITDR1	R/W	_	H'00	ŀ
FSI transmit data register 2	FSITDR2	R/W		H'00	H
FSI transmit data register 3	FSITDR3	R/W		H'00	H
FSI transmit data register 4	FSITDR4	R/W		H'00	H
FSI transmit data register 5	FSITDR5	R/W		H'00	H
FSI transmit data register 6	FSITDR6	R/W		H'00	H
FSI transmit data register 7	FSITDR7	R/W		H'00	H
FSI receive data register	FSIRDR	R		H'00	H
FSI access host base address register H	FSIHBARH	R/W		H'00	H
FSI access host base address register L	FSIHBARL	R/W		H'00	H
FSI flash memory size register	FSISR	R/W		H'00	H
FSI command host base address register H	CMDHBARH	R/W		H'00	ŀ
FSI command host base address register L	CMDHBARL	R/W		H'00	ŀ
FSI command register	FSICMDR	R		H'00	H
FSILPC command status register 1	FSILSTR1	R/W	R	H'00	H

Rev. 2.00 Sep. 28, 2009 Page 684 of 994 REJ09B0452-0200

RENESAS

FSI general-purpose register 8	FSIGPR8	R/W	R	H'00
FSI general-purpose register 9	FSIGPR9	R/W	R	H'00
FSI general-purpose register A	FSIGPRA	R/W	R	H'00
FSI general-purpose register B	FSIGPRB	R/W	R	H'00
FSI general-purpose register C	FSIGPRC	R/W	R	H'00
FSI general-purpose register D	FSIGPRD	R/W	R	H'00
FSI general-purpose register E	FSIGPRE	R/W	R	H'00
FSI general-purpose register F	FSIGPRF	R/W	R	H'00
FSILPC control register	SLCR	R/W	_	H'00
FSI address register H	FSIARH	R	_	H'00
FSI address register M	FSIARM	R	_	H'00
FSI address register L	FSIARL	R	_	H'00
FSI write data register HH	FSIWDRHH	R	_	H'00
FSI write data register HL	FSIWDRHL	R	_	H'00
FSI write data register LH	FSIWDRLH	R	_	H'00
FSI write data register LL	FSIWDRLL	R		H'00
FSI LPC command status register 2	FSILSTR2	R/W		H'01

Note: 1. Before accessing these registers, clear bit 0 in MSTPCRL (MSTP0) and bit 2 MSTPCRA (MSTPA2) to 0.

2. "R/W" in table 21.3 has the following meanings.

a) "R/W EC" indicates the access from the EC (Embedded Controller = this L

b) "R/W Host" indicates the access from the host.

Renesas

				1: Clears the Internal sequencer.
				Writing 1 to this bit generates a clear signal f sequencer in the corresponding module, resu the initialization of the FSI's internal state.
6	FSIE	0	R/W —	FSI Enable
				0: Disables FSI operation.
				1: Enables FSI operation.
				The following shows the initial state of the FS when FSIE is set to 1:
				FSISS: Outputs high level.
				FSICK: Outputs high level or low level depen DPHS and CPOS.
				FSIDO: Outputs high level.
				FSIDI: Inputs data.
5	FRDE	0	R/W —	Fast-Read Enable
				0: The FSI is in normal read operation mode.
				1: The FSI is in fast-read operation mode.
4	AAIE	0	R/W —	AAI (Auto Address Increment) Program Enab
				0: The FSI performs byte-program operation.
				1: The FSI performs AAI program operation.

Rev. 2.00 Sep. 28, 2009 Page 686 of 994 REJ09B0452-0200

						falling edge.
				0	1	Setting prohibited
				1	0	Setting prohibited
1	_	0	R/W —	Reserved		
				The initial	value sh	nould not be modified.
0	CKSEL	0	R/W —	Clock sele	ect	
				0: Selects	the syst	em clock for FSICK
				1: Selects	LCLK fo	or FSICK
						ting LCLK for FSICK, cle bits of FSICR1 to 0.

					0: FSI transmission wait state
					[Clearing condition]
					When FSI data transmission is completed.
					1: When LFBUSY = 0: Starts transmission.
					When LFBUSY = 1: FSI transmission is in p (automatically set).
6	RE	0	R/W -		FSI Reception Enable
					Controls FSI reception and indicates reception in combination with the LFBUSY bit.
					0: FSI reception wait state
					[Clearing condition]
					When FSI data reception is completed.
					1: When LFBUSY = 0: Starts reception.
					When LFBUSY = 1: FSI reception is in prog (automatically set).
5	FSITEIE	0	R/W -		FSI Transmit End Interrupt Enable
					0: Disables the FSITEI interrupt request.
					1: Enables the FSITEI interrupt request.
4	FSIRXIE	0	R/W -	_	FSI Receive Interrupt Enable
					0: Disables the FSIRXI interrupt request.
					1: Enables the FSIRXI interrupt request.
3 to 0	_	All 0	R/W -	_	Reserved
					The initial value should not be modified.

Rev. 2.00 Sep. 28, 2009 Page 688 of 994 REJ09B0452-0200

RENESAS

	TBN0	0		the FSI transmission ends, TBN is cleared t
				0000: Transmits no data
				0001: Transmits one byte of data
				0010: Transmits two bytes of data
				0011: Transmits three bytes of data
				0100: Transmits four bytes of data
				0101: Transmits five bytes of data
				0110: Transmits six bytes of data
				0111: Transmits seven bytes of data
				1000: Transmits eight bytes of data
				1001 to 1111: Setting prohibited
				If transmission of nine bytes or more is specing FSITDR7 is transmitted.
3		0	R/W —	Reserved
				The initial value should not be modified.

010: Receives two bytes of data
011: Receives three bytes of data
100: Receives four bytes of data
101 to 111: Setting prohibited
If reception of five bytes or more is specified, is overwritten.

21.3.4 FSI Instruction Register (FSIINS)

FSIINS sets an instruction to be sent to the SPI flash memory during command transfer. LFBUSY is 1, a write to this register by the EC (this LSI) is invalid. This register should in the processing other than FSICMDI and FSIWI interrupt processing.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R/W		These bits store an instruction to be transmit SPI flash memory.

Rev. 2.00 Sep. 28, 2009 Page 690 of 994 REJ09B0452-0200

21.3.6 FSI Program Instruction Register (FSIPPINS)

FSIPPINS sets a program operation instruction to be sent to FSITDR during program op When LFBUSY is set to 1, a write to this register by the EC (this LSI) is invalid. This reshould be modified during initialization.

		Initial	R	R/W	
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R/W		These bits store a program operation instru

21.3.7 FSI Status Register (FSISTR)

FSISTR indicates the processing status of the EC (this LSI) and the SPI flash memory th

		Initial	R	/W	
Bit	Bit Name		EC	Host	Description
7	FSITEI	0	R/(W)*	: <u> </u>	FSI Transmit End Interrupt Flag
					[Setting condition]
					When write data has been transmitted to th memory.
					[Clearing condition]
					When this bit is read as 1 and then written

RENESAS

					[Setting condition]
					When the TE bit is set to 1.
5	FSIRXI	0	R		FSI Receive End Interrupt Flag
					Indicates whether or not there is data to be rethe EC (this LSI).
					0: There is no read data.
					[Clearing condition]
					• LFBUSY = 0: When all receive data has I by the EC (when RBN is cleared to 0).
					• LFBUSY = 1: When all receive data has read by the host (automatically cleared).
					1: There is read data.
					[Setting condition]
					When receive data has been transferred to F
4 to 0		All 0	R/W	_	Reserved
					The initial value should not be modified.
Noto	* Only 0 a	on ha writ	toptok	it 7 to .	alaar it

Note: * Only 0 can be written to bit 7 to clear it.

Rev. 2.00 Sep. 28, 2009 Page 692 of 994 REJ09B0452-0200

21.3.9 FSI Receive Data Register (FSIRDR)

FSIRDR stores a total of 4 bytes of receive data items continuously sent from the SPI flamemory. This register should not be read in the processing other than FSICMDI interrup processing. Note that four bytes of receive registers share a single register address. A regread will be determined according to the RBN bits in FSIBNR. When RBN = B'000, H'C out.

		Initial	F	R/W	
Bit	Bit Name		EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R		These bits store receive data.

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R/W		These bits specify bits [31:24] of the host sta address.

• FSIHBARL

		Initial	R/W			
Bit	Bit Name	Value	EC	Host	Description	
7 to 0	bit 23 to bit 16	All 0	R/W		These bits specify bits [23:16] of the host sta address.	
					The settings by bit 19 to bit 16 do not affect to operation.	

21.3.11 FSI Flash Memory Size Register (FSISR)

FSISR sets the size of SPI flash memory. The host input address range will be determined on the size set in this register. Note that the host input address should not be greater than flash memory capacity. During FSI operation (in the state where FSIE or FSILIE is set), o change the setting in this register.

Rev. 2.00 Sep. 28, 2009 Page 694 of 994 REJ09B0452-0200

21.3.12 FSI Command Host Base Address Registers H and L (CMDHBARH and CMDHBARL)

CMDHBARH and CMDHBARL set the upper 16 bits of the host start address which is to set a command address. The lower 16 bits of the host start address range from H'F000 H'F00F. If a host address to be input to CMDHBARH and CMDHBARL is out of the de range, Sync will not be returned. If FW memory cycle is used, bit 31 to bit 28 in CMDH set as IDSEL. During FSI operation (in the state where FSIE or FSILIE is set), do not ch setting in this register.

• CMDHBARH

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R/W		These bits specify bits [31:24] of the host st address.

• CMDHBARL

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 23 to bit 16	All 0	R/W		These bits specify bits [23:16] of the host st address.

RENESAS

21.3.14 FSI LPC Command Status Register 1 (FSILSTR1)

FSILSTR1 indicates the LPC internal status.

		Initial	R	/W	
Bit	Bit Name	Value	EC	Host	Description
7	CMDBUSY	0	R/W*	R	FSI Command Busy Flag
					0: The FSI command execution is completed
					[Clearing condition]
					• When this bit is read as 1 and then writte
					1: The FSI command execution is in progres
					[Setting condition]
					• When an FSI command is received.
6	FSICMDI	0	R/W*	R	FSI Command Interrupt Flag
					0:The FSI command interrupt processing is completed.
					[Clearing condition]
					• When this bit is read as 1 and then writte
					1: The FSI command interrupt processing is progress.
					[Setting condition]
					• When an FSI command is received.

Rev. 2.00 Sep. 28, 2009 Page 696 of 994 REJ09B0452-0200

					1: FSI write in transferring
					[Setting condition]
					 SPI flash memory write is received when FLDCT=0.
3	FSIWI	0	R/W*	R	FSI Write Interrupt Flag
					0: FSI write interrupt is completed.
					[Clearing condition]
					• Read FSIWI=1 and then write 0.
					1: FSI write interrupt is in progress.
					[Setting condition]
					 SPI flash memory write is received when FLDCT=0.
2	FLBUSY	0	R	R	LPC-SPI Direct Transfer Busy Flag
					Indicates an LPC-SPI direct transfer status.
					0: Direct transfer is completed.
					1: During direct transfer
1, 0	_	All 0	R/W	R	Reserved
					The initial value should not be modified.
Mater		· · ·		-	the flee

Note: * Only 0 can be written to clear the flag.

Renesas

					SPI direct transfer.
					0: FSI write transfer is completed.
					1: During FSI write transfer
3	FSIDRBUSY	0	R	_	FSI Direct Read Busy Flag
					Indicates a FSI read transfer status durin SPI direct transfer.
					0: FSI read transfer is completed.
					1: During FSI read transfer
2 to 0	SIZE2	0	R	_	Transfer Byte Count Monitor
	SIZE1	0	R	—	Indicates the number of transferred byte
	SIZE0	0 1 R — data is received in th When the Byte/Page instruction is execute number of transferre		data is received in the LPC/FW memory When the Byte/Page-Program or AAI-Pr instruction is executed from the EC CPL number of transferred bytes can be cont these bits.	
					001: LPC/FW memory cycle (byte transf
					010: FW memory cycle (word transfer)
					100: FW memory cycle transfer (longwo transfer)
					When a transfer is made in units other the byte/word/longword, the previous value retained.
					Note: This bit is not set to the value othe above.

Rev. 2.00 Sep. 28, 2009 Page 698 of 994 REJ09B0452-0200

21.3.17 FSI LPC Control Register (SLCR)

SLCR enables or disables the LPC host interface function of the FSI, FSI interrupt enab FSI operation mode control bit.

		Initial	R	/W	
Bit	Bit Name	Value	EC	Host	Description
7	FSILIE	0	R/W		FSI LPC Interface Enable
					Enables or disables the LPC host interface f the FSI. When disabled, address-matching i performed and Sync is not returned.
					0: Disables the LPC host interface function.
					1: Enables the LPC host interface function.
6	FSICMDIE	0	R/W		FSI Command Interrupt Enable
					0: Disables the FSI command interrupt.
					1: Enables the FSI command interrupt.
5	FSIWIE	0	R/W		FSI Write Interrupt Enable
					0: Disables the FSI write interrupt.
					1: Enables the FSI write interrupt.

Renesas

			details, see section 21.4.6, SPI Flash Memor Operation Mode.
			0: No wait cycle is inserted.
			1: Wait cycles can be inserted.
2 to 0 —	All 0	R/W —	Reserved
			The initial value should not be modified.

21.3.18 FSI Address Registers H, M, and L (FSIARH, FSIARM, and FSIARL)

FSIAR stores an SPI flash memory address. If the host address matches FSIHBAR, the F value is updated. FSIAR value is not updated by command access.

• FSIARH

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 23 to bit 16	All 0	R		These bits store bits [23:16] of the SPI flash r address.

• FSIARM

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 15 to bit 8	All 0	R		These bits store bits [15:8] of the SPI flash m address.

Rev. 2.00 Sep. 28, 2009 Page 700 of 994	
REJ09B0452-0200	RENESAS

FSIWDR stores data to be written to the SPI flash memory. If the host address matches during LPC/FW memory write cycle, the FSIWDR value will be updated. FSIHBAR valupdated by command access.

• FSIWDRHH

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 31 to bit 24	All 0	R		These bits store bits [31:24] of the SPI flash write data

• FSIWDRHL

		Initial	R/W		
Bit	Bit Name		EC	Host	Description
7 to 0	bit 23 to bit 16	All 0	R		These bits store bits [23:16] of the SPI flash write data.

RENESAS

Bit	Bit Name	Value	EC	Host	Description
7 to 0	bit 7 to bit 0	All 0	R		These bits store bits [7:0] of the SPI flash me write data.

Rev. 2.00 Sep. 28, 2009 Page 702 of 994 REJ09B0452-0200

signal to return to the idle state.

State	LPC	Memory Re	LPC Memory Write Cyc			
Counts	Content	Driven by	Value (3 to 0)	Content	Driven by	Val
1	Start	Host	0000	Start	Host	000
2	Cycle type/ direction	Host	0100	Cycle type/ direction	Host	011
3	Address 1	Host	bit 31 to bit 28	Address 1	Host	bit 3
4	Address 2	Host	bit 27 to bit 24	Address 2	Host	bit 2
5	Address 3	Host	bit 23 to bit 20	Address 3	Host	bit 2
6	Address 4	Host	bit 19 to bit 16	Address 4	Host	bit 1
7	Address 5	Host	bit 15 to bit 12	Address 5	Host	bit 1
8	Address 6	Host	bit 11 to bit 8	Address 6	Host	bit 1
9	Address 7	Host	bit 7 to bit 4	Address 7	Host	bit 7
10	Address 8	Host	bit 3 to bit 0	Address 8	Host	bit 3
11	Turn-around (recovery)	Host	1111	Data 1	Host	bit 3
12	Turn-around	None	ZZZZ	Data 2	Host	bit 7
13	Wait*	Slave	0110	Turn-around (recovery)	Host	111

Table 21.4 LPC Memory Read/Write Cycles

Renesas

State	FW N	lemory Read	FW Memory Write Cycle			
Counts	Content	Driven by	Value (3 to 0)	Content	Driven by	Value
1	Start	Host	1101	Start	Host	1110
2	Device select	Host	ID3 to ID0	Device select	Host	ID3 to
3	Address 1	Host	bit 27 to bit 24	Address 1	Host	bit 27
4	Address 2	Host	bit 23 to bit 20	Address 2	Host	bit 23
5	Address 3	Host	bit 19 to bit 16	Address 3	Host	bit 19
6	Address 4	Host	bit 15 to bit 12	Address 4	Host	bit 15
7	Address 5	Host	bit 11 to bit 8	Address 5	Host	bit 11
8	Address 6	Host	bit 7 to bit 4	Address 6	Host	bit 7 f
9	Address 7	Host	bit 3 to bit 0	Address 7	Host	bit 3 t
10	Size	Host	0000	Size	Host	0000
11	Turn-around (recovery)	Host	1111	Data 1	Host	bit 3 t
12	Turn-around	None	ZZZZ	Data 2	Host	bit 7 f
13	Wait*	Slave	0110	Turn-around (recovery)	Host	1111
14	Synchronization	Slave	0000	Turn-around	None	ZZZZ
15	Data 1	Slave	bit 3 to bit 0	Wait*	Slave	0110
16	Data 2	Slave	bit 7 to bit 4	Synchronization	Slave	0000

 Table 21.5
 FW Memory Read/Write Cycles (Byte Transfer)

Rev. 2.00 Sep. 28, 2009 Page 704 of 994 REJ09B0452-0200

RENESAS

operating frequency of the system clock is 10 MHz.

21.4.2 SPI Flash Memory Transfer

The SPI flash memory transfer is performed using FSIDO and FSIDI synchronously with The initial value of FSICK can be either fixed to high or low through programming.

FSISS	
FSICK	
FSIDO	X Bit7X Bit6X Bit5X Bit4X Bit3X Bit2X Bit1X Bit0X MSB LSB
FSIDI	Bit7X Bit6X Bit5X Bit4X Bit3X Bit2X Bit1X Bit
	MSB LS

Figure 21.2 Example of SPI Flash Memory Transfer

WRSR	whites status register
READ	Reads SPI flash memory
Fast-Read	Fast-reads SPI flash memory
Byte-Program	Byte-programs SPI flash memory
Page-Program	Page-programs SPI flash memory
AAI-Program	Address auto increment program
Sector-Erase	Sector erasure
Block-Erase	Block erasure
Chip/Bulk-Erase	Chip/bulk erasure
RDID	Reads manufacturing ID and product ID
EWSR	Enables status register write
DP (DEEP POWER DOWN)	Deep power-down
RES	Releases deep power-down

Rev. 2.00 Sep. 28, 2009 Page 706 of 994 REJ09B0452-0200

(1) FSI Address Conversion

The host address can be converted into the SPI flash memory address by setting FSIHBARL, FSIHBARL, and FSISR. The host address space ranges from H'0000_0000 to H'FFFF_I SPI flash memory address space ranges from H'00_0000 to H'FF_FFFF. Figure 21.3 sho example of the FSI memory address conversion.

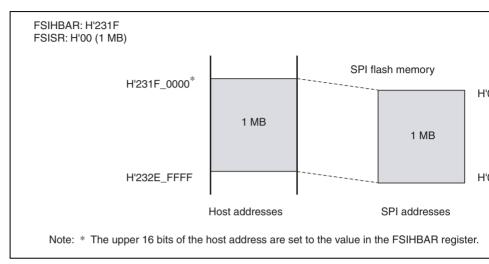
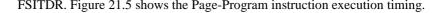



Figure 21.3 FSI Address Conversion Example

As shown in figure 21.3, if an address ranging from H'231F_0000 to H'232E_FFFF is at LPC/FW memory write cycle, the SPI flash memory is accessed. If a host address to be out of the determined range, Sync will not be returned. During an SPI flash memory acc wait cycle will be inserted to the LPC bus cycle. In an LPC memory cycle, one-byte trans enabled. In an FW memory cycle, a byte, word, and a longword transfer are enabled.

RENESAS

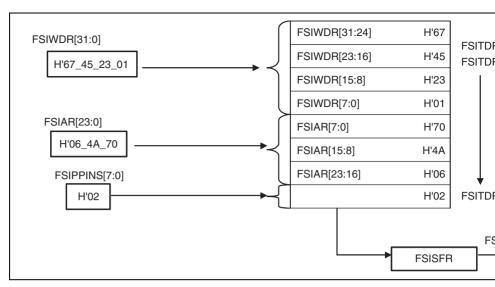
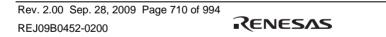


Figure 21.4 Data Transfer to FSITDR (Example)

Rev. 2.00 Sep. 28, 2009 Page 708 of 994 REJ09B0452-0200

FBITDHU		
FSISTR OBF bit		
FSISS		
FSICK (CPOS =	CPHS = 0)	
FSIDO		H02->06->4A->70->01->23->45->67


Figure 21.5 Page-Program Instruction Execution Timing

returned to the host. To execute the AAI-Program instruction, byte transfer access in LPC write cycle or FW memory write cycle should be performed. To return to the AAI-Program instruction (first byte), clear the AAIE bit once or perform initialization of the FSI internal sequencer in SRES of FSICR1. After the Read instruction or the LPC-SPI command is traduring the AAI-Program instruction execution, the FSI internal sequencer is initialized to the AAI-Program Instruction (first byte). Figures 21.6 and 21.7 show AAI-Program executionings.

	LCLK	
	LFRAME	
	LAD[3:0]	SINGX addr XdataXtarX Wait SiX
	φ	
	FSIAR[23:0]	H06-4A-70
	FSIWDR[31:0]	X H'01
	FSICR2 TE bit	
	FSITDR7 to FSITDR0	H01-70-4A-06-AF
	FSISTR OBF b	it
	FSISS	/
	FSICK (CPOS	= <u>CPHS = 0)</u>
	FSIDO	H'AF-306-34A-370-301
1		

Figure 21.6 AAI-Program Instruction Execution Timing (First Byte)

FSISS	
FSICK (CPOS = <u>CPHS =0)</u>	
FSIDO	XHĂF->23X

Figure 21.7 AAI-Program Instruction Execution Timing (Second and Following Bytes)

(4) Read Instructions

If an LPC/FW memory read cycle occurs while the FRDE bit in FSICR1 is cleared to 0, flash memory address is stored in FSIAR. Then, the SPI flash memory address and the i which is stored in FSIRDINS in advance are transferred to FSITDR. After SYNC (long been returned, the RE bit in FSICR2 is set, and Read instruction execution starts. The re then received and stored in FSIRDR. When the reception has been completed, SYNC (Fread data, and TAR are returned to the host. Figure 21.8 shows an example of data transferied data. FSIRDR. Figure 21.9 shows the Read instruction execution timing.

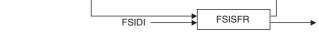
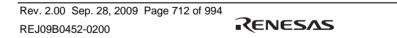
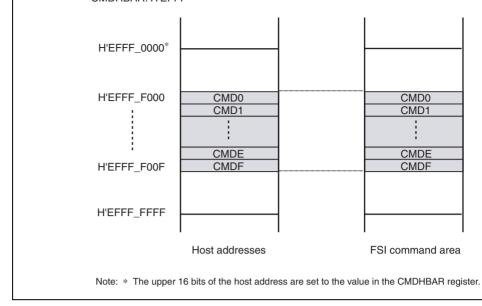



Figure 21.8 Data Transfer to FSIRDR (Example)

LCLK		
LFRAME		
LAD[3:0]	STXTX ADDR XTARX WAIT SY DA	٩TA
φ		l
FSIAR[23:0]	Н'06-4А-70	
FSIRDINS[7:0]	H03	
FSICR2 RE bit		
FSITDR7 to FSITDR0	H70-4A-06-03	
FSISTR FSIRX	(l bit	
FSIRDR3 to FSIRDR0	χ μο	1->
1 SINDING		
FSISS		
FSICK (CPOS	= CPHS =0)	
FSIDO	X H'02->06->4A->70 X	
FSIDI		


Figure 21.9 Read Instruction Execution Timing

LFRAME				
LAD[3:0]	XSTYCTX ADDR XTARX		WAIT	XstX da
φ	uuuuu		nnnnn	
FSIAR[23:0]		γ	H'06-4A-70	
		/		-
FSIRDINS[7:0]]		H'0B	
FSICR2 RE bit	t	/		
FSITDR7 to		H'70-4A-06-03		
FSITDR0				
FSISTR FSIRX	XI bit			
FSIRDR3 to				X H'01
FSIRDR0				,
FSISS				
FSICK (CPOS	s = <u>CPHS</u> =0)	□		
FSIDO		X H'02->	>06->4A->70->Dummy	
FSIDI				·

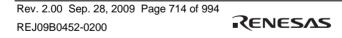

Figure 21.10 Fast-Read Instruction Execution Timing

Figure 21.11 FSI Command Space Settings (Example)

As shown in figure 21.11, a host address ranging from H'EFFF_F000 to H'EFFF_F00F is the FSI command space while the CMDHBAR register is set to H'EFFF.

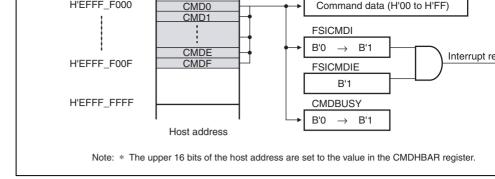


Figure 21.12 FSI Command Write Operation (Example)

As shown in figure 21.12, if a host address ranging from H'EFFF_F000 to H'EFFF_F000 accessed in LPC/FW memory write cycle while the CMDHBAR register is set to H'EFF write data is stored in FSICMDR, and then the CMDBUSY and FSICMDI flags in FSIL set to 1. In this case, an interrupt is requested according to the FSICMDIE state. Sync is returned if the host address to be input is out of the determined range. In FSI command wait cycle will be inserted to the LPC bus cycle. If the CMDBUSY flag is set to 1, Sync returned during the operations other than FSI command read.

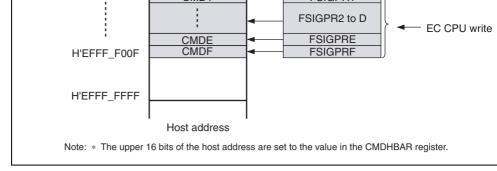


Figure 21.13 FSI Command Read (Example)

As shown in figure 21.13, if a host address ranging from H'EFFF_F000 to H'EFFF_F00F accessed in LPC/FW memory read cycle while the CMDHBAR register is set to H'EFFF, FSILSTR1 or data in FSIGPR1 to FSIGPRF is returned. Sync is not returned if the host a be input is out of the determined range. In FSI command read, no wait cycle will be inser LPC bus cycle. Before reading the FSIGPR, ensure that the CMDBUSY bit in FSILSTR1 been cleared to 0.

Rev. 2.00 Sep. 28, 2009 Page 716 of 994 REJ09B0452-0200

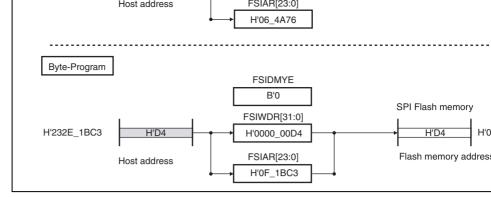


Figure 21.14 FSI Dummy Write (Example)

As shown in figure 21.14, if an LPC/FW memory write cycle occurs while the FSIDMY FSILSTR1 is 1, the FSI does not access the SPI flash memory but stores the SPI flash m address and write data in FSIAR and FSIWDR, respectively.

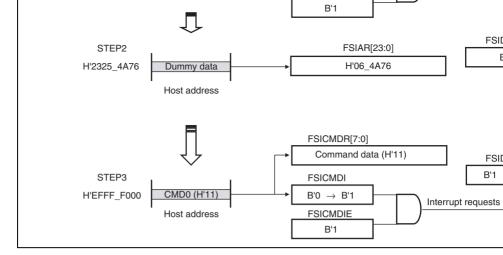


Figure 21.15 SPI Flash Memory Erasure (Example)

In flash memory erasure, the SPI flash memory address is stored in FSIAR and an erasure instruction for the SPI flash memory is executed by an SPI command. The flash memory storage in FSIAR is performed by writing data to the sector or block address to be erased host. To distinguish the SPI flash memory erasure from the SPI flash memory programmic erasure is performed in the following sequence using the FSIDMYE.

Rev. 2.00 Sep. 28, 2009 Page 718 of 994 REJ09B0452-0200

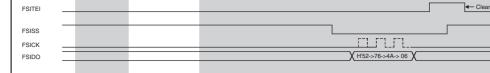


Figure 21.16 Execution Timing of SPI Flash Memory

Step 1:

- 1. Write an erasure setting command (Host).
- 2. Generate an FSICMDI interrupt request.
- 3. Set the FSIDMYE bit in FSILSTR1 to 1 and clear the FSICMDI and CMDBUSY bi FSILSTR1 to 0.
- 4. Complete the interrupt processing.
- 5. Check that the FSIDMYE bit in FSILSTR1 is set to 1 and that the CMDBUSY and I bits in FSILSTR1 are cleared to 0 (Host).

Step 2:

- 1. Perform a dummy write to the sector or block address to be erased (Host).
- 2. Store the SPI flash memory address and write data in the FSIAR register and FSIWI register, respectively*.
- Note: * Use the data stored in FSIWDR if necessary on the user side.

Step 3:

- 1. Write an erasure setting command (Host).
- 2. Generate an FSICMDI interrupt request.
- 3. Clear the FSICMDI bit in FSILSTR1 to 0.

RENESAS

- 9. Check that the FSIDMYE, CMDBUSY, and FSICMDI bits in FSILSTR1 are cleared (Host).

(6) FSI Command Usage Example 2 (SPI Flash Memory Status Read)

Figure 21.17 shows an example of the execution timing of the SPI flash memory status reinstruction.

	STEP1 STEP2	STEP3
φ	lliuudunnnnnnnnnnnnn	ñ.n.n.r
FSIDMYE		
FSICMDI	Cleared by the CPU	
CMDBUSY		- Clea
LPC_ADDR	X H'EFFF_F000	
RE	Written by the CPU Auto	omatically cleared
TBN	→ Vitten by the CPU H'1 V H'00 (Automatically cleared)
RBN	X ← Written by the CPU H'1	X H'00 (Automatical
FSIINS	X Written by the CPU H'05	· <u>· · · · · · · · · · · · · · · · · · </u>
1 on to		
FSIRXI		Automatically
FSISS		
FSICK		
FSIDO	χ Η'05 χ	
FSIDI	X H'07 X	

Figure 21.17 Execution Timing of SPI Flash Memory Status Read Instruction

The SPI flash memory status read instruction is executed in the following sequence.

- Set the RE bit in FSICR2 to 1.
- Set the TBN bit in FSIBNR to 1-byte transfer and set the RBN bit in FSIBNR to reception.
- Write the status read instruction to FSIINS (start the SPI flash memory status rea instruction execution).
- 2. Complete the interrupt processing.

Step 3:

- 1. Generate an FSIRXI interrupt request.
- 2. Write read data stored in FSIRDR to SPIGPR.
- 3. Clear the CMDBUSY bit in FSILSTR1 to 0.
- 4. Complete the interrupt processing
- 5. Check that the CMDBUSY and FSICMDI bits in FSILSTR1 are cleared to 0 (Host).
- 6. Read the SPI flash memory status from FSIGPR (Host).

			FSIWI ← 1	flash memory by the EC CPU cycle is inserted to the LPC bu by FSIWBUSY whether or not transfer has been completed.
Mode 2	0	1	FSIWBUSY ← 1 FSIWI ← 1	Control the write operation to flash memory by the EC CPU cycles are inserted to the LPC Provision of wait cycles can be by clearing FSIWBUSY.
Mode 3	1	0	LFBUSY ← 1 (Automatically cleared)	Control the write operation to flash memory by the FSI. No v inserted to the LPC bus. Conf LFBUSY whether or not a writ has been completed.
Mode 4	1	1	LFBUSY ← 1 (Automatically cleared)	Control the write operation to flash memory by the FSI. Wai inserted to the LPC bus. Provi cycles can be canceled by cle LFBUSY.

Rev. 2.00 Sep. 28, 2009 Page 722 of 994 REJ09B0452-0200

FSISR	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
CMDHBARH/ CMDHBARL	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
FSICMDR	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
FSILSTR1	Bits 7, 6, 4, and 3	Initialized	Initialized	Retained	Retained	R
	Bit 2	Initialized	Initialized	Retained	Retained	In
	Bits 5, 1 and 0	Initialized	Retained	Retained	Retained	R
FSILSTR2	Bits 7 to 5	Initialized	Retained	Retained	Retained	R
	Bits 4 and 3	Initialized	Initialized	Retained	Retained	In
	Bits 2 to 0	Initialized	Retained	Retained	Retained	R
SPIGPR1 to SPIGPRF	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
SLCR	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
FSIARH/ FSIARM/ FSIARL	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
FSIWDRHH/ FSIWDRHL/ FSIWDRLH/ FSIWDRLL	Bits 7 to 0	Initialized	Retained	Retained	Retained	R
LPC internal se	equencer	Initialized	Initialized	Initialized	Initialized	R

		milanzoa	Retained	Retained	Retained	Re
FSIPPINS	Bits 7 to 0	Initialized	Retained	Retained	Retained	Re
FSISTR	Bit 7	Initialized	Retained	Retained	Retained	Init
	Bits 6 and 5	Initialized	Retained	Retained	Retained	Init
	Bits 4 to 0	Initialized	Retained	Retained	Retained	Re
FSITDR7 to FSITDR0	Bits 7 to 0	Initialized	Retained	Retained	Retained	Re
FSIRDR	Bits 7 to 0	Initialized	Retained	Retained	Retained	Re
FSI internal sequencer		Initialized	Retained	Retained	Retained	Init

Rev. 2.00 Sep. 28, 2009 Page 724 of 994 REJ09B0452-0200

Interrupt Name		Interrupt Source	Interrupt Enable Bit
FSII	FSITEI Transmit end		FSITEIE
	FSIRXI	Receive data full	FSIRXIE
LFSII	FSICMDI	FSI command reception	FSICMDIE
	FSIWI	FSI write reception	FSIWIE

21.7 Usage Note

21.7.1 Longword Transfer in FW Memory Write Cycles

When longword transfers of FW memory write cycles are used, the maximum operating of the system clock is 10 MHz.

Rev. 2.00 Sep. 28, 2009 Page 726 of 994 REJ09B0452-0200

- Conversion cycle: 40 cycles (A/D conversion clock)
- Two kinds of operating modes Single mode: Single-channel A/D conversion Scan mode: Continuous A/D conversion on one to four channels or continuous A/D on one to eight channels
- A/D conversion clocks specifiable (ϕ , $\phi/2$, $\phi/4$, or $\phi/8$)
- Eight data registers Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of A/D conversion start Software

Conversion start trigger from 16-bit timer pulse unit (TPU) or 8-bit timer (TMR)

• Interrupt source

A/D conversion end interrupt (ADI) request can be generated

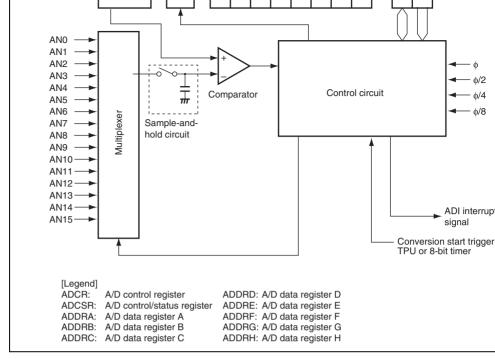


Figure 22.1 Block Diagram of A/D Converter

Rev. 2.00 Sep. 28, 2009 Page 728 of 994 REJ09B0452-0200

	Symbol	10	runction
Analog power supply pin	AVCC	Input	Analog block power supply
Analog ground pin	AVSS	Input	Analog block ground
Reference power supply pin	AVref	Input	Reference voltage for A/D converter
Analog input pin 0	AN0	Input	Channel set 0 analog input
Analog input pin 1	AN1	Input	-
Analog input pin 2	AN2	Input	-
Analog input pin 3	AN3	Input	-
Analog input pin 4	AN4	Input	-
Analog input pin 5	AN5	Input	-
Analog input pin 6	AN6	Input	-
Analog input pin 7	AN7	Input	-
Analog input pin 8	AN8	Input	Channel set 1 analog input
Analog input pin 9	AN9	Input	-
Analog input pin 10	AN10	Input	-
Analog input pin 11	AN11	Input	-
Analog input pin 12	AN12	Input	-
Analog input pin 13	AN13	Input	-
Analog input pin 14	AN14	Input	-
Analog input pin 15	AN15	Input	-

A/D data register C	ADDRC	ĸ	H'0000	HFC04	16
A/D data register D	ADDRD	R	H'0000	H'FC06	16
A/D data register E	ADDRE	R	H'0000	H'FC08	16
A/D data register F	ADDRF	R	H'0000	H'FC0A	16
A/D data register G	ADDRG	R	H'0000	H'FC0C	16
A/D data register H	ADDRH	R	H'0000	H'FC0E	16
A/D control/status register	ADCSR	R/W	H'00	H'FC10	8
A/D control register	ADCR	R/W	H'00	H'FC11	8

Rev. 2.00 Sep. 28, 2009 Page 730 of 994 REJ09B0452-0200

Analog li	A/D Data Register to Store	
Channel Set 0 (CH3 = 0)	Channel Set 1 (CH3 = 1)	Conversion Results
AN0	AN8	ADDRA
AN1	AN9	ADDRB
AN2	AN10	ADDRC
AN3	AN11	ADDRD
AN4	AN12	ADDRE
AN5	AN13	ADDRF
AN6	AN14	ADDRG
AN7	AN15	ADDRH

 Table 22.3
 Analog Input Channels and Corresponding ADDR

Renesas

				in scan mode
				[Clearing condition]
				When 0 is written after reading ADF = 1
6	ADIE	0	R/W	A/D Interrupt Enable
				Enables ADI interrupt by ADF when this bit is se
5	ADST	0	R/W	A/D Start
				When this bit is cleared to 0, A/D conversion sto enters wait state. When this bit is set to 1 by a con- start trigger from software, TPU, or TMR, A/D conve- starts. This bit remains set to 1 during A/D conve- single mode, this bit is automatically cleared to 0 conversion on the specified channel ends. In sca conversion continues sequentially on the specified channels until this bit is cleared to 0 by a reset, of software.
4		0		Reserved
				This bit is always read as 0 and cannot be modif

Rev. 2.00 Sep. 28, 2009 Page 732 of 994 REJ09B0452-0200

0010: AN2	0010: AN0 to AN2	0010: AN
0011: AN3	0011: AN0 to AN3	0011: AN
0100: AN4	0100: AN4	0100: AN
0101: AN5	0101: AN4, AN5	0101: AN
0110: AN6	0110: AN4 to AN6	0110: AN
0111: AN7	0111: AN4 to AN7	0111: AN
1000: AN8	1000: AN8	1000: AN
1001: AN9	1001: AN8, AN9	1001: AN
1010: AN10	1010: AN8 to AN10	1010: AN
1011: AN11	1011: AN8 to AN11	1011: AN
1100: AN12	1100: AN12	1100: AN
1101: AN13	1101: AN12, AN13	1101: AN
1110: AN14	1110: AN12 to AN14	1110: AN
1111: AN15	1111: AN12 to AN15	1111: AN

[Legend]

X: Don't care

Note: * Only 0 can be written to clear the flag.

Renesas

				11: Setting prohibited
5	SCANE	0	R/W	Scan Mode
4	SCANS	0	R/W	Select the A/D conversion operating mode.
				0X: Single mode
				10: Scan mode Continuous A/D conversion on 1 to 4 channels
				11: Scan mode Continuous A/D conversion on 1 to 8 channels
3	CKS1	0	R/W	Clock Select 1 and 0
2	CKS0	0	R/W	These bits select the clock (ADCLK)* used in A/D conversion. Set these bits while the ADST bit in AD then set the conversion mode.
				00: φ
				01:
				10: φ/4
				00: φ/8
1	ADSTCLF	R 0	R/W	A/D Start Clear
				Sets the automatic clearing of the ADST bit in scan
				0: Disables the automatic clearing of the ADST bit in mode
				1: Automatically clears the bit when A/D conversion the selected channels are completed
0		0	R	Reserved
				This bit is always read as 0 and cannot be modified.
[Leg	end]			

X: Don't care

Note: * Set the clock so that ADCLK \leq 10 MHz.

Rev. 2.00 Sep. 28, 2009 Page 734 of 994 REJ09B0452-0200

Operations are as follows.

- 1. A/D conversion on the specified channel is started when the ADST bit in ADCSR is software, the TMR, or the TPU.
- 2. When A/D conversion is completed, the result is transferred to the A/D data register corresponding to the channel.
- 3. On completion of A/D conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit 1 at this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When conversion ends, the A is automatically cleared to 0 and the A/D converter enters wait state. When the ADS cleared to 0 during A/D conversion, the conversion stops and the A/D converter enter state.

= 1, AN8 when CH3 = 1 and CH2 = 0, and AN12 when CH3 = 1 and CH2 = 1.

When continuous A/D conversion on eight channels is selected, A/D conversion starts the following channels: AN0 when CH3 = 0 and CH2 = 0 and AN8 when CH3 = 1 an 0.

- 3. When A/D conversion for each channel is completed, the result is sequentially transfer the A/D data register corresponding to each channel.
- 4. When conversion of all the selected channels is completed, the ADF bit in ADCSR is If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion from channel in the channel set starts again.
- 5. The ADST bit is not automatically cleared to 0 so steps [2] and [3] are repeated as lon ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops A/D converter enters wait state. After this, setting the ADST bit to 1 starts A/D converter from the first channel again.
- 6. When the ADST bit is automatically cleared on completion of the A/D conversion of selected channels with the ADSTCLR bit in ADCR set to 1, A/D conversion stops and the wait state.

Rev. 2.00 Sep. 28, 2009 Page 736 of 994 REJ09B0452-0200

In scan mode, the values shown in table 22.4 become those for the first conversion time. second and subsequent conversion times are listed in table 22.5. In either case, bits CKS CKS0 in ADCR should be set so that the conversion time is within the ranges indicated A/D conversion characteristics.

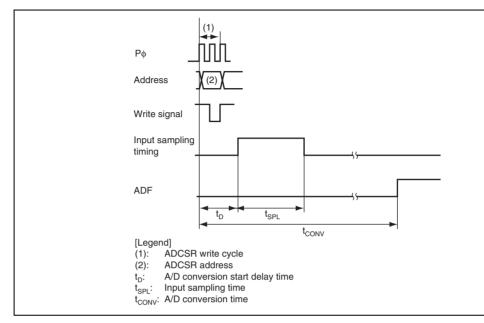


Figure 22.2 A/D Conversion Timing

CKS1	CKS0	Conversion Time (State)
0	0	40 (fixed)
0	1	80 (fixed)
1	0	160 (fixed)
1	1	320 (fixed)

Table 22.5 A/D Conversion Time (Scan Mode)

Rev. 2.00 Sep. 28, 2009 Page 738 of 994 REJ09B0452-0200

22.6 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

• Resolution

The number of A/D converter digital output codes

• Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 22.3).

• Offset error

The deviation of the analog input voltage value from the ideal A/D conversion chara when the digital output changes from the minimum voltage value B'00 0000 0000 (H B'00 0000 0001 (H'001) (see figure 22.4).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion chara when the digital output changes from B'11 1111 1110 (H'3FE) to B'11 1111 1111 (H figure 22.4).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between the zero w the full-scale voltage. Does not include the offset error, full-scale error, or quantization (see figure 22.4).

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes the offs full-scale error, quantization error, and nonlinearity error.

Renesas

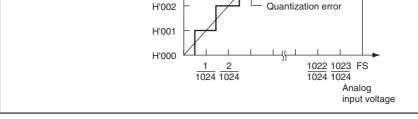


Figure 22.3 A/D Conversion Accuracy Definitions

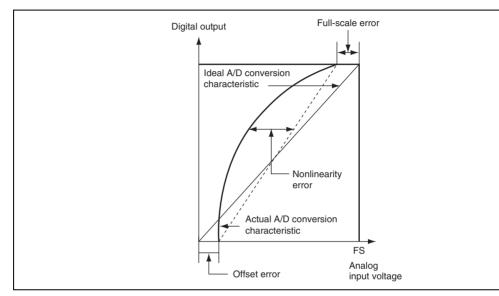


Figure 22.4 A/D Conversion Accuracy Definitions

This LSI's analog input is designed so that the conversion accuracy is guaranteed for an signal for which the signal source impedance is 5 k Ω or less. This specification is provide enable the A/D converter's sample-and-hold circuit input capacitance to be charged with sampling time; if the sensor output impedance exceeds 5 k Ω , charging may be insufficient may not be possible to guarantee the A/D conversion accuracy. However, if a large capa provided externally in single mode, the input load will essentially comprise only the interesistance of 10 k Ω , and the signal source impedance is ignored. However, since a low-peffect is obtained in this case, it may not be possible to follow an analog signal with a la differential coefficient (e.g., voltage fluctuation ratio of 5 mV/µs or greater) (see figure 2. When converting a high-speed analog signal or converting in scan mode, a low-impedar should be inserted.

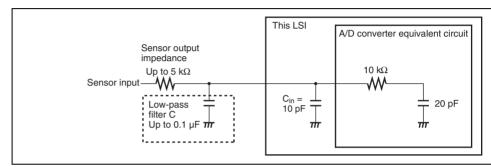


Figure 22.5 Example of Analog Input Circuit

If conditions shown below are not met, the reliability of this LSI may be adversely affected

- Analog input voltage range The voltage applied to analog input pins (AN0 to AN15) during A/D conversion shou the range AVss ≤ ANn ≤ AVref (n = 0 to 15).
- Relation between AVcc, AVss and Vcc, Vss
 As the relationship between AVcc, AVss and Vcc, Vss, set AVcc = Vcc ±0.3 V and A
 Vss. If the A/D converter is not used, set AVcc = Vcc and AVss = Vss.
- AVref pin range
 The reference voltage of the AVref pin should be in the range AVref ≤ AVcc.

22.7.5 Notes on Board Design

In board design, digital circuitry and analog circuitry should be as mutually isolated as portion and layout in which digital circuit signal lines and analog circuit signal lines cross or are proximity should be avoided as far as possible. Failure to do so may result in incorrect op of the analog circuitry due to inductance, adversely affecting A/D conversion values. Also circuitry must be isolated from the analog input pins (AN0 to AN15), analog reference vor (AVref), and analog power supply voltage (AVcc) by the analog ground (AVss). Also, the ground (AVss) should be connected at one point to a stable ground (Vss) on the board.

Rev. 2.00 Sep. 28, 2009 Page 742 of 994 REJ09B0452-0200

in the A/D converter exceeds the current input via the input impedance (R_{in}) , an error with the analog input pin voltage. Careful consideration is therefore required when deciding t constants.

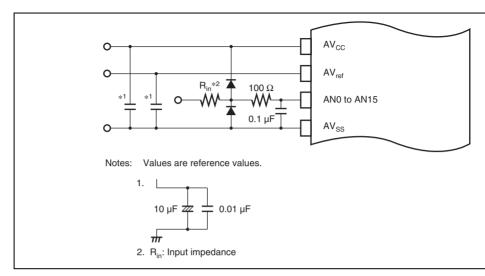


Figure 22.6 Example of Analog Input Protection Circuit

Figure 22.7 Analog Input Pin Equivalent Circuit

 π

22.7.7 Module Stop Mode Setting

When this LSI enters software standby mode with A/D conversion enabled, the analog in retained, and the analog power supply current is equal to the current as during A/D converses the analog power supply current needs to be reduced in software standby mode, clear the TRGS1, and TRGS0 bits all to 0 to disable A/D conversion.

Rev. 2.00 Sep. 28, 2009 Page 744 of 994 REJ09B0452-0200

switch from continuous scan mode to single mode or one-cycle scan mode)

If any of the above points is applicable, please make settings in accord with the instructi

If 1. is applicable:

Do not set the ADST bit in ADCSR to 1.

If 2. or 3. is applicable:

Be sure to invalidate the external trigger input before changing the setting from activation external trigger to disabling of the external trigger or changing the scan-mode setting (clipte the setting of the SCANE and ADSTCLR bits) while activation by the external trigger is

Setting the TRGS1 and TRGS0 bits in ADCR according to the procedure overleaf inval external trigger input.

See figure 22.8 for details of the procedure in cases where 2. or 3. is applicable.

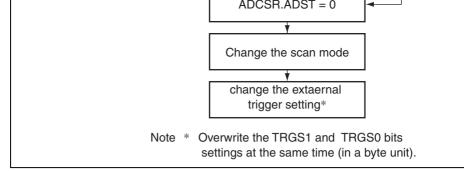


Figure 22.8 Procedure for Changing Modes when Starting of the A/D Converter External Trigger has been Selected

Rev. 2.00 Sep. 28, 2009 Page 746 of 994 REJ09B0452-0200

Rev. 2.00 Sep. 28, 2009 Page 748 of 994 REJ09B0452-0200

• Two flash-memory MATs according to LSI initiation mode.

The on-chip flash memory has two memory spaces in the same address space (herea referred to as memory MATs). The mode setting at initiation determines which mem is initiated first.

The MAT can be switched by using the bank-switching method after initiation.

- The user memory MAT is initiated at a power-on reset in user mode: 160K bytes
- The user boot memory MAT is initiated at a power-on reset in user boot mode: 8
- Programming/erasing interface by the download of on-chip program This LSI has a programming/erasing program. After downloading this program to th RAM, programming/erasing can be performed by setting the parameters.
- Programming/erasing time
 Programming time: 1 ms (typ) for 128-byte simultaneous programming, 7.8 μs per b
 Erasing time: 600 ms (typ) per 1 block (64 kbytes)
- Number of programming

The number of programming can be up to 100 times at the minimum. (1 to 100 times guaranteed.)

• Three on-board programming modes

Boot mode: Using the on-chip SCI-1, the user MAT can be programmed/erased. In the bit rate between the host and this LSI can be adjusted automatically.

User program mode: Using a desired interface, the user MAT can be programmed/er User boot mode: The User boot program of The optional interface can be made and a MAT can be programmed.

• Off-board programming mode

Programmer mode: Using a PROM programmer, the user MAT can be programmed.

RENESAS

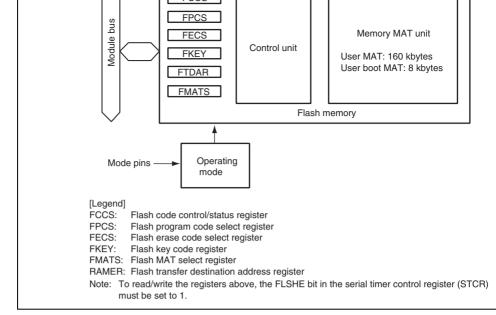


Figure 24.1 Block Diagram of Flash Memory

24.2 Mode Transition Diagram

When the mode pins are set in the reset state and reset start is performed, this LSI enters operating mode as shown in figure 24.2. Although the flash memory can be read in user in cannot be programmed or erased. The flash memory can be programmed or erased in bod user program mode, user boot mode, and programmer mode. The differences between bo user program mode, user boot mode, and programmer mode are shown in table 24.1.

Rev. 2.00 Sep. 28, 2009 Page 750 of 994 REJ09B0452-0200

Figure 24.2	Mode Transitio	on of Flash Memory
-------------	----------------	--------------------

Item	Boot Mode	User Program Mode	User Boot Mode	Progi Mode	
Programming/ erasing environment	On-board programming	On-board programming	On-board programming	PRO progra	
Programming/ erasing enable MAT	User MATUser boot MAT	User MAT	User MAT	• U: • U M	
All erasure	O (Automatic)	0	0	O (Au	
Block division erasure	O*1	0	0	×	
Program data transfer	From host via SCI	Via any device	Via any device	Via progra	
Reset initiation MAT	Embedded program storage area	User MAT	User boot MAT* ²		
Transition to user mode	Changing mode and reset	Changing FLSHE bit setting	Changing mode and reset		
 All-erasure is performed. After that, the specified block can be erased. First, the reset vector is fetched from the embedded program storage MAT. A flash memory related registers are checked, the reset vector is fetched from the boot MAT. 					

 Table 24.1
 Differences between Boot Mode, User Program Mode, and Programm

RENESAS

24.3 Flash Memory MAT Configuration

This LSI's flash memory is configured by the 160-Kbyte user MAT and 8-Kbyte user boo The start address is allocated to the same address in the user MAT and user boot MAT. T when program execution or data access is performed between two MATs, the MAT must switched by using FMATS.

The user MAT or user boot MAT can be read in all modes. However, the user boot MAT programmed only in boot mode and programmer mode.

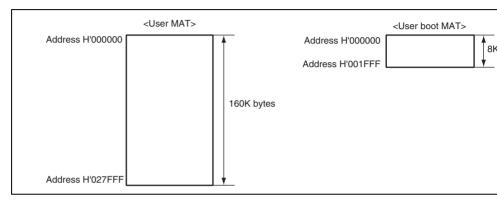
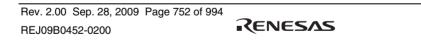



Figure 24.3 Flash Memory Configuration

The size of the user MAT is different from that of the user boot MAT. An address that ex size of the 8-Kbyte user boot MAT should not be accessed. If the attempt is made, data is an undefined value.

	EB1	H'001000	H'001001	H'001002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	^ 1	 	1		
	,	H'001F80	H'001F81	H'001F82		H'00
4	EB2	H'002000	H'002001	H'002002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes		I I	1	I I	1
	,	H'002F80	H'002F81	H'002F82		H'00
4	EB3	H'003000	H'003001	H'003002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	ь 1	 		1 1	i
	,	H'003F80	H'003F81	H'003F82		¦ H'00
	EB4	H'004000	H'004001	H'004002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	テ イ		1		
		H'004F80	H'004F81	H'004F82		H'00
	EB5	H'005000	H'005001	H'005002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	ア 1	1	1	1	1
		H'005F80	H'005F81	H'005F82		H'00
4	EB6	H'006000	H'006001	H'006002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	л Г	I I	1	1 1	1
	,	H'006F80	H'006F81	H'006F82		H'00
1	EB7	H'007000	H'007001	H'007002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	4 kbytes	ア イ	 		1 1	i
		H'007F80	H'007F81	H'007F82		H'00
4	EB8	H'008000	H'008001	H'008002	\leftarrow Programming unit: 128 bytes \rightarrow	H'00
	32 kbytes		, ,			į
		H'00FF80	H'00FF81	H'00FF82		H'00
	EB9	H'010000	H'010001	H'010002	\leftarrow Programming unit: 128 bytes \rightarrow	¦ H'01
	64 kbytes		1	1	1	1
				H'01FF82		H'01
	EB10	H'020000	H'020001	H'020002	\leftarrow Programming unit: 128 bytes \rightarrow	H'02
	32 kbytes	テ ーー イ	ı	1	1	
,	,	H'027F80	H'027F81	H'027F82		H'02

Figure 24.4 Block Structure of the User MAT

RENESAS

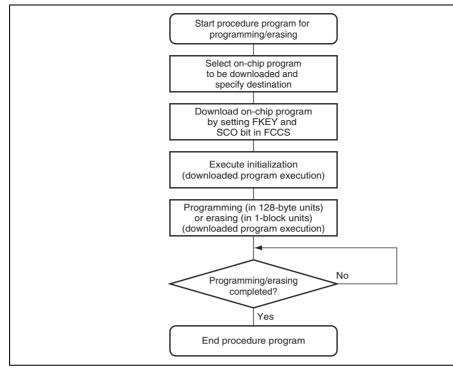
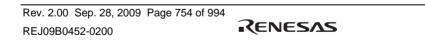



Figure 24.5 Procedure for Creating Procedure Program

read during programming/erasing, the procedure program must be executed in a space o the flash memory (for example, on-chip RAM). Since the download result is returned to programming/erasing interface parameter, whether download is normally executed or no confirmed.

(3) Initialization of Programming/Erasing

A pulse with the specified period must be applied when programming or erasing. The sp pulse width is made by the method in which wait loop is configured by the CPU instruct Accordingly, the operating frequency of the CPU needs to be set before programming/er operating frequency of the CPU is set by the programming/erasing interface parameter.

(4) Execution of Programming/Erasing

The start address of the programming destination and the program data are specified in a units when programming. The block to be erased is specified with the erase block numb erase-block units when erasing. Specifications of the start address of the programming d program data, and erase block number are performed by the programming/erasing interf parameters, and the on-chip program is initiated. The on-chip program is executed by us JSR or BSR instruction and executing the subroutine call of the specified address in the RAM. The execution result is returned to the programming/erasing interface parameter.

The area to be programmed must be erased in advance when programming flash memor interrupts are disabled during programming/erasing.

Abbreviation	I/O	Function
RES	Input	Reset
MD2, MD1	Input	Set operating mode of this LSI
TxD1	Output	Serial transmit data output (used in boot
RxD1	Input	Serial receive data input (used in boot mo

Table 24.2Pin Configuration

Rev. 2.00 Sep. 28, 2009 Page 756 of 994 REJ09B0452-0200

v				
Flash key code register	FKEY	R/W	H'00	H'FEAC
Flash MAT select register	FMATS	R/W	H'00	H'FEAD
Flash transfer destination address register	FTDAR	R/W	H'00	H'FEAE
Note: * Bits other than the SCO b	it are read-only	hite The	SCO hit id	a write-only hit

Note: * Bits other than the SCO bit are read-only bits. The SCO bit is a write-only bit always read as 0.

Table 24.4 Parameter Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	D V
Download path fail result parameter	DPFR	R/W*	Undefined	On-chip RAM*	8
Flash path/fail parameter	FPFR	R/W	Undefined	R0L of CPU	8
Flash program/erase frequency parameter	FPEFEQ	R/W	Undefined	ER0 of CPU	8
Flash multipurpose address area parameter	FMPAR	R/W	Undefined	ER1 of CPU	8
Flash multipurpose data destination parameter	FMPDR	R/W	Undefined	ER0 of CPU	8
Flash erase block select parameter	FEBS	R/W	Undefined	ER0 of CPU	8
Note: * One byte of the start addre	ss on the on-ch	ip RAM	specified by	FTDAR	

Renesas

	FKEY	0	—	0	0	
	FMATS		—	O*1	O*1	0*
	FTDAR	0	—			
Programming/ erasing interface parameters	DPFR	0	—	_		
	FPFR	—	0	0	0	
	FPEFEQ	—	0	_	—	
	FMPAR	—	—	0	—	
	FMPDR		—	0		
	FEBS				0	

Notes: 1. Programming and erasure of the user MAT in user boot mode require settings

 A setting may be required depending on the combination of the startup mode a MAT to be read.

Rev. 2.00 Sep. 28, 2009 Page 758 of 994 REJ09B0452-0200

DIL	DIt Name	value	K/W	Description
7	_	1	R	Reserved
6	—	0	R	These are read-only bits and cannot be modif
5	—	0	R	
4	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during pro- or erasing the flash memory. When this bit is a the flash memory enters the error protection s When this bit is set to 1, high voltage is applied internal flash memory. To reduce the damage flash memory, the reset must be released after input period (period of $\overline{RES} = 0$) of at least 10
				 Flash memory operates normally (Error pr invalid)
				[Clearing condition]
				At a power-on reset
				1: An error occurs during programming/erasi memory (Error protection is valid)
				[Setting conditions]
				 When an interrupt, such as NMI, occurs de programming/erasing.
				• When the flash memory is read during programming/erasing (including a vector ran instruction fetch).
				 When the SLEEP instruction is executed or programming/erasing (including software s mode).

FKEY, and this operation must be executed in chip RAM. Dummy read of FCCS must be exect twice immediately after setting this bit to 1. All i must be disabled during download. This bit is c 0 when download is completed.

During program download initiated with this bit, particular processing which accompanies bank switching of the program storage area is execu

0: Download of the programming/erasing prog not requested.

[Clearing condition]

- When download is completed
- 1: Download of the programming/erasing progrequested.

[Setting conditions] (When all of the following c are satisfied)

- H'A5 is written to FKEY
- Setting of this bit is executed in the on-chip

Note: * This is a write-only bit. This bit is always read as 0.

Rev. 2.00 Sep. 28, 2009 Page 760 of 994 REJ09B0452-0200

(3) Flash Erase Code Select Register (FECS)

FECS selects the erasing program to be downloaded.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 1	—	All 0	R	Reserved
				These are read-only bits and cannot be modif
0	EPVB	0	R/W	Erase Pulse Verify Block
				Selects the erasing program to be downloade
				0: Erasing program is not selected.
				[Clearing condition]
				When transfer is completed
				1: Erasing program is selected.

3	K3	0	R/W	RAM.
2	K2	0	R/W	Only when H'5A is written can programming/era
1	K1	0	R/W	the flash memory be executed. When a value of H'5A is written, even if the programming/erasin
0	K0	0	R/W	program is executed, programming/erasing car performed.
				H'A5: Writing to the SCO bit is enabled. (The S cannot be set to 1 when FKEY is a value than H'A5.)
				H'5A: Programming/erasing of the flash memor enabled. (When FKEY is a value other th the software protection state is entered.)
				H'00: Initial value

Rev. 2.00 Sep. 28, 2009 Page 762 of 994 REJ09B0452-0200

2 1 0	MS2 MS1 MS0	0 0/1* ¹ 0	R/W* ² R/W* ² R/W* ²	User Boot MAT. (The user boot MAT cannot programmed in user program mode even if th boot MAT is selected by FMATS. The user bo must be programmed in boot mode or progra mode.)
				H'AA: User boot MAT is selected (user MAT i when the value of these bits is other the Initial value when initiated in user boot
				H'00: Initial value when initiated in a mode otl user boot mode (user MAT is selected)
				[Programmable condition]
				Execution state in the on-chip RAM
Noto	*1 Tho vo	luo is 1 in I	icor boot m	ada and 0 othorwise

Note: *1 The value is 1 in user boot mode and 0 otherwise.

*2 The initial value is 1 in user boot mode and 0 in a mode other than user boot

H'01 when download is executed by setting the in FCCS to 1. Make sure that this bit is cleared before setting the SCO bit to 1 and the value sp by bits TDA6 to TDA0 should be within the range H'00 to H'01.

- 0: The value specified by bits TDA6 to TDA0 is the range.
- 1: The value specified by bits TDA6 to TDA0 is H'02 and H'FF and download has stopped.

6	TDA6	0	R/W	Transfer	Destination Address
5	TDA5	0	R/W	Specifies	the on-chip RAM start address of the
4	TDA4	0	R/W	download destination. A value between H and up to 3 kbytes can be specified as the of the on-chip RAM.	
3	TDA3	0	R/W		,
2	TDA2	0	R/W	H'00:	H'FFD080 is specified as the sta
1	TDA1	0	R/W	1100.	address.
0	TDA0	0	R/W	H'01:	H'FFD880 is specified as the sta address.
				H'02 to H	'7F: Setting prohibited. (Specifying a value from H'02 to the TDER bit to 1 and stops dow the on-chip program.)

Rev. 2.00 Sep. 28, 2009 Page 764 of 994 REJ09B0452-0200

is written in R0L. The programming/erasing interface parameters are used in download initialization before programming or erasing, programming, and erasing. Table 24.6 sho usable parameters and target modes. The meaning of the bits in the flash pass and fail reparameter (FPFR) varies in initialization, programming, and erasure.

Parameter	Download	Initialization	Programming	Erasure	R/W	Initial Value	All
DPFR	0	_			R/W	Undefined	Or
FPFR		0	0	0	R/W	Undefined	R0
FPEFEQ		0	_		R/W	Undefined	EF
FMPAR	_	_	0		R/W	Undefined	EF
FMPDR			0		R/W	Undefined	EF
FEBS		_		0	R/W	Undefined	ER

Table 24.6 Parameters and Target Modes

Note: * A single byte of the start address of the on-chip RAM specified by FTDAR

(a) Download Control

The on-chip program is automatically downloaded by setting the SCO bit in FCCS to 1. chip RAM area to download the on-chip program is the 4-kbyte area starting from the st specified by FTDAR. Download is set by the programming/erasing interface registers, a download pass and fail result parameter (DPFR) indicates the return value.

The start address of the programming destination on the user MAT must be stored in generegister ER1. This parameter is called the flash multipurpose address area parameter (FM

The program data is always in 128-byte units. When the program data does not satisfy 12 128-byte program data is prepared by filling the dummy code (H'FF). The boundary of the address of the programming destination on the user MAT is aligned at an address where the eight bits (A7 to A0) are H'00 or H'80.

The program data for the user MAT must be prepared in consecutive areas. The program must be in a consecutive space which can be accessed using the MOV.B instruction of th and is not in the flash memory space.

The start address of the area that stores the data to be written in the user MAT must be se general register ER0. This parameter is called the flash multipurpose data destination area parameter (FMPDR).

For details on the programming procedure, see section 24.8.2, User Program Mode.

(d) Erasure

When the flash memory is erased, the erase block number on the user MAT must be pass erasing program which is downloaded.

The erase block number on the user MAT must be set in general register ER0. This paran called the flash erase block select parameter (FEBS).

One block is selected from the block numbers of 0 to 10 as the erase block number.

For details on the erasing procedure, see section 24.8.2, User Program Mode.

Rev. 2.00 Sep. 28, 2009 Page 766 of 994 REJ09B0452-0200

				Only one type can be specified for the on-chip which can be downloaded. When the program downloaded is not selected, more than two typ programs are selected, or a program which is mapped is selected, an error occurs.
				0: Download program selection is normal
				1: Download program selection is abnormal
1	FK	_	R/W	Flash Key Register Error Detect
				Checks the FKEY value (H'A5) and returns the
				0: FKEY setting is normal (H'A5)
				1: FKEY setting is abnormal (value other than
0	SF		R/W	Success/Fail
				Returns the download result. Reads back the downloaded to the on-chip RAM and determin whether it has been transferred to the on-chip
				0: Download of the program has ended norma error)
				1: Download of the program has ended abnor (error occurs)

				These bits return 0.
1	FQ	—	R/W	Frequency Error Detect
				Compares the specified CPU operating frequer the operating frequencies supported by this LS returns the result.
				0: Setting of operating frequency is normal
				1: Setting of operating frequency is abnormal
0	SF		R/W	Success/Fail
				Returns the initialization result.
				0: Initialization has ended normally (no error)
				1: Initialization has ended abnormally (error occ

Rev. 2.00 Sep. 28, 2009 Page 768 of 994 REJ09B0452-0200

				to 1. Whether the error protection state is enter can be confirmed with the FLER bit in FCCS. conditions to enter the error protection state s 24.9.3, Error Protection.
				0: Normal operation (FLER = 0)
				1: Error protection state, and programming ca performed (FLER = 1)
5	EE	—	R/W	Programming Execution Error Detect
				Writes 1 to this bit when the specified data co written because the user MAT was not erased is set to 1, there is a high possibility that the u has been written to partially. In this case, afte the error factor, erase the user MAT. Also an write the user MAT when the FMATS value is the user boot MAT is selected leads to a prog execution error. In that case, both the user MA user boot MAT are not rewritten. Writing to the MAT must be performed in boot mode or prog mode.
				0: Programming has ended normally
				 Programming has ended abnormally (programming has ended abnormally (programming the second sec
4	FK	_	R/W	Flash Key Register Error Detect
				Checks the FKEY value (H'5A) before progra- starts, and returns the result.
				0: FKEY setting is normal (H'5A)
				1: FKEY setting is abnormal (value other than
3		_	_	Unused
				Returns 0.

			When the following items are specified as the s address of the programming destination, an err occurs.
			An area other than flash memory
			 The specified address is not aligned with th byte boundary (lower eight bits of the addres other than H'00 and H'80)
			 Setting of the start address of the programm destination is normal
			1: Setting of the start address of the programm destination is abnormal
0	SF	 R/W	Success/Fail
			Returns the programming result.
			0: Programming has ended normally (no error) 1: Programming has ended abnormally (error o

Rev. 2.00 Sep. 28, 2009 Page 770 of 994 REJ09B0452-0200

				can be confirmed with the FLER bit in FCCS. conditions to enter the error protection state so 24.9.3, Error Protection.
				0: Normal operation (FLER = 0)
				1: Error protection state, and programming car erased (FLER = 1)
5	EE	_	R/W	Erasure Execution Error Detect
				Returns 1 when the user MAT could not be error when the flash memory related register setting partially changed. If this bit is set to 1, there is possibility that the user MAT has been erased In this case, after removing the error factor, err user MAT. Also an attempt to erase the user M the FMATS value is H'AA and the user boot M selected leads to an erasure execution error. I case, both the user MAT and user boot MAT are erased. Erasure of the user boot MAT must be performed in boot mode or programmer mode
				0: Erasure has ended normally
				1: Erasure has ended abnormally
4	FK		R/W	Flash Key Register Error Detect
				Checks the FKEY value (H'5A) before erasure and returns the result.
				0: FKEY setting is normal (H'5A)
				1: FKEY setting is abnormal (value other than

Indicates the erasure result.

- 0: Erasure has ended normally (no error)
- 1: Erasure has ended abnormally (error occurs)

Rev. 2.00 Sep. 28, 2009 Page 772 of 994 REJ09B0452-0200

setting value must be calculated as follows:

- Round off the operating frequency express unit at the third decimal place to make it in decimal places.
- Multiply the rounded number by 100 and c result into binary and write it to FPEFEQ (g register ER0).

For example, when the operating frequency of is 20.000 MHz, the setting value is as follows:

- Round 20.000 off at the third decimal place 20.00.
- Convert 20.00 × 100 = 2000 into a binary r and set B'0000 0111 1101 0000 (H'07D0)

programming is executed starting from the spe start address of the user MAT. Therefore, the s start address of the programming destination b 128-byte boundary, and MOA6 to MOA0 are al cleared to 0.

(5) Flash Multipurpose Data Destination Parameter (FMPDR: General Register E CPU)

FMPDR stores the start address in the area which stores the data to be programmed in the MAT.

When the storage destination for the program data is in flash memory, an error occurs. The occurrence is indicated by the WD bit in FPFR.

Bit	Initia Bit Name Valu	-	Description
31 to 0	MOD31 to — MOD0	R/W	These bits store the start address of the area w stores the program data for the user MAT. Con 128-byte data is programmed to the user MAT from the specified start address.

Rev. 2.00 Sep. 28, 2009 Page 774 of 994 REJ09B0452-0200

EBS0

A value of 0 corresponds to block EB0 and 10 corresponds to block EB10. Do not set a value the range from 0 to 10 (from H'00 to H'0A).

Renesas

Mode Setting	MD2	MD1	NMI
Boot mode	1	0	1
User program mode	0	1	0/1
User boot mode	1	0	0

24.8.1 Boot Mode

Boot mode executes programming/erasing of the user MAT and the user boot MAT by m the control command and program data transmitted from the externally connected host vi chip SCI_1.

In boot mode, the tool for transmitting the control command and program data, and the pr data must be prepared in the host. The serial communication mode is set to asynchronous The system configuration in boot mode is shown in figure 24.6. Interrupts are ignored in mode. Configure the user system so that interrupts do not occur.

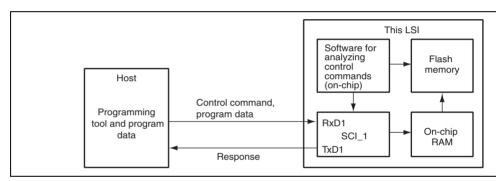


Figure 24.6 System Configuration in Boot Mode

Rev. 2.00 Sep. 28, 2009 Page 776 of 994 REJ09B0452-0200 adjustment end sign. When the host receives this bit adjustment end sign normally, it tra byte of H'55 to this LSI. When reception is not executed normally, initiate boot mode ag bit rate may not be adjusted within the allowable range depending on the combination of rate of the host and the system clock frequency of this LSI. Therefore, the transfer bit ra host and the system clock frequency of this LSI must be as shown in table 24.8.

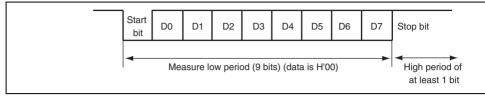


Figure 24.7 Automatic-Bit-Rate Adjustment Operation

Table 24.8 System Clock Frequency for Automatic-Bit-Rate Adjustment

Bit Rate of Host	System Clock Frequency of This LS		
9,600 bps	8 to 20 MHz		
19,200 bps	8 to 20 MHz		

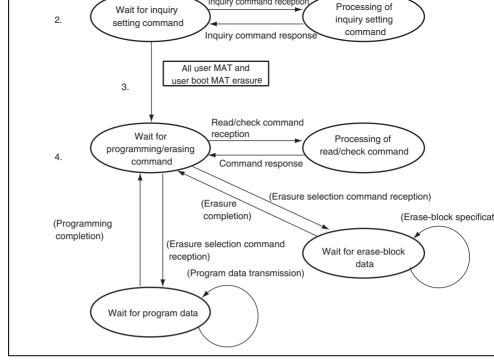
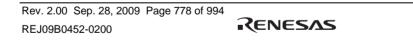



Figure 24.8 Boot Mode State Transition Diagram

erase block is shown in figure 24.9. When the erasure preparation notice is received, of waiting for erase block data is entered. The erase block number must be transmitted erasing command is transmitted. When the erasure is finished, the erase block number set to H'FF and transmitted. Then the state of waiting for erase block data is returned state of waiting for programming/erasing command. Erasure must be executed when specified block is programmed without a reset start after programming is executed in mode. When programming can be executed by only one operation, all blocks are era entering the state of waiting for programming/erasing command or another command this case, the erasing operation is not required. The commands other than the programming/erasing command perform sum check, blank check (erasure check), ar read of the user MAT and user boot MAT, and acquisition of current status information.

Memory read of the user MAT and user boot MAT can only read the data programmed a user MAT and user boot MAT have automatically been erased. No other data can be readed as the set of the

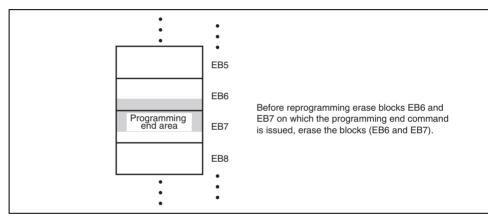


Figure 24.9 Example of Erase Block Including Programmed Area

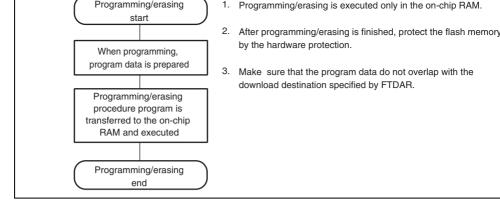


Figure 24.10 Programming/Erasing Flow

Rev. 2.00 Sep. 28, 2009 Page 780 of 994 REJ09B0452-0200

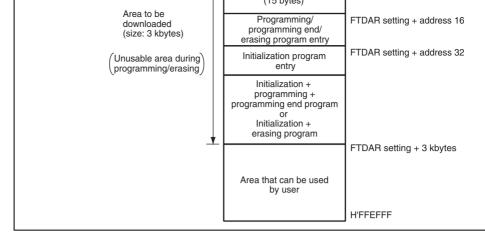


Figure 24.11 RAM Map when Programming/Erasing is Executed

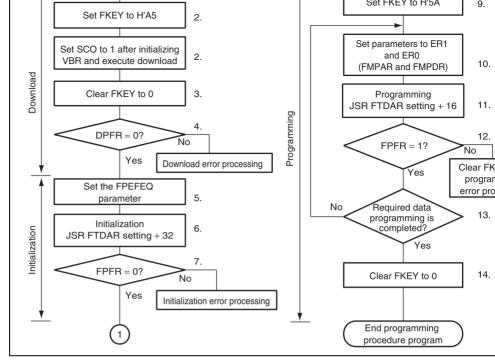


Figure 24.12 Programming Procedure in User Program Mode

Rev. 2.00 Sep. 28, 2009 Page 782 of 994 REJ09B0452-0200 H'FF, the program processing time can be shortened.

- Select the on-chip program to be downloaded and the download destination. When the bit in FPCS is set to 1, the programming program is selected. Several programming/or programs cannot be selected at one time. If several programs are selected, a download returned to the SS bit in the DPFR parameter. The on-chip RAM start address of the destination is specified by FTDAR.
- 2. Write H'A5 in FKEY. If H'A5 is not written to FKEY, the SCO bit in FCCS cannot l to request download of the on-chip program.
 - H'A5 is written to FKEY.
 - Setting the SCO bit is executed in the on-chip RAM.

When the SCO bit is set to 1, download is started automatically. Since the SCO bit is to 0 when the procedure program is resumed, the SCO bit cannot be confirmed to be procedure program. The download result can be confirmed by the return value of the parameter. To prevent incorrect decision, before setting the SCO bit to 1, set one byt on-chip RAM start address specified by FTDAR, which becomes the DPFR paramete value other than the return value (e.g. H'FF). Particular processing that is accompani switching as described below is performed when download is executed. Dummy readmust be performed twice immediately after the SCO bit is set to 1.

- The user-MAT space is switched to the on-chip program storage area.
- After the program to be downloaded and the on-chip RAM start address specified FTDAR are checked, they are transferred to the on-chip RAM.
- FPCS, FECS, and the SCO bit in FCCS are cleared to 0.
- The return value is set in the DPFR parameter.
- The values of general registers of the CPU are held.
- During download, no interrupts can be accepted. However, since the interrupt rec held, when the procedure program is resumed, the interrupts are requested.

Renesas

- If the value of the DPFR parameter is the same as that before downloading, the set the start address of the download destination in FTDAR may be abnormal. In this confirm the setting of the TDER bit in FTDAR.
- If the value of the DPFR parameter is different from that before downloading, che bit or FK bit in the DPFR parameter to confirm the download program selection a setting, respectively.
- 5. The operating frequency of the CPU is set in the FPEFEQ parameter for initialization settable operating frequency of the FPEFEQ parameter ranges from 8 to 32 MHz. Wh frequency is set otherwise, an error is returned to the FPFR parameter of the initialization program and initialization is not performed. For details on setting the frequency, see s 24.7.2 (3), Flash Program/Erase Frequency Parameter (FPEFEQ: General Register EFCPU).
- 6. Initialization is executed. The initialization program is downloaded together with the programming program to the on-chip RAM. The entry point of the initialization program the address which is 32 bytes after #DLTOP (start address of the download destination specified by FTDAR). Call the subroutine to execute initialization by using the follow steps.

```
MOV.L #DLTOP+32,ER2 ; Set entry address to ER2
JSR @ER2 ; Call initialization routine
NOP
```

- The general registers other than R0L are held in the initialization program.
- R0L is a return value of the FPFR parameter.
- Since the stack area is used in the initialization program, a stack area of 128 bytes maximum must be allocated in RAM.
- Interrupts can be accepted during execution of the initialization program. Make su
 program storage area and stack area in the on-chip RAM and register values are no
 overwritten.

Rev. 2.00 Sep. 28, 2009 Page 784 of 994 REJ09B0452-0200

- *i* i ke i must be set to if *i* i i and the user with i must be prepared for programming.
- 10. The parameters required for programming are set. The start address of the programm destination on the user MAT (FMPAR parameter) is set in general register ER1. The address of the program data storage area (FMPDR parameter) is set in general register
 - Example of FMPAR parameter setting: When an address other than one in the us area is specified for the start address of the programming destination, even if the programming program is executed, programming is not executed and an error is the FPFR parameter. Since the program data for one programming operation is 1 the lower eight bits of the address must be H'00 or H'80 to be aligned with the 12 boundary.
 - Example of FMPDR parameter setting: When the storage destination for the prog is flash memory, even if the programming routine is executed, programming is n executed and an error is returned to the FPFR parameter. In this case, the program must be transferred to the on-chip RAM and then programming must be executed
- 11. Programming is executed. The entry point of the programming program is at the add is 16 bytes after #DLTOP (start address of the download destination specified by FT Call the subroutine to execute programming by using the following steps.

MOV.L #DLTOP+16,ER2 ; Set entry address to ER2 JSR @ER2 ; Call programming routine NOP

- The general registers other than R0L are held in the programming program.
- R0L is a return value of the FPFR parameter.
- Since the stack area is used in the programming program, a stack area of 128 byte maximum must be allocated in RAM.

RENESAS

Rev. 2.00 Sep. 28, 2009 Page 786 of 994 REJ09B0452-0200

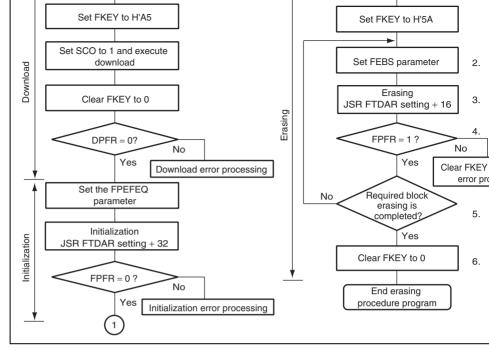


Figure 24.13 Erasing Procedure in User Program Mode

The procedure program must be executed in an area other than the user MAT to be erase the SCO bit in FCCS to 1 to request download must be executed in the on-chip RAM. T that can be executed in the steps of the procedure program (on-chip RAM and user MAT shown in section 24.8.4, Storable Areas for On-Chip Program and Program Data. For the downloaded on-chip program area, see figure 24.11.

Renesas

- Set the FEBS parameter necessary for erasure. Set the erase block number (FEBS para of the user MAT in general register ER0. If a value other than an erase block number user MAT is set, no block is erased even though the erasing program is executed, and is returned to the FPFR parameter.
- 3. Erasure is executed. Similar to as in programming, the entry point of the erasing prog the address which is 16 bytes after #DLTOP (start address of the download destinatio specified by FTDAR). Call the subroutine to execute erasure by using the following s

```
MOV.L #DLTOP+16, ER2 ; Set entry address to ER2
JSR @ER2 ; Call erasing routine
NOP
```

- The general registers other than R0L are held in the erasing program.
- R0L is a return value of the FPFR parameter.
- Since the stack area is used in the erasing program, a stack area of 128 bytes at the maximum must be allocated in RAM.
- 4. The return value in the erasing program, the FPFR parameter is determined.
- 5. Determine whether erasure of the necessary blocks has finished. If more than one block be erased, update the FEBS parameter and repeat steps 2 to 5.
- After erasure completes, clear FKEY and specify software protection. If this LSI is re a reset immediately after erasure has finished, secure the reset input period (period of of at least 100 μs.

Rev. 2.00 Sep. 28, 2009 Page 788 of 994 REJ09B0452-0200

For the mode pin settings to start up user boot mode, see table 24.7.

When the reset start is executed in user boot mode, the built-in check routine runs. The and user boot MAT states are checked by this check routine.

While the check routine is running, NMI and all other interrupts cannot be accepted.

Next, processing starts from the execution start address of the reset vector in the user bo At this point, H'AA is set to FMATS because the execution target MAT is the user boot

(2) User MAT Programming in User Boot Mode

For programming the user MAT in user boot mode, additional processing made by setting is required: switching from user-boot-MAT selection state to user-MAT selection state, switching back to user-boot-MAT selection state after programming completes.

Figure 24.14 shows the procedure for programming the user MAT in user boot mode.

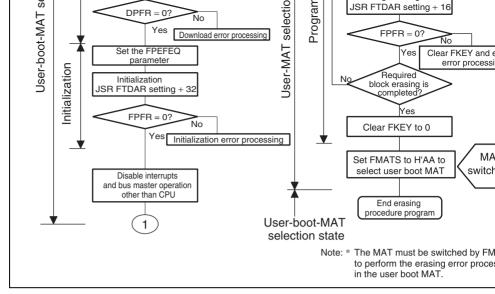
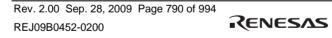



Figure 24.14 Procedure for Programming User MAT in User Boot Mode

The difference between the programming procedures in user program mode and user boo whether the MAT is switched or not as shown in figure 24.14.

In user boot mode, the user boot MAT can be seen in the flash memory space with the us hidden in the background. The user MAT and user boot MAT are switched only while the MAT is being programmed. Because the user boot MAT is hidden while the user MAT is programmed, the procedure program must be executed in an area other than flash memory the programming procedure completes, switch the MATs again to return to the first state.

For erasing the user MAT in user boot mode, additional processing made by setting FM required: switching from user-boot-MAT selection state to user-MAT selection state, an switching back to user-boot-MAT selection state after erasing completes.

Figure 24.15 shows the procedure for erasing the user MAT in user boot mode.

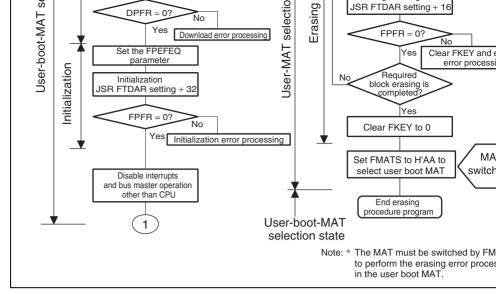
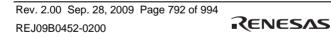



Figure 24.15 Procedure for Erasing User MAT in User Boot Mode

The difference between the erasing procedures in user program mode and user boot mode on whether the MAT is switched or not as shown in figure 24.15.

MAT switching is enabled by writing a specific value to FMATS. Note, however, that we MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not allo MAT switching is completed, and if an interrupt occurs, from which MAT the interrupt v read is undetermined. Perform MAT switching in accordance with the description in section 24.10, Switching between User MAT and User Boot MAT.

- The on-chip program is downloaded to and executed in the on-chip RAM specified t FTDAR. Therefore, this on-chip RAM area is not available for use.
- Since the on-chip program uses a stack area, allocate 128 bytes at the maximum as a area.
- Download requested by setting the SCO bit in FCCS to 1 should be executed from the RAM because it will require switching of the memory MATs.
- In an operating mode in which the external address space is not accessible, such as s mode, the required procedure programs should be transferred to the on-chip RAM be programming/erasing starts (download result is determined).
- The flash memory is not accessible during programming/erasing. Programming/eras executed by the program downloaded to the on-chip RAM. Therefore, the procedure that initiates operation should be stored in the on-chip RAM other than the flash men
- After programming/erasing starts, access to the flash memory should be inhibited un is cleared. The reset input state (period of $\overline{\text{RES}} = 0$) must be set to at least 100 µs wh operating mode is changed and the reset start executed on completion of programming Transitions to the reset state are inhibited during programming/erasing. When the reset is input, a reset input state (period of $\overline{\text{RES}} = 0$) of at least 100 µs is needed before the signal is released.
- Switching of the MATs by FMATS should be required when programming/erasong MAT is operated in user boot mode. The program that switches the MATs should be from the on-chip RAM. (For details, see section 24.10, Switching between User MA User Boot MAT.) Make sure you know which MAT is currently selected when witch
- When the program data storage area is within the flash memory area, an error will on when the data stored is normal program data. Therefore, the data should be transferred on-chip RAM to place the address that the FMPDR parameter indicates in an area of the flash memory.

RENESAS

		-		
	Storable/Exec	utable Area	S	elected MAT
Item	On-Chip RAM	User MAT	User MAT	Embedded Storage MA
Storage area for program data	0	×*	—	
Operation for selecting on-chip program to be downloaded	0	0	0	
Operation for writing H'A5 to FKEY	0	0	0	
Execution of writing 1 to SCO bit in FCCS (download)	0	×		0
Operation for clearing FKEY	0	0	0	
Decision of download result	0	0	0	
Operation for download error	0	0	0	
Operation for setting initialization parameter	0	0	0	
Execution of initialization	0	×	0	
Decision of initialization result	0	0	0	
Operation for initialization error	0	0	0	
Operation for disabling interrupts	0	0	0	
Operation for writing H'5A to FKEY	0	0	0	
Operation for setting programming parameter	0	×	0	
Execution of programming	0	х	0	
Decision of programming result	0	х	0	
Operation for programming error	0	×	0	
Operation for clearing FKEY	0	х	0	

Table 24.10 Usable Area for Programming in User Program Mode

Note: * Transferring the program data to the on-chip RAM beforehand enables this are used.

Rev. 2.00 Sep. 28, 2009 Page 794 of 994 REJ09B0452-0200

RENESAS

Operation for clearing FKEY	0	0	0	
Decision of download result	0	0	0	
Operation for download error	0	0	0	
Operation for setting initialization parameter	0	0	0	
Execution of initialization	0	×	0	
Decision of initialization result	0	0	0	
Operation for initialization error	0	0	0	
Operation for disabling interrupts	0	0	0	
Operation for writing H'5A to FKEY	0	0	0	
Operation for setting erasure parameter	0	×	0	
Execution of erasure	0	×	0	
Decision of erasure result	0	×	0	
Operation for erasure error	0	×	0	
Operation for clearing FKEY	0	×	0	

Writing 1 to SCO in FCCS (download)	0	x			0
FKEY clearing	0	0		0	
Determination of download result	0	0		0	
Download error processing	0	0		0	
Setting initialization parameter	0	0		0	
Initialization	0	×		0	
Determination of initialization result	0	0		0	
Initialization error processing	0	0		0	
Disabling interrupts	0	0		0	
Switching MATs by FMATS	0	×	0		
Writing H'5A to FKEY	0	×	0		
Setting programming parameter	0	×	0		
Programming	0	×	0		
Determination of programming result	0	×	0		
Programming error processing	0	×* ²	0		
FKEY clearing	0	×	0		
Switching MATs by FMATS	0	×		0	

Notes: 1. Transferring the data to the on-chip RAM in advance enables this area to be u

2. Switching FMATS by a program in the on-chip RAM enables this area to be us

Rev. 2.00 Sep. 28, 2009 Page 796 of 994 REJ09B0452-0200

RENESAS

FKEY clearing	0	0		0
Determination of download result	0	0		0
Download error processing	0	0		0
Setting initialization parameter	0	0	_	0
Initialization	0	х		0
Determination of initialization result	0	0		0
Initialization error processing	0	0		0
Disabling interrupts	0	0		0
Switching MATs by FMATS	0	×		0
Writing H'5A to FKEY	0	х	0	
Setting erasure parameter	0	х	0	
Erasure	0	х	0	
Determination of erasure result	0	×	0	
Erasing error processing	0	×*	0	
FKEY clearing	0	×	0	
Switching MATs by FMATS	0	×	0	

Note: * Switching FMATS by a program in the on-chip RAM enables this area to be use

RENESAS

program is initiated, and the error in programming/erasing is indicated by the FFFK paral

Table 24.14 Hardware Protection

Item	Description	Download	Progra Erasing
Reset protection	 The programming/erasing interface registers are initialized in the reset state (including a reset by the WDT) and the programming/erasing protection state is entered. The reset state will not be entered by a reset using the RES pin unless the RES pin is held low until oscillation has settled after a power is initially supplied. In the case of a reset during operation, hold the RES pin low for the RES pulse width given in the AC characteristics. If a reset is input during programming or erasure, data in the flash memory is not guaranteed. In this case, execute erasure and then execute programming again. 	3	0

Function to be Pro

Rev. 2.00 Sep. 28, 2009 Page 798 of 994 REJ09B0452-0200

by SCO bit	entered when the SCO bit in FCCS is cleared t to disable download of the programming/erasin programs.		
Protection by FKEY	The programming/erasing protection state is entered because download and programming/erasing are disabled unless the required key code is written in FKEY.	0	0

24.9.3 Error Protection

Error protection is a mechanism for aborting programming or erasure when a CPU runar occurs or operations not according to the programming/erasing procedures are detected programming/erasing of the flash memory. Aborting programming or erasure in such ca prevents damage to the flash memory due to excessive programming or erasing.

If an error occurs during programming/erasing of the flash memory, the FLER bit in FC to 1 and the error protection state is entered.

- When an interrupt request, such as NMI, occurs during programming/erasing.
- When the flash memory is read from during programming/erasing (including a vector an instruction fetch).
- When a SLEEP instruction is executed (including software-standby mode) during programming/erasing.

Renesas

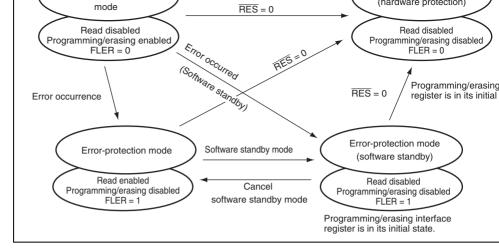


Figure 24.16 Transitions to Error Protection State

Rev. 2.00 Sep. 28, 2009 Page 800 of 994 REJ09B0452-0200

- prevents decess to the mast memory during the result.
- 3. If an interrupt has occurred during switching, there is no guarantee of which memory being accessed.

Always mask the maskable interrupts before switching between MATs. In addition, the system so that NMI interrupts do not occur during MAT switching.

- 4. After the MATs have been switched, take care because the interrupt vector table wil been switched.
- 5. Memory sizes of the user MAT and user boot MAT are different. Do not access a us MAT in a space of 8 kbytes or more. If access goes beyond the 8-kbyte space, the va are undefined.

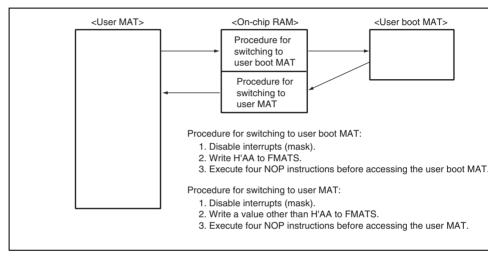


Figure 24.17 Switching between User MAT and User Boot MAT

User bo	oot	MAT 8 kbytes	FZTATUSBTV3A
Note:	*	For the R4F2117R model, 160 kbytes	s of ROM space is available when the use
		selected. If programming is performe	d in programmer mode. H'FF data must b

to address H'28000 to H'3FFFF with 256-kbyte capacity setting.

24.12 Standard Serial Communication Interface Specifications for B Mode

The boot program initiated in boot mode performs serial communication using the host at chip SCI_1. The serial communication interface specifications are shown below.

The boot program has three states.

1. Bit-rate-adjustment state

In this state, the boot program adjusts the bit rate to achieve serial communication with host. Initiating boot mode enables starting of the boot program and entry to the bit-rat adjustment state. The program receives the command from the host to adjust the bit rate adjusting the bit rate, the program enters the inquiry/selection state.

2. Inquiry/selection state

In this state, the boot program responds to inquiry commands from the host. The devic clock mode, and bit rate are selected. After selection of these settings, the program is enter the programming/erasing state by the command for a transition to the programming/erasing state. The program transfers the libraries required for erasure to chip RAM and erases the user MATs and user boot MATs before the transition.

Rev. 2.00 Sep. 28, 2009 Page 802 of 994 REJ09B0452-0200

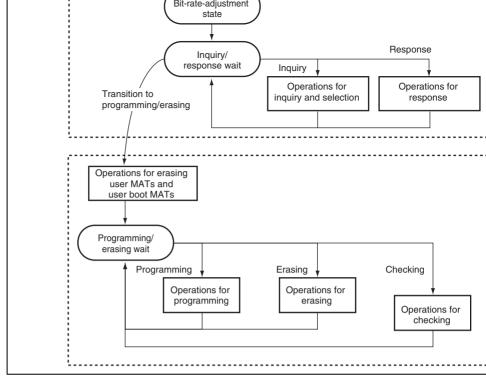


Figure 24.18 Boot Program States

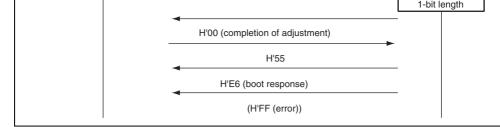


Figure 24.19 Bit-Rate-Adjustment Sequence

(2) Communications Protocol

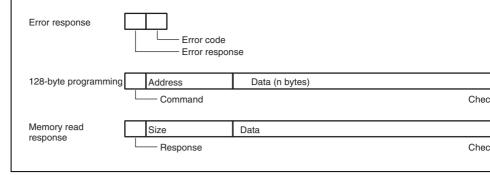
After adjustment of the bit rate, the protocol for serial communications between the host a boot program is as shown below.

1. One-byte commands and one-byte responses

These one-byte commands and one-byte responses consist of the inquiries and the AC successful completion.

2. n-byte commands or n-byte responses

These commands and responses are comprised of n bytes of data. These are selections responses to inquiries.


The program data size is not included under this heading because it is determined in a command.

3. Error response

The error response is a response to inquiries. It consists of an error response and an er and comes two bytes.

Rev. 2.00 Sep. 28, 2009 Page 804 of 994 REJ09B0452-0200

Figure 24.20 Communication Protocol Format

- Command (one byte): Commands including inquiries, selection, programming, erasi checking
- Response (one byte): Response to an inquiry
- Size (one byte): The amount of data for transmission excluding the command, amount and checksum
- Checksum (one byte): The checksum is calculated so that the total of all values from command byte to the SUM byte becomes H'00.
- Data (n bytes): Detailed data of a command or response
- Error response (one byte): Error response to a command
- Error code (one byte): Type of the error
- Address (four bytes): Address for programming
- Data (n bytes): Data to be programmed (the size is indicated in the response to the programming unit inquiry.)
- Size (four bytes): Four-byte response to a memory read

RENESAS

H'10	Device selection	Selection of device code
H'21	Clock mode inquiry	Inquiry regarding numbers of clock modes values of each mode
H'11	Clock mode selection	Indication of the selected clock mode
H'22	Division ratio inquiry	Inquiry regarding the number of frequency- clock types, the number of division ratios a values of each division
H'23	Operating clock frequency inquiry	Inquiry regarding the maximum and minime values of the main clock and peripheral clo
H'24	User boot MAT information inquiry	Inquiry regarding the a number of user boo and the start and last addresses of each M
H'25	User MAT information inquiry	Inquiry regarding the a number of user MA the start and last addresses of each MAT
H'26	Block for erasing information Inquiry	Inquiry regarding the number of blocks and and last addresses of each block
H'27	Programming unit inquiry	Inquiry regarding the unit of program data
H'3F	New bit rate selection	Selection of new bit rate
H'40	Transition to programming/erasing state	Erasing of user MATs or user boot MATs, a to programming/erasing state
H'4F	Boot program status inquiry	Inquiry into the operated status of the boot

Rev. 2.00 Sep. 28, 2009 Page 806 of 994 REJ09B0452-0200

response to the supported device inquiry.

Command H'20

• Command, H'20, (one byte): Inquiry regarding supported devices

Response	H'30	Size	Number of devices	
	Number of characters	Device code		Product name
	SUM			

- Response, H'30, (one byte): Response to the supported device inquiry
- Size (one byte): Number of bytes to be transmitted, excluding the command, size, an checksum, that is, the amount of data contributes by the number of devices, character codes and product names
- Number of devices (one byte): The number of device types supported by the boot pro-
- Number of characters (one byte): The number of characters in the device codes and l program's name
- Device code (four bytes): ASCII code of the supporting product
- Product name (n bytes): Type name of the boot program in ASCII-coded characters
- SUM (one byte): Checksum

The checksum is calculated so that the total number of all values from the command the SUM byte becomes H'00.

Renesas

• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to the device selection command ACK will be returned when the device code matches.

Error response H'90 ERROR

 Error response, H'90, (one byte): Error response to the device selection command ERROR : (one byte): Error code

H'11: Sum check error

H'21: Device code error, that is, the device code does not match

(c) Clock Mode Inquiry

The boot program will return the supported clock modes in response to the clock mode in

Command H'21

• Command, H'21, (one byte): Inquiry regarding clock mode

Response	H'31	Size	Number of modes	Mode		SUM
----------	------	------	-----------------	------	--	-----

- Response, H'31, (one byte): Response to the clock-mode inquiry
- Size (one byte): Amount of data that represents the number of modes and modes
- Number of clock modes (one byte): The number of supported clock modes H'00 indicates no clock mode or the device allows to read the clock mode.
- Mode (one byte): Values of the supported clock modes (i.e. H'01 means clock mode 1
- SUM (one byte): Checksum

Rev. 2.00 Sep. 28, 2009 Page 808 of 994 REJ09B0452-0200

• SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to the clock mode selection command ACK will be returned when the clock mode matches.

Error Response H'91 ERROR

- Error response, H'91, (one byte): Error response to the clock mode selection comma
- ERROR : (one byte): Error code H'11: Checksum error

H'22: Clock mode error, that is, the clock mode does not match.

Even if the clock mode numbers are H'00 and H'01 by a clock mode inquiry, the clock n be selected using these respective values.

•••			
SUM			

- Response, H'32, (one byte): Response to the division ratio inquiry
- Size (one byte): The total amount of data that represents the number of types, the num division ratios, and the division ratios
- Number of types (one byte): The number of supported divided clock types (e.g. when there are two divided clock types, which are the main and peripheral clock number of types will be H'02.)
- Number of division ratios (one byte): The number of division ratios for each type (e.g. the number of division ratios to which the main clock can be set and the peripher can be set.)
- Division ratio (one byte)

Division ratio: The inverse of the division ratio, i.e. a negative number (e.g. when the divided by two, the value of division ratio will be H'FE. H'FE = D'-2)

The number of division ratios returned is the same as the number of division ratios an many groups of data are returned as there are types.

• SUM (one byte): Checksum

Rev. 2.00 Sep. 28, 2009 Page 810 of 994 REJ09B0452-0200

-1	 - 1 7
SUM	

- Response, H'33, (one byte): Response to operating clock frequency inquiry
- Size (one byte): The number of bytes that represents the minimum values, maximum and the number of frequencies.
- Number of operating clock frequencies (one byte): The number of supported operati frequency types

(e.g. when there are two operating clock frequency types, which are the main and per clocks, the number of types will be H'02.)

• Minimum value of operating clock frequency (two bytes): The minimum value of th clock frequency.

The minimum and maximum values of the operating clock frequency represent the v MHz, valid to the hundredths place of MHz, and multiplied by 100. (e.g. when the v 20.00 MHz, it will be 2000, which is H'07D0.)

- Maximum value (two bytes): Maximum value among the divided clock frequencies. There are as many pairs of minimum and maximum values as there are operating clo frequencies.
- SUM (one byte): Checksum

- Response, H'34, (one byte): Response to the user boot MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start at and area-last address
- Number of areas (one byte): The number of consecutive user boot MAT areas When the user boot MAT areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area
- Area-last address (four bytes): Last address of the area There are as many groups of data representing the start and last addresses as there are
- SUM (one byte): Checksum

Rev. 2.00 Sep. 28, 2009 Page 812 of 994 REJ09B0452-0200

- Response, H'35, (one byte): Response to the user MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start a and area-last address
- Number of areas (one byte): The number of consecutive user MAT areas When the user MAT areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area
- Area-last address (four bytes): Last address of the area There are as many groups of data representing the start and last addresses as there ar
- SUM (one byte): Checksum

(i) Erased Block Information Inquiry

The boot program will return the number of erased blocks and their addresses.

Command H'26

• Command, H'26, (two bytes): Inquiry regarding erased block information

Response

e	H'36	Size	Number of blocks		
	Block s	start ad	dress		Block last address
	SUM				

- Response, H'36, (one byte): Response to the number of erased blocks and addresses
- Size (three bytes): The number of bytes that represents the number of blocks, block-addresses, and block-last addresses.
- Number of blocks (one byte): The number of erased blocks
- Block start address (four bytes): Start address of a block

RENESAS

- Response, H'37, (one byte): Response to programming unit inquiry
- Size (one byte): The number of bytes that indicate the programming unit, which is fix
- Programming unit (two bytes): A unit for programming This is the unit for reception of programming.
- SUM (one byte): Checksum

(k) New Bit-Rate Selection

The boot program will set a new bit rate and return the new bit rate.

This selection should be sent after sending the clock mode selection command.

Command	H'3F	Size	Bit rate	Input frequency
	Number of division ratios	Division ratio 1	Division ratio 2	
	SUM			

- Command, H'3F, (one byte): Selection of new bit rate
- Size (one byte): The total number of bytes that represents the bit rate, input frequency of division ratios, and division ratio
- Bit rate (two bytes): New bit rate One hundredth of the value (e.g. when the value is 19200 bps, it will be 192, which is
- Input frequency (two bytes): Frequency of the clock input to the boot program This is valid to the hundredths place and represents the value in MHz multiplied by 19 when the value is 20.00 MHz, it will be 2000, which is H'07D0.)

Rev. 2.00 Sep. 28, 2009 Page 814 of 994 REJ09B0452-0200

• SOM (one byte). Checksum

Response H'06

• Response, H'06, (one byte): Response to selection of a new bit rate When it is possible to set the bit rate, the response will be ACK.

Error Response H'BF

ERROR

- Error response, H'BF, (one byte): Error response to selection of new bit rate
- ERROR: (one byte): Error code

H'11:	Sum checking error	
H'24:	Bit-rate selection error	
	The rate is not available.	
H'25:	Error in input frequency	
	This input frequency is not within the specified range.	
H'26:	Division ratio error	
	The ratio does not match an available ratio.	
H'27:	Operating frequency error	
	The frequency is not within the specified range.	

3. Operating frequency error

Operating frequency is calculated from the received value of the input frequency and division ratio. The input frequency is input to the LSI and the LSI is operated at the op frequency. The expression is given below.

Operating frequency = Input frequency ÷ Division ratio

The calculated operating frequency should be checked to ensure that it is within the raminimum to maximum frequencies which are available with the clock modes of the sp device. When it is out of this range, an operating frequency error is generated.

4. Bit rate

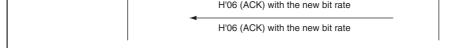
To facilitate error checking, the value (n) of clock select (CKS) in the serial mode reg (SMR), and the value (N) in the bit rate register (BRR), which are found from the per operating clock frequency (ϕ) and bit rate (B), are used to calculate the error rate to en it is less than 4%. If the error is more than 4%, a bit rate error is generated. The error calculated using the following expression:

$$Error (\%) = \{ [\frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{(2 \times n - 1)}}] - 1 \} \times 100$$

When the new bit rate is selectable, the rate will be set in the register after sending ACK response. The host will send an ACK with the new bit rate for confirmation and the boot will response with that rate.

Confirmation H'06

• Confirmation, H'06, (one byte): Confirmation of a new bit rate


Response

H'06

• Response, H'06, (one byte): Response to confirmation of a new bit rate

Rev. 2.00 Sep. 28, 2009 Page 816 of 994 REJ09B0452-0200

Figure 24.21 New Bit-Rate Selection Sequence

(5) Transition to Programming/Erasing State

The boot program will transfer the erasing program and erase the data in the user MATs the data in the user boot MATs. On completion of this erasure, ACK will be returned an program will enter the programming/erasing state.

The host should select the device code, clock mode, and new bit rate with device selecti mode selection, and new bit-rate selection commands, and then send the command for the transition to programming/erasing state. These procedures should be carried out before se the programming selection command or program data.

Command H'40

• Command, H'40, (one byte): Transition to programming/erasing state

Response

• Response, H'06, (one byte): Response to transition to programming/erasing state The boot program will send ACK when the user MATs and the user boot MATs hav erased by the transferred erasing program.

Error Response

H'C0 H'51

- Error response, H'C0, (one byte): Error response to the bland check of the user boot
- Error code, H'51, (one byte): Erasing error An error occurred and erasure was not completed.

RENESAS

The order for commands in the inquiry selection state is shown below.

- 1. A supported device inquiry (H'20) should be made to inquire about the supported dev
- 2. The device should be selected from among those described by the returned information with a device-selection (H'10) command.
- 3. A clock-mode inquiry (H'21) should be made to inquire about the supported clock mo
- The clock mode should be selected from among those described by the returned inform and set.
- 5. After selection of the device and clock mode, inquiries for other required information be made, such as the division-ratio inquiry (H'22) or operating frequency inquiry (H'2 are needed for a new bit-rate selection.
- 6. A new bit rate should be selected with the new bit-rate selection (H'3F) command, act to the returned information on division ratios and operating frequencies.
- After selection of the device and clock mode, the information of the user boot MAT a user MAT should be made to inquire about the user boot MATs information inquiry (user MATs information inquiry (H'25), erased block information inquiry (H'26), and programming unit inquiry (H'27).
- 8. After making inquiries and selecting a new bit rate, issue the transition to programming/erasing state command (H'40). The boot program will then enter the programming/erasing state.

Rev. 2.00 Sep. 28, 2009 Page 818 of 994 REJ09B0452-0200

H'43	User MAT programming selection	Transfers the user MAT programming
H'50	128-byte programming	Programs 128 bytes of data
H'48	Erasing selection	Transfers the erasing program
H'58	Block erasing	Erases a block of data
H'52	Memory read	Reads the contents of memory
H'4A	User boot MAT sum check	Checks the checksum of the user boo
H'4B	User MAT sum check	Checks the checksum of the user MA
H'4C	User boot MAT blank check	Checks the blank data of the user boo
H'4D	User MAT blank check	Checks the blank data of the user MA
H'4F	Boot program status inquiry	Inquires into the boot program's status

wait for selection of programming of crasing.

Where the sequence of programming operations that is executed includes programmin another method or of another MAT, the procedure must be repeated from the program selection command.

The sequence for the programming selection and 128-byte programming commands is in figure 24.22.

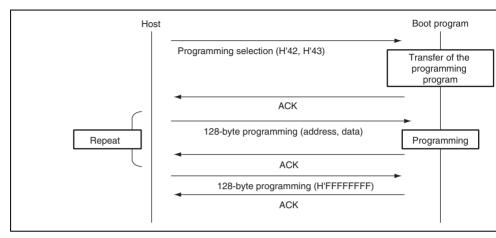
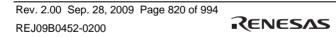



Figure 24.22 Programming Sequence

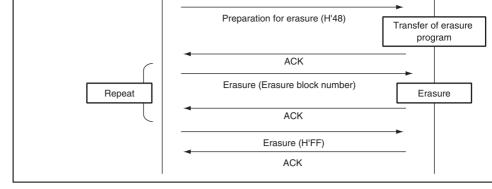


Figure 24.23 Erasure Sequence

When the programming program has been transferred, the boot program will return A Error Response H'C2 ERROR

Ellor Response HC2 ERROR

- Error response: H'C2 (1 byte): Error response to user boot MAT programming selecti
- ERROR : (1 byte): Error code

H'54: Selection processing error (transfer error occurs and processing is not complete

(b) User MAT Programming Selection

The boot program will transfer a program for user MAT programming selection. The data programmed to the user MATs by the transferred program for programming.

Command H'43

• Command, H'43, (one byte): User-program programming selection

Response H'06

• Response, H'06, (one byte): Response to user-program programming selection When the programming program has been transferred, the boot program will return A

Error Response H'C3 ERROR

- Error response : H'C3 (1 byte): Error response to user-program programming selection
- ERROR : (1 byte): Error code

H'54: Selection processing error (transfer error occurs and processing is not complete

Rev. 2.00 Sep. 28, 2009 Page 822 of 994 REJ09B0452-0200

RENESAS

- riddress (10dr bytes). Start address for programming Multiple of the size specified in response to the programming unit inquiry (i.e. H'00, H'01, H'00, H'00 : H'00010000)
- Program data (128 bytes): Data to be programmed The size is specified in the response to the programming unit inquiry.
- SUM (one byte): Checksum

Response H'06

Response, H'06, (one byte): Response to 128-byte programming On completion of programming, the boot program will return ACK.

Error Response H'D0 ERROR

- Error response, H'D0, (one byte): Error response for 128-byte programming
- ERROR: (one byte): Error code
 - H'11: Checksum Error
 - H'2A: Address Error

The address is not within the specified MAT range.

H'53: Programming error

A programming error has occurred and programming cannot be contin

The specified address should match the unit for programming of data. For example, whe programming is in 128-byte units, the lower eight bits of the address should be H'00 or l When there are less than 128 bytes of data to be programmed, the host should fill the res H'FF.

Sending the 128-byte programming command with the address of H'FFFFFFF will sto programming operation. The boot program will interpret this as the end of the programm wait for selection of programming or erasing.

RENESAS

- Error Response, H D0, (one byte): Error response for 128-byte programming
- ERROR: (one byte): Error code
 - H'11: Checksum error
 - H'53: Programming error
 - An error has occurred in programming and programming cannot be cor

(d) Erasure Selection

The boot program will transfer the erasure program. User MAT data is erased by the tran erasure program.

Command H'48

• Command, H'48, (one byte): Erasure selection

Response H'06

• Response, H'06, (one byte): Response for erasure selection After the erasure program has been transferred, the boot program will return ACK.

Error Response H'C8 ERROR

• ERROR: (one byte): Error code

H'54: Selection processing error (transfer error occurs and processing is not complete

Rev. 2.00 Sep. 28, 2009 Page 824 of 994 REJ09B0452-0200

Response	H'06	

• Response, H'06, (one byte): Response to Erasure After erasure has been completed, the boot program will return ACK.

Error Response H'D8 ERROR

- Error Response, H'D8, (one byte): Response to Erasure
- ERROR (one byte): Error code
 - H'11:Sum check errorH'29:Block number errorBlock number is incorrect.
 - H'51: Erasure error

An error has occurred during erasure.

On receiving block number H'FF, the boot program will stop erasure and wait for a select command.

Command	H'58	Size	Block number	SUM

- Command, H'58, (one byte): Erasure
- Size, (one byte): The number of bytes that represents the block number This is fixed to 1.
- Block number (one byte): H'FF Stop code for erasure
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to end of erasure (ACK) When erasure is to be performed after the block number H'FF has been sent, the proc should be executed from the erasure selection command.

Renesas

II UI. USUI MAI

An address error occurs when the area setting is incorrect.

- Read address (4 bytes): Start address to be read from
- Read size (4 bytes): Size of data to be read
- SUM (1 byte): Checksum

Response	H'52	Read si	ze			
	Data					
	SUM					

- Response: H'52 (1 byte): Response to memory read
- Read size (4 bytes): Size of data to be read
- Data (n bytes): Data for the read size from the read address
- SUM (1 byte): Checksum

Error Response H'D2 ERROR

- Error response: H'D2 (1 byte): Error response to memory read
- ERROR: (1 byte): Error code

H'11: Sum check error

H'2A: Address error

The read address is not in the MAT.

H'2B: Size error

The read size exceeds the MAT.

Rev. 2.00 Sep. 28, 2009 Page 826 of 994 REJ09B0452-0200

- This is fixed to 4.
- Checksum of MAT (four bytes): Checksum of user boot MATs The total of the data is obtained in byte units.
- SUM (one byte): Sum check for data being transmitted

(h) User-Program Sum Check

The boot program will return the byte-by-byte total of the contents of the bytes of the us program.

Command H'4B

• Command, H'4B, (one byte): Sum check for user program

Response H'5B Size Checksum of user program SUM

- Response, H'5B, (one byte): Response to the sum check of the user program
- Size (one byte): The number of bytes that represents the checksum This is fixed to 4.
- Checksum of user boot program (four bytes): Checksum of user MATs The total of the data is obtained in byte units.
- SUM (one byte): Sum check for data being transmitted

- Error Response, H'CC, (one byte): Error response to the blank check of user boot MA ٠
- Error code, H'52, (one byte): Erasure has not been completed. ٠

User MAT Blank Check (j)

The boot program will check whether or not all user MATs are blank and return the resul

Command H'4D

Command, H'4D, (one byte): Blank check for user MATs •

Response

H'06

• Response, H'06, (one byte): Response to the blank check for user MATs If the contents of all user MATs are blank (H'FF), the boot program will return ACK.

Error Response H'CD

H'52

- Error Response, H'CD, (one byte): Error response to the blank check of user MATs. ٠
- Error code, H'52, (one byte): Erasure has not been completed. ٠

Rev. 2.00 Sep. 28, 2009 Page 828 of 994 REJ09B0452-0200

- Status (one byte): State of the boot program
- ERROR (one byte): Error status

ERROR = 0 indicates normal operation. ERROR = 1 indicates error has occurred.

• SUM (one byte): Sum check

Table 24.19 Status Codes

Code	Description
H'11	Device selection wait
H'12	Clock mode selection wait
H'13	Bit rate selection wait
H'1F	Programming/erasing state transition wait (bit rate selection is completed)
H'31	Programming state for erasure
H'3F	Programming/erasing selection wait (erasure is completed)
H'4F	Program data receive wait
H'5F	Erase block specification wait (erasure is completed)

H'26	Division ratio error
H'27	Operating frequency error
H'29	Block number error
H'2A	Address error
H'2B	Data length error
H'51	Erasure error
H'52	Erasure incomplete error
H'53	Programming error
H'54	Selection processing error
H'80	Command error
H'FF	Bit-rate-adjustment confirmation error

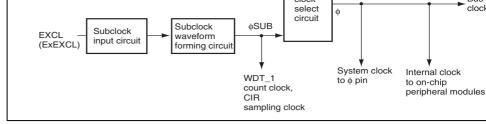
Rev. 2.00 Sep. 28, 2009 Page 830 of 994 REJ09B0452-0200

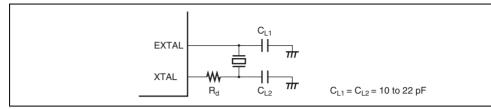
- 3.3 V programming voltage. Use only the specified socket adapter.
- 5. Do not power off the Vcc power supply (including the removal of the chip from the programmer) during programming/erasing in which a high voltage is applied to the f memory. Doing so may damage the flash memory permanently. If a reset is input, th must be released after the reset input period of at least 100µs.
- 6. The flash memory is not accessible until FKEY is cleared after programming/erasing the operating mode is changed and this LSI is restarted by a reset immediately after programming/erasing has finished, secure the reset input period (period of $\overline{\text{RES}} = 0$) 100µs. Transition to the reset state during programming/erasing is inhibited. If a rese accidentally, the reset must be released after the reset input period of at least 100µs.
- 7. At powering on the Vcc power supply, fix the RES pin to low and set the flash mem hardware protection state. This power on timing must also be satisfied at a power-of power-on caused by a power failure and other factors.
- 8. In on-board programming mode or programmer mode, programming of the 128-byte programming-unit block must be performed only once. Perform programming in the where the programming-unit block is fully erased.
- 9. When the chip is to be reprogrammed with the programmer after execution of programer erasure in on-board programming mode, it is recommended that automatic programmer performed after execution of automatic erasure.
- 10. To program the flash memory, the program data and program must be allocated to ac which are higher than those of the external interrupt vector table and H'FF must be w all the system reserved areas in the exception handling vector table.
- 11. If data other than H'FF (4 bytes) is written to the key code area (H'00003C to H'0000 flash memory, reading cannot be performed in programmer mode. (In this case, data H'00. Rewrite is possible after erasing the data.) For reading in programmer mode, n to write H'FF to the entire key code area.

RENESAS

- 15. Unlike a conventional F-ZTAT H8/H8S microcomputers, measures against a program are not taken by WDT while programming/erasing and downloading a programming/erasma. When needed, measures should be taken by user. A periodic interrupt gener the WDT can be used as the measures, as an example. In this case, the interrupt gener period should take into consideration time to program/erase the flash memory.
- 16. When downloading the programming/erasing program, do not clear the SCO bit in FC after immediately setting it to 1. Otherwise, download cannot be performed normally. Immediately after executing the instruction to set the SCO bit to 1, dummy read of the must be executed twice.
- 17. The contents of some registers are not saved in a programming/programming end/eras program. When needed, save registers in the procedure program.

Rev. 2.00 Sep. 28, 2009 Page 832 of 994 REJ09B0452-0200




Figure 25.1 Block Diagram of Clock Pulse Generator

The subclock input is controlled by software according to the EXCLE bit and the EXCL the port control register (PTCNT0) settings in the low power control register (LPWRCR details on LPWRCR, see section 26.1.2, Low-Power Control Register (LPWRCR). For ePTCNT0, see section 7.3.1, Port Control Register 0 (PTCNT0).

Figure 25.3 shows an equivalent circuit of a crystal resonator. A crystal resonator having characteristics given in table 25.2 should be used.

The frequency of the crystal resonator should be the same as that of the system clock (ϕ).

Table 25.1 Damping Resistor Values

Frequency (MHz)	8	10	12	16	
R _d (Ω)	200	0	0	0	

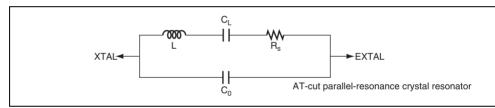


Figure 25.3 Equivalent Circuit of Crystal Resonator

the external clock should be set to high in standby mode or watch mode. External clock conditions are shown in table 25.3. The frequency of the external clock should be the sat of the system clock (ϕ).

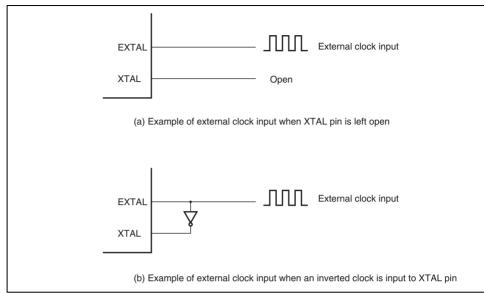
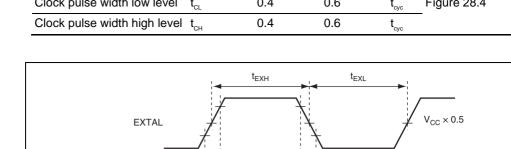



Figure 25.4 Example of External Clock Input

tEXr

Figure 25.5 External Clock Input Timing

t_{EXf}

The oscillator and duty correction circuit can adjust the waveform of the external clock ir is input from the EXTAL pin.

When a specified clock signal is input to the EXTAL pin, internal clock signal output is determined after the external clock output stabilization delay time (t_{DEXT}) has passed. As the signal output is not determined during the t_{DEXT} cycle, a reset signal should be set to low to maintain the reset state. Table 25.4 shows the external clock output stabilization delay time 25.6 shows the timing of the external clock output stabilization delay time.

Rev. 2.00 Sep. 28, 2009 Page 836 of 994 REJ09B0452-0200

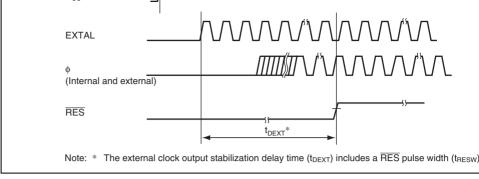


Figure 25.6 Timing of External Clock Output Stabilization Delay Time

When using a pin to input the subclock, specify input for the pin by clearing the DDR bit pin to 0. The EXCL pin is specified as an input pin by clearing the EXCLS bit in PTCNT The EXEXCL pin is specified as an input pin by setting the EXCLS bit in PTCNT0 to 1. ' subclock input is enabled by setting the EXCLE bit in LPWRCR to 1.

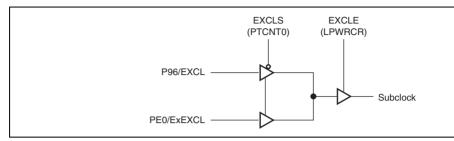


Figure 25.7 Subclock Input from EXCL Pin and ExEXCL Pin

Subclock input conditions are shown in table 25.5. When the subclock is not used, subclock should not be enabled.

Table 25.5 Subclock Input Conditions

		v	CC = 3.0 tc	o 3.6 V		
Item	Symbol	Min.	Тур.	Max.	Unit	Test Co
Subclock input pulse width low level	t _{excll}		15.26		μS	Figure 2
Subclock input pulse width high level	t _{exclh}		15.26		μS	
Subclock input rising time	t _{EXCLr}		_	10	ns	
Subclock input falling time	t _{EXCLf}			10	ns	

Rev. 2.00 Sep. 28, 2009 Page 838 of 994 REJ09B0452-0200

RENESAS

To remove noise from the subclock input at the EXCL (ExEXCL) pin, the subclock way forming circuit samples the subclock using a divided ϕ clock. The sampling frequency is NESEL bit in LPWRCR.

The subclock is not sampled in watch mode.

25.5 Clock Select Circuit

The clock select circuit selects the system clock that is used in this LSI.

A clock generated by the oscillator to which the XTAL and EXTAL pins are connected as a system clock (ϕ) when returning from high-speed mode, sleep mode, the reset state, standby mode.

In watch mode, a subclock input from the EXCL (ExEXCL) pin is selected as a system of when the EXCLE bit in LPWRCR is 1. At this time, on-chip peripheral modules such as and interrupt controller operate on the ϕ SUB clock. The count clock and sampling clock timer are divided ϕ SUB clocks.

25.6.2 Notes on Board Design

When using a crystal resonator, the crystal resonator and its load capacitors should be placed close as possible to the XTAL and EXTAL pins. Other signal lines should be routed away the oscillator to prevent inductive interference with correct oscillation as shown in figure

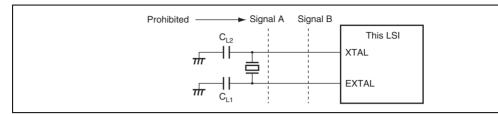


Figure 25.9 Note on Board Design of Oscillator Section

Rev. 2.00 Sep. 28, 2009 Page 840 of 994 REJ09B0452-0200

The CPU stops but on-chip peripheral modules continue operating.

• Watch mode

The CPU stops, but on-chip peripheral module WDT_1 and CIR continue operating.

• Software standby mode

The clock pulse generator stops, and the CPU and on-chip peripheral modules stop of

• Module stop mode

Independently of above operating modes, on-chip peripheral modules that are not us stopped individually.

26.1 Register Descriptions

Power-down modes are controlled by the following registers. To access SBYCR, LPWF SYSCR2, MSTPCRH, and MSTPCRL the FLSHE bit in the serial timer control register must be cleared to 0. For details on STCR, see section 3.2.3, Serial Timer Control Regis (STCR). For details on the PSS bit in TSCR_1 (WDT_1), see TCSR_1 in section 13.3.5 Control/Status Register (TCSR).

Table 26.1 Register Configuration

				D
Abbreviation	R/W	Initial Value	Address	W
SBYCR	R/W	H'00	H'FF84	8
LPWRCR	R/W	H'00	H'FF85	8
H MSTPCRH	R/W	H'3F	H'FF86	8
MSTPCRL	R/W	H'FF	H'FF87	8
A MSTPCRA	R/W	H'FC	H'FE7E	8
B MSTPCRB	R/W	H'FF	H'FE7F	8
\ \	SBYCR LPWRCR H MSTPCRH MSTPCRL A MSTPCRA	SBYCRR/WLPWRCRR/WMSTPCRHR/WMSTPCRLR/WMSTPCRAR/W	SBYCRR/WH'00LPWRCRR/WH'00H MSTPCRHR/WH'3FMSTPCRLR/WH'FFA MSTPCRAR/WH'FC	SBYCRR/WH'00H'FF84LPWRCRR/WH'00H'FF85H MSTPCRHR/WH'3FH'FF86MSTPCRLR/WH'FFH'FF87A MSTPCRAR/WH'FCH'FE7E

				0: Shifts to sleep mode
				1: Shifts to software standby mode or watch r
				Note that the SSBY bit is not changed even if transition is made by an interrupt.
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	On canceling software standby mode or watch
4	STS0	0	R/W	these bits select the wait time for clock stabiliz from clock oscillation start. Select a wait time (oscillation stabilization time) or more, depend the operating frequency. Table 26.2 shows th relationship between the STS2 to STS0 value wait time.
				With an external clock, an arbitrary wait time selected. For normal cases, the minimum valu recommended.
3	_	0	R/W	Reserved
				The initial value should not be changed.
-				

Rev. 2.00 Sep. 28, 2009 Page 842 of 994 REJ09B0452-0200

011: Medium-speed clock: φ/8
100: Medium-speed clock: φ/16
101: Medium-speed clock: φ/32
11X: Setting prohibited

[Legend]

X: Don't care

Table 26.2 Operating Frequency and Wait Time

STS2	STS1	STS0	Wait Time	20 MHz	10 MHz	8 MHz	Un
0	0	0	8192 states	0.4	0.8	1.0	ms
0	0	1	16384 states	0.8	1.6	2.0	
0	1	0	32768 states	1.6	3.3	4.1	
0	1	1	65536 states	3.3	6.6	8.2	
1	0	0	131072 states	6.6	13.1	16.4	
1	0	1	262144 states	13.1	26.2	32.8	
1	1	0/1	Reserved*		_		—

Recommended specification

Note: * Setting prohibited.

Renesas

5	NESEL	0	R/W	Noise Elimination Sampling Frequency Selec
				Selects the frequency by which the subclock input from the EXCL or ExEXCL pin is sample the clock (ϕ) generated by the system clock p generator. Clear this bit to 0 when ϕ is 5 MHz The initial value should not be changed.
				0: Sampling using $\phi/32$ clock
				1: Sampling using $\phi/4$ clock (not allowed)
4	EXCLE	0	R/W	Subclock Input Enable
				Enables or disables subclock input from the E ExEXCL pin.
				0: Disables subclock input from the EXCL or pin
				1: Enables subclock input from the EXCL or E pin
3 to 0	_	All 0	R/W	Reserved
				The initial value should not be changed.

Rev. 2.00 Sep. 28, 2009 Page 844 of 994 REJ09B0452-0200

				•
6	MSTP14	0	R/W	Reserved
				The initial value should not be changed.
5	MSTP13	1	R/W	Reserved
				The initial value should not be changed.
4	MSTP12	1	R/W	8-bit timers (TMR_0 and TMR_1)
3	MSTP11	1	R/W	14-bit PWM timer (PWMX)
2	MSTP10	1	R/W	Reserved
				The initial value should not be changed.
1	MSTP9	1	R/W	A/D converter
0	MSTP8	1	R/W	8-bit timers (TMR_X and TMR_Y)

• MSTPCRL

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTP7	1	R/W	Reserved
				The initial value should not be changed.
6	MSTP6	1	R/W	Serial communication interface 1 (SCI_1)
5	MSTP5	1	R/W	Serial communication interface 2 (SCI_2)
4	MSTP4	1	R/W	I ² C bus interface channel 0 (IIC_0)
3	MSTP3	1	R/W	I ² C bus interface channel 1 (IIC_1)
2	MSTP2	1	R/W	Keyboard buffer control unit_0 (PS2_0)
				Keyboard buffer control unit_1 (PS2_1)
				Keyboard buffer control unit_2 (PS2_2)
1	MSTP1	1	R/W	16-bit timer pulse unit (TPU)
0	MSTP0	1	R/W	LPC interface (LPC)

1	MSTPA1	0	R/W	14-bit PWM timer (PWMX)			
0	MSTPA0	0	R/W	Reserved			
				The initial value should not be changed.			
Note: * Before accessing registers of the FSI interface, clear bit 0 in MSTPCRL (MSTF bit 2 in MSTPCRA (MSTPA2) to 0.							
• MSTPCRB							

• MSTPCRB	
-----------	--

Bit	Bit Name	Initial Value	R/W	Corresponding Module
7	MSTPB7	1	R/W	Reserved
				The initial value should not be changed.
6	MSTPB6	1	R/W	Reserved
				The initial value should not be changed.
5	MSTPB5	1	R/W	Keyboard buffer control unit_3 (PS2_3)
4	MSTPB4	1	R/W	I ² C bus interface_2 (IIC_2)
3	MSTPB3	1	R/W	Serial communication interface with FIFO (SCIF)
2	MSTPB2	1	R/W	Cycle measurement timer_2 (TCM_2)
				Cycle measurement timer_3 (TCM_3)
1	MSTPB1	1	R/W	Cycle measurement timer_0 (TCM_0)
				Cycle measurement timer_1 (TCM_1)
0	MSTPB0	1	R/W	8-bit PWMU timer_A (TWMU_A)
				8-bit PWMU timer_B (TWMU_B)

Rev. 2.00 Sep. 28, 2009 Page 846 of 994 REJ09B0452-0200

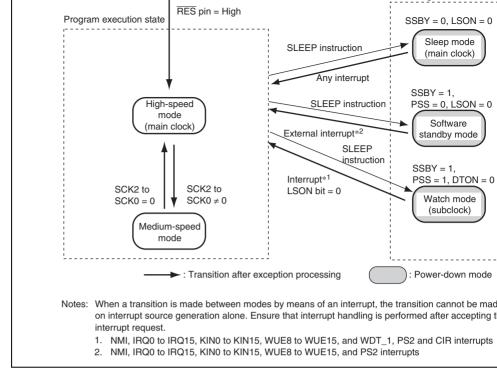


Figure 26.1 Mode Transition Diagram

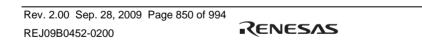
Rev. 2.00 Sep. 28, 2009 Page 848 of 994 REJ09B0452-0200

	WUE8 to WUE15	-				
On-chip	WDT_1	Functioning	Functioning	Functioning	Functioning	Subclock
peripheral modules	CIR	-				operation
	WDT_0	-				Stopped
	TMR_0, TMR_1	-			Functioning/ stopped (retained)	— (retained)
	TPU TCM_0 to 3 TDP_0 to 2	-				
	TMR_X, TMR_Y	-				
	SCIF	-				
	IIC_0 to 2	-				
	LPC	-				
	FSI	-				
	PS2_0 to 3	-	Medium-speed operation/functioning	,		
	PWMU	-	Functioning		Functioning/ stopped (reset)	Stopped
	PWM	-				(reset)
	PWMX	-				
	SCI_1, SCI_2	-				
	A/D converter	-				
	RAM	Functioning	Functioning	Functioning	Functioning	Retained
	I/O	Functioning	Functioning	Functioning	Functioning	Retained

Note: Stopped (retained) means that the internal register values are retained and the in state is operation suspended. Stopped (reset) means that the internal register va the internal state are initialized. In module stop mode, only modules for which a s has been made are stopped (reset or retained).

RENESAS

A transition is made from medium-speed mode to high-speed mode at the end of the currecycle by clearing all of bits SCK2 to SCK0 to 0.


If the SLEEP instruction is executed when the SSBY bit in SBYCR is 0 and the LSON bit LPWRCR is 0, a transition is made to sleep mode. When sleep mode is canceled by an in medium-speed mode is restored. When the SLEEP instruction is executed with the SSBY 1, the LSON bit in LPWRCR set to 0, and the PSS bit in TCSR (WDT_1) set to 0, operat to software standby mode. When software standby mode is canceled by an external interr medium-speed mode is restored.

When the $\overline{\text{RES}}$ pin is driven low and medium-speed mode is cancelled, operation shifts to state. The same applies to a reset caused by an overflow of the watchdog timer.

Figure 26.2 shows the timing of medium-speed mode.

φ, peripheral module clock	
Bus master clock	
Internal address bus	SBYCR X SBYCR X X
Internal write signal	

Figure 26.2 Timing of Medium-Speed Mode

the CPU.

When the $\overline{\text{RES}}$ pin is driven low and sleep mode is cleared, a transition is made to the real After the specified reset input time has elapsed, driving the $\overline{\text{RES}}$ pin high causes the CPP reset exception handling.

26.5 Software Standby Mode

The CPU makes a transition to software standby mode when the SLEEP instruction is e with the SSBY bit in SBYCR set to 1, the LSON bit in LPWRCR cleared to 0, and the I TCSR (WDT_1) cleared to 0. In software standby mode, the CPU, on-chip peripheral m and clock pulse generator all stop. However, the contents of the CPU registers, on-chip I/O ports, and the states of on-chip peripheral modules other than the SCI, PWMU, PWI A/D converter are retained as long as the prescribed voltage is supplied.

Software standby mode is cleared by an external interrupt (NMI, IRQ0 to IRQ15, KIN0 or WUE8 to WUE15), PS2 interrupt, or $\overline{\text{RES}}$ pin input.

When an external interrupt request signal is input, system clock oscillation starts, and af elapse of the time set in bits STS2 to STS0 in SBYCR, software standby mode is cleared interrupt exception handling is started. When clearing software standby mode with an IF IRQ15 interrupt, set the corresponding enable bit to 1. When clearing software standby a KIN0 to KIN15 or WUE8 to WUE15 interrupt, enable the input. In these cases, ensure interrupt with a higher priority than interrupts IRQ0 to IRQ15 is generated. In the case of to IRQ15 interrupt, software standby mode is not cleared if the corresponding enable bit to 0 or if the interrupt has been masked by the CPU. In the case of a KIN0 to KIN15 or WUE15 interrupt, software standby mode is not cleared if the input is disabled or if the has been masked by the CPU.

RENESAS

Software standby mode is then cleared at the rising edge of the NMI pin.

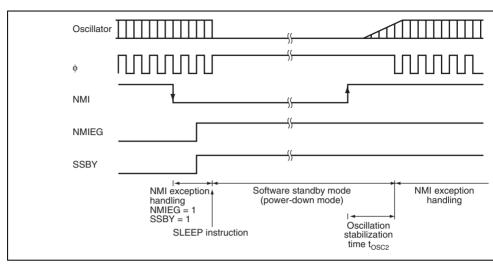


Figure 26.3 Software Standby Mode Application Example

Rev. 2.00 Sep. 28, 2009 Page 852 of 994 REJ09B0452-0200

Watch mode is cleared by an interrupt (WOVI1, NMI, IRQ0 to IRQ15, KIN0 to KIN15, to WUE15), PS2 interrupt, CIR interrupt, or RES pin input.

When an interrupt occurs, watch mode is cleared and a transition is made to high-speed medium-speed mode. When a transition is made to high-speed mode, a stable clock is state entire LSI and interrupt exception handling starts after the time set in the STS2 to ST SBYCR has elapsed. In the case of an IRQ0 to IRQ15 interrupt, watch mode is not clear corresponding enable bit has been cleared to 0 or the interrupt has been masked by the C case of a KIN0 to KIN15 or WUE8 to WUE15 interrupt, watch mode is not cleared if the disabled or the interrupt has been masked by the CPU. In the case of an interrupt from a peripheral module, watch mode is not cleared if the interrupt enable register has been set the reception of that interrupt or the interrupt has been masked by the CPU.

When the $\overline{\text{RES}}$ pin is driven low, the clock pulse generator starts oscillation. Simultaneous the start of system clock oscillation, the system clock is supplied to the entire LSI. Note $\overline{\text{RES}}$ pin must be held low until clock oscillation is stabilized. If the $\overline{\text{RES}}$ pin is driven h the clock oscillation stabilization time has elapsed, the CPU starts reset exception handle

While an on-chip peripheral module is in module stop mode, its registers cannot be read f written to.

26.8 Usage Notes

26.8.1 I/O Port Status

The status of the I/O ports is retained in software standby mode. Therefore, while a high output or the pull-up MOS is on, the current consumption is not reduced by the amount o to support the high level output.

26.8.2 Current Consumption when Waiting for Oscillation Stabilization

The current consumption increases during oscillation stabilization.

Rev. 2.00 Sep. 28, 2009 Page 854 of 994 REJ09B0452-0200

- The access size is indicated.
- H8S/2140B Group compatible register addresses or extended register addresses are s depending on the RELOCATE bit in system control register 3 (SYSCR3).

When the extended register addresses are selected, the some register addresses of IC TMR_Y, PWMX_0, and PORT are changed. Therefore, the selection with other more registers that share the same addresses with these registers is not necessary.

- 2. Register bits
- Bit configurations of the registers are described in the same order as the register add section 27.1, Register Addresses (Address Order).
- Reserved bits are indicated by in the bit name column.
- The bit number in the bit-name column indicates that the whole register is allocated counter or for holding data.
- Each line covers eight bits, and 16-bit register is shown as 2 lines, respectively.
- 3. Register states in each operating mode
- Register states are described in the same order as the register addresses in section 27 Register Addresses (Address Order).
- The register states described here are for the basic operating modes. If there is a spec for an on-chip peripheral module, see the section on that on-chip peripheral module.
- 4. Register selection conditions
- Register selection conditions are described in the same order as the register addresse section 27.1, Register Addresses (Address Order).
- For register selection conditions, see section 3.2.2, System Control Register (SYSCF 3.2.3, Serial Timer Control Register (STCR), section 26.1.3, Module Stop Control R L, A, and B (MSTPCRH, MSTPCRL, MSTPCRA, MSTPCRB), or register descripting each module.
- 5. Register addresses (classification by type of module)
- The register addresses are described by modules
- The register addresses are described in channel order when the module has multiple

Renesas

Port 1 data register	P1DR	8	H'F902 (PORTS = 1)	PORT	8
Port 2 data register	P2DR	8	H'F903 (PORTS = 1)	PORT	8
Port 1 input data register	P1PIN	8	H'F904 (Read) (PORTS = 1)	PORT	8
Port 2 input data register	P2PIN	8	H'F905 (Read) (PORTS = 1)	PORT	8
Port 1 pull-up MOS control register	P1PCR	8	H'F906 (PORTS = 1)	PORT	8
Port 2 pull-up MOS control register	P2PCR	8	H'F907 (PORTS = 1)	PORT	8
Port 3 data direction register	P3DDR	8	H'F910 (PORTS = 1)	PORT	8
Port 4 data direction register	P4DDR	8	H'F911 (PORTS = 1)	PORT	8
Port 3 data register	P3DR	8	H'F912 (PORTS = 1)	PORT	8
Port 4 data register	P4DR	8	H'F913 (PORTS = 1)	PORT	8
Port 3 input data register	P3PIN	8	H'F914 (Read) (PORTS = 1)	PORT	8
Port 4 input data register	P4PIN	8	H'F915 (Read) (PORTS = 1)	PORT	8
Port 3 pull-up MOS control register	P3PCR	8	H'F916 (PORTS = 1)	PORT	8

Rev. 2.00 Sep. 28, 2009 Page 856 of 994 REJ09B0452-0200

RENESAS

			(PORTS = 1)		
Port 6 input data register	P6PIN	8	H'F925 (Read) (PORTS = 1)	PORT	8
Port 6 noise canceler enable register	P6NCE	8	H'F92B (PORTS = 1)	PORT	8
Port 6 noise canceler decision control register	P6NCMC	8	H'F92D (PORTS = 1)	PORT	8
Port 6 noise cancel cycle setting register	P6NCCS	8	H'F92F (PORTS = 1)	PORT	8
Port 8 data direction register	P8DDR	8	H'F931 (PORTS = 1)	PORT	8
Port 8 data register	P8DR	8	H'F933 (PORTS = 1)	PORT	8
Port 7 input data register	P7PIN	8	H'F934 (Read) (PORTS = 1)	PORT	8
Port 8 input data register	P8PIN	8	H'F935 (Read) (PORTS = 1)	PORT	8
Port 9 data direction register	P9DDR	8	H'F940 (PORTS = 1)	PORT	8
Port 9 data register	P9DR	8	H'F942 (PORTS = 1)	PORT	8
Port 9 input data register	P9PIN	8	H'F944 (Read) (PORTS = 1)	PORT	8
Port 9 pull-up MOS control register	P9PCR	8	H'F946 (PORTS = 1)	PORT	8
Port A data direction register	PADDR	8	H'F950 (PORTS = 1)	PORT	8

RENESAS

			(PORTS = 1)		
Port B pull-up MOS control register	PBPCR	8	H'F957 (PORTS = 1)	PORT	8
Port C data direction register	PCDDR	8	H'F960 (PORTS = 1)	PORT	8
Port D data direction register	PDDDR	8	H'F961 (PORTS = 1)	PORT	8
Port C output data register	PCODR	8	H'F962 (PORTS = 1)	PORT	8
Port D output data register	PDODR	8	H'F963 (PORTS = 1)	PORT	8
Port C input data register	PCPIN	8	H'F964 (Read) (PORTS = 1)	PORT	8
Port D input data register	PDPIN	8	H'F965 (Read) (PORTS = 1)	PORT	8
Port C pull-up MOS control register	PCPCR	8	H'F966 (PORTS = 1)	PORT	8
Port D pull-up MOS control register	PDPCR	8	H'F967 (PORTS = 1)	PORT	8
Port C Nch-OD control register	PCNOCR	8	H'F968 (PORTS = 1)	PORT	8
Port D Nch-OD control register	PDNOCR	8	H'F969 (PORTS = 1)	PORT	8
Port C noise canceler enable register	PCNCE	8	H'F96A (PORTS = 1)	PORT	8
Port C noise canceler decision control register	PCNCMC	8	H'F96C (PORTS = 1)	PORT	8
Port C noise cancel cycle setting register	PCNCCS	8	H'F96E (PORTS = 1)	PORT	8

Rev. 2.00 Sep. 28, 2009 Page 858 of 994 REJ09B0452-0200

RENESAS

			(PORTS = 1)		
Port F Nch-OD control register	PFNOCR	8	H'F979 (PORTS = 1)	PORT	8
Port G data direction register	PGDDR	8	H'F980 (PORTS = 1)	PORT	8
Port H data direction register	PHDDR	8	H'F981 (PORTS = 1)	PORT	8
Port G output data register	PGODR	8	H'F982 (PORTS = 1)	PORT	8
Port H output data register	PHODR	8	H'F983 (PORTS = 1)	PORT	8
Port G input data register	PGPIN	8	H'F984 (Read) (PORTS = 1)	PORT	8
Port H input data register	PHPIN	8	H'F985 (Read) (PORTS = 1)	PORT	8
Port H pull-up MOS control register	PHPCR	8	H'F987 (PORTS = 1)	PORT	8
Port G Nch-OD control register	PGNOCR	8	H'F988 (PORTS = 1)	PORT	8
Port H Nch-OD control register	PHNOCR	8	H'F989 (PORTS = 1)	PORT	8
Port G noise canceler enable register	PGNCE	8	H'F98A (PORTS = 1)	PORT	8
Port G noise canceler decision control register	PGNCMC	8	H'F98C (PORTS = 1)	PORT	8
Port G noise cancel cycle setting register	PGNCCS	8	H'F98E (PORTS = 1)	PORT	8

Renesas

Rev. 2.00 Sep. 28, 2009 Pag REJ09

Port J Nch-OD control register	PJNOCR	8	H'F999	PORT	8
Receive control register 1	CCR1	8	H'FA40	CIR	8
Receive control register 2	CCR2	8	H'FA41	CIR	8
Receive status register	CSTR	8	H'FA42	CIR	8
Interrupt enable register	CEIR	8	H'FA43	CIR	8
Bit rate register	BRR	8	H'FA44	CIR	8
Receive data register 0 to 7	CIRRDR0 to CIRRDR7	8	H'FA45	CIR	8
Header minimum high-level period register	HHMIN	16	H'FA46	CIR	8
Header maximum high-level period register	HHMAX	16	H'FA48	CIR	8
Header minimum low-level period register	HLMIN	8	H'FA4A	CIR	8
Header maximum low-level period register	HLMAX	8	H'FA4B	CIR	8
Data level 0 minimum period register	DTOMIN	8	H'FA4C	CIR	8
Data level 0 maximum period register	DT0MAX	8	H'FA4D	CIR	8
Data level 1 minimum period register	DT1MIN	8	H'FA4E	CIR	8
Data level 1 maximum period register	DT1MAX	8	H'FA4F	CIR	8
Repeat header minimum low-level period register	RMIN	8	H'FA50	CIR	8
Repeat header maximum low-level period register	RMAX	8	H'FA51	CIR	8

Rev. 2.00 Sep. 28, 2009 Page 860 of 994 REJ09B0452-0200

TDP Status register_0	IDFC3K_0	0			0
TDP control register 1_0	TDPCR1_0	8	H'FB4D	TDP_0	8
TDP interrupt enable register_0	TDPIER_0	8	H'FB4E	TDP_0	8
TDP control register 2_0	TDPCR2_0	8	H'FB4F	TDP_0	8
TDP cycle lower limit register_0	TDPPDMN_0	16	H'FB50	TDP_0	16
TDP timer counter_1	TDPCNT_1	16	H'FB60	TDP_1	16
TDP pulse width upper limit register_1	TDPWDMX_1	16	H'FB62	TDP_1	16
TDP pulse width lower limit register_1	TDPWDMN_1	16	H'FB64	TDP_1	16
TDP cycle upper limit register_1	TDPPDMX_1	16	H'FB66	TDP_1	16
TDP input capture register_1	TDPICR_1	16	H'FB68	TDP_1	16
TDP input capture buffer register_1	TDPICRF_1	16	H'FB6A	TDP_1	16
TDP status register_1	TDPCSR_1	8	H'FB6C	TDP_1	8
TDP control register 1_1	TDPCR1_1	8	H'FB6D	TDP_1	8
TDP interrupt enable register_1	TDPIER_1	8	H'FB6E	TDP_1	8
TDP control register 2_1	TDPCR2_1	8	H'FB6F	TDP_1	8
TDP cycle lower limit register_1	TDPPDMN_1	16	H'FB70	TDP_1	16
TDP timer counter_2	TDPCNT_2	16	H'FB80	TDP_2	16
TDP pulse width upper limit register_2	TDPWDMX_2	16	H'FB82	TDP_2	16
TDP pulse width lower limit register_2	TDPWDMN_2	16	H'FB84	TDP_2	16
TDP cycle upper limit register_2	TDPPDMX_2	16	H'FB86	TDP_2	16

TCM input capture register_0TCMICR_016H'FBC4TCM_016TCM input capture buffer register_0TCMICRF_016H'FBC6TCM_016TCM status register_0TCMCSR_08H'FBC8TCM_08TCM control register_0TCMCR_08H'FBC9TCM_08TCM interrupt enable register_0TCMIER_08H'FBC7TCM_08TCM cycle lower limit register_0TCMINNCM_016H'FBC7TCM_016TCM cycle upper limit register_0TCMICR_116H'FBD0TCM_116TCM cycle upper limit register_1TCMICR_116H'FBD2TCM_116TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture register_1TCMICR_116H'FBD6TCM_116TCM status register_1TCMCRR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM control register_1TCMICR_18H'FBD4TCM_18TCM cycle lower limit register_1TCMICR_216H'FBD2TCM_116TCM cycle lower limit register_2TCMICR_216H'FBE4TCM_216TCM cycle upper limit register_2TCMICR_216H'FBE4TCM_216TCM cycle upper limit register_2TCMICR_28H'FBE4TCM_28TCM cycle upper limit register_2TCMICR_28H'FBE6TCM_28<	TCM cycle upper limit register	TCMMLCM_0	16	H'FBC2	TCM_0	16
TCM status register_0TCMCSR_08H'FBC8TCM_08TCM control register_0TCMCR_08H'FBC9TCM_08TCM interrupt enable register_0TCMIER_08H'FBCATCM_08TCM cycle lower limit register_0TCMMINCM_016H'FBCCTCM_116TCM timer counter_1TCMCNT_116H'FBD0TCM_116TCM optice upper limit register_0TCMMLCM_116H'FBD4TCM_116TCM input capture register_1TCMICR_116H'FBD6TCM_116TCM status register_1TCMCSR_18H'FBD8TCM_116TCM control register_1TCMCR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM control register_1TCMCR_18H'FBD4TCM_18TCM control register_1TCMCR_18H'FBD4TCM_18TCM cycle lower limit register_1TCMIER_18H'FBD4TCM_18TCM cycle lower limit register_2TCMCNT_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM input capture register_2TCMICR_28H'FBE8TCM_28TCM ontrol register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TC	TCM input capture register_0	TCMICR_0	16	H'FBC4	TCM_0	16
TCM control register_0TCMCR_08H'FBC9TCM_08TCM interrupt enable register_0TCMIER_08H'FBCATCM_08TCM cycle lower limit register_0TCMMINCM_016H'FBCCTCM_016TCM timer counter_1TCMCNT_116H'FBD0TCM_116TCM oycle upper limit register_0TCMLCM_116H'FBD2TCM_116TCM oycle upper limit register_1TCMICR_116H'FBD4TCM_116TCM input capture register_1TCMICR_116H'FBD6TCM_116TCM status register_1TCMCR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM control register_1TCMCR_18H'FBDATCM_18TCM control register_1TCMIRR_18H'FBDATCM_18TCM cycle lower limit register_1TCMNINCM_116H'FBE0TCM_216TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM optic upper limit register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_28H'FBE8TCM_28TCM input capture register_2TCMICR_28H'FBE3TCM_28TCM input capture register_2TCMICR_28H'FBE4TCM_28TCM input capture register_2TCMICR_28H'FBE4TCM_28TCM input capture regist	TCM input capture buffer register_0	TCMICRF_0	16	H'FBC6	TCM_0	16
TCM interrupt enable register_0TCMIER_08H'FBCATCM_08TCM cycle lower limit register_0TCMMINCM_016H'FBCCTCM_016TCM timer counter_1TCMCNT_116H'FBD0TCM_116TCM cycle upper limit register_0TCMLCM_116H'FBD2TCM_116TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture register_1TCMICR_116H'FBD6TCM_116TCM status register_1TCMCSR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBDATCM_18TCM cycle lower limit register_1TCMIER_18H'FBDATCM_18TCM control register_1TCMCR_18H'FBDATCM_18TCM interrupt enable register_1TCMINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM input capture register_2TCMICR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM status register_2TCMCR_28H'FBEATCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM cycle lower limit register_2TCMC	TCM status register_0	TCMCSR_0	8	H'FBC8	TCM_0	8
TCM cycle lower limit register_0TCMMINCM_016H'FBCCTCM_016TCM timer counter_1TCMCNT_116H'FBD0TCM_116TCM cycle upper limit register_0TCMMLCM_116H'FBD2TCM_116TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture buffer register_1TCMICR_116H'FBD6TCM_116TCM status register_1TCMCR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM control register_1TCMIER_18H'FBDATCM_18TCM cycle lower limit register_1TCMINCM_116H'FBDCTCM_116TCM cycle upper limit register_2TCMCNT_216H'FBE0TCM_216TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE4TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM control register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit	TCM control register_0	TCMCR_0	8	H'FBC9	TCM_0	8
TCM timer counter_1TCMCNT_116H'FBD0TCM_116TCM cycle upper limit register_0TCMMLCM_116H'FBD2TCM_116TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture buffer register_1TCMICRF_116H'FBD6TCM_116TCM status register_1TCMCRF_116H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD8TCM_18TCM control register_1TCMIRE_18H'FBDATCM_18TCM cycle lower limit register_1TCMINCM_116H'FBDCTCM_116TCM cycle lower limit register_2TCMCNT_216H'FBE0TCM_216TCM cycle upper limit register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM input capture register_2TCMICRF_216H'FBE8TCM_28TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE4TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM interrupt enable register_2TCMIRCR_216H'FBE0TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM interrupt enable register_2TCMIRCR_216H'FBEOTCM_28TCM interrupt en	TCM interrupt enable register_0	TCMIER_0	8	H'FBCA	TCM_0	8
TCM cycle upper limit register_0TCMMLCM_116H'FBD2TCM_116TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture buffer register_1TCMICRF_116H'FBD6TCM_116TCM status register_1TCMCSR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM control register_1TCMIER_18H'FBDATCM_18TCM interrupt enable register_1TCMIRC_116H'FBDCTCM_116TCM cycle lower limit register_2TCMONT_216H'FBD0TCM_216TCM cycle upper limit register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM interrupt enable register_2TCMCR_28H'FBEATCM_28TCM interrupt enable register_2TCMCR_28H'FBEATCM_28TCM cycle lower limit register_2TCMIRCM_216H'FBEOTCM_216TCM timer c	TCM cycle lower limit register_0	TCMMINCM_0	16	H'FBCC	TCM_0	16
TCM input capture register_1TCMICR_116H'FBD4TCM_116TCM input capture buffer register_1TCMICRF_116H'FBD6TCM_116TCM status register_1TCMCSR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM interrupt enable register_1TCMIER_18H'FBDATCM_18TCM cycle lower limit register_1TCMINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM input capture register_2TCMICR_216H'FBE2TCM_216TCM cycle upper limit register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM input capture register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE4TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM interrupt enable register_2TCMINCM_216H'FBECTCM_216TCM cycle lower limit register_2TCMINCM_216H'FBE0TCM_216TCM interrupt enable register_3TCMCNT_316H'FBE0TCM_316	TCM timer counter_1	TCMCNT_1	16	H'FBD0	TCM_1	16
TCM input capture buffer register_1TCMICRF_116H'FBD6TCM_116TCM status register_1TCMCSR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM interrupt enable register_1TCMIRR_18H'FBDATCM_18TCM cycle lower limit register_1TCMNINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM optic upper limit register_2TCMICR_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIRF_28H'FBE7TCM_28TCM optic lower limit register_2TCMIRF_28H'FBE7TCM_28TCM control register_2TCMIRF_28H'FBE7TCM_28TCM optic lower limit register_2TCMINCM_216H'FBE0TCM_216TCM cycle lower limit register_2TCMINCM_216H'FBE0TCM_216TCM timer counter_3TCMCNT_316H'FBE0TCM_316	TCM cycle upper limit register_0	TCMMLCM_1	16	H'FBD2	TCM_1	16
TCM status register_1TCMCSR_18H'FBD8TCM_18TCM control register_1TCMCR_18H'FBD9TCM_18TCM interrupt enable register_1TCMIER_18H'FBDATCM_18TCM cycle lower limit register_1TCMCN116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM optice upper limit register_2TCMICR_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM status register_2TCMICR_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBE9TCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM control register_2TCMCR_28H'FBEATCM_28TCM optic lower limit register_2TCMIER_28H'FBEATCM_216TCM cycle lower limit register_3TCMCNT_316H'FBFOTCM_316	TCM input capture register_1	TCMICR_1	16	H'FBD4	TCM_1	16
TCM control register_1TCMCR_18H'FBD9TCM_18TCM interrupt enable register_1TCMIER_18H'FBDATCM_18TCM cycle lower limit register_1TCMMINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM cycle upper limit register_2TCMILCM_216H'FBE2TCM_216TCM cycle upper limit register_2TCMICR_216H'FBE4TCM_216TCM input capture register_2TCMICR_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBE78TCM_28TCM control register_2TCMCR_28H'FBE7TCM_2816TCM interrupt enable register_2TCMIER_216H'FBE0TCM_28TCM cycle lower limit register_2TCMINCM_216H'FBE0TCM_216TCM cycle lower limit register_3TCMCNT_316H'FBF0TCM_316	TCM input capture buffer register_1	TCMICRF_1	16	H'FBD6	TCM_1	16
TCM interrupt enable register_1TCMIER_18H'FBDATCM_18TCM cycle lower limit register_1TCMMINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM cycle upper limit register_2TCMMLCM_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_216TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM status register_1	TCMCSR_1	8	H'FBD8	TCM_1	8
TCM cycle lower limit register_1TCMMINCM_116H'FBDCTCM_116TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM cycle upper limit register_2TCMMLCM_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM control register_1	TCMCR_1	8	H'FBD9	TCM_1	8
TCM timer counter_2TCMCNT_216H'FBE0TCM_216TCM cycle upper limit register_2TCMLCM_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBE0TCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM interrupt enable register_1	TCMIER_1	8	H'FBDA	TCM_1	8
TCM cycle upper limit register_2TCMMLCM_216H'FBE2TCM_216TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM cycle lower limit register_1	TCMMINCM_1	16	H'FBDC	TCM_1	16
TCM input capture register_2TCMICR_216H'FBE4TCM_216TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM timer counter_2	TCMCNT_2	16	H'FBE0	TCM_2	16
TCM input capture buffer register_2TCMICRF_216H'FBE6TCM_216TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM cycle upper limit register_2	TCMMLCM_2	16	H'FBE2	TCM_2	16
TCM status register_2TCMCSR_28H'FBE8TCM_28TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM input capture register_2	TCMICR_2	16	H'FBE4	TCM_2	16
TCM control register_2TCMCR_28H'FBE9TCM_28TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM input capture buffer register_2	TCMICRF_2	16	H'FBE6	TCM_2	16
TCM interrupt enable register_2TCMIER_28H'FBEATCM_28TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM status register_2	TCMCSR_2	8	H'FBE8	TCM_2	8
TCM cycle lower limit register_2TCMMINCM_216H'FBECTCM_216TCM timer counter_3TCMCNT_316H'FBF0TCM_316	TCM control register_2	TCMCR_2	8	H'FBE9	TCM_2	8
TCM timer counter_3 TCMCNT_3 16 H'FBF0 TCM_3 16	TCM interrupt enable register_2	TCMIER_2	8	H'FBEA	TCM_2	8
	TCM cycle lower limit register_2	TCMMINCM_2	16	H'FBEC	TCM_2	16
TCM cycle upper limit register_3 TCMMLCM_3 16 H'FBF2 TCM_3 16	TCM timer counter_3	TCMCNT_3	16	H'FBF0	TCM_3	16
	TCM cycle upper limit register_3	TCMMLCM_3	16	H'FBF2	TCM_3	16

Rev. 2.00 Sep. 28, 2009 Page 862 of 994 REJ09B0452-0200

A/D data register B	ADDRB	16	H'FC02	A/D 16 converter
A/D data register C	ADDRC	16	H'FC04	A/D 16 converter
A/D data register D	ADDRD	16	H'FC06	A/D 16 converter
A/D data register E	ADDRE	16	H'FC08	A/D 16 converter
A/D data register F	ADDRF	16	H'FC0A	A/D 16 converter
A/D data register G	ADDRG	16	H'FC0C	A/D 16 converter
A/D data register H	ADDRH	16	H'FC0E	A/D 16 converter
A/D control/status register	ADCSR	8	H'FC10	A/D 8 converter
A/D control register	ADCR	8	H'FC11	A/D 8 converter
Receive buffer register	FRBR	8	H'FC20	SCIF 8
Transmitter holding register	FTHR	8	H'FC20	SCIF 8
Divisor latch L	FDLL	8	H'FC20	SCIF 8
Interrupt enable register	FIER	8	H'FC21	SCIF 8
Divisor latch H	FDLH	8	H'FC21	SCIF 8
Interrupt identification register	FIIR	8	H'FC22	SCIF 8
FIFO control register	FFCR	8	H'FC22	SCIF 8
Line control register	FLCR	8	H'FC23	SCIF 8
Modem control register	FMCR	8	H'FC24	SCIF 8
Line status register	FLSR	8	H'FC25	SCIF 8

Renesas

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

FSI command host base address register H	CMDHBARH	8	H'FC53	FSI	8
FSI command host base address register L	CMDHBARL	8	H'FC54	FSI	8
FSI command register	FSICMDR	8	H'FC55	FSI	8
FSILPC command status register 1	FSILSTR1	8	H'FC56	FSI	8
FSI general-purpose register 1	FSIGPR1	8	H'FC57	FSI	8
FSI general-purpose register 2	FSIGPR2	8	H'FC58	FSI	8
FSI general-purpose register 3	FSIGPR3	8	H'FC59	FSI	8
FSI general-purpose register 4	FSIGPR4	8	H'FC5A	FSI	8
FSI general-purpose register 5	FSIGPR5	8	H'FC5B	FSI	8
FSI general-purpose register 6	FSIGPR6	8	H'FC5C	FSI	8
FSI general-purpose register 7	FSIGPR7	8	H'FC5D	FSI	8
FSI general-purpose register 8	FSIGPR8	8	H'FC5E	FSI	8
FSI general-purpose register 9	FSIGPR9	8	H'FC5F	FSI	8
FSI general-purpose register A	FSIGPRA	8	H'FC60	FSI	8
FSI general-purpose register B	FSIGPRB	8	H'FC61	FSI	8
FSI general-purpose register C	FSIGPRC	8	H'FC62	FSI	8
FSI general-purpose register D	FSIGPRD	8	H'FC63	FSI	8
FSI general-purpose register E	FSIGPRE	8	H'FC64	FSI	8
FSI general-purpose register F	FSIGPRF	8	H'FC65	FSI	8
FSILPC control register	SLCR	8	H'FC66	FSI	8
FSI address register H	FSIARH	8	H'FC67	FSI	8
FSI address register M	FSIARM	8	H'FC68	FSI	8
FSI address register L	FSIARL	8	H'FC69	FSI	8

Rev. 2.00 Sep. 28, 2009 Page 864 of 994 REJ09B0452-0200

		•			J
FSI instruction register	FSIINS	8	H'FC93	FSI	8
FSI read instruction register	FSIRDINS	8	H'FC94	FSI	8
FSI program instruction register	FSIPPINS	8	H'FC95	FSI	8
FSI status register	FSISTR	8	H'FC96	FSI	8
FSI transmit data register 0	FSITDR0	8	H'FC98	FSI	8
FSI transmit data register 1	FSITDR1	8	H'FC99	FSI	8
FSI transmit data register 2	FSITDR2	8	H'FC9A	FSI	8
FSI transmit data register 3	FSITDR3	8	H'FC9B	FSI	8
FSI transmit data register 4	FSITDR4	8	H'FC9C	FSI	8
FSI transmit data register 5	FSITDR5	8	H'FC9D	FSI	8
FSI transmit data register 6	FSITDR6	8	H'FC9E	FSI	8
FSI transmit data register 7	FSITDR7	8	H'FC9F	FSI	8
FSI receive data register	FSIRDR	8	H'FCA0	FSI	8
PWM duty setting register 0_A	PWMREG0_A	8	H'FD00	PWMU_A	8
PWM prescaler register 0_A	PWMPRE0_A	8	H'FD01	PWMU_A	8
PWM duty setting register 1_A	PWMREG1_A	8	H'FD02	PWMU_A	8
PWM prescaler register 1_A	PWMPRE1_A	8	H'FD03	PWMU_A	8
PWM duty setting register 2_A	PWMREG2_A	8	H'FD04	PWMU_A	8
PWM prescaler register 2_A	PWMPRE2_A	8	H'FD05	PWMU_A	8
PWM duty setting register 3_A	PWMREG3_A	8	H'FD06	PWMU_A	8
PWM prescaler register 3_A	PWMPRE3_A	8	H'FD07	PWMU_A	8
PWM duty setting register 4_A	PWMREG4_A	8	H'FD08	PWMU_A	8
PWM prescaler register 4_A	PWMPRE4_A	8	H'FD09	PWMU_A	8
PWM duty setting register 5_A	PWMREG5_A	8	H'FD0A	PWMU_A	8

PWM prescaler register 1_B	PWMPRE1_B	8	H'FD13	PWMU_B	8
PWM duty setting register 2_B	PWMREG2_B	8	H'FD14	PWMU_B	8
PWM prescaler register 2_B	PWMPRE2_B	8	H'FD15	PWMU_B	8
PWM duty setting register 3_B	PWMREG3_B	8	H'FD16	PWMU_B	8
PWM prescaler register 3_B	PWMPRE3_B	8	H'FD17	PWMU_B	8
PWM duty setting register 4_B	PWMREG4_B	8	H'FD18	PWMU_B	8
PWM prescaler register 4_B	PWMPRE4_B	8	H'FD19	PWMU_B	8
PWM duty setting register 5_B	PWMREG5_B	8	H'FD1A	PWMU_B	8
PWM prescaler register 5_B	PWMPRE5_B	8	H'FD1B	PWMU_B	8
PWM control register A_B	PWMCONA_B	8	H'FD1C	PWMU_B	8
PWM control register B_B	PWMCONB_B	8	H'FD1D	PWMU_B	8
PWM control register C_B	PWMCONC_B	8	H'FD1E	PWMU_B	8
PWM control register D_B	PWMCOND_B	8	H'FD1F	PWMU_B	8
Timer control register_1	TCR_1	8	H'FD40	TPU_1	8
Timer mode register_1	TMDR_1	8	H'FD41	TPU_1	8
Timer I/O control register_1	TIOR_1	8	H'FD42	TPU_1	8
Timer interrupt enable register_1	TIER_1	8	H'FD44	TPU_1	8
Timer status register_1	TSR_1	8	H'FD45	TPU_1	8
Timer counter _1	TCNT_1	16	H'FD46	TPU_1	16
Timer general register A_1	TGRA_1	16	H'FD48	TPU_1	16
Timer general register B_1	TGRB_1	16	H'FD4A	TPU_1	16
LPC channel 1 address register H	LADR1H	8	H'FDC0	LPC	8
LPC channel 1 address register L	LADR1L	8	H'FDC1	LPC	8
LPC channel 2 address register H	LADR2H	8	H'FDC2	LPC	8
LPC channel 2 address register L	LADR2L	8	H'FDC3	LPC	8

Rev. 2.00 Sep. 28, 2009 Page 866 of 994 REJ09B0452-0200

SERIRQ control register 2	SIRQCR2	8	H'FDDA	LPC	8
SERIRQ control register 3	SIRQCR3	8	H'FDDB	LPC	8
Port 6 noise canceler enable register	P6NCE	8	H'FE00 (PORTS = 0)	PORT	8
Port 6 noise canceler decision control register	P6NCMC	8	H'FE01 (PORTS = 0)	PORT	8
Port 6 noise cancel cycle setting register	P6NCCS	8	H'FE02 (PORTS = 0)	PORT	8
Port C noise canceler enable register	PCNCE	8	H'FE03 (PORTS = 0)	PORT	8
Port C noise canceler decision control register	PCNCMC	8	H'FE04 (PORTS = 0)	PORT	8
Port C noise cancel cycle setting register	PCNCCS	8	H'FE05 (PORTS = 0)	PORT	8
Port G noise canceler enable register	PGNCE	8	H'FE06 (PORTS = 0)	PORT	8
Port G noise canceler decision control register	PGNCMC	8	H'FE07 (PORTS = 0)	PORT	8
Port G noise cancel cycle setting register	PGNCCS	8	H'FE08 (PORTS = 0)	PORT	8
Port H input data register	PHPIN	8	H'FE0C (Read) (PORTS = 0)	PORT	8
Port H data direction register	PHDDR	8	H'FE0C (Write) (PORTS = 0)	PORT	8
Port H output data register	PHODR	8	H'FE0D (PORTS = 0)	PORT	8
Port H Nch-OD control register	PHNOCR	8	H'FE0E (PORTS = 0)	PORT	8
Port control register 0	PTCNT0	8	H'FE10	PORT	8

REJ09

Renesas

			(PORTS = 0)		
Port D Nch-OD control register	PDNOCR	8	H'FE1D (PORTS = 0)	PORT	8
Bidirectional data register 0MW	TWR0MW	8	H'FE20	LPC	8
Bidirectional data register 0SW	TWR0SW	8	H'FE20	LPC	8
Bidirectional data register 1	TWR1	8	H'FE21	LPC	8
Bidirectional data register 2	TWR2	8	H'FE22	LPC	8
Bidirectional data register 3	TWR3	8	H'FE23	LPC	8
Bidirectional data register 4	TWR4	8	H'FE24	LPC	8
Bidirectional data register 5	TWR5	8	H'FE25	LPC	8
Bidirectional data register 6	TWR6	8	H'FE26	LPC	8
Bidirectional data register 7	TWR7	8	H'FE27	LPC	8
Bidirectional data register 8	TWR8	8	H'FE28	LPC	8
Bidirectional data register 9	TWR9	8	H'FE29	LPC	8
Bidirectional data register 10	TWR10	8	H'FE2A	LPC	8
Bidirectional data register 11	TWR11	8	H'FE2B	LPC	8
Bidirectional data register 12	TWR12	8	H'FE2C	LPC	8
Bidirectional data register 13	TWR13	8	H'FE2D	LPC	8
Bidirectional data register 14	TWR14	8	H'FE2E	LPC	8
Bidirectional data register 15	TWR15	8	H'FE2F	LPC	8
Input data register 3	IDR3	8	H'FE30	LPC	8
Output data register 3	ODR3	8	H'FE31	LPC	8
Status register 3	STR3	8	H'FE32	LPC	8
Host interface control register 5	HICR5	8	H'FE33	LPC	8
LPC channel 3 address register H	LADR3H	8	H'FE34	LPC	8

Rev. 2.00 Sep. 28, 2009 Page 868 of 994 REJ09B0452-0200

Output data register 2	ODR2	8	H'FE3D	LPC	8
Status register 2	STR2	8	H'FE3E	LPC	8
Host interface select register	HISEL	8	H'FE3F	LPC	8
Host interface control register 0	HICR0	8	H'FE40	LPC	8
Host interface control register 1	HICR1	8	H'FE41	LPC	8
Host interface control register 2	HICR2	8	H'FE42	LPC	8
Host interface control register 3	HICR3	8	H'FE43	LPC	8
Wakeup event interrupt mask register	WUEMR	8	H'FE45	INT	8
Port G output data register	PGODR	8	H'FE46 (PORTS = 0)	PORT	8
Port G input data register	PGPIN	8	H'FE47 (Read) (PORTS = 0)	PORT	8
Port G data direction register	PGDDR	8	H'FE47 (Write) (PORTS = 0)	PORT	8
Port F output data register	PFODR	8	H'FE49 (PORTS = 0)	PORT	8
Port E input data register	PEPIN	8	H'FE4A (Read) (write prohibited) (PORTS = 0)	PORT	8
Port F input data register	PFPIN	8	H'FE4B (Read) (PORTS = 0)	PORT	8
Port F data direction register	PFDDR	8	H'FE4B (Write) (PORTS = 0)	PORT	8
Port C output data register	PCODR	8	H'FE4C (PORTS = 0)	PORT	8
Port D output data register	PDODR	8	H'FE4D (PORTS = 0)	PORT	8

Renesas

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

Timer mode register_0	TMDR_0	8	H'FE51	TPU_0	8
Timer I/O control register H_0	TIORH_0	8	H'FE52	TPU_0	8
Timer I/O control register L_0	TIORL_0	8	H'FE53	TPU_0	8
Timer interrupt enable register_0	TIER_0	8	H'FE54	TPU_0	8
Timer status register_0	TSR_0	8	H'FE55	TPU_0	8
Timer counter _0	TCNT_0	16	H'FE56	TPU_0	16
Timer general register A_0	TGRA_0	16	H'FE58	TPU_0	16
Timer general register B_0	TGRB_0	16	H'FE5A	TPU_0	16
Timer general register C_0	TGRC_0	16	H'FE5C	TPU_0	16
Timer general register D_0	TGRD_0	16	H'FE5E	TPU_0	16
Timer control register_2	TCR_2	8	H'FE70	TPU_2	8
Timer mode register_2	TMDR_2	8	H'FE71	TPU_2	8
Timer I/O control register_2	TIOR_2	8	H'FE72	TPU_2	8
Timer interrupt enable register_2	TIER_2	8	H'FE74	TPU_2	8
Timer status register_2	TSR_2	8	H'FE75	TPU_2	8
Timer counter _2	TCNT_2	16	H'FE76	TPU_2	16
Timer general register A_2	TGRA_2	16	H'FE78	TPU_2	16
Timer general register B_2	TGRB_2	16	H'FE7A	TPU_2	16
System control register 3	SYSCR3	8	H'FE7D	SYSTEM	8
Module stop control register A	MSTPCRA	8	H'FE7E	SYSTEM	8
Module stop control register B	MSTPCRB	8	H'FE7F	SYSTEM	8
Keyboard matrix interrupt register	KMIMR	8	H'FE81 (RELOCATE = 1)	INT	8
Pull-up MOS control register	KMPCR	8	H'FE82 (RELOCATE = 1)	PORT	8

Rev. 2.00 Sep. 28, 2009 Page 870 of 994 REJ09B0452-0200

TO bus status register_2	ICOK_Z	0		IIC_Z	0
I ² C bus control Initialization register_2	ICRES_2	8	H'FE8A	IIC_2	8
I ² C bus control extended register_2	ICXR_2	8	H'FE8C	IIC_2	8
I ² C bus data register_2	ICDR_2	8	H'FE8E	IIC_2	8
Second slave address register_2	SARX_2	8	H'FE8E	IIC_2	8
I ² C bus mode register_2	ICMR_2	8	H'FE8F	IIC_2	8
Slave address register_2	SAR_2	8	H'FE8F	IIC_2	8
PWMX(D/A) control register	DACR	8	H'FEA0 (RELOCATE = [^]	PWMX 1)	8
PWMX(D/A) data register AH	DADRAH	8	H'FEA0 (RELOCATE =	PWMX 1)	8
PWMX(D/A) data register AL	DADRAL	8	H'FEA1 (RELOCATE =	PWMX 1)	8
PWMX(D/A) data register BH	DADRBH	8	H'FEA6 (RELOCATE =	PWMX 1)	8
PWMX(D/A) counter H	DACNTH	8	H'FEA6 (RELOCATE =	PWMX 1)	8
PWMX(D/A) data register BL	DADRBL	8	H'FEA7 (RELOCATE =	PWMX 1)	8
PWMX(D/A) counter L	DACNTL	8	H'FEA7 (RELOCATE =	PWMX 1)	8
Flash code control status register	FCCS	8	H'FEA8	ROM	8
Flash program code select register	FPCS	8	H'FEA9	ROM	8
Flash erace code select register	FECS	8	H'FEAA	ROM	8
Flash key code register	FKEY	8	H'FEAC	ROM	8
Flash MAT select register	FMATS	8	H'FEAD	ROM	8

Renesas

Keyboard control register 1_1	KBCR1_1	8	H'FEC2	PS2_1	8
Keyboard data buffer transmit data register_1	KBTR_1	8	H'FEC3	PS2_1	8
Keyboard control register 1_2	KBCR1_2	8	H'FEC4	PS2_2	8
Keyboard data buffer transmit data register_2	KBTR_2	8	H'FEC5	PS2_2	8
Timer XY control register	TCRXY	8	H'FEC6	TMR_XY	8
Timer control register_Y	TCR_Y	8	H'FEC8 (RELOCATE = 1)	TMR_Y	8
Timer control/status register_Y	TCSR_Y	8	H'FEC9 (RELOCATE = 1)	TMR_Y	8
Time constant register A_Y	TCORA_Y	8	H'FECA (RELOCATE = 1)	TMR_Y	8
Time constant register B_Y	TCORB_Y	8	H'FECB (RELOCATE = 1)	TMR_Y	8
Timer counter _Y	TCNT_Y	8	H'FECC (RELOCATE = 1)	TMR_Y	8
I ² C bus data register_1	ICDR_1	8	H'FECE (RELOCATE = 1)	IIC_1	8
Second slave address register_1	SARX_1	8	H'FECE (RELOCATE = 1)	IIC_1	8
I ² C bus mode register_1	ICMR_1	8	H'FECF (RELOCATE = 1)	IIC_1	8
Slave address register_1	SAR_1	8	H'FECF (RELOCATE = 1)	IIC_1	8
I ² C bus control register_1	ICCR_1	8	H'FED0 (RELOCATE = 1)	IIC_1	8
l ² C bus status register_1	ICSR_1	8	H'FED1 (RELOCATE = 1)	IIC_1	8

Rev. 2.00 Sep. 28, 2009 Page 872 of 994 REJ09B0452-0200

Serial mode register_1	SMR_1	8	H'FF88 SC	CI_1 8
I ² C bus control register_1	ICCR_1	8	H'FF88 IIC	C_1 8
			(RELOCATE = 0)	
Bit rate register_1	BRR_1	8	H'FF89 SC	CI_1 8
I ² C bus status register_1	ICSR_1	8		C_1 8
			(RELOCATE = 0)	
Serial control register_1	SCR_1	8	H'FF8A SC	CI_1 8
Transmit data register_1	TDR_1	8	H'FF8B SC	CI_1 8
Serial status register_1	SSR_1	8	H'FF8C SC	CI_1 8
Receive data register_1	RDR_1	8	H'FF8D SC	CI_1 8
Smart card mode register_1	SCMR_1	8	H'FF8E SC	CI_1 8
I ² C bus data register_1	ICDR_1	8	H'FF8E IIC	C_1 8
			(RELOCATE = 0)	
Second slave address register_1	SARX_1	8		C_1 8
			(RELOCATE = 0)	
I ² C bus mode register_1	ICMR_1	8		C_1 8
			(RELOCATE = 0)	
Slave address register_1	SAR_1	8		C_1 8
			(RELOCATE = 0)	
PWMX(D/A) control register	DACR	8		WMX 8
			(RELOCATE = 0)	
PWMX(D/A) data register AH	DADRAH	8		WMX 8
			(RELOCATE = 0)	
Serial mode register_2	SMR_2	8	H'FFA0 SC	CI_2 8
PWMX(D/A) data register AL	DADRAL	8		WMX 8
			(RELOCATE = 0)	
Bit rate register_2	BRR_2	8	H'FFA1 SC	CI_2 8
Serial control register_2	SCR_2	8	H'FFA2 SC	CI_2 8
		,		

Renesas

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

	DACINIL	0	(RELOCATE = 0)	0
PWMX(D/A) data register BL	DADRBL	8	H'FFA7 (RELOCATE = 0	PWMX)	8
Timer control/status register_0	TCSR_0	8	H'FFA8 (Write)	WDT_0	16
Timer control/status register_0	TCSR_0	8	H'FFA8 (Read)	WDT_0	8
Timer counter _0	TCNT_0	8	H'FFA8 (Write)	WDT_0	16
Timer counter _0	TCNT_0	8	H'FFA9 (Read)	WDT_0	8
Port A output data register	PAODR	8	H'FFAA (PORTS = 0)	PORT	8
Port A input data register	PAPIN	8	H'FFAB (Read) (PORTS = 0)	PORT	8
Port A data direction register	PADDR	8	H'FFAB (Write) (PORTS = 0)	PORT	8
Port 1 pull-up MOS control register	P1PCR	8	H'FFAC (PORTS = 0)	PORT	8
Port 2 pull-up MOS control register	P2PCR	8	H'FFAD (PORTS = 0)	PORT	8
Port 3 pull-up MOS control register	P3PCR	8	H'FFAE (PORTS = 0)	PORT	8
Port 1 data direction register	P1DDR	8	H'FFB0 (PORTS = 0)	PORT	8
Port 2 data direction register	P2DDR	8	H'FFB1 (PORTS = 0)	PORT	8
Port 1 data register	P1DR	8	H'FFB2 (PORTS = 0)	PORT	8
Port 2 data register	P2DR	8	H'FFB3 (PORTS = 0)	PORT	8

Rev. 2.00 Sep. 28, 2009 Page 874 of 994 REJ09B0452-0200

			(PORTS = 0)		
Port 6 data direction register	P6DDR	8	H'FFB9 (PORTS = 0)	PORT	8
Port 5 data register	P5DR	8	H'FFBA (PORTS = 0)	PORT	8
Port 6 data register	P6DR	8	H'FFBB (PORTS = 0)	PORT	8
Port B output data register	PBODR	8	H'FFBC (PORTS = 0)	PORT	8
Port 8 data direction register	P8DDR	8	H'FFBD (Write) (PORTS = 0)	PORT	8
Port B input data register	PBPIN	8	H'FFBD (Read) (PORTS = 0)	PORT	8
Port 7 input data register	P7PIN	8	H'FFBE (Read) (PORTS = 0)	PORT	8
Port B data direction register	PBDDR	8	H'FFBE (Write) (PORTS = 0)	PORT	8
Port 8 data register	P8DR	8	H'FFBF (PORTS = 0)	PORT	8
Port 9 data direction register	P9DDR	8	H'FFC0 (PORTS = 0)	PORT	8
Port 9 data register	P9DR	8	H'FFC1 (PORTS = 0)	PORT	8
Interrupt enable register	IER	8	H'FFC2	INT	8
Serial timer control register	STCR	8	H'FFC3	SYSTEM	8
System control register	SYSCR	8	H'FFC4	SYSTEM	8
Mode control register	MDCR	8	H'FFC5	SYSTEM	8
Bus control register	BCR	8	H'FFC6	BSC	8
Wait state control register	WSCR	8	H'FFC7	BSC	8

Rev. 2.00 Sep. 28, 2009 Pag Renesas

REJ09

16 8 8 8 8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8
8 8 8 8 8
8 8 8
8
8
-
8
8
8
16
8
16
8
8
8
8
8
8
8

Rev. 2.00 Sep. 28, 2009 Page 876 of 994 REJ09B0452-0200

Timer counter _Y	TCNT_Y	8	H'FFF4 (RELOCATE = 0	TMR_Y)	8
Time constant register C	TCORC	8	H'FFF5	TMR_X	8
Time constant register A_X	TCORA_X	8	H'FFF6	TMR_X	8
Time constant register B_X	TCORB_X	8	H'FFF7	TMR_X	8
Timer connection register I	TCONRI	8	H'FFFC	TMR_X	8
Timer connection register S	TCONRS	8	H'FFFE	TMR_X, TMR_Y	8

Renesas

Rev. 2.00 Sep. 28, 2009 Pag REJ09

	THODIC	HOODIN	HOODIN	HIODI	HOODIN	T LODK	Повк	HOODIN
PJODR	PJ7ODR	PJ6ODR	PJ5ODR	PJ4ODR	PJ3ODR	PJ2ODR	PJ10DR	PJ00DR
PIPIN	PI7PIN	PI6PIN	PI5PIN	PI4PIN	PI3PIN	PI2PIN	PI1PIN	PIOPIN
PJPIN	PJ7PIN	PJ6PIN	PJ5PIN	PJ4PIN	PJ3PIN	PJ2PIN	PJ1PIN	PJ0PIN
PJPCR	PJ7PCR	PJ6PCR	PJ5PCR	PJ4PCR	PJ3PCR	PJ2PCR	PJ1PCR	PJ0PCR
PINOCR	PI7NOCR	PI6NOCR	PI5NOCR	PI4NOCR	PI3NOCR	PI2NOCR	PI1NOCR	PI0NOCR
PJNOCR	PJ7NOCR	PJ6NOCR	PJ5NOCR	PJ4NOCR	PJ3NOCR	PJ2NOCR	PJ1NOCR	PJ0NOCF
CCR1	CIRE	SRES	CPHS	MLS	REPRCVE	_	CLK1	CLK0
CCR2	TFM1	TFM0	_	_	_	_	_	_
CSTR	CIRBUSY	CIRRDRF	REPF	OVRF	REND	ABF	FRF	HEADF
CEIR	_	_	REPIE	OVEIE	RENDIE	ABIE	FREIE	HEADFIE
BRR	BRR7	BRR6	BRR5	BRR4	BRR3	BRR2	BRR1	BRR0
CIRRDR0 to 7	CIRRDR7	CIRRDR6	CIRRDR5	CIRRDR4	CIRRDR3	CIRRDR2	CIRRDR1	CIRRDR0
HHMIN	RFMBIN4	RFMBIN3	RFMBIN2	RFMBIN1	RFMBIN0	_	HHMIN9	HHMIN8
	HHMIN7	HHMIN6	HHMIN5	HHMIN4	HHMIN3	HHMIN2	HHMIN1	HHMIN0
HHMAX	FLT1	FLT0	FLTE	FLTCK1	FLTCK0	_	HHMAX9	HHMAX8
	HHMAX7	HHMAX6	HHMAX5	HHMAX4	HHMAX3	HHMAX2	HHMAX1	HHMAX0
HLMIN	HLMIN7	HLMIN6	HLMIN5	HLMIN4	HLMIN3	HLMIN2	HLMIN1	HLMIN0
HLMAX	HLMAX7	HLMAX6	HLMAX5	HLMAX4	HLMAX3	HLMAX2	HLMAX1	HLMAX0
DT1MIN	DT1MIN7	DT1MIN6	DT1MIN5	DT1MIN4	DT1MIN3	DT1MIN2	DT1MIN1	DT1MIN0
DT1MAX	DT1MAX7	DT1MAX6	DT1MAX5	DT1MAX4	DT1MAX3	DT1MAX2	DT1MAX1	DT1MAX(
DTOMIN	DT0MIN7	DT0MIN6	DT0MIN5	DT0MIN4	DT0MIN3	DT0MIN2	DT0MIN1	DT0MIN0
DTOMAX	DT0MAX7	DT0MAX6	DT0MAX5	DT0MAX4	DT0MAX3	DT0MAX2	DT0MAX1	DTOMAX
RMIN	RMIN7	RMIN6	RMIN5	RMIN4	RMIN3	RMIN2	RMIN1	RMIN0
RMAX	RMAX7	RMAX6	RMAX5	RMAX4	RMAX3	RMAX2	RMAX1	RMAX0

Rev. 2.00 Sep. 28, 2009 Page 878 of 994 REJ09B0452-0200

		DILO	DIL O		DIL O		DICI	DILO
TDPICR_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPICRF_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPCSR_0	OVF	TWDMXOVF	TWDMNUDF	TPDMXOVF	ICPF	CMF	CKSEG	TPDMNU
TDPCR1_0	CST	POCTL	CPSPE	IEDG	TDPMDS	CKS2	CKS1	CKS0
TDPIER_0	OVIE	TWDMXIE	TWDMNIE	TPDMXIE	ICPIE	CMIE	TDPIPE	TPDMN
TDPCR2_0	PMMS	MCICTL	_	_		_		
TDPWDMN_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPCNT_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPPDMX_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPPDMN_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPWDMX_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPICR_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPICRF_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-								

		DIT O	bit J		bit 5		DICT	DILO
TDPPDMX_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPPDMN_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPWDMX_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPICR_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPICRF_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TDPCSR_2	OVF	TWDMXOVF	TWDMNUDF	TPDMXOVF	ICPF	CMF	CKSEG	TPDMNUD
TDPCR1_2	CST	POCTL	CPSPE	IEDG	TDPMDS	CKS2	CKS1	CKS0
TDPIER_2	OVIE	TWDMXIE	TWDMNIE	TPDMXIE	ICPIE	CMIE	TDPIPE	TPDMNIE
TDPCR2_2	PMMS	MCICTL	_	_		_	_	_
TDPWDMN_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMCNT_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMMLCM_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICR_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICRF_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

Rev. 2.00 Sep. 28, 2009 Page 880 of 994

REJ09B0452-0200

	0110		50110	DIT 12	DICTI	bit To	bit 9	DILO
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICR_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICRF_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMCSR_1	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	—
TCMCR_1	CST	POCTL	CPSPE	IEDG	TCMMDS	CKS2	CKS1	CKS0
TCMIER_1	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_
TCMMINCM_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMCNT_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMMLCM_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICR_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMICRF_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCMCSR_2	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	—
TCMCR_2	CST	POCTL	CPSPE	IEDG	TCMMDS	CKS2	CKS1	CKS0
TCMIER_2	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_
TCMMINCM_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

-		DIL O	bit 5		Dit O		DICI	DILO
TCMCSR_3	OVF	MAXOVF	CMF	CKSEG	ICPF	MINUDF	MCICTL	_
TCMCR_3	CST	POCTL	CPSPE	IEDG	TCMMDS	CKS2	CKS1	CKS0
TCMIER_3	OVIE	MAXOVIE	CMIE	TCMIPE	ICPIE	MINUDIE	CMMS	_
TCMMINCM_3	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRA	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRB	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRC	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRD	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRE	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRF	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRG	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADDRH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ADCSR	ADF	ADIE	ADST	_	CH3	CH2	CH1	CH0
ADCR	TRGS1	TRGS0	SCANE	SCANS	CKS1	CKS0	ADSTCLR	_

Rev. 2.00 Sep. 28, 2009 Page 882 of 994 REJ09B0452-0200

I LON	DLAD	DILLAN	SHOKFARIT			5101	OLOT	0100
FMCR	_	_		LOOPBACK	OUT2	OUT1	RTS	DTR
FLSR	RXFIFOERR	TEMT	THRE	BI	FE	PE	OE	DR
FMSR	DCD	RI	DSR	CTS	DDCD	TERI	DDSR	DCTS
FSCR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SCIFCR	SCIFOE1	SCIFOE0	_	OUT2LOOP	CKSEL1	CKSEL0	SCIFRST	REGRS
FSIHBARH	bit31	bit30	bit29	bit28	bit27	bit26	bit25	bit24
FSIHBARL	bit23	bit22	bit21	bit20	bit19	bit18	bit17	bit16
FSISR		_			_	_	FSIMS1	FSIMS0
CMDHBARH	bit31	bit30	bit29	bit28	bit27	bit26	bit25	bit24
CMDHBARL	bit23	bit22	bit21	bit20	bit19	bit18	bit17	bit16
FSICMDR	bit7	bt6	bit5	bit4	bit3	bit2	bit1	bit0
FSILSTR1	CMDBUSY	FSICMDI	FSIDMYE	FSIWBUS	YFSIWI	LFBUSY	_	_
FSILSTR2	_			FSIDWBUSY	FSIDRBUSY	SIZE2	SIZE1	SIZE0
FSIGPR1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR4	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR6	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR7	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPR9	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPRA	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIGPRB	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

IOARE	517	ыю	510	DIL	5113	DILZ	Dit i	ыю
FSIWDRHH	bit31	bit30	bit29	bit28	bit27	bit26	bit25	bit24
FSIWDRHL	bit23	bit22	bit21	bit20	bit19	bit18	bit17	bit16
FSIWDRLH	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
FSIWDRLL	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSICR1	SRES	FSIE	FRDE	AAIE	CPHS	CPOS	_	CKSEL
FSICR2	TE	RE	FSITEIE	FSIRXIE	_	_	_	_
FSIBNR	TBN3	TBN2	TBN1	TBN0	_	RBN2	RBN1	RBN0
FSINS	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIRDINS	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIPPINS	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSISTR	FSITEI	OBF	FSIRXI	_	_	_	_	—
FSITDR0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR4	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR6	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSITDR7	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FSIRDR	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0

Rev. 2.00 Sep. 28, 2009 Page 884 of 994 REJ09B0452-0200

		DIL O	Dit J		DIL O		DICI	bit 0
PWMREG4_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE4_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG5_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE5_A	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMCONA_A	CLK1	CLK0			_	_	_	_
PWMCONB_A	_	_	PWM5E	PWM4E	PWM3E	PWM2E	PWM1E	PWM0E
PWMCONC_A	_	CNTMD01	PWMSL5	PWMSL4	PWMSL3	PWMSL2	PWMSL1	PWMSL
PWMCOND_A	PH5S	PH4S	PH3S	PH2S	PH1S	PH0S	CNTMD45	CNTMD
PWMREG0_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE0_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG1_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE1_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG2_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE2_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG3_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE3_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG4_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE4_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMREG5_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMPRE5_B	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PWMCONA_B	CLK1	CLK0	_	_	_	_	_	_
PWMCONB_B	_	_	PWM5E	PWM4E	PWM3E	PWM2E	PWM1E	PWM0E
PWMCONC_B	_	CNTMD01	PWMSL5	PWMSL4	PWMSL3	PWMSL2	PWMSL1	PWMSL
PWMCOND_B	PH5S	PH4S	PH3S	PH2S	PH1S	PH0S	CNTMD45	CNTMD

	01110		DIT 10	DIT 12			bit 9	bit 0
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRB_1	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
LADR1H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
LADR1L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
LADR2H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
LADR2L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SCIFADRH	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
SCIFADRL	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
LADR4H	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
LADR4L	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
IDR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ODR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
STR4	DBU47	DBU46	DBU45	DBU44	C/D4	DBU42	IBF4	OBF4
HICR4	_	LPC4E	IBFIE4	_	_	_		_
SIRQCR2	IEDIR3	IEDIR4	IRQ11E4	IRQ10E4	IRQ9E4	IRQ6E4	SMIE4	_
SIRQCR3	SELIRQ15	SELIRQ14	SELIRQ13	SELIRQ8	SELIRQ7	SELIRQ5	SELIRQ4	SELIRQ3
P6NCE	P67NCE	P66NCE	P65NCE	P64NCE	P63NCE	P62NCE	P61NCE	P60NCE
P6NCMC	P67NCMC	P66NCMC	P65NCMC	P64NCMC	P63NCMC	P62NCMC	P61NCMC	P60NCM
P6NCCS	_	_	_	_	_	P6NCCK2	P6NCCK1	P6NCCK
PCNCE	PC7NCE	PC6NCE	PC5NCE	PC4NCE	PC3NCE	PC2NCE	PC1NCE	PC0NCE
PCNCMC	PC7NCMC	PC6NCMC	PC5NCMC	PC4NCMC	PC3NCMC	PC2NCMC	PC1NCMC	PC0NCM
PCNCCS		_	_	_	_	PCNCCK2	PCNCCK1	PCNCCK
PGNCE	PG7NCE	PG6NCE	PG5NCE	PG4NCE	PG3NCE	PG2NCE	PG1NCE	PG0NCE

Rev. 2.00 Sep. 28, 2009 Page 886 of 994 REJ09B0452-0200

Renesas

TIONTI					10000	IICOAS	_	
PTCNT2	_	TxD2RS	RxD2RS	TxD1RS	RxD1RS	_	PORTS	—
P9PCR	_	_	P95PCR	P94PCR	P93PCR	P92PCR	P91PCR	P90PCR
PGNOCR	PG7NOCR	PG6NOCR	PG5NOCR	PG4NOCR	PG3NOCR	PG2NOCR	PG1NOCR	PG0NO
PFNOCR	PF7NOCR	PF6NOCR	PF5NOCR	PF4NOCR	PF3NOCR	PF2NOCR	PF1NOCR	PF0NO0
PCNOCR	PC7NOCR	PC6NOCR	PC5NOCR	PC4NOCR	PC3NOCR	PC2NOCR	PC1NOCR	PC0NO0
PDNOCR	PD7NOCR	PD6NOCR	PD5NOCR	PD4NOCR	PD3NOCR	PD2NOCR	PD1NOCR	PD0NO
TWR0MW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR0SW	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR4	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR5	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR6	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR7	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR9	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR10	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR11	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR12	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR13	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR14	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TWR15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
IDR3	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-								

REJ09

Renesas

OINQUIT	INGTIES					INGTOLZ	INQUEZ	INQUEZ
IDR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ODR1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
STR1	DBU17	DBU16	DBU15	DBU14	C/D1	DBU12	IBF1	OBF1
SIRQCR4	_	_	_	_	SCSIRQ3	SCSIRQ2	SCSIRQ1	SCSIRQ0
IDR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ODR2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
STR2	DBU27	DBU26	DBU25	DBU24	$C/\overline{D}2$	DBU22	IBF2	OBF2
HISEL	SELSTR3	SELIRQ11	SELIRQ10	SELIRQ9	SELIRQ6	SELSMI	SELIRQ12	SELIRQ1
HICR0	LPC3E	LPC2E	LPC1E	FGA20E	SDWNE	PMEE	LSMIE	LSCIE
HICR1	LPCBSY	CLKREQ	IRQBSY	LRSTB	SDWNB	PMEB	LSMIB	LSCIB
HICR2	GA20	LRST	SDWN	ABRT	IBFIE3	IBFIE2	IBFIE1	ERRIE
HICR3	LFRAME	CLKRUN	SERIRQ	LRESET	LPCPD	PME	LSMI	LSCI
WUEMR	WUEMR15	WUEMR14	WUEMR13	WUEMR12	WUEMR11	WUEMR10	WUEMR9	WUEMR8
PGODR	PG70DR	PG60DR	PG50DR	PG40DR	PG3ODR	PG2ODR	PG10DR	PG00DR
PGPIN	PG7PIN	PG6PIN	PG5PIN	PG4PIN	PG3PIN	PG2PIN	PG1PIN	PG0PIN
PGDDR	PG7DDR	PG6DDR	PG5DDR	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
PFODR	PF70DR	PF6ODR	PF50DR	PF40DR	PF3ODR	PF2ODR	PF10DR	PF0ODR
PEPIN		_	_	PE4PIN	PE3PIN	PE2PIN	PE1PIN	PE0PIN
PFPIN	PF7PIN	PF6PIN	PF5PIN	PF4PIN	PF3PIN	PF2PIN	PF1PIN	PF0PIN
PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR
PCODR	PC70DR	PC60DR	PC50DR	PC40DR	PC3ODR	PC2ODR	PC10DR	PC00DR
PDODR	PD70DR	PD60DR	PD50DR	PD40DR	PD3ODR	PD2ODR	PD10DR	PD00DR
PCPIN	PC7PIN	PC6PIN	PC5PIN	PC4PIN	PC3PIN	PC2PIN	PC1PIN	PC0PIN
PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR

Rev. 2.00 Sep. 28, 2009 Page 888 of 994 REJ09B0452-0200

			_			1010	101.0	
TCNT_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRA_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRB_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRC_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRD_0	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCR_2	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
TMDR_2	_	_	—	_	MD3	MD2	MD1	MD0
TIOR_2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
TIER_2	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	TGIEA
TSR_2	TCFD	_	TCFU	TCFV	_	_	TGFB	TGFA
TCNT_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRA_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TGRB_2	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SYSCR3	_	EIVS	RELOCATE	_	_	_	_	_
MSTPCRA	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA
MSTPCRB	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB

			MOT		AGRE	0001		001
ICSR_2	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB
ICRES_2	—	_	_	_	CLR3	CLR2	CLR1	CLR0
ICXR_2	STOPIM	HNDS	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0
SARX_2	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
ICDR_2	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
SAR_2	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICMR_2	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
DACR	_	PWME	_	_	OEB	OEA	OS	CKS
DADRA	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6
	DA5	DA4	DA3	DA2	DA1	DA0	CFS	—
DADRB	DA13	DA12	DA11	DA10	DA9	DA8	DA7	DA6
	DA5	DA4	DA3	DA2	DA1	DA0	CFS	REGS
DACNTH	DACNT7	DACNT6	DACNT5	DACNT4	DACNT3	DACNT2	DACNT1	DACNT0
DACNTL	DACNT8	DACNT9	DACNT10	DACNT11	DACNT12	DACNT13	_	REGS
FCCS	_	_	_	FLER	_	_	_	SCO
FPCS	_	_	_	_	_	_	_	PPVS
FECS	_	_	_	_	_	_	_	EPVB
FKEY	K7	K6	K5	K4	К3	K2	K1	К0
FMATS	MS7	MS6	MS5	MS4	MS3	MS2	MS1	MS0
FTDAR	TDER	TDA6	TDA5	TDA4	TDA3	TDA2	TDA1	TDA0

Rev. 2.00 Sep. 28, 2009 Page 890 of 994 REJ09B0452-0200

KDIK_2	ND H	ND TO	KD13		ND13	NDTZ	KOT I	KD10
TCRXY	_	_	CKSX	CKSY	_	_	_	—
TCR_Y	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCSR_Y	CMFB	CMFA	OVF	ICIE	OS3	OS2	OS1	OS0
TCORA_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORB_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCNT_Y	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICDR_1	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
SARX_1	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
ICMR_1	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
SAR_1	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICCR_1	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP
ICSR_1	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB
KBCR1_3	KBTS	PS	KCIE	KTIE	_	KCIF	KBTE	KTER
KBTR_3	KBT7	KBT6	KBT5	KBT4	КВТЗ	KBT2	KBT1	KBT0
ICXR_0	STOPIM	HNDS	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0
ICXR_1	STOPIM	HNDS	ICDRF	ICDRE	ALIE	ALSL	FNC1	FNC0
KBCRH_0	KBIOE	KCLKI	KDI	KBFSEL	KBIE	KBF	PER	KBS
KBCRL_0	KBE	KCLKO	KDO	_	RXCR3	RXCR2	RXCR1	RXCR0
KBBR_0	KB7	KB6	KB5	KB4	KB3	KB2	KB1	KB0
KBCR2_0	_	_	_	_	TXCR3	TXCR2	TXCR1	TXCR0
KBCRH_1	KBIOE	KCLKI	KDI	KBFSEL	KBIE	KBF	PER	KBS
KBCRL_1	KBE	KCLKO	KDO	_	RXCR3	RXCR2	RXCR1	RXCR0
KBBR_1	KB7	KB6	KB5	KB4	KB3	KB2	KB1	KB0
KBCR2_1	_	_	_	_	TXCR3	TXCR2	TXCR1	TXCR0

			101(05		101(05	101102		
ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
ISCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCB	IRQ5SCA	IRQ4SCB	IRQ4SCA
ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCB	IRQ1SCA	IRQ0SCB	IRQ0SCA
ABRKCR	CMF	_	_	_	_	_	_	BIE
BARA	A23	A22	A21	A20	A19	A18	A17	A16
BARB	A15	A14	A13	A12	A11	A10	A9	A8
BARC	A7	A6	A5	A4	A3	A2	A1	_
IER16	IRQ15E	IRQ14E	IRQ13E	IRQ12E	IRQ11E	IRQ10E	IRQ9E	IRQ8E
ISR16	IRQ15F	IRQ14F	IRQ13F	IRQ12F	IRQ11F	IRQ10F	IRQ9F	IRQ8F
ISCR16H	IRQ15SCB	IRQ15SCA	IRQ14SCB	IRQ14SCA	IRQ13SCB	IRQ13SCA	IRQ12SCB	IRQ12SC
ISCR16L	IRQ11SCB	IRQ11SCA	IRQ10SCB	IRQ10SCA	IRQ9SCB	IRQ9SCA	IRQ8SCB	IRQ8SCA
ISSR16	ISS15	ISS14	ISS13	ISS12	ISS11	ISS10	ISS9	ISS8
ISSR	ISS7	_	_	_	_	_	_	
PCSR	_	_	PWCKXB	PWCKXA	_	_	_	PWCKXC
SBYCR	SSBY	STS2	STS1	STS0	_	SCK2	SCK1	SCK0
LPWRCR	DTON	LSON	NESEL	EXCLE	_	_	_	_
MSTPCRH	MSTP15	MSTP14	MSTP13	MSTP12	MSTP11	MSTP10	MSTP9	MSTP8
MSTPCRL	MSTP7	MSTP6	MSTP5	MSTP4	MSTP3	MSTP2	MSTP1	MSTP0
SMR_1*1	C/Ā	CHR	PE	0/Ē	STOP	MP	CKS1	CKS0
	(GM)	(BLK)	(PE)	(O/\overline{E})	(BCP1)	(BCP0)	(CKS1)	(CKS0)
BRR_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SCR_1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
TDR_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0

Rev. 2.00 Sep. 28, 2009 Page 892 of 994 REJ09B0452-0200

PAPINPA7PINPA6PINPA5PINPA4PINPA3PINPA2PINPA1PINPA0PINPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRP1PCRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP11PCRP10PCRP2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDR	TDR_2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
SCMR_2 — — SDIR SINV — SMIF TCSR_0 OVF WT/IT TME — RST/ÑMI CKS2 CKS1 CKS0 TCNT_0 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 PAODR PA7ODR PA6ODR PA5ODR PA4ODR PA3ODR PA2ODR PA1ODR PA0ODR PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DIN PADDR PA7DR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DIN PADDR PA7DR PA6DDR PA5DDR PA4DR PA3DDR PA2DDR PA1DDR PA0DIN PADDR PA7DR PA6DDR PA5DR PA4DR PA3DDR PA2DDR PA1DDR PA0DIN PADR PA7DR PA6DDR PA5DR P14PCR P13PCR P11DR P10CR P10CR P10CR P10CR	SSR_2*1								
TCSR_0 OVF WT/IT TME — RST/NMI CKS2 CKS1 CKS0 TCNT_0 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 PAODR PATODR PA6ODR PASODR PA4ODR PA3ODR PA2ODR PA1ODR PA0ODR PAPIN PATPIN PA6DDR PASDDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR PADDR PA7DDR PA6DDR PA5DDR PA4DDR PA3DDR PA2DDR PA1DDR PA0DDR PADDR PA7DR PA6DDR PA5DDR P14PCR P13PCR P11DCR P10CR P10CR P10CR P10CR P20PCR P21PCR P21PCR P21PCR P21PCR P21PCR P21PCR	RDR_2	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCNT_0bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0PAODRPATODRPA6ODRPA5ODRPA4ODRPA3ODRPA2ODRPA1ODRPA0ODRPAPINPA7PINPA6PINPA5PINPA4PINPA3PINPA2PINPA1DDRPA0DDRPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRP1PCRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP11PCRP10PCRP2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDFP2DDRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP2DRP27DRP26DRP25DRP24DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP33DRP32DRP31DRP30DRP3DDRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP3DRP37DRP36DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DR <td>SCMR_2</td> <td></td> <td></td> <td></td> <td></td> <td>SDIR</td> <td>SINV</td> <td></td> <td>SMIF</td>	SCMR_2					SDIR	SINV		SMIF
PAODRPA7ODRPA6ODRPA5ODRPA4ODRPA3ODRPA2ODRPA1ODRPA0ODRPAPINPA7PINPA6PINPA5PINPA4PINPA3PINPA2PINPA1PINPA0PINPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRP1PCRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DRP25DDRP24DDRP23DRP22DDRP21DDRP20DRP2DRP27DRP26DRP25DRP24DRP33DDRP32DDRP31DDRP30DDFP3DDRP37DDRP36DRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDFP4DDRP47DDRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DR <t< td=""><td>TCSR_0</td><td>OVF</td><td>WT/IT</td><td>TME</td><td></td><td>RST/NMI</td><td>CKS2</td><td>CKS1</td><td>CKS0</td></t<>	TCSR_0	OVF	WT/IT	TME		RST/NMI	CKS2	CKS1	CKS0
PAPINPA7PINPA6PINPA5PINPA4PINPA3PINPA2PINPA1PINPA0PINPADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDRP1DRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP11PCRP10PCRP2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDFP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DDRP27DRP26DDRP25DDRP24DRP23DRP22DRP21DDRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DRP31DDRP30DDFP4DDRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDFP5DRP52DRP51DRP50DRP50DRP5DRP52DRP51DR <t< td=""><td>TCNT_0</td><td>bit 7</td><td>bit 6</td><td>bit 5</td><td>bit 4</td><td>bit 3</td><td>bit 2</td><td>bit 1</td><td>bit 0</td></t<>	TCNT_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PADDRPA7DDRPA6DDRPA5DDRPA4DDRPA3DDRPA2DDRPA1DDRPA0DDFP1PCRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP11PCRP10PCRP2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP2DRP27DRP26DDRP25DRP14DRP13DRP12DRP11DRP10DRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP21DDRP20DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DRP36DRP35DDRP34DDRP33DDRP32DRP31DDRP30DRP3DRP37DRP36DRP35DRP34DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDR—————P52DRP51DRP50DRP6DDRP66DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DR——————P52DRP51DRP5	PAODR	PA70DR	PA60DR	PA50DR	PA40DR	PA3ODR	PA2ODR	PA10DR	PA0ODF
P1PCRP17PCRP16PCRP15PCRP14PCRP13PCRP12PCRP11PCRP10PCRP2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP2DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DRP31DDRP30DRP3DRP37DRP36DRP45DRP44DDRP43DRP42DRP41DDRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDR—————P52DRP51DDRP50DDFP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDFP5DR——————P52DRP51DRP50DR </td <td>PAPIN</td> <td>PA7PIN</td> <td>PA6PIN</td> <td>PA5PIN</td> <td>PA4PIN</td> <td>PA3PIN</td> <td>PA2PIN</td> <td>PA1PIN</td> <td>PA0PIN</td>	PAPIN	PA7PIN	PA6PIN	PA5PIN	PA4PIN	PA3PIN	PA2PIN	PA1PIN	PA0PIN
P2PCRP27PCRP26PCRP25PCRP24PCRP23PCRP22PCRP21PCRP20PCRP3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP2DRP27DRP26DRP25DRP24DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DRP36DDRP35DRP34DDRP33DDRP32DRP31DDRP30DRP4DDRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DRP51DRP50DRP5DRP52DRP51DRP50DRP5DRP52DRP51DRP50DRP5DRP52DRP51DRP50DR	PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDF
P3PCRP37PCRP36PCRP35PCRP34PCRP33PCRP32PCRP31PCRP30PCRP1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP2DRP27DRP26DRP25DRP24DRP23DRP12DRP11DRP10DRP3DDRP37DRP36DRP35DRP34DDRP33DRP32DRP31DDRP30DRP4DDRP47DDRP46DDRP45DDRP44DDRP43DRP42DDRP41DDRP40DRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDR—————P52DRP51DRP50DRP60DRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP51DRP50DRP5DR——————P52DRP51DRP50DRP5DR——————P52DRP51DRP50DR	P1PCR	P17PCR	P16PCR	P15PCR	P14PCR	P13PCR	P12PCR	P11PCR	P10PCR
P1DDRP17DDRP16DDRP15DDRP14DDRP13DDRP12DDRP11DDRP10DDRP2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DDRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDRP4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P2PCR	P27PCR	P26PCR	P25PCR	P24PCR	P23PCR	P22PCR	P21PCR	P20PCR
P2DDRP27DDRP26DDRP25DDRP24DDRP23DDRP22DDRP21DDRP20DRP1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDRP4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DDRP60DRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DRP50DRP50DRP52DRP51DRP50DRP50DRP52DRP51DRP50DR	P3PCR	P37PCR	P36PCR	P35PCR	P34PCR	P33PCR	P32PCR	P31PCR	P30PCR
P1DRP17DRP16DRP15DRP14DRP13DRP12DRP11DRP10DRP2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDRP4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP40DRP3DRP37DRP36DRP35DRP34DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
P2DRP27DRP26DRP25DRP24DRP23DRP22DRP21DRP20DRP3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDRP4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP3DRP37DRP36DRP45DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DRP51DDRP50DRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DRP50DRP5DRP52DRP51DRP50DR	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
P3DDRP37DDRP36DDRP35DDRP34DDRP33DDRP32DDRP31DDRP30DDRP4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR
P4DDRP47DDRP46DDRP45DDRP44DDRP43DDRP42DDRP41DDRP40DDRP3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DDRP60DRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P2DR	P27DR	P26DR	P25DR	P24DR	P23DR	P22DR	P21DR	P20DR
P3DRP37DRP36DRP35DRP34DRP33DRP32DRP31DRP30DRP4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DDRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
P4DRP47DRP46DRP45DRP44DRP43DRP42DRP41DRP40DRP5DDRP52DDRP51DDRP50DDRP6DDRP67DDRP66DDRP65DDRP64DDRP63DDRP62DDRP61DDRP60DDRP5DRP52DRP51DRP50DR	P4DDR	P47DDR	P46DDR	P45DDR	P44DDR	P43DDR	P42DDR	P41DDR	P40DDR
P5DDR — — — P52DDR P51DDR P50DDR P6DDR P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR P5DR — — — — P52DR P61DDR P60DDR	P3DR	P37DR	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR
P6DDR P67DDR P66DDR P65DDR P64DDR P63DDR P62DDR P61DDR P60DDR P5DR P52DR P51DR P50DR	P4DR	P47DR	P46DR	P45DR	P44DR	P43DR	P42DR	P41DR	P40DR
P5DR — — — — P52DR P51DR P50DR	P5DDR	_		_			P52DDR	P51DDR	P50DDF
	P6DDR	P67DDR	P66DDR	P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDF
P6DR P67DR P66DR P65DR P64DR P63DR P62DR P61DR P60DR	P5DR						P52DR	P51DR	P50DR
	P6DR	P67DR	P66DR	P65DR	P64DR	P63DR	P62DR	P61DR	P60DR

T SDR	1 STOR	1 JODIN	1 3501		1 33DR	1 JZDR	TOTOR	1 JODK
IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E
STCR	IICX2	IICX1	IICX0	IICE	FLSHE	IICS	ICKS1	ICKS0
SYSCR	_	_	INTM1	INTM0	XRST	NMIEG	KINWUE	RAME
MDCR	EXPE	_	—			MDS2	MDS1	MDS0
BCR		ICIS0	BRSTRM	BRSTS1	BRSTS0	_	IOS1	IOS0
WSCR			ABW	AST	WMS1	WMS0	WC1	WC0
TCR_0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCR_1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0
TCSR_0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0
TCSR_1	CMFB	CMFA	OVF		OS3	OS2	OS1	OS0
TCORA_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORA_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORB_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORB_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCNT_0	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCNT_1	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICCR_0	ICE	IEIC	MST	TRS	ACKE	BBSY	IRIC	SCP
ICSR_0	ESTP	STOP	IRTR	AASX	AL	AAS	ADZ	ACKB
ICDR_0	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3	ICDR2	ICDR1	ICDR0
SARX_0	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2	SVAX1	SVAX0	FSX
ICMR_0	MLS	WAIT	CKS2	CKS1	CKS0	BC2	BC1	BC0
SAR_0	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS

Rev. 2.00 Sep. 28, 2009 Page 894 of 994 REJ09B0452-0200

TOOK_X			011		005	002	001	000
TICRR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TICRF	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCNT_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORC	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORA_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCORB_X	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TCONRI	_	_	_	ICST	_	_	_	_
TCONRS	TMRX/Y				_	_	_	_

Notes: 1. In normal mode and smart card interface mode, bit names differ in part. (): Bit name in smart card interface mode.

- 2. When TWRE = 1 or SELSTR3 = 0.
- 3. When TWRE = 0 and SELSTR3 = 1.

PJPIN	_		_	_	_	—
PJPCR	Initialized	_				
PINOCR	Initialized	_				_
PJNOCR	Initialized					_
CCR1	Initialized					C
CCR2	Initialized		_		_	
CSTR	Initialized	_				
CEIR	Initialized					
BRR	Initialized					
CIRRDR0 to 7	Initialized	_				
HHMIN	Initialized	_				
HHMAX	Initialized	_				
HLMIN	Initialized					
HLMAX	Initialized	_				
DT1MIN	Initialized					
DT1MAX	Initialized					
DTOMIN	Initialized					
DT0MAX	Initialized	_				
RMIN	Initialized					
RMAX	Initialized					

Rev. 2.00 Sep. 28, 2009 Page 896 of 994 REJ09B0452-0200

TDPCR1_0	Initialized	_	_	_		_	
TDPIER_0	Initialized	_	_	—		_	
TDPCR2_0	Initialized	_	—	_		_	
TDPWDMN_0	Initialized		_	—		_	
TDPCNT_1	Initialized		_	_	_	_	
TDPPDMX_1	Initialized		_	_	_		
TDPPDMN_1	Initialized		_	_		_	
TDPWDMX_1	Initialized		_	_			
TDPICR_1	Initialized		_	_	_	_	
TDPICRF_1	Initialized		_	_			
TDPCSR_1	Initialized	_	_	_		_	
TDPCR1_1	Initialized	_		_	_	_	
TDPIER_1	Initialized		_	_		_	
TDPCR2_1	Initialized	_	_	_		_	
TDPWDMN_1	Initialized		_	_			
TDPCNT_2	Initialized		_	_			
TDPPDMX_2	Initialized	_	_	_		_	
TDPPDMN_1	Initialized	_	_	_		_	
TDPWDMX_2	Initialized		_	_		_	
TDPICR_2	Initialized	_	_	_		_	
TDPICRF_2	Initialized	_	_	_		_	
TDPCSR_2	Initialized		_	_			

Renesas

TCMICRF_0	Initialized	—	_	—	—	—	
TCMCSR_0	Initialized	_		_		_	
TCMCR_0	Initialized	_		_	_	_	
TCMIER_0	Initialized	_		_	_	_	
TCMMINCM_0	Initialized	_		_	_	_	
TCMCNT_1	Initialized	_	_	_	_	_	Т
TCMMLCM_1	Initialized	_	_	_	_	_	
TCMICR_1	Initialized	_				_	
TCMICRF_1	Initialized	_		_	_	_	
TCMCSR_1	Initialized	_	_	_	_	_	
TCMCR_1	Initialized	_		_	_	_	
TCMIER_1	Initialized	_	_	_	_	_	
TCMMINCM_1	Initialized	_	_	_	_	_	
TCMCNT_2	Initialized	_		_	_	_	Т
TCMMLCM_2	Initialized	_		_	_	_	
TCMICR_2	Initialized	_		_		_	
TCMICRF_2	Initialized	_		_	_	_	
TCMCSR_2	Initialized	_		_	_	_	
TCMCR_2	Initialized	—	_	_	_	_	_
TCMIER_2	Initialized	_		_		_	
TCMMINCM_2	Initialized	_		_		_	

Rev. 2.00 Sep. 28, 2009 Page 898 of 994 REJ09B0452-0200

ADDRA Initialized — ADDRB Initialized —	Initialized Initialized	_	Initialized	Initialized
ADDRB Initialized —	Initialized			
			Initialized	Initialized
ADDRC Initialized —	Initialized	_	Initialized	Initialized
ADDRD Initialized —	Initialized	_	Initialized	Initialized
ADDRE Initialized —	Initialized	_	Initialized	Initialized
ADDRF Initialized —	Initialized	_	Initialized	Initialized
ADDRG Initialized —	Initialized	_	Initialized	Initialized
ADDRH Initialized —	Initialized	_	Initialized	Initialized
ADCSR Initialized —	Initialized	_	Initialized	Initialized
ADCR Initialized —	Initialized	_	Initialized	Initialized
FRBR Initialized —		_		_
FTHR — —		_		_
FDLL Initialized —		_		_
FIER Initialized —		_		_
FDLH Initialized —		_		_
FIIR Initialized —		_		_
FFCR Initialized —		_		_
FLCR Initialized —				_
FMCR Initialized —		_		_
FLSR Initialized —		_		_
FMSR — —		_		_
FSCR Initialized —	_	_		_
SCIFCR Initialized —	_	_		_

FSIGPR1 Initialized FSIGPR2 Initialized FSIGPR3 Initialized FSIGPR3 Initialized FSIGPR3 Initialized FSIGPR4 Initialized FSIGPR5 Initialized FSIGPR6 Initialized FSIGPR6 Initialized FSIGPR8 Initialized FSIGPRA Initialized FSIGPR0 Initialized FSIGPR1 Initialized FSIGPR5 Initialized FSIGPR0 Initialized FSIGPR5 Initialized FSIARH Initialized <t< th=""><th>FSILSTR2</th><th>Initialized</th><th>_</th><th></th><th>_</th><th>—</th><th>_</th></t<>	FSILSTR2	Initialized	_		_	—	_
FSIGPR3InitializedFSIGPR4InitializedFSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR0InitializedFSIGPRCInitializedFSIGPR1InitializedFSIGPR5InitializedFSIGPR5InitializedFSIARHInitializedFSIARHInitializedFSIARLInitializedFSIARLInitializedFSIMRHHInitializedFSIMRHHInitializedFSIMRHHInitializedFSIMRHHInitialized <t< td=""><td>FSIGPR1</td><td>Initialized</td><td>—</td><td></td><td></td><td></td><td>_</td></t<>	FSIGPR1	Initialized	—				_
FSIGPR4InitializedFSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR8InitializedFSIGPR9InitializedFSIGPR0InitializedFSIGPR0InitializedFSIGPR1InitializedFSIGPR5InitializedFSIGPR5InitializedFSIGPRFInitializedFSIGPRFInitializedFSIGPRFInitializedFSIARHInitializedFSIARMInitializedFSIARLInitializedFSIMDRHHInitializedFSIWDRHHInitialized	FSIGPR2	Initialized	_		_		_
FSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR9InitializedFSIGPR4InitializedFSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR0InitializedFSIGPR1InitializedFSIGPR5InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR1InitializedFSIGPR5InitializedFSIARHInitializedFSIARMInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPR3	Initialized	_				_
FSIGPR6InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR9InitializedFSIGPR4InitializedFSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR8InitializedFSIGPR7InitializedFSIARHInitializedFSIARHInitializedFSIARLInitializedFSIWDRHHInitializedFSIWDRHHInitialized	FSIGPR4	Initialized	_				_
FSIGPR7InitializedFSIGPR8InitializedFSIGPR9InitializedFSIGPR4InitializedFSIGPR5InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR6InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR7InitializedFSIGPR8InitializedFSIARHInitializedFSIARHInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPR5	Initialized	_				
FSIGPR8Initialized—————FSIGPR9Initialized—————FSIGPRAInitialized—————FSIGPRBInitialized—————FSIGPRCInitialized—————FSIGPRCInitialized—————FSIGPRDInitialized—————FSIGPREInitialized—————FSIGPRFInitialized—————SLCRInitialized—————FSIARHInitialized—————FSIARHInitialized—————FSIARLInitialized—————FSIWDRHHInitialized—————	FSIGPR6	Initialized	—	—			—
FSIGPR9Initialized—————FSIGPRAInitialized—————FSIGPRBInitialized—————FSIGPRCInitialized—————FSIGPRDInitialized—————FSIGPREInitialized—————FSIGPRFInitialized—————FSIGPRFInitialized—————SLCRInitialized—————FSIARHInitialized—————FSIARHInitialized—————FSIARLInitialized—————FSIMDRHHInitialized—————FSIWDRHHInitialized—————	FSIGPR7	Initialized	_		_		
FSIGPRAInitializedFSIGPRBInitializedFSIGPRCInitializedFSIGPRDInitializedFSIGPREInitializedFSIGPRFInitializedFSIGPRFInitializedFSIGPRFInitializedFSIARHInitializedFSIARHInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPR8	Initialized	—				
FSIGPRBInitialized————FSIGPRCInitialized—————FSIGPRDInitialized—————FSIGPREInitialized—————FSIGPRFInitialized—————SLCRInitialized—————FSIARHInitialized—————FSIARHInitialized—————FSIARLInitialized—————FSIWDRHHInitialized—————	FSIGPR9	Initialized	—		_		
FSIGPRCInitializedFSIGPRDInitializedFSIGPREInitializedFSIGPRFInitializedSLCRInitializedFSIARHInitializedFSIARMInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPRA	Initialized	—				
FSIGPRDInitializedFSIGPREInitializedFSIGPRFInitializedSLCRInitializedFSIARHInitializedFSIARMInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPRB	Initialized	_				
FSIGPREInitializedFSIGPRFInitializedSLCRInitializedFSIARHInitializedFSIARMInitializedFSIARLInitializedFSIWDRHHInitialized	FSIGPRC	Initialized	—		_		
FSIGPRFInitialized————SLCRInitialized————FSIARHInitialized————FSIARMInitialized————FSIARLInitialized————FSIWDRHHInitialized————	FSIGPRD	Initialized	—				
SLCRInitialized————FSIARHInitialized—————FSIARMInitialized—————FSIARLInitialized—————FSIWDRHHInitialized—————	FSIGPRE	Initialized	—		_		
FSIARHInitialized————FSIARMInitialized—————FSIARLInitialized—————FSIWDRHHInitialized—————	FSIGPRF	Initialized	_		_		
FSIARMInitializedFSIARLInitializedFSIWDRHHInitialized	SLCR	Initialized	_				
FSIARLInitialized———FSIWDRHHInitialized————	FSIARH	Initialized	_				_
FSIWDRHH Initialized — — — — — —	FSIARM	Initialized	_				_
	FSIARL	Initialized	_			—	
FSIWDRHL Initialized — — — — — —	FSIWDRHH	Initialized	_		—		_
	FSIWDRHL	Initialized	_				

Rev. 2.00 Sep. 28, 2009 Page 900 of 994 REJ09B0452-0200

FSIPPINS	Initialized	—	_	_	_	_
FSISTR	Initialized	—	_	_	_	_
FSITDR0	Initialized	—	_	_	_	_
FSITDR1	Initialized	_	_	_	_	_
FSITDR2	Initialized	_	_	_	_	_
FSITDR3	Initialized	—	_	_	_	_
FSITDR4	Initialized	—	—	_	_	_
FSITDR5	Initialized	—	_	_	_	_
FSITDR6	Initialized	—	—	_		_
FSITDR7	Initialized	—	—	_	_	_
FSIRDR	Initialized	_	_	_	_	_
PWMREG0_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE0_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG1_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE1_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG2_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE2_A	Initialized	_	Initialized	_	Initialized	Initialized
PWMREG3_A	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE3_A	Initialized	_	Initialized	_	Initialized	Initialized
PWMREG4_A	Initialized	_	Initialized	_	Initialized	Initialized
PWMPRE4_A	Initialized	_	Initialized	_	Initialized	Initialized
PWMREG5_A	Initialized	_	Initialized	_	Initialized	Initialized
PWMPRE5_A	Initialized	_	Initialized	_	Initialized	Initialized

PWMPRE1_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG2_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE2_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG3_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE3_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG4_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE4_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMREG5_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMPRE5_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMCONA_B	Initialized	—	Initialized	—	Initialized	Initialized
PWMCONB_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMCONC_B	Initialized	—	Initialized	_	Initialized	Initialized
PWMCOND_B	Initialized	—	Initialized	_	Initialized	Initialized
TCR_1	Initialized	—	_	_		— T
TMDR_1	Initialized	—	_	_	_	_
TIOR_1	Initialized	—	_	_	_	_
TIER_1	Initialized	—	_	_	_	_
TSR_1	Initialized	—	_	_	_	_
TCNT_1	Initialized		_	_	_	_
TGRA_1	Initialized	_	_	_	_	_
TGRB_1	Initialized	_	_	_	_	_

Rev. 2.00 Sep. 28, 2009 Page 902 of 994 REJ09B0452-0200

IDR4 Initialized ODR4 Initialized STR4 Initialized HICR4 Initialized SIRQCR2 Initialized SIRQCR3 Initialized P6NCE Initialized P6NCE Initialized P6NCCS Initialized PCNCCE Initialized PCNCCS Initialized PGNCCS Initialized PGNCCS Initialized <th>LADR4L</th> <th>Initialized</th> <th>_</th> <th>_</th> <th>_</th> <th>—</th> <th>—</th> <th></th>	LADR4L	Initialized	_	_	_	—	—	
STR4InitializedHICR4InitializedSIRQCR2InitializedSIRQCR3InitializedP6NCEInitializedP6NCCInitializedP6NCCSInitializedP6NCCSInitializedPCNCEInitializedPCNCEInitializedPCNCCSInitializedPGNCEInitializedPGNCCSInitializedPGNCCSInitializedPHPINInitializedPHDDRInitialized	IDR4	Initialized		_	—			
HICR4InitializedSIRQCR2InitializedSIRQCR3InitializedP6NCEInitializedP6NCCSInitializedP6NCCSInitializedPCNCEInitializedPCNCEInitializedPCNCCSInitializedPCNCCSInitializedPGNCCSInitializedPGNCCSInitializedPGNCCSInitializedPHPINInitializedPHDDRInitializedPHDDRInitialized	ODR4	Initialized	_	_	—		_	
SIRQCR2Initialized—————SIRQCR3Initialized—————P6NCEInitialized—————P6NCKCInitialized—————P6NCCSInitialized—————P6NCCSInitialized—————PCNCEInitialized—————PCNCCSInitialized—————PCNCCSInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PHPINInitialized—————PHDDRInitialized—————	STR4	Initialized	_	_	—		_	
SIRQCR3Initialized—————P6NCEInitialized—————P6NCMCInitialized—————P6NCCSInitialized—————PCNCEInitialized—————PCNCKCInitialized—————PCNCCSInitialized—————PGNCCSInitialized—————PGNCEInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PHPINInitialized—————PHDDRInitialized—————	HICR4	Initialized	_		_		_	
P6NCEInitialized————P6NCMCInitialized—————P6NCCSInitialized—————PCNCEInitialized—————PCNCKCInitialized—————PCNCCSInitialized—————PGNCCSInitialized—————PGNCKEInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PHDINInitialized—————PHDDRInitialized—————	SIRQCR2	Initialized	_	—	—	_	_	
P6NCMCInitialized————P6NCCSInitialized—————PCNCEInitialized—————PCNCMCInitialized—————PCNCCSInitialized—————PGNCEInitialized—————PGNCEInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PHDINInitialized—————PHDDRInitialized—————	SIRQCR3	Initialized	_	—	—	_	_	
P6NCCSInitialized————PCNCEInitialized————PCNCMCInitialized————PCNCCSInitialized————PGNCEInitialized————PGNCKCInitialized————PGNCKCInitialized————PGNCCSInitialized————PHPINInitialized————PHDDRInitialized————	P6NCE	Initialized			—			
PCNCEInitialized————PCNCMCInitialized—————PCNCCSInitialized—————PGNCEInitialized—————PGNCMCInitialized—————PGNCCSInitialized—————PGNCCSInitialized—————PHPINInitialized—————PHDDRInitialized—————	P6NCMC	Initialized	_	_	—		_	
PCNCMCInitialized————PCNCCSInitialized————PGNCEInitialized————PGNCMCInitialized————PGNCCSInitialized————PHPINInitialized————PHDDRInitialized————	P6NCCS	Initialized	_	—	—	_	_	
PCNCCSInitialized————PGNCEInitialized—————PGNCMCInitialized—————PGNCCSInitialized—————PHPINInitialized—————PHDDRInitialized—————	PCNCE	Initialized	_	_	—		_	
PGNCEInitialized————PGNCMCInitialized—————PGNCCSInitialized—————PHPINInitialized—————PHDDRInitialized—————	PCNCMC	Initialized	_	_	—		_	
PGNCMCInitialized————PGNCCSInitialized————PHPINInitialized————PHDDRInitialized————	PCNCCS	Initialized	_	—	—	_	_	
PGNCCS Initialized — — — — PHPIN Initialized — — — — PHDDR Initialized — — — —	PGNCE	Initialized	_	_	—		_	
PHPINInitialized————PHDDRInitialized—————	PGNCMC	Initialized	_	_	—		_	
PHDDR Initialized — — — — —	PGNCCS	Initialized		_	—			
	PHPIN	Initialized	_	_	—		_	
	PHDDR	Initialized	_	—	—	_	_	
	PHODR	Initialized	_	—	—	_	_	
PHNOCR Initialized — — — — — —	PHNOCR	Initialized			_			
PTCNT0 Initialized — — — — — —	PTCNT0	Initialized			_			
PTCNT1 Initialized — — — — — —	PTCNT1	Initialized			_			
PTCNT2 Initialized — — — — — —	PTCNT2	Initialized	_	_	—		—	

TWR1	Initialized			—		_
TWR2	Initialized			_		_
TWR3	Initialized	_		—		_
TWR4	Initialized	_		_		_
TWR5	Initialized	_		_		_
TWR6	Initialized	_		_		_
TWR7	Initialized		_			—
TWR8	Initialized					
TWR9	Initialized	_		—		_
TWR10	Initialized	_		_		_
TWR11	Initialized	_		_		_
TWR12	Initialized	_		_		_
TWR13	Initialized		_			—
TWR14	Initialized	_		_		_
TWR15	Initialized		_			—
IDR3	Initialized	_			_	_
ODR3	Initialized	_				_
STR3	Initialized	_				
HICR5	Initialized	_				
LADR3H	Initialized	_				
LADR3L	Initialized	—			—	_
SIRQCR0	Initialized	_			_	_
SIRQCR1	Initialized					_

Rev. 2.00 Sep. 28, 2009 Page 904 of 994 REJ09B0452-0200

HIJEL	muaizeu	 _			_
HICR0	Initialized	 			_
HICR1	Initialized	 			_
HICR2		 			
HICR3		 			
WUEMR	Initialized	 			—
PGODR	Initialized	 			
PGPIN		 			
PGDDR	Initialized	 			
PFODR	Initialized	 			
PEPIN		 			—
PFPIN		 			_
PFDDR	Initialized	 			—
PCODR	Initialized	 			
PDODR	Initialized	 			
PCPIN	_	 			_
PCDDR	Initialized	 			_
PDPIN		 			_
PDDDR	Initialized	 			_
TCR_0	Initialized	 			_
TMDR_0	Initialized	 	_	_	_
TIORH_0	Initialized	 		_	_
TIORL_0	Initialized	 		_	_
TIER_0	Initialized	 		_	_
TSR_0	Initialized	 	_	_	_
TCNT_0	Initialized	 			_
	,				

TIER_2	Initialized	_	_	_	_	_	
TSR_2	Initialized			_	_	_	
TCNT_2	Initialized	_	_	_	_	_	
TGRA_2	Initialized		_	_			
TGRB_2	Initialized		_	_			
SYSCR3	Initialized	_	_	_	_	_	S
MSTPCRA	Initialized	_	_	_	_	_	
MSTPCRB	Initialized			—		_	
KMIMR	Initialized	_	_	_	_	_	11
KMPCR	Initialized	_	_	_	_	_	P
KMIMRA	Initialized	_	_	_	_	_	11
WUESCR	Initialized	_	_	_	_	_	
WUESR	Initialized	_	_	_	_	_	
WER	Initialized	_	_	_	_	_	
ICRD	Initialized	_	_	_	_	_	
ICCR_2	Initialized			_	_	_	II
ICSR_2	Initialized	_	_	_	_	_	
ICRES_2	Initialized	_	_	_	_	_	
ICXR_2	Initialized	_	_	_	_	_	
ICDR_2	_	_	_	_	_	_	
SARX_2	Initialized			_		_	
ICMR_2	Initialized		_			_	
SAR_2	Initialized	_	—	_		_	

Rev. 2.00 Sep. 28, 2009 Page 906 of 994 REJ09B0452-0200

FKEY	Initialized	_	_			_
FMATS	Initialized	_	_		_	_
FTDAR	Initialized	_			_	_
TSTR	Initialized	_		_		_
TSYR	Initialized					—
KBCR1_0	Initialized					
KBTR_0	Initialized					_
KBCR1_1	Initialized					
KBTR_1	Initialized		_			
KBCR1_2	Initialized					_
KBTR_2	Initialized					_
TCRXY	Initialized					
TCR_Y	Initialized					
TCSR_Y	Initialized					
TCORA_Y	Initialized					
TCORB_Y	Initialized					
TCNT_Y	Initialized					_
ICDR_1						_
SARX_1	Initialized					—
ICMR_1	Initialized		_			_
SAR_1	Initialized	_		_		
ICCR_1	Initialized					_
ICSR_1	Initialized				_	_

KBCR2_0	Initialized	_	_	_	_	_	
KBCRH_1	Initialized	_	_	_	_	_	P
KBCRL_1	Initialized	_	_	_		_	
KBBR_1	Initialized	_	_	_	_	_	
KBCR2_1	Initialized	_	_	_	_	_	
KBCRH_2	Initialized	_	—	—	_	_	P
KBCRL_2	Initialized	—	—	—	—	—	
KBBR_2	Initialized	_	_	_	_	_	
KBCR2_2	Initialized	_	—	—		—	
ICRES_0	Initialized	—	—	—	—	—	II
ICRA	Initialized	_	—	—	_	_	11
ICRB	Initialized	_	—	—		—	
ICRC	Initialized	—	—	—	—	—	
ISR	Initialized	_	—	—		—	
ISCRH	Initialized	—	—	—	—	—	
ISCRL	Initialized	_	—	—	_	—	
ABRKCR	Initialized	_	_	_	_	_	
BARA	Initialized	_	—	—	_	_	
BARB	Initialized	—	—	—	—	—	
BARC	Initialized					_	
IER16	Initialized	_		_	_	_	
ISR16	Initialized					_	
ISCR16H	Initialized			_		_	

Rev. 2.00 Sep. 28, 2009 Page 908 of 994 REJ09B0452-0200

MSTPCRL	Initialized	_	_		_	_
SMR_1	Initialized	—	_	_		—
BRR_1	Initialized		_		_	—
SCR_1	Initialized					—
TDR_1	Initialized		Initialized		Initialized	Initialized
SSR_1	Initialized		Initialized		Initialized	Initialized
RDR_1	Initialized		Initialized		Initialized	Initialized
SCMR_1	Initialized					—
SMR_2	Initialized					—
BRR_2	Initialized					—
SCR_2	Initialized					—
TDR_2	Initialized	_	Initialized		Initialized	Initialized
SSR_2	Initialized		Initialized		Initialized	Initialized
RDR_2	Initialized		Initialized		Initialized	Initialized
SCMR_2	Initialized		_		_	_
TCSR_0	Initialized		_		_	_
TCNT_0	Initialized	_	_			
PAODR	Initialized		_			_
PAPIN			_		_	
PADDR	Initialized		_			
P1PCR	Initialized					_
P2PCR	Initialized					_
P3PCR	Initialized					

P4DR	Initialized		_		—		
P5DDR	Initialized		—			_	
P6DDR	Initialized		_	_	_	_	
P5DR	Initialized		_	_	_	_	
P6DR	Initialized		_	_	_	_	
PBODR	Initialized		_	_	_	_	
PBPIN	_	_	—		_	_	
P8DDR	Initialized		—			_	
P7PIN	_	_	—		_	_	
PBDDR	Initialized	_	—		_	_	
P8DR	Initialized		_	_	_	_	
P9DDR	Initialized	_	—		_	_	
P9DR	Initialized	_	—		_	_	
IER	Initialized		_	_	_	_	11
STCR	Initialized	_	—		_	_	S
SYSCR	Initialized		—			_	
MDCR	Initialized		_	_	_	_	
BCR	Initialized		_	_	_	_	В
WSCR	Initialized	_	—		_	_	
TCR_0	Initialized		_	_	_	_	Т
TCR_1	Initialized	_	_		_		Т
TCSR_0	Initialized	—	_				
TCSR_1	Initialized						

Rev. 2.00 Sep. 28, 2009 Page 910 of 994 REJ09B0452-0200

RENESAS

ICSR_0	Initialized	_	_	_	_	_
ICDR_0		_	_	_	_	_
SARX_0	Initialized	_	_	_	_	_
ICMR_0	Initialized	_	_	_	_	_
SAR_0	Initialized			_	_	_
KBCRH_3	Initialized	_	_	_		_
KBCRL_3	Initialized	_	_	_	_	_
KBBR_3	Initialized	_				_
KBCR2_3	Initialized	_	_	_	_	_
TCSR_1	Initialized	_	_	_	_	_
TCNT_1	Initialized	_	_		_	_
TCR_X	Initialized	_	_	_	_	_
TCSR_X	Initialized	_	_	_	_	_
TICRR	Initialized	_	_	_	_	_
TICRF	Initialized	_	_	_	_	_
TCNT_X	Initialized	_	_	_	_	_
TCORC	Initialized	_	_	_	_	_
TCORA_X	Initialized	_	_	_	_	_
TCORB_X	Initialized	_	_	_	_	_
TCONRI	Initialized		_	_	_	_
TCONRS	Initialized		_		_	_

п г 900	rzrin (Reau)
H'F907	P2PCR
H'F910	P3DDR
H'F911	P4DDR
H'F912	P3DR
H'F913	P4DR
H'F914	P3PIN (Read)
H'F915	P4PIN (Read)
H'F916	P3PCR
H'F920	P5DDR
H'F921	P6DDR
H'F922	P5DR
H'F923	P6DR
H'F924	P5PIN (Read)
H'F925	P6PIN (Read)
H'F92B	P6NCE
H'F92D	P6NCMC
H'F92F	P6NCCS
H'F931	P8DDR
H'F933	P8DR
H'F934	P7PIN (Read)
H'F935	P8PIN (Read)
H'F940	P9DDR
H'F942	P9DR

Rev. 2.00 Sep. 28, 2009 Page 912 of 994 REJ09B0452-0200

пгэээ	FDFIN (Reau)
H'F957	PBPCR
H'F960	PCDDR
H'F961	PDDDR
H'F962	PCODR
H'F963	PDODR
H'F964	PCPIN (Read)
H'F965	PDPIN (Read)
H'F966	PCPCR
H'F967	PDPCR
H'F968	PCNOCR
H'F969	PDNOCR
H'F96A	PCNCE
H'F96C	PCNCMC
H'F96E	PCNCCS
H'F971	PFDDR
H'F973	PFODR
H'F974	PEPIN (Read)
H'F975	PFPIN (Read)
H'F977	PFPCR
H'F979	PFNOCR
H'F980	PGDDR
H'F981	PHDDR
H'F982	PGODR

111 300			
H'F98E	PGNCCS		
H'F990	PIDDR	No condition	
H'F991	PJDDR		
H'F992	PIODR		
H'F993	PJODR		
H'F994	PIPIN (Read)		
H'F995	PJPIN (Read)		
H'F996	PIPCR		
H'F997	PJPCR		
H'F998	PINOCR		
H'F999	PJNOCR		
H'FA40	CCR1	MSTPA3 = 0	CIR
H'FA41	CCR2		
H'FA42	CSTR		
H'FA43	CEIR		
H'FA44	BRR		
H'FA45	CIRRDR0 to 7		
H'FA46	HHMIN		
H'FA48	HHMAX		
H'FA4A	HLMIN		
H'FA4B	HLMAX		
H'FA4C	DTOMIN		
H'FA4D	DTOMAX		
H'FA4E	DT1MIN		

Rev. 2.00 Sep. 28, 2009 Page 914 of 994

REJ09B0452-0200

	IDFICK_0		
H'FB4A	TDPICRF_0		
H'FB4C	TDPCSR_0		
H'FB4D	TDPCR1_0		
H'FB4E	TDPIER_0		
H'FB4F	TDPCR2_0		
H'FB50	TDPPDMN_0		
H'FB60	TDPCNT_1	MSTPA5 = 0	TDP_1
H'FB62	TDPWDMX_1		
H'FB64	TDPWDMN_1		
H'FB66	TDPPDMX_1		
H'FB68	TDPICR_1		
H'FB6A	TDPICRF_1		
H'FB6C	TDPCSR_1		
H'FB6D	TDPCR1_1		
H'FB6E	TDPIER_1		
H'FB6F	TDPCR2_1		
H'FB70	TDPPDMN_1		
H'FB80	TDPCNT_1	MSTPA4 = 0	TDP_2
H'FB82	TDPWDMX_1		
H'FB84	TDPWDMN_1		
H'FB86	TDPPDMX_1		
H'FB88	TDPICR_1		

Renesas

пгвог			
H'FBC4	TCMICR_0		
H'FBC6	TCMICRF_0		
H'FBC8	TCMCSR_0		
H'FBC9	TCMCR_0		
H'FBCA	TCMIER_0		
H'FBCC	TCMMINCM_0		
H'FBD0	TCMCNT_1	MSTPB1 = 0	TCM_1
H'FBD2	TCMMLCM_1		
H'FBD4	TCMICR_1		
H'FBD6	TCMICRF_1		
H'FBD8	TCMCSR_1		
H'FBD9	TCMCR_1		
H'FBDA	TCMIER_1		
H'FBDC	TCMMINCM_1		
H'FBE0	TCMCNT_2	MSTPB2 = 0	TCM_2
H'FBE2	TCMMLCM_2		
H'FBE4	TCMICR_2		
H'FBE6	TCMICRF_2		
H'FBE8	TCMCSR_2		
H'FBE9	TCMCR_2		
H'FBEA	TCMIER_2		
H'FBEC	TCMMINCM_2]	

Rev. 2.00 Sep. 28, 2009 Page 916 of 994 REJ09B0452-0200

RENESAS

пгыс			
H'FC00	ADDRA	MSTP9 = 0	A/D converter
H'FC02	ADDRB		
H'FC04	ADDRC		
H'FC06	ADDRD		
H'FC08	ADDRE		
H'FC0A	ADDRF		
H'FC0C	ADDRG		
H'FC0E	ADDRH		
H'FC10	ADCSR		
H'FC11	ADCR		
H'FC20	FRBR	MSTPB3 = 0	SCIF
H'FC20	FTHR		
H'FC20	FDLL		
H'FC21	FIER		
H'FC21	FDLH		
H'FC22	FIIR		
H'FC22	FFCR		
H'FC23	FLCR		
H'FC24	FMCR		
H'FC25	FLSR		
H'FC26	FMSR		
H'FC27	FSCR		
H'FC28	SCIFCR		

Renesas

пгсэл	FOIGERT
H'FC58	FSIGPR2
H'FC59	FSIGPR3
H'FC5A	FSIGPR4
H'FC5B	FSIGPR5
H'FC5C	FSIGPR6
H'FC5D	FSIGPR7
H'FC5E	FSIGPR8
H'FC5F	FSIGPR9
H'FC60	FSIGPRA
H'FC61	FSIGPRB
H'FC62	FSIGPRC
H'FC63	FSIGPRD
H'FC64	FSIGPRE
H'FC65	FSIGPRF
H'FC66	SLCR
H'FC67	FSIARH
H'FC68	FSIARM
H'FC69	FSIARL
H'FC6A	FSIWDRHH
H'FC6B	FSIWDRHL
H'FC6C	FSIWDRLH
H'FC6D	FSIWDRLL
H'FC6E	FSILSTR2

Rev. 2.00 Sep. 28, 2009 Page 918 of 994 REJ09B0452-0200

пгсэо	-SILDK0		
H'FC99	FSITDR1		
H'FC9A	FSITDR2		
H'FC9B	FSITDR3		
H'FC9C	FSITDR4		
H'FC9D	FSITDR5		
H'FC9E	FSITDR6		
H'FC9F	FSITDR7		
H'FCA0	FSIRDR		
H'FD00	PWMREG0_A	MSTPB0 = 0	PWMU_A
H'FD01	PWMPRE0_A		
H'FD02	PWMREG1_A		
H'FD03	PWMPRE1_A		
H'FD04	PWMREG2_A		
H'FD05	PWMPRE2_A		
H'FD06	PWMREG3_A		
H'FD07	PWMPRE3_A		
H'FD08	PWMREG4_A		
H'FD09	PWMPRE4_A		
H'FD0A	PWMREG5_A		
H'FD0B	PWMPRE5_A		
H'FD0C	PWMCONA_A		
H'FD0D	PWMCONB_A		
H'FD0E	PWMCONC_A		
H'FD0F	PWMCOND_A		

Renesas

пгон	FVVIVIFRE3_D		
H'FD18	PWMREG4_B		
H'FD19	PWMPRE4_B		
H'FD1A	PWMREG5_B		
H'FD1B	PWMPRE5_B		
H'FD1C	PWMCONA_B		
H'FD1D	PWMCONB_B		
H'FD1E	PWMCONC_B		
H'FD1F	PWMCOND_B		
H'FD3A	SYTSR0	No condition	SYSTEM
H'FD3B	SYTSR1		
H'FD40	TCR_1	MSTP1 = 0	TPU_1
H'FD41	TMDR_1		
H'FD42	TIOR_1		
H'FD44	TIER_1		
H'FD45	TSR_1		
H'FD46	TCNT_1		
H'FD48	TGRA_1		
H'FD4A	TGRB_1		

Rev. 2.00 Sep. 28, 2009 Page 920 of 994 REJ09B0452-0200

пгооз	LADR4L		
H'FDD6	IDR4		
H'FDD7	ODR4		
H'FDD8	STR4		
H'FDD9	HICR4		
H'FDDA	SIRQCR2		
H'FDDB	SIRQCR3		
H'FE00	P6NCE	PORTS = 0	PORT
H'FE01	P6NCMC		
H'FE02	P6NCCS		
H'FE03	PCNCE		
H'FE04	PCNCMC		
H'FE05	PCNCCS		
H'FE06	PGNCE		
H'FE07	PGNCMC		
H'FE08	PGNCCS		
H'FE0C	PHPIN (Read)		
	PHDDR (Write)		
H'FE0D	PHODR		
H'FE0E	PHNOCR		

пгето	PDNOCK		
H'FE20	TWR0MW	MSTP0 = 0	LPC
	TWR0SW		
H'FE21	TWR1		
H'FE22	TWR2		
H'FE23	TWR3		
H'FE24	TWR4		
H'FE25	TWR5		
H'FE26	TWR6		
H'FE27	TWR7		
H'FE28	TWR8		
H'FE29	TWR9		
H'FE2A	TWR10		
H'FE2B	TWR11		
H'FE2C	TWR12		
H'FE2D	TWR13		
H'FE2E	TWR14		
H'FE2F	TWR15		
H'FE30	IDR3		
H'FE31	ODR3		

Rev. 2.00 Sep. 28, 2009 Page 922 of 994 REJ09B0452-0200

HFE39	ODKI		
H'FE3A	STR1		
H'FE3B	SIRQCR4		
H'FE3C	IDR2		
H'FE3D	ODR2		
H'FE3E	STR2		
H'FE3F	HISEL		
H'FE40	HICR0		
H'FE41	HICR1		
H'FE42	HICR2		
H'FE43	HICR3		
H'FE45	WUEMR	No condition	INT
H'FE46	PGODR	PORTS = 0	PORT
H'FE47	PGPIN (Read)		
	PGDDR (Write)		
H'FE49	PFODR		
H'FE4A	PEPIN (Read) (write prohibited)		
H'FE4B	PFPIN (Read)		
H'FE4C	PCODR		
H'FE4D	PDODR		
H'FE4E	PCPIN (Read)		
	PCDDR (Write)		
H'FE4F	PDPIN (Read)		
	PDDDR (Write)		

Renesas

	IGRA_U		
H'FE5A	TGRB_0		
H'FE5C	TGRC_0		
H'FE5E	TGRD_0		
H'FE70	TCR_2		TPU_2
H'FE71	TMDR_2		
H'FE72	TIOR_2		
H'FE74	TIER_2		
H'FE75	TSR_2		
H'FE76	TCNT_2		
H'FE78	TGRA_2		
H'FE7A	TGRB_2		
H'FE7D	SYSCR3	No condition	SYSTEM
H'FE7E	MSTPCRA		
H'FE7F	MSTPCRB		
H'FE81	KMIMR (RELOCATE = 1)		INT
H'FE82	KMPCR (RELOCATE = 1)		PORT
H'FE83	KMIMRA (RELOCATE = 1)		INT
H'FE84	WUESCR		
H'FE85	WUESR]	
H'FE86	WER		
H'FE87	ICRD		

Rev. 2.00 Sep. 28, 2009 Page 924 of 994 REJ09B0452-0200

пгеог	SAR_2			
H'FEA0	DACR (RELOCATE = 1)	MSTP11 = 0 $MSTPA1 = 0$	REGS in DACNT/DADRB = 1	PWMX
	DADRAH (RELOCATE = 1)		REGS in DACNT/DADRB = 0	
H'FEA1	DADRAL (RELOCATE = 1)			
H'FEA6	DADRBH (RELOCATE = 1)			
	DACNTH (RELOCATE = 1)		REGS in DACNT/DADRB = 1	
H'FEA7	DADRBL (RELOCATE = 1)		REGS in DACNT/DADRB = 0	
	DACNTL (RELOCATE = 1)		REGS in DACNT/DADRB = 1	
H'FEA8	FCCS	FLSHE = 1		ROM
H'FEA9	FPCS			
H'FEAA	FECS			
H'FEAC	FKEY			
H'FEAD	FMATS			
H'FEAE	FTDAR			

пгесэ	NDIR_2			
H'FEC6	TCRXY	MSTP8 = 0		TMR_XY
H'FEC8	TCR_Y (RELOCATE = 1)			TMR_Y
H'FEC9	TCSR_Y (RELOCATE = 1)			
H'FECA	TCORA_Y (RELOCATE = 1)			
H'FECB	TCORB_Y (RELOCATE = 1)			
H'FECC	TCNT_Y (RELOCATE = 1)			
H'FECE	ICDR_1 (RELOCATE = 1)	MSTP3 = 0	ICE in ICCR_1 = 1	IIC_1
	SARX_1 (RELOCATE = 1)		ICE in ICCR_1 = 0	
H'FECF	ICMR_1 (RELOCATE = 1)		ICE in ICCR_1 = 1	
	SAR_1 (RELOCATE = 1)		ICE in ICCR_1 = 0	
H'FED0	ICCR_1 (RELOCATE = 1)			
H'FED1	ICSR_1 (RELOCATE = 1)			

Rev. 2.00 Sep. 28, 2009 Page 926 of 994 REJ09B0452-0200

пгерв	KBCKZ_U		
H'FEDC	KBCRH_1		
H'FEDD	KBCRL_1		
H'FEDE	KBBR_1		
H'FEDF	KBCR2_1		
H'FEE0	KBCRH_2		
H'FEE1	KBCRL_2		
H'FEE2	KBBR_2		
H'FEE3	KBCR2_2		
H'FEE6	ICRES_0	MSTP4 = 0, IICE in STCR = 1	IIC_0
H'FEE8	ICRA	No condition	INT
H'FEE9	ICRB		
H'FEEA	ICRC		
H'FEEB	ISR		
H'FEEC	ISCRH		
H'FEED	ISCRL		
H'FEF4	ABRKCR		
H'FEF5	BARA		
H'FEF6	BARB		
H'FEF7	BARC		
H'FEF8	IER16		
H'FEF9	ISR16]	
H'FEFA	ISCR16H		
H'FEFB	ISCR16L		

Renesas

	SBYCR (RELOCATE = 1)	No condition	
H'FF85	LPWRCR (RELOCATE = 0)	FLSHE in STCR = 0	
	LPWRCR (RELOCATE = 1)	No condition	
H'FF86	MSTPCRH (RELOCATE = 0)	FLSHE in STCR = 0	
	MSTPCRH (RELOCATE = 1)	No condition	
H'FF87	MSTPCRL (RELOCATE = 0)	FLSHE in STCR = 0	
	MSTPCRL (RELOCATE = 1)	No condition	
H'FF88	SMR_1 (RELOCATE = 1)	MSTP6 = 0	SCI_1
	SMR_1 (RELOCATE = 0)	MSTP6 = 0, IICE in STCR = 0	
	ICCR_1 (RELOCATE = 0)	MSTP3 = 0, IICE in STCR = 1	IIC_1
H'FF89	BRR_1 (RELOCATE = 1)	MSTP6 = 0	SCI_1
	BRR_1 (RELOCATE = 0)	MSTP6 = 0, IICE in STCR = 0	
	ICSR_1 (RELOCATE = 0)	MSTP3 = 0, IICE in STCR = 1	IIC_1

Rev. 2.00 Sep. 28, 2009 Page 928 of 994 REJ09B0452-0200

RENESAS

	ICDR_1 (RELOCATE = 0)	MSTP3 = 0 IICE in STCR =	ICE in ICCR_1 = 1	IIC_1
	SARX_1 (RELOCATE = 0)]1	ICE in ICCR_1 = 0	
H'FF8F	ICMR_1 (RELOCATE = 0)		ICE in ICCR_1 = 1	
	SAR_1 (RELOCATE = 0)		ICE in ICCR_1 = 0	
H'FFA0	DADRAH (RELOCATE = 0)	MSTP11 = 0 MSTPA1 = 0	REGS in DACNT/ DADRB = 0	PWMX
	DACR (RELOCATE = 0)	IICE in STCR =	REGS in DACNT/ DADRB = 1	
	SMR_2 (RELOCATE = 0)	MSTP5 = 0, IICE	E in STCR = 0	SCI_2
H'FFA1	DADRAL (RELOCATE = 0)	MSTP11 = 0 MSTPA1 = 0 IICE in STCR = 1	REGS in DACNT/ DADRB = 0	PWMX
	DADRBH (RELOCATE = 0)	MSTP11 = 0 MSTPA1 = 0	REGS in DACNT/ DADRB = 0	
	DACNTH (RELOCATE = 0)	IICE in STCR =	REGS in DACNT/ DADRB = 1	
	BRR_2 (RELOCATE = 0)	MSTP5 = 0, IICE	E in STCR = 0	SCI_2
H'FFA2	SCR_2	MSTP5 = 0		
H'FFA3	TDR_2]		
H'FFA4	SSR_2			

Rev. 2.00 Sep. 28, 2009 Pag RENESAS

REJ09

H'FFA9	TCNT_0 (Read)		
H'FFAA	PAODR	PORTS = 0	PORT
H'FFAB	PAPIN (Read)		
	PADDR (Write)		
H'FFAC	P1PCR		
H'FFAD	P2PCR		
H'FFAE	P3PCR		
H'FFB0	P1DDR		
H'FFB1	P2DDR		
H'FFB2	P1DR		
H'FFB3	P2DR		
H'FFB4	P3DDR		
H'FFB5	P4DDR		
H'FFB6	P3DR		
H'FFB7	P4DR		
H'FFB8	P5DDR		
H'FFB9	P6DDR		
H'FFBA	P5DR		
H'FFBB	P6DR		
H'FFBC	PBODR		
H'FFBD	P8DDR (Write)		
	PBPIN (Read)		

Rev. 2.00 Sep. 28, 2009 Page 930 of 994 REJ09B0452-0200

	STOCK				
H'FFC5	MDCR				
H'FFC6	BCR	No condition			BSC
H'FFC7	WSCR				
H'FFC8	TCR_0	MSTP12 = 0			TMR
H'FFC9	TCR_1				
H'FFCA	TCSR_0				
H'FFCB	TCSR_1				
H'FFCC	TCORA_0				
H'FFCD	TCORA_1	-			
H'FFCE	TCORB_0				
H'FFCF	TCORB_1	-			
H'FFD8	ICCR_0	MSTP4 = 0		No condition of	IIC_0
H'FFD9	ICSR_0	IICE in STCR = 1 (RELOCATE = 0)		IICE = 1 when RELOCATE = 1	
H'FFDE	ICDR_0	MSTP4 = 0 IICE in STCR = 1	ICE in ICCR_0 = 1		
	SARX_0	(RELOCATE = 0)	ICE in ICCR_0 = 0		
H'FFDF	ICMR_0	MSTP4 = 0 IICE in STCR = 1	ICE in ICCR_0 = 1]	
	SAR_0	(RELOCATE = 0)	ICE in ICCR_0 = 0		

mrrro	(RELOCATE = 1)		P 0 = 0	
	TCR_X (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
	TCR_Y (RELOCATE = 0)		TMRX/Y in TCONRS = 1	TMR_Y
H'FFF1	KMIMR (RELOCATE = 0)	MSTP2 = 0 KINWUE in SYSCR = 1		INT
	TCSR_X (RELOCATE = 1)	MSTP8 = 0		TMR_X
	TCSR_X (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
	TCSR_Y (RELOCATE = 0)		TMRX/Y in TCONRS = 1	TMR_Y
H'FFF2	KMPCR (RELOCATE = 0)	MSTP2 = 0 KINWUE in SYSCR = 1		PORT
	TICRR (RELOCATE = 1)	MSTP8 = 0		TMR_X
	TICRR (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
	TCORA_Y (RELOCATE = 0)		TMRX/Y in TCONRS = 1	TMR_Y

Rev. 2.00 Sep. 28, 2009 Page 932 of 994 REJ09B0452-0200

	(RELOCATE = 1)			
	TCNT_X (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
	TCNT_Y (RELOCATE = 0)		TMRX/Y in TCONRS = 1	TMR_Y
H'FFF5	TCORC (RELOCATE = 1)	MSTP8 = 0		TMR_X
	TCORC (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
H'FFF6	TCORA_X (RELOCATE = 1)	MSTP8 = 0		
	TCORA_X (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
H'FFF7	TCORB_X (RELOCATE = 1)	MSTP8 = 0		
	TCORB_X (RELOCATE = 0)	MSTP8 = 0 KINWUE in SYSCR = 0	TMRX/Y in TCONRS = 0	
H'FFFC	TCONRI (RELOCATE = 1)	MSTP8 = 0		
	TCONRI (RELOCATE = 0)	MSTP8 = 0, KINWUE in	SYSCR = 0	
H'FFFE	TCONRS (RELOCATE = 1)	MSTP8 = 0		TMR_X, TMF
	TCONRS (RELOCATE = 0)	MSTP8 = 0, KINWUE in	SYSCR = 0	

INT	WUESR	8	H'FE85	8	2
INT	WER	8	H'FE86	8	2
INT	ICRD	8	H'FE87	8	2
INT	ICRA	8	H'FEE8	8	2
INT	ICRB	8	H'FEE9	8	2
INT	ICRC	8	H'FEEA	8	2
INT	ISR	8	H'FEEB	8	2
INT	ISCRH	8	H'FEEC	8	2
INT	ISCRL	8	H'FEED	8	2
INT	KMIMR	8	H'FFF1 (RELOCATE = 0)	8	2
INT	ABRKCR	8	H'FEF4	8	2
INT	BARA	8	H'FEF5	8	2
INT	BARB	8	H'FEF6	8	2
INT	BARC	8	H'FEF7	8	2
INT	IER16	8	H'FEF8	8	2
INT	ISR16	8	H'FEF9	8	2
INT	ISCR16H	8	H'FEFA	8	2
INT	ISCR16L	8	H'FEFB	8	2
INT	ISSR16	8	H'FEFC	8	2
INT	ISSR	8	H'FEFD	8	2
INT	IER	8	H'FFC2	8	2
INT	KMIMRA	8	H'FFF3 (RELOCATE = 0)	8	2

Rev. 2.00 Sep. 28, 2009 Page 934 of 994 REJ09B0452-0200

PORT	PZDK	0	(PORTS = 1)	0	2
PORT	P1PIN	8	H'F904 (Read) (PORTS = 1)	8	2
PORT	P2PIN	8	H'F905 (Read) (PORTS = 1)	8	2
PORT	P1PCR	8	H'F906 (PORTS = 1)	8	2
PORT	P2PCR	8	H'F907 (PORTS = 1)	8	2
PORT	P3DDR	8	H'F910 (PORTS = 1)	8	2
PORT	P4DDR	8	H'F911 (PORTS = 1)	8	2
PORT	P3DR	8	H'F912 (PORTS = 1)	8	2
PORT	P4DR	8	H'F913 (PORTS = 1)	8	2
PORT	P3PIN	8	H'F914 (Read) (PORTS = 1)	8	2
PORT	P4PIN	8	H'F915 (Read) (PORTS = 1)	8	2
PORT	P3PCR	8	H'F916 (PORTS = 1)	8	2
PORT	P5DDR	8	H'F920 (PORTS = 1)	8	2
PORT	P6DDR	8	H'F921 (PORTS = 1)	8	2

Renesas

REJ09

			(PORTS = 1)		
PORT	P6NCMC	8	H'F92D (PORTS = 1)	8	2
PORT	P6NCCS	8	H'F92F (PORTS = 1)	8	2
PORT	P8DDR	8	H'F931 (PORTS = 1)	8	2
PORT	P8DR	8	H'F933 (PORTS = 1)	8	2
PORT	P7PIN	8	H'F934 (Read) (PORTS = 1)	8	2
PORT	P8PIN	8	H'F935 (Read) (PORTS = 1)	8	2
PORT	P9DDR	8	H'F940 (PORTS = 1)	8	2
PORT	P9DR	8	H'F942 (PORTS = 1)	8	2
PORT	P9PIN	8	H'F944 (Read) (PORTS = 1)	8	2
PORT	P9PCR	8	H'F946 (PORTS = 1)	8	2
PORT	PADDR	8	H'F950 (PORTS = 1)	8	2
PORT	PBDDR	8	H'F951 (PORTS = 1)	8	2
PORT	PAODR	8	H'F952 (PORTS = 1)	8	2

Rev. 2.00 Sep. 28, 2009 Page 936 of 994 REJ09B0452-0200

			(PORTS = 1)		
PORT	PDDDR	8	H'F961 (PORTS = 1)	8	2
PORT	PCODR	8	H'F962 (PORTS = 1)	8	2
PORT	PDODR	8	H'F963 (PORTS = 1)	8	2
PORT	PCPIN	8	H'F964 (Read) (PORTS = 1)	8	2
PORT	PDPIN	8	H'F965 (Read) (PORTS = 1)	8	2
PORT	PCPCR	8	H'F966 (PORTS = 1)	8	2
PORT	PDPCR	8	H'F967 (PORTS = 1)	8	2
PORT	PCNOCR	8	H'F968 (PORTS = 1)	8	2
PORT	PDNOCR	8	H'F969 (PORTS = 1)	8	2
PORT	PCNCE	8	H'F96A (PORTS = 1)	8	2
PORT	PCNCMC	8	H'F96C (PORTS = 1)	8	2
PORT	PCNCCS	8	H'F96E (PORTS = 1)	8	2
PORT	PFDDR	8	H'F971 (PORTS = 1)	8	2

REJ09

Renesas

			(PORTS = 1)		
PORT	PGDDR	8	H'F980 (PORTS = 1)	8	2
PORT	PHDDR	8	H'F981 (PORTS = 1)	8	2
PORT	PGODR	8	H'F982 (PORTS = 1)	8	2
PORT	PHODR	8	H'F983 (PORTS = 1)	8	2
PORT	PGPIN	8	H'F984 (Read) (PORTS = 1)	8	2
PORT	PHPIN	8	H'F985 (Read) (PORTS = 1)	8	2
PORT	PHPCR	8	H'F987 (PORTS = 1)	8	2
PORT	PGNOCR	8	H'F988 (PORTS = 1)	8	2
PORT	PHNOCR	8	H'F989 (PORTS = 1)	8	2
PORT	PGNCE	8	H'F98A (PORTS = 1)	8	2
PORT	PGNCMC	8	H'F98C (PORTS = 1)	8	2
PORT	PGNCCS	8	H'F98E (PORTS = 1)	8	2
PORT	PIDDR	8	H'F990	8	2
PORT	PJDDR	8	H'F991	8	2

Rev. 2.00 Sep. 28, 2009 Page 938 of 994 REJ09B0452-0200

	TONOL	0	(PORTS = 0)	0	۷
PORT	P6NCMC	8	H'FE01 (PORTS = 0)	8	2
PORT	P6NCCS	8	H'FE02 (PORTS = 0)	8	2
PORT	PCNCE	8	H'FE03 (PORTS = 0)	8	2
PORT	PCNCMC	8	H'FE04 (PORTS = 0)	8	2
PORT	PCNCCS	8	H'FE05 (PORTS = 0)	8	2
PORT	PGNCE	8	H'FE06 (PORTS = 0)	8	2
PORT	PGNCMC	8	H'FE07 (PORTS = 0)	8	2
PORT	PGNCCS	8	H'FE08 (PORTS = 0)	8	2
PORT	PHPIN	8	H'FE0C (Read) (PORTS = 0)	8	2
PORT	PHDDR	8	H'FE0C (Write) (PORTS = 0)	8	2
PORT	PHODR	8	H'FE0D (PORTS = 0)	8	2
PORT	PHNOCR	8	H'FE0E (PORTS = 0)	8	2

RENESAS

REJ09

			(PORTS = 0)		
PORT	PFNOCR	8	H'FE19 (PORTS = 0)	8	2
PORT	PCNOCR	8	H'FE1C (PORTS = 0)	8	2
PORT	PDNOCR	8	H'FE1D (PORTS = 0)	8	2
PORT	PGODR	8	H'FE46 (PORTS = 0)	8	2
PORT	PGPIN	8	H'FE47 (Read) (PORTS = 0)	8	2
PORT	PGDDR	8	H'FE47 (Write) (PORTS = 0)	8	2
PORT	PFODR	8	H'FE49 (PORTS = 0)	8	2
PORT	PEPIN	8	H'FE4A (Read) (write prohibited) (PORTS = 0)	8	2
PORT	PFPIN	8	H'FE4B (Read) (PORTS = 0)	8	2
PORT	PFDDR	8	H'FE4B (Write) (PORTS = 0)	8	2

Rev. 2.00 Sep. 28, 2009 Page 940 of 994 REJ09B0452-0200

			(PORTS = 0)		
PORT	PDPIN	8	H'FE4F (Read) (PORTS = 0)	8	2
PORT	PDDDR	8	H'FE4F (Write) (PORTS = 0)	8	2
PORT	KMPCR	8	H'FE82 (RELOCATE = 1) (PORTS = 0)	8	2
PORT	PAODR	8	H'FFAA (PORTS = 0)	8	2
PORT	PAPIN	8	H'FFAB (Read) (PORTS = 0)	8	2
PORT	PADDR	8	H'FFAB (Write) (PORTS = 0)	8	2
PORT	P1PCR	8	H'FFAC (PORTS = 0)	8	2
PORT	P2PCR	8	H'FFAD (PORTS = 0)	8	2
PORT	P3PCR	8	H'FFAE (PORTS = 0)	8	2
PORT	P1DDR	8	H'FFB0 (PORTS = 0)	8	2
PORT	P2DDR	8	H'FFB1 (PORTS = 0)	8	2
PORT	P1DR	8	H'FFB2 (PORTS = 0)	8	2

RENESAS

REJ09

			(PORTS = 0)		
PORT	P5DDR	8	H'FFB8 (PORTS = 0)	8	2
PORT	P6DDR	8	H'FFB9 (PORTS = 0)	8	2
PORT	P5DR	8	H'FFBA (PORTS = 0)	8	2
PORT	P6DR	8	H'FFBB (PORTS = 0)	8	2
PORT	PBODR	8	H'FFBC (PORTS = 0)	8	2
PORT	P8DDR	8	H'FFBD (Write) (PORTS = 0)	8	2
PORT	PBPIN	8	H'FFBD (Read) (PORTS = 0)	8	2
PORT	P7PIN	8	H'FFBE (Read) (PORTS = 0)	8	2
PORT	PBDDR	8	H'FFBE (Write) (PORTS = 0)	8	2
PORT	P8DR	8	H'FFBF (PORTS = 0)	8	2
PORT	P9DDR	8	H'FFC0 (PORTS = 0)	8	2
PORT	P9DR	8	H'FFC1 (PORTS = 0)	8	2
PORT	KMPCR	8	H'FFF2 (RELOCATE = 0) (PORTS = 0)	8	2

Rev. 2.00 Sep. 28, 2009 Page 942 of 994

RENESAS

REJ09B0452-0200

		0		0	2
TDP_0	TDPIER_0	8	H'FB4E	8	2
TDP_0	TDPCR2_0	8	H'FB4F	8	2
TDP_0	TDPPDMN_0	16	H'FB50	16	2
TDP_1	TDPCNT_1	16	H'FB60	16	2
TDP_1	TDPWDMX_1	16	H'FB62	6	2
TDP_1	TDPWDMN_1	16	H'FB64	16	2
TDP_1	TDPPDMX_1	16	H'FB66	16	2
TDP_1	TDPICR_1	16	H'FB68	16	2
TDP_1	TDPICRF_1	16	H'FB6A	16	2
TDP_1	TDPCSR_1	8	H'FB6C	8	2
TDP_1	TDPCR1_1	8	H'FB6D	8	2
TDP_1	TDPIER_1	8	H'FB6E	8	2
TDP_1	TDPCR2_1	8	H'FB6F	8	2
TDP_1	TDPPDMN_1	16	H'FB70	16	2
TDP_2	TDPCNT_2	16	H'FB80	16	2
TDP_2	TDPWDMX_2	16	H'FB82	16	2
TDP_2	TDPWDMN_2	16	H'FB84	16	2
TDP_2	TDPPDMX_2	16	H'FB86	16	2
TDP_2	TDPICR_2	16	H'FB88	16	2
TDP_2	TDPICRF_2	16	H'FB8A	16	2
TDP_2	TDPCSR_2	8	H'FB8C	8	2
TDP_2	TDPCR1_2	8	H'FB8D	8	2
TDP_2	TPDIER_2	8	H'FB8E	8	2

REJ09

Renesas

		0	111 000	0	2
TCM_0	TCMIER_0	8	H'FBCA	8	2
TCM_0	TCMMINCM_0	16	H'FBCC	16	2
TCM_1	TCMCNT_1	16	H'FBD0	16	2
TCM_1	TCMMLCM_1	16	H'FBD2	16	2
TCM_1	TCMICR_1	16	H'FBD4	16	2
TCM_1	TCMICRF_1	16	H'FBD6	16	2
TCM_1	TCMCSR_1	8	H'FBD8	8	2
TCM_1	TCMCR_1	8	H'FBD9	8	2
TCM_1	TCMIER_1	8	H'FBDA	8	2
TCM_1	TCMMINCM_1	16	H'FBDC	16	2
TCM_2	TCMCNT_2	16	H'FBE0	16	2
TCM_2	TCMMLCM_2	16	H'FBE2	16	2
TCM_2	TCMICR_2	16	H'FBE4	16	2
TCM_2	TCMICRF_2	16	H'FBE6	16	2
TCM_2	TCMCSR_2	8	H'FBE8	8	2
TCM_2	TCMCR_2	8	H'FBE9	8	2
TCM_2	TCMIER_2	8	H'FBEA	8	2
TCM_2	TCMMINCM_2	16	H'FBEC	16	2
TCM_3	TCMCNT_3	16	H'FBF0	16	2
TCM_3	TCMMLCM_3	16	H'FBF2	16	2
TCM_3	TCMICR_3	16	H'FBF4	16	2
TCM_3	TCMICRF_3	16	H'FBF6	16	2
TCM_3	TCMCSR_3	8	H'FBF8	8	2

Rev. 2.00 Sep. 28, 2009 Page 944 of 994 REJ09B0452-0200

1.01		0	111 00-	0	2
FSI	FSICMDR	8	H'FC55	8	2
FSI	FSILSTR1	8	H'FC56	8	2
FSI	FSIGPR1	8	H'FC57	8	2
FSI	FSIGPR2	8	H'FC58	8	2
FSI	FSIGPR3	8	H'FC59	8	2
FSI	FSIGPR4	8	H'FC5A	8	2
FSI	FSIGPR5	8	H'FC5B	8	2
FSI	FSIGPR6	8	H'FC5C	8	2
FSI	FSIGPR7	8	H'FC5D	8	2
FSI	FSIGPR8	8	H'FC5E	8	2
FSI	FSIGPR9	8	H'FC5F	8	2
FSI	FSIGPRA	8	H'FC60	8	2
FSI	FSIGPRB	8	H'FC61	8	2
FSI	FSIGPRC	8	H'FC62	8	2
FSI	FSIGPRD	8	H'FC63	8	2
FSI	FSIGPRE	8	H'FC64	8	2
FSI	FSIGPRF	8	H'FC65	8	2
FSI	SLCR	8	H'FC66	8	2
FSI	FSIARH	8	H'FC67	8	2
FSI	FSIARM	8	H'FC68	8	2
FSI	FSIARL	8	H'FC69	8	2
FSI	FSIWDRHH	8	H'FC6A	8	2
FSI	FSIWDRHL	8	H'FC6B	8	2

REJ09

Renesas

101		0	111 00-	0	2
FSI	FSIPPINS	8	H'FC95	8	2
FSI	FSISTR	8	H'FC96	8	2
FSI	FSITDR0	8	H'FC98	8	2
FSI	FSITDR1	8	H'FC99	8	2
FSI	FSITDR2	8	H'FC9A	8	2
FSI	FSITDR3	8	H'FC9B	8	2
FSI	FSITDR4	8	H'FC9C	8	2
FSI	FSITDR5	8	H'FC9D	8	2
FSI	FSITDR6	8	H'FC9E	8	2
FSI	FSITDR7	8	H'FC9F	8	2
FSI	FSIRDR	8	H'FCA0	8	2
CIR	CCR1	8	H'FA40	8	2
CIR	CCR2	8	H'FA41	8	2
CIR	CSTR	8	H'FA42	8	2
CIR	CEIR	8	H'FA43	8	2
CIR	BRR	8	H'FA44	8	2
CIR	CIRRDR0 to 7	8	H'FA45	8	2
CIR	HHMIN	16	H'FA46	8	2
CIR	HHMAX	16	H'FA48	8	2
CIR	HLMIN	8	H'FA4A	8	2
CIR	HLMAX	8	H'FA4B	8	2
CIR	DTOMIN	8	H'FA4C	8	2
CIR	DTOMAX	8	H'FA4D	8	2

Rev. 2.00 Sep. 28, 2009 Page 946 of 994 REJ09B0452-0200

PWMU_A	PWMREG2	8	H'FD04	8	2
PWMU_A	PWMPRE2	8	H'FD05	8	2
PWMU_A	PWMREG3	8	H'FD06	8	2
PWMU_A	PWMPRE3	8	H'FD07	8	2
PWMU_A	PWMREG4	8	H'FD08	8	2
PWMU_A	PWMPRE4	8	H'FD09	8	2
PWMU_A	PWMREG5	8	H'FD0A	8	2
PWMU_A	PWMPRE5	8	H'FD0B	8	2
PWMU_A	PWMCONA	8	H'FD0C	8	2
PWMU_A	PWMCONB	8	H'FD0D	8	2
PWMU_A	PWMCONC	8	H'FD0E	8	2
PWMU_A	PWMCOND	8	H'FD0F	8	2
PWMU_B	PWMREG0	8	H'FD10	8	2
PWMU_B	PWMPRE0	8	H'FD11	8	2
PWMU_B	PWMREG1	8	H'FD12	8	2
PWMU_B	PWMPRE1	8	H'FD13	8	2
PWMU_B	PWMREG2	8	H'FD14	8	2
PWMU_B	PWMPRE2	8	H'FD15	8	2
PWMU_B	PWMREG3	8	H'FD16	8	2
PWMU_B	PWMPRE3	8	H'FD17	8	2
PWMU_B	PWMREG4	8	H'FD18	8	2
PWMU_B	PWMPRE4	8	H'FD19	8	2
PWMU_B	PWMREG5	8	H'FD1A	8	2
PWMU_B	PWMPRE5	8	H'FD1B	8	2

Renesas

REJ09

PWMX	DADRAL	8	H'FEA1 (RELOCATE = 1)	8	2
PWMX	DADRBH	8	H'FEA6 (RELOCATE = 1)	8	2
PWMX	DACNTH	8	H'FEA6 (RELOCATE = 1)	8	2
PWMX	DADRBL	8	H'FEA7 (RELOCATE = 1)	8	2
PWMX	DACNTL	8	H'FEA7 (RELOCATE = 1)	8	2
PWMX	PCSR	8	H'FF82	8	2
PWMX	DACR	8	H'FFA0 (RELOCATE = 0)	8	2
PWMX	DADRAH	8	H'FFA0 (RELOCATE = 0)	8	2
PWMX	DADRAL	8	H'FFA1 (RELOCATE = 0)	8	2
PWMX	DACNTH	8	H'FFA6 (RELOCATE = 0)	8	2
PWMX	DADRBH	8	H'FFA6 (RELOCATE = 0)	8	2
PWMX	DACNTL	8	H'FFA7 (RELOCATE = 0)	8	2
PWMX	DADRBL	8	H'FFA7 (RELOCATE = 0)	8	2
TPU_0	TCR_0	8	H'FE50	8	2
TPU_0	TMDR_0	8	H'FE51	8	2

Rev. 2.00 Sep. 28, 2009 Page 948 of 994 REJ09B0452-0200

110_0		10	11 200	10	2
TPU_0	TGRD_0	16	H'FE5E	16	2
TPU_1	TCR_1	8	H'FD40	8	2
TPU_1	TMDR_1	8	H'FD41	8	2
TPU_1	TIOR_1	8	H'FD42	8	2
TPU_1	TIER_1	8	H'FD44	8	2
TPU_1	TSR_1	8	H'FD45	8	2
TPU_1	TCNT_1	16	H'FD46	16	2
TPU_1	TGRA_1	16	H'FD48	16	2
TPU_1	TGRB_1	16	H'FD4A	16	2
TPU_2	TCR_2	8	H'FE70	8	2
TPU_2	TMDR_2	8	H'FE71	8	2
TPU_2	TIOR_2	8	H'FE72	8	2
TPU_2	TIER_2	8	H'FE74	8	2
TPU_2	TSR_2	8	H'FE75	8	2
TPU_2	TCNT_2	16	H'FE76	16	2
TPU_2	TGRA_2	16	H'FE78	16	2
TPU_2	TGRB_2	16	H'FE7A	16	2
TPU	TSTR	8	H'FEB0	8	2
common					
TPU	TSYR	8	H'FEB1	8	2
common					
TMR_0	TCR_0	8	H'FFC8	8	2
TMR_0	TCSR_0	8	H'FFCA	8	2
TMR_0	TCORA_0	8	H'FFCC	16	2

Renesas

REJ09

		0		0	2
TMR_X	TCSR_X	8	H'FFF1	8	2
TMR_X	TICRR	8	H'FFF2	8	2
TMR_X	TICRF	8	H'FFF3	8	2
TMR_X	TCNT_X	8	H'FFF4	8	2
TMR_X	TCORC	8	H'FFF5	8	2
TMR_X	TCORA_X	8	H'FFF6	8	2
TMR_X	TCORB_X	8	H'FFF7	8	2
TMR_X	TCONRI	8	H'FFFC	8	2
TMR_Y	TCR_Y	8	H'FEC8 (RELOCATE = 1)	8	2
TMR_Y	TCSR_Y	8	H'FEC9 (RELOCATE = 1)	8	2
TMR_Y	TCORA_Y	8	H'FECA (RELOCATE = 1)	8	2
TMR_Y	TCORB_Y	8	H'FECB (RELOCATE = 1)	8	2
TMR_Y	TCNT_Y	8	H'FECC (RELOCATE = 1)	8	2
TMR_Y	TCR_Y	8	H'FFF0 (RELOCATE = 0)	8	2
TMR_Y	TCSR_Y	8	H'FFF1 (RELOCATE = 0)	8	2
TMR_Y	TCORA_Y	8	H'FFF2 (RELOCATE = 0)	8	2
TMR_Y	TCORB_Y	8	H'FFF3 (RELOCATE = 0)	8	2

Rev. 2.00 Sep. 28, 2009 Page 950 of 994 REJ09B0452-0200

WDT_0	TCNT_0	8	H'FFA8 (Write)	16	2
WDT_0	TCNT_0	8	H'FFA9 (Read)	8	2
WDT_1	TCSR_1	8	H'FFEA (Write)	16	2
WDT_1	TCSR_1	8	H'FFEA (Read)	8	2
WDT_1	TCNT_1	8	H'FFEA (Write)	16	2
WDT_1	TCNT_1	8	H'FFEB (Read)	8	2
SCI_1	SMR_1	8	H'FF88	8	2
SCI_1	BRR_1	8	H'FF89	8	2
SCI_1	SCR_1	8	H'FF8A	8	2
SCI_1	TDR_1	8	H'FF8B	8	2
SCI_1	SSR_1	8	H'FF8C	8	2
SCI_1	RDR_1	8	H'FF8D	8	2
SCI_1	SCMR_1	8	H'FF8E	8	2
SCI2	SMR_2	8	H'FFA0	8	2
SCI2	BRR_2	8	H'FFA1	8	2
SCI2	SCR_2	8	H'FFA2	8	2
SCI2	TDR_2	8	H'FFA3	8	2
SCI2	SSR_2	8	H'FFA4	8	2
SCI2	RDR_2	8	H'FFA5	8	2
SCI2	SCMR_2	8	H'FFA6	8	2
IIC_0	ICXR_0	8	H'FED4	8	2
IIC_0	ICCR_0	8	H'FFD8	8	2
IIC_0	ICSR_0	8	H'FFD9	8	2
IIC_0	ICDR_0	8	H'FFDE	8	2

Renesas

Rev. 2.00 Sep. 28, 2009 Pag

REJ09

			(RELOCATE = 1)		
IIC_1	SAR_1	8	H'FECF (RELOCATE = 1)	8	2
IIC_1	ICCR_1	8	H'FED0 (RELOCATE = 1)	8	2
IIC_1	ICSR_1	8	H'FED1 (RELOCATE = 1)	8	2
IIC_1	ICXR_1	8	H'FED5	8	2
IIC_1	ICCR_1	8	H'FF88 (RELOCATE = 0)	8	2
IIC_1	ICSR_1	8	H'FF89 (RELOCATE = 0)	8	2
IIC_1	ICDR_1	8	H'FF8E (RELOCATE = 0)	8	2
IIC_1	SARX_1	8	H'FF8E (RELOCATE = 0)	8	2
IIC_1	ICMR_1	8	H'FF8F (RELOCATE = 0)	8	2
IIC_1	SAR_1	8	H'FF8F (RELOCATE = 0)	8	2
IIC_2	ICCR_2	8	H'FE88	8	2
IIC_2	ICSR_2	8	H'FE89	8	2
IIC_2	ICRES_2	8	H'FE8A	8	2
IIC_2	ICXR_2	8	H'FE8C	8	2
IIC_2	ICDR_2	8	H'FE8E	8	2
IIC_2	SARX_2	8	H'FE8E	8	2

Rev. 2.00 Sep. 28, 2009 Page 952 of 994 REJ09B0452-0200

102_0	RDDR_0	0		0	2
PS2_0	KBCR2_0	8	H'FEDB	8	2
PS2_1	KBCR1_1	8	H'FEC2	8	2
PS2_1	KBTR_1	8	H'FEC3	8	2
PS2_1	KBCRH_1	8	H'FEDC	8	2
PS2_1	KBCRL_1	8	H'FEDD	8	2
PS2_1	KBBR_1	8	H'FEDE	8	2
PS2_1	KBCR2_1	8	H'FEDF	8	2
PS2_2	KBCR1_2	8	H'FEC4	8	2
PS2_2	KBTR_2	8	H'FEC5	8	2
PS2_2	KBCRH_2	8	H'FEE0	8	2
PS2_2	KBCRL_2	8	H'FEE1	8	2
PS2_2	KBBR_2	8	H'FEE2	8	2
PS2_2	KBCR2_2	8	H'FEE3	8	2
PS2_3	KBCR1_3	8	H'FED2	8	2
PS2_3	KBTR_3	8	H'FED3	8	2
PS2_3	KBCRH_3	8	H'FFE0	8	2
PS2_3	KBCRL_3	8	H'FFE1	8	2
PS2_3	KBBR_3	8	H'FFE2	8	2
PS2_3	KBCR2_3	8	H'FFE3	8	2
LPC	LADR1H	8	H'FDC0	8	2
LPC	LADR1L	8	H'FDC1	8	2
LPC	LADR2H	8	H'FDC2	8	2
LPC	LADR2L	8	H'FDC3	8	2

REJ09

Renesas

		0	11.000	0	2
LPC	SIRQCR2	8	H'FDDA	8	2
LPC	SIRQCR3	8	H'FDDB	8	2
LPC	TWR0MW	8	H'FE20	8	2
LPC	TWR0SW	8	H'FE20	8	2
LPC	TWR1	8	H'FE21	8	2
LPC	TWR2	8	H'FE22	8	2
LPC	TWR3	8	H'FE23	8	2
LPC	TWR4	8	H'FE24	8	2
LPC	TWR5	8	H'FE25	8	2
LPC	TWR6	8	H'FE26	8	2
LPC	TWR7	8	H'FE27	8	2
LPC	TWR8	8	H'FE28	8	2
LPC	TWR9	8	H'FE29	8	2
LPC	TWR10	8	H'FE2A	8	2
LPC	TWR11	8	H'FE2B	8	2
LPC	TWR12	8	H'FE2C	8	2
LPC	TWR13	8	H'FE2D	8	2
LPC	TWR14	8	H'FE2E	8	2
LPC	TWR15	8	H'FE2F	8	2
LPC	IDR3	8	H'FE30	8	2
LPC	ODR3	8	H'FE31	8	2
LPC	STR3	8	H'FE32	8	2
LPC	HICR5	8	H'FE33	8	2

Rev. 2.00 Sep. 28, 2009 Page 954 of 994 REJ09B0452-0200

		0		0	2
LPC	IDR2	8	H'FE3C	8	2
LPC	ODR2	8	H'FE3D	8	2
LPC	STR2	8	H'FE3E	8	2
LPC	HISEL	8	H'FE3F	8	2
LPC	HICR0	8	H'FE40	8	2
LPC	HICR1	8	H'FE41	8	2
LPC	HICR2	8	H'FE42	8	2
LPC	HICR3	8	H'FE43	8	2
A/D converter	ADDRA	16	H'FC00	16	2
A/D converter	ADDRB	16	H'FC02	16	2
A/D converter	ADDRC	16	H'FC04	16	2
A/D converter	ADDRD	16	H'FC06	16	2
A/D converter	ADDRE	16	H'FC08	16	2
A/D converter	ADDRF	16	H'FC0A	16	2
A/D converter	ADDRG	16	H'FC0C	16	2
A/D converter	ADDRH	16	H'FC0E	16	2
A/D converter	ADCSR	8	H'FC10	8	2
A/D converter	ADCR	8	H'FC11	8	2
SCIF	FRBR	8	H'FC20	8	2
SCIF	FTHR	8	H'FC20	8	2
SCIF	FDLL	8	H'FC20	8	2
SCIF	FIER	8	H'FC21	8	2
SCIF	FDLH	8	H'FC21	8	2
SCIF	FIIR	8	H'FC22	8	2

Renesas

REJ09

KOM	1000	0		0	2
ROM	FPCS	8	H'FEA9	8	2
ROM	FECS	8	H'FEAA	8	2
ROM	FKEY	8	H'FEAC	8	2
ROM	FMATS	8	H'FEAD	8	2
ROM	FTDAR	8	H'FEAE	8	2
SYSTEM	SYSCR3	8	H'FE7D	8	2
SYSTEM	MSTPCRA	8	H'FE7E	8	2
SYSTEM	MSTPCRB	8	H'FE7F	8	2
SYSTEM	SBYCR	8	H'FF84	8	2
SYSTEM	LPWRCR	8	H'FF85	8	2
SYSTEM	MSTPCRH	8	H'FF86	8	2
SYSTEM	MSTPCRL	8	H'FF87	8	2
SYSTEM	STCR	8	H'FFC3	8	2
SYSTEM	SYSCR	8	H'FFC4	8	2
SYSTEM	MDCR	8	H'FFC5	8	2

Rev. 2.00 Sep. 28, 2009 Page 956 of 994 REJ09B0452-0200

Input voltage (except ports 7, D, A, G, I, PE4, PE2 to PE0, P97, P86, P52, and P42)	V_{in}	-0.3 to V _{cc} + 0.3
Input voltage (ports A, G, I, PE4, PE2 to PE0, P97, P86, P52, and P42)	V_{in}	–0.3 to +7.0
Input voltage (AN input is not selected for port D)	V_{in}	-0.3 to V _{cc} + 0.3
Input voltage (AN input is selected for port D)	V_{in}	-0.3 to V _{cc} +0.3 or -0.3 to AV _c +0.3 whichever is lower
Input voltage (port 7)	V_{in}	–0.3 to AV _{cc} + 0.3
Reference power supply voltage	AVref	–0.3 to AV $_{\rm cc}$ + 0.3
Analog power supply voltage	AV_{cc}	-0.3 to +4.3
Analog input voltage	V _{AN}	–0.3 to AV $_{\rm cc}$ + 0.3
	T_{opr}	-20 to +75
Operating temperature (when flash memory is programmed or erased)	T _{opr}	0 to +75
Storage temperature	T _{stg}	-55 to +125

Caution: Permanent damage to this LSI may result if absolute maximum ratings are ex Make sure the applied power supply does not exceed 4.3 V.

Note: * Voltage applied to the VCC pin. The VCL pin should not be applied a voltage.

Renesas

Rev. 2.00 Sep. 28, 2009 Pag REJ09

nom			oymbol		· yp.	max.	01111 0
Schmitt trigger	P67 to P60,	(1)	V_{T}^{-}	$V_{cc} imes 0.2$	_	_	V
input voltage	$\overline{\text{IRQ7}}$ to $\overline{\text{IRQ0}}, \overline{\text{IRQ15}}$ to $\overline{\text{IRQ8}}$						
	$\overline{\text{KIN7}}$ to $\overline{\text{KIN0}},\overline{\text{KIN15}}$ to $\overline{\text{KIN8}},$		V _T *	_	_	$V_{cc} imes 0.7$	-
	WUE15 to WUE8						_
	ExIRQ7 to ExIRQ6, and		$V_{_{T}}{}^{^{\ast}}-V_{_{T}}{}^{^{-}}$	$V_{\text{cc}} \times 0.05$	—	_	
	ExIRQ15 to ExIRQ8						_
Input high voltage	RES, NMI, MD2, MD1, and ETRST	(2)	$V_{\rm IH}$	$V_{cc} imes 0.9$	—	V _{cc} + 0.3	
	EXTAL			$V_{cc} imes 0.7$	_	V _{cc} + 0.3	_
	Port 7			$AV_{cc} imes 0.7$	_	AV_{cc} + 0.3	_
	Ports A, G, I, PE4, PE2 to PE0, P97, P86, P52, and P42			$V_{\rm cc} imes 0.7$	_	5.5	-
	Input pins other than (1) and (2) above		_	$V_{cc} imes 0.7$		V _{cc} + 0.3	_
Input low voltage	RES, MD2, MD1, and ETRST	(3)	V _{IL}	- 0.3	_	$V_{cc} imes 0.1$	-
	NMI, EXTAL, and input pins ot than (1) and (3) above	her	_	-0.3		$V_{\text{cc}} \times 0.2$	_
Output high	All output pins (except for ports	s A,	V _{oh}	$V_{cc} - 0.5$	_	_	I _o
voltage	G, I, P97, P86, P52, and P42)			V _{cc} – 1.0	—	_	I _{or}
	Ports A, G, I, P97, P86, P52, a P42* ²	ind	_	0.5			I _o
Output low	All output pins *3		V _{ol}	_	_	0.4	I _o
voltage	Ports 1, 2, 3, C, and D		_		_	1.0	I _o

Rev. 2.00 Sep. 28, 2009 Page 958 of 994 REJ09B0452-0200

leakage current (off state)	and F to J						V_{cc} – 0.5 V
Input pull-up MOS current	Ports 1 to 3, P95 to P90, ports 6, B to D, F, H, and J	- _p	20	—	150	μΑ	$V_{in} = 0 V$
Input	All pins	\boldsymbol{C}_{in}	_	_	10	pF	$V_{in} = 0 V$
capacitance							f = 1 MHz
							T _a = 25 °C
Supply current*4	Normal operation	I _{cc}	_	25	40	mA	V _{cc} = 3.0 V to 3 f = 20 MHz, all operating, high
	Sleep mode		_	20	35		$V_{cc} = 3.0 \text{ V to 3}$
							f = 20 MHz
	Standby mode			35	70	μΑ	Ta ≤ 50 °C
			_	_	200		50 °C < Ta
Analog power	During A/D conversion	AI_{cc}	_	1	2	mA	
supply current	A/D conversion standby		_	0.01	5	μΑ	$AV_{cc} = 3.0 \text{ V to}$
Reference	During A/D conversion	AI_{ref}	_	1	2	mA	
power supply current	A/D conversion standby			0.01	5	μΑ	AVref = 3.0 V t
VCC start voltage)	VCC	. —	0	0.8	V	
VCC rising edge		SVCC	_		20	ms/V	

function is selected is rated separately.

4. Current consumption values are for V_{IH} min = V_{cc} – 0.2 V and V_{IL} max = 0.2 V with all out unloaded and the on-chip pull-up MOSs in the off state.

Table 28.2 DC Characteristics (3) Using LPC Function

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

	Symbol	Min.	Max.	Unit	Te Ce
P37 to P30,	V _{IH}	$V_{cc} imes 0.5$	_	V	
P82 to P80,					
PB1, PB0					
P37 to P30,	V _{IL}	_	$V_{cc} imes 0.3$	V	
P82 to P80,					
PB1, PB0					
P37, P33 to P30,	V _{oh}	$V_{cc} imes 0.9$	_	V	I _o ,
P82 to P80,					m
PB1, PB0					
P37, P33 to P30,	V _{ol}	_	V _{cc} ×0.1	V	I _{ol}
P82 to P80,					
PB1, PB0					
	P82 to P80, PB1, PB0 P37 to P30, P82 to P80, PB1, PB0 P37, P33 to P30, P82 to P80, PB1, PB0 P37, P33 to P30, P82 to P80,	P37 to P30, V _{IH} P82 to P80, P81, PB0 P37 to P30, V _{IL} P82 to P80, P82, VIL P81, PB0 VOR P37, P33 to P30, VOH P81, PB0 VOH P37, P33 to P30, VOH P81, PB0 VOH P82 to P80, VOH P82 to P80, VOH P37, P33 to P30, P30, P37, P33 to P30, <td>$\begin{array}{cccc} P37 \ \text{to} \ P30, & V_{\ \tiny IH} & V_{\ \tiny CC} \times 0.5 \\ P82 \ \text{to} \ P80, & & & \\ PB1, \ PB0 & & & \\ P37 \ \text{to} \ P30, & V_{\ \tiny IL} & \\ P82 \ \text{to} \ P80, & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OH} & V_{\ \tiny CC} \times 0.9 \\ P82 \ \text{to} \ P80, & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OH} & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OL} & \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OL} & \\ P82 \ \text{to} \ P80, & & & \\ \end{array}$</td> <td>P37 to P30, V_{IH} V_{cc} × 0.5 — P82 to P80, – – – PB1, PB0 – V_{cc} × 0.3 – P37 to P30, V_{IL} – V_{cc} × 0.3 P82 to P80, – – – P37, P33 to P30, V_{oH} V_{cc} × 0.9 – P82 to P80, – – – P37, P33 to P30, V_{oL} – V_{cc}×0.1 P82 to P80, – – –</td> <td>$\begin{array}{cccccc} P37 \ \text{to} \ P30, & V_{\tiny IH} & V_{\tiny CC} \times 0.5 & & V \\ P82 \ \text{to} \ P80, & & & & & \\ PB1, \ PB0 & & & & & \\ P37 \ \text{to} \ P30, & V_{\tiny IL} & & V_{\tiny CC} \times 0.3 & V \\ P82 \ \text{to} \ P80, & & & & \\ PB1, \ PB0 & & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OH} & V_{\tiny CC} \times 0.9 & & V \\ P82 \ \text{to} \ P80, & & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ \end{array}$</td>	$\begin{array}{cccc} P37 \ \text{to} \ P30, & V_{\ \tiny IH} & V_{\ \tiny CC} \times 0.5 \\ P82 \ \text{to} \ P80, & & & \\ PB1, \ PB0 & & & \\ P37 \ \text{to} \ P30, & V_{\ \tiny IL} & \\ P82 \ \text{to} \ P80, & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OH} & V_{\ \tiny CC} \times 0.9 \\ P82 \ \text{to} \ P80, & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OH} & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OL} & \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\ \tiny OL} & \\ P82 \ \text{to} \ P80, & & & \\ \end{array}$	P37 to P30, V _{IH} V _{cc} × 0.5 — P82 to P80, – – – PB1, PB0 – V _{cc} × 0.3 – P37 to P30, V _{IL} – V _{cc} × 0.3 P82 to P80, – – – P37, P33 to P30, V _{oH} V _{cc} × 0.9 – P82 to P80, – – – P37, P33 to P30, V _{oL} – V _{cc} ×0.1 P82 to P80, – – –	$\begin{array}{cccccc} P37 \ \text{to} \ P30, & V_{\tiny IH} & V_{\tiny CC} \times 0.5 & & V \\ P82 \ \text{to} \ P80, & & & & & \\ PB1, \ PB0 & & & & & \\ P37 \ \text{to} \ P30, & V_{\tiny IL} & & V_{\tiny CC} \times 0.3 & V \\ P82 \ \text{to} \ P80, & & & & \\ PB1, \ PB0 & & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OH} & V_{\tiny CC} \times 0.9 & & V \\ P82 \ \text{to} \ P80, & & & \\ PB1, \ PB0 & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ P37, \ P33 \ \text{to} \ P30, & V_{\tiny OL} & & V_{\tiny CC} \times 0.1 & V \\ P82 \ \text{to} \ P80, & & & \\ \end{array}$

Rev. 2.00 Sep. 28, 2009 Page 960 of 994 REJ09B0452-0200

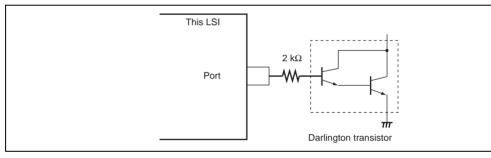
Input pull-up MOS current	$-I_{P}$	30	_	300	μΑ	$V_{in} = 0 V$
Input capacitance	C _{in}	_	—	10	pF	V _{in} = 0 V, Ta = 25 °

Table 28.3 Permissible Output Currents

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$

Item		Symbol	Min.	Тур.	N
Permissible output low current (per pin)	SCL0, SDA0, SCL1, SDA1, SCL2, SDA2, ExSCLA, ExSDAA, ExSCLB, ExSDAB, PS2AC to PS2DC, PS2AD to S2DD, and PA7 to PA4 (bus drive function selected)	I _{ol}		_	8
	Ports 1, 2, 3, C, and D	_	_		5
	Other output pins	_	_		2
Permissible output low	Total of ports 1, 2, 3, C, and D	ΣI_{OL}			4
current (total)	Total of all output pins, including the above	-	_	_	6
Permissible output high current (per pin)	All output pins	— I _{он}	_	_	2
Permissible output high current (total)	Total of all output pins	Σ — I _{он}	_		3
2. When driving	SI reliability, do not exceed the output of a Darlington transistor or LED, always ne, as show in figures 28.1 and 28.2.				

RENESAS


Rev. 2.00 Sep. 28, 2009 Pag REJ09

Input high voltage	V _{IH}	$V_{cc} imes 0.7$	_	5.5		
Input low voltage	V	-0.5	_	$V_{cc} imes 0.3$	_	
Output low voltage	V _{ol}	_	_	0.5	_	I _{oL} = 8 mA
				0.4	_	I _{oL} = 3 mA
Input capacitance	$\boldsymbol{C}_{\text{in}}$	_	—	10	рF	V _{in} = 0 V, f = 1 MH 25 °C
Three-state leakage current (off state)	_{tsi}		—	1.0	μA	$V_{in} = 0.5 \text{ to } V_{cc} - 0.5$

Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6V, $V_{ss} = 0 \text{ V}$

Applicable Pins: PS2AC to PS2DC, PS2AD to PS2DD, and PA7 to PA4 (bus drive func selected)

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Output low voltage	V _{ol}			0.5	V	I _{oL} = 8 mA
			_	0.4	_	I _{oL} = 3 mA

Rev. 2.00 Sep. 28, 2009 Page 962 of 994 REJ09B0452-0200

28.3 AC Characteristics

Figure 28.3 shows the test conditions for the AC characteristics.

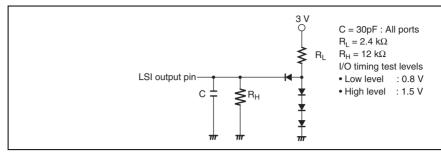


Figure 28.3 Output Load Circuit

Rev. 2.00 Sep. 28, 2009 Pag REJ09 Condition **B**: $v_{cc} = 3.0 \text{ v}$ to 3.0 v, $v_{ss} = 0 \text{ v}$, $\phi = 10 \text{ MHz}$ to 20 MHz

		Con	dition A	Cor	ndition B		
Item	Symbol	Min.	Max.	Min.	Max.	Unit	R
Clock cycle time	t _{cyc}	100	125	50	100	ns	F
Clock high pulse width	t _{cH}	30		20			
Clock low pulse width	t _{cl}	30	_	20			
Clock rise time	t _{cr}		20		5		
Clock fall time	t _{cf}		20		5		
Reset oscillation stabilization (crystal)	t _{osc1}	20	_	20		ms	F
Software standby oscillation stabilization time (crystal)	t _{osc2}	8	_	8			F
External clock output stabilization delay time	t _{DEXT}	500	—	500		μs	F

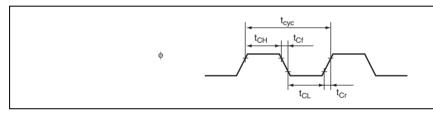
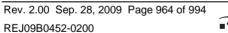



Figure 28.4 System Clock Timing

//

Figure 28.5 Oscillation Stabilization Timing

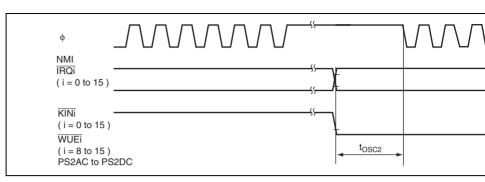


Figure 28.6 Oscillation Stabilization Timing (Exiting Software Standby Mo

Rev. 2.00 Sep. 28, 2009 Pag REJ09

Item	Symbol	Min.	Max.	Unit	Con
RES setup time	t _{ress}	200	_	ns	Figu
RES pulse width	t _{resw}	20	_	t _{cyc}	
NMI setup time	t _{NMIS}	150	—	ns	Figu
NMI hold time	t _{nmih}	10	_		
NMI pulse width (exiting software standby mode)	t _{NMIW}	200			
IRQ setup time	t _{irqs}	150	_		
(IRQ15 to IRQ0, KIN15 to KIN0, WUE15 to WUE8)					
IRQ hold time (IRQ15 to IRQ0, KIN15 to KIN0, WUE15 to WUE8)	t _{irqh}	10	_		
IRQ pulse width (IRQ15 to IRQ0, KIN15 to KIN0, WUE15 to WUE8) (exiting software standby mode)	t _{irqw}	200			

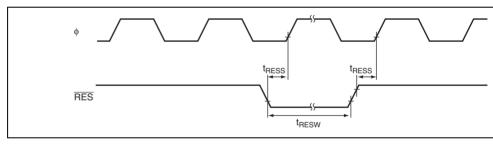


Figure 28.7 Reset Input Timing

Rev. 2.00 Sep. 28, 2009 Page 966 of 994 REJ09B0452-0200

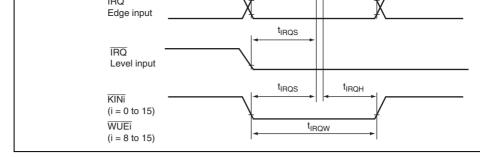


Figure 28.8 Interrupt Input Timing

(33 MHz)

Item			Symbol	Min.	Max.	Unit	
I/O ports Output data		/ time* ²	t _{PWD}		50	ns	
	Input data setup t	time	t _{PRS}	30		_	
	Input data hold tin	ne	t _{PRH}	30			
TPU	Timer output dela	ay time	t _{tocd}		50	ns	1
	Timer input setup	, time	t _{TICS}	30			
	Timer clock input	setup time	t _{тскs}	30			
	Timer clock	Single edge	t _{тскwн}	1.5		t _{cyc}	
	pulse width	Both edges	t _{TCKWL}	2.5			
TMR Timer output		ay time	t _{mod}		50	ns	1
	Timer reset input	t _{mrs}	30			F	
	Timer clock input	t _{mcs}	30		_	1	
	Timer clock	Single edge	t _{mcwn}	1.5		t _{cyc}	
	pulse width	Both edges	t _{mowe}	2.5		_	
ТСМ	TCM input setup t	time	t _{TCMS}	30		ns	ſ
	TCM clock input s	setup time	t _{TCMCKS}	30	_		1
	TCM clock pulse	width	t _{TCMCKW}	1.5		t _{cyc}	
TDP	TDP input setup ti	time	t _{TDPS}	30		ns	1
	TDP clock input s	setup time	t _{TDPCKS}	30		_	_
	TDP clock pulse v	width	t _{tdpckw}	1.5		t _{cyc}	_
PWMU, PWMX	Pulse output delag	ıy time	t _{PWOD}		50	ns	
SCI	Input clock cycle	Asynchronous	t _{scyc}	4		t _{cyc}	
		Synchronous		6			
	Input clock pulse	width	t _{sckw}	0.4	0.6	t _{scyc}	

Rev. 2.00 Sep. 28, 2009 Page 968 of 994

REJ09B0452-0200

RENESAS

SS signal rise delay time	t _{ssh}	12	—
SS signal fall delay time	t _{ssl}	12	_
Transmit signal delay time	t _{TXD}	_	12
Receive signal setup time	t _{RXS}	5	_
Receive signal hold time	t _{RXH}	5	_

- Notes: 1. Applied only for the peripheral modules that are available during subclock op
 - 2. Other than P52, P97, P86, P42, port A, port G, and port I.

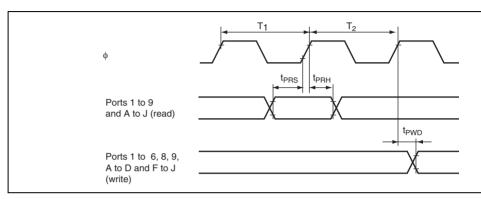


Figure 28.9 I/O Port Input/Output Timing

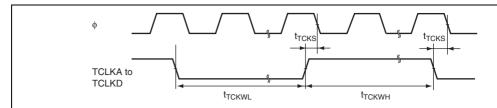


Figure 28.11 TPU Clock Input Timing

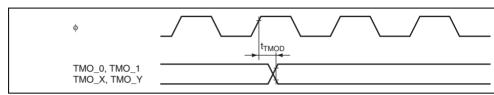


Figure 28.12 8-Bit Timer Output Timing

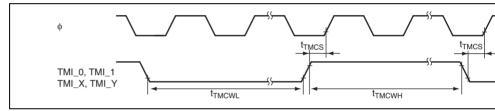


Figure 28.13 8-Bit Timer Clock Input Timing

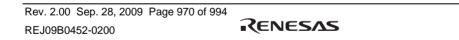


Figure 28.15 TCM Input Setup Time

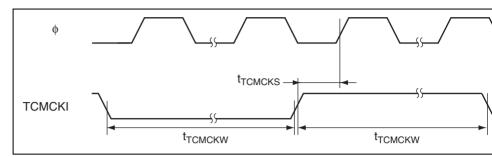


Figure 28.16 TCM Clock Input Timing

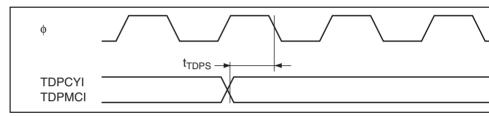
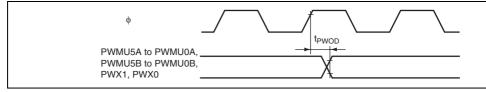



Figure 28.17 TDP Input Setup Time

Figure 28.19 PWMU, PWMX Output Timing

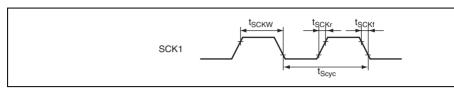


Figure 28.20 SCK Clock Input Timing

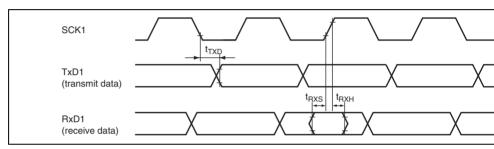
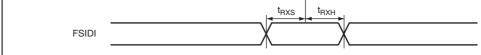
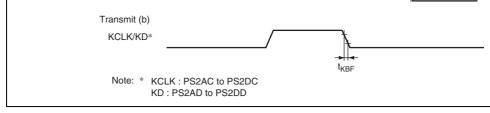
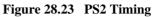



Figure 28.21 SCI Input/Output Timing (Clock Synchronous Mode)

Rev. 2.00 Sep. 28, 2009 Page 972 of 994 REJ09B0452-0200

Figure 28.22 FSI Input/Output Timing


Table 28.8 PS2 Timing


Conditions: $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ss} = 0 \text{ V}$, $\phi = 8 \text{ MHz}$ to maximum operating frequencies of the second s

		Sta	andard V	/alue	_	Test
Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
KCLK, KD output fall time	t _{kbf}			250	ns	
KCLK, KD input data hold time	t _{квін}	150			_	
KCLK, KD input data setup time	t _{KBIS}	150	_	_	_	
KCLK, KD output delay time	t _{kbod}		_	450	_	_
KCLK, KD capacitive load	C,		_	400	pF	_

Note: * When KCLK and KD are output, an external pull-up register must be connect shown in figure 28.23.

RENESAS

Rev. 2.00 Sep. 28, 2009 Page 974 of 994 REJ09B0452-0200

,,,	-St				
SCL, SDA input spike pulse elimination time	t _{sp}	—		1	t _{cyc}
SDA input bus free time	t _{BUF}	5			
Start condition input hold time	t _{stah}	3	—		
Retransmission start condition input setup time	$\mathbf{t}_{_{\mathrm{STAS}}}$	3			
Stop condition input setup time	t _{stos}	3			
Data input setup time	\mathbf{t}_{SDAS}	0.5	_		
Data input hold time	$t_{_{\rm SDAH}}$	0			ns
SCL, SDA capacitive load	C			400	pF
N N N N N N N N N N					2

Note: * 17.5 t_{cyc} can be set according to the clock selected for use by the l²C module.

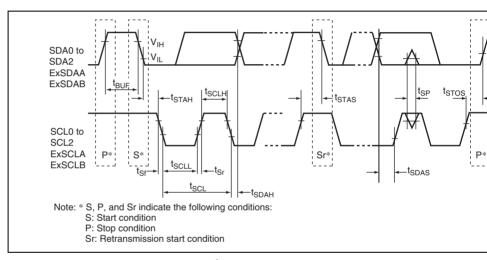


Figure 28.24 I²C Bus Interface Input/Output Timing

Transmit signal floating delay time	t _{off}	_		28
Receive signal setup time	t _{RXS}	7		
Receive signal hold time	t _{RXH}	0	_	

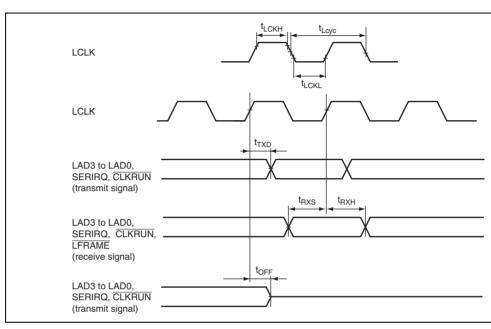


Figure 28.25 LPC Interface Timing

Rev. 2.00 Sep. 28, 2009 Page 976 of 994 REJ09B0452-0200

					т
Item	Symbol	Min.	Max.	Unit	Ċ
ETCK clock cycle time	t _{TCKcyc}	50*	125*	ns	F
ETCK clock high pulse width	t _{тскн}	20			2
ETCK clock low pulse width	t _{TCKL}	20			
ETCK clock rise time	t _{TCKr}		5		
ETCK clock fall time	t _{TCKf}		5		
ETRST pulse width	t _{rrstw}	20		t _{cyc}	F
Reset hold transition pulse width	t _{rsthw}	3			2
ETMS setup time	t_{TMSS}	20		ns	F
ETMS hold time	t _{тмsн}	20			2
ETDI setup time	t _{TDIS}	20			
ETDI hold time	t _{tdih}	20			
ETDO data delay time	t _{tdod}		20		

00

Note: * When $t_{cyc} \le t_{TCKcyc}$

~~

RENESAS

Figure 28.28 Reset Hold Timing

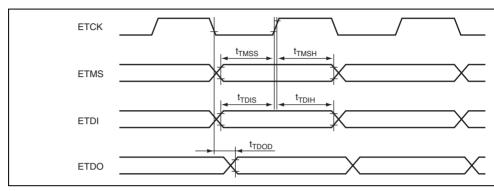


Figure 28.29 JTAG Input/Output Timing

Rev. 2.00 Sep. 28, 2009 Page 978 of 994 REJ09B0452-0200

ltem	Min.	Тур.	Max.
Resolution	10		
Conversion time		—	4.0*
Analog input capacitance		—	20
Permissible signal-source impedance		_	5
Nonlinearity error		_	±7.0
Offset error		—	±7.5
Full-scale error	_	—	±7.5
Quantization error			±0.5
Absolute accuracy			±8.0

Note: The power supply to Avref must either be made simultaneously with or follow the supply to Avcc.

* Value when using the maximum operating frequency of 40 states (ADCLK = 7

Programming time*1*2*4	t _P	_	1	10	ms/128 bytes	
Erase time*1*2*4	t _e	_	40	130	ms/4-Kbyte block	
		_	300	800	ms/32-Kbyte block	
		_	600	1500	ms/64-Kbyte block	
Programming time (total)*1*2*4	$\Sigma_{\rm tP}$	_	1.4	4	s/160 Kbytes	Ta = 2
Erase time (total)*1*2*4	Σ_{tE}	_	1.4	4	s/160 Kbytes	Ta = 2
Programming and Erase time $(total)^{*1*^2*^4}$	$\Sigma_{\rm tPE}$	_	2.9	8	s/160 Kbytes	Ta = 2
Reprogramming count	N_{wec}	100* ³	1000		Times	
Data retention time*4	t _{DRP}	10	_	_	Years	

Notes: 1. Programming and erase time depends on the data.

- 2. Programming and erase time do not include data transfer time.
- 3 This value indicates the minimum number of which the flash memory are reprogrammed with all characteristics guaranteed. (The guaranteed value range from 1 to the minimum number.)
- 4. This value indicates the characteristics while the flash memory is reprogramme the specified range (including the minimum number).

Rev. 2.00 Sep. 28, 2009 Page 980 of 994 REJ09B0452-0200

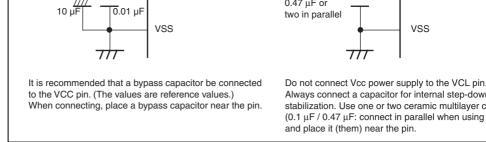


Figure 28.30 Connection of VCC and VCL Capacitors

Rev. 2.00 Sep. 28, 2009 Page 982 of 994 REJ09B0452-0200

Port 3	Т	keep	keep	keep	I/O po
Port 4	Т	keep	keep	keep	I/O po
Ports 52 to 50	Т	keep	keep	keep	I/O po
Port 6	Т	keep	keep	keep	I/O po
Ports 7 and E4 to E1	Т	Т	Т	Т	Input
Port 8	Т	keep	keep	keep	I/O po
Port 97	Т	keep	keep	keep	I/O po
Port 96 φ, EXCL	Т	[DDR = 1]H [DDR = 0]T	EXCL input/ keep	[DDR = 1] Clock output [DDR = 0]T	Clock EXCL Input
Ports 95 to 90	Т	keep	keep	keep	I/O po
Ports A to D, F, G, and H5 to H0	Т	keep	keep	keep	I/O po
Port E0	Т	Т	ExEXCL input/T	Т	ExEX input
Port I	Т	keep	keep	keep	I/O po
Port J	Т	keep	keep	keep	I/O po

[Legend]

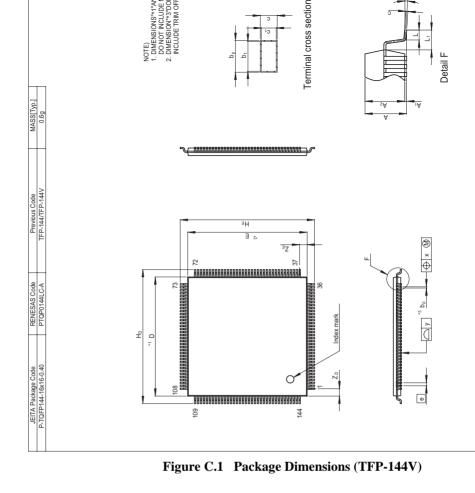
H: High level

L: Low level

T: High impedance

keep: Input ports are in the high-impedance state (when DDR = 0 and PCR = 1, the inp MOS remains on).

Output ports maintain their previous state.


Depending on the pins, the on-chip peripheral modules may be initialized and the function determined by DDR and DR.

DDR: Data direction register

RENESAS

Rev. 2.00 Sep. 28, 2009 Page 984 of 994 REJ09B0452-0200

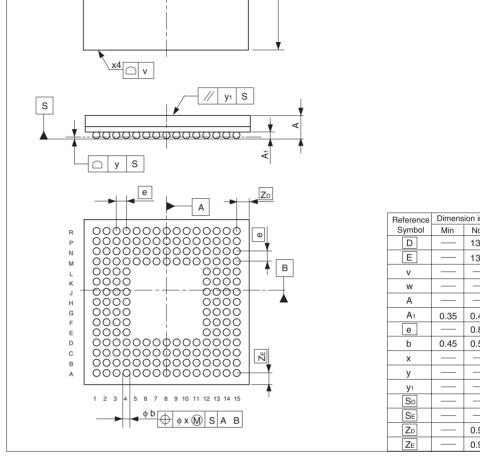


Figure C.2 Package Dimensions (BP-176V)

Rev. 2.00 Sep. 28, 2009 Page 986 of 994 REJ09B0452-0200

RENESAS

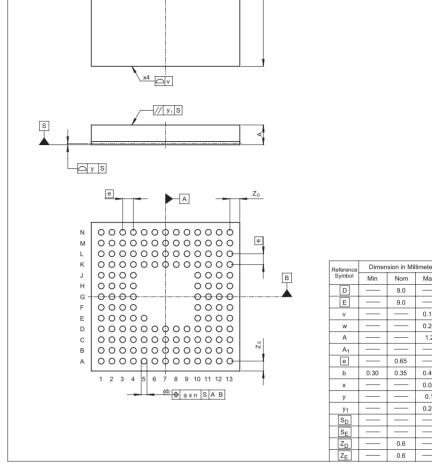


Figure C.3 Package Dimensions (TLP-145V)

Renesas

Port 2 resistor Port 3		 Connect to v_{cc} via a pull-up resistor
Port 1 • Connect each pin to V _{cc} via a pull-up resistor or to V _{ss} via a pull-d Port 2 resistor Port 3 Port 4 Port 5 Port 6 Port 8 Port 9 Port B Port C Port C Port F Port G Port G Port I Port G Port J • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pull-up resistor	EXTAL	(Always used as a clock pin)
Port 2 resistor Port 3 Port 4 Port 5 Port 6 Port 8 Port 8 Port 9 Port A Port B Port C Port C Port C Port G Port G Port G Port G Port H Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a purposed of the start st	XTAL	(Always used as a clock pin)
Port 3 Port 4 Port 5 Port 6 Port 8 Port 9 Port A Port B Port C Port D Port C Port D Port F Port G Port H Port I Port J Port 7 Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pull to AV _{sss} via a pull to AV _{sss} via a pull to	Port 1	- Connect each pin to $V_{\rm cc}$ via a pull-up resistor or to $V_{\rm ss}$ via a pull-dow
Port 4 Port 5 Port 6 Port 8 Port 9 Port A Port B Port C Port D Port F Port G Port H Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pull-up resistor	Port 2	resistor
Port 5 Port 6 Port 8 Port 9 Port A Port B Port C Port D Port C Port F Port G Port H Port I Port J Port J Port 7 Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul-	Port 3	
Port 6 Port 8 Port 9 Port A Port B Port C Port D Port D Port F Port G Port H Port I Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul-	Port 4	
Port 8 Port 9 Port A Port B Port C Port D Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul-	Port 5	
Port 9 Port A Port B Port C Port D Port F Port G Port H Port I Port J Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul-	Port 6	
Port A Port B Port C Port D Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul-	Port 8	
Port B Port C Port D Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} v	Port 9	
Port C Port D Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul- resistor	Port A	
Port D Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pul- resistor	Port B	
Port F Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pur resistor	Port C	
Port G Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a purresistor	Port D	
Port H Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a purresistor	Port F	
Port I Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a pur resistor	Port G	
Port J Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a purresistor	Port H	
Port 7 • Connect each pin to AV _{cc} via a pull-up resistor or to AV _{ss} via a purresistor	Port I	
resistor	Port J	
	Port 7	- Connect each pin to ${\rm AV}_{\rm cc}$ via a pull-up resistor or to ${\rm AV}_{\rm ss}$ via a pull-or
• Connect each pin to V _{cc} via a pull-up resistor		resistor
	Port E	• Connect each pin to $V_{\rm cc}$ via a pull-up resistor

Rev. 2.00 Sep. 28, 2009 Page 988 of 994 REJ09B0452-0200

RENESAS

Α

A/D converter	727
A/D converter activation	289
Absolute address	58
Address map	74
Address space	
Addressing modes	57
ADI	739
Advanced mode	
Arithmetic operations instructions	
Asynchronous mode	424

B

Base cycle	229
Bcc	45, 53
Bit manipulation instructions	51
Bit rate	419
Block sata transfer instructions	55
Block structure	753
Boot mode	750, 776
Branch instructions	53
Buffer operation	275
Bus controller (BSC)	133

Condition field
Condition-code register (CCR)
Conversion cycle
Conversion time
CPU operating modes
Crystal resonator
Cycle measurement mode
Cycle measurement mode

D

Data transfer instructions Download pass/fail result paramet

Е

L
Effective address
Effective address extension
ERI1
Error protection
Exception handling
Exception handling vector table
Extended control register (EXR)
Extended vector mode
External clock

RENESAS

Framing	error	431
---------	-------	-----

G

-	
General registers	38

H

H8S/2140B group compatible	
vector mode 101	
Hardware protection 798	

I

I ² C bus data format 5	60
I ² C bus interface (IIC)	29
ICIA	50
ICIX	84
IICI	81
Immediate	59
Input capture operation	82
Instruction set	
Interface	03
Internal block diagram	. 8
Interrupt controller	
Interrupt exception handling	
interrupt exception handling	
vector table	08
Interrupt mask bit	
interrupt music ottimistion	

Rev. 2.00 Sep. 28, 2009 Page 990 of 994 REJ09B0452-0200 LPC interface clock start request ... LSI internal states in each operating mode

\mathbf{M}

Memory indirect
Mode transition diagram
Module stop mode
Multiply-accumulate register (MAG
Multiprocessor communication
function

Ν

Noise canceler
Normal mode

0

U
OCIA
OCIB
On-board programming
On-board programming mode
Operation field
Output buffer control
Overflow
Overrun error

Programmer mode	. 750, 802
Programming/erasing interface	
Programming/erasing interface	
parameters	
Programming/erasing interface	
register	
Protection	
PWM modes	279

R

RAM
Register direct
Register field56
Register indirect
Register indirect with displacement
Register indirect with post-Increment 58
Register indirect with pre-decrement 58
Registers
ABRKCR91
ADCR
ADCSR
ADDR731
BAR92
BCR
BRR
DACNT
DACR
DADR

FLSR
FMATS
FMCR
FMPAR
FMPDR
FMSR
FPCS
FPEFEQ
FPFR
FRBR
FRSR
FSCR
FTDAR
FTHR
FTSR
HICR
HISEL
ICCR
ICDR
ICMR
ICR
ICRES
ICSR
ICXR
IDR
IER
ISCR
ISR
ISSR

PTCNT0 194
PTCNT2 196
RDR
RSR
SAR
SARX
SBYCR
SCIFCR
SCMR
SCR 411
SIRQCR
SMR
SSR
STCR
STR
SYSCR
SYSCR3
TCMCNT
TCMCR
TCMCSR
TCMICR
TCMICRF
TCMIER
TCMMINCM
TCMMLCM
TCNT
TCONRI
TCONRS
TCOR

TDPWDMN
TDPWDMX
TDR
TGR
TICRF
TICRR
TIOR
TMDR
TSR
TSTR
TSYR
TWR
WER
WSCR
WUESCR
WUESR
Reset
Reset exception handling
RXI1

S

Rev. 2.00 Sep. 28, 2009 Page 992 of 994 REJ09B0452-0200

RENESAS

Synchronous operation	273
System control instructions	54

Т

TCI0V	
TCI1U	
TCI1V	
TCI2U	
TCI2V	
TEI1	
TGI0A	
TGI0B	
TGI0C	
TGI0D	
TGI1A	
TGI1B	

User boot MAT	•
User boot mode	•
User MAT	•
User program mode	•

V

Vector address switching

\mathbf{W}

Watch mode
Watchdog timer (WDT)
Watchdog timer mode
Waveform output by compare man
WOVI

Renesas

Rev. 2.00 Sep. 28, 2009 Page 994 of 994 REJ09B0452-0200

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2117R Group

Publication Date:	Rev.1.00, April 28, 2008
	Rev.2.00, September 28, 2009
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, J

RENESAS SALES OFFICES

http://www.rei

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <865 (21) 5877-1818, Fax: <865 (21) 5887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd.

10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <655-6213-0200, Fax: <655-6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bidg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoui 140-702, Korea Tel: <82- (2) 796-3115, Fax: <82- (2) 796-2145

H8S/2117R Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0452-0200

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

M30302FCPFP#U3 MB90F036APMC-GSE1 MB90F428GCPFR-GSE1 MB96F683RBPMC-GSAE1 R5F10MMGDFB#30 R5F111PGGFB#30 R5F117BCGNA#20 DF3026XBL25V DF36014GFTV DF36014GFXV DF36034GFPV R5F11B7EANA#U0 R5F21172DSP#U0 MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F345CAPFR-GSE1 MB90F568PMCR-GE1 MB96F395RSAPMC-GSE2 DF36024GFXV UPD78F1018F1-BA4-A MB96F018RBPMC-GSE1 MB90F867ASPFR-GE1 M30290FCHP#U3A DF2239FA20IV R5F117BCGFP#30 LC88F58B0AU-SQFPH MB90F548GPF-GE1 MB90214PF-GT-310-BND-AE1 MB90F342CESPQC-GSE2 MB90F428GAPF-GSE1 ML620Q504H-NNNTBWBX S912ZVH128F2VLL UPD78F1500AGK-GAK-AX HD64F3337SF16V MB90F428GCPF-GSE1 MB90F342ESPMC-G-JNE1 MB90022PF-GS-358E1 MB96F395RWAPMC-GSE2 MB96395RSAPMC-GS-110E2 MB90F883CSPMC-GE1 S912ZVHY64F1CLL S912ZVHY64F1VLQ ST10F280 MB96F338RSAPMCR-GK5E2 CY90096PF-G-002-BND-ERE1 ML62Q1569-NNNGAZ0AX ML62Q1739-NNNGAZ0AX ML62Q1749-NNNGAZ0AX ML62Q1579-NNNGAZ0AX ML62Q1559-NNNGAZ0AX