Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8S/2140B Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8S Family/H8S/2100 Series

H8S/2161B HD64F2161BV

H8S/2160B HD64F2160BV

H8S/2141B HD64F2141BV

H8S/2140B HD64F2140BV

H8S/2145B HD64F2145BV

HD64F2145B

H8S/2148B HD64F2148BV

HD64F2148B

Renesas Electronics

www.renesas.com

Rev.3.00 2006.03

- Technology Corp. product best suited to the customer's application; they do not convey any under any intellectual property rights, or any other rights, belonging to Renesas Technology a third party.
 - Renesas Technology Corp. assumes no responsibility for any damage, or infringement of an party's rights, originating in the use of any product data, diagrams, charts, programs, algorith circuit application examples contained in these materials.
 - 3. All information contained in these materials, including product data, diagrams, charts, progra algorithms represents information on products at the time of publication of these materials, a subject to change by Renesas Technology Corp. without notice due to product improvemen other reasons. It is therefore recommended that customers contact Renesas Technology C an authorized Renesas Technology Corp. product distributor for the latest product information of the product information.

an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various

including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.co

- When using any or all of the information contained in these materials, including product data diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a system before making a final decision on the applicability of the information and products. Frechnology Corp. assumes no responsibility for any damage, liability or other loss resulting information contained herein.
 Renesas Technology Corp. semiconductors are not designed or manufactured for use in a contained herein.
- Information contained nerein.5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a consistent system that is used under circumstances in which human life is potentially at stake. Please Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor considering the use of a product contained herein for any specific purposes, such as appara
- considering the use of a product contained herein for any specific purposes, such as appara systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater us 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduct whole or in part these materials.
- whole or in part these materials.7. If these products or technologies are subject to the Japanese export control restrictions, the be exported under a license from the Japanese government and cannot be imported into a control restriction.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/o country of destination is prohibited.8. Please contact Renesas Technology Corp. for further details on these materials or the prod

Rev. 3.00 Mar 21, 2006 page ii of liv

contained therein.

other than the approved destination.

2. Treatment of Unused Input Pins

Note: Fix all unused input pins to high or low level.

Generally, the input pins of CMOS products are high-impedance input pins. In

Generally, the input pins of CMOS products are high-impedance input pins. It are in their open states, intermediate levels are induced by noise in the vicinity through current flows internally, and a malfunction may occur.

3. Processing before Initialization

Note: When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied throug chip and a low level is input on the reset pin. During the period where the stat undefined, the register settings and the output state of each pin are also undefined your system so that it does not malfunction because of processing while it is is undefined state. For those products which have a reset function, reset the LSI

4. Prohibition of Access to Undefined or Reserved Addresses

after the power supply has been turned on.

Note: Access to undefined or reserved addresses is prohibited

Note: Access to undefined or reserved addresses is prohibited.

The undefined or reserved addresses may be used to expand functions, or test may have been be allocated to these addresses. Do not access these registers; operation is not guaranteed if they are accessed.

Rev. 3.00 Mar 21, 2006

The list of revisions is a summary of points that have been revised or added to earlie. This does not include all of the revised contents. For details, see the actual locations

- manual.5. Contents
- 6. Overview
- 7. Description of Functional Modules
 - CPU and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according to module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
 - iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. E includes notes in relation to the descriptions given, and usage notes are given, as requir final part of each section.

- 8. List of Registers
- 9. Electrical Characteristics
- 10. Appendix
- 11. Index

Rev. 3.00 Mar 21, 2006 page iv of liv

RENESAS

This I CI is a suite and suith a data town of an acceptable (DTC) as a large massive DOM D

This LSI is equipped with a data transfer controller (DTC) as a bus master, ROM, RA PWM timer (PWM), a 14-bit PWM timer (PWMX), a 16-bit free-running timer (FRT timer (TMR), timer connection, a watchdog timer (WDT), a serial communication int a keyboard buffer controller, a host interface X-bus interface (XBS), a host interface I

optional interface.

A high-functionality bus controller is also provided, enabling fast and easy connection and other kinds of memory.

(LPC), an 8-bit D/A converter, a 10-bit A/D converter, and I/O ports as on-chip peripl modules required for system configuration. An I²C bus interface (IIC) can also be incl

and other kinds of memory.

A flash memory (F-ZTAT^{™*}) version is available for this LSI's ROM. This provides

it can be reprogrammed in no time to cope with all situations from the early stages of

production to full-scale mass production. This is particularly applicable to application specifications that will most probably change.

Note: * F-ZTAT is a trademark of Renesas Technology Corp.

Target Users: This manual was written for users who will be using the H8S/2140B of design of application systems. Target users are expected to understand fundamentals of electrical circuits, logical circuits, and microcompute

Objective: This manual was written to explain the hardware functions and electric characteristics of the H8S/2140B Group to the target users.

Refer to the H8S/2600 Series, H8S/2000 Series Programming Manual detailed description of the instruction set.

his manual:

Notes on reading this manual:

• In order to understand the overall functions of the chip

Read the manual according to the contents. This manual can be roughly categorized on the CPU, system control functions, peripheral functions and electrical characters

Rev. 3.00 Mar 21, 2006

	XXX_N (XXX is the register name and N is the
	number)
Bit order:	The MSB is on the left and the LSB is on the rig
Number notation:	Binary is B'xxxx, hexadecimal is H'xxxx, decim
Signal notation:	An overbar is added to a low-active signal: xxxx

ADE-7

ADE-7

ADE-7

Related Manuals: The latest versions of all related manuals are available from our w Please ensure you have the latest versions of all documents you re http://www.renesas.com/

H8S/2140B Group manuals:

Document Title	Docu
H8S/2140B Group Hardware Manual	This n
H8S/2600 Series, H8S/2000 Series Programming Manual	REJ09
User's manuals for development tools:	
Document Title	Docu
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual	REJ10

Rev. 3.00 Mar 21, 2006 page vi of liv

H8S, H8/300 Series Simulator/Debugger User's Manual

High-performance Embedded Workshop User's Manual

High-performance Debugging Interface Tutorial

H8S, H8/300 Series High-performance Embedded Workshop,

	Note: * The	e LPC functio	n is not su	pported h	v H8S/
		3 (5-V version		pported t	/y 1100/
2	On-chip r				
2	•	•			
	Table ame	nded			
	ROM	Model	ROM	RAM	Remark
	F-ZTAT Version	HD64F2161BV*	128 kbytes	4 kbytes	
		HD64F2160BV*	64 kbytes	4 kbytes	_
		HD64F2141BV*	128 kbytes	4 kbytes	
		HD64F2140BV*	64 kbytes	4 kbytes	
		HD64F2145BV*	256 kbytes	8 kbytes	Under d
		HD64F2145B	256 kbytes	8 kbytes	
		HD64F2148BV*	128 kbytes	4 kbytes	_
		HD64F2148B	128 kbytes	4 kbytes	

Note amended

Note * added

Host Interface LPC interface*

1.2 Block Diagram

Figure 1.1 Internal

Block Diagram of H8S/2140B,

H8S/2141B, H8S/2145B, and H8S/2148B

Figure 1.2 Internal Block Diagram of H8S/2160B and H8S/2161B

(Before) ROM (Flash memory, Masked ROM) → (A (Flash memory)

3

4

RENESAS

Figure 1.2 amended

Rev. 3.00 Mar 21, 2006

Note: * The LPC function and the WUE pin function

supported by the H8S/2148B and H8S/2145B (5-V

1.3.2 FILL FULLCHIONS III	1.1	Note · amended						
Each Operating Mode Table 1.1 Pin Functions of H8S/2140B, H8S/2141B, H8S/2145B, and H8S/2148B in Each Operating Mode	able 1.1 Pin unctions of 8S/2140B, 8S/2141B, 8S/2145B, and 8S/2148B in Each			Note: * The LPC function and the WUE pin function supported by the H8S/2148B and H8S/2145B (5-V v				
2.4.4 Condition-Code	36	Table ar	mended	I				
Register (CCR)		Interrup	t Mask I	Bit				
		Masks ii	nterrupt	s when set to 1. NMI is accepted				
2.6.1 Table of	46	Table ar	mended	I				
Instructions Classified		Instruction	Size*	Function				
by Function		BIAND	В	$C \wedge [\sim (< bit-No.> of < EAd>)] \rightarrow C$				
Table 2.7 Bit				Logically ANDs the carry flag with the inverse of a speci general register or memory operand and stores the resu				

BIOR

В

Description amended

@aa:16, @aa:24, or @aa:32	absolute addre

Rev. 3.00 Mar 21, 2006 page viii of liv

53

Manipulation

Instructions (1)

2.7.5 Absolute

Address-@aa:8,

RENESAS

The bit number is specified by 3-bit immediate data.

Logically ORs the carry flag with the inverse of a specific general register or memory operand and stores the resu flag.

The bit number is specified by 3-bit immediate data.

 $C \vee \llbracket \sim (< bit-No. > of < EAd >) \rrbracket \rightarrow C$

... absolute address, the upper 24 bits are all assum

		ор	abs	S				
78	Figui	re 3.7 a	ind f	Fig	ure 3	3.8 a	dded	

Each Operating Mode						
Figure 3.7 Address Map for H8S/2145B (1)						
Figure 3.8 Address Map for H8S/2145B (2)						
Figure 3.9 Address	79	Figure 3.9 amended				
Map for H8S/2148B(1)		H'01FFFF				
		H'020000				
		H'FFE080				
4.7 Usage Note	87	Figure 4.3 amended				
Figure 4.3 Operation when SP Value Is Old		H'FFEFFF				
5.2 Input/Output Pins	91	Note * amended				
Table 5.1 Pin Configuration		Note: * Not supported by the H8S/2148B and H8S version).				
5.3.7 Keyboard Matrix	98	• WUEMRB*				
Interrupt Mask		Note * amended				
Registers (KMIMRA,		Note: * Not supported by the HOC/24 40D and HOC				

3.4 Address Map in

KMIMR) and Wake-Up

Event Mask Register

(WUEMRB)

77,

Note: * Not supported by the H8S/2148B and H8S/

7.2.8 DTC Vector Register (DTVECR)	151	Description amended software activation interrupt.
		DTVECR is initialized to H'00 at a reset and in hard standby mode.
7.4 Location of	154	Note 2 amended
Register Information and DTC Vector Table		Note: 2. Not supported by the H8S/2148B and H8S/version).
Table 7.1 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs		
8.1 Overview	167	Description amended
		in addition to DDR, to control the on/off
Table 8.1 Port	171	Note * amended
Functions of H8S/2140B,		Note: * Not supported by the H8S/2148B and H8S/version)

version).

Note amended

Description amended

... the DTCE bit of DTC's DTCER, and the DISEL bit

• P37/D15/HDB7/SERIRQ*, ..., P30/D8/HDB0/LAD

Note: * Not supported by the H8S/2148B and H8S/2

Rev. 3.00 Mar 21, 2006 page x of liv

181

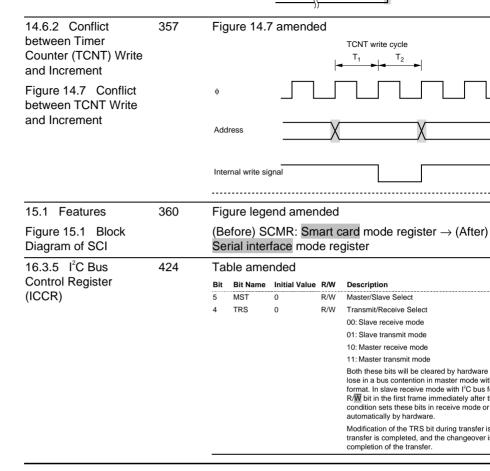
5.6.5 DTC Activation

by Interrupt

H8S/2141B, H8S/2145B, and H8S/2148B

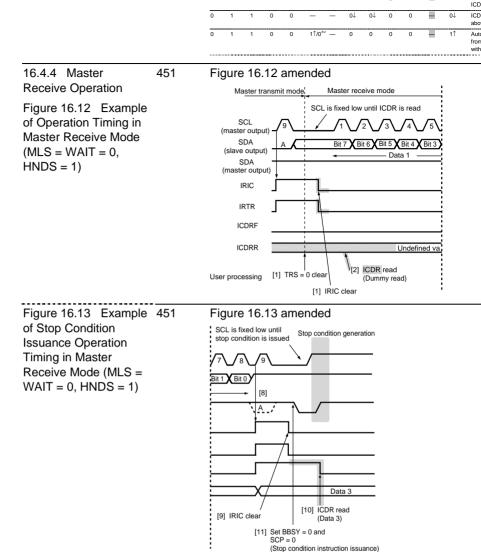
8.4.4 Pin Functions

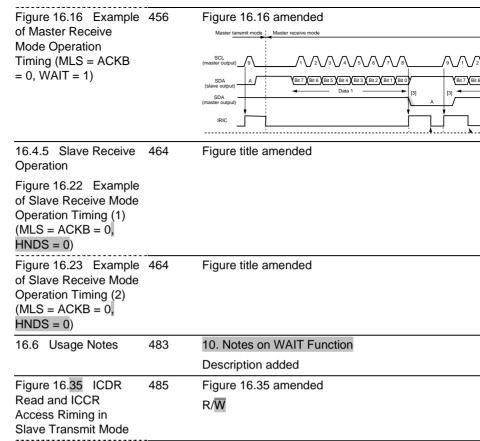
114


RENESAS

		Note 3 amended
		Note: 3. Not supported by the H8S/2148B and H8 version).
8.12.4 Pin Functions	213 to 215	• PB7/D7/WUE7*2, PB6/D6/WUE6*2, PB5/D5/WU PB4/D4/WUE4*2 to
		• PB0/D0/WUE0/HIRQ3/LSMI*4
		Notes amended
		Note: Not supported by the H8S/2148B and H8S/version).
11.3.6 Timer Interrupt	265	Table amended
Enable Register (TIER)		Initial Value
		(Before) $0 \rightarrow$ (After) 1
12.7 Input Capture	307	Figure 12.11 amended
Operation		· 7
Figure 12.11 Timing of Input Capture Operation		TMRIX
Ореганоп		Input capture signal
Figure 12.12 Timing of Input Capture Signal (Input capture signal is	307	Figure 12.12 amended TICRR, TICRI T1 T2
input during TICRR and TICRF read)		
		TMRIX
		Input capture signal
		Rev. 3.00 Mar 21, 20
		RENESAS

199

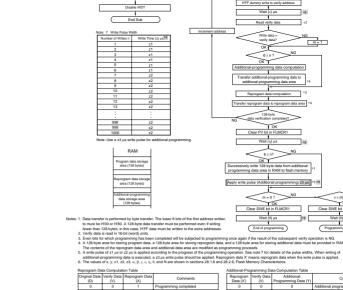

• P80/HA0/<u>PME</u>*3


Rev. 3.00 Mar 21, 2006 page xii of liv

Rev. 3.00 Mar 21, 2006

Rev. 3.00 Mar 21, 2006 page xiv of liv

487, 488



Description added

14. Notes on Arbitration Lost in Master Mode

19.4.4 Hos	st Interface	569	Table 19.	5 ame	ended			
Shutdown F (LPCPD)	unction		Abbreviation	Port	Scope o Shutdo		No	
Table 40.5	C		CLKRUN	P82	0	Input	Hi-	Z
Table 19.5 Host Interface Shutdown	•		<u> </u>	P83	×	Input	Ne	eded to clear shutdo
Section 22	RAM	601	Masked R	NOS	version de	eleted		
		Product Classification R			RAM Capac	itance	RAM Address	
			Flash memory v	version	H8S/2161B	4 kbytes		H'E080-H'EFFF,
					H8S/2160B	4 kbytes		H'E080-H'EFFF,
					H8S/2141B	4 kbytes		H'E080-H'EFFF,
					H8S/2140B	4 kbytes		H'E080-H'EFFF,
					H8S/2145B	8 kbytes		H'D080-H'EFFF,
					H8S/2148B	4 kbytes		H'E080-H'EFFF,
Castian 22	DOM	602	Dogorintic		andad			
Section 23	ROM	603	Description	n am	ienaea			
			` /	ROM).				1 (flash mem has an on-ch

Rev. 3.00 Mar 21, 2006

gram Da	ita Computat	ion Table			Additional-Pro	gramming De	ata Computation Table		
nal Data (D)	Verify Data (V)	Reprogram Data (X)	Comments		Reprogram Data (X')	Verify Data (V)	Additional- Programming Data (Y)	Co	
0	0	- 1	Programming completed		0	0	0	Additional program	
0	- 1	0	Programming incomplete; reprogram		0	- 1	1	Additional program	
1	0	- 1			- 1	0	1		
1	1	- 1	Still in erased state; no action		- 1	1	1	Additional program	
tio	ion of "Masked ROM" deleted								

Secti

Section 24 Clock Pulse Generator Figure 24.1 Block Diagram of Clock Pulse Generator	633	Figure 24.1 amended (Before) ϕ 2 to ϕ 32
24.5 Subclock Input Circuit	639	Description of "When Subclock Is Not Needed" and 'Subclock Usage" added
25.1.1 Standby Control Register (SBYCR)	643	Table amended SCK2 to SCK0 must be cleared to B'000.

Rev. 3.00 Mar 21, 2006 page xvi of liv

26.3 Register States	688	Note 2 amended
in Each Operating Mode		Note: 2. Not supported by the H8S/2148B and H8 version).
26.4 Register Select	690	Table amended
Conditions		H8S/2160B, H8S/2161B Register Select Condition
		(Before) \longrightarrow (After) No condition
27.1.1 Absolute	701	Table 27.1 amended
Maximum Ratings		item
Table 27.1 Absolute		(Ports C to G are added in the H8S/2160B and H8
Maximum Ratings		input voltage (P97, P86, P52, P42)
27.1.2 DC	703	Table 27.2 amended
Characteristics		Item
Table 27.2 DC		P97, P86, P52, P42
Characteristics (1)		(Ports C to G are added in the H8S/2160B and H8

Note 5 amended

Note: 5. Not supported by the H8S/2148B and H8S

679

Oldel)

26.2 Register Bits

Rev. 3.00 Mar 21, 2006 p

			a retention char ne specification					•
27.2.2 DC Characteristics	736	Table 2	7.17 (5) amend	ed				
T-bl- 27 47 DC			Item	Symbol	Min	Тур	Max	Uni
Table 27.17 DC Characteristics (5)		Schmitt trigger input		V _T	$V_{\rm cc} \times 0.2$ $V_{\rm cc} B \times 0.2$	_	_	V
		voltage	KIN15 to KIN8***, IRQ2 to IRQ0*3, IRQ5 to IRQ3	$V_{\scriptscriptstyle T}^{\; *}$	_	_	$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$	
			Ingo to Ingo	$V_T^+ - V_T^-$	$\begin{array}{c} V_{cc} \times 0.05 \\ V_{cc} B \times 0.05 \end{array}$	_	_	L
27.2.3 AC	752	Table 2	7.23 (1) amend	ed				
Characteristics		(Before)	$t_{cscvc} \rightarrow (After)$	tsove				
Table 27.23 Timing of On-Chip Peripheral Modules (1)		,	Cacyo	55,6				
27.2.7 Usage Notes	761	Figure 2	27.5 amended					
Figure 27.5		< Produ	ct with internal	step-d	own fund	ction	۱ >	
Connection of VCL		HD64F2	2145B					
Capacitor		HD64F2	2148B					

minimum value).

are guaranteed after rewriting (Guarantee range is 1

9. Reference value for 25°C (as a guideline, rewriting normally function up to this value).

Rev. 3.00 Mar 21, 2006 page xviii of liv

			ф		$\bigcup^* \bigcup \bigcup^* \bigcup^* \bigcup^* \bigcup^* \bigcup^* \bigcup^* \bigcup^* \bigcup^* \bigcup^$	\\\\\-\ <u>\</u>	-(1111)]
Appendix B	Product	779	Table ar	nended			
Codes			Product Type		Product Code	Mark Code	Package (Packag
			H8S/2145B	Flash memory version	HD64F2145BV	F2145BVFA10	100-pin (
				(3-V version)		F2145BVTE10	100-pin 7
				Flash memory version	HD64F2145B	F2145BFA20	100-pin (
				(5-V version)		F2145BTE20	100-pin 7
Appendix C Dimensions Figure C.1 Dimensions	Package	780	Figure re	eplaced			
Figure C.2 Dimensions (TFP-100B)	Package	781	Figure re	eplaced			
Figure C.3 Dimensions	•	782	Figure re	eplaced			

RES

Rev. 3.00 Mar 21, 2006 |

Rev. 3.00 Mar 21, 2006 page xx of liv

RENESAS

Secti	on 2	CPU
2.1	Featur	es
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU
	2.1.2	Differences from H8/300 CPU
	2.1.3	Differences from H8/300H CPU
2.2	CPU (Operating Modes
	2.2.1	Normal Mode
	2.2.2	Advanced Mode
2.3	Addre	ss Space
2.4	Regist	er Configuration
	2.4.1	General Registers
	2.4.2	Program Counter (PC)
	2.4.3	Extended Control Register (EXR)
	2.4.4	Condition-Code Register (CCR)
	2.4.5	Initial Register Values
2.5	Data F	Formats
	2.5.1	General Register Data Formats
	2.5.2	Memory Data Formats
2.6	Instruc	ction Set
	2.6.1	Table of Instructions Classified by Function
	2.6.2	Basic Instruction Formats
2.7	Addre	ssing Modes and Effective Address Calculation
	2.7.1	Register Direct—Rn
	2.7.2	Register Indirect—@ERn
	2.7.3	Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)
	2.7.4	Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or
	2.7.5	Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32

1.3.3

2.7.6

2.7.7

1.5.2 Fill Fullctions in Each Operating Wode Pin Functions

Rev. 3.00 Mar 21, 2006 |

Immediate—#xx:8, #xx:16, or #xx:32.....

Program-Counter Relative—@(d:8, PC) or @(d:16, PC).....

3.1	MCU Operating Mode Selection
3.2	Register Descriptions
	3.2.1 Mode Control Register (MDCR)
	3.2.2 System Control Register (SYSCR)
	3.2.3 Serial Timer Control Register (STCR)
3.3	Operating Mode Descriptions
	3.3.1 Mode 1
	3.3.2 Mode 2
	3.3.3 Mode 3
	3.3.4 Pin Functions in Each Operating Mode
3.4	Address Map in Each Operating Mode
Secti	on 4 Exception Handling
4.1	Exception Handling Types and Priority
4.2	Exception Sources and Exception Vector Table
4.3	Reset
	4.3.1 Reset Exception Handling
	4.3.2 Interrupts after Reset
	4.3.3 On-Chip Peripheral Modules after Reset Is Cancelled
4.4	Interrupt Exception Handling
4.5	Trap Instruction Exception Handling
4.6	Stack Status after Exception Handling
4.7	Usage Note
	3.2 3.3 3.4 Secti 4.1 4.2 4.3 4.4 4.5 4.6

Section 3 MCU Operating Modes

Rev. 3.00 Mar 21, 2006 page xxii of liv

5.15.2

5.3

5.3.1

5.3.25.3.3

RENESAS

Input/Output Pins

Register Descriptions

Interrupt Control Registers A to C (ICRA to ICRC).....

Address Break Control Register (ABRKCR).....

Break Address Registers A to C (BARA to BARC).....

5.7	Addre	ss Break
	5.7.1	Features
	5.7.2	Block Diagram
	5.7.3	Operation
	5.7.4	Usage Notes
5.8	Usage	Notes
	5.8.1	Conflict between Interrupt Generation and Disabling
	5.8.2	Instructions that Disable Interrupts
	5.8.3	Interrupts during Execution of EEPMOV Instruction
	5.8.4	Setting on Product Incorporating DTC
	5.8.5	IRQ Status Register (ISR)
Secti	ion 6	Bus Controller (BSC)
6.1	Featur	es
6.2	Input/	Output Pins
6.3	Regist	er Descriptions
	6.3.1	Bus Control Register (BCR)
	6.3.2	Wait State Control Register (WSCR)
6.4	Bus C	ontrol
	6.4.1	Bus Specifications
	6.4.2	Advanced Mode
	6.4.3	Normal Mode
	6.4.4	I/O Select Signals
6.5	Basic	Bus Interface
	6.5.1	Data Size and Data Alignment
	6.5.2	Valid Strobes
		Rev. 3.00 Mar 21, 2006 pa
		_
		RENESAS

Interrupt Control Modes and Interrupt Operation.....

Interrupt Exception Handling Sequence

Interrupt Response Times

DTC Activation by Interrupt.....

5.6

5.6.1

5.6.2 5.6.3

5.6.4

5.6.5

/.1	reatures					
7.2	Registe	er Descriptions				
	7.2.1	DTC Mode Register A (MRA)				
	7.2.2	DTC Mode Register B (MRB)				
	7.2.3	DTC Source Address Register (SAR)				
	7.2.4	DTC Destination Address Register (DAR)				
	7.2.5	DTC Transfer Count Register A (CRA)				
	7.2.6	DTC Transfer Count Register B (CRB)				
	7.2.7	DTC Enable Registers (DTCER)				
	7.2.8	DTC Vector Register (DTVECR)				
7.3	Activa	tion Sources				
7.4	Locati	on of Register Information and DTC Vector Table				
7.5	Operation					
	7.5.1	Normal Mode				
	7.5.2	Repeat Mode				
	7.5.3	Block Transfer Mode				
	7.5.4	Chain Transfer				
	7.5.5	Interrupts				
	7.5.6	Operation Timing				
	7.5.7	Number of DTC Execution States				
7.6	Proced	lures for Using DTC				
	7.6.1	Activation by Interrupt				
	7.6.2	Activation by Software				
7.7	Examp	oles of Use of DTC				
	7.7.1	Normal Mode				
	7.7.2	Software Activation				
7.8	Usage	Notes				

Section 7 Data Transfer Controller (DTC).....

Rev. 3.00 Mar 21, 2006 page xxiv of liv

7.8.1

7.8.2

7.8.3

Module Stop Mode Setting

On-Chip RAM

DTCE Bit Setting.....

	8.3.3	Port 2 Pull-Up MOS Control Register (P2PCR)
	8.3.4	Pin Functions
	8.3.5	Port 2 Input Pull-Up MOS
8.4	Port 3	
	8.4.1	Port 3 Data Direction Register (P3DDR)
	8.4.2	Port 3 Data Register (P3DR)
	8.4.3	Port 3 Pull-Up MOS Control Register (P3PCR)
	8.4.4	Pin Functions
	8.4.5	Port 3 Input Pull-Up MOS
8.5	Port 4	
	8.5.1	Port 4 Data Direction Register (P4DDR)
	8.5.2	Port 4 Data Register (P4DR)
	8.5.3	Pin Functions
8.6	Port 5	
	8.6.1	Port 5 Data Direction Register (P5DDR)
	8.6.2	Port 5 Data Register (P5DR)
	8.6.3	Pin Functions
8.7	Port 6.	
	8.7.1	Port 6 Data Direction Register (P6DDR)
	8.7.2	Port 6 Data Register (P6DR)
	8.7.3	Port 6 Pull-Up MOS Control Register (KMPCR)
	8.7.4	Pin Functions
	8.7.5	Port 6 Input Pull-Up MOS
8.8	Port 7	
	8.8.1	Port 7 Input Data Register (P7PIN)
	8.8.2	Pin Functions
		Rev. 3.00 Mar 21, 2006 p
		Nev. 3.00 Mai 21, 2000 p
		RENESAS

Pin Functions

Port 1 Input Pull-Up MOS

Port 2 Data Direction Register (P2DDR).....

Port 2 Data Register (P2DR).....

Port 2

8.2.4

8.2.5

8.3.1

8.3.2

8.3

	0.12.1 Told B Butta Birection Register (1 BBBR)
	8.12.2 Port B Output Data Register (PBODR)
	8.12.3 Port B Input Data Register (PBPIN)
	8.12.4 Pin Functions
	8.12.5 Port B Input Pull-Up MOS
8.13	Additional Overview for H8S/2160B and H8S/2161B
8.14	Ports C, D
	8.14.1 Port C and Port D Data Direction Registers (PCDDR, PDDDR)
	8.14.2 Port C and Port D Output Data Registers (PCODR, PDODR)
	8.14.3 Port C and Port D Input Data Registers (PCPIN, PDPIN)
	8.14.4 Port C and Port D Nch-OD Control Register (PCNOCR, PDNOCR)
	8.14.5 Pin Functions
	8.14.6 Input Pull-Up MOS in Ports C and D
8.15	Ports E, F.
	8.15.1 Port E and Port F Data Direction Registers (PEDDR, PFDDR)
	8.15.2 Port E and Port F Output Data Registers (PEODR, PFODR)
	8.15.3 Port E and Port F Input Data Registers (PEPIN, PFPIN)
	8.15.4 Port E and Port F Nch-OD Control Register (PENOCR, PFNOCR)
	8.15.5 Pin Functions
	8.15.6 Input Pull-Up MOS in Ports E and F
8.16	Port G
	8.16.1 Port G Data Direction Register (PGDDR)
	8.16.2 Port G Output Data Register (PGODR)
	8.16.3 Port G Input Data Register (PGPIN)
	8.16.4 Port G Nch-OD Control Register (PGNOCR)
	8.16.5 Pin Functions

Rev. 3.00 Mar 21, 2006 page xxvi of liv

8.11.1 Port A Data Direction Register (PADDR)..... 8.11.2 Port A Output Data Register (PAODR)..... 8.11.3 Port A Input Data Register (PAPIN)..... 8.11.4 Pin Functions 8.11.5 Port A Input Pull-Up MOS 8.12 Port B 8.12.1 Port B Data Direction Register (PBDDR).....

RENESAS

Sect	ion 10 14-Bit PWM Timer (PWMX)					
10.1	Features					
10.2	Input/Output Pins					
10.3	Register Descriptions					
	10.3.1 PWM (D/A) Counters H and L (DACNTH, DACNTL)					
	10.3.2 PWM (D/A) Data Registers A and B (DADRA, DADRB)					
	10.3.3 PWM (D/A) Control Register (DACR)					
10.4	Bus Master Interface					
10.5	Operation					
10.6	Usage Note					
	10.6.1 Module Stop Mode Setting					
_						
	ion 11 16-Bit Free-Running Timer (FRT)					
11.1	Features					
11.2	Input/Output Pins					
11.3	Register Descriptions					
	11.3.1 Free-Running Counter (FRC)					
	11.3.2 Output Compare Registers A and B (OCRA, OCRB)					
	11.3.3 Input Capture Registers A to D (ICRA to ICRD)					
	11.3.4 Output Compare Registers AR and AF (OCRAR, OCRAF)					
	11.3.5 Output Compare Register DM (OCRDM)					
	11.3.6 Timer Interrupt Enable Register (TIER)					
	11.3.7 Timer Control/Status Register (TCSR)					
	11.3.8 Timer Control Register (TCR)					
	11.3.9 Timer Output Compare Control Register (TOCR)					
11.4	Operation					
	11.4.1 Pulse Output					
11.5	Operation Timing					
	Rev. 3.00 Mar 21, 2006 p					
	RENESAS					

Operation

Usage Note....

Module Stop Mode Setting

9.4

9.5

9.5.1

11.6	Interrupt Sources					
11.7	Usage N	Totes				
	11.7.1	Conflict between FRC Write and Clear				
	11.7.2	Conflict between FRC Write and Increment				
	11.7.3	Conflict between OCR Write and Compare-Match				
	11.7.4	Switching of Internal Clock and FRC Operation				
	11.7.5	Module Stop Mode Setting				
Sect	ion 12	8-Bit Timer (TMR)				
12.1	Features					
12.2	Input/Ou	ıtput Pins				
12.3	Register	Descriptions				
	12.3.1	Timer Counter (TCNT)				
	12.3.2	Time Constant Register A (TCORA)				
	12.3.3	Time Constant Register B (TCORB)				
	12.3.4	Timer Control Register (TCR)				
	12.3.5	Timer Control/Status Register (TCSR)				
	12.3.6	Input Capture Register (TICR)				
	12.3.7	Time Constant Register (TCORC)				
	12.3.8	Input Capture Registers R and F (TICRR, TICRF)				
	12.3.9	Timer Input Select Register (TISR)				
12.4	Operatio	on				
	12.4.1	Pulse Output				
12.5	Operatio	on Timing				
	12.5.1	TCNT Count Timing				
	12.5.2	Timing of CMFA and CMFB Setting at Compare-Match				

11.5.10 Mask Signal Generation Timing.....

Rev. 3.00 Mar 21, 2006 page xxviii of liv

Sect	ion 13	Timer Connection
13.1	Feature	S
13.2		Output Pins
13.3	_	er Descriptions
	13.3.1	Timer Connection Register I (TCONRI)
	13.3.2	Timer Connection Register O (TCONRO)
		Timer Connection Register S (TCONRS)
	13.3.4	Edge Sense Register (SEDGR)
13.4		ion
	13.4.1	PWM Decoding (PDC Signal Generation)
		Clamp Waveform Generation (CL1/CL2/CL3 Signal Generation)
	13.4.3	Measurement of 8-Bit Timer Divided Waveform Period
	13.4.4	2fH Modification of IHI Signal
	13.4.5	IVI Signal Fall Modification and IHI Synchronization
	13.4.6	Internal Synchronization Signal Generation (IHG/IVG/CL4 Signal
		Generation)
	13.4.7	HSYNCO Output
	13.4.8	VSYNCO Output
	13.4.9	CBLANK Output
13.5	Usage 1	Note
	13.5.1	Module Stop Mode Setting
Sect	ion 14	Watchdog Timer (WDT)
14.1		es
14.2		Output Pins
14.3		er Descriptions
14.5	_	Timer Counter (TCNT)
		Timer Control/Status Register (TCSR)
	11.3.2	Timer Condon States Register (TCSR)
		Rev. 3.00 Mar 21, 2006 pa

12.9.5 Switching of Internal Clocks and TCNT Operation.
12.9.6 Mode Setting with Cascaded Connection.
12.9.7 Module Stop Mode Setting.

	14.6.4	Switching between Watchdog Timer Mode and Interval Timer Mode				
	14.6.5	System Reset by RESO Signal				
	14.6.6	Counter Values during Transitions between High-Speed, Sub-Active,				
		and Watch Modes				
Sect	ion 15	Serial Communication Interface (SCI and IrDA)				
15.1	Feature	es				
15.2	Input/C	Output Pins				
15.3	Registe	Register Descriptions				
	15.3.1	Receive Shift Register (RSR)				
	15.3.2	Receive Data Register (RDR)				
	15.3.3	Transmit Data Register (TDR)				
	15.3.4	Transmit Shift Register (TSR)				
	15.3.5	Serial Mode Register (SMR)				
	15.3.6	Serial Control Register (SCR)				
	15.3.7	Serial Status Register (SSR)				
	15.3.8	Serial Interface Mode Register (SCMR)				
	15.3.9	Bit Rate Register (BRR)				
	15.3.10	Keyboard Comparator Control Register (KBCOMP)				
15.4	Operation in Asynchronous Mode					
	15.4.1	Data Transfer Format				
	15.4.2	Receive Data Sampling Timing and Reception Margin in Asynchronous				
		Mode				
	15.4.3	Clock				
	15.4.4	SCI Initialization (Asynchronous Mode)				
	15.4.5	Data Transmission (Asynchronous Mode)				
		Serial Data Reception (Asynchronous Mode)				
15.5						
	Transprocessor Communication Lanction					

Rev. 3.00 Mar 21, 2006 page xxx of liv

15.6

RENESAS

15.6.1 Clock

	15.9.7	SCI Operations during Mode Transitions
	15.9.8	Notes on Switching from SCK Pins to Port Pins
Sec	tion 16	I ² C Bus Interface (IIC) (Optional)
16.1		28
16.2	Input/C	Output Pins
16.3	Registe	er Descriptions
	16.3.1	I ² C Bus Data Register (ICDR)
	16.3.2	Slave Address Register (SAR)
	16.3.3	Second Slave Address Register (SARX)
	16.3.4	I ² C Bus Mode Register (ICMR)
		I ² C Bus Control Register (ICCR)
	16.3.6	I ² C Bus Status Register (ICSR)
	16.3.7	DDC Switch Register (DDCSWR)
	16.3.8	I ² C Bus Extended Control Register (ICXR)
16.4		ion
	16.4.1	I ² C Bus Data Format
	16.4.2	Initialization
	16.4.3	Master Transmit Operation
	16.4.4	Master Receive Operation
	16.4.5	Slave Receive Operation
	16.4.6	Slave Transmit Operation
		IRIC Setting Timing and SCL Control
	16.4.8	Automatic Switching from Formatless Mode to I ² C Bus Format
	16.4.9	Operation Using DTC
	16.4.10	Noise Canceler
		Rev. 3.00 Mar 21, 2006 p
		RENESAS

(Clocked Synchronous Mode Only)

15.9.4 Receive Error Flags and Transmit Operations

	17.4.4	KCLKI and KDI Read Timing
		KCLKO and KDO Write Timing
		KBF Setting Timing and KCLK Control
		Receive Timing
		KCLK Fall Interrupt Operation
17.5		Notes
		KBIOE Setting and KCLK Falling Edge Detection
		Module Stop Mode Setting
Sect	ion 18	Host Interface X-Bus Interface (XBS)
18.1		SS
18.2	Input/C	Output Pins
18.3		er Descriptions
	_	System Control Register 2 (SYSCR2)
	18.3.2	Host Interface Control Register (HICR) Host Interface Control Register
		(HICR2)
	18.3.3	Input Data Register (IDR)
	18.3.4	Output Data Register 1 (ODR)
	18.3.5	Status Register (STR)
18.4		ion
	18.4.1	Host Interface Activation
	18.4.2	Control States
	18.4.3	A20 Gate
	18.4.4	Host Interface Pin Shutdown Function
18.5	Interru	pt Sources

Rev. 3.00 Mar 21, 2006 page xxxii of liv

17.4

17.3.1 Keyboard Control Register H (KBCRH)
17.3.2 Keyboard Control Register L (KBCRL)
17.3.3 Keyboard Data Buffer Register (KBBR)

RENESAS

	19.3.4	Input Data Registers 1 to 3 (IDR1 to IDR3)
	19.3.5	Output Data Registers 1 to 3 (ODR1 to ODR3)
		Bidirectional Data Registers 0 to 15 (TWR0 to TWR15)
		Status Registers 1 to 3 (STR1 to STR3)
		SERIRQ Control Registers 0 and 1 (SIRQCR0, SIRQCR1)
		Host Interface Select Register (HISEL)
19.4	Operat	ion
	19.4.1	Host Interface Activation
	19.4.2	LPC I/O Cycles
	19.4.3	A20 Gate
	19.4.4	Host Interface Shutdown Function (LPCPD)
	19.4.5	Host Interface Serialized Interrupt Operation (SERIRQ)
	19.4.6	Host Interface Clock Start Request (CLKRUN)
19.5	Interru	pt Sources
	19.5.1	IBFI1 to IBFI3, and ERRI
	19.5.2	SMI, HIRQ1, HIRQ6, HIRQ9 to HIRQ12
19.6	Usage	Notes
	19.6.1	Module Stop Mode Setting
	19.6.2	Notes on Using Host Interface
Secti	on 20	D/A Converter
		es
_*		Output Pins
	_	er Descriptions
		D/A Data Registers 0 and 1 (DADR0, DADR1)
		D/A Control Register (DACR)
20.4		ion
	•	Note
		Rev. 3.00 Mar 21, 2006 pa
		RENESAS

19.3 Register Descriptions
19.3.1 Host Interface Control Registers 0 and 1 (HICR0, HICR1)
19.3.2 Host Interface Control Registers 2 and 3 (HICR2, HICR3)
19.3.3 LPC Channel 3 Address Register (LADR3)

21.4	Operati	on				
	21.4.1	Single Mode				
	21.4.2	Scan Mode				
	21.4.3	Input Sampling and A/D Conversion Time				
	21.4.4	External Trigger Input Timing				
21.5	Interruj	Interrupt Sources				
21.6	A/D Co	onversion Accuracy Definitions				
21.7	Usage 1	Notes				
	21.7.1	Permissible Signal Source Impedance				
	21.7.2	Influences on Absolute Accuracy				
	21.7.3	Setting Range of Analog Power Supply and Other Pins				
		Notes on Board Design				
		Notes on Noise Countermeasures				
	21.7.6	Module Stop Mode Setting				
Sect	ion 22	RAM				
Sect	ion 23	ROM				
23.1		PS				
23.2	Mode 7	de Transitions				
23.3	Block (Configuration				
		Block Configuration of 64-Kbyte Flash Memory				
		Block Configuration of 128-Kbyte Flash Memory				
		Block Configuration of 256-Kbyte Flash Memory				
23.4		Output Pins				
23.5	_	er Descriptions				
		Flash Memory Control Register 1 (FLMCR1).				

RENESAS

Rev. 3.00 Mar 21, 2006 page xxxiv of liv

21.3.4 Keyboard Comparator Control Register (KBCOMP).....

24.1	Oscillator
	24.1.1 Connecting Crystal Resonator
	24.1.2 External Clock Input Method
24.2	Duty Correction Circuit
24.3	Medium-Speed Clock Divider
24.4	Bus Master Clock Select Circuit
24.5	Subclock Input Circuit
24.6	Subclock Waveform Forming Circuit
24.7	Clock Select Circuit
24.8	Processing for X1 and X2 Pins
24.9	Usage Notes
	24.9.1 Note on Resonator
	24.9.2 Notes on Board Design
Secti	on 25 Power-Down Modes
25.1	Register Descriptions
	25.1.1 Standby Control Register (SBYCR)
	25.1.2 Low-Power Control Register (LPWRCR)
	25.1.3 Module Stop Control Registers H and L (MSTPCRH, MSTPCRL)
25.2	Mode Transitions and LSI States
25.3	Medium-Speed Mode
25.4	Sleep Mode
25.5	Software Standby Mode
25.6	Hardware Standby Mode
25.7	Watch Mode
25.8	Subsleep Mode
25.9	Subactive Mode
	Rev. 3.00 Mar 21, 2006 pa
	RENESAS
	•(ENES/12)

23.10 Interrupts during Flash Memory Programming/Erasing
23.11 Programmer Mode
23.12 Usage Notes

Section 24 Clock Pulse Generator

26.2	Registe	er Bits
26.3	Registe	er States in Each Operating Mode
26.4	Registe	er Select Conditions
Sect	ion 27	Electrical Characteristics
27.1	Electric	cal Characteristics of H8S/2140B, H8S/2141B, H8S/2160B, and H8S/216
	27.1.1	Absolute Maximum Ratings
	27.1.2	DC Characteristics
	27.1.3	AC Characteristics
	27.1.4	A/D Conversion Characteristics
	27.1.5	D/A Conversion Characteristics
	27.1.6	Flash Memory Characteristics
		Usage Note
27.2	Electri	cal Characteristics of H8S/2145B and H8S/2148B
	27.2.1	Absolute Maximum Ratings
	27.2.2	DC Characteristics
	27.2.3	AC Characteristics
		A/D Conversion Characteristics
	27.2.5	D/A Conversion Characteristics
		Flash Memory Characteristics
	27.2.7	Usage Notes
27.3	Timing	g Chart
	27.3.1	Clock Timing
	27.3.2	Control Signal Timing
	27.3.3	Bus Timing
	27.3.4	On-Chip Peripheral Module Timing

Appendix B Product Codes

21, 2000 page 2000 of in

Rev. 3.00 Mar 21, 2006 pag

RENESAS

Section 2 C	PU
Figure 2.1	Exception Vector Table (Normal Mode)
Figure 2.2	Stack Structure in Normal Mode
Figure 2.3	Exception Vector Table (Advanced Mode)
Figure 2.4	Stack Structure in Advanced Mode
Figure 2.5	Memory Map
Figure 2.6	CPU Internal Registers
Figure 2.7	Usage of General Registers
Figure 2.8	Stack
Figure 2.9	General Register Data Formats (1)
Figure 2.9	General Register Data Formats (2)
Figure 2.10	Memory Data Formats
Figure 2.11	Instruction Formats (Examples)
Figure 2.12	Branch Address Specification in Memory Indirect Addressing Mode
Figure 2.13	State Transitions.
Section 3 M	ICU Operating Modes
Figure 3.1	Address Map for H8S/2140B and H8S/2160B (1)
Figure 3.2	Address Map for H8S/2140B and H8S/2160B (2)
Figure 3.3	Address Map for H8S/2141B and H8S/2161B (1)

Fill Allangement of nos/2100b and nos/2101b.....

Address Map for H8S/2141B and H8S/2161B (2)..... Figure 3.4

Figure 3.5

Figure 3.6 Figure 3.7

Figure 3.8

Figure 4.1

Figure 3.9 Address Map for H8S/2148B (1)..... Address Map for H8S/2148B (2)..... Figure 3.10

Section 4 Exception Handling

Stack Status after Exception Handling..... Figure 4.2

Rev. 3.00 Mar 21, 2006 page xxxviii of liv

RENESAS

Address Map for H8S/2145BV (1)..... Address Map for H8S/2145BV (2).....

Address Map for H8S/2145B (1).....

Address Map for H8S/2145B (2).....

Reset Sequence (Mode 3)

Address Break Block Diagram
Address Break Timing Example
Conflict between Interrupt Generation and Disabling
us Controller (BSC)
Block Diagram of Bus Controller
IOS Signal Output Timing
Access Sizes and Data Alignment Control (8-Bit Access Space)
Access Sizes and Data Alignment Control (16-bit Access Space)
Bus Timing for 8-Bit, 2-State Access Space
Bus Timing for 8-Bit, 3-State Access Space
Bus Timing for 16-Bit, 2-State Access Space (Even Byte Access)
Bus Timing for 16-Bit, 2-State Access Space (Odd Byte Access)
Bus Timing for 16-Bit, 2-State Access Space (Word Access)
Bus Timing for 16-Bit, 3-State Access Space (Even Byte Access)
Bus Timing for 16-Bit, 3-State Access Space (Odd Byte Access)
Bus Timing for 16-Bit, 3-State Access Space (Word Access)
Example of Wait State Insertion Timing (Pin Wait Mode)
Access Timing Example in Burst ROM Space (AST = BRSTS1 = 1)
Access Timing Example in Burst ROM Space (AST = BRSTS1 = 0)
Examples of Idle Cycle Operation
ata Transfer Controller (DTC)
Block Diagram of DTC
Block Diagram of DTC Activation Source Control
DTC Register Information Location in Address Space
Rev. 3.00 Mar 21, 2006 pag
RENESAS

Mode 0.....

State Transition in Interrupt Control Mode 1.....

Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 1.....

Interrupt Exception Handling.....

Figure 5.5

Figure 5.6

Figure 5.7

Section 9	8-Bit PWM Timer (PWM)
Figure 9.1	Block Diagram of PWM Timer
Figure 9.2	Example of Additional Pulse Timing (when Upper 4 Bits of PWDR = 10
Section 10	14-Bit PWM Timer (PWMX)
Figure 10.1	PWM (D/A) Block Diagram
Figure 10.2	PWM D/A Operation
Figure 10.3	Output Waveform (OS = 0, DADR Corresponds to T_L)
Figure 10.4	Output Waveform (OS = 1, DADR Corresponds to T _H)
Figure 10.5	D/A Data Register Configuration when CFS = 1
Figure 10.6	Output Waveform when DADR = H'0207 (OS = 1)
Section 11	16-Bit Free-Running Timer (FRT)
Figure 11.1	Block Diagram of 16-Bit Free-Running Timer
Figure 11.2	
Figure 11.3	Increment Timing with Internal Clock Source
Figure 11.4	Increment Timing with External Clock Source
Figure 11.5	Timing of Output Compare A Output
Figure 11.6	
Figure 11.7	Input Capture Input Signal Timing (Usual Case)
Figure 11.8	Input Capture Input Signal Timing (When ICRA to ICRD are Read)
Figure 11.9	
Figure 11.10	
Figure 11.1	1 Timing of Input Capture Flag (ICFA, ICFB, ICFC, or ICFD) Setting
Figure 11.12	2 Timing of Output Compare Flag (OCFA or OCFB) Setting
Figure 11.13	
Figure 11.1	
Figure 11.1:	

Rev. 3.00 Mar 21, 2006 page xl of liv

RENESAS

Figure 11.16 Timing of Input Capture Mask Signal Clearing.

Figure 11.17 FRC Write-Clear Conflict.

Figure 11.18 FRC Write-Increment Conflict.

Timing of Counter Clear by External Reset Input
Timing of OVF Flag Setting
Timing of Input Capture Operation
Timing of Input Capture Signal (Input Capture Signal Is Input during T
and TICRF Read)
Input Capture Signal Selection
Conflict between TCNT Write and Clear
Conflict between TCNT Write and Increment
Conflict between TCOR Write and Compare-Match
Fimer Connection
Block Diagram of Timer Connection
Timing Chart for PWM Decoding
Timing Chart for Clamp Waveform Generation (CL1 and CL2 Signals)
Timing Chart for Clamp Waveform Generation (CL3 Signal)
Timing Chart for Measurement of IVI Signal and IHI Signal Divided
Waveform Periods
2fH Modification Timing Chart
Fall Modification and IHI Synchronization Timing Chart
IVG Signal/IHG Signal/CL4 Signal Timing Chart
CBLANK Output Waveform Generation
Watchdog Timer (WDT)

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 14.1

Figure 14.2

Figure 14.3

Figure 14.4

Block Diagram of WDT......
Watchdog Timer Mode (RST/NMI = 1) Operation

Interval Timer Mode Operation

OVF Flag Set Timing.....

Rev. 3.00 Mar 21, 2006

Count Timing for Internal Clock Input.....

Count Timing for External Clock Input (Both Edges).....

Timing of CMF Setting at Compare-Match.....

O	1 ,
	(Example with 8-Bit Data, Parity, One Stop Bit)
Figure 15.9	Sample Serial Reception Flowchart (1)
Figure 15.9	Sample Serial Reception Flowchart (2)
Figure 15.10	Example of Communication Using Multiprocessor Format
	(Transmission of Data H'AA to Receiving Station A)
Figure 15.11	Sample Multiprocessor Serial Transmission Flowchart
Figure 15.12	Example of SCI Receive Operation (Example with 8-Bit Data,
	Multiprocessor Bit, One Stop Bit)
Figure 15.13	Sample Multiprocessor Serial Reception Flowchart (1)
Figure 15.13	Sample Multiprocessor Serial Reception Flowchart (2)
Figure 15.14	Data Format in Clocked Synchronous Communication (LSB-First)
Figure 15.15	Sample SCI Initialization Flowchart
Figure 15.16	Example of SCI Transmit Operation in Clocked Synchronous Mode
Figure 15.17	Sample Serial Transmission Flowchart
Figure 15.18	Example of SCI Receive Operation in Clocked Synchronous Mode
Figure 15.19	Sample Serial Reception Flowchart
Figure 15.20	Sample Flowchart of Simultaneous Serial Transmission and Reception
Figure 15.21	IrDA Block Diagram
Figure 15.22	IrDA Transmission and Reception

Figure 15.3

Figure 15.4

Figure 15.5 Figure 15.6

Figure 15.7

Figure 15.8

Figure 15.23

Figure 15.24

Figure 15.25

Figure 15.26

Rev. 3.00 Mar 21, 2006 page xlii of liv

RENESAS

Pin States during Transmission in Clocked Synchronous Mode

Pin States during Transmission in Asynchronous Mode (Internal Clock)

(Internal Clock).....

Receive Data Sampling Timing in Asynchronous Mode.....

(Example with 8-Bit Data, Parity, One Stop Bit).....

Sample Serial Transmission Flowchart.....

Relation between Output Clock and Transmit Data Phase

Example of SCI Transmit Operation in Asynchronous Mode

Example of SCI Receive Operation in Asynchronous Mode

```
Figure 16.9
           Example of Operation Timing in Master Transmit Mode (MLS = WAI
Figure 16.10
           Example of Stop Condition Issuance Operation Timing in Master Tran
           Mode (MLS = WAIT = 0) .....
Figure 16.11
           Sample Flowchart for Operations in Master Receive Mode (HNDS = 1
Figure 16.12
           Example of Operation Timing in Master Receive Mode
           (MLS = WAIT = 0, HNDS = 1)...
           Example of Stop Condition Issuance Operation Timing in Master Rece
Figure 16.13
           Mode (MLS = WAIT = 0, HNDS = 1) .....
           Sample Flowchart for Operations in Master Receive Mode
Figure 16.14
           (Receiving Multiple Bytes) (WAIT = 1).....
Figure 16.15
           Sample Flowchart for Operations in Master Receive Mode
           (Receiving a Single Byte) (WAIT = 1).....
Figure 16.16
           Example of Master Receive Mode Operation Timing
           (MLS = ACKB = 0, WAIT = 1) .....
           Example of Stop Condition Issuance Timing in Master Receive Mode
Figure 16.17
           (MLS = ACKB = 0, WAIT = 1) .....
Figure 16.18
           Sample Flowchart for Operations in Slave Receive Mode (HNDS = 1).
           Example of Slave Receive Mode Operation Timing (1) (MLS = 0, HN
Figure 16.19
Figure 16.20
           Example of Slave Receive Mode Operation Timing (2) (MLS = 0, HN)
Figure 16.21
           Sample Flowchart for Operations in Slave Receive Mode (HNDS = 0).
Figure 16.22
           Example of Slave Receive Mode Operation Timing (1)
           (MLS = ACKB = 0, HNDS = 0).....
Figure 16.23
           Example of Slave Receive Mode Operation Timing (2)
           (MLS = ACKB = 0, HNDS = 0).....
Figure 16.24
           Sample Flowchart for Slave Transmit Mode .....
```

I²C Bus Data Format (Serial Format).....

Sample Flowchart for Operations in Master Transmit Mode.....

Example of Slave Transmit Mode Operation Timing (MLS = 0).....

IRIC Setting Timing and SCL Control (1).....

IRIC Setting Timing and SCL Control (2).....

RENESAS

Rev. 3.00 Mar 21, 2006 p

Figure 16.5

Figure 16.6

Figure 16.7 Figure 16.8

Figure 16.25

Figure 16.26

Figure 16.27

Figure 16.36	TRS Bit Set Timing in Slave Mode
Figure 16.37	Diagram of Erroneous Operation when Arbitration is Lost
Section 17 I	Keyboard Buffer Controller
Figure 17.1	Block Diagram of Keyboard Buffer Controller
Figure 17.2	Keyboard Buffer Controller Connection
Figure 17.3	Sample Receive Processing Flowchart
Figure 17.4	Receive Timing
Figure 17.5 (1) Sample Transmit Processing Flowchart
Figure 17.5 (2	Sample Transmit Processing Flowchart
	Transmit Timing
) Sample Receive Abort Processing Flowchart
) Sample Receive Abort Processing Flowchart
Figure 17.8	Receive Abort and Transmit Start (Transmission/Reception Switchover)
	Timing
Figure 17.9	KCLKI and KDI Read Timing
Figure 17.10	KCLKO and KDO Write Timing
Figure 17.11	KBF Setting and KCLK Automatic I/O Inhibit Generation Timing
Figure 17.12	Receive Counter and KBBR Data Load Timing
Figure 17.13	Example of KCLK Input Fall Interrupt Operation

Figure 17.14 KBIOE Setting and KCLK Falling Edge Detection Timing.....

Block Diagram of XBS.....

Block Diagram of LPC

Typical LFRAME Timing

Section 18 Host Interface X-Bus Interface (XBS)

GA20 Output.....

Figure 18.2

Figure 18.1

Figure 19.1

Figure 19.2

Figure 18.3 HIRQ Output Flowchart (Example of Channels 1 and 2).....

Section 19 Host Interface LPC Interface (LPC)

Figure 19.3 Abort Mechanism Figure 19.4 GA20 Output.....

Rev. 3.00 Mar 21, 2006 page xliv of liv

RENESAS

Figure 21.2 Example of A/D Converter Operation (Scan Mode, Channels AN0 to A Selected)..... Figure 21.3 A/D Conversion Timing Figure 21.4 External Trigger Input Timing..... Figure 21.5 A/D Conversion Accuracy Definitions Figure 21.6 A/D Conversion Accuracy Definitions Figure 21.7 Example of Analog Input Circuit..... Figure 21.8 Example of Analog Input Protection Circuit Figure 21.9 Equivalent Circuit of Analog Input Pin Section 23 ROM Figure 23.1 Block Diagram of Flash Memory Figure 23.2 Flash Memory State Transitions Boot Mode Figure 23.3 Figure 23.4 User Program Mode (Example) 64-Kbyte Flash Memory Block Configuration Figure 23.5 Figure 23.6 128-Kbyte Flash Memory Block Configuration Figure 23.7 256-Kbyte Flash Memory Block Configuration Figure 23.8 On-Chip RAM Area in Boot Mode..... Figure 23.9 ID Code Area Figure 23.10 Programming/Erasing Flowchart Example in User Program Mode...... Figure 23.11 Program/Program-Verify Flowchart..... Figure 23.12 Erase/Erase-Verify Flowchart.... Memory Map in Programmer Mode **Figure 23.13** Section 24 Clock Pulse Generator Figure 24.1 Block Diagram of Clock Pulse Generator..... Figure 24.2 Typical Connection to Crystal Resonator Figure 24.3 Equivalent Circuit of Crystal Resonator..... Figure 24.4 Example of External Clock Input.....

Section 21 A/D Converter

Figure 21.1

Rev. 3.00 Mar 21, 2006 |

Block Diagram of A/D Converter.....

Beetlon 27	Sectiful Characteristics
Figure 27.1	Darlington Pair Drive Circuit (Example)
Figure 27.2	LED Drive Circuit (Example)
Figure 27.3	Output Load Circuit
Figure 27.4	Connection of VCL Capacitor
Figure 27.5	Connection of VCL Capacitor
Figure 27.6	System Clock Timing
Figure 27.7	Oscillation Settling Timing
Figure 27.8	Oscillation Setting Timing (Exiting Software Standby Mode)
Figure 27.9	Reset Input Timing
Figure 27.10	Interrupt Input Timing
Figure 27.11	Basic Bus Timing (Two-State Access)
Figure 27.12	Basic Bus Timing (Three-State Access)
Figure 27.13	Basic Bus Timing (Three-State Access with One Wait State)
Figure 27.14	Burst ROM Access Timing (Two-State Access)
Figure 27.15	Burst ROM Access Timing (One-State Access)
Figure 27.16	I/O Port Input/Output Timing
Figure 27.17	FRT Input/Output Timing
Figure 27.18	FRT Clock Input Timing
Figure 27.19	8-Bit Timer Output Timing
Figure 27.20	8-Bit Timer Clock Input Timing
Figure 27.21	8-Bit Timer Reset Input Timing
Figure 27.22	PWM, PWMX Output Timing
Figure 27.23	SCK Clock Input Timing
Figure 27.24	SCI Input/Output Timing (Synchronous Mode)
Figure 27.25	A/D Converter External Trigger Input Timing
Figure 27.26	WDT Output Timing (RESO)
Figure 27.27	Host Interface (XBS) Timing
Figure 27.28	Keyboard Buffer Controller Timing

Application Example in Software Standby Mode.....

Hardware Standby Mode Timing.....

Rev. 3.00 Mar 21, 2006 page xlvi of liv

Figure 25.3

Figure 25.4

Section 27 Electrical Characteristics

Rev. 3.00 Mar 21, 2006 p

RENESAS

Section 2	CPU
Table 2.1	Instruction Classification
Table 2.2	Operation Notation
Table 2.3	Data Transfer Instructions
Table 2.4	Arithmetic Operations Instructions (1)
Table 2.4	Arithmetic Operations Instructions (2)
Table 2.5	Logic Operations Instructions
Table 2.6	Shift Instructions
Table 2.7	Bit Manipulation Instructions (1)
Table 2.7	Bit Manipulation Instructions (2)
Table 2.8	Branch Instructions
Table 2.9	System Control Instructions
Table 2.10	Block Data Transfer Instructions
Table 2.11	Addressing Modes
Table 2.12	Absolute Address Access Ranges
Table 2.13	Effective Address Calculation (1)
Table 2.13	Effective Address Calculation (2)
Section 3	MCU Operating Modes
Table 3.1	MCU Operating Mode Selection
Table 3.2	Pin Functions in Each Mode
Section 4	Exception Handling
Table 4.1	Exception Types and Priority
Table 4.2	Exception Handling Vector Table
Table 4.3	Status of CCR after Trap Instruction Exception Handling

Section 5 Interrupt Controller

Table 5.1 Pin Configuration.....

Table 5.2

Table 5.3 Interrupt Sources, Vector Addresses, and Interrupt Priorities..... Interrupt Control Modes Table 5.4

Rev. 3.00 Mar 21, 2006 page xlviii of liv

RENESAS

Correspondence between Interrupt Source and ICR

Table 7.6 Number of States Required for Each Execution Status..... Section 8 I/O Ports Table 8.1 Port Functions of H8S/2140B, H8S/2141B, H8S/2145B, and H8S/2148B Input Pull-Up MOS States (Port 1) Table 8.2 Table 8.3 Input Pull-Up MOS States (Port 2) Table 8.4 Input Pull-Up MOS States (Port 3) Table 8.5 Input Pull-Up MOS States (Port 6) Input Pull-Up MOS States (Port A)..... Table 8.6 Table 8.7 Input Pull-Up MOS States (Port B)..... H8S/2160B, H8S/2161B Additional Port Functions..... Table 8.8 Table 8.9 Input Pull-Up MOS States (Port C and port D)..... Input Pull-Up MOS States (Port E and port F)..... **Table 8.10** Section 9 8-Bit PWM Timer (PWM) Table 9.1 Pin Configuration Internal Clock Selection Table 9.2 Resolution, PWM Conversion Period and Carrier Frequency when $\phi = 1$ Table 9.3 Table 9.4 Duty Cycle of Basic Pulse..... Position of Pulses Added to Basic Pulses..... Table 9.5 Section 10 14-Bit PWM Timer (PWMX) **Table 10.1** Pin Configuration..... Read and Write Access Methods for 16-Bit Registers..... **Table 10.2**

Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs...

Register Functions in Normal Mode

Register Functions in Repeat Mode

Register Functions in Block Transfer Mode.....

DTC Execution Status

Section 7 Data Transfer Controller (DTC)

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 10.3

RENESAS

Settings and Operation (Examples when $\phi = 10 \text{ MHz}$).....

Rev. 3.00 Mar 21, 2006 p

	1
Table 12.3	Input Capture Signal Selection
Table 12.4	Interrupt Sources of 8-Bit Timers TMR_0, TMR_1, TMR_Y, and TMR_2
Table 12.5	Timer Output Priorities
Table 12.6	Switching of Internal Clocks and TCNT Operation
Section 13	Timer Connection
Table 13.1	Pin Configuration
Table 13.2	Synchronization Signal Connection Enable
Table 13.3	Registers Accessible by TMR_X/TMR_Y
Table 13.4	Examples of TCR Settings
Table 13.5	Examples of TCORB (Pulse Width Threshold) Settings
Table 13.6	Examples of TCR and TCSR Settings
Table 13.7	Examples of TCR, TCSR, TOCR, and OCRDM Settings
Table 13.8	Examples of TCR, TCSR, and TCORB Settings
Table 13.9	Examples of OCRAR, OCRAF, TCORA, TCORB, TCR, and TCSR Setti
Table 13.10	HSYNCO Output Modes
	VSYNCO Output Modes
	-
Section 14	Watchdog Timer (WDT)

Clock Input to TCNT and Count Condition.....

Table 14.1 Pin Configuration.....

Table 14.2 WDT Interrupt Source.....

Section 15 Serial Communication Interface (SCI and IrDA)

Table 15.1 Pin Configuration.....

Table 15.2 Relationships between N Setting in BRR and Bit Rate B

Table 15.3 BRR Settings for Various Bit Rates (Asynchronous Mode)

Table 15.4 Maximum Bit Rate for Each Frequency (Asynchronous Mode)..... **Table 15.5** Maximum Bit Rate with External Clock Input (Asynchronous Mode)......

Table 15.6 BRR Settings for Various Bit Rates (Clocked Synchronous Mode) **Table 15.7** Maximum Bit Rate with External Clock Input (Clocked Synchronous Mo **Table 15.8** Serial Transfer Formats (Asynchronous Mode)

Rev. 3.00 Mar 21, 2006 page I of liv

Section 17	Keyboard Buffer Controller
Table 17.1	Pin Configuration
Section 18	Host Interface X-Bus Interface (XBS)
Table 18.1	Pin Configuration
Table 18.2	Set/Clear Timing for STR Flags
Table 18.3	Host Interface Channel Selection and Pin Operation
Table 18.4	Host Interface Operations from HIF Host, and Slave Operation
Table 18.5	GA20 (P81) Set/Clear Timing
Table 18.6	Fast A20 Gate Output Signal
Table 18.7	Scope of HIF Pin Shutdown
Table 18.8	Input Buffer Full Interrupts
Table 18.9	HIRQ Setting/Clearing Conditions
Section 19	Host Interface LPC Interface (LPC)
Table 19.1	Pin Configuration
Table 19.2	Register Selection
Table 19.3	GA20 (P81) Set/Clear Timing
Table 19.4	Fast A20 Gate Output Signals
Table 19.5	Scope of Host Interface Pin Shutdown
Table 19.6	Scope of Initialization in Each Host Interface Mode
Table 19.7	Receive Complete Interrupts and Error Interrupt

Flags and Transfer States (Slave Mode).....

I²C Bus Data Format Symbols.....

Examples of Operation Using DTC

Table 16.5 Table 16.6

Table 16.7

Table 16.8

Table 16.9

Table 19.8

HIRQ Setting and Clearing Conditions.....

Rev. 3.00 Mar 21, 2006

Section 23	ROM
Table 23.1	Differences between Boot Mode and User Program Mode
Table 23.2	Pin Configuration
Table 23.3	Operating Modes and ROM
Table 23.4	On-Board Programming Mode Settings
Table 23.5	Boot Mode Operation
Table 23.6	System Clock Frequencies for which Automatic Adjustment of LSI Bit R
	Is Possible
Section 24	Clock Pulse Generator
Table 24.1	Damping Resistance Values
Table 24.2	Crystal Resonator Parameters
Table 24.3	External Clock Input Conditions
Table 24.4	External Clock Output Stabilization Delay Time
Table 24.5	Subclock Input Conditions
Section 25	Power-Down Modes
Table 25.1	Operating Frequency and Wait Time
Table 25.2	LSI Internal States in Each Mode
G 4 05	
	Electrical Characteristics
Table 27.1	Absolute Maximum Ratings
Table 27.2	DC Characteristics (1)
Table 27.2	DC Characteristics (2)
Table 27.2	DC Characteristics (3) When LPC Function Is Used

Permissible Output Currents

Bus Drive Characteristics

Clock Timing

Control Signal Timing.....

Bus Timing (1) (Normal Mode).....

Bus Timing (2) (Advanced Mode)

Timing of On-Chip Peripheral Modules (1).....

RENESAS

Table 27.3

Table 27.4

Table 27.5

Table 27.6

Table 27.7

Table 27.7

Table 27.8

Rev. 3.00 Mar 21, 2006 page lii of liv

Table 27.17 DC Characteristics (7) (3-V Version of H8S/2145BV) When LPC Function Is Used..... Table 27.18 Permissible Output Currents Table 27.19 Bus Drive Characteristics Table 27.20 Clock Timing Table 27.21 Control Signal Timing..... Table 27.22 Bus Timing (1) (Normal Mode) Table 27.22 Bus Timing (2) (Advanced Mode)..... Table 27.23 Timing of On-Chip Peripheral Modules (1)..... Table 27.23 Timing of On-Chip Peripheral Modules (2)..... Table 27.24 Keyboard Buffer Controller Timing..... Table 27.25 I²C Bus Timing.... Table 27.26 LPC Module Timing (For H8S/2145B Only)..... Table 27.27 A/D Conversion Characteristics (AN7 to AN0 Input: 134/266-State Conversion) Table 27.28 A/D Conversion Characteristics (CIN15 to CIN0 Input: 134/266-State Conversion)..... Table 27.29 D/A Conversion Characteristics..... Table 27.30 Flash Memory Characteristics (Operation Range at Programming/Erasin Appendix A I/O Port States in Each Processing State

I/O Port States in Each Processing State

RENESAS

Rev. 3.00 Mar 21, 2006

Table A.1

Table 27.15 Flash Memory Characteristics

Table 27.16 Absolute Maximum Ratings...

Table 27.17 DC Characteristics (1)...

Table 27.17 DC Characteristics (2)...

Table 27.17 DC Characteristics (3)...

Table 27.17 DC Characteristics (4)...

Table 27.17 DC Characteristics (5)...

Table 27.17 DC Characteristics (6)...

Rev. 3.00 Mar 21, 2006 page liv of liv

RENESAS

- 65 basic instructions
- Various peripheral functions
- Data transfer controller (DTC)
 - 8-bit PWM timer (PWM)
 - 14-bit PWM timer (PWMX) 16-bit free-running timer (FRT)
 - 8-bit timer (TMR)
 - Timer connection
 - Watchdog timer (WDT)
 - Asynchronous or clocked synchronous serial communication interface (SCI, IrDA
 - I²C bus interface (IIC)
 - T C bus interface (ITC
 - Keyboard buffer controller
 - Host interface X-BUS interface (XBS) Host interface LPC interface (LPC)*
 - 8-bit D/A converter
 - 10-bit A/D converter
 - C1 1 1
 - Clock pulse generator

Note: * The LPC function is not supported by H8S/2148B and H8S/2145B (5-V vo

	HD64F2148BV*	128 kbytes	4 kbytes	
	HD64F2148B	128 kbytes	4 kbytes	
Note: * 3-V versi	on product			
Comparel I/O monto				

256 kbytes

8 kbytes

• General I/O ports

I/O pins: 74 (H8S/2140B, H8S/2141B, H8S/2145B, and H8S/2148B)

HD64F2145B

I/O pins: 114 (H8S/2160B and H8S/2161B) Input-only pins: 8

- Supports various power-down states
- Compact package

Compact package				
Product	Package	Code	Body Size	Pin
H8S/2161B, H8S/2160B	TQFP-144	TFP-144	16.0 × 16.0 mm	0.4
H8S/2141B, H8S/2140B	QFP-100B	FP-100B	14.0 × 14.0 mm	0.5
H8S/2145B, H8S/2148B	TQFP-100B	TFP-100B		

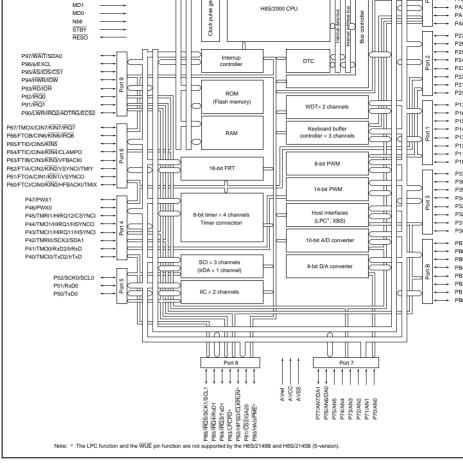


Figure 1.1 Internal Block Diagram of H8S/2140B, H8S/2141B, H8S/2145B, and

Rev. 3.00 Mar 21, 2006 p

REJ09

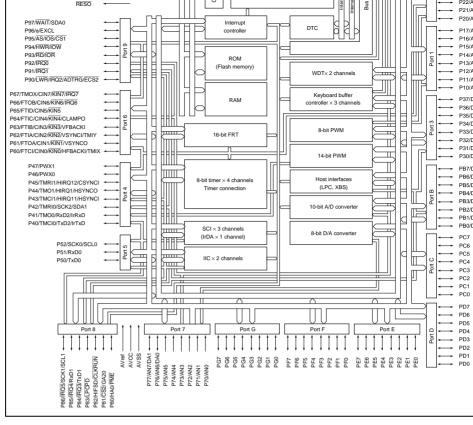
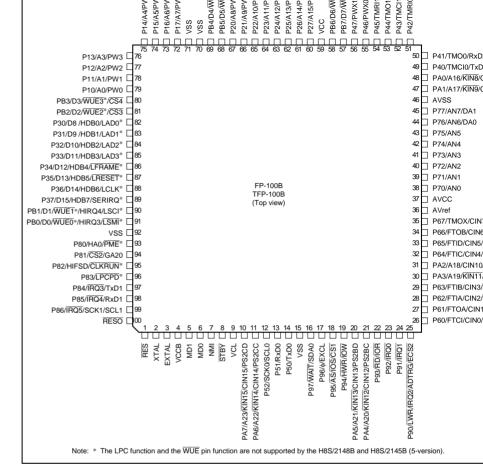



Figure 1.2 Internal Block Diagram of H8S/2160B and H8S/2161B

Rev. 3.00 Mar 21, 2006 page 4 of 788

REJ09B0300-0300

Figure~1.3~Pin~Arrangement~of~H8S/2140B,~H8S/2141B,~H8S/2145B,~and~H8S/2140B,~H8S/2145B,~and~H8S/2140B,~H8S/2145B,~and~H8S/2140B,~H8S/2145B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,~and~H8S/215B,

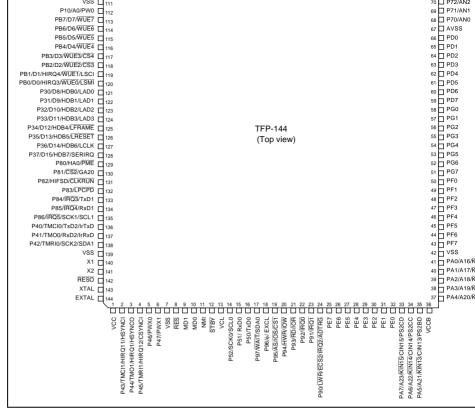


Figure 1.4 Pin Arrangement of H8S/2160B and H8S/2161B

Rev. 3.00 Mar 21, 2006 page 6 of 788 REJ09B0300-0300

RENESAS

4	VCCB	VCCB	VCCB	VC
5	MD1	MD1	MD1	VS
6	MD0	MD0	MD0	VS
7	NMI	NMI	NMI	FA
8	STBY	STBY	STBY	VC
9	VCL	VCL	VCL	VC
10 (B)	PA7/CIN15/KIN15/ PS2CD	PA7/A23/CIN15/ KIN15/PS2CD	PA7/CIN15/KIN15/ PS2CD	NO
11 (B)	PA6/CIN14/KIN14/ PS2CC	PA6/A22/CIN14/ KIN14/PS2CC	PA6/CIN14/KIN14/ PS2CC	NO
12 (N)	P52/SCK0/SCL0	P52/SCK0/SCL0	P52/SCK0/SCL0	NO
13	P51/RxD0	P51/RxD0	P51/RxD0	FA
14	P50/TxD0	P50/TxD0	P50/TxD0	N
15	VSS	VSS	VSS	VS
16 (N)	P97/WAIT/SDA0	P97/WAIT/SDA0	P97/SDA0	V
17	P96/φ/EXCL	P96/φ/EXCL	P96/ø/EXCL	NO
18	AS/IOS	AS/IOS	P95/CS1	FA
19	HWR	HWR	P94/IOW	FA
20 (B)	PA5/CIN13/KIN13/ PS2BD	PA5/A21/CIN13/ KIN13/PS2BD	PA5/CIN13/KIN13/ PS2BD	NO
21 (B)	PA4/CIN12/KIN12/ PS2BC	PA4/A20/CIN12/ KIN12/PS2BC	PA4/CIN12/KIN12/ PS2BC	NO

(=)(: = - :)

RES

XTAL

EXTAL

.......

RES

XTAL

EXTAL

1

2

3

(=20 = 0)

RES

XTAL

EXTAL

RI

Х

E

28	P62/FTIA/CIN2/ KIN2/VSYNCI/TMIY	P62/FTIA/CIN2/ KIN2/VSYNCI/TN
29	P63/FTIB/CIN3/ KIN3/VFBACKI	P63/FTIB/CIN3/ KIN3/VFBACKI
30 (B)	PA3/CIN11/KIN11/ PS2AD	PA3/A19/CIN11/ KIN11/PS2AD
31 (B)	PA2/CIN10/KIN10/ PS2AC	PA2/A18/CIN10/ KIN10/PS2AC
32	P64/FTIC/CIN4/ KIN4/CLAMPO	P64/FTIC/CIN4/ KIN4/CLAMPO
33	P65/FTID/CIN5/ KIN5	P65/FTID/CIN5/ KIN5
34	P66/FTOB/CIN6/ KIN6/IRQ6	P66/FTOB/CIN6/ KIN6/IRQ6
35	P67/TMOX/CIN7/ KIN7/IRQ7	P67/TMOX/CIN7/ KIN7/IRQ7
36	AVref	AVref
37	AVCC	AVCC
38	P70/AN0	P70/AN0
39	P71/AN1	P71/AN1
40	P72/AN2	P72/AN2
41	P73/AN3	P73/AN3

P90/LWR/IRQ2/

P60/FTCI/CIN0/

KINO/HFBACKI/

P61/FTOA/CIN1/

KIN1/VSYNCO

ADTRG

TMIX

P90/LWR/IRQ2/

P60/FTCI/CIN0/

KINO/HFBACKI/

P61/FTOA/CIN1/

KIN1/VSYNCO

ADTRG

TMIX

P90/ECS2/IRQ2/

P60/FTCI/CIN0/

KINO/HFBACKI/

P61/FTOA/CIN1/

KIN2/VSYNCI/TMIY P63/FTIB/CIN3/

KIN1/VSYNCO P62/FTIA/CIN2/

KIN3/VFBACKI PA3/CIN11/KIN11/

PA2/CIN10/KIN10/

P64/FTIC/CIN4/

KIN4/CLAMPO

P65/FTID/CIN5/

P66/FTOB/CIN6/

P67/TMOX/CIN7/

KIN6/IRQ6

KIN7/IRQ7

AVref AVCC

P70/AN0

P71/AN1 P72/AN2

P73/AN3

PS2AD

PS2AC

KIN5

ADTRG

TMIX

VU

NC

NC

NC

NC

NC

NC

NC

NC

NC

VS

VC

VC

NC NC

NC NC

25

26

27

49	P40/TMCI0/TxD2/ IrTxD	P40/TMCI0/TxD2/ IrTxD	P40/TMCI0/TxD2/ IrTxD	N
50	P41/TMO0/RxD2/ IrRxD	P41/TMO0/RxD2/ IrRxD	P41/TMO0/RxD2/ IrRxD	NO
51 (N)	P42/TMRI0/SCK2/ SDA1	P42/TMRI0/SCK2/ SDA1	P42/TMRI0/SCK2/ SDA1	NO
52	P43/TMCI1/ HSYNCI	P43/TMCI1/ HSYNCI	P43/TMCI1/HIRQ11/ HSYNCI	NO
53	P44/TMO1/ HSYNCO	P44/TMO1/ HSYNCO	P44/TMO1/HIRQ1/ HSYNCO	NO
54	P45/TMRI1/ CSYNCI	P45/TMRI1/ CSYNCI	P45/TMRI1/HIRQ12/ CSYNCI	NO
55	P46/PWX0	P46/PWX0	P46/PWX0	NO
56	P47/PWX1	P47/PWX1	P47/PWX1	NO
57	PB7/D7/WUE7*	PB7/D7/WUE7*	PB7/WUE7*	NO
58	PB6/D6/WUE6*	PB6/D6/WUE6*	PB6/WUE6*	NO
59	VCC	VCC	VCC	VC
60	A15	P27/A15/PW15/ CBLANK	P27/PW15/ CBLANK	CE
61	A14	P26/A14/PW14	P26/PW14	FA
62	A13	P25/A13/PW13	P25/PW13	FA
63	A12	P24/A12/PW12	P24/PW12	F/
		P23/A11/PW11	P23/PW11	

45

46

47 (B)

48 (B)

P///AN//DAT

PA1/CIN9/KIN9

PA0/CIN8/KIN8

AVSS

P///AN//DA1

PA1/A17/CIN9/KIN9

PA0/A16/CIN8/KIN8

AVSS

P///AN//DA1

PA1/CIN9/KIN9

PA0/CIN8/KIN8

AVSS

VS

N

N

72	A7	P17/A7/PW7	P17/PW7
73	A6	P16/A6/PW6	P16/PW6
74	A5	P15/A5/PW5	P15/PW5
75	A4	P14/A4/PW4	P14/PW4
76	A3	P13/A3/PW3	P13/PW3
77	A2	P12/A2/PW2	P12/PW2
78	A1	P11/A1/PW1	P11/PW1
79	A0	P10/A0/PW0	P10/PW0
80	PB3/D3/WUE3*	PB3/D3/WUE3*	PB3/WUE3*/CS4
81	PB2/D2/WUE2*	PB2/D2/WUE2*	PB2/WUE2*/CS3
82	D8	D8	P30/HDB0/LAD0*
83	D9	D9	P31/HDB1/LAD1*
84	D10	D10	P32/HDB2/LAD2*
85	D11	D11	P33/HDB3/LAD3*
86	D12	D12	P34/HDB4/ LFRAME*
87	D13	D13	P35/HDB5/ LRESET*
88	D14	D14	P36/HDB6/LCLK*
89	D15	D15	P37/HDB7/SERIRQ*
90	PB1/D1/WUE1*	PB1/D1/WUE1*	PB1/HIRQ4/WUE1*/ LSCI*
Rev. 3.00 REJ09B03	Mar 21, 2006 page 10 300-0300	of 788	S

PB5/D5/WUE5

PB4/D4/WUE4*

VSS

VSS

PB5/D5/WUE5

VSS

VSS

PB4/D4/WUE4*

PB5/WUE5

VSS

VSS

PB4/WUE4*

NC

NC

VS

VS

FO

FO

FO^o

ρg

69 70

71

95	P82	P82	P82/HIFSD/ CLKRUN*
96	P83	P83	P83/LPCPD*
97	P84/IRQ3/TxD1	P84/IRQ3/TxD1	P84/IRQ3/TxD1
98	P85/IRQ4/RxD1	P85/IRQ4/RxD1	P85/IRQ4/RxD1
99 (N)	P86/ĪRQ5/SCK1/ SCL1	P86/IRQ5/SCK1/ SCL1	P86/IRQ5/SCK1/ SCL1
100	RESO	RESO	RESO
Notes: The	e (B) in Pin No. means t	he VCCB drive and the	e (N) in Pin No. means

P81

94

P81

s the NI pull/open-drain drive.

The LPC function and the WUE pin function are not supported by the H8S/ H8S/2145B (5-version).

P81/CS2/GA20

N N

N N N N

N

9	MD1	MD1
10	MD0	MD0
11	NMI	NMI
12	STBY	STBY
13	VCL	VCL
14 (N)	P52/SCK0/SCL0	P52/SCK0/SCL0
15	P51/RxD0	P51/RxD0
16	P50/TxD0	P50/TxD0
17 (N)	P97/WAIT/SDA0	P97/WAIT/SDA0
18	P96/ø/EXCL	P96/ø/EXCL
19	AS/IOS	AS/IOS
20	HWR	HWR
21	RD	RD
22	P92/IRQ0	P92/IRQ0
23	P91/IRQ1	P91/IRQ1
23		P90/LWR/IRQ2/

HSYNCI

P44/TMO1/

P45/TMRI1/

P46/PWX0

P47/PWX1

VSS

RES

HSYNCO

CSYNCI

3

4

5

6

7

8

HSYNCI

HSYNCO

CSYNCI

P46/PWX0

P47/PWX1

VSS

RES

P44/TMO1/

P45/TMRI1/

HSYNCI

HSYNCO

CSYNCI

P46/PWX0

P47/PWX1

VSS

RES

MD1

MD0 NMI

STBY

P52/SCK0/SCL0

P51/RxD0

P50/TxD0

P97/SDA0 P96/ø/EXCL

P95/CS1

P94/IOW

P93/IOR

P92/IRQ0

P91/IRQ1

ECS2

P90/IRQ2/ADTRG/

VCL

P44/TMO1/HIRQ1/

P45/TMRI1/HIRQ12/

NC

NC

NC

NC

VSS

RES

VSS

FAS

VC

VC

FA1

FA₁

NC VC

NC

FA₁

FA1

WE

VSS

VC

VC

REJ09B0300-0300 **₹ENESAS**

32	PE0	PE0	PE0	NC
33 (B)	PA7/CIN15/KIN15/ PS2CD	PA7/A23/CIN15/ KIN15/PS2CD	PA7/CIN15/KIN15/ PS2CD	NC
34 (B)	PA6/CIN14/KIN14/ PS2CC	PA6/A22/CIN14/ KIN14/PS2CC	PA6/CIN14/KIN14/ PS2CC	NC
35 (B)	PA5/CIN13/KIN13/ PS2BD	PA5/A21/CIN13/ KIN13/PS2BD	PA5/CIN13/KIN13/ PS2BD	NC
36	VCCB	VCCB	VCCB	VC
37 (B)	PA4/CIN12/KIN12/ PS2BC	PA4/A20/CIN12/ KIN12/PS2BC	PA4/CIN12/KIN12/ PS2BC	NC
38 (B)	PA3/CIN11/KIN11/ PS2AD	PA3/A19/CIN11/ KIN11/PS2AD	PA3/CIN11/KIN11/ PS2AD	NC
39 (B)	PA2/CIN10/KIN10/ PS2AC	PA2/A18/CIN10/ KIN10/PS2AC	PA2/CIN10/KIN10/ PS2AC	NC
40 (B)	PA1/CIN9/KIN9	PA1/A17/CIN9/KIN9	PA1/CIN9/KIN9	NC
41 (B)	PA0/CIN8/KIN8	PA0/A16/CIN8/KIN8	PA0/CIN8/KIN8	NC
42	VSS	VSS	VSS	VS
43	PF7	PF7	PF7	NC
44	PF6	PF6	PF6	NC
45	PF5	PF5	PF5	NC
	PF4	PF4	PF4	NO
46 47	PF4 PF3	PF4 PF3	PF4 PF3	N(

PE4

PE3

PE2

PE1

PE4

PE3

PE2

PE1

INC

NO

NC

NC

28

29

30

31

PE4

PE3

PE2

PE1

59	PD7	PD7	PD7
60	PD6	PD6	PD6
61	PD5	PD5	PD5
62	PD4	PD4	PD4
63	PD3	PD3	PD3
64	PD2	PD2	PD2
65	PD1	PD1	PD1
66	PD0	PD0	PD0
67	AVSS	AVSS	AVSS
68	P70/AN0	P70/AN0	P70/AN0
69	P71/AN1	P71/AN1	P71/AN1
70	P72/AN2	P72/AN2	P72/AN2
71	P73/AN3	P73/AN3	P73/AN3
72	P74/AN4	P74/AN4	P74/AN4
73	P75/AN5	P75/AN5	P75/AN5
74	P76/AN6/DA0	P76/AN6/DA0	P76/AN6/DA0
75	P77/AN7/DA1	P77/AN7/DA1	P77/AN7/DA1
76	AVCC	AVCC	AVCC

52 (N)

53 (N)

54 (N)

55 (N)

56 (N)

57 (N)

58 (N)

PG6

PG5

PG4

PG3

PG2

PG1

PG0

PG6

PG5

PG4

PG3

PG2

PG1

PG0

PG6

PG5

PG4

PG3

PG2

PG1

PG0

ИC

NC

VSS

NC

NC NC

NC

NC

NC

NC NC

VC

81	P63/FTIB/CIN3/ KIN3/VFBACKI	P63/FTIB/CIN3/ KIN3/VFBACKI	P63/FTIB/CIN3/ KIN3/VFBACKI	NC
82	P64/FTIC/CIN4/ KIN4/CLAMPO	P64/FTIC/CIN4/ KIN4/CLAMPO	P64/FTIC/CIN4/ KIN4/CLAMPO	NC
83	P65/FTID/CIN5/ KIN5	P65/FTID/CIN5/ KIN5	P65/FTID/CIN5/ KIN5	NC
84	P66/FTOB/CIN6/ KIN6/IRQ6	P66/FTOB/CIN6/ KIN6/IRQ6	P66/FTOB/CIN6/ KIN6/IRQ6	NC
85	P67/TMOX/CIN7/ KIN7/IRQ7	P67/TMOX/CIN7/ KIN7/IRQ7	P67/TMOX/CIN7/ KIN7/IRQ7	VS
86	VCC	VCC	VCC	VC
87	PC7	PC7	PC7	NC
88	PC6	PC6	PC6	NO
89	PC5	PC5	PC5	NO
90	PC4	PC4	PC4	NC
91	PC3	PC3	PC3	NC
92	PC2	PC2	PC2	NC
93	PC1	PC1	PC1	NC
94	PC0	PC0	PC0	NO
95	VSS	VSS	VSS	VS
96	A15	P27/A15/PW15/	P27/PW15/	CE
90		CBLANK	CBLANK	

P61/FTOA/CIN1/

KIN1/VSYNCO

P62/FTIA/CIN2/

79

80

P61/FTOA/CIN1/

KIN1/VSYNCO

P62/FTIA/CIN2/

KIN2/VSYNCI/TMIY KIN2/VSYNCI/TMIY

P61/FTOA/CIN1/

KIN1/VSYNCO

P62/FTIA/CIN2/

KIN2/VSYNCI/TMIY

NO

NO

	A6	P16/A6/PW6
106		
4.0=	A5	P15/A5/PW5
107	A4	P14/A4/PW4
108	A3	P13/A3/PW3
109	A2	P12/A2/PW2
110	A1	P11/A1/PW1
111	VSS	VSS
112	A0	P10/A0/PW0
113	PB7/D7/WUE7	PB7/D7/WUE7
114	PB6/D6/WUE6	PB6/D6/WUE6
115	PB5/D5/WUE5	PB5/D5/WUE5
116	PB4/D4/WUE4	PB4/D4/WUE4
117	PB3/D3/WUE3	PB3/D3/WUE3
118	PB2/D2/WUE2	PB2/D2/WUE2
119	PB1/D1/WUE1	PB1/D1/WUE1
120	PB0/D0/WUE0	PB0/D0/WUE0
121	D8	D8
122	D9	D9
123	D10	D10
124	D11	D11

101

102

103

104

ATU

A9

8A

Α7

P22/A10/PW10

P21/A9/PW9

P20/A8/PW8

P17/A7/PW7

P22/PW10

P21/PW9

P20/PW8

P17/PW7

P16/PW6

P15/PW5

P14/PW4

P13/PW3

P12/PW2

P11/PW1

PB7/WUE7

PB6/WUE6

PB5/WUE5

PB4/WUE4

LSCI

LSMI

PB3/WUE3/CS4

PB2/WUE2/CS3

PB1/HIRQ4/WUE1/

PB0/HIRQ3/WUE0/

P30/HDB0/LAD0

P31/HDB1/LAD1 P32/HDB2/LAD2

P33/HDB3/LAD3

VSS P10/PW0 OE

FA8

FA7

FA6

FA5

FA²

FA3

FA2

FA1

FAC

NC

NC

NC

NC

NC

NC

NC

NC

FO²

FO₂

FO

	IrRxD	IrRxD	IrRxD	
138 (N)	P42/TMRI0/SCK2/ SDA1	P42/TMRI0/SCK2/ SDA1	P42/TMRI0/SCK2/ SDA1	N
139	VSS	VSS	VSS	V
140	X1	X1	X1	N
141	X2	X2	X2	N
142	RESO	RESO	RESO	N
143	XTAL	XTAL	XTAL	X
144	EXTAL	EXTAL	EXTAL	E
	(B) in Pin No. means the open-drain drive.	e VCCB drive and the	(N) in Pin No. means th	ne NN

128

129

130

131

132

133

134

136

137

135 (N)

D15

P80

P81

P82

P83

SCL1

IrTxD

P84/IRQ3/TxD1

P85/IRQ4/RxD1

P86/IRQ5/SCK1/

P40/TMCI0/TxD2/

P41/TMO0/RxD2/

D15

P80

P81

P82

P83

SCL1

IrTxD

P84/IRQ3/TxD1

P85/IRQ4/RxD1

P86/IRQ5/SCK1/

P40/TMCI0/TxD2/

P41/TMO0/RxD2/

RENESAS

P3//HDB//SERIRQ

P80/HA0/PME

P81/CS2/GA20

P82/HIFSD/ **CLKRUN**

P83/LPCPD

SCL1

IrTxD

P84/IRQ3/TxD1

P85/IRQ4/RxD1

P86/IRQ5/SCK1/

P40/TMCI0/TxD2/

P41/TMO0/RxD2/

Rev. 3.00 Mar 21, 2006 pa

Fζ NO

NC

NC

NC

NC

NC

NC

NC

NC

REJ09

	ф	17	18	Output
	EXCL	17	18	Input
	X1	_	140	Input
	X2	_	141	Input
Operating mode control	MD1 MD0	5 6	9 10	Input
System control	RES	1	8	Input
	RESO	100	142	Output
	STBY	8	12	Input

VCL

VCCB

VSS

XTAL

EXTAL

Clock

9

4

92

2

3

13

36

15, 70, 71, 7, 42, 95, Input

143

144

111, 139

Input

Input

Input

Input

VCC.

devices.

Leave open.

Reset pin.

reset.

REJ09B0300-0300 **₹ENES∆S**

Rev. 3.00 Mar 21, 2006 page 18 of 788

Power supply pin. Connect t

The power supply for the poi

Ground pin. Connect to the s

Pins for connection to crysta

resonators. The EXTAL pin of

Input a 32.768 kHz external:

These pins set the operating These pins should not be chawhile the MCU is operating.

When this pin becomes low,

Outputs reset signal to extern When this pin is driven low, a is made to hardware standby

input an external clock.

See section 25, Clock Pulse for typical connection diagra

Supplies the system clock to

input/output buffer.

power supply (0 V).

	LWR	25	24	Output
	AS/IOS	18	19	Output
Interrupt signals	NMI	7	11	Input
	IRQ0 to IRQ7	23 to 25, 97 to 99, 34, 35	22 to 24, 133 to 135, 84, 85	Input

110, 112

Input/

output

Input/

output

Input

Output

Output

RENESAS

Bidirectional data bus for up

Bidirectional data bus for lo

Requests insertion of a wait bus cycle when accessing of state address space.

When this pin is low, it indices external address space is be

When this pin is low, it indicates

external address space is b to. The upper half of the da

When this pin is low, it indic external address space is b to. The lower half of the dat

When this pin is low, it indicaddress output on the address

Input pin for a nonmaskable

These pins request a mask

Rev. 3.00 Mar 21, 2006 pa

REJ09

16-bit data.

16-bit data.

valid.

valid.

valid.

request.

interrupt.

128 to

113 to

121

17

21

20

Data bus

Bus control

D15 to D8

D7 to D0

WAIT

 $\overline{\mathsf{RD}}$

HWR

89 to 82

90, 91

16

22

19

57, 58, 68,

69, 80, 81, 120

8-bit timer (TMR_X, TMR_Y)	TMIX TMIY	26 28	78 80	Input	The counter event input and reset input pins.
8-bit PWM timer (PWM)	PW15 to PW0	60 to 67, 72 to 79	96 to 110, 112	Output	PWM timer pulse output pins
14-bit PWM timer (PWMX)	PWX0 PWX1	55 56	5 6	Output	PWM D/A pulse output pins.
Serial	TxD0	14	16	Output	Transmit data output pins.
communi-	TxD1	97	133		
cation	TxD2	49	136		
interface	RxD0	13	15	Input	Receive data input pins.
(SCI_0,	RxD1	98	134		
SCI_1, SCI_2)	RxD2	50	137		
301_2 ₁	SCK0	12	14	Input/	Clock input/output pins.
	SCK1	99	135	Output	• • • •
	SCK2	51	138		The output type is things pu
SCI with	IrTxD	49	136	Output	Input and output pins for data
IrDA (SCI_2)	IrRxD	50	137	Input	for IrDA use.
Rev. 3.00 M	lar 21, 2006	page 20 of 7	788		

LIIB

FTIC

FTID

TMO0

TMO1

TMOX

TMCI0

TMCI1

TMRI0

TMRI1

8-bit timer

(TMR_0, TMR_1,

TMR_X)

29

32

33

50

53

35

49

52

51

54

81

82

83

137

3

85

136

138

2

input

Input

Input

Output

Input

Input

The input capture B input pir

The input capture C input pir

The input capture D input pir

The waveform output pins fo

Input pins for the external clo

The counter reset input pins.

compare function.

counters.

. 0200

HDB0

CS1.

CS2/

ĪŌR

IOW

HA0

ECS2.

CS3, CS4

HDB7 to

89 to 82

18, 94,

22

19

93

25, 81, 80

128 to

19, 130,

24, 118,

121

117

21

20

129

Input/

Output

Input

Input

Input

Input

XBS.

register.

XBS.

access.

host.

cutoff state.

input/output pins.

Bidirectional 8-bit bus for ac

Input pins for selecting XBS

to 4. The CS2 or ECS2 inpu

selected with the system co

Input pin that enables readi

Input pin that enables writin

Input pin that indicates whe access is a data access or

A20 gate control signal outp

Output pins for interrupt rec

Control input pin used to pla input/output pins in the high

LPC command, address, ar

Input pin that indicates the LPC cycle or forced termina abnormal LPC cycle.

Input pin that indicates an L
The LPC clock input pin.

Host

(XBS)

interface

W	UE0 to UE7	91, 90, 81, 80, 69, 68, 58, 57		Input	
A/D AN					
converter AN	17 to 10	45 to 38	68 to 75	Input	
_	N0 to N15	26 to 29, 32 to 35, 48, 47, 31, 30, 21, 20, 11, 10	•	Input	
ĀĒ	TRG	25	24	Input	
D/A DA converter DA	_	44 45	74 75	Output	_

GA20

CLKRUN

LPCPD

KIN0 to

KIN15

Keyboard

controller

buffer

94

95

96

26 to 29,

32 to 35.

48, 47, 31,

30, 21, 20,

130

131

132

78 to 85,

41 to 37,

35 to 33

Input/

Input/

Input

Input

Output

Output

possible.

stopped.

shutdown.

A20 gate control signal output

Output state monitoring input

Input/output pin that requests

of LCLK operation when LCL

Input pin that controls LPC m

Matrix keyboard input pins. F

KIN15 are used as key-scan

P10 to P17 and P20 to P27 a

key-scan outputs. This allow maximum 16-output × 16-inp matrix to be configured.

Wakeup event input pins. Th allow the same kind of wake wakeup from various source:

A/D conversion input pins, but hey are also used as digital input/output pins, accuracy w

Pin for input of an external tr start A/D conversion.

Analog output pins.

Analog input pins.

REJ09B0300-0300 **₹ENES∆S**

Rev. 3.00 Mar 21, 2006 page 22 of 788

	VSYNCO	27	79	Output
	HSYNCO	53	3	
	CLAMPO	32	82	
	CBLANK	60	96	
I ² C bus	SCL0	12	14	Input/
interface	SCL1	99	135	Output
(IIC)	SDA0	16	17	Input/
	SDA1	51	138	Output
I/O ports	P17 to	72 to 79	104 to	Input/
	P10		110, 112	Output
	P27 to	60 to 67	96 to 103	Input/
	P20			Output
	P37 to	89 to 82	128 to	Input/
	P30		121	Output
	P47 to	56 to 49	6 to 2,	Input/
	P40		138 to	Output
			136	

AVret

AVSS

VSYNCI

HSYNCI

CSYNCI

VFBACKI

HFBACKI

Timer

connection

36

46

28

52

54

29

26

67

80

2

4

81

78

Input

Input

Input

 $(0 \ V).$

input pins.

output pins.

A/D converter and D/A converted and D/A converte

The ground pin for the A/D and D/A converter. This pin connected to the system po

Timer connection synchron

Timer connection synchron

I²C clock I/O pins. The outp NMOS open-drain output. I²C data I/O pins. The outpu NMOS open-drain output. Eight input/output pins.

Eight input/output pins.

Eight input/output pins.

Eight input/output pins.
(The output type of P42 is N

.INC.3/

Rev. 3.00 Mar 21, 2006 pa REJ09

pull.)

	,		
PB7 to PB0	57, 58, 68, 69, 80, 81, 90, 91	113 to 120	Input/ Output
PC7 to PC0	_	87 to 94	Input/ Output
PD7 to PD0	_	59 to 66	Input/ Output
PE7 to PE0	_	25 to 32	Input/ Output
PF7 to PF0	_	43 to 50	Input/ Output
PG7 to PG0	_	51 to 58	Input/ Output

Rev. 3.00 Mar 21, 2006 page 24 of 788

REJ09B0300-0300

P77 to

P70 P86 to

P80

P97 to

PA7 to

PA0

P90

45 to 38

99 to 93

16 to 19

22 to 25

47, 48

75 to 68

135 to

17 to 24

129

10, 11, 20, 33 to 35,

21, 30, 31, 37 to 41

Input

Input/

Output

Input/

Output

Input/

Output

RENESAS

Eight input pins.

pull.)

pull.)

Seven input/output pins.

Eight input/output pins. (The output type of PG7 to F H8S/2160B and the H8S/216

NMOS push-pull.)

(The output type of P86 is NI

(The output type of P97 is NI

2.1 **Features**

• Upward-compatibility with H8/300 and H8/300H CPUs Can execute H8/300 CPU and H8/300H CPU object programs

• General-register architecture

Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit

· Sixty-five basic instructions

8/16/32-bit arithmetic and logic instructions

Multiply and divide instructions

Powerful bit-manipulation instructions

· Eight addressing modes

Register direct [Rn]

Register indirect [@ERn]

Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]

Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]

Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]

Immediate [#xx:8, #xx:16, or #xx:32]

Program-counter relative [@(d:8,PC) or @(d:16,PC)]

Memory indirect [@@aa:8]

• 16-Mbyte address space

Program: 16 Mbytes

Data: 16 Mbytes

CPU210A_010020020700

· High-speed operation

All frequently-used instructions are executed in one or two states

8/16/32-bit register-register add/subtract: 1 state

16 ÷ 8-bit register-register divide: 12 states (DIVXU.B)

Rev. 3.00 Mar 21, 2006 pa

REJ09

8 × 8-bit register-register multiply: 12 states (MULXU.B), 13 states (MULXS.B)

Selectable CPU clock speed

2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are as shown belo

- Register configuration
 - The MAC register is supported only by the H8S/2600 CPU.
- Basic instructions

The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported only H8S/2600 CPU.

• The number of execution states of the MULXU and MULXS instructions

			Execution States
Instruction	Mnemonic	H8S/2600	H8S/2000
MULXU	MULXU.B Rs, Rd	3	12
	MULXU.W Rs, ERd	4	20
MULXS	MULXS.B Rs, Rd	4	13
	MULXS.W Rs, ERd	5	21

In addition, there are differences in address space, CCR and EXR register functions, pomodes, etc., depending on the model.

Rev. 3.00 Mar 21, 2006 page 26 of 788

REJ09B0300-0300

Advanced mode supports a maximum 16-Mbyte address space.

- Enhanced addressing
 - The addressing modes have been enhanced to make effective use of the 16-Mbyte space.
- Enhanced instructions

Addressing modes of bit-manipulation instructions have been enhanced.

Signed multiply and divide instructions have been added.

Two-bit shift and two-bit rotate instructions have been added.

Instructions for saving and restoring multiple registers have been added.

Higher speed

Basic instructions are executed twice as fast.

A test and set instruction has been added.

2.1.3 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2000 CPU has the following enhancement

- Additional control register
 - One 8-bit control register has been added.
- Enhanced instructions

Addressing modes of bit-manipulation instructions have been enhanced.

Two-bit shift and two-bit rotate instructions have been added. Instructions for saving and restoring multiple registers have been added.

A test and set instruction has been added.

a test and set instruction has been added

Higher speed

Basic instructions are executed twice as fast.

Rev. 3.00 Mar 21, 2006 pa REJ09 The exception vector table and stack have the same structure as in the H8/300 CPU in mode.

- Address space
 - Linear access to a maximum address space of 64 kbytes is possible.
- Extended registers (En)

register (En) will be affected.)

The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16 segments of 32-bit registers.

When extended register En is used as a 16-bit register it can contain any value, ever corresponding general register (Rn) is used as an address register. (If general register referenced in the register indirect addressing mode with pre-decrement (@-Rn) or proceeding increment (@Rn+) and a carry or borrow occurs, the value in the corresponding extended to the corre

All instructions and addressing modes can be used. Only the lower 16 bits of effect

- Instruction set
- addresses (EA) are valid.
- Exception vector table and memory indirect branch addresses

In normal mode, the top area starting at H'0000 is allocated to the exception vector branch address is stored per 16 bits. The exception vector table in normal mode is s figure 2.1. For details on the exception vector table, see section 4, Exception Handl The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR in uses an 8-bit absolute address included in the instruction code to specify a memory that contains a branch address. In normal mode, the operand is a 16-bit (word) oper

- that contains a branch address. In normal mode, the operand is a 16-bit (word) oper providing a 16-bit branch address. Branch addresses can be stored in the top area fr to H'00FF. Note that this area is also used for the exception vector table.
- Stack structure

in normal mode, and the PC and condition-code register (CCR) are pushed onto the exception handling, they are stored as shown in figure 2.2. The extended control reg (EXR) is not pushed onto the stack. For details, see section 4, Exception Handling.

In normal mode, when the program counter (PC) is pushed onto the stack in a subro

Rev. 3.00 Mar 21, 2006 page 28 of 788 REJ09B0300-0300

RENESAS

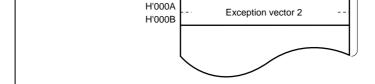


Figure 2.1 Exception Vector Table (Normal Mode)

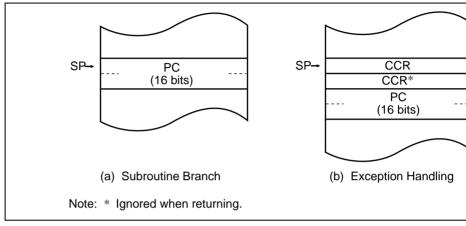


Figure 2.2 Stack Structure in Normal Mode

2.2.2 Advanced Mode

- Address space
 Linear access to a maximum address space of 16 Mbytes is possible.
- Extended registers (En)
 The extended registers (E0 to E7) can be used as 16-bit registers. They can also be upper 16-bit segments of 32-bit registers or address registers.

Rev. 3.00 Mar 21, 2006 pa REJ0

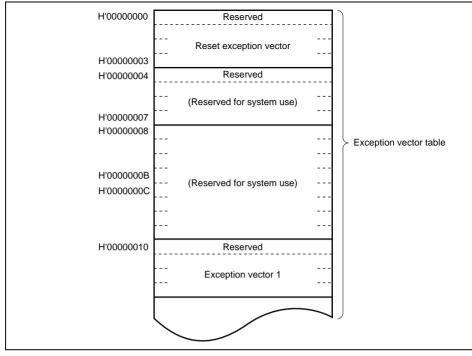


Figure 2.3 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR insuses an 8-bit absolute address included in the instruction code to specify a memory that contains a branch address. In advanced mode, the operand is a 32-bit longword providing a 32-bit branch address. The upper 8 bits of these 32 bits are a reserved a regarded as H'00. Branch addresses can be stored in the area from H'00000000 to H Note that the top area of this range is also used for the exception vector table.

Rev. 3.00 Mar 21, 2006 page 30 of 788 REJ09B0300-0300

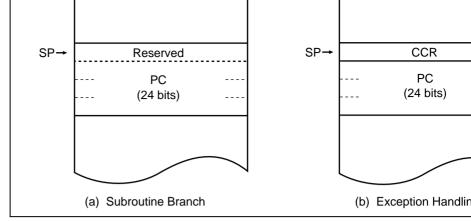


Figure 2.4 Stack Structure in Advanced Mode

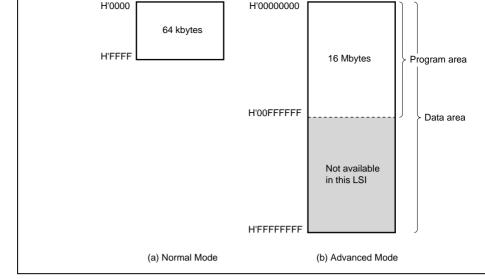


Figure 2.5 Memory Map

Rev. 3.00 Mar 21, 2006 page 32 of 788 REJ09B0300-0300

ER0	E0		R0H		R0L
ER1	E1		R1H		R1L
ER2	E2		R2H		R2L
ER3	E3		R3H		R3L
ER4	E4		R4H		R4L
ER5	E5		R5H		R5L
ER6	E6		R6H		R6L
ER7 (SP)	E7		R7H		R7L
Control Reg	gisters 23		PC		
PC : Pro EXR : Ext T : Tra I2 to I0 : Into CCR : Co I : Into	ack pointer ogram counter tended control register ce bit errupt mask bits ndition-code register errupt mask bit er bit or interrupt mask bit	U : N : Z : : V : (Half-carry flag User bit Negative flag Zero flag Overflow flag Carry flag	EXR*	7 6 5 4 3 2 1 T -
Note: * Do	es not affect operation in this LSI.				

Figure 2.6 CPU Internal Registers

When the general registers are used as 16-bit registers, the ER registers are divided into general registers designated by the letters E (E0 to E7) and R (R0 to R7). These register functionally equivalent, providing a maximum sixteen 16-bit registers. The E registers are also referred to as extended registers.

When the general registers are used as 8-bit registers, the R registers are divided into 8-registers designated by the letters RH (R0H to R7H) and RL (R0L to R7L). These registers functionally equivalent, providing a maximum sixteen 8-bit registers.

The usage of each register can be selected independently.

General register ER7 has the function of the stack pointer (SP) in addition to its genera function, and is used implicitly in exception handling and subroutine calls. Figure 2.8 stack.

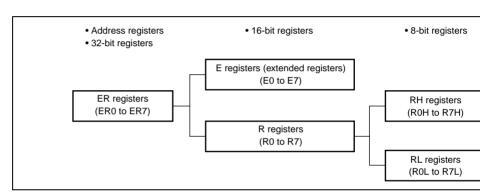


Figure 2.7 Usage of General Registers

Rev. 3.00 Mar 21, 2006 page 34 of 788

REJ09B0300-0300

Figure 2.8 Stack

2.4.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored instruction is fetched for read, the least significant PC bit is regarded as 0.)

2.4.3 Extended Control Register (EXR)

EXR does not affect operation in this LSI.

Bit	Bit Name	Initial Value	R/W	Description
7	Т	0	R/W	Trace Bit
				Does not affect operation in this LSI.
6 to 3	_	All 1	R	Reserved
				These bits are always read as 1.
2 to 0	12	All 1	R/W	Interrupt Mask Bits 2 to 0
	I 1			Do not affect operation in this LSI.
	10			

2.4.4 Condition-Code Register (CCR)

This 8-bit register contains internal CPU status information, including an interrupt mathematical half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. Operations caperformed on the CCR bits by the LDC, STC, ANDC, ORC, and XORC instructions. and C flags are used as branching conditions for conditional branch (Bcc) instructions.

Rev. 3.00 Mar 21, 2006 pa

r, 2006 pa REJ09

				instruction is executed, the H flag is set to 1 carry or borrow at bit 11, and cleared to 0 otl When the ADD.L, SUB.L, CMP.L, or NEG.L executed, the H flag is set to 1 if there is a caborrow at bit 27, and cleared to 0 otherwise.
4	U	Undefined	R/W	User Bit
				Can be written to and read from by software LDC, STC, ANDC, ORC, and XORC instruct
3	N	Undefined	R/W	Negative Flag
				Stores the value of the most significant bit of sign bit.
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to non-zero data.
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, to 0 otherwise.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to Used by
				 Add instructions, to indicate a carry
				Subtract instructions, to indicate a borrow
				Shift and rotate instructions, to indicate a
				The carry flag is also used as a bit accumula manipulation instructions.
	0.00 14	ar 21, 2006 page 3	36 of 78	3

5

Н

Undefined

R/W

LDC, STC, ANDC, ORC, and XORC instruction

When the ADD.B, ADDX.B, SUB.B, SUBX.B, NEG.B instruction is executed, this flag is set is a carry or borrow at bit 3, and cleared to 0 c When the ADD.W, SUB.W, CMP.W, or NEG.V

Half-Carry Flag

2.5 **Data Formats**

The H8S/2000 CPU can process 1-bit, 4-bit BCD, 8-bit (byte), 16-bit (word), and 32-(longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit i ..., 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte digits of 4-bit BCD data.

2.5.1 **General Register Data Formats**

Figure 2.9 shows the data formats of general registers.

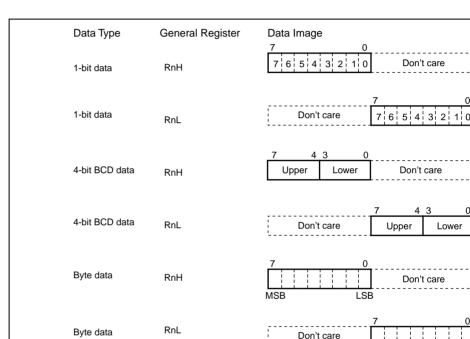


Figure 2.9 General Register Data Formats (1)

Rev. 3.00 Mar 21, 2006 pa REJ09

LS

MSB

RENESAS

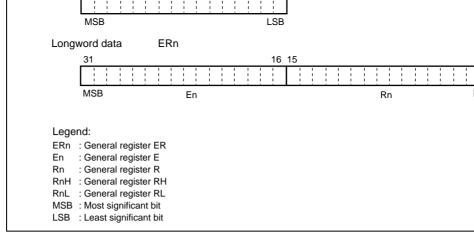


Figure 2.9 General Register Data Formats (2)

Rev. 3.00 Mar 21, 2006 page 38 of 788

REJ09B0300-0300

size or longword size.

Data Type	Address	Data Image
		-
		7 0
1-bit data	Address L	7 6 5 4 3 2 1 0
Byte data	Address L	MSB LSB
Word data	Address 2M	MSB;
	Address 2M + 1	LSB
Longword data	Address 2N	MSB¦ ¦ ¦ ¦ ¦ ;
	Address 2N + 1	
	Address 2N + 2	
	Address 2N + 3	LSB

Figure 2.10 Memory Data Formats

Rev. 3.00 Mar 21, 2006 pa REJ09

RENESAS

TAS*4 Logic operations AND, OR, XOR, NOT B/M Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR Branch Bcc*2, JMP, BSR, JSR, RTS System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP Block data transfer EEPMOV — Legend: B: Byte size W: Word size L: Longword size.			
AND, OR, XOR, NOT Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR Branch Bcc*2, JMP, BSR, JSR, RTS TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP Block data transfer EEPMOV Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.@-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) v		EXTU, EXTS	W/L
Shift SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR Branch Bcc*², JMP, BSR, JSR, RTS System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP Block data transfer EEPMOV Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.@-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) v		TAS*4	В
ROTXR Bit manipulation BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR Branch Bcc*2, JMP, BSR, JSR, RTS — System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP Block data transfer EEPMOV — Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) w	ogic operations	AND, OR, XOR, NOT	B/W/I
BAND, BIAND, BOR, BIOR, BXOR, BIXOR Branch Bcc**2, JMP, BSR, JSR, RTS TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, — NOP Block data transfer EEPMOV Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) we resident to the saved (STM)/restored (LDM) we resident to	Shift		B/W/I
System control TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, — NOP Block data transfer EEPMOV — Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV. @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) we	Bit manipulation		В
NOP Block data transfer EEPMOV — Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) we	Branch	Bcc*2, JMP, BSR, JSR, RTS	_
Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) w	System control		_
Legend: B: Byte size W: Word size L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV. @—SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @—SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) we	Block data transfer	EEPMOV	_
L: Longword size. Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV. @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn ERn, @-SP. 2. Bcc is the general name for conditional branch instructions. 3. Cannot be used in this LSI. 4. When using the TAS instruction, use registers ER0, ER1, ER4, and ER5. 5. ER7 is not used as the register that can be saved (STM)/restored (LDM) we			T
	W: Word s L: Longw Notes: 1. POP.W R @-SP. PO ERn, @-S 2. Bcc is the 3. Cannot be 4. When usin 5. ER7 is no	ord size. In and PUSH.W Rn are identical to MOV.W @SP+, Rn and DP.L ERn and PUSH.L ERn are identical to MOV.L @SP+SP. In general name for conditional branch instructions. In used in this LSI. In the TAS instruction, use registers ER0, ER1, ER4, and to used as the register that can be saved (STM)/restored (L	, ERn a ER5.

POP*1, PUSH*1

LDM*5, STM*5

INC, DEC

ADDS, SUBS

Arithmetic operations ADD, SUB, CMP, NEG

MOVFPE*3, MOVTPE*3

ADDX, SUBX, DAA, DAS

MULXU, DIVXU, MULXS, DIVXS

RENESAS

W/L

L

В

В

B/W/L

B/W/L

B/W

(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
_	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical exclusive OR
\rightarrow	Move
~	NOT (logical complement)
:8/:16/:24/:32	8-, 16-, 24-, or 32-bit length
	eral registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit /, E0 to E7), and 32-bit registers (ER0 to ER7).
	Rev. 3.00 Mar 21, 2006 p REJ0
	RENESAS

General register (source)*

General register (32-bit register)

General register*

Rs

Rn

ERn

		Pops a general register from the stack. POP.W Rn is identica @SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn
PUSH	W/L	$Rn \rightarrow @-SP$
		Pushes a general register onto the stack. PUSH.W Rn is ider MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn,
LDM*2	L	@SP+ → Rn (register list)
		Pops two or more general registers from the stack.
STM*2	L	Rn (register list) → @-SP

Pushes two or more general registers onto the stack.

 $@SP+ \rightarrow Rn$

Notes: 1. Size refers to the operand size.

B: Byte

W: Word

POP

W/L

L: Longword

2. ER7 is not used as the register that can be saved (STM)/restored (LDM) wh STM/LDM instruction, because ER7 is the stack pointer.

		registers, or on immediate data and data in a general registe
INC	B/W/L	$Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd$
DEC		Adds or subtracts the value 1 or 2 to or from data in a gener (Only the value 1 can be added to or subtracted from byte or
ADDS	L	$Rd \pm 1 \to Rd, Rd \pm 2 \to Rd, Rd \pm 4 \to Rd$
SUBS		Adds or subtracts the value 1, 2, or 4 to or from data in a 32
DAA	В	Rd (decimal adjust) → Rd
DAS		Decimal-adjusts an addition or subtraction result in a general

Performs addition or subtraction with carry on data in two ge

bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div

referring to CCR to produce 4-bit BCD data.

MULXU	B/W	$Rd \times Rs \rightarrow Rd$
		Performs unsigned multiplication on data in two general reg 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
MULXS	B/W	$Rd \times Rs \rightarrow Rd$
		Performs signed multiplication on data in two general registed bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
DIVXU	B/W	$Rd \div Rs \rightarrow Rd$
		Performs unsigned division on data in two general registers:

Note: Size refers to the operand size. B: Byte W: Word

Longword

SUBX

16-bit quotient and 16-bit remainder.

		bits of a 32-bit register to longword size, by padding with zero left.
EXTS	W/L	Rd (sign extension) $\rightarrow Rd$
		Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign
TAS*2	В	$@ERd - 0, 1 \rightarrow (\text{sbit 7> of }@ERd)$
		Tests memory contents, and sets the most significant bit (bit
Notes:	B: Byte W: Word L: Longword	the operand size. d he TAS instruction, use registers ER0, ER1, ER4 and ER5.

 $0 - Rd \rightarrow Rd$

general register.

Rd (zero extension) → Rd

NEG

EXTU

B/W/L

W/L

Compares data in a general register with data in another gen or with immediate data, and sets the CCR bits according to the

Takes the two's complement (arithmetic complement) of data

Extends the lower 8 bits of a 16-bit register to word size, or the

Rev. 3.00 Mar 21, 2006 page 44 of 788

REJ09B0300-0300

		general register or immediate data.
XOR	B/W/L	$Rd \oplus Rs \to Rd, Rd \oplus \#IMM \to Rd$
		Performs a logical exclusive OR operation on a general reginanther general register or immediate data.
NOT	B/W/L	$\sim Rd \rightarrow Rd$
		Takes the one's complement (logical complement) of data in register.
Note:	* Size refers t	o the operand size.
	B: Byte	
	W: Word	
	L: Longwo	rd
Table 2.	.6 Shift Inst	ructions
Instruct	ion Size*	Function
SHAL	B/W/L	Rd (shift) $\rightarrow Rd$
SHAR		Performs an arithmetic shift on data in a general register. 1-

ROTL	B/W/L	Rd (rotate) $\rightarrow Rd$
ROTR		Rotates data in a general register. 1-bit or 2 bit rotation is po
ROTXL	B/W/L	Rd (rotate) $\rightarrow Rd$
ROTXR		Rotates data including the carry flag in a general register. 1-rotation is possible.
Note: *	Size refers to	the operand size.
	B: Byte	
	W· Word	

shift is possible.

 $Rd (shift) \rightarrow Rd$

possible.

SHLL

SHLR

B/W/L

L: Longword

Performs a logical shift on data in a general register. 1-bit or

BIAND	В	$C \land [\sim (< bit-No.> of < EAd>)] \rightarrow C$
		Logically ANDs the carry flag with the inverse of a specified be general register or memory operand and stores the result in t flag.
		The bit number is specified by 3-bit immediate data.
BOR	В	$C \lor (sbit\text{-No.}> of) \to C$
		Logically ORs the carry flag with a specified bit in a general rememory operand and stores the result in the carry flag.
BIOR	В	$C \vee [\sim (<\!\!bit\text{-No.}\!\!> of <\!\!EAd\!\!>)] \to C$
		Logically ORs the carry flag with the inverse of a specified bit general register or memory operand and stores the result in t flag.
		The bit number is specified by 3-bit immediate data.
Note: *	Size refers to	o the operand size.
	B: Byte	

Rev. 3.00 Mar 21, 2006 page 46 of 788

REJ09B0300-0300

a general register.

general register.

 \sim (<bit-No.> of <EAd>) \rightarrow Z

 $C \land (<bit-No.> of <EAd>) \rightarrow C$

BNOT

BTST

BAND

В

В

В

Clears a specified bit in a general register or memory operan bit number is specified by 3-bit immediate data or the lower the

Inverts a specified bit in a general register or memory operan number is specified by 3-bit immediate data or the lower three

Tests a specified bit in a general register or memory operand clears the Z flag accordingly. The bit number is specified by 3 immediate data or the lower three bits of a general register.

Logically ANDs the carry flag with a specified bit in a general memory operand and stores the result in the carry flag.

 \sim (<bit-No.> of <EAd>) \rightarrow (<bit-No.> of <EAd>)

RENESAS

$f < EAd >) \rightarrow C$	В
specified bit in a general register or memory	
of <ead>) \rightarrow C</ead>) В
e inverse of a specified bit in a general regis he carry flag.	
ber is specified by 3-bit immediate data.	
o.> of <ead>)</ead>	В
e carry flag value to a specified bit in a gene erand.	
·No.>. of <ead>)</ead>	Г В
e inverse of the carry flag value to a specifie	
of <ead>) → C e inverse of a specified bit in a general replace the carry flag. ber is specified by 3-bit immediate data. o.> of <ead>) e carry flag value to a specified bit in a general replace to the carry flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general flag value to a specified bit in a general replace flag value flag value flag value to a specified bit in a general replace flag value flag</ead></ead>	В

in a general register of memory operand and stores the res

The bit number is specified by 3-bit immediate data.

general register or memory operand.

The bit number is specified by 3-bit immediate data. Note:

Size refers to the operand size. B: Byte

Rev. 3.00 Mar 21, 2006 pa

REJ0

BCC (BHS) Carry clear $C = 0$ (high or same) BCS (BLO) Carry set (low) $C = 1$ BNE Not equal $Z = 0$ BEQ Equal $Z = 1$ BVC Overflow clear $V = 0$ BVS Overflow set $V = 1$ BPL Plus $V = 0$ BMI Minus $V = 1$ BGE Greater or equal $V = 0$ BLT Less than $V = 0$	ВНІ	High	$C \lor Z = 0$
$\begin{array}{c} \text{(high or same)} \\ \text{BCS (BLO)} \\ \text{Carry set (low)} \\ \text{C = 1} \\ \text{BNE} \\ \text{Not equal} \\ \text{Z = 0} \\ \text{BEQ} \\ \text{Equal} \\ \text{Z = 1} \\ \text{BVC} \\ \text{Overflow clear} \\ \text{V = 0} \\ \text{BVS} \\ \text{Overflow set} \\ \text{V = 1} \\ \text{BPL} \\ \text{Plus} \\ \text{N = 0} \\ \text{BMI} \\ \text{Minus} \\ \text{N = 1} \\ \text{BGE} \\ \text{Greater or equal} \\ \text{N \oplus V = 0} \\ \text{BLT} \\ \text{Less than} \\ \text{N \oplus V = 1} \\ \end{array}$	BLS	Low or same	C ∨ Z = 1
BCS (BLO) Carry set (low) $C = 1$ BNE Not equal $Z = 0$ BEQ Equal $Z = 1$ BVC Overflow clear $V = 0$ BVS Overflow set $V = 1$ BPL Plus $N = 0$ BMI Minus $N = 1$ BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$	BCC (BHS)	Carry clear	C = 0
BNE Not equal $Z = 0$ BEQ Equal $Z = 1$ BVC Overflow clear $V = 0$ BVS Overflow set $V = 1$ BPL Plus $N = 0$ BMI Minus $N = 1$ BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$		(high or same)	
BEQEqual $Z=1$ BVCOverflow clear $V=0$ BVSOverflow set $V=1$ BPLPlus $N=0$ BMIMinus $N=1$ BGEGreater or equal $N \oplus V = 0$ BLTLess than $N \oplus V = 1$	BCS (BLO)	Carry set (low)	C = 1
BVC Overflow clear $V = 0$ BVS Overflow set $V = 1$ BPL Plus $N = 0$ BMI Minus $N = 1$ BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$	BNE	Not equal	Z = 0
BVS Overflow set $V = 1$ BPL Plus $N = 0$ BMI Minus $N = 1$ BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$	BEQ	Equal	Z = 1
BPLPlusN = 0BMIMinusN = 1BGEGreater or equalN \oplus V = 0BLTLess thanN \oplus V = 1	BVC	Overflow clear	V = 0
BMI Minus $N = 1$ BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$	BVS	Overflow set	V = 1
BGE Greater or equal $N \oplus V = 0$ BLT Less than $N \oplus V = 1$	BPL	Plus	N = 0
BLT Less than N ⊕ V = 1	BMI	Minus	N = 1
	BGE	Greater or equal	N ⊕ V = 0
PCT Croster than 7 \(\lambda \lambda \	BLT	Less than	N ⊕ V = 1
Greater than $2 \vee (N \oplus V)$:	BGT	Greater than	$Z \vee (N \oplus V) = 0$
BLE Less or equal $Z \vee (N \oplus V)$:	BLE	Less or equal	$Z \vee (N \oplus V) = 1$
	ranches unco	nditionally to a speci	fied address.

Branches to a subroutine at a specified address

Branches to a subroutine at a specified address

Returns from a subroutine

Rev. 3.00 Mar 21, 2006 page 48 of 788

JMP BSR

JSR

RTS

		Transfers CCR or EXR contents to a general register or more operand. Although CCR and EXR are 8-bit registers, wordstransfers are performed between them and memory. The user valid.
ANDC	В	$CCR \land \#IMM \to CCR, EXR \land \#IMM \to EXR$
		Logically ANDs the CCR or EXR contents with immediate
ORC	В	$CCR \vee \#IMM \to CCR, EXR \vee \#IMM \to EXR$
		Logically ORs the CCR or EXR contents with immediate da
XORC	В	$CCR \oplus \#IMM \to CCR, EXR \oplus \#IMM \to EXR$
		Logically exclusive-ORs the CCR or EXR contents with implete

 $CCR \rightarrow (EAd), EXR \rightarrow (EAd)$

EXR. Although CCR and EXR are 8-bit registers, word-size are performed between them and memory. The upper 8 bit

data. NOP $PC + 2 \rightarrow PC$

Only increments the program counter. Note: Size refers to the operand size.

B: Byte

W: Word

STC

B/W

REJ09

Rev. 3.00 Mar 21, 2006 pa

RENESAS

Repeat @ER5 + \rightarrow @ER6+ R4-1 \rightarrow R4 Until R4 = 0 else next:

Transfers a data block. Starting from the address set in ER5 data for the number of bytes set in R4L or R4 to the address set in ER6.

Execution of the next instruction begins as soon as the transcompleted.

2.6.2 Basic Instruction Formats

The H8S/2000 CPU instructions consist of 2-byte (1-word) units. An instruction consist operation field (op), a register field (r), an effective address extension (EA), and a cond (cc).

Figure 2.11 shows examples of instruction formats.

- Operation field
 - Indicates the function of the instruction, the addressing mode, and the operation to be out on the operand. The operation field always includes the first four bits of the instructions have two operation fields.
- Register field
 Specifies a general register. Address registers are specified by 3 bits, and data regis

bits or 4 bits. Some instructions have two register fields, and some have no register

- Effective address extension
- 8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.
- Condition field

Specifies the branching condition of Bcc instructions.

Rev. 3.00 Mar 21, 2006 page 50 of 788

REJ09B0300-0300

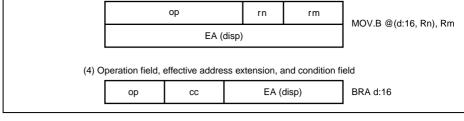


Figure 2.11 Instruction Formats (Examples)

2.7 **Addressing Modes and Effective Address Calculation**

The H8S/2000 CPU supports the eight addressing modes listed in table 2.11. Each ins a subset of these addressing modes.

Arithmetic and logic operations instructions can use the register direct and immediate

modes. Data transfer instructions can use all addressing modes except program-counter and memory indirect. Bit manipulation instructions can use register direct, register inc absolute addressing mode to specify an operand, and register direct (BSET, BCLR, B) BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the

Rev. 3.00 Mar 21, 2006 pa

REJ09

5	Absolute address	@aa:8/@aa:16/@aa:24/@aa:3
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bi

The register field of the instruction code specifies an address register (ERn) which cont

2.7.1 Register Direct—Rn

The register field of the instruction code specifies an 8-, 16-, or 32-bit general register contains the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers.

2.7.2 Register Indirect—@ERn

address of a memory operand. If the address is a program instruction address, the lower valid and the upper 8 bits are all assumed to be 0 (H'00).

2.7.3 Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)

(ERn) specified by the register field of the instruction, and the sum gives the address of operand. A 16-bit displacement is sign-extended when added.

A 16-bit or 32-bit displacement contained in the instruction code is added to an address

2.7.4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @

Register Indirect with Post-Increment—@**ERn+:** The register field of the instruction specifies an address register (ERn) which contains the address of a memory operand. A operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is subdiversal address register. The value added is 1 for byte access, 2 for word access, and 4 for long access. For word or longword transfer instructions, the register value should be even.

Rev. 3.00 Mar 21, 2006 page 52 of 788 REJ09B0300-0300

300

The instruction code contains the absolute address of a memory operand. The absolute may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32). Table 2.12 indicates the accessible absolute address ranges.

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 For a 16-bit absolute address, the upper 16 bits are a sign extension. For a 32-bit absolute entire address space is accessed.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The bits are all assumed to be 0 (H'00).

Normal Mode

HIFFOO to HIFFFF

Table 2.12 Absolute Address Access Ranges

8 hite (@aa.8)

Absolute Address

Data address

Data address	o bits (@aa.o)	1111 00 10 111 1 1 1	11111110010111	
	16 bits (@aa:16)	H'0000 to H'FFFF	H'000000 to H'00 H'FF8000 to H'FI	
	32 bits (@aa:32)		H'000000 to H'FF	
Program instruction address	24 bits (@aa:24)			

2.7.6 Immediate—#xx:8, #xx:16, or #xx:32

in its instruction code, specifying a vector address.

The 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data contained in an icode can be used directly as an operand.

The ADDS, SUBS, INC, and DEC instructions implicitly contain immediate data in the instruction codes. Some bit manipulation instructions contain 3-bit immediate data in instruction code, specifying a bit number. The TRAPA instruction contains 2-bit imm

Advanced Mode

H'EFFEOO to H'E

+10364 words) from the branch instruction. The resulting value should be an even hum

2.7.8 Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains absolute address specifying a memory operand which contains a branch address. The up the 8-bit absolute address are all assumed to be 0, so the address range is 0 to 255 (H'00 H'00FF in normal mode, H'000000 to H'0000FF in advanced mode).

In normal mode, the memory operand is a word operand and the branch address is 16 b advanced mode, the memory operand is a longword operand, the first byte of which is a be 0 (H'00). Note that the top area of the address range in which the branch address is s also used for the exception vector area. For further details, refer to section 4, Exception

If an odd address is specified in word or longword memory access, or as a branch addre least significant bit is regarded as 0, causing data to be accessed or the instruction code fetched at the address preceding the specified address. (For further information, see sec Memory Data Formats.)

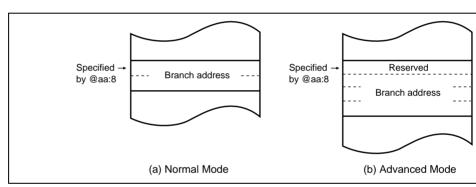
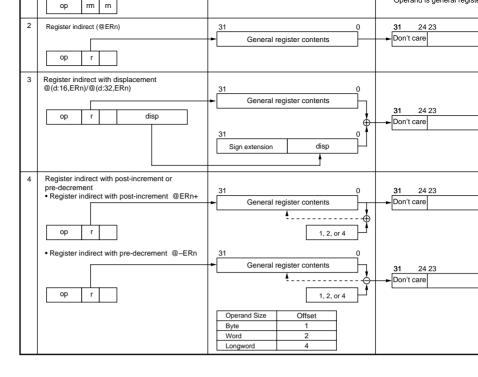
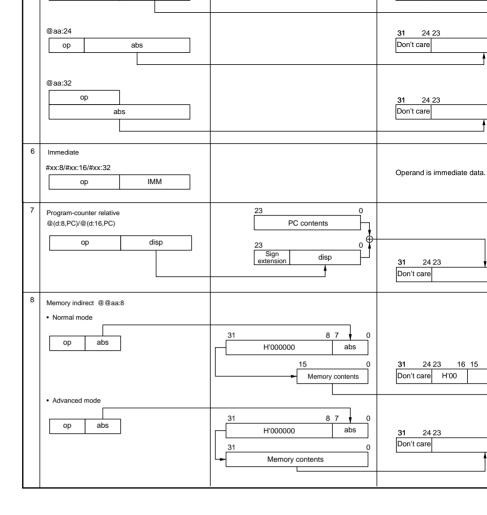



Figure 2.12 Branch Address Specification in Memory Indirect Addressing

Rev. 3.00 Mar 21, 2006 page 54 of 788


REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 pa

REJ09

Rev. 3.00 Mar 21, 2006 page 56 of 788 REJ09B0300-0300

RED input goes low, an earrent processing stops and the er e enters the reset state interrupts are masked in the reset state. Reset exception handling starts when the F changes from low to high. For details, refer to section 4, Exception Handling.

The reset state can also be entered by a watchdog timer overflow.

- Exception-handling state
 - The exception-handling state is a transient state that occurs when the CPU alters the processing flow due to an exception source, such as, a reset, trace, interrupt, or tra The CPU fetches a start address (vector) from the exception vector table and branch address. For further details, refer to section 4, Exception Handling.
- Program execution state
- In this state the CPU executes program instructions in sequence.
- Bus-released state In a product which has a bus master other than the CPU, such as a data transfer co
- (DTC), the bus-released state occurs when the bus has been released in response to request from a bus master other than the CPU. While the bus is released, the CPU operations. For details, see section 6, Bus Controller (BSC).
- Program stop state This is a power-down state in which the CPU stops operating. The program stop st when a SLEEP instruction is executed or the CPU enters hardware standby mode. refer to section 26, Power-Down Modes.

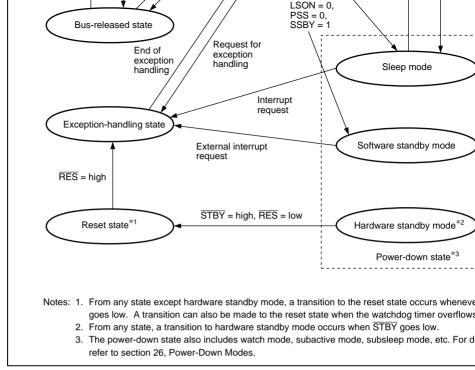


Figure 2.13 State Transitions

Rev. 3.00 Mar 21, 2006 page 58 of 788 REJ09B0300-0300

ER0, ER1, ER4 and ER5.

2.9.2 Note on STM/LDM Instruction Usage

ER7 is not used as the register that can be saved (STM)/restored (LDM) when using S instruction, because ER7 is the stack pointer. Two, three, or four registers can be save one STM/LDM instruction. The following ranges can be specified in the register list.

Two registers: ER0–ER1, ER2–ER3, or ER4–ER5

Three registers: ER0–ER2 or ER4–ER6

bit other than the bit to be manipulated.

Four registers: ER0-ER3

The STM/LDM instruction including ER7 is not generated by the Renesas Technolog H8/300 series C/C++ compilers.

2.9.3 Note on Bit Manipulation Instructions

The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified a byte units, manipulate the data of the target bit, and write data to the same address againsts. Special care is required when using these instructions in cases where a register of write-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because this may rewrite-only bit is used or a bit is directly manipulated for a port, because the bit is directly manipulated for a port, because the bit is directly manipulated for a port, but is directly manipulated f

Example: The BCLR instruction is executed for DDR in port 4.

P47 and P46 are input pins, with a low-level signal input at P47 and a high-level signal P46. P45 to P40 are output pins and output low-level signals. The following shows an which P40 is set to be an input pin with the BCLR instruction.

BCLR instruction executed:

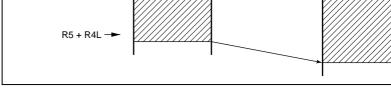
BCLR #0, @P4DDR

The BCLR instruction is executed for DDR in port 4.

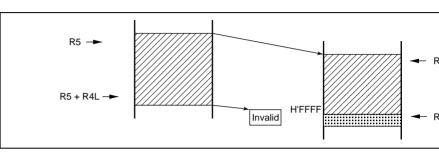
After executing BCLR:

	P47	P46	P45	P44	P43	P42	P41
Input/output	Output	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level
DDR	1	1	1	1	1	1	1
DR	1	0	0	0	0	0	0

Operation:


- 1. When the BCLR instruction is executed, first the CPU reads P4DDR. Since P4DDR is a write-only register, so the CPU reads H'FF. In this example P4D value of H'3F, but the value read by the CPU is H'FF.
- 2. The CPU clears bit 0 of the read data to 0, changing data to H'FE.
- 3. The CPU writes H'FE to DDR, completing execution of BCLR.

As a result of the BCLR instruction, bit 0 in DDR is set to 0, and P40 becomes an inpu However, bits 7 and 6 of DDR are modified to 1, therefore P47 and P46 become output


Rev. 3.00 Mar 21, 2006 page 60 of 788

REJ09B0300-0300

2. Set R4L and R6 so that the end address of the destination address (value of R6 + F not exceed H'FFFF (the value of R6 must not change from H'FFFF to H'0000 duri execution).

Rev. 3.00 Mar 21, 2006 page 62 of 788 REJ09B0300-0300

MACH

Table 3.1 MCU Operating Mode Selection

Operating Mode	MD1	MD0	Operating Mode	Description
0	0	0	_	_
1	_	1	Normal	Expanded mode with on-chip ROM disabled
2	1	0	Advanced	Expanded mode with on-chip ROM enabled
				Single-chip mode
3		1	Normal	Expanded mode with on-chip ROM enabled
				Single-chip mode

modes 2 and 3, operation begins in single-chip mode after reset release, but a transition made to external expansion mode by setting the EXPE bit in MDCR to 1.

Mode 1 is an expanded mode that allows access to external memory and peripheral de-

Mode 0 cannot be used in this LSI. Thus, mode pins should be set to enable mode 1, 2 normal program execution state. Mode pins should not be changed during operation.

3.2 Register Descriptions

The following registers are related to the operating mode. For details on the bus control (BCR), refer to section 6.3.1, Bus Control Register (BCR).

- Mode control register (MDCR)
- System control register (SYSCR)
- Serial timer control register (STCR)

				1: Extended mode
6	_	All 0	R	Reserved
to 2				These bits are always read as 0. These bits modified.
1	MDS1	*	R	Mode Select 1 and 0
0	MDS0	*	R	These bits indicate the input levels at mode and MD0) (the current operating mode). Bits and MDS0 correspond to MD1 and MD0, re These bits are read-only bits and they cann written to. The mode pin (MD1 and MD0) in

0: Single-chip mode

are latched into these bits when MDCR is re

latches are canceled by a reset. Note: * The initial values are determined by the settings of the MD1 and MD0 pins.

Rev. 3.00 Mar 21, 2006 page 64 of 788

REJ09B0300-0300

			for details.
IOSE	0	R/W	IOS Enable
			Enables or disables $\overline{AS}/\overline{IOS}$ pin function ir mode.
			0: \overline{AS} pin Outputs low when an external area is ac
			1: IOS pin Outputs low when a specified address of H'(FF)F000 to H'(FF)F7FF is accessed.
INTM1	0	R	These bits select the control mode of the i
INTMO 0		R/W	controller. For details on the interrupt cont and interrupt control select modes 1 and 0 5.6, Interrupt Control Modes and Interrupt
			00: Interrupt control mode 0
			01: Interrupt control mode 1
			10: Setting prohibited
			11: Setting prohibited
XRST	1	R	External Reset
			This bit indicates the reset source. A reset by an external reset input, or when the wa overflows.

6

3

RENESAS

overflows.

Rev. 3.00 Mar 21, 2006 pa

REJ0

0: A reset is caused when the watchdog til

1: A reset is caused by an external reset.

Specifies the location of the control pin (\overline{C} host interface together with the FGA20E b See section 18, Host Interface X-Bus Inter

Controls CPU access to the host interface r (HICR, IDR1, ODR1, STR1, IDR2, ODR2, a the keyboard matrix interrupt and MOS input control registers (KMIMR, KMPCR, and KM 8-bit timer (TMR_X and TMR_Y) registers (TCR_X/TCR_Y, TCSR_X/TCSR_Y, TICRR/TCORA_Y, TICRF/TCORB_Y, TCNT_X/TCNT_Y, TCORC/TISR, TCORA_TCORB_X), and the timer connection regist (TCONRI, TCONRO, TCONRS, and SEDG 0: In areas H'(FF)FFF0 to H'(FF)FFF7 and I to H'(FF)FFFF, CPU access to 8-bit timer and TMR_Y) registers and timer connect
and TMR_Y) registers and timer connect registers is permitted
1: In areas H'(FF)FFF0 to H'(FF)FFF7 and I to H'(FF)FFFF, CPU access to host interregisters and keyboard matrix interrupt a

R/W

RAM Enable

0: On-chip RAM is disabled

3.2.3 Serial Timer Control Register (STCR)

1

STCR enables or disables register access, IIC operating mode, and on-chip flash memoselects the input clock of the timer counter.

Rev. 3.00 Mar 21, 2006 page 66 of 788 REJ09B0300-0300

0

RAME

RENESAS

input pull-up control registers is permitted

Enables or disables on-chip RAM. The RAM initialized when the reset state is released.

1: On-chip RAM is enabled

				CKS2 to CKS0 in the I ² C bus mode regis For details on the transfer rate, refer to ta
4	IICE	0	R/W	I ² C Master Enable
				Enables or disables CPU access for IIC (ICCR, ICSR, ICDR/SARX, ICMR/SAR), registers (DADRAH/DACR, DADRAL, DADRBH/DACNTH, DADRBL/DACNTL) registers (SMR, BRR, SCMR).
				 SCI_1 registers are accessed in an ar H'(FF)FF88 to H'(FF)FF89 and from H to H'(FF)FF8F.
				SCI_2 registers are accessed in an ar H'(FF)FFA0 to H'(FF)FFA1 and from H to H'(FF)FFA7.
				SCI_0 registers are accessed in an ar H'(FF)FFD8 to H'(FF)FFD9 and from to H'(FF)FFDF.
				1: IIC_1 registers are accessed in an are H'(FF)FF88 to H'(FF)FF89 and from H to H'(FF)FF8F.
				PWMX registers are accessed in an a H'(FF)FFA0 to H'(FF)FFA1 and from H to H'(FF)FFA7.
				IIC_0 registers are accessed in an are H'(FF)FFD8 to H'(FF)FFD9 and from to H'(FF)FFDF.
				Rev. 3.00 Mar 21, 2006 pa

R/W

R/W

I²C Transfer Rate Select 1 and 0

These bits control the IIC operation. The

a transfer rate in master mode together

6

5

IICX1

IICX0

0

0

				1: Control registers of flash memory are a an area from H'(FF)FF80 to H'(FF)FF8
2	_	0	R/(W)	Reserved
				The initial value should not be changed.
1	ICKS1	0	R/W	Internal Clock Source Select 1, 0
0	ICKS0	0	R/W	These bits select a clock to be input to the counter (TCNT) and a count condition tog bits CKS2 to CKS0 in the timer control re (TCR). For details, refer to section 12.3.4 Control Register (TCR).

accessed in an area from H'(FF)FF80 t

H'(FF)FF87.

Rev. 3.00 Mar 21, 2006 page 68 of 788 REJ09B0300-0300

3.3.2 Mode 2

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM

After a reset, the LSI is set to single-chip mode. To access an external address space, MDCR should be set to 1.

When the EXPE bit in MDCR is set to 1, ports 1, 2 and A function as input ports after Ports 1, 2 and A output an address by setting 1 to the corresponding port data direction (DDR). Port 3 functions as a data bus, and parts of port 9 carry bus control signals. Po functions as a data bus when the ABW bit in WSCR is cleared to 0.

3.3.3 Mode 3

The CPU can access a 64-kbyte address space in normal mode. The on-chip ROM is e CPU can access a 56-kbyte address space in mode 3.

MDCR should be set to 1.

After a reset, the LSI is set to single-chip mode. To access an external address space,

When the EXPE bit in MDCR is set to 1, ports 1 and 2 function as input ports after a reand 2 function as an address bus by setting 1 to the corresponding port data direction (DDR). Port 3 functions as a data bus, and parts of port 9 carry bus control signals. Po functions as a data bus when the ABW bit in WSCR is cleared to 0.

Rev. 3.00 Mar 21, 2006 pa

REJ09

Port 3		D	P*/D	
Port B		P*/D	P*/D	
Port 9	P97	P*/C	P*/C	
	P96	C*/P	P*/C	
	P95 to P93	С	P*/C	
	P92, P91	Р	Р	
	P90	P*/C	P*/C	
Port C to	Port G	Р	Р	
Legend:				
P: I/O port				
A: Address bus output				
D: Data bus I/O				
C: Conti	rol signals, clock I/O			

Α

Р

Rev. 3.00 Mar 21, 2006 page 70 of 788

*: Immediately after reset

Port 2

Port A

P*/A

P*/A

P*/A

P*/D

P*/D

P*/C

P*/C

P*/C Ρ

P*/C

P

	External address space	H'00FFFF	On-chip ROM	H'00FFFF	On-d
			Reserved area		Res
		H'01FFFF		H'01FFFF	
		H'020000	External address space		
H'E080		H'FFE080		H'FFE080	
	On-chip RAM*		On-chip RAM*		On-
H'EFFF		H'FFEFFF		H'FFEFFF	
H'F000 H'F7FF	External address space	H'FFF000 H'FFF7FF	External address space	_	
H'F800	Internal I/O	H'FFF800	Internal I/O	H'FFF800	Inte
H'FE4F H'FE50	registers 3	H'FFFE4F H'FFFE50	registers 3	H'FFFE4F H'FFFE50	Inte
H'FEFF	Internal I/O registers 2	H'FFFEFF	Internal I/O registers 2	H'FFFEFF	reç
H'FF00	On-chip RAM	H'FFFF00	On-chip RAM	H'FFFF00 H'FFFF7F	On- (12
H'FF7F H'FF80	(128 bytes)*	H'FFFF7F H'FFFF80	(128 bytes)* Internal I/O	H'FFFF80	Inte
H'FFFF	registers 1	H'FFFFFF	registers 1	H'FFFFFF	reg

Figure 3.1 Address Map for H8S/2140B and H8S/2160B (1)

Note: * These areas can be used as an external address space by clearing bit RAME in SYSCR to 0

Rev. 3.00 Mar 21, 2006 pa

REJ0

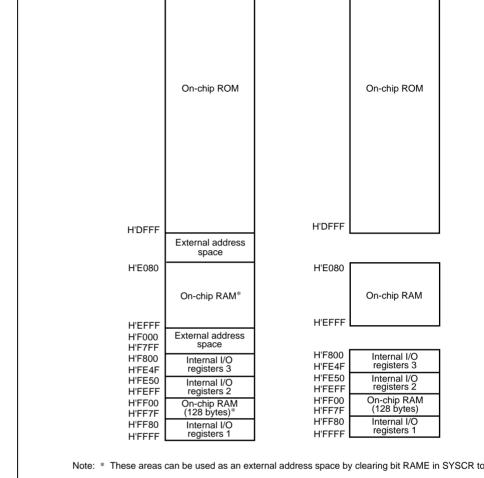


Figure 3.2 Address Map for H8S/2140B and H8S/2160B (2)

Rev. 3.00 Mar 21, 2006 page 72 of 788 REJ09B0300-0300

	External address space		On-chip ROM		On-
		H'01FFFF H'020000	External address	. H'01FFFF	
H'E080		H'FFE080	space	H'FFE080	
	On-chip RAM*		On-chip RAM*	H'FFEFFF.	On-
H'EFFF H'F000 H'F7FF	External address space	H'FFEFFF H'FFF000 H'FFF7FF	External address space]	
H'F800 H'FE4F	Internal I/O registers 3	H'FFF800 H'FFFE4F	Internal I/O registers 3	H'FFF800 H'FFFE4F	Int re
H'FE50 H'FEFF	Internal I/O registers 2	H'FFFE50 H'FFFEFF	Internal I/O registers 2	H'FFFE50 H'FFFEFF	Int re
H'FF00 H'FF7F	On-chip RAM (128 bytes)*	H'FFFF00 H'FFFF7F	On-chip RAM (128 bytes)*	H'FFFF00 H'FFFF7F	On- (1
H'FF80 H'FFFF	Internal I/O registers 1	H'FFFF80 H'FFFFF	Internal I/O registers 1	H'FFFF80 H'FFFFFF	Int re

Figure 3.3 Address Map for H8S/2141B and H8S/2161B (1)

Note: * These areas can be used as an external address space by clearing bit RAME in SYSCR to 0

Rev. 3.00 Mar 21, 2006 pa REJ09

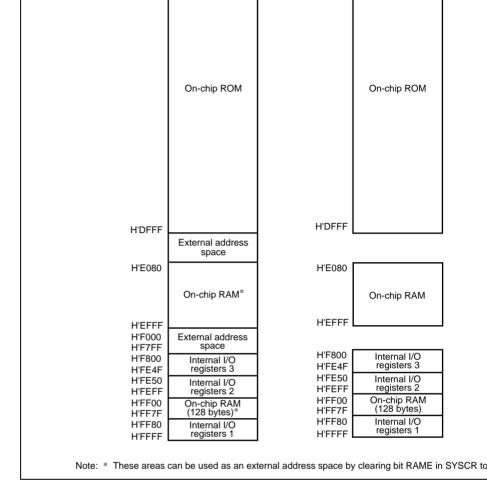


Figure 3.4 Address Map for H8S/2141B and H8S/2161B (2)

Rev. 3.00 Mar 21, 2006 page 74 of 788 REJ09B0300-0300

	External address space		On-chip ROM		On-c
		H'03FFFF		H'03FFFF	
		H'040000	External address space	·	
H'E080		H'FFD080		H'FFD080	
	On-chip RAM*		On-chip RAM*		On-
H'EFFF		H'FFEFFF		H'FFEFFF	
H'F000 H'F7FF	External address space	H'FFF000 H'FFF7FF	External address space		
H'F800	Internal I/O	H'FFF800	Internal I/O	H'FFF800	Inte
H'FE4F	registers 3	H'FFFE4F	registers 3	H'FFFE4F H'FFFE50	Inte
H'FE50 H'FEFF	Internal I/O registers 2	H'FFFE50 H'FFFEFF	Internal I/O registers 2	H'FFFEFF	reç
H'FF00	On-chip RAM	H'FFFF00	On-chip RAM (128 bytes)*	H'FFFF00	On-
H'FF7F	(128 bytes)*	H'FFFF7F		H'FFFF7F H'FFFF80	(12 Inte
H'FF80 H'FFFF	Internal I/O registers 1	H'FFFF80 H'FFFFFF	Internal I/O registers 1	H'FFFFF	reç
HTFFF	registers i	l Hitetet	rogistoro r	,	

Note: * These areas can be used as an external address space by clearing bit RAME in SYSCR to 0

Figure 3.5 Address Map for H8S/2145BV (1)

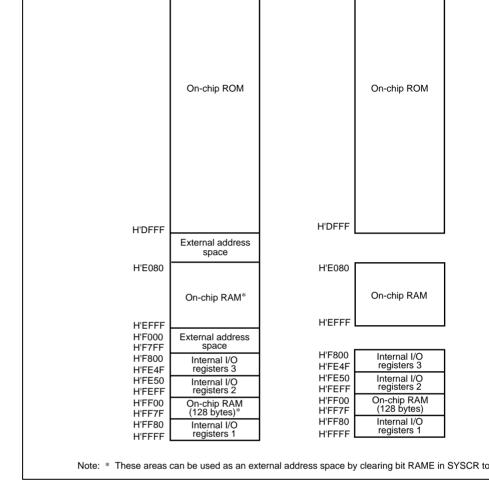


Figure 3.6 Address Map for H8S/2145BV (2)

Rev. 3.00 Mar 21, 2006 page 76 of 788 REJ09B0300-0300

	External address space		On-chip ROM		On-d
		H'03FFFF H'040000	External address space	H'03FFFF	
H'E080	On-chip RAM*	H'FFD080	On-chip RAM*	H'FFD080	On-
H'EFFF H'F000 H'F7FF	External address space	H'FFEFFF H'FFF000 H'FFF7FF	External address space	111111111	
H'F800 H'FE4F	Reserved area	H'FFF800 H'FFFE4F	Reserved area		
H'FE50 H'FEFF H'FF00	Internal I/O registers 2 On-chip RAM	H'FFFE50 H'FFFEFF H'FFFF00	Internal I/O registers 2 On-chip RAM	H'FFFE50 H'FFFEFF H'FFFF00	Into req On- (12
H'FF7F H'FF80 H'FFFF	(128 bytes)* Internal I/O registers 1	H'FFFF7F H'FFFF80 H'FFFFFF	(128 bytes)* Internal I/O registers 1	H'FFFF7F H'FFFF80 H'FFFFFF	Inte

Note: * These areas can be used as an external address space by clearing bit RAME in SYSCR to 0

Rev. 3.00 Mar 21, 2006 pa REJ09

Figure 3.7 Address Map for H8S/2145B (1)

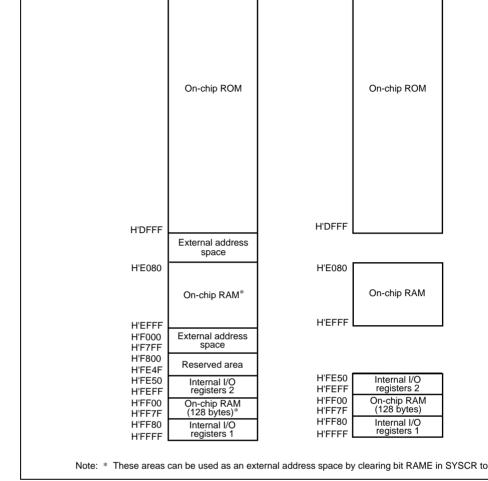


Figure 3.8 Address Map for H8S/2145B (2)

Rev. 3.00 Mar 21, 2006 page 78 of 788 REJ09B0300-0300

On-	On-chip ROM		External address space	
H'01FFFF	External address space	H'01FFFF H'020000 H'FFE080		H'E080
On-	On-chip RAM*		On-chip RAM*	
H'FFEFFFL	External address space	H'FFEFFF H'FFF000 H'FFF7FF	External address space	H'EFFF H'F000 H'F7FF
	Reserved area	H'FFF800 H'FFFE4F	Reserved area	H'F800 H'FE4F
H'FFFE50 Int	Internal I/O registers 2	H'FFFE50 H'FFFEFF	Internal I/O registers 2	H'FE50 H'FEFF
H'FFFF00 On- H'FFFF7F (1:	On-chip RAM (128 bytes)*	H'FFFF00 H'FFFF7F	On-chip RAM (128 bytes)*	H'FF00
H'FFFF80 Int	Internal I/O registers 1	H'FFFF80 H'FFFFFF	Internal I/O registers 1	H'FF7F H'FF80 H'FFFF

Note: * These areas can be used as an external address space by clearing bit RAME in SYSCR to 0

Rev. 3.00 Mar 21, 2006 pa REJ09

Figure 3.9 Address Map for H8S/2148B (1)

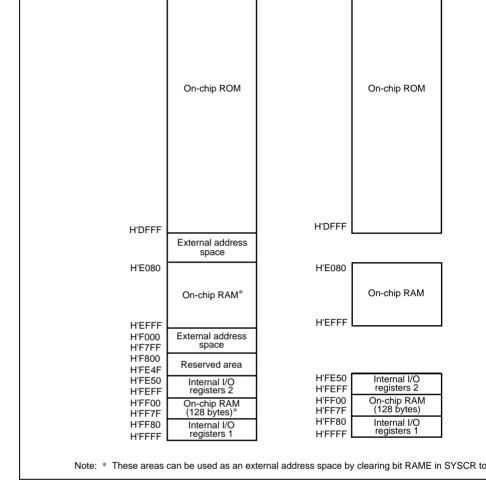


Figure 3.10 Address Map for H8S/2148B (2)

Rev. 3.00 Mar 21, 2006 page 80 of 788 REJ09B0300-0300

Table 4.1 Exception Types and Priority

Priority	Exception Type	Start of Exception Handling
High	Reset	Starts immediately after a low-to-high transition pin, or when the watchdog timer overflows.
	Interrupt	Starts when execution of the current instruction handling ends, if an interrupt request has been interrupt detection is not performed on comple ORC, XORC, or LDC instruction execution, or completion of reset exception handling.
	Direct transition	Starts when a direction transition occurs as the SLEEP instruction execution.
Low	Trap instruction	Started by execution of a trap (TRAPA) instruction exception handling requests are actimes in program execution state.

Rev. 3.00 Mar 21, 2006 pa REJ09

		10	H'0014 to H'0015	H'000028 to
		11	H'0016 to H'0017	H'00002C to
Reserved for syste	em use	12	H'0018 to H'0019	H'000030 to
			l	
		15	H'001E to H'001F	H'00003C to
External interrupt	IRQ0	16	H'0020 to H'0021	H'000040 to
	IRQ1	17	H'0022 to H'0023	H'000044 to
	IRQ2	18	H'0024 to H'0025	H'000048 to
	IRQ3	19	H'0026 to H'0027	H'00004C to
	IRQ4	20	H'0028 to H'0029	H'000050 to
	IRQ5	21	H'002A to H'002B	H'000054 to
	IRQ6	22	H'002C to H'002D	H'000058 to
	IRQ7	23	H'002E to H'002F	H'00005C to
Internal interrupt*		24	H'0030 to H'0031	H'000060 to
			<u>l</u>	
		107	H'00DE to H'00DF	H'0001BC to
Note: * For det	tails on the	e internal interr	rupt vector table, see section 5	5.5, Interrupt Ex
Handlir	ng Vector	Table.		
	3			

0

1

5

6

7

9

Exception Source

Direct transition

Reserved for system use

External interrupt (NMI)

Trap instruction (four sources) 8

Reset

Rev. 3.00 Mar 21, 2006 page 82 of 788 REJ09B0300-0300 RENESAS

Normal Would

H'0000 to H'0001

H'0002 to H'0003

H'000A to H'000B

H'000C to H'000D

H'000E to H'000F

H'0010 to H'0011

H'0012 to H'0013

Auvanceu n

H'000000 to

H'000004 to

H'000014 to

H'000018 to

H'00001C to

H'000020 to

H'000024 to

Reset Exception Handling 4.3.1

When the RES pin goes high after being held low for the necessary time, this LSI star exception handling as follows:

- 1. The internal state of the CPU and the registers of the on-chip peripheral modules a and the I bit is set to 1 in CCR.
- 2. The reset exception handling vector address is read and transferred to the PC, and execution starts from the address indicated by the PC.

Figure 4.1 shows an example of the reset sequence.

Rev. 3.00 Mar 21, 2006 pa

REJ09

Internal address bus	X (1)		(3)	XX
Internal read signal				
Internal write signal		High		
Internal data bus	(2)		(4)	├

Figure 4.1 Reset Sequence (Mode 3)

4.3.2 Interrupts after Reset

If an interrupt is accepted after a reset and before the stack pointer (SP) is initialized, the CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt including NMI, are disabled immediately after a reset. Since the first instruction of a pralways executed immediately after the reset state ends, make sure that this instruction is the stack pointer (example: MOV.L #xx: 32, SP).

4.3.3 On-Chip Peripheral Modules after Reset Is Cancelled

After a reset is cancelled, the module stop control registers (MSTPCR) are initialized, a modules except the DTC operate in module stop mode. Therefore, the registers of on-c peripheral modules cannot be read from or written to. To read from and write to these researchers.

Rev. 3.00 Mar 21, 2006 page 84 of 788 REJ09B0300-0300

clear module stop mode.

- 1. The values in the program counter (PC) and condition code register (CCR) are say stack.
- 2. A vector address corresponding to the interrupt source is generated, the start addre from the vector table to the PC, and program execution begins from that address.

Trap Instruction Exception Handling 4.5

Trap instruction exception handling starts when a TRAPA instruction is executed. Tra exception handling can be executed at all times in the program execution state.

Trap instruction exception handling is conducted as follows:

- 1. The values in the program counter (PC) and condition code register (CCR) are say stack.
- 2. A vector address corresponding to the interrupt source is generated, the start addre from the vector table to the PC, and program execution starts from that address.

The TRAPA instruction fetches a start address from a vector table entry corresponding number from 0 to 3, as specified in the instruction code.

Table 4.3 shows the status of CCR after execution of trap instruction exception handli

Table 4.3 Status of CCR after Trap Instruction Exception Handling

	CCR		
Interrupt Control Mode	Ī	UI	
0	1	_	
1	1	1	
Legend:			

1: Set to 1

—: Retains value prior to execution

RENESAS

Rev. 3.00 Mar 21, 2006 pa

REJ09

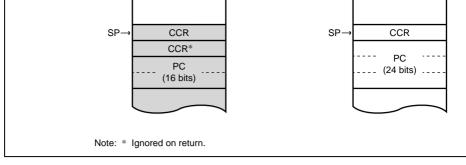


Figure 4.2 Stack Status after Exception Handling

Rev. 3.00 Mar 21, 2006 page 86 of 788 REJ09B0300-0300

PUSH.L ERN (or MOV.L ERN, @-SP)

Use the following instructions to restore registers:

POP.W Rn (or MOV.W @SP+, Rn)
POP.L ERn (or MOV.L @SP+, ERn)

Setting SP to an odd value may lead to a malfunction. Figure 4.3 shows an example of happens when the SP value is odd.

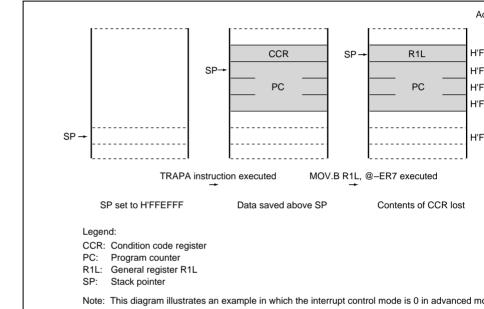


Figure 4.3 Operation when SP Value Is Odd

Rev. 3.00 Mar 21, 2006 pa

Rev. 3.00 Mar 21, 2006 page 88 of 788 REJ09B0300-0300

- Priorities settable with ICR An interrupt control register (ICR) is provided for setting interrupt priorities. Thre
 - levels can be set for each module for all interrupts except NMI and address break. Independent vector addresses

source to be identified in the interrupt handling routine.

- All interrupt sources are assigned independent vector addresses, making it unneces
 - Thirty-one external interrupts
- NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or fa detection can be selected for NMI. Falling-edge, rising-edge, or both-edge detection sensing, can be selected for IRQ7 to IRQ0. The IRQ6 interrupt is shared by the int the $\overline{IRQ6}$ pin and eight external interrupt inputs ($\overline{KIN7}$ to $\overline{KIN0}$), and the IRQ7 int shared by the interrupt from the $\overline{IRQ7}$ pin and sixteen external interrupt inputs ($\overline{K1}$

 $\overline{\text{KIN8}}$ and $\overline{\text{WUE7}}$ to $\overline{\text{WUE0}}$). $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$ and $\overline{\text{WUE7}}$ to $\overline{\text{WUE0}}$ can be masked

DTC control

The DTC can be activated by an interrupt request.

individually by the user program.

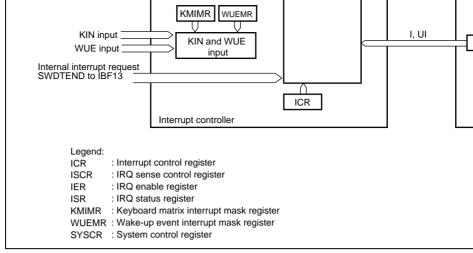


Figure 5.1 Block Diagram of Interrupt Controller

Rev. 3.00 Mar 21, 2006 page 90 of 788

REJ09B0300-0300

		Rising edge, falling edge, or both edges, or level s be selected individually for each pin.
KIN15 to KIN0	Input	Maskable external interrupts
		Falling edge or level sensing can be selected.
WUE7 to WUE0*	Input	Maskable external interrupts
		Falling edge or level sensing can be selected.
Note: * Not support	ted by the F	18S/2148B and H8S/2145B (5-V version).

Rising edge or falling edge can be selected

Maskable external interrupts

Note

The interrupt controller has the following registers. For details on the system control in

5.3 **Register Descriptions**

IRQ7 to IRQ0

(SYSCR), refer to section 3.2.2, System Control Register (SYSCR).

Input

- Interrupt control registers A to C (ICRA to ICRC)
 - Address break control register (ABRKCR)
 - Break address registers A to C (BARA to BARC)

 - IRQ sense control registers (ISCRH, ISCRL)
 - IRQ enable register (IER)
- IRQ status register (ISR)
- Keyboard matrix interrupt mask registers (KMIMRA, KMIMR)
- Wake-up event interrupt mask register (WUEMRB)

ıu	ıo
0	IRCn0

0: Corresponding interrupt source is control level 0 (no priority)

> 1: Corresponding interrupt source is control level 1 (priority)

n: A to C

Correspondence between Interrupt Source and ICR Table 5.2

			Register				
Bit	Bit Name	ICRA	ICRB	ICRC			
7	ICRn7	IRQ0	A/D converter	SCI_0			
6	ICRn6	IRQ1	FRT	SCI_1			
5	ICRn5	IRQ2, IRQ3	_	SCI_2			
4	ICRn4	IRQ4, IRQ5	_	IIC_0			
3	ICRn3	IRQ6, IRQ7	TMR_0	IIC_1			
2	ICRn2	DTC	TMR_1	_			
1	ICRn1	WDT_0	TMR_X, TMR_Y	LPC*			
0	ICRn0	WDT_1	XBS, Keyboard buffer controller	_			

Legend:

—: Reserved. The write value should always be 0.

Notes: n: A to C

On products not including LPC, this bit is reserved. The write value should a

Rev. 3.00 Mar 21, 2006 page 92 of 788 REJ09B0300-0300

			address specified by BARA to BAR prefetched.
			[Setting condition]
			When an address specified by BAR is prefetched while the BIE flag is s
			[Clearing condition]
			When an exception handling is exe address break interrupt.
_	All 0	R	Reserved
			These bits are always read as 0 an modified.
BIE	0	R/W	Break Interrupt Enable
			Enables or disables address break
			0: Disabled

1: Enabled

6 to 1

7	A23	All 0	R/W	Addresses 23 to 16
to 0	to A16			The A23 to A16 bits are compared w A16 in the internal address bus.

• BARB
Bit Bi

7 to

0

it	Bit Name	Initial Value	R/W	Description
	A15	All 0	R/W	Addresses 15 to 8
	to A8			The A15 to A8 bits are compared wit A8 in the internal address bus.

R/W

R/W

Description

Addresses 7 to 1

The A7 to A1 bits are compared with

in the internal address bus.

• BARC

Bit Name

Α7

to

A1

Bit

7

to

1

_	0	R	Reserved
	U	11	Reserved
			This bit is always read as 0 and can modified.

Initial Value

All 0

Rev. 3.00 Mar 21, 2006 page 94 of 788

Bit	Bit Name	Initial Value	R/W	Description
7	IRQ3SCB	0	R/W	IRQn Sense Control B
6	IRQ3SCA	0	R/W	IRQn Sense Control A
5	IRQ2SCB	0	R/W	00: Interrupt request generated at
4	IRQ2SCA	0	R/W	IRQn input
3	IRQ1SCB	0	R/W	O1: Interrupt request generated at of IRQn input
2	IRQ1SCA	0	R/W	10: Interrupt request generated at
1	IRQ0SCB	0	R/W	of IRQn input
0	IRQ0SCA	0	R/W	11: Interrupt request generated at and rising edges of IRQn input
				(n = 3 to 0)

6

5

4

3

2

1

0

IRQ7SCA

IRQ6SCB

IRQ6SCA

IRQ5SCB

IRQ5SCA

IRQ4SCB

IRQ4SCA

0

0

0

0

0

0

0

R/W

R/W

R/W

R/W

R/W

R/W

R/W

IRQn Sense Control A

IRQn input

of IRQn input

of IRQn input

(n = 7 to 4)

00: Interrupt request generated at

01: Interrupt request generated at

10: Interrupt request generated at

11: Interrupt request generated at and rising edges of IRQn input

REJ09

4	IRQ4E	0	R/W	
3	IRQ3E	0	R/W	
2	IRQ2E	0	R/W	
1	IRQ1E	0	R/W	
0	IRQ0E	0	R/W	

5.3.6 IRQ Status Register (ISR)

Bit Name

IRQ7F

Bit

7

The ISR register is a flag register that indicates the status of IRQ7 to IRQ0 interrupt red

R/W

R/(W)*2

Description

[Setting condition]

executed when falling-edge, rising both-edge detection is set*1

6	IRQ6F	0	R/(W)*2	When the interrupt source selected I
-		•	` '	registers occurs
5	IRQ5F	0	R/(W)*2	G
4	IRQ4F	0	R/(W)*2	[Clearing conditions]
3	IRQ3F	0	R/(W)*2	When reading IRQnF flag when
2	IRQ2F	0	R/(W)*2	then writing 0 to IRQnF flag
1	IRQ1F	0	R/(W)*2	 When interrupt exception handling executed when low-level detection
0	IRQ0F	0	R/(W)*2	and \overline{IRQn} input is high (n = 7 to
				When IROn interrupt exception h

Notes: 1. When a product, in which a DTC is incorporated, is used, the corresponding

not automatically cleared even when exception handing is executed. For det section 5.8.4, Setting on a Product Incorporating DTC.

2. Only 0 can be written, for flag clearing.

Initial Value

0

Rev. 3.00 Mar 21, 2006 page 96 of 788 REJ09B0300-0300

Bit	Bit Name	Initial Value	R/W	Description
7	KMIMR7	1	R/W	Keyboard Matrix Interrupt Mask 7 to
6	KMIMR6	0	R/W	These bits enable or disable a key-
5	KMIMR5	1	R/W	input interrupt request (KIN7 to KIN
4	KMIMR4	1	R/W	KMIMR6 also performs interrupt re
3	KMIMR3	1	R/W	control for pin IRQ6.
2	KMIMR2	1	R/W	0: Enables a key-sensing input inte
1	KMIMR1	1	R/W	 Disables a key-sensing input intereguest
0	KMIMR0	1	R/W	•

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Keyboard Matrix Interrupt Mask 15

These bits enable or disable a keyinput interrupt request (KIN15 to KI

0: Enables a key-sensing input inte

1: Disables a key-sensing input into

request

7

6

5

4

3

2

1

0

KMIMR15

KMIMR14

KMIMR13

KMIMR12

KMIMR11

KMIMR10

KMIMR9

KMIMR8

KMIMR

1

1

1

1

1

1

1

1

2	WUEMR2	1	R/W	 Disables a wake-up event input in request
1	WUEMR1	1	R/W	·
0	WUEMR0	1	R/W	

Note: * Not supported by the H8S/2148B and H8S/2145B (5-V version).

Figure 5.2 shows the relationship between interrupts IRQ7 and IRQ6, interrupts KIN15 interrupts WUE7 to WUE0, and registers KMIMRA, KMIMR, and WUEMRB.

Rev. 3.00 Mar 21, 2006 page 98 of 788 REJ09B0300-0300

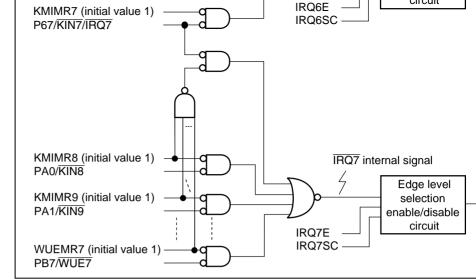


Figure 5.2 Relationship between Interrupts IRQ7 and IRQ6, Interrupts KIN1 Interrupts WUE7 to WUE0, and Registers KMIMR, KMIMRA, and WUE

If any of bits KMIMR15 to KMIMR8 or WUEMRB7 to WUEMRB0 is cleared to 0, input from the $\overline{IRQ7}$ pin will be ignored. When pins $\overline{KIN7}$ to $\overline{KIN0}$, $\overline{KIN15}$ to $\overline{KIN8}$, $\overline{WUE0}$ are used as key-sense interrupt input pins or wakeup event interrupt input pins level sensing or falling-edge sensing must be designated as the interrupt sense condition corresponding interrupt source (IRQ6 or IRQ7).

Rev. 3.00 Mar 21, 2006 pa

REJ09

NMI Interrupt: NMI is the highest-priority interrupt, and is always accepted by the C regardless of the interrupt control mode or the status of the CPU interrupt mask bits. The bit in SYSCR can be used to select whether an interrupt is requested at a rising edge or edge on the NMI pin.

IRQ7 to IRQ0 Interrupts: Interrupts IRQ7 to IRQ0 are requested by an input signal at to IRQ0. Interrupts IRQ7 to IRQ0 have the following features:

- The interrupt exception handling for interrupt requests IRQ7 to IRQ0 can be started independent vector address.
 Using ISCR, it is possible to select whether an interrupt is generated by a low level.
- edge, rising edge, or both edges, at pins $\overline{IRQ7}$ to $\overline{IRQ0}$.
- Enabling or disabling of interrupt requests IRQ7 to IRQ0 can be selected with IER.
- Interrupt control levels can be specified by the ICR settings.
- The status of interrupt requests IRQ7 to IRQ0 is indicated in ISR. ISR flags can be by software.

The detection of IRQ7 to IRQ0 interrupts does not depend on whether the relevant pin set for input or output. However, when a pin is used as an external interrupt input pin, of the corresponding DDR to 0 to use the pin as an I/O pin for another function.

A block diagram of interrupts IRQ7 to IRQ0 is shown in figure 5.3.

Rev. 3.00 Mar 21, 2006 page 100 of 788

REJ09B0300-0300

Note. II = 7 to 0 Clear signa

IRQ7 or IRQ6 interrupt.

Figure 5.3 Block Diagram of Interrupts IRQ7 to IRQ0

When pin IRQ6 is used as an IRQ6 interrupt input pin, clear the KMIMR6 bit to 0.

When pin $\overline{IRQ7}$ is used as an IRQ7 interrupt pin, set all of bits KMIMR15 to KMIMR WUEMR7 to WUEMR0 to 1. If any of these bits is cleared to 0, IRQ7 interrupt input $\overline{IRQ7}$ pin will be ignored.

Since interrupt request flags IRQ7F to IRQ0F are set each time the setting condition i regardless of the IER setting, refer to a needed flag only.

KIN15 to KIN0 Interrupts, WUE7 to WUE0 Interrupts: Interrupts KIN15 to KIN0 to WUE0 are requested by an input signal at pins $\overline{\text{KIN15}}$ to $\overline{\text{KIN0}}$ and $\overline{\text{WUE7}}$ to $\overline{\text{WUE}}$

pins KIN15 to KIN0 and WUE7 to WUE0 are used for key-sense input or wakeup ever corresponding KMIMR and WUEMR bits to 0 in order to enable their key-sense input wakeup event interrupts. Remaining unused KMIMR and WUEMR bits for key-sense should be set to 1 in order to disable interrupts. Interrupts WUE7 to WUE0 and KIN1 generate IRQ7 interrupts, and interrupts KIN7 to KIN0 generate IRQ6 interrupts. The conditions for interrupt request generation, enable of interrupt requests, settings of interrupt levels, and status display of interrupt requests depend on each setting and disp

When pins $\overline{\text{KIN7}}$ to $\overline{\text{KIN0}}$, $\overline{\text{KIN15}}$ to $\overline{\text{KIN8}}$, or $\overline{\text{WUE7}}$ to $\overline{\text{WUE0}}$ are used as key-sense input pins or wakeup event interrupt input pins, either low-level sensing or falling-edg must be designated as the interrupt sense condition for the corresponding interrupt source IRQ7).

RENESAS

Rev. 3.00 Mar 21, 2006 pag REJ09

- 2. The control level for each interrupt can be set by ICR.
- 3. The DTC can be activated by an interrupt request from an on-chip peripheral modu
- 4. An interrupt request that activates the DTC is not affected by the interrupt control in status of the CPU interrupt mask bits.

5.5 **Interrupt Exception Handling Vector Table**

Table 5.3 lists interrupt exception handling sources, vector addresses, and interrupt price default priorities, the lower the vector number, the higher the priority. Modules set at the priority will conform to their default priorities. Priorities within a module are fixed.

An interrupt control level can be specified for a module to which an ICR bit is assigned requests from modules that are set to control level 1 (priority) by the ICR bit setting an UI bits in CCR are given priority and processed before interrupt requests from modules to control level 0 (no priority).

Rev. 3.00 Mar 21, 2006 page 102 of 788

REJ09B0300-0300

Reserved for system use	67	H'008
	67	H'008
	67	H'008
Ovio (Overnow)		
	66	H'008
	65	H'008
CMIAO (Compare match A)		H'008
	63	H'007
Reserved for system use		H'007 to
,		H'006 H'006
OCIB (Output compare B)	53	H'006
OCIA (Output compare A)	52	H'006
ICID (Input capture D)	51	H'006
` ' ' '	-	H'006
` ' ' '	_	H'006 H'006
		H'005
		to
Reserved for system use	29	H'003
ABT (AB deriversion end)	20	11000
		H'003
,	27	H'003
WOVI1 (Interval timer)	26	H'003
	Address break ADI (A/D conversion end) Reserved for system use ICIA (Input capture A) ICIB (Input capture B) ICIC (Input capture C) ICID (Input capture D) OCIA (Output compare A) OCIB (Output compare B) FOVI (Overflow) Reserved for system use CMIAO (Compare match A) CMIBO (Compare match A)	Address break 27 ADI (A/D conversion end) 28 Reserved for system use 29

IKQZ

IRQ3

IRQ4

IRQ5

WUE0

DTC

WDT_0

IRQ6, KIN7 to KIN0

data transfer end)

WOVI0 (Interval timer)

IRQ7, KIN15 to KIN8, WUE7 to

SWDTEND (Software activation

18

19

20

21

22

23

24

25

H 0024

H'0026

H'0028

H'002A

H'002C

H'002E

H'0030

H'0032

H 000048

H'00004C

H'000050

H'000054

H'000058

H'00005C

H'000060

H'000064

H'000068

H'00006C

H'000070

H'000074

H'0000BC

H'0000C0

H'0000C4

H'0000C8

H'0000CC

H'0000D0

H'0000D4

H'0000D8

H'0000DC

H'0000E0 to

H'0000FC

H'000100

H'000104

H'000108

H'00010C

Rev. 3.00 Mar 21, 2006 pag

IUK/

ICR/

ICR/

ICR/

ICR/

ICR/

ICRE

ICRE

ICRE

REJ09

IIC_0	TEI2 (Transmission end 2) IICl0 (1-byte transmission/	91 92	H'00B6 H'00B8	
	reception completion) DDCSWI (Format switch)	93	H'00BA	
IIC_1	IICI1 (1-byte transmission/ reception completion)	94	H'00BC	
	Reserved for system use	95	H'00BE	
Keyboard buffer controller	KBIA (Reception completion A) KBIB (Reception completion B) KBIC (Reception completion C) Reserved for system use	96 97 98 99	H'00C0 H'00C2 H'00C4 H'00C6	
_	Reserved for system use	100 to 107	H'00C8 to H'00D6	
LPC*	ERRI (Transfer error) IBF1 (IDR1 reception completion) IBF2 (IDR2 reception completion) IBF3 (IDR3 reception completion)	108 109 110 111	H'00D8 H'00DA H'00DC H'00DE	
Note: *	IBF1 (IDR1 reception completion) IBF2 (IDR2 reception completion)	109 110 111	H'00DA H'00DC H'00DE	_

OVII (OVEIIIOW)

XBS

SCI_0

ICIX (Input capture X)

ERIO (Reception error 0)

TEI0 (Transmission end 0)

IBF1 (IDR1 reception completion)

IBF2 (IDR2 reception completion)

IBF3 (IDR3 reception completion)

IBF4 (IDR4 reception completion)

RXI0 (Reception completion 0)

TXI0 (Transmission data empty 0)

110034

H'0096

H'0098

H'009A

H'009C

H'009E

H'00A0

H'00A2

H'00A4

H'00A6

75

76

77

78

79

80

81

82

83

11000120

H'00012C

H'000130

H'000134

H'000138

H'00013C

H'000140

H'000144

H'000148

H'00014C

H'000150

H'000154

H'000158

H'00015C

H'000160

H'000164

H'000168

H'00016C

H'000170

H'000174

H'000178

H'00017C

H'000180

H'000184

H'000188

H'00018C

H'000190 to

H'0001AC H'0001B0

H'0001B4

H'0001B8 H'0001BC **ICRB**(

ICRC

ICRC

ICRC:

ICRC4

ICRC:

ICRB(

ICRC^{*}

					the I bit. Priority levels can ICR.
1		1	ICR	I, UI	3-level interrupt mask cont performed by the I and UI I levels can be set with ICR.
5.6.1	Interru	pt Contro	ol Mode 0		
In intern	rupt contro	ol mode 0,	interrupt requ	uests other tha	an NMI and address breaks are
ICR and	d the I bit c	of the CCF	R in the CPU.	Figure 5.4 sh	lows a flowchart of the interrup

interrupt request is sent to the interrupt controller.

Priority

Setting

ICR

Registers

Interrupt

ı

Mask Bits

Description

Interrupt mask control is pe the I bit. Priority levels can

SYSCR

0

INTM₀

INTM1

0

- operation. 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1
- 2. According to the interrupt control level specified in ICR, the interrupt controller o

Interrupt

Control

Mode

0

- an interrupt request with interrupt control level 1 (priority), and holds pending an i request with interrupt control level 0 (no priority). If several interrupt requests are interrupt request with the highest priority is accepted according to the priority order interrupt handling is requested to the CPU, and other interrupt requests are held pe 3. If the I bit in CCR is set to 1, only NMI and address break interrupts are accepted
- interrupt controller, and other interrupt requests are held pending. If the I bit is cle any interrupt request is accepted. 4. When the CPU accepts an interrupt request, it starts interrupt exception handling a
- execution of the current instruction has been completed. 5. The PC and CCR are saved to the stack area by interrupt exception handling. The
 - the stack shows the address of the first instruction to be executed after returning fr interrupt handling routine.

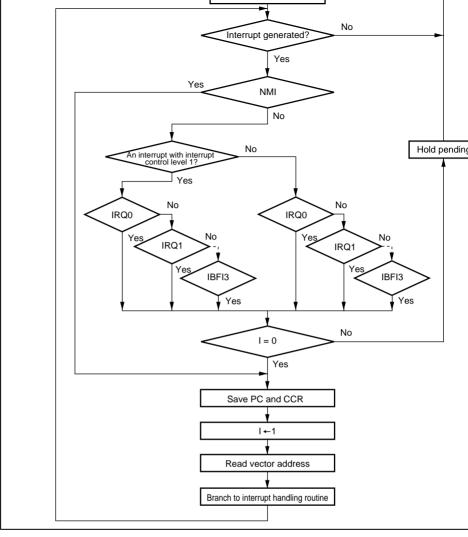


Figure 5.4 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Cont

Rev. $3.00\,$ Mar $21,\,2006\,$ page 106 of $788\,$

REJ09B0300-0300

For instance, the state transition when the interrupt enable hit corresponding to each in

For instance, the state transition when the interrupt enable bit corresponding to each in to 1, and ICRA to ICRC are set to H'20, H'00, and H'00, respectively (IRQ2 and IRQ3 are set to control level 1, and other interrupts are set to control level 0) is shown below shows a state transition diagram.

- All interrupt requests are accepted when I = 0. (Priority order: NMI > IRQ2 > IRQ
 break > IRQ0 > IRQ1 ...)
 - Only NMI, IRQ2, IRQ3 and address break interrupt requests are accepted when I = 0.
 - Only an NMI and address break interrupt request is accepted when I = 1 and UI =

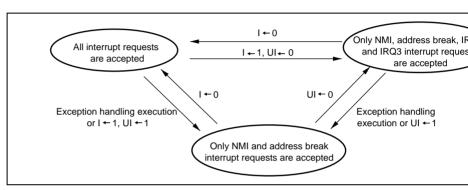


Figure 5.5 State Transition in Interrupt Control Mode 1

- interrupt nandring is requested to the Cr O, and other interrupt requests are new per 3. An interrupt request with interrupt control level 1 is accepted when the I bit is clear
- when the I bit is set to 1 while the UI bit is cleared to 0.
 - An interrupt request with interrupt control level 0 is accepted when the I bit is clear When the I bit is set to 1, only an NMI or address break interrupt request is accepte interrupts are held pending. When both the I and UI bits are set to 1, only an NMI or address break interrupt req

When the I bit is cleared to 0, the UI bit is not affected.

4. When the CPU accepts an interrupt request, it starts interrupt exception handling af

accepted, and other interrupts are held pending.

- execution of the current instruction has been completed. 5. The PC and CCR are saved to the stack area by interrupt exception handling. The P the stack shows the address of the first instruction to be executed after returning fro
- 6. The I and UI bits in CCR are set to 1. This masks all interrupts except for an NMI of break interrupt.

interrupt handling routine.

- 7. The CPU generates a vector address for the accepted interrupt and starts execution
- interrupt handling routine at the address indicated by the contents of the vector address vector table.

Rev. 3.00 Mar 21, 2006 page 108 of 788

REJ09B0300-0300

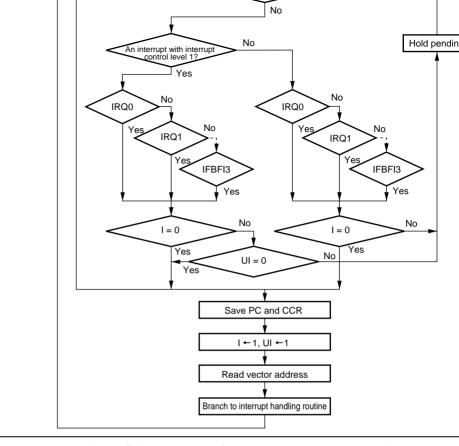


Figure 5.6 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 1

Rev. 3.00 Mar 21, 2006 pag

REJ09

Rev. 3.00 Mar 21, 2006 page 110 of 788 REJ09B0300-0300

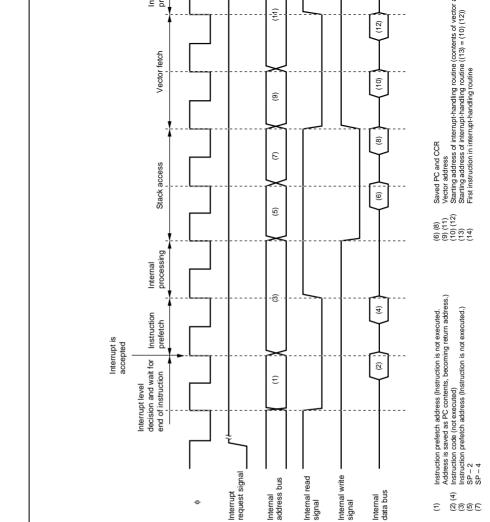


Figure 5.7 Interrupt Exception Handling

Rev. 3.00 Mar 21, 2006 paç REJ0

3	PC, CCR stack save	2⋅S κ	2 . Sκ		
4	Vector fetch	Sı	2·Sı		
5	Instruction fetch*3	2·Sı	2·Sı		
6	2				
	Total (using on-chip memory)	11 to 31	12 to 32		
Notes	s: 1. Two states in case of internal into	errupt.			
	2. Refers to MULXS and DIVXS instructions.				
	3. Prefetch after interrupt acceptance and prefetch of interrupt handling routine				
	4. Internal processing after interrupt acceptance and internal processing after v				

3

1 to (19 + 2·Sı)

3

1 to (19 + 2

Number of States in Interrupt Handling Routine Execution Status

Table 5.0 Number	of States	in interrupt H	andling Kou	une Execu	non Status	
			Ob	ject of Acc	ess	
				Exter	nal Device	
			8-E	Bit Bus	16-	Bi
Symbol		Internal Memory	2-State Access	3-State Access	2-State Access	
Instruction fetch	Sı	1	4	6 + 2m	2	
Branch address read	SJ					
Stack manipulation	Sĸ					

Legend:

1

m: Number of wait states in external device access

Interrupt priority determination*1

instruction ends*2

Number of wait states until executing

Rev. 3.00 Mar 21, 2006 page 112 of 788 REJ09B0300-0300

For details on interrupt requests that can be used to activate the DTC, see section 7, D Controller (DTC).

Figure 5.8 shows a block diagram of the DTC and interrupt controller.

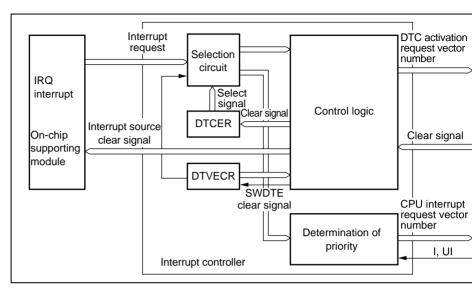


Figure 5.8 DTC and Interrupt Controller

Selection of Interrupt Source: Interrupt factors are selected as DTC activation source interrupt source by the DTCE bit of DTCERA to DTCERE of DTC.

By specifying the DISEL bit of the DTC's MRB, it is possible to clear the DTCE bit t DTC data transfer, and request a CPU interrupt.

If DTC carries out the designate number of data transfers and the transfer counter read DTC data transfer, the DTCE bit is also cleared to 0, and an interrupt is requested to the second of the data transfer.

Rev. 3.00 Mar 21, 2006 pag REJ0

of the DTCE bit of DTC's DTCER, and the DISEL bit of DTC's MRB.

Table 5.7 Interrupt Source Selection and Clearing Control

Settings

	DTC	Interrupt Sou	rces Selection/Cleari
DTCE	DISEL	DTC	CPU
0	*	×	0
1	0	0	×
	1	0	0

Legend:

- O: The relevant interrupt is used. Interrupt source clearing is performed. (The CPU should clear the source flag in the interrupt handling routine.)
- o: The relevant interrupt is used. The interrupt source is not cleared.
- ×: The relevant interrupt cannot be used.
- *: Don't care

Note: The SCI, IIC, LPC, or A/D converter interrupt source is cleared when the DTC writes to the prescribed register, and is not dependent upon the DISEL bit.

Rev. 3.00 Mar 21, 2006 page 114 of 788

REJ09B0300-0300

execution is branched to the correcting program.

5.7.2 Block Diagram

Figure 5.9 shows a block diagram of the address break.

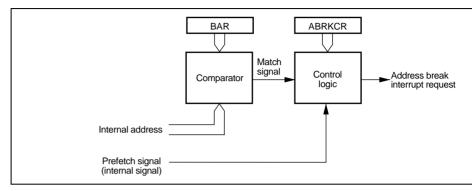


Figure 5.9 Address Break Block Diagram

To use the address break function, set each register as follows:

- 1. Set a break address in the A23 to A1 bits in BAR.
- 2. Set the BIE bit in ABRKCR to 1 to enable the address break.

When the BIE bit is cleared to 0, an address break is not requested.

When the setting conditions are satisfied, the CMF flag in ABRKCR is set to 1 to reque interrupt. The interrupt source should be determined by the interrupt handling routine i

5.7.4 **Usage Notes**

- 1. In an address break, the break address should be an address where the first byte of t instruction exists. Otherwise, a break condition will not be satisfied.
- 2. In normal mode, addresses A23 to A16 are not compared.
- 3. When the branch instructions (Bcc, BSR), jump instructions (JMP, JSR), RST instr RTE instruction are placed immediately prior to the address specified by BAR, a pr signal to the address may be output to request an address break by executing these i It is necessary to take countermeasures: do not set a break address to an address imp after these instructions, or determine whether interrupt handling is performed by sa a normal condition.
- 4. An address break interrupt is generated by combining the internal prefetch signal ar address. Therefore, the timing to enter the interrupt exception handling differs acco instructions at the specified and at prior addresses and execution cycles.

Figure 5.10 shows an example of address timing.

Rev. 3.00 Mar 21, 2006 page 116 of 788

REJ09B0300-0300

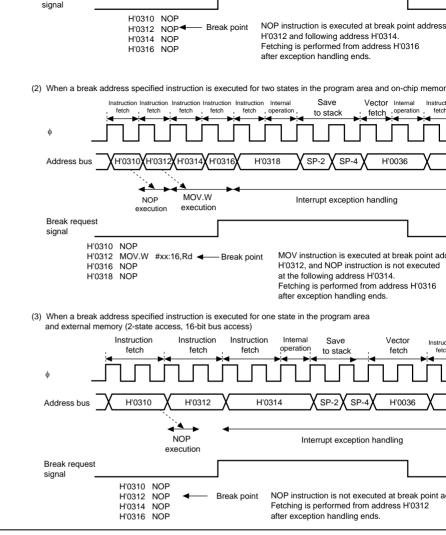


Figure 5.10 Address Break Timing Example

Rev. 3.00 Mar 21, 2006 pag REJ09

interrupt exception handling for that interrupt will be executed on completion of the installable. However, if there is an interrupt request of higher priority than that interrupt, interrupt handling will be executed for the higher-priority interrupt, and the lower-priority interriging is cleared to 0. Fig shows an example in which the CMIEA bit in the TMR's TCR register is cleared to 0.

The above conflict will not occur if an enable bit or interrupt source flag is cleared to 0 interrupt is masked.

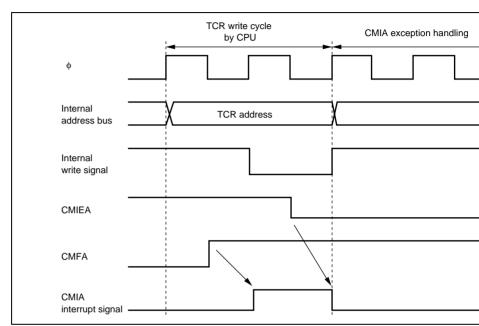


Figure 5.11 Conflict between Interrupt Generation and Disabling

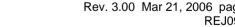
Rev. 3.00 Mar 21, 2006 page 118 of 788 REJ09B0300-0300

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W i

With the EEPMOV.B instruction, an interrupt request (including NMI) issued during is not accepted until the move is completed.

With the EEPMOV.W instruction, if an interrupt request is issued during the transfer, exception handling starts at a break in the transfer cycle. The PC value saved on the st case is the address of the next instruction. Therefore, if an interrupt is generated durin of an EEPMOV.W instruction, the following coding should be used.

L1: EEPMOV.W R4,R4
BNE L1


5.8.4 Setting on Product Incorporating DTC

corresponding flag bit is not automatically cleared even when exception handing, whi condition, is executed and the bit is held at 1.

When a product, in which a DTC is incorporated, is used in the following settings, the

- When DTCEA3 is set to 1(ADI is set to an interrupt source), IRQ4F flag is not aureleared.
- 2. When DTCEA2 is set to 1(ICIA is set to an interrupt source), IRQ5F flag is not at cleared.
- 3. When DTCEA1 is set to 1(ICIB is set to an interrupt source), IRQ6F flag is not au cleared.
- 4. When DTCEA0 is set to 1(OCIA is set to an interrupt source), IRQ7F flag is not a cleared.

When activation interrupt sources of DTC and IRQ interrupts are used with the above combinations, clear the interrupt flag by software in the interrupt handling routine of corresponding IRQ.

Rev. 3.00 Mar 21, 2006 page 120 of 788 REJ09B0300-0300

- Basic bus interface
 - 2-state access or 3-state access can be selected for each area

Program wait states can be inserted for each area

- Burst ROM interface
 - A burst ROM interface can be set for basic expansion areas

1-state access or 2-state access can be selected for burst access

• Idle cycle insertion

BSCS20AA_000020020700

- An idle cycle can be inserted for external write cycles immediately after external r
- Bus arbitration function

Includes a bus arbiter that arbitrates bus mastership between the CPU and DTC

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ09

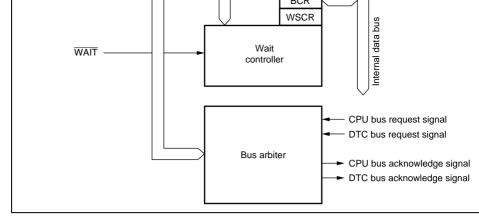


Figure 6.1 Block Diagram of Bus Controller

Rev. 3.00 Mar 21, 2006 page 122 of 788 REJ09B0300-0300

IOS	Output	I/O select signal (when the IOSE bit in SYSCR is
RD	Output	Strobe signal indicating that the external address being read.
HWR	Output	Strobe signal indicating that the external address being written to, and the upper half (D15 to D8) obus is enabled.
LWR	Output	Strobe signal indicating that the external address being written to, and the lower half (D7 to D0) of is enabled.
WAIT	Input	Wait request signal when accessing the external access space.

The bus controller has the following registers. For details on the system control registers.

6.3 **Register Descriptions**

section 3.2.2, System Control Register (SYSCR).

- Bus control register (BCR)
- Wait state control register (WSCR)

Rev. 3.00 Mar 21, 2006 pag

REJ0

				Selects whether or not to insert 1-state of t cycle between bus cycles when the extern cycle follows the external read cycle.
				Idle cycle not inserted when the external follows the external read cycle
				1: 1-state idle cycle inserted when the external read cycle
5	BRSTRM	0	R/W	Burst ROM Enable
				Selects the bus interface for the external a space.
				0: Basic bus interface
				1: Burst ROM interface
4	BRSTS1	1	R/W	Burst Cycle Select 1
				Selects the number of states in the burst of burst ROM interface.
				0: 1 state
				1: 2 states
3	BRSTS0	0	R/W	Burst Cycle Select 0
				Selects the number of words that can be a burst access via the burst ROM interface.
				0: Max, 4 words
				1: Max, 8 words
2	_	0	R/W	Reserved

R/W

R/W

R/W

Idle Cycle Insertion

Rev. 3.00 Mar 21, 2006 page 124 of 788

1

1

ICIS0

1

0

IOS1

IOS0

REJ09B0300-0300

RENESAS

IOS Select 1, 0

This bit should not be written by 0.

output. For details, refer to table 6.3.

Select the address range where the IOS signal

				space.
				0: 16-bit access space
				1: 8-bit access space
4	AST	1	R/W	Access State Control
				Selects 2 or 3 access states for access to address space. This bit also enables or distate insertion.
				0: 2-state access space. Wait state inserti in external address space access
				1: 3-state access space. Wait state inserti in external address space access
3	WMS1	0	R/W	Wait Mode Select 1, 0
2	WMS0	0	R/W	Select the wait mode for access to the ext address space when the AST bit is set to

R/W

ABW

5

These bits should not be written by 1.

Selects 8 or 16 bits for access to the exte

Bus Width Control

00: Program wait mode01: Wait disabled mode10: Pin wait mode11: Pin auto-wait mode

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ0

6.4 Bus Control

6.4.1 Bus Specifications

The external address space bus specifications consist of three elements: Bus width, the access states, and the wait mode and the number of program wait states. The bus width number of access states for on-chip memory and internal I/O registers are fixed, and are affected by the bus controller settings.

Bus Width: A bus width of 8 or 16 bits can be selected via the ABW bit in WSCR.

Number of Access States: Two or three access states can be selected via the AST bit i When the 2-state access space is designated, wait-state insertion is disabled.

In the burst ROM interface, the number of access states is determined regardless of the setting.

Wait Mode and Number of Program Wait States: When a 3-state access space is define AST bit in WSCR, the wait mode and the number of program wait states to be insert automatically is selected by the WMS1, WMS0, WC1, and WC0 bits in WSCR. From a program wait states can be selected.

Rev. 3.00 Mar 21, 2006 page 126 of 788 REJ09B0300-0300

	1	0	1	_	_
		*	*	0	0
					1
				1	0
					1
1	0	_	_	_	_
	1	0	1	_	_
		*	*	0	0
					1

Note: * Other than WMS1 = 0 and WMS0 = 1

space when the RAME bit is cleared to 0.

6.4.2 Advanced Mode

The external address space is initialized as the basic bus interface and a 3-state access on-chip ROM enable extended mode, the address space other than on-chip ROM, on-internal I/O registers, and their reserved areas is specified as the external address space chip RAM and its reserved area are enabled when the RAME bit in SYSCR is set to 1

6.4.3 Normal Mode

The external address space is initialized as the basic bus interface and a 3-state access on-chip ROM disable extended mode, the address space other than on-chip RAM and registers is specified as the external address space. In on-chip ROM enable extended address space other than on-chip ROM, on-chip RAM, internal I/O registers, and their

areas is specified as the external address space. The on-chip RAM area is enabled who

chip RAM and its reserved area are disabled and corresponding addresses are the exte

1

0

Rev. 3.00 Mar 21, 2006 pag REJ09

3

3

2

3

16

8

8

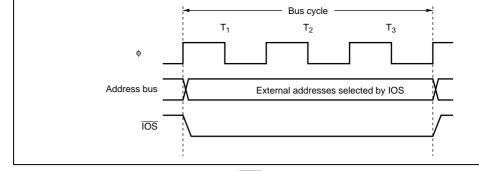


Figure 6.2 **IOS** Signal Output Timing

Enabling or disabling \overline{IOS} signal output is performed by the IOSE bit in SYSCR. In ex mode, the \overline{IOS} pin functions as an \overline{AS} pin by a reset. To use this pin as an \overline{IOS} pin, set bit to 1. For details, refer to section 8, I/O Ports.

The address ranges of the $\overline{\text{IOS}}$ signal output can be specified by the IOS1 and IOS0 bits as shown in table 6.3.

Table 6.3 Address Range for IOS Signal Output

IOS1	IOS0	IOS Signal Output Range				
0	0	H'(FF)F000 to H'(FF)F03F				
	1	H'(FF)F000 to H'(FF)F0FF				
1	0	H'(FF)F000 to H'(FF)F3FF				
	1	H'(FF)F000 to H'(FF)F7FF	(In			

Rev. 3.00 Mar 21, 2006 page 128 of 788 REJ09B0300-0300

a data alignment function, and controls whether the upper data bus (D15 to D8) or lov (D7 to D0) is used when the external address space is accessed, according to the bus s for the area being accessed (8-bit access space or 16-bit access space) and the data siz

8-Bit Access Space: Figure 6.3 illustrates data alignment control for the 8-bit access spaces. the 8-bit access space, the upper data bus (D15 to D8) is always used for accesses. Th data that can be accessed at one time is one byte: a word access is performed as two b and a longword access, as four byte accesses.

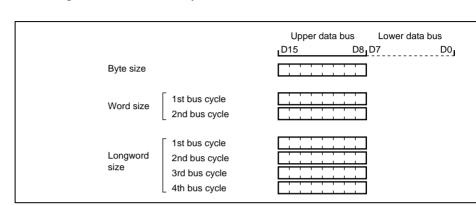


Figure 6.3 Access Sizes and Data Alignment Control (8-Bit Access Spa

16-Bit Access Space: Figure 6.4 illustrates data alignment control for the 16-bit access With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7) used for accesses. The amount of data that can be accessed at one time is one byte or and a longword access is executed as two word accesses.

In byte access, whether the upper or lower data bus is used is determined by whether t even or odd. The upper data bus is used for an even address, and the lower data bus for address.

Figure 6.4 Access Sizes and Data Alignment Control (16-bit Access Space

Valid

 \overline{RD}

Strobe

Upper Data Bus

(D15 to D8)

Valid

Lowe

Bus

Ports

6.5.2 Valid Strobes

Area

8-bit access

Table 6.4 shows the data buses used and valid strobes for each access space.

In a read, the \overline{RD} signal is valid for both the upper and lower halves of the data bus. In \overline{HWR} signal is valid for the upper half of the data bus, and the \overline{LWR} signal for the lower

Table 6.4 **Data Buses Used and Valid Strobes**

Read/

Write

Read

Access

Size

Byte

space		Write	_	HWR		Ports
16-bit access	Byte	Read	Even	RD	Valid	Invali
space			Odd		Invalid	Valid
		Write	Even	HWR	Valid	Unde
			Odd	LWR	Undefined	Valid
	Word	Read	_	RD	Valid	Valid
		Write	_	HWR, LWR	Valid	Valid

Address

Note: Undefined: Undefined data is output.

Invalid: Input state with the input value ignored.

Ports or others: Used as ports or I/O pins for on-chip peripheral modules, and ar as the data bus.

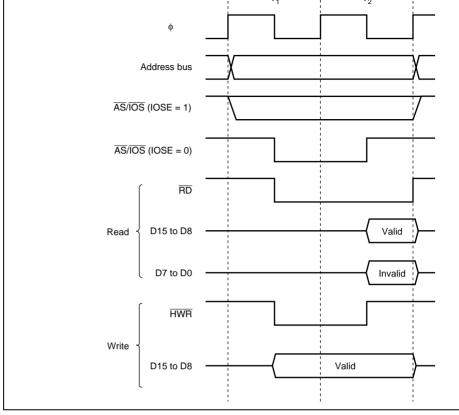


Figure 6.5 Bus Timing for 8-Bit, 2-State Access Space

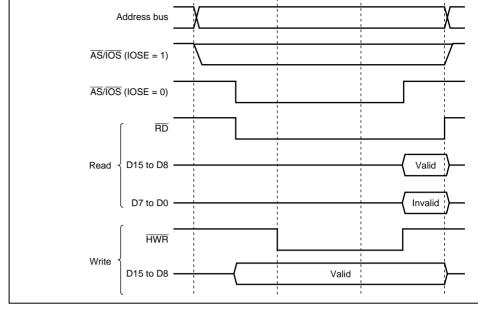


Figure 6.6 Bus Timing for 8-Bit, 3-State Access Space

Rev. 3.00 Mar 21, 2006 page 132 of 788 REJ09B0300-0300

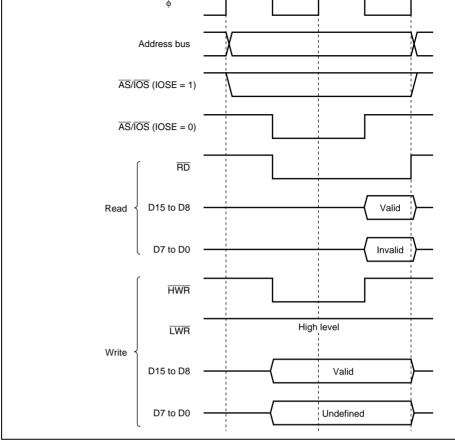


Figure 6.7 Bus Timing for 16-Bit, 2-State Access Space (Even Byte Acc

Rev. 3.00 Mar 21, 2006 pag REJ0

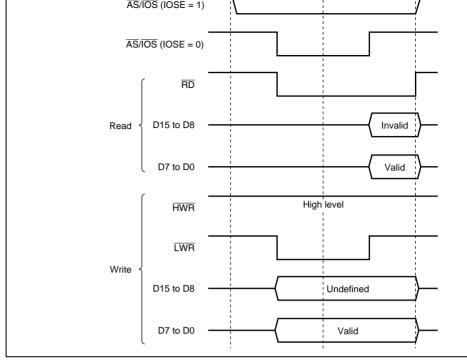


Figure 6.8 Bus Timing for 16-Bit, 2-State Access Space (Odd Byte Access

Rev. 3.00 Mar 21, 2006 page 134 of 788

REJ09B0300-0300

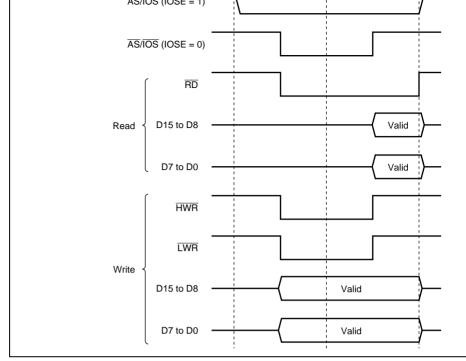


Figure 6.9 Bus Timing for 16-Bit, 2-State Access Space (Word Access

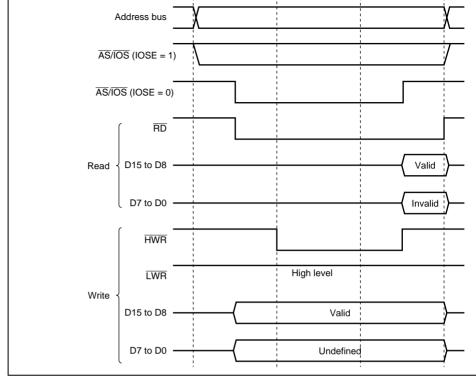


Figure 6.10 Bus Timing for 16-Bit, 3-State Access Space (Even Byte Access Space)

Rev. 3.00 Mar 21, 2006 page 136 of 788 REJ09B0300-0300

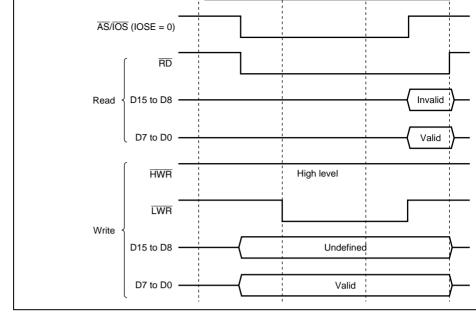


Figure 6.11 Bus Timing for 16-Bit, 3-State Access Space (Odd Byte Acc

Rev. 3.00 Mar 21, 2006 pag

REJ0

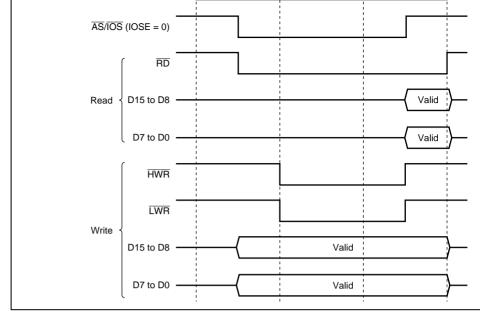


Figure 6.12 Bus Timing for 16-Bit, 3-State Access Space (Word Access

Rev. 3.00 Mar 21, 2006 page 138 of 788 REJ09B0300-0300

the settings of the WCI and WC0 bits in WSCR.

Pin Wait Mode: A specified number of wait states T_w can be inserted automatically be T, state and T₃ state when accessing the external address space always according to th the WC1 and WC0 bits. If the $\overline{\text{WAIT}}$ pin is low at the falling edge of ϕ in the last T₂ o another T_w state is inserted. If the \overline{WAIT} pin is held low, T_w states are inserted until it

This is useful when inserting four or more T_w states, or when changing the number of be inserted for each external device.

Pin Auto-Wait Mode: A specified number of wait states Tw can be inserted automati between the T₂ state and T₃ state when accessing the external address space according settings of the WC1 and WC0 bits if the $\overline{\text{WAIT}}$ pin is low at the falling edge of ϕ in the state. Even if the WAIT pin is held low, T_w states can be inserted only up to the specific of states.

This function enables the low-speed memory interface only by inputting the chip selection the WAIT pin.

Figure 6.13 shows an example of wait state insertion timing in pin wait mode.

The settings after a reset are: 3-state access, 3 program wait insertion, and WAIT pin disabled.

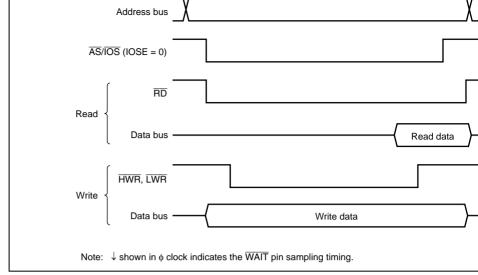


Figure 6.13 Example of Wait State Insertion Timing (Pin Wait Mode)

Rev. 3.00 Mar 21, 2006 page 140 of 788 REJ09B0300-0300

The number of access states in the initial cycle (full access) of the burst ROM interface determined by the AST bit in WSCR. When the AST bit is set to 1, wait states can be or 2 states can be selected for burst access according to the setting of the BRSTS1 bit Wait states cannot be inserted in a burst cycle. Burst accesses of a maximum four wor performed when the BRSTS0 bit in BCR is cleared to 0, and burst accesses of a maxim words is performed when the BRSTS0 bit in BCR is set to 1.

The basic access timing for the burst ROM space is shown in figures 6.14 and 6.15.

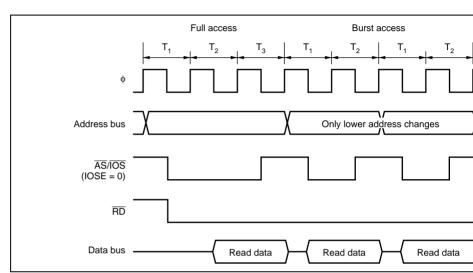


Figure 6.14 Access Timing Example in Burst ROM Space (AST = BRSTS

Rev. 3.00 Mar 21, 2006 pag

REJ09

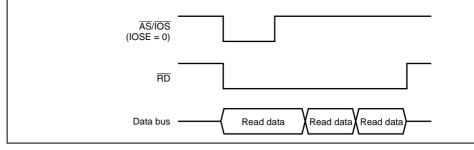


Figure 6.15 Access Timing Example in Burst ROM Space (AST = BRSTS1

6.6.2 Wait Control

As with the basic bus interface, program wait insertion or pin wait insertion using the \bar{V} can be used in the initial cycle (full access) of the burst ROM interface. For details, see 6.5.4, Wait Control. Wait states cannot be inserted in a burst cycle.

6.7 Idle Cycle

When this LSI accesses the external address space, it can insert a 1-state idle cycle (T₁) bus cycles when a write cycle occurs immediately after a read cycle. By inserting an id possible, for example, to avoid data collisions between ROM with a long output floatin high-speed memory and I/O interfaces.

If an external write occurs after an external read while the ICISO bit is set to 1 in BCR, cycle is inserted at the start of the write cycle.

Figure 6.16 shows examples of idle cycle operation. In these examples, bus cycle A is a for ROM with a long output floating time, and bus cycle B is a CPU write cycle. In figure with no idle cycle inserted, a collision occurs in bus cycle B between the read data from the CPU write data. In figure 6.16 (b), an idle cycle is inserted, thus preventing data co

Rev. 3.00 Mar 21, 2006 page 142 of 788 REJ09B0300-0300

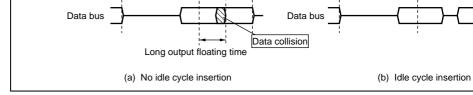


Figure 6.16 Examples of Idle Cycle Operation

Table 6.5 shows the pin states in an idle cycle.

Table 6.5 Pin States in Idle Cycle

Pins	Pin State
A23 to A0, IOS	Contents of immediately following bus of
D15 to D0	High impedance
ĀS	High
RD	High
HWR, LWR	High

Rev. 3.00 Mar 21, 2006 pag REJ0

masters' bus request signals, and if a bus request occurs, it sends a bus request acknowl to the bus master making the request at the designated timing. If there are bus requests than one bus master, the bus request acknowledge signal is sent to the one with the high priority. When a bus master receives the bus request acknowledge signal, it takes posses bus until that signal is canceled. The order of priority of the bus masters is as follows:

Each bus master requests the bus by means of a bus request signal. The bus arbiter dete

(High) DTC > CPU (Low)

6.8.2 **Bus Transfer Timing**

When a bus request is received from a bus master with a higher priority than that of the that has acquired the bus and is currently operating, the bus is not necessarily transferred immediately. Each bus master can relinquish the bus at the timings given below.

CPU: The CPU is the lowest-priority bus master, and if a bus request is received from the bus arbiter transfers the bus to the DTC.

— The bus is transferred at a break between bus cycles. However, if a bus cycle is discrete operations, as in the case of a longword-size access, the bus is not trans

- DTC bus transfer timing
 - between the component operations. For details, refer to the H8S/2600 Series, H8 Series Programming Manual.
 - If the CPU is in sleep mode, the bus is transferred immediately.

DTC: The DTC has the highest bus master priority. The DTC sends the bus arbiter a re the bus when an activation request is generated. The DTC does not release the bus unti completes its operation.

Rev. 3.00 Mar 21, 2006 page 144 of 788 REJ09B0300-0300

32-bit/1-state reading and writing of the DTC register information.

7.1 **Features**

- Transfer is possible over any number of channels
- Three transfer modes Normal, repeat, and block transfer modes are available.
- One activation source can trigger a number of data transfers (chain transfer)
- Direct specification of 16-Mbyte address space is possible
- Activation by software is possible
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
- Module stop mode can be set

DTCH80AA_000020020700

Rev. 3.00 Mar 21, 2006 pag REJ09

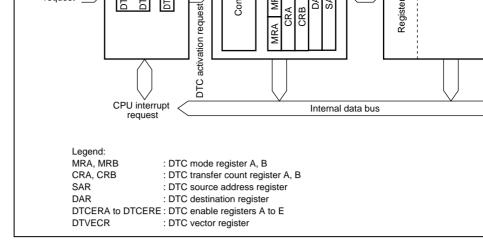


Figure 7.1 Block Diagram of DTC

Rev. 3.00 Mar 21, 2006 page 146 of 788 REJ09B0300-0300

- DTC transfer count register A (CRA)
 - DTC transfer count register B (CRB)

These six registers cannot be directly accessed from the CPU. When a DTC activation source occurs, the DTC reads a set of register information that is stored in on-chip RA corresponding DTC registers and transfers data. After the data transfer, it writes a set register information back to on-chip RAM.

- DTC enable registers A to E (DTCERA to DTCERE)
- DTC vector register (DTVECR)

7.2.1 DTC Mode Register A (MRA)

MRA selects the DTC operating mode.

5	DM1	Undefined	_	Destination Address Mode 1, 0
4	DM0	Undefined	_	These bits specify a DAR operation after a c transfer.
				0X: DAR is fixed
				10: DAR is incremented after a transfer (by +1 when Sz = 0, by +2 when Sz = 1)
				11: DAR is decremented after a transfer (by -1 when Sz = 0, by -2 when Sz = 1)
3	MD1	Undefined	_	DTC Mode
2	MD0	Undefined	_	These bits specify the DTC transfer mode.
				00: Normal mode
				01: Repeat mode
				10: Block transfer mode
				11: Setting prohibited
1	DTS	Undefined	_	DTC Transfer Mode Select
				Specifies whether the source side or the des side is set to be a repeat area or block area mode or block transfer mode.
				0: Destination side is repeat area or block a
				1: Source side is repeat area or block area
0	Sz	Undefined	_	DTC Data Transfer Size
				Specifies the size of data to be transferred.
				0: Byte-size transfer

1: Word-size transfer

RENESAS

(by -1 when Sz = 0, by -2 when Sz = 1)

Legend:

REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 page 148 of 788

X: Don't care

				the end of the specified number of data tranclearing of the interrupt source flag, and cled DTCER are not performed.
6	DISEL	Undefined	_	DTC Interrupt Select
				When this bit is set to 1, a CPU interrupt re generated every time data transfer ends (the clears the interrupt source flag for the activation source). When this bit is cleared to 0, a CP request is generated only when the specific data transfer ends (the DTC does not clear source flag for the activation source).
5	_	Undefined	_	Reserved
to 0				These bits have no effect on DTC operation should be written to these bits.

In data transfer with CHNE set to 1, determ

7.2.3 DTC Source Address Register (SAR)

For word-size transfer, specify an even source address.

7.2.4 DTC Destination Address Register (DAR)

DAR is a 24-bit register that designates the destination address of data to be transferred DTC. For word-size transfer, specify an even destination address.

SAR is a 24-bit register that designates the source address of data to be transferred by

functions as an 8-bit transfer counter (1 to 256). CRAL is decremented by 1 every time transferred, and the contents of CRAH are sent when the count reaches H'00.

7.2.6 **DTC Transfer Count Register B (CRB)**

CRB is a 16-bit register that designates the number of times data is to be transferred by block transfer mode. It functions as a 16-bit transfer counter (1 to 65536) that is decren every time data is transferred, and transfer ends when the count reaches H'0000.

7.2.7 **DTC Enable Registers (DTCER)**

DTCER specifies DTC activation interrupt sources. DTCER is comprised of five regist DTCERA to DTCERE. The correspondence between interrupt sources and DTCE bits table 7.1. For DTCE bit setting, use bit manipulation instructions such as BSET and BC Multiple DTC activation sources can be set at one time (only at the initial setting) by m interrupts and writing data after executing a dummy read on the relevant register.

Bit	Bit Name	Initial Value	R/W	Description
7	DTCE7	0	R/W	DTC Activation Enable
6	DTCE6	0	R/W	Setting this bit to 1 specifies a relevant interru
5	DTCE5	0	R/W	as a DTC activation source.
4	DTCE4	0	R/W	[Clearing conditions]
3	DTCE3	0	R/W	When data transfer has ended with the Di
2	DTCE2	0	R/W	MRB set to 1.
1	DTCE1	0	R/W	 When the specified number of transfers h
0	DTCE0	0	R/W	[Holding condition]
	-			When the DISEL bit is 0 and the specified nu transfers have not been completed.

Rev. 3.00 Mar 21, 2006 page 150 of 788 REJ09B0300-0300

Setting this bit to 1 activates DTC. Only 1 c written to this bit. 0 can be written to after refrom this bit.
[Clearing conditions]
 When the DISEL bit is 0 and the specific transfers have not ended.
 When 0 is written to the DISEL bit after activated data transfer end interrupt (SV request has been sent to the CPU.
[Holding conditions]
 When the DISEL bit is 1 and data transfended

				 When the specified number of transfer
				During data transfer activated by softw
6	DTVEC6	0	R/W	DTC Software Activation Vectors 6 to 0
5	DTVEC5	0	R/W	These bits specify a vector number for DT
4	DTVEC4	0	R/W	activation.

R/W

R/W

R/W

R/W

DTVEC3

DTVEC2

DTVEC1

DTVEC0

0

0

0

0

3

2

1

0

The vector address is expressed as H'0400

number \times 2). For example, when DTVEC6

H'10, the vector address is H'0420. When t bit is 0, these bits can be written to.

and interrupt controller priorities have no effect. If there is more than one activation so same time, the DTC operates in accordance with the default priorities. Figure 7.2 show diagram of DTC activation source control. For details on the interrupt controller, see se Interrupt Controller.

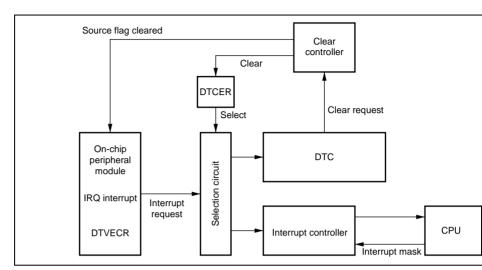


Figure 7.2 Block Diagram of DTC Activation Source Control

Rev. 3.00 Mar 21, 2006 page 152 of 788 REJ09B0300-0300

vector address corresponding to the interrupt source in the DTC vector table. The DTC start address of the register information from the vector table set for each activation so then reads the register information from that start address.

When the DTC is activated by software, the vector address is obtained from: H'0400 -(DTVECR[6:0] \times 2). For example, if DTVECR is H'10, the vector address is H'0420.

The configuration of the vector address is the same in both normal and advanced mod unit is used in both cases. Specify the lower two bits of the register information start a

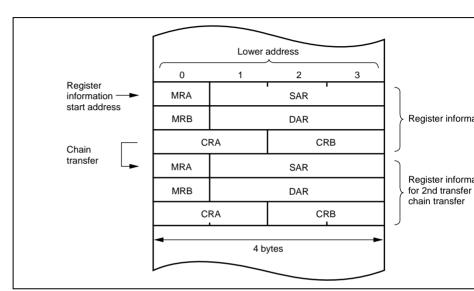


Figure 7.3 DTC Register Information Location in Address Space

Rev. 3.00 Mar 21, 2006 pag

REJ09

TMR_1	CMIA1	68	H'0488	DTCEB0
	CMIB1	69	H'048A	DTCEC7
TMR_Y	CMIAY	72	H'0490	DTCEC6
	CMIBY	73	H'0492	DTCEC5
XBS	IBF1	76	H'0498	DTCEC4
	IBF2	77	H'049A	DTCEC3
SCI_0	RXI0	81	H'04A2	DTCEC2
	TXI0	82	H'04A4	DTCEC1
SCI_1	RXI1	85	H'04AA	DTCEC0
	TXI1	86	H'04AC	DTCED7
SCI_2	RXI2	89	H'04B2	DTCED6
	TXI2	90	H'04B4	DTCED5
IIC_0	IICI0	92	H'04B8	DTCED4
IIC_1	IICI1	94	H'04BC	DTCED3
LPC*2	ERRI	108	H'04D8	DTCEE3
	IBFI1	109	H'04DA	DTCEE2
	IBFI2	110	H'04DC	DTCEE1
	IBFI3	111	H'04DE	DTCEE0
	TCE bits with no corr	esponding interru	pt are reserved, ar	nd only 0 should b

IRQ3

ADI

ICIA

ICIB

OCIA

OCIB

CMIA0

CMIB0

A/D converter

FRT

TMR_0

Rev. 3.00 Mar 21, 2006 page 154 of 788

REJ09B0300-0300

RENESAS

2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

19

28

48

49

52

53

64

65

H'0426

H'0438

H'0460

H'0462

H'0468

H'046A

H'0480

H'0482

DTCEA4

DTCEA3

DTCEA2

DTCEA1

DTCEA0

DTCEB7

DTCEB2

DTCEB1

The 24-bit SAR designates the DTC transfer source address, and the 24-bit DAR designation address. After each transfer, SAR and DAR are independently inc decremented, or left fixed depending on its register information.

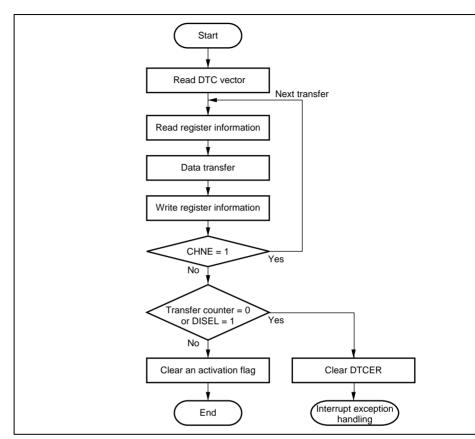


Figure 7.4 DTC Operation Flowchart

Rev. 3.00 Mar 21, 2006 pag REJ0

DTC source address register	SAR	Transfer source address
DTC destination address register	DAR	Transfer destination addre
DTC transfer count register A	CRA	Transfer counter
DTC transfer count register B	CRB	Not used

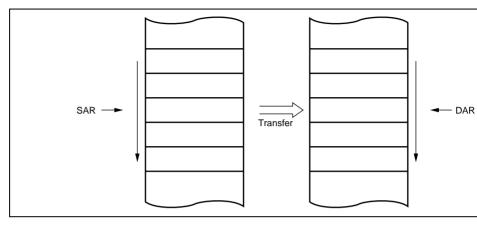


Figure 7.5 Memory Mapping in Normal Mode

Rev. 3.00 Mar 21, 2006 page 156 of 788 REJ09B0300-0300

Register Functions in Repeat Mode Table 7.3

Name	Abbreviation	Function
DTC source address register	SAR	Transfer source address
DTC destination address register	DAR	Transfer destination add
DTC transfer count register AH	CRAH	Holds number of transfer
DTC transfer count register AL	CRAL	Transfer Count
DTC transfer count register B	CRB	Not used

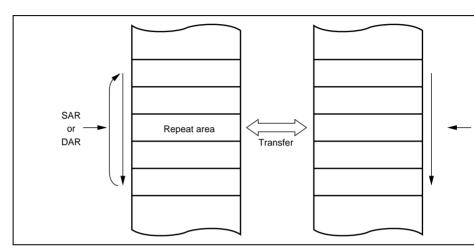


Figure 7.6 Memory Mapping in Repeat Mode

specified number of transfers have been completed, a Ci o interrupt is requested.

Table 7.4 Register Functions in Block Transfer Mode

Name	Abbreviation	Function
DTC source address register	SAR	Transfer source address
DTC destination address register	DAR	Transfer destination addre
DTC transfer count register AH	CRAH	Holds block size
DTC transfer count register AL	CRAL	Block size counter
DTC transfer count register B	CRB	Transfer counter

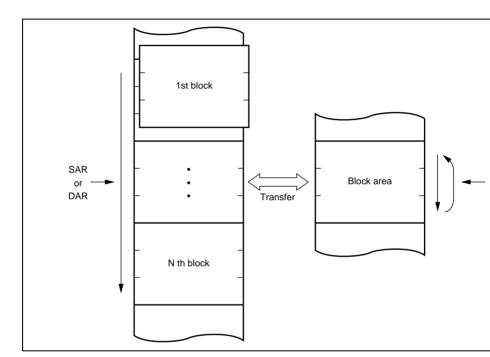


Figure 7.7 Memory Mapping in Block Transfer Mode

Rev. 3.00 Mar 21, 2006 page 158 of 788 REJ09B0300-0300

been set to 1, DTC reads the next register information located in a consecutive area are the data transfer. These sequences are repeated until the CHNE bit is cleared to 0.

In the case of transfer with the CHNE bit set to 1, an interrupt request to the CPU is n at the end of the specified number of transfers or by setting of the DISEL bit to 1, and source flag for the activation source is not affected.

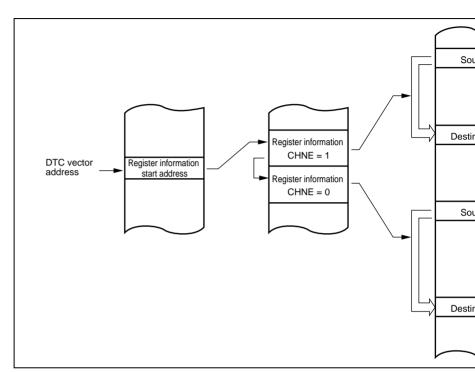


Figure 7.8 Chain Transfer Operation

Rev. 3.00 Mar 21, 2006 pag REJ0

When the DISEL bit is 1 and one data transfer has been completed, or the specified nur transfers have been completed, after data transfer ends, the SWDTE bit is held at 1 and SWDTEND interrupt is generated. The interrupt handling routine will then clear the SV

When the DTC is activated by software, an SWDTEND interrupt is not generated durin transfer wait or during data transfer even if the SWDTE bit is set to 1.

7.5.6 Operation Timing

to 0.

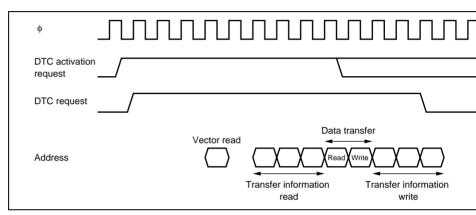


Figure 7.9 DTC Operation Timing (Example in Normal Mode or Repeat M

Rev. 3.00 Mar 21, 2006 page 160 of 788 REJ09B0300-0300

Figure 7.10 DTC Operation Timing (Example of Block Transfer Mod with Block Size of 2)

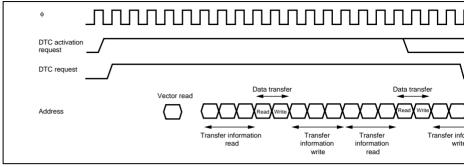


Figure 7.11 DTC Operation Timing (Example of Chain Transfer)

7.5.7 Number of DTC Execution States

Table 7.5 lists the execution status for a single DTC data transfer, and table 7.6 shows of states required for each execution status.

N: Block size (initial setting of CRAH and CRAL)

Table 7.6 Number of States Required for Each Execution Status

Object to be Accessed			On- Chip RAM	On- Chip ROM		nip I/O sters		External	Dev
Bus width			32	16	8	16		8	
Access sta	tes		1	1	2	2	2 3		
Execution	Vector read	Sı		1	_	_	4	6 + 2m	2
status	Register information	on S _J	1	_	_	_	_	_	
	Byte data read	S _κ	1	1	2	2	2	3 + m	2
	Word data read	S _K	1	1	4	2	4	6 + 2m	2
	Byte data write	S _L	1	1	2	2	2	3 + m	2
	Word data write	S _L	1	1	4	2	4	6 + 2m	2
	Internal operation	S _M					1		

The number of execution states is calculated from using the formula below. Note that Σ of all transfers activated by one activation source (the number in which the CHNE bit i plus 1).

Number of execution states =
$$I \cdot S_{l} + \Sigma (J \cdot S_{J} + K \cdot S_{K} + L \cdot S_{L}) + M \cdot S_{M}$$

For example, when the DTC vector address table is located in on-chip ROM, normal m and data is transferred from on-chip ROM to an internal I/O register, then the time requ DTC operation is 13 states. The time from activation to the end of data write is 10 state

Rev. 3.00 Mar 21, 2006 page 162 of 788 REJ09B0300-0300

- 3. Set the corresponding bit in DTCER to 1.
 - 4. Set the enable bits for the interrupt sources to be used as the activation sources to is activated when an interrupt used as an activation source is generated.
 - 5. After one data transfer has been completed, or after the specified number of data to been completed, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If continue transferring data, set the DTCE bit to 1.

1. Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in on-chip I

7.6.2 Activation by Software

The procedure for using the DTC with software activation is as follows:

- The procedure for using the 2 Te with software usin which is us follows
- 2. Set the start address of the register information in the DTC vector address.
- 3. Check that the SWDTE bit is 0.
- 4. Write 1 to the SWDTE bit and the vector number to DTVECR.
- 5. Check the vector number written to DTVECR.
- 6. After one data transfer has been completed, if the DISEL bit is 0 and a CPU interrrequested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data SWDTE bit to 1. When the DISEL bit is 1 or after the specified number of data trabeen completed, the SWDTE bit is held at 1 and a CPU interrupt is requested.

any value. Set MRB for one data transfer by one interrupt (CHNE = 0, DISEL = 0). SCI, RDR address in SAR, the start address of the RAM area where the data will be

in DAR, and 128 (H'0080) in CRA. CRB can be set to any value.

- 2. Set the start address of the register information at the DTC vector address.
 - 3. Set the corresponding bit in DTCER to 1.
 - 4. Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the complete (RXI) interrupt. Since the generation of a receive error during the SCI recoperation will disable subsequent reception, the CPU should be enabled to accept reinterrupts.
 - interrupts.
 5. Each time the reception of one byte of data has been completed on the SCI, the RDSSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The received transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decreed.
 - The RDRF flag is automatically cleared to 0.6. When CRA becomes 0 after 128 data transfers have been completed, the RDRF flag 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CPU. The handling routine will perform wrap-up processing.

0). Set the transfer source address (H'1000) in SAR, the transfer destination address in DAR, and 128 (H'8080) in CRA. Set 1 (H'0001) in CRB.

0). The DTS bit can have any value. Set MRB for one block transfer by one interru

- 2. Set the start address of the register information at the DTC vector address (H'04C0
 - 3. Check that the SWDTE bit in DTVECR is 0. Check that there is currently no trans
 - by software.
 - 4. Write 1 to the SWDTE bit and the vector number (H'60) to DTVECR. The write d 5. Read DTVECR again and check that it is set to the vector number (H'60). If it is n
 - indicates that the write failed. This is presumably because an interrupt occurred be
- 3 and 4 and led to a different software activation. To activate this transfer, go back 6. If the write was successful, the DTC is activated and a block of 128 bytes of data is
- 7. After the transfer, an SWDTEND interrupt occurs. The interrupt handling routine the SWDTE bit to 0 and perform wrap-up processing.

Rev. 3.00 Mar 21, 2006 pag

REJ09

7.8.2 On-Chip RAM

MRA, MRB, SAR, DAR, CRA, and CRB are all located in on-chip RAM. When the D the RAME bit in SYSCR should not be cleared to 0.

7.8.3 DTCE Bit Setting

For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR, for r writing. Multiple DTC activation sources can be set at one time (only at the initial setti masking all interrupts and writing data after executing a dummy read on the relevant re

7.8.4 Setting Required on Entering Subactive Mode or Watch Mode

Set the MSTP14 bit in MSTPCRH to 1 to make the DTC enter module stop mode, then that is set to 1 before making a transition to subactive mode or watch mode.

7.8.5 DTC Activation by Interrupt Sources of SCI, IIC, LPC, or A/D Converte

Interrupt sources of the SCI, IIC, LPC, or A/D converter which activate the DTC are cl DTC reads from or writes to the respective registers, and they cannot be cleared by the in MRB.

Rev. 3.00 Mar 21, 2006 page 166 of 788

REJ09B0300-0300

101 1105/21005 4114 1105/21015.

Table 8.1 is a summary of the port functions. The pins of each port also have other fun

Each port includes a data direction register (DDR) that controls input/output (not prov

input-only port) and data registers (DR, ODR) that store output data.

Ports 1 to 3, 6, A, and B have an on-chip input pull-up MOS function. For ports A and

on/off status of the input pull-up MOS is controlled by DDR and ODR. Ports 1 to 3 ar input pull-up MOS control register (PCR), in addition to DDR, to control the on/off st input pull-up MOS.

Ports 1 to 6, 8, 9, A, and B can drive a single TTL load and 30 pF capacitive load. All ports can drive a Darlington transistor when in output mode. Ports 1 to 3 can drive an mA sink current).

Port A input and output use by the VccB power supply, which is independent of the V supply. When the VccB voltage is 5V, the pins on port A will be 5-V tolerant.

PA4 to PA7 of port A have bus-buffer drive capability.

P52 in port 5, P97 in port 9, P86 in port 8 and P42 in port 4 are NMOS push-pull outp P97, P86 and P42 are thus 5-V tolerant, with DC characteristics that are dependent on voltage.

For the P42/SCK2, P52/SCK0, P86/SCK1, and P97 outputs, connect pull-up resistors raise output-high-level voltage.

		A3	A3/P13/PW3	P13/PW3
		A2	A2/P12/PW2	P12/PW2
		A1	A1/P11/PW1	P11/PW1
		A0	A0/P10/PW0	P10/PW0
Port 2	General I/O port also	A15	A15/P27/PW15/	P27/PW15/CBLANK
	functioning as address output pin, PWM output	A14	CBLANK	P26/PW14
	pin, and timer	A13	A14/P26/PW14	P25/PW13
	connection output pin	A12	A13/P25/PW13	P24/PW12
		A11	A12/P24/PW12	P23/PW11
		A10	A11/P23/PW11	P22/PW10
		A9	A10/P22/PW10	P21/PW9
		A8	A9/P21/PW9	P20/PW8
			A8/P20/PW8	
Port 3	General I/O port also	D15		P37/HDB7/SERIRQ*
	functioning as data bus input/output, XBS data	D14		P36/HDB6/LCLK*
	bus input/output, and	D13		P35/HDB5/LRESET*
	LPC input/output pins	D12		P34/HDB4/LFRAME*
		D11		P33/HDB3/LAD3*
		D10		P32/HDB2/LAD2*
		D9		P31/HDB1/LAD1*
		D8		P30/HDB0/LAD0*

			ľ
Port 5	functioning as SCI_0 input/output and IIC_0	P52/SCK0/SCL0	_
		P51/RxD0	
		P50/TxD0	
Port 6	General I/O port also	P67/IRQ7/TMOX/KIN7/CIN7	
	functioning as interrupt input, FRT input/output,	P66/IRQ6/FTOB/KIN6/CIN6	
	TMR_X and TMR_Y	P65/FTID/KIN5/CIN5	
	input/output, timer	P64/FTIC/KIN4/CIN4/CLAMPO	
	connection input/output, key-sense interrupt	P63/FTIB/KIN3/CIN3/VFBACKI	
	input, and expansion	P62/FTIA/TMIY/KIN2/CIN2/VSYNCI	
	A/D input pins	P61/FTOA/KIN1/CIN1/VSYNCO	
		P60/FTCI/TMIX/KINO/CIN0/HFBACK	I
Port 7	General input port also	P77/AN7/DA1	
	functioning as A/D converter analog input	P76/AN6/DA0	
	and D/A converter	P75/AN5	
	analog output pins	P74/AN4	
		P73/AN3	
		P72/AN2	
		P71/AN1	
		P70/AN0	

interface input/output,

and IIC_1 input/output

pins

P41/TMO0/RxD2/IrRxD

P40/TMCI0/TxD2/IrTxD

P43/TMCH/HIRQT1/

P42/TMRI0/SCK2/SDA

P41/TMO0/RxD2/IrRxI P40/TMCI0/TxD2/IrTxI

HSYNCI

		P80		P80/HA0/PME*
Port 9	General I/O port also	P97/WAIT/SDA	۸0	P97/SDA0
	functioning as extended data bus control	P96/ø/EXCL		P96/φ/EXCL
	input/output, IIC_0	AS/IOS		P95/CS1
	input/output, subclock	HWR		P94/IOW
	input, φ output, interrupt input, XBS control input,	RD		P93/IOR
	and A/D converter	P92/IRQ0		P92/IRQ0
	external trigger input	P91/IRQ1		P91/IRQ1
	pino	P90/LWR/IRQ2	Z/ADTRG	P90/IRQ2/ADTRG/ ECS2
Port A	General I/O port also	PA7/KIN15/	PA7/A23/KIN15/	PA7/KIN15/CIN15/
	functioning as address output, key-sense	CIN15/PS2CD	CIN15/PS2CD	PS2CD
	interrupt input, extended	PA6/KIN14/ CIN14/PS2CC	PA6/A22/KIN14/ CIN14/PS2CC	PA6/KIN14/CIN14/ PS2CC
	A/D input, and keyboard buffer controller input/output pins	PA5/KIN13/ CIN13/PS2BD	PA5/A21/KIN13/ CIN13/PS2BD	PA5/KIN13/CIN13/ PS2BD
		PA4/KIN12/ CIN12/PS2BC	PA4/A20/KIN12/ CIN12/PS2BC	PA4/KIN12/CIN12/ PS2BC
		PA3/KIN11/ CIN11/PS2AD	PA3/A19/KIN11/ CIN11/PS2AD	PA3/KIN11/CIN11/ PS2AD
		PA2/KIN10/ CIN10/PS2AC	PA2/A18/KIN10/ CIN10/PS2AC	PA2/KIN10/CIN10/ PS2AC
		PA1/KIN9/	PA1/A17/KIN9/CIN9	PA1/KIN9/CIN9
		CIN9	PA0/A16/KIN8/CIN8	PA0/KIN8/CIN8
		PA0/KIN8/ CIN8		

		PB0/D0/WUE0*	PB1/WUE1*/HIRQ4/ LSCI* PB0/WUE0*/HIRQ3/ LSMI*		
Note: W Not assess to discust a LICO/O4 40D and LICO/O4 4ED /E \/					

Note: * Not supported by the H8S/2148B and H8S/2145B (5-V version).

Rev. 3.00 Mar 21, 2006 pag

REJO

Port 1 pull-up MOS control register (P1PCR)

8.2.1 Port 1 Data Direction Register (P1DDR)

P1DDR specifies input or output for the pins of port 1 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P17DDR	0	W	In mode 1:
6	P16DDR	0	W	Each pin of port 1 is address output reg
5	P15DDR	0	W	the set value of P1DDR.
4	P14DDR	0	W	In modes 2 and 3 (EXPE=1):
3	P13DDR	0	W	 The corresponding port 1 pins are addr or PWM output ports when P1DDR bits
2	P12DDR	0	W	1, and input ports when cleared to 0.
1	P11DDR	0	W	In modes 2 and 3 (EXPE=0):
0	P10DDR	0	W	The corresponding port 1 pins are outp PWM outputs when the P1DDR bits are and input ports when cleared to 0.

Rev. 3.00 Mar 21, 2006 page 172 of 788

REJ09B0300-0300

4	P14DR	0	R/W
3	P13DR	0	R/W
2	P12DR	0	R/W
1	P11DR	0	R/W
0	P10DR	0	R/W

8.2.3 Port 1 Pull-Up MOS Control Register (P1PCR)

P1PCR controls the on/off status of the port 1 on-chip input pull-up MOSs.

Bit	Bit Name	Initial Value	R/W	Description
7	P17PCR	0	R/W	When the pins are in input state, the
6	P16PCR	0	R/W	─ corresponding input pull-up MOS is tull when a P1PCR bit is set to 1.
5	P15PCR	0	R/W	= when a r rr ere bit is set to r.
4	P14PCR	0	R/W	_
3	P13PCR	0	R/W	_
2	P12PCR	0	R/W	_
1	P11PCR	0	R/W	_
0	P10PCR	0	R/W	_

		_			_	
OEn	_	_	0	1	_	0
Pin Function	A7 to A0 output pins	P17 to P10 input pins	A7 to A0 output pins	PW7 to PW0 output pins	P17 to P10 input pins	P17 to P10 output pins

Note: n = 7 to 0

8.2.5 Port 1 Input Pull-Up MOS

Port 1 has an on-chip input pull-up MOS function that can be controlled by software. T pull-up MOS function can be specified as on or off on a bit-by-bit basis.

Table 8.2 summarizes the input pull-up MOS states.

Table 8.2 Input Pull-Up MOS States (Port 1)

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operation
1	Off	Off	Off	Off
2, 3			On/Off	On/Off

Legend:

Legena.

Off: Input pull-up MOS is always off.

On/Off: On when the pin is in the input state, P1DDR = 0, and P1PCR = 1; otherwise of

- Post 2 data register (12DK)
- Port 2 pull-up MOS control register (P2PCR)

8.3.1 Port 2 Data Direction Register (P2DDR)

P2DDR specifies input or output for the pins of port 2 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P27DDR	0	W	In Mode 1:
6	P26DDR	0	W	The corresponding port 2 pins are add
5	P25DDR	0	W	outputs, regardless of the P2DDR set
4	P24DDR	0	W	Modes 2 and 3 (EXPE = 1):
3	P23DDR	0	W	 The corresponding port 2 pins are add outputs or PWM outputs when P2DDF
2	P22DDR	0	W	set to 1, and input ports when cleared
1	P21DDR	0	W	 P24 are switched from address output ports by setting the IOSE bit to 1.
0	P20DDR 0 W			P27 can be used as an on-chip periph output pin regardless of the P27DDR to ensure normal access to external s should not be set as an on-chip periph module output pin when port 2 pins ar address output pins.
				Modes 2 and 3 (EXPE = 0):
				The corresponding port 2 pins are out PWM outputs when P2DDR bits are s input ports when cleared to 0.
				P27 can be used as an on-chip periphoutput pin regardless of the P27DDR

Rev. 3.00 Mar 21, 2006 pag

REJO

4	P24DR	0	R/W	the pin states are read.
3	P23DR	0	R/W	
2	P22DR	0	R/W	
1	P21DR	0	R/W	-
0	P20DR	0	R/W	

8.3.3 Port 2 Pull-Up MOS Control Register (P2PCR)

P2PCR controls the port 2 on-chip input pull-up MOSs.

Bit	Bit Name	Initial Value	R/W	Description
7	P27PCR	0	R/W	In modes 2 and 3, the input pull-up MO
6	P26PCR	0	R/W	on when a P2PCR bit is set to 1 in the state.
5	P25PCR	0	R/W	_ 0.0.0.
4	P24PCR	0	R/W	_
3	P23PCR	0	R/W	_
2	P22PCR	0	R/W	_
1	P21PCR	0	R/W	_
0	P20PCR	0	R/W	_

REJ09B0300-0300

the 127DBR on, and operating mode.

Mode 1		Mode			Mode 2, 3	(EXP		
_			0		1		0	
_	0	1			_	0	1	1
_	_	0		1	_	_	0	1
_	_	0	1	_	_	_	_	_
A15 output pin	P27 input pin	A15 output pin	P27 output pin	PW15 output pin	CBLANK output pin	P27 input pin	P27 output pin	PW outp pii
				— 0 — 0 — 0 — 0 — 0 1 1 A15 P27 A15 P27 output output output output	— 0 — 0 — 0 — 0 1 — 0 1 — 0 1 — 0 1 — 0 1 — 0 1 — 0 1 — 0 1 — 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>— 0 1 — 0 1 — — — 0 1 — — — 0 1 — — — — 0 1 — — A15 P27 A15 P27 PW15 CBLANK output input output output output output</td> <td>— 0 1 — 0 1 — 0 — — 0 1 — — — — 0 1 — — — — — 0 1 — — — A15 P27 A15 P27 PW15 CBLANK P27 output input output output output input</td> <td>— 0 1 0 — 0 1 — 0 — — 0 1 — — 0 — — 0 1 — — — — — — 0 1 — — — — A15 P27 A15 P27 PW15 CBLANK P27 P27 output input output output output output output</td>	— 0 1 — 0 1 — — — 0 1 — — — 0 1 — — — — 0 1 — — A15 P27 A15 P27 PW15 CBLANK output input output output output output	— 0 1 — 0 1 — 0 — — 0 1 — — — — 0 1 — — — — — 0 1 — — — A15 P27 A15 P27 PW15 CBLANK P27 output input output output output input	— 0 1 0 — 0 1 — 0 — — 0 1 — — 0 — — 0 1 — — — — — — 0 1 — — — — A15 P27 A15 P27 PW15 CBLANK P27 P27 output input output output output output output

P26/A14/PW14, P25/A13/PW13, P24/A12/PW12

The pin function is switched as shown below according to the combination of the SYSCR, the OEm bit in PWOERB of PWM, the P2nDDR bit, and operating model

Operating Mode	Mode 1	N	Mode 2, 3 (EXPE = 1)				
P2nDDR	_	0 1			0		
OEm	_	_	0		1	_	0
IOSE	_	_	0	1	_	_	1
Pin Function	A14 to A12 output pins	P26 to P24 input pins	A14 to A12 output pins	P26 to P24 output pins	PW14 to PW12 output pins	P26 to P24 input pins	P26 t P24 outpu pins

Note: n = 6 to 4

m = 14 to 12

Rev. 3.00 Mar 21, 2006 pag REJ0

Pin Function	A11 to A8	P23 to	A11 to A8	PW11 to	P23 to	P23 to		
	output	P20 input	output	PW8	P20 input	P20		
	pins	pins	pins	output	pins	output		
				pins		pins		
Note: $n = 3 \text{ to } 0$								

m = 11 to 8

8.3.5 Port 2 Input Pull-Up MOS

Port 2 has an on-chip input pull-up MOS function that can be controlled by software. T pull-up MOS function can be specified as on or off on a bit-by-bit basis.

Table 8.3 summarizes the input pull-up MOS states.

Input Pull-Up MOS States (Port 2) Table 8.3

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operation
1	Off	Off	Off	Off
2, 3			On/Off	On/Off

Legend:

Input pull-up MOS is always off. Off:

On/Off: On when the pin is in the input state, P2DDR = 0, and P2PCR = 1; otherwise of

• Port 3 pull-up MOS control register (PSPCR)

8.4.1 Port 3 Data Direction Register (P3DDR)

P3DDR specifies input or output for the pins of port 3 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P37DDR	0	W	Modes 1, 2, and 3 (EXPE = 1)
6	P36DDR	0	W	The input/output direction specified by
5	P35DDR	0	W	ignored, and pins automatically functionI/O pins.
4	P34DDR	0	W	Modes 2 and 3 (EXPE = 0)
3	P33DDR	0	W	The corresponding port 3 pins are out
2	P32DDR	0	W	when P3DDR bits are set to 1, and inp
1	P31DDR	0	W	when cleared to 0.
0	P30DDR	0	W	

4	P34DR	0	R/W
3	P33DR	0	R/W
2	P32DR	0	R/W
1	P31DR	0	R/W
0	P30DR	0	R/W

8.4.3 Port 3 Pull-Up MOS Control Register (P3PCR)

P3PCR controls the port 3 on-chip input pull-up MOSs on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P37PCR	0	R/W	In modes 2 and 3 (when EXPE = 0), the
6	P36PCR	0	R/W	up MOS is turned on when a P3PCR biin the input port state.
5	P35PCR	0	R/W	The input pull-up MOS function cannot The input pull-up MOS function cannot
4	P34PCR	0	R/W	when the host interface is enabled.
3	P33PCR	0	R/W	<u> </u>
2	P32PCR	0	R/W	<u> </u>
1	P31PCR	0	R/W	_
0	P30PCR	0	R/W	<u> </u>

the pin states are read.

Rev. 3.00 Mar 21, 2006 page 180 of 788 REJ09B0300-0300

Note: * Not supported by the H8S/2148B and H8S/2145B (5-V version).

Operating Mode	Mode 1, 2, 3 (EXPE = 1)	Mode 2, 3 (EXPE = 0)			
LPCmE	All 0	All 0			
HI12E	0	0		1	
P3nDDR	_	0	1	_	
Pin Function	D15 to D8 input/output pins	P37 to P30 input pins	P37 to P30 output pins	HDB7 to HDB0 input/output pins	i

Notes: The combination of bits not described in the above table must not be used.

m = 3 to 1: LPC input/output pins (SERIRQ, LCLK, LRESET, LFRAME, LAD3 when at least one of LPC3E to LPC1E is set to 1.

n = 7 to 0

Port 3 Input Pull-Up MOS 8.4.5

Port 3 has an on-chip input pull-up MOS function that can be controlled by software. pull-up MOS function can be specified as on or off on a bit-by-bit basis.

Table 8.4 summarizes the input pull-up MOS states.

Table 8.4 Input Pull-Up MOS States (Port 3)

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In Oth Opera
1, 2, 3 (EXPE = 1)	Off	Off	Off	Off
2, 3 (EXPE = 0)			On/Off	On/Of

Legend:

Off: Input pull-up MOS is always off.

On/Off: On when the pin is in the input state, P3DDR = 0, and P3PCR = 1; otherwise of

Rev. 3.00 Mar 21, 2006 pag

REJ09

• Port 4 data register (P4DR)

8.5.1 Port 4 Data Direction Register (P4DDR)

P4DDR specifies input or output for the pins of port 4 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	P47DDR	0	W	When a bit in P4DDR is set to 1, the
6	P46DDR	0	W	 corresponding pin functions as an output when cleared to 0, as an input port.
5	P45DDR	0	W	As 14-bit PWM and SCI 2 are initialized.
4	P44DDR	0	W	software standby mode, the pin states a
3	P43DDR	0	W	determined by the TMR_0, TMR_1, XBP4DDR, and P4DR specifications.
2	P42DDR	0	W	— F4DDK, and F4DK specifications.
1	P41DDR	0	W	
0	P40DDR	0	W	

Rev. 3.00 Mar 21, 2006 page 182 of 788

REJ09B0300-0300

1	P44DR	0	R/W	the pin states are read.
3	P43DR	0	R/W	
2	P42DR	0	R/W	
1	P41DR	0	R/W	
)	P40DR	0	R/W	
•			<u> </u>	_

8.5.3 Pin Functions

• P47/PWX1

The pin function is switched as shown below according to the combination of the DACR of the 14-bit PWM and the P47DDR bit.

OEB	(1	
P47DDR	0	1	_
Pin Function	P47 input pin	P47 output pin	PWX1 ou

P46/PWX0

The pin function is switched as shown below according to the combination of the DACR of the 14-bit PWM and the P46DDR bit.

OEA	(1	
P46DDR	0	1	_
Pin Function	P46 input pin	P46 output pin	PWX0 ou

When bits CCLR1 and CCLR0 in TCR1 of TMR_1 are set to 1, this pin is us Note: TMRI1 input pin. It can also be used as the CSYNCI input pin.

• P44/TMO1/HIRQ1/HSYNCO

The pin function is switched as shown below according to the combination of the H SYSCR2, the OS3 to OS0 bits in TCSR of TMR 1, the HOE bit in TCONRO of th connection function, and the P44DDR bit.

HOE		0			
OS3 to OS0	All 0 N			Not all 0	
P44DDR	0	1		_	
HI12E	_	0 1		_	
Pin Function	P44 input pin	P44 output pin	HIRQ1 output pin	TMO1 output pin	

• P43/TMCI1/HIRQ11/HSYNCI

The pin function is switched as shown below according to the combination of the H SYSCR2 and the P43DDR bit.

P43DDR	0		1	
HI12E	_	0	1	
Pin Function	P43 input pin	P43 output pin HIRQ11 ou		
	TMCI1 input pin, HSYNCI input pin*			

When the external clock is selected by bits CKS2 to CKS0 in TCR1 of TMR is used as the TMCI1 input pin. It can also be used as the HSYNCI input pin

Rev. 3.00 Mar 21, 2006 page 184 of 788

REJ09B0300-0300

CKE0	0		1	_	_
P42DDR	0	1	_	_	_
Pin Function	P42 input pin	P42 output pin	SCK2 output pin	SCK2 output pin	SCK2 input pin
	TMRI0 input pin*				
Note: * When this pin is used as the SDA1 I/O pin, bits CKE1 and CKE0 in SCR of					

bit C/A in SMR of SCI_2 must all be cleared to 0. SDA1 is an NMOS-only of has direct bus drive capability.

When bits CCLR1 and CCLR0 in TCR0 of TMR_0 are set to 1, this pin is u

TMRI0 input pin.

When the P42 output pin and SCK2 output pin are set, the output type is N

When the P42 output pin and SCK2 output pin are set, the output type is pull output.

• P41/TMO0/RxD2/IrRxD

The pin function is switched as shown below according to the combination of the bits in TCSR of TMR0, the RE bit in SCR of SCI_2 and the P41DDR bit.

OS3 to OS0	All 0			
RE	0	1		
P41DDR	0	1	_	
Pin Function	P41 input pin	P41 output pin	RxD2/IrRxD input pin	C
Note: When this pin is used as the TMO0 output pin, bit RE in SCR of SCI_2 must be				

Note: When this pin is used as the TMO0 output pin, bit RE in SCR of SCI_2 must be 0.

			TMCI0 input pin*
Note:	*	Wher	n an external clock is selected with bits CKS2 to CKS0 in TCR0 of TMR
		is use	ed as the TMCI0 input pin.

8.6 Port 5

Port 5 is a 3-bit I/O port. Port 5 pins also function as SCI_0 I/O pins, and the IIC_0 I/O and SCK0 are NMOS push-pull outputs, and SCL0 is an NMOS open-drain output. Port following registers.

- Port 5 data direction register (P5DDR)
- Port 5 data register (P5DR)

8.6.1 Port 5 Data Direction Register (P5DDR)

P5DDR specifies input or output for the pins of port 5 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	_	All 1	_	Reserved
to 3				The initial value must not be changed.
2	P52DDR	0	W	The corresponding port 5 pins are outp
1	P51DDR	0	W	when P5DDR bits are set to 1, and inpolewhen cleared to 0. As SCI 0 is initialized
0	P50DDR	0	W	software standby mode, the pin states determined by the IIC_0 ICCR, P5DDR P5DR specifications.

Rev. 3.00 Mar 21, 2006 page 186 of 788 REJ09B0300-0300

	-	-		
1	P51DR	0	R/W	 set to 1, the P5DR values are read di regardless of the actual pin states. If a
0	P50DR	0	R/W	is performed while P5DDR bits are cluthe pin states are read.

8.6.3 **Pin Functions**

P52/SCK0/SCL0

The pin function is switched as shown below according to the combination of the CKE0 bits in SCR of SCI_0, the C/A bit in SMR of SCI_0, the ICE bit in ICCR of the P52DDR bit.

ICE			0		
CKE1		0			
C/A	0			1	_
CKE0	0		1	_	_
P52DDR	0 1		_	_	_
Pin Function	P52 input pin	P52 output pin	SCK0 output pin	SCK0 output pin	SCK0 input pin

When this pin is used as the SCL0 I/O pin, bits CKE1 and CKE0 in SCR of SCI in SMR of SCI0 must all be cleared to 0.

SCL0 is an NMOS open-drain output, and has direct bus drive capability.

When set as the P52 output pin or SCK0 output pin, this pin is an NMOS push-

• P50/TxD0

The pin function is switched as shown below according to the combination of the T SCR of SCI_0 and the P50DDR bit.

TE	(1	
P50DDR	0	1	_
Pin Function	P50 input pin	P50 output pin	TxD0 out

8.7 Port 6

Port 6 is an 8-bit I/O port. Port 6 pins also function as the FRT I/O pins, TMR_X I/O p TMR_Y input pin, timer connection I/O pins, key-sense interrupt input pins, expansion converter input pins, and external interrupt input pins. The port 6 input level can be swiften stages. Port 6 pin functions are the same in all operating modes. For details on the control register 2 (SYSCR2), refer to section 18, Host Interface X-Bus Interface (XBS) the following registers.

- Port 6 data direction register (P6DDR)
- Port 6 data register (P6DR)
- Port 6 pull-up MOS control register (KMPCR)
- System control register 2 (SYSCR2)

Rev. 3.00 Mar 21, 2006 page 188 of 788

REJ09B0300-0300

4	P64DDR	0	W
3	P63DDR	0	W
2	P62DDR	0	W
1	P61DDR	0	W
0	P60DDR	0	W

8.7.2 Port 6 Data Register (P6DR)

P6DR stores output data for port 6.

Bit	Bit Name	Initial Value	R/W	Description
7	P67DR	0	R/W	If a port 6 read is performed while P6
6	P66DR	0	R/W	 set to 1, the P6DR values are read di regardless of the actual pin states. If
5	P65DR	0	R/W	is performed while P6DDR bits are cl
4	P64DR	0	R/W	the pin states are read.
3	P63DR	0	R/W	
2	P62DR	0	R/W	
1	P61DR	0	R/W	
0	P60DR	0	R/W	

4	KM4PCR	0	R/W
3	KM3PCR	0	R/W
2	KM2PCR	0	R/W
1	KM1PCR	0	R/W
0	KM0PCR	0	R/W

8.7.4 Pin Functions

OS3 to OS0

• P67/TMOX/CIN7/KIN7/IRQ7

The pin function is switched as shown below according to the combination of the O bits in TCSR of TMR_X and the P67DDR bit.

All 0

Not

P67DDR	0	1	-
Pin Function	P67 input pin	P67 output pin	TMOX o
	IRQ7 input pin, KIN7 input pin, CIN		7 input pin*

Note: * This pin is used as the IRQ7 input pin when bit IRQ7E is set to 1 in IER. It can be used as the KIN7 or CIN7 input pin.

Rev. 3.00 Mar 21, 2006 page 190 of 788

REJ09B0300-0300

Note:	*	This pin is used as the IRQ6 input pin when bit IRQ6E is set to 1 in IER wh
		KMIMR6 bit in KMIMR is 0. It can always be used as the KIN6 or CIN6 input

• P65/FTID/CIN5/KIN5

CLOE

	FTID input pin KIN5 input pin CIN5 input pin*		
Pin Function	P65 input pin	P65 output pin	
P65DDR	0	1	

Note: * This pin can always be used as the FTID, KIN5, or CIN5 input pin.

P64/FTIC/CIN4/KIN4/CLAMPO

The pin function is switched as shown below according to the combination of the TCONRO of the timer connection function and the P64DDR bit.

0

P64DDR	0	1	
Pin Function	P64 input pin P64 output pin		CLAMP
	FTIC input pin, KIN4 input pin, CIN4 input pin*		

Note: * This pin can always be used as the FTIC, KIN4, or CIN4 input pin.

• P63/FTIB/CIN3/KIN3/VFBACKI

	P63DDR	0	1
	Pin Function	P63 input pin	P63 output pin
		FTIB input pin, VFBACKI input pi	n, KIN3 input pin, CIN3 input
	Note: * This	oin can always be used as the ETID VING	CIND or VEDACKLinguit of

Note: * This pin can always be used as the FTIB, KIN3, CIN3, or VFBACKI input p

P61/FTOA/CIN1/KIN1/VSYNCO

The pin function is switched as shown below according to the combination of the C TOCR of the FRT, the VOE bit in TCONRO of the timer connection function, and P61DDR bit.

VOE	0				
OEA	0		1		
P61DDR	0	1	_		
Pin Function	P61 input pin	P61 output pin	FTOA output pin	VSYN	
	KIN1 input pin, CIN1 input pin*				
Note: * When this pip is used as the VCVNCO pip bit OFA in TOOD of the FDT pour					

lote: * When this pin is used as the VSYNCO pin, bit OEA in TOCR of the FRT mu cleared to 0. This pin can always be used as the KIN1 or CIN1 input pin.

P60/FTCI/CIN0/KIN0/HFBACKI/TMIX

P60DDR

Pin Function	P60 input pin	P60 output pin
	FTCI input pin, HFBACKI input pi	n, TMIX input pin, KINO input
		reer
Moto: * This	nin is used as the FTCL innut nin when an	autornal alask is calcuted with

1

0

Note: * This pin is used as the FTCI input pin when an external clock is selected with and CKS0 in TCR of the FRT. It can always be used as the TMIX, KINO, CIN HFBACKI input pin.

Rev. 3.00 Mar 21, 2006 page 192 of 788 REJ09B0300-0300

Table 8.5 Input Pull-Up MOS States (Port 6)

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In Other
1 to 3	Off	Off	On/Off	On/Off

Legend:

Off: Input pull-up MOS is always off.

On/Off: On when the pin is in the input state, P6DDR = 0, and KMPCR = 1; otherwise

8.8 Port 7

Port 7 is an 8-bit input only port. Port 7 pins also function as the A/D converter analog and D/A converter analog output pins. Port 7 functions are the same in all operating n has the following register.

Port 7 input data register (P7PIN)

Rev. 3.00 Mar 21, 2006 pag

REJ09

4	P74PIN	Undefined*	R	
3	P73PIN	Undefined*	R	
2	P72PIN	Undefined*	R	
1	P71PIN	Undefined*	R	
0	P70PIN	Undefined*	R	

Determined by the pin states of P77 to P70. Note:

8.8.2 **Pin Functions**

P77/AN7/DA1

The pin function is switched as shown below according to the combination of the D DACR of the D/A converter and the DAOE1 bit.

changed.

DAOE1	0		1
DAE	0 1		_
Pin Function	P77 input pin	DA1 input pin	DA1 out

This pin can always be used as the AN7 input pin.

P76/AN6/DA0

The pin function is switched as shown below according to the combination of the D DACR of the D/A converter and the DAOE0 bit.

DAOE0	0		1	
DAE	0	1	_	
Pin Function	P76 input pin	DA0 output pin	DA0 ou	
	AN6 input pin*			

This pin can always be used as the AN6 input pin.

Rev. 3.00 Mar 21, 2006 page 194 of 788

REJ09B0300-0300

Port 8 is an 8-bit I/O port. Port 8 pins also function as SCI_1 I/O pins, the IIC_1 I/O pins, LPC I/O pins, and interrupt input pins. The output type of P86 and SCK1 is NM output. The output type of SCL1 is NMOS open drain output and direct bus driving is Port 8 pin functions are the same in all operating modes except host interface function the following registers.

- Port 8 data direction register (P8DDR)
- Port 8 data register (P8DR)

8.9.1 Port 8 Data Direction Register (P8DDR)

P8DDR specifies input or output for the pins of port 8 on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	_	1	_	Reserved
				The initial value must not be changed
6	P86DDR	0	W	P8DDR has the same address as PB
5	P85DDR	0	W	read, the port B state will be returned.
4	P84DDR	0	W	 The corresponding port 8 pins are out when P8DDR bits are set to 1, and inj
3	P83DDR	0	W	when cleared to 0.
2	P82DDR	0	W	_
1	P81DDR	0	W	_
0	P80DDR	0	W	

				·
5	P85DR	0	R/W	set to 1, the P8DR values are read dire regardless of the actual pin states. If a
4	P84DR	0	R/W	is performed while P8DDR bits are clea
3	P83DR	0	R/W	the pin states are read.
2	P82DR	0	R/W	
1	P81DR	0	R/W	-
0	P80DR	0	R/W	-

8.9.3 Pin Functions

• P86/IRQ5/ SCK1/SCL1

the P86DDR bit.

The pin function is switched as shown below according to the combination of the C CKE0 bits in SCR of SCI_1, the C/\overline{A} bit in SMR of SCI_1, the ICE bit in ICCR of

ICE	0				
CKE1	0			1	
C/A	0			1	_
CKE0	0		1	_	_
P86DDR	0	1	_	_	_
Pin Function	P86 input pin	P86 output pin	SCK1 output pin	SCK1 output pin	SCK1 input pin
	ĪRQ5 input pin*				

Note: * When the IRQ5E bit in IER is set to 1, this pin is used as the IRQ5 input pin. pin is used as the SCL1 I/O pin, bits CKE1 and CKE0 in SCR of SCI_1 and

pin is used as the SCL1 I/O pin, bits CKE1 and CKE0 in SCR of SCI_1 and SMR of SCI_1 must all be cleared to 0. When the P86 output pin and SCK1 are set, the output type is NMOS push-pull output. SCL1 is an NMOS-only of has direct bus drive capability.

Rev. 3.00 Mar 21, 2006 page 196 of 788 REJ09B0300-0300

B0300-030

Note: * When the IRQ4E bit in IER is set to 1, this pin is used as the IRQ4 input pir

• P84/<u>IRQ3</u>/TxD1

The pin function is switched as shown below according to the combination of the SCR of SCI_1 and the P84DDR bit.

TE	0		
P84DDR	0	1	
Pin Function	P84 input pin	P84 output pin	TxD1
	ĪRQ3 input pin*		

Note: * When the IRQ3E bit in IER is set to 1, this pin is used as the IRQ3 input pir

P83/LPCPD*2

P83DDR

The pin function is switched as shown below according to the P83DDR bit.

Pin Function	P83 input pin	P83 output pir	
<u> </u>		put pin*1*2	
Notes: 1 When at least one of hits LPC3E to LPC1E is set to 1 in HICPO this nin			

Notes: 1. When at least one of bits LPC3E to LPC1E is set to 1 in HICR0, this pin is LPCPD input pin. The LPCPD input pin can only be used in mode 2 or 3 (E

2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

1

P82DDR	0	1	0	1	l
Pin Function	P82	P82	P82	P82	HIFSD
	input pin	output pin	input pin	output pin	input pin
Notes: The HIE	SD input nin	and CLKBLIN	I/O nin can or	dy ha usad in	made 2 or 3 (

Notes: The HIFSD input pin and CLKRUN I/O pin can only be used in mode 2 or 3 (E)

1. When at least one of bits LPC3E to LPC1E is set to 1, bits HI12E and P82D

- be cleared to 0.
- 2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

• P81/CS2/GA20

FGA20E (LPC)

HI12E

The pin function is switched as shown below according to the combination of the H SYSCR2, the CS2E bit in SYSCR, the FGA20E bit in HICR, the FGA20E bit in HICR the P81DDR bit.

0

1

FGA20E (XBS)	_	_		0		,	1
CS2E		_	()	1	_	
P81DDR	0	1	0	1	_	0	1
Pin Function	P81 input pin	P81 output pin	P81 input pin	P81 output pin	CS2 input pin*2	P81 input pin	GA20 output pin

Notes: 1. When bit FGA20E is set to 1 in HICR0, bits HI12E and P81DDR should be concern. The GA20 output pin and CS2 input pin can only be used in mode 2 or 3 (EX)

Rev. 3.00 Mar 21, 2006 page 198 of 788

REJ09B0300-0300

PME input pin*2*3 Notes: 1. When bit PMEE is set to 1 in HICR0, bits HI12E and P80DDR should be cl

- 2. The HA0 input pin can only be used in mode 2 or 3 (EXPE = 0).
 - 3. Not supported by the H8S/2148B and H8S/2145B (5-V version).

8.10 Port 9

Port 9 is an 8-bit I/O port. Port 9 pins also function as external interrupt input pins, the converter input pin, host interface (XBS) input pins, the IIC_0 I/O pin, the subclock in control signal I/O pins, and the system clock (\$\phi\$) output pin. P97 is an NMOS push-pu SDA0 is an NMOS open-drain output, and has direct bus drive capability. Port 9 has t registers.

- Port 9 data direction register (P9DDR)
- Port 9 data register (P9DR)

3	P94DDR			
3	I STODIC	0	W	 ─ Pin P97 functions as a bus control input (WAI _ IIC_0 I/O pin (SDA0), or an I/O port, according
_	P93DDR	0	W	mode setting. When P97 functions as an I/O
2	P92DDR	0	W	 becomes an output port when P97DDR is set an input port when P97DDR is cleared to 0.
1	P91DDR	0	W	 — Pin P96 functions as the φ output pin when P
0	P90DDR	0	W	set to 1, and as the subclock input (EXCL) or port when P96DDR is cleared to 0.
				Pins P95 to P93 automatically become bus concurred to outputs (AS/IOS, HWR, RD), regardless of the input/output direction indicated by P95DDR to
				Pins P92 and P91 become output ports when and P91DDR are set to 1, and input ports who and P91DDR are cleared to 0.
				When the ABW bit in WSCR is cleared to 0, p becomes a bus control output (LWR), regardle input/output direction indicated by P90DDR. VABW bit is 1, pin P90 becomes an output port is set to 1, and an input port if P90DDR is clear
				Modes 2 and 3 (EXPE = 0):
				When the corresponding P9DDR bits are set P96 functions as the φ output pin and pins P9 to P90 become output ports. When P9DDR bit cleared to 0, the corresponding pins become

Rev. 3.00 Mar 21, 2006 page 200 of 788

REJ09B0300-0300

U

5

RENESAS

P911		0	R/W R/W	
P92		0	R/W	roi rao, the pili state is always reau.
P931	DR	0	R/W	For P96, the pin state is always read.
P94l	DR	0	R/W	while P9DDR bits are cleared to 0, the are read.

Note: The initial value of bit 6 is determined according to the P96 pin state.

8.10.3 **Pin Functions**

P97/WAIT/SDA0

The pin function is switched as shown below according to the combination of open the WMS1 bit in WSCR, the ICE bit in ICCR of IIC 0, and the P97DDR bit.

Operating Mode	Modes 1, 2, 3 (EXPE = 1)			Mode	s 2, 3 (EX	
WMS1		0		1		_
ICE	()	1	_	()
P97DDR	0	1	_	_	0	1
Pin Function	P97 input pin	P97 output pin	SDA0 I/O pin	WAIT input	P97 input pin	P97 output pir

pin

When this pin is set as the P97 output pin, it is an NMOS push-pull output. SDA NMOS open-drain output, and has direct bus drive capability.

• P95/AS/IOS/CS1

The pin function is switched as shown below according to the combination of operathe IOSE bit in SYSCR, the HI12E bit in SYSCR2, and the P95DDR bit.

Operating Mode	Modes 1, 2, 3	3 (EXPE = 1)	Мо	des 2, 3 (EXPE :	= 0)
HI12E	_		0		
P95DDR	_		0	1	
IOSE	0	1	_	_	
Pin Function	AS output pin	IOS output pin	P95 input pin	P95 output pin	i

• P94/HWR/IOW

The pin function is switched as shown below according to the combination of operathe HI12E bit in SYSCR2, and the P94DDR bit.

Operating Mode	Modes 1, 2, 3 (EXPE = 1)	Modes 2, 3 (EXPE = 0)		
HI12E	_		0	
P94DDR	_	0	1	
Pin Function	HWR output pin	P94 input pin	P94 output pin	i

Rev. 3.00 Mar 21, 2006 page 202 of 788

REJ09B0300-0300

Pin Function	RD output pin	P93 input pin	P93 output pin	

IC

• P92/IRQ0

P92DDR	0	1	
Pin Function	P92 input pin P92 ou		
	IRQ0 input pin*		

Note: * When bit IRQ0E in IER is set to 1, this pin is used as the IRQ0 input pin.

• P91/IRQ1

P91DDR	0	1		
Pin Function	P91 input pin	P91 output pii		
	ĪRQ1 in	IRQ1 input pin*		

Note: * When bit IRQ1E in IER is set to 1, this pin is used as the IRQ1 input pin.

Rev. 3.00 Mar 21, 2006 pag

REJ0

HI12E		_		Any one 0		
FGA20E		_				
CS2E		_				
P90DDR	_	0	1	0	1	
Pin Function	LWR output pin	P90 input pin	P90 output pin	P90 input pin	P90 output pin	
			IRQ2 inpu	t pin, ADTRG	input pin*	

Note: * When the IRQ2E bit in IER is set to 1 in mode 1, 2, or 3 (EXPE = 1) with the WSCR set to 1, or in mode 2 and 3 (EXPE = 0), this pin is used as the IRQ2 When TRGS1 and TRGS0 in ADCR of the A/D converter are both set to 1, t used as the ADTRG input pin.

8.11 Port A

Port A is an 8-bit I/O port. Port A pins also function as keyboard buffer controller I/O persons interrupt input pins, expansion A/D converter input pins, and address output pins functions change according to the operating mode. Port A input/output operates by Vcc independent from the Vcc power. Up to 5 V can be applied to port A pins if VccB power. A has the following registers. PADDR and PAPIN have the same address.

- Port A data direction register (PADDR)
- Port A output data register (PAODR)
- Port A input data register (PAPIN)

Rev. 3.00 Mar 21, 2006 page 204 of 788 REJ09B0300-0300

2	PA2DDR	0	W	when PADDR bits are set to 1, and in
1	PA1DDR	0	W	 when cleared to 0. The port A pins chapter the address I/O ports to output ports be
0	PA0DDR	0	W	the IOSE bit to 1.
				PA7 to PA2 pins are used as the keyb controller I/O pins by setting the KBIO regardless of the operating mode, whi direction according to PA7DDR to PA ignored.
				PADDR has the same address as PA port A status is returned.
8.11.2	Port A O	utput I	Oata Register (PAC	DDR)

Initial Value

W

W

In mode 2 (EXPE = 1):

The corresponding port A pins are ad-

4

3

Bit

PA4DDR

PA3DDR

0

0

PAODR stores output data for port A.

Bit Name

7	PA7ODR	0	R/W	PAODR can always be read or written
6	PA6ODR	0	R/W	regardless of the contents of PADDR
5	PA5ODR	0	R/W	-
4	PA4ODR	0	R/W	-
3	PA3ODR	0	R/W	-
2	PA2ODR	0	R/W	-
1	PA10DR	0	R/W	-
0	PA0ODR	0	R/W	-

R/W

Description

Rev. 3.00 Mar 21, 2006 pag

REJ09

4	PA4PIN	Undefined*	R	
3	PA3PIN	Undefined*	R	
2	PA2PIN	Undefined*	R	
1	PA1PIN	Undefined*	R	
0	PA0PIN	Undefined*	R	

Note: * The initial value is determined according to the PA7 to PA0 pin states.

8.11.4 Pin Functions

• PA7/A23/KIN15/CIN15/PS2CD

the KBIOE bit in KBCRH_2 of the keyboard buffer controller, the IOSE bit in SYS the PA7DDR bit.

The pin function is switched as shown below according to the combination of opera

Operating Mode	Modes	1, 2 (EXPE	= 0), 3	Mode 2 (EXPE = 1)		
KBIOE	()	1	0		
PA7DDR	0	1	_	0	0 1	
IOSE	_	_	_	_	0	1
Pin Function	PA7 input pin	PA7 output pin	PS2CD output pin	PA7 input pin	A23 output pin	PA7 output pin

Note: * When the KBIOE bit is set to 1 or the IICS bit in STCR is set to 1, this pin is open-drain output, and has direct bus drive capability. This pin can always be the PS2CD, KIN15, or CIN15 input pin.

KIN15 input pin, CIN15 input pin, PS2CD input pin*

Rev. 3.00 Mar 21, 2006 page 206 of 788 REJ09B0300-0300

0300-0300

. ,	•	•		•		•
IOSE	_	_		1	0	1
Pin Function	PA6	PA6	PS2CC	PA6	A22	PA6
	input pin	output pin	output pin	input pin	output pin	output pin
		KIN14 i	nput pin, CIN	N14 input pir	n, PS2CC in	put pin*
Note: * Who	en the KBIO	E bit is set to	o 1 or the IIC	S bit in STC	CR is set to 1	I, this pin is

open-drain output, and has direct bus drive capability. This pin can always the PS2CC, KIN14, or CIN14 input pin.

PA5/A21/KIN13/CIN13/PS2BD

the PA5DDR bit.

The pin function is switched as shown below according to the combination of oper the KBIOE bit in KBCRH 1 of the keyboard buffer controller, the IOSE bit in SY

Operating Mode	Modes	1, 2 (EXPE	= 0), 3	Mode 2 (EXPE = 1)			
KBIOE	()	1	0			
PA5DDR	0	1	_	0	0 1		
IOSE	_	_	_	_	0	1	
Pin Function	PA5 input pin	PA5 output pin	PS2BD output pin	PA5 input pin	A21 PA5 output pin		
		KIN13 i	nput pin, CII	N13 input pir	n, PS2BD in	put pin*	

Note: * When the KBIOE bit is set to 1 or the IICS bit in STCR is set to 1, this pin is open-drain output, and has direct bus drive capability. This pin can always the PS2BD, KIN13, or CIN13 input pin.

PA4DDR	U	1	_	U	,	I
IOSE	_	_	_	_	0	1
Pin Function	PA4 input pin	PA4 output pin	PS2BC output pin	PA4 input pin	A20 output pin	PA4 output pin
		KIN12 i	nput pin, CII	N12 input pir	n, PS2BC in	put pin*
Note: * When the KBIOE bit is set to 1 or the IICS bit in STCR is set to 1, this pin is a						

open-drain output, and has direct bus drive capability. This pin can always b the PS2BC, $\overline{\text{KIN12}}$, or CIN12 input pin.

PA3/A19/KIN11/CIN11/PS2AD

The pin function is switched as shown below according to the combination of opera the KBIOE bit in KBCRH 0 of the keyboard buffer controller, the IOSE bit in SYS the PA3DDR bit.

Operating Mode	Modes	1, 2 (EXPE	= 0), 3	Mode 2 (EXPE = 1)		
KBIOE	()	1	0		
PA3DDR	0	1	_	0 1		1
IOSE	_	_	_	_	0	1
Pin Function	PA3 input pin	PA3 output pin	PS2AD output pin	'''' ''''		PA3 output pin

When the KBIOE bit is set to 1, this pin is an NMOS open-drain output, and Note: bus drive capability. This pin can always be used as the PS2AD, KIN11, or 0 pin.

KIN11 input pin, CIN11 input pin, PS2AD input pin*

Rev. 3.00 Mar 21, 2006 page 208 of 788 REJ09B0300-0300

IOSE	-	-		1	0	1
Pin Function	PA2 input pin	PA2 output pin	PS2AC output pin	PA2 input pin	A18 output pin	PA2 output pin
		KIN10 i	nput pin, CII	N10 input pir	n, PS2AC in	put pin*

Note: * When the KBIOE bit is set to 1, this pin is an NMOS open-drain output, and bus drive capability. This pin can always be used as the PS2AC, KIN10, or pin.

• PA1/A17/KIN9/CIN9

PA2DDR

The pin function is switched as shown below according to the combination of open the IOSE bit in SYSCR and the PA1DDR bit.

			1		
Operating Mode	Modes 1, 2 (E	EXPE = 0), 3 Mode 2 (EXPE = 1			= 1)
PA1DDR	0	1	0		1
IOSE	_	_	_	0	
Pin Function	PA1 input pin	PA1 output pin	PA1 input pin	A17 output pin	
	KIN9 input pin, CIN9 input pin*				

Note: * This pin can always be used as the KIN9 or CIN9 input pin.

			input pin	output pin	input pin	output pin			
				KIN8 input pin, CIN8 input pin*					
Note:	*	Thic	nin can always b	o used as the KI	NO or CINIO innu	t nin			

This pin can always be used as the KIN8 or CIN8 input pin.

8.11.5 Port A Input Pull-Up MOS

PA₀

Pin Function

Port A has an on-chip input pull-up MOS function that can be controlled by software. pull-up MOS function can be specified as on or off on a bit-by-bit basis.

The input pull-up MOS for pins PA7 to PA4 is always off when IICS is set to 1. When keyboard buffer control pin function is selected for pins PA7 to PA2, the input pull-up always off.

PA0

A16

0

Table 8.6 summarizes the input pull-up MOS states.

Input Pull-Up MOS States (Port A) **Table 8.6**

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In Other Operation
1 to 3	Off	Off	On/Off	On/Off
Legend:				

Off: Input pull-up MOS is always off.

On/Off: On when the pin is in the input state, PADDR = 0, and PAODR = 1; otherwise of

• Port o iliput data register (Portin)

Port B Data Direction Register (PBDDR) 8.12.1

PBDDR specifies input or output for the pins of port B on a bit-by-bit basis.

Bit	Bit Name	Initial Value	R/W	Description
7	PB7DDR	0	W	PBDDR has the same address as P7
6	PB6DDR	0	W	read, the port 7 pin states will be retur
5	PB5DDR	0	W	
4	PB4DDR	0	W	When the ABW bit in WSCR is cle
3	PB3DDR	0	W	port B pins automatically become
2	PB2DDR	0	W	pins (D7 to D0), regardless of the
1	PB1DDR	0	W	direction indicated by PBDDR. Wh
0	PB0DDR	0	W	 ABW bit is 1, a port B pin becomes port if the corresponding PBDDR If 1, and an input port if the bit is clessed. Modes 2 and 3 (EXPE = 0)

A port B pin becomes an output po corresponding PBDDR bit is set to input port if the bit is cleared to 0.

4	PB4ODR	0	R/W
3	PB3ODR	0	R/W
2	PB2ODR	0	R/W
1	PB1ODR	0	R/W
0	PB0ODR	0	R/W

8.12.3 Port B Input Data Register (PBPIN)

PBPIN indicates the port B state.

Bit	Bit Name	Initial Value	R/W	Description
7	PB7PIN	Undefined*	R	Reading PBPIN always returns the pin
6	PB6PIN	Undefined*	R	PBPIN has the same address as P8DDwrite is performed, data will be written t
5	PB5PIN	Undefined*	R	and the port 8 settings will change.
4	PB4PIN	Undefined*	R	
3	PB3PIN	Undefined*	R	
2	PB2PIN	Undefined*	R	
1	PB1PIN	Undefined*	R	
0	PB0PIN	Undefined*	R	

Note: * The initial value is determined according to the PB7 to PB0 pin states.

Rev. 3.00 Mar 21, 2006 page 212 of 788

REJ09B0300-0300

Pin Function	Dn I/O pin	PBn input pin	PBn output pin	PBn input pin				
		1, 2, 2, 1	WUEn in					
Notes: 1. Except when used as a data bus pin, this pin can always be used as the \overline{W} pin, (n = 7 to 4)								

2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

The pin function is switched as shown below according to the combination of the

PBnDDR

PB3/D3/WUE3*2/CS4

mode, the HI12E and CS4E bits in SYSCR2, the ABW bit in WSCR, and the PB3					
Operating Mode	Mode 1 ar	nd Modes 2, 3	Mode	es 2, 3 (EXPE :	
HI12E		_	Either cle	eared to 0	
CS4E		_			
ABW	0	,	1	_	_
PB3DDR	_	0	1	0	1
Pin Function	D3 I/O pin	PB3 input pin	PB3 output pin	PB3 input pin	PB3 output pin

Notes: 1. Except when used as a data bus pin, this pin can always be used as the \overline{W} pin. The $\overline{\text{CS4}}$ input pin can only be used in mode 2 or 3 (EXPE = 0).

2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

PB2/D2/WUE2*2/CS3

The pin function is switched as shown below according to the combination of the mode, the HI12E and CS3E bits in SYSCR2, the ABW bit in WSCR, and the PB2

RENESAS

Rev. 3.00 Mar 21, 2006 pag REJ09

WUE3 input pin*1

			WUE2 input pin*1		
Notes: 1. Except when used as a data bus pin, this pin can always be used as the V					
pin. The $\overline{\text{CS3}}$ input pin can only be used in mode 2 or 3 (EXPE = 0).					
2.	. No	ot supported	by the H8S/2148B and H8S/2145B (5-V version).		

• PB1/D1/WUE1/HIRQ4/LSCI*4

Mode

LSCIE

HI12E

The pin function is switched as shown below according to the combination of the o mode, the HI12E and CS4E bits in SYSCR2, the LSCIE bits in HICR0 of host inter

0*3

the ABW bit in WSCR, and the PB1DDR bit.

Operating Modes 1, 2, 3 (EXPE = 1)

CS4E		_	ļ	1		1
ABW	0	<u> </u>	1			_
PB1DDR	_	0	1	0	1	
Pin Function	D1 I/O pin	PB1 input pin	PB1 output pin	PB1 input pin	PB1 output pin	HIRQ4 output pin
	!	1	ļ		LSCI in	put pin*2
	!	WUE1 input pin*2*4				
Notes: 1. When bit LSCIE is set to 1 in HICR0, bits HI12E and PB1DDR should be cle						

Mode 2, 3 (EXPE = 0)

1

0

Either cleared to 0

0).3. In mode 1, 2, 3 (EXPE = 1), clear the LSCIE bit to 0.

- 4. Not supported by the H8S/2148B and H8S/2145B (5-V version).

2. Except when used as a data bus pin, this pin can always be used as the William pin. The HIRQ4 output pin and LSCI I/O pin can only be used in mode 2 or 3

Rev. 3.00 Mar 21, 2006 page 214 of 788 REJ09B0300-0300

1112E	_			
CS3E	_			
ABW	0	,	1	
PB0DDR	1	0	1	
Pin Function	D0 I/O pin	PB0 input pin	PB0 output pin	

Notes: 1. When bit LSMIE is set to 1 in HICR0, bits HI12E and PB0DDR should be c

2. Except when used as a data bus pin, this pin can always be used as the v
pin. The HIRQ3 output pin and LSMI I/O pin can only be used in mode 2 c
0).

- 3. In mode 1, 2, 3 (EXPE = 1), clear the LSMIE bit to 0.
- In flode 1, 2, 3 (EAPE = 1), clear the LSMIE bit to 0.
 Not supported by the H8S/2148B and H8S/2145B (5-V version).

Lither cleared to 0

1

PB0

output pin

0

PB0

input pin

1 1

HIRQ3

output pin

LSMI input pin*2

Table 8.7 Input Pull-Up MOS States (Port B)

Mode	Reset	Hardware Standby Mode	Software Standby Mode	In O
1, 2, 3 (EXPE = 1) with ABW in WSCR = 0	Off	Off	Off	Off
1, 2, 3 (EXPE = 1) with ABW in WSCR = 1, or 2, 3 (EXPE = 0)	_		On/Off	On/C
Legend:				

Off: Input pull-up MOS is always off.

On/Off: On when the pin is in the input state, PBDDR = 0, and PBODR = 1; otherwise of

8.13 Additional Overview for H8S/2160B and H8S/2161B

The H8S/2160B and H8S/2161B has fifteen I/O ports (ports 1 to 6, 8, 9, A to G), and o only port (port 7).

Table 8.8 is a summary of the additional port functions. As the functions of ports 1 to 9 are the same on the H8S/2140B, H8S/2141B, H8S/2148B, and H8S/2145B, table 8.1 p summary.

Each extra port includes a data direction register (DDR) that controls input/output, and registers (ODR) for storing output data.

Ports C to E, and F have an on-chip input pull-up MOS function. On ports C to F, whet input pull-up MOS is on or off is controlled by the corresponding DDR and ODR.

Ports C to F, and G can drive a single-TTL load and 30-pF-capacitive load. All I/O por capable of driving a Darlington transistor when they are in output.

Rev. 3.00 Mar 21, 2006 page 216 of 788

REJ09B0300-0300

Port C	8-bit I/O port	PC7 to PC0	On-o
Port D	8-bit I/O port	PD7 to PD0	On-o
Port E	8-bit I/O port	PE7 to PE0	On-o
Port F	8-bit I/O port	PF7 to PF0	On-o
Port G	8-bit I/O port	PG7 to PG0	
•	•	•	•

8.14 Ports C, D

Port C and port D are two sets of 8-bit I/O ports. The pin functions are the same in all modes.

- Port C data direction register (PCDDR)
- Port C output data register (PCODR)
- Port C input data register (PCPIN)
- Port C Nch-OD control register (PCNOCR)
- Port D data direction register (PDDDR)
- Port D output data register (PDODR)
- D D - - - - - - (DDDD)
- Port D input data register (PDPIN)
- Port D Nch-OD control register (PDNOCR)

4	PC4DDR	0	W	read, the port C pin states will be ret
3	PC3DDR	0	W	-
2	PC2DDR	0	W	
1	PC1DDR	0	W	-
0	PC0DDR	0	W	-

Bit	Bit Name	Initial Value	R/W	Description
7	PD7DDR	0	W	0: Port D pin is an input pin
6	PD6DDR	0	W	1: Port D pin is an output pin
5	PD5DDR	0	W	PDDDR has the same address as PDP
4	PD4DDR	0	W	read, the port D pin states will be return
3	PD3DDR	0	W	_
2	PD2DDR	0	W	_
1	PD1DDR	0	W	_
0	PD0DDR	0	W	_

PC4ODR	0	R/W
PC3ODR	0	R/W
PC2ODR	0	R/W
PC10DR	0	R/W
PC0ODR	0	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	PD70DR	0	R/W	PDODR can always be read or writter
6	PD6ODR	0	R/W	regardless of the contents of PDDDR.
5	PD50DR	0	R/W	
4	PD4ODR	0	R/W	
3	PD3ODR	0	R/W	_
2	PD2ODR	0	R/W	_
1	PD10DR	0	R/W	_
0	PD00DR	0	R/W	_

Rev. 3.00 Mar 21, 2006 pag REJ09

4	PC4PIN	Undefined*	R	
3	PC3PIN	Undefined*	R	
2	PC2PIN	Undefined*	R	
1	PC1PIN	Undefined*	R	
0	PC0PIN	Undefined*	R	

Note: * The initial value is determined according to the PC7 to PC0 pin states.

Bit	Bit Name	Initial Value	R/W	Description
7	PD7PIN	Undefined*	R	PDPIN indicates the port D state. PDP
6	PD6PIN	Undefined*	R	same address as PDDDR. If a write isthe port D settings will change.
5	PD5PIN	Undefined*	R	the port B detailige will charige.
4	PD4PIN	Undefined*	R	
3	PD3PIN	Undefined*	R	
2	PD2PIN	Undefined*	R	_
1	PD1PIN	Undefined*	R	
0	PD0PIN	Undefined*	R	

Note: * The initial value is determined according to the PD7 to PD0 pin states.

Rev. 3.00 Mar 21, 2006 page 220 of 788 REJ09B0300-0300

4	PC4NOCR	0	R/W	
3	PC3NOCR	0	R/W	_
2	PC2NOCR	0	R/W	
1	PC1NOCR	0	R/W	
0	PC0NOCR	0	R/W	_
Bit	Bit Name	Initial Value	R/W	Description
7	PD7NOCR	0	R/W	0: CMOS (p-channel driver e
6	PD6NOCR	0	R/W	1: N-channel open drain (p-c

R/W

Bit	Bit Name	Initial Value	R/W	Description
7	PD7NOCR	0	R/W	0: CMOS (p-channel driver enabled)
6	PD6NOCR	0	R/W	1: N-channel open drain (p-channel d
5	PD5NOCR	0	R/W	disabled)
4	PD4NOCR	0	R/W	_
3	PD3NOCR	0	R/W	_
2	PD2NOCR	0	R/W	_
1	PD1NOCR	0	R/W	_
0	PD0NOCR	0	R/W	

8.14.5 Pin Functions

PC5NOCR 0

DDR	()		1	
NOCR	_	_	(0	
ODR	0	1	0	1	0
N-ch. driver	O	FF	ON	OFF	ON
P-ch. driver	O	FF	OFF	ON	0
Input pull-up MOS	OFF	ON		Ol	-F
Pin function	Innu	t nin		Outp	ıt nin

1 to 3	Off	Off	On/Off	On/Off		
Legend	l:					
Off:	Off: Input pull-up MOS is always off.					
On/Off:	On when PCDDR =	= 0 and PCODR	= 1 (PDDDR = 0 and PDODR	= 1); otherwis		

Standby Mode

Software

Standby Mode

Otner

Operati

nardware

8.15 **Ports E, F**

Mode

Port E and port F are two sets of 8-bit I/O ports. The pins of ports E and F have the san in all operating modes.

• Port E data direction register (PEDDR)

Reset

- Port E output data register (PEODR)
- Port E input data register (PEPIN)
- Port E Nch-OD control register (PENOCR)
- Port F data direction register (PFDDR)
- Port F output data register (PFODR)
- Port F input data register (PFPIN)
- Port F Nch-OD control register (PFNOCR)

REJ09B0300-0300

2	PE2DDR	0	W	_
1	PE1DDR	0	W	_
0	PE0DDR	0	W	
Bit	Bit Name	Initial Value	R/W	Description
7	PF7DDR	0	W	0: Port F pin is an input pin
6	PF6DDR	0	W	1: Port F pin is an output pin
5	PF5DDR	0	W	PFDDR has the same address as PFI
4	PF4DDR	0	W	read, the port F pin states will be retur
3	PF3DDR	0	W	_
2	PF2DDR	0	W	_
1	PF1DDR	0	W	_
0	PF0DDR	0	W	_
0	PF0DDR	0	W	_

W

W

4

3

PE4DDR

PE3DDR

0

0

read, the port E pin states will be retu

4	PE4ODR	0	R/W
3	PE3ODR	0	R/W
2	PE2ODR	0	R/W
1	PE10DR	0	R/W
)	PE00DR	0	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	PF7ODR	0	R/W	PFODR can always be read or written
6	PF6ODR	0	R/W	regardless of the contents of PFDDR.
5	PF5ODR	0	R/W	
4	PF4ODR	0	R/W	
3	PF3ODR	0	R/W	_
2	PF2ODR	0	R/W	_
1	PF10DR	0	R/W	_
0	PF0ODR	0	R/W	_

Rev. 3.00 Mar 21, 2006 page 224 of 788 REJ09B0300-0300

1	PE4PIN	Undefined*	R	
3	PE3PIN	Undefined*	R	
2	PE2PIN	Undefined*	R	
1	PE1PIN	Undefined*	R	
)	PE0PIN	Undefined*	R	

Note: * The initial value is determined according to the PE7 to PE0 pin states.

Bit Name	Initial Value	R/W	Description
PF7PIN	Undefined*	R	PFPIN indicates the port F state. PFF
PF6PIN	Undefined*	R	same address as PFDDR. If a write isthe port F settings will change.
PF5PIN	Undefined*	R	— the port 1 settings will change.
PF4PIN	Undefined*	R	
PF3PIN	Undefined*	R	
PF2PIN	Undefined*	R	
PF1PIN	Undefined*	R	
PF0PIN	Undefined*	R	
	PF7PIN PF6PIN PF5PIN PF4PIN PF3PIN PF2PIN PF1PIN	PF7PIN Undefined* PF6PIN Undefined* PF5PIN Undefined* PF4PIN Undefined* PF3PIN Undefined* PF2PIN Undefined* PF1PIN Undefined*	PF7PIN Undefined* R PF6PIN Undefined* R PF5PIN Undefined* R PF4PIN Undefined* R PF3PIN Undefined* R PF2PIN Undefined* R PF1PIN Undefined* R

Note: * The initial value is determined according to the PF7 to PF0 pin states.

4	PE4NOCR	0	R/W	_
3	PE3NOCR	0	R/W	_
2	PE2NOCR	0	R/W	_
1	PE1NOCR	0	R/W	_
0	PE0NOCR	0	R/W	
Bit	Bit Name	Initial Value	R/W	Description
Bit 7	Bit Name	Initial Value	R/W	Description 0: CMOS (p-channel driver enabled)
				0: CMOS (p-channel driver enabled) 1: N-channel open drain (p-channel dri
7	PF7NOCR	0	R/W	0: CMOS (p-channel driver enabled)

R/W

R/W

R/W

R/W

R/W

8.15.5 Pin Functions

PF3NOCR

PF2NOCR

PF1NOCR

PF0NOCR

0

0

0

0

5

3

2

1

0

PE5NOCR

DDR	()	1		
NOCR	-	_		0	
ODR	0	1	0	1	0
N-ch. driver	OI	OFF		OFF	ON
P-ch. driver	OI	OFF		ON	OF
Input pull-up MOS	OFF	OFF ON		OFF	
Pin function	Input pin			Outp	ut pin

Rev. 3.00 Mar 21, 2006 page 226 of 788 REJ09B0300-0300

1 to 3	Off	Off	On/Off	On/Off
Legend	d:			
Off:	Input pull-up MOS	is always off.		
On/Off:	On when PEDDR :	= 0 and PEODR =	1 (PFDDR = 0 and PFODE	R = 1); otherwise

Standby Mode

Software

Standby Mode

Otner

Opera

nardware

8.16 Port G

Mode

Port G is an 8-bit I/O port. Port G pin functions are the same in all operating modes. T type of port G is NMOS open-drain.

• Port G data direction register (PGDDR)

Reset

- Port G output data register (PGODR)
- Port G input data register (PGPIN)
- Port G Nch-OD control register (PGNOCR)

4	PG4DDR	0	W	read, the port G pin states will be return
3	PG3DDR	0	W	_
2	PG2DDR	0	W	_
1	PG1DDR	0	W	_
0	PG0DDR	0	W	_

8.16.2 Port G Output Data Register (PGODR)

PGODR stores output data for the pins on port G.

Bit	Bit Name	Initial Value	R/W	Description
7	PG7ODR	0	R/W	PGODR can always be read or written
6	PG60DR	0	R/W	regardless of the contents of PGDDR.
5	PG5ODR	0	R/W	_
4	PG4ODR	0	R/W	_
3	PG3ODR	0	R/W	_
2	PG2ODR	0	R/W	_
1	PG10DR	0	R/W	_
0	PG0ODR	0	R/W	_

4	PG4PIN	Undefined*	R	
3	PG3PIN	Undefined*	R	
2	PG2PIN	Undefined*	R	
1	PG1PIN	Undefined*	R	
)	PG0PIN	Undefined*	R	

Note: * The initial value is determined according to the PG7 to PG0 pin states.

$\textbf{8.16.4} \qquad \textbf{Port G Nch-OD Control Register} \ (\textbf{PGNOCR})$

PGNOCR specifies the output driver type for pins on port G which are configured as

bit-by-bit basis.

•				
Bit	Bit Name	Initial Value	R/W	Description
7	PG7NOCR	0	R/W	0: NMOS push-pull (Vcc-side n-char
6	PG6NOCR	0	R/W	enabled)
5	PG5NOCR	0	R/W	 1: Vss-side N-channel open drain (V channel driver disabled)
4	PG4NOCR	0	R/W	
3	PG3NOCR	0	R/W	_
2	PG2NOCR	0	R/W	_
1	PG1NOCR	0	R/W	_
0	PG0NOCR	0	R/W	_

1 III Iuliction

Rev. 3.00 Mar 21, 2006 page 230 of 788 REJ09B0300-0300

- Operable at a maximum carrier frequency of 625 kHz using pulse division (at 10 Moperation)
 Duty evalue from 0 to 100% with 1/256 resolution (100% duty realized by port on
- Duty cycles from 0 to 100% with 1/256 resolution (100% duty realized by port ou
- Direct or inverted PWM output, and PWM output enable/disable control

PWM0800A_010020020700

RENESAS

Rev. 3.00 Mar 21, 2006 pag REJ0

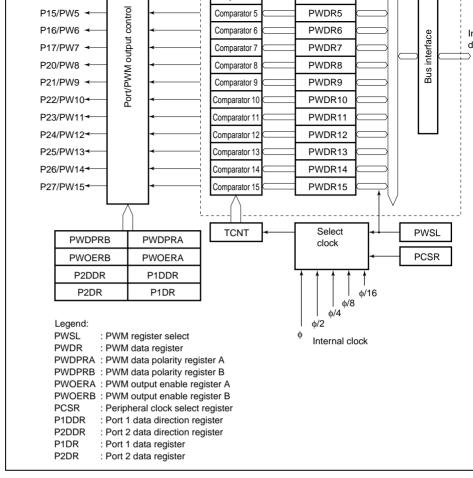


Figure 9.1 Block Diagram of PWM Timer

Rev. 3.00 Mar 21, 2006 page 232 of 788 REJ09B0300-0300

9.3 **Register Descriptions**

The PWM has the following registers. To access PCSR, the FLSHE bit in the serial times are serial times. register (STCR) must be cleared to 0. For details on the serial timer control register (S section 3.2.3, Serial Timer Control Register (STCR).

- PWM register select (PWSL)
- PWM data registers 0 to 15 (PWDR0 to PWDR15)
- PWM data polarity register A (PWDPRA)
- PWM data polarity register B (PWDPRB)
- PWM output enable register A (PWOERA)
- PWM output enable register B (PWOERB)
- Peripheral clock select register (PCSR)

Rev. 3.00 Mar 21, 2006 pag

			PWM. For details, see table 9.2.
			The resolution, PWM conversion period, and frequency depend on the selected internal clean be obtained from the following equations
			Resolution (minimum pulse width) = 1/intern frequency
			PWM conversion period = resolution \times 256
			Carrier frequency = 16/PWM conversion per
			With a 10 MHz system clock (φ), the resoluti conversion period, and carrier frequency are in table 9.3.
_	1	R	Reserved
			This bit is always read as 1 and cannot be m

Reserved

R

PCSR, select the internal clock input to TCN

This bit is always read as 0 and cannot be m

Rev. 3.00 Mar 21, 2006 page 234 of 788 REJ09B0300-0300

0

5

0100: PWDR4 selected
0101: PWDR5 selected
0110: PWDR6 selected
0111: PWDR7 selected
1000: PWDR8 selected
1001: PWDR9 selected
1010: PWDR10 selected
1011: PWDR11 selected
1100: PWDR12 selected
1101: PWDR13 selected
1110: PWDR14 selected
1111: PWDR15 selected

Table 9.2 Internal Clock Selection

PWSL		F	PCSR	
PWCKE	PWCKS	PWCKB	PWCKA	Description
0	_	_	_	Clock input is disabled
1	0	_	_	φ (system clock) is selected
	1	0	0	φ/2 is selected
			1	φ/4 is selected
		1	0	φ/8 is selected
			1	φ/16 is selected

9.3.2 PWM Data Registers (PWDR0 to PWDR15)

PWDR specifies the duty cycle of the basic pulse to be output, and the number of addit pulses. The value set in PWDR corresponds to a 0 or 1 ratio in the conversion period. If four bits specify the duty cycle of the basic pulse as 0/16 to 15/16 with a resolution of 1 lower four bits specify how many extra pulses are to be added within the conversion per comprising 16 basic pulses. Thus, a specification of 0/256 to 255/256 is possible for 0/2 within the conversion period. For 256/256 (100%) output, port output should be used. If PWDR15 are initialized to H'00.

PWDR are 8-bit readable/writable registers. The PWM has sixteen PWM data registers

9.3.3 PWM Data Polarity Registers A and B (PWDPRA, PWDPRB)

Each PWDPR selects the PWM output phase.

PWDPRA

Bit	Bit Name	Initial Value	R/W	Description
7	OS7	0	R/W	Output Select 7 to 0
6	OS6	0	R/W	These bits select the PWM output phase. Bit
5	OS5	0	R/W	OS0 correspond to outputs PW7 to PW0.
4	OS4	0	R/W	 PWM direct output (PWDR value correspondent of output)
3	OS3	0	R/W	1 /
2	OS2	0	R/W	 PWM inverted output (PWDR value correst low width of output)
1	OS1	0	R/W	
0	OS0	0	R/W	

Rev. 3.00 Mar 21, 2006 page 236 of 788

REJ09B0300-0300

OS10	0	1: PWM inverted output (PWDR value corr R/W low width of output)
OS9	0	R/W
OS8	0	R/W

9.3.4 PWM Output Enable Registers A and B (PWOERA, PWOERB)

Each PWOER switches between PWM output and port output.

PWOERA

2 1 0

Bit	Bit Name	Initial Value	R/W	Description
7	OE7	0	R/W	Output Enable 7 to 0
6	OE6	0	R/W	These bits, together with P1DDR, specify
5	OE5	0	R/W	pin state. Bits OE7 to OE0 correspond to oto PW0.
4	OE4	0	R/W	P1nDDR OEn: Pin state
3	OE3	0	R/W	
2	OE2	0	R/W	0X: Port input
1	OE1	0	R/W	10: Port output or PWM 256/256 output
0	OE0	0	R/W	11: PWM output (0 to 255/256 output)

Legend:

X: Don't care

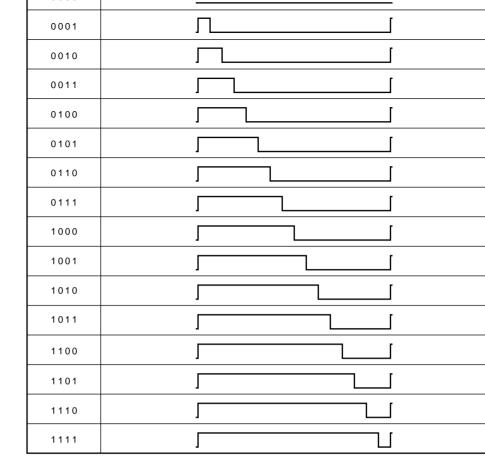
Rev. 3.00 Mar 21, 2006 pag

1 0 Lege	OE9 OE8 end:	0	R/W R/W	10: Port output or PWM 256/256 output 11: PWM output (0 to 255/256 output)
2	OE10	0	R/W	0X: Port input

X: Don't care

to port output. The corresponding pin can be set as port output in single-chip mode or v = 1 and CS256E = 0 in SYSCR in extended mode with on-chip ROM. Otherwise, it sho noted that an address bus is output to the corresponding pin. DR data is output when the corresponding pin is used as port output. A value correspon

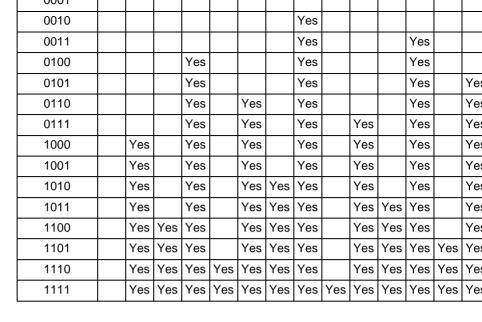
To perform PWM 256/256 output when DDR = 1 and OE = 0, the corresponding pin sl


PWM 256/256 output is determined by the OS bit, so the value should have been set to beforehand.

9.3.5 Peripheral Clock Select Register (PCSR)

PCSR selects the PWM input clock.

Bit	Bit Name	Initial Value	R/W	Description
3	_	0	R	Reserved
				This bit is always read as 0. The initial value be changed.
2	PWCKB	0	R/W	PWM Clock Select B, A
1	PWCKA	0	R/W	Together with bits PWCKE and PWCKS in these bits select the internal clock input to PWM. For details, see table 9.2.
0	_	0	R	Reserved
				This bit is always read as 0. The initial value be changed.
		<u> </u>		


Rev. 3.00 Mar 21, 2006 page 238 of 788 REJ09B0300-0300

The lower four bits of PWDR specify the position of pulses added to the 16 basic puls additional pulse adds a high period (when OS = 0) with a width equal to the resolution rising edge of a basic pulse. When the upper four bits of PWDR are 0000, there is no of the basic pulse, but the timing for adding pulses is the same. Table 9.5 shows the pe

RENESAS

Rev. 3.00 Mar 21, 2006 pag

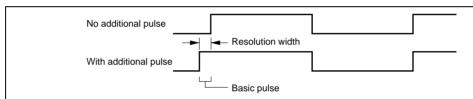


Figure 9.2 Example of Additional Pulse Timing (when Upper 4 Bits of PWDR

Rev. 3.00 Mar 21, 2006 paç REJ0

Rev. 3.00 Mar 21, 2006 page 242 of 788 REJ09B0300-0300

- En 1 d' d'
 - Two resolution settings

 The resolution can be set equal to one or two system clock cycles.
- Two base cycle settings
 The base cycle can be set equal to T × 64 or T × 256, where T is the resolution.
- Four operating speeds
- Four operation clocks (by combination of two resolution settings and two base cyc

Figure 10.1 shows a block diagram of the PWM (D/A) module.

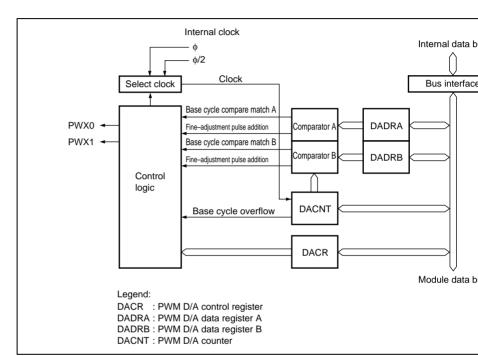


Figure 10.1 PWM (D/A) Block Diagram

Rev. 3.00 Mar 21, 2006 pag REJ0

10.3 Register Descriptions

The PWM (D/A) module has the following registers. The PWM (D/A) registers are ass same addresses with other registers. The registers are selected by the IICE bit in the ser control register (STCR). For details on STCR, see section 3.2.3, Serial Timer Control F (STCR).

- PWM (D/A) counter H (DACNTH)
- PWM (D/A) counter L (DACNTL)
- PWM (D/A) data register AH (DADRAH)
- PWM (D/A) data register AL (DADRAL)
- PWM (D/A) data register BH (DADRBH)
- PWM (D/A) data register BL (DADRBL)
- PWM (D/A) control register (DACR)

Note: The same addresses are shared by DADRA and DACR, and by DADRB and D Switching is performed by the REGS bit in DACNT or DADRB.

REJ09B0300-0300

		_	DACNTH							DACNTL				NTL		
Bit (CPU) Bit (Counter)	:	 15 7	14 6	13 5	12 4	11 3	10 2	9 1	8	7 8	6 9	5 10	4 11	3 12	2 13	
• DACNTH																
Dit Dit Name		-:4:-1	V-1.		DA		D									

Bit	Bit Name	Initial Value	R/W	Description	
7	UC7	All 0	R/W	Upper Up-Counter	
to	to				
0	UC0				
•]	DACNTL				
Bit	Bit Name	Initial Value	R/W	Description	
7	UC8	All 0	R/W	Lower Up-Counter	

to 2	to UC13	All U	IV/VV	Lower op-counter
1	_	1	R	Reserved
				This bit is always read as 1 and cannot be i
0	REGS	1	R/W	Register Select
				DADRA and DACR, and DADRB and DACI located at the same addresses. The REGS which registers can be accessed.

RENESAS

Rev. 3.00 Mar 21, 2006 pag REJ0

0: DADRA and DADRB can be accessed1: DACR and DACNT can be accessed

7 6 5 4 3 2	DA5 DA4 DA3 DA2 DA1 DA0	1 1 1 1 1	R/W R/W R/W R/W R/W	held constant. A channel can be operated with 12-bit precis keeping the two lowest data bits (DA1 and D to 0. The two lowest data bits correspond to highest bits in DACNT.
1	CFS	1	R/W	Carrier Frequency Select
				0: Base cycle = resolution (T) × 64 DADR range = H'0401 to H'FFFD
				1: Base cycle = resolution (T) × 256 DADR range = H'0103 to H'FFFF
0	_	1	R	Reserved
				This bit is always read as 1 and cannot be m

15

14

13

12

11

10

9

8

DA13

DA12

DA11

DA10

DA9

DA8

DA7

DA6

1

1

1

1

1

1

1

1

Rev. 3.00 Mar 21, 2006 page 246 of 788

REJ09B0300-0300

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

D/A Data 13 to 0

analog value.

These bits set a digital value to be converted

In each base cycle, the DACNT value is con

compared with the DADR value to determine

cycle of the output waveform, and to decide

output a fine-adjustment pulse equal in width resolution. To enable this operation, this required

be set within a range that depends on the Cl

DADR value is outside this range, the PWM

1	CFS	1	R/W	Carrier Frequency Select
				0: Base cycle = resolution (T) × 64 DADR range = H'0401 to H'FFFD
				1: Base cycle = resolution (T) × 256 DADR range = H'0103 to H'FFFF
0	REGS	1	R/W	Register Select
				DADRA and DACR, and DADRB and DAC located at the same addresses. The REGS which registers can be accessed.
				0: DADRA and DADRB can be accessed
				1: DACR and DACNT can be accessed

r / v v

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

held constant.

highest bits in DACNT.

output a fine-adjustment pulse equal in wid resolution. To enable this operation, this re-

be set within a range that depends on the O

DADR value is outside this range, the PWN

A channel can be operated with 12-bit prec

keeping the two lowest data bits (DA1 and to 0. The two lowest data bits correspond to

DAO

DA7

DA6

DA5

DA4

DA3

DA2

DA1

DA0

1

1

1

1

1

1

1

1

9

8

7

6

5

4

3

2

RENESAS

Rev. 3.00 Mar 21, 2006 pag

				PWM (D/A) in test state: Correct conversion unobtainable
6	PWME	0	R/W	PWM Enable
				Starts or stops the PWM D/A counter (DACN
				0: DACNT operates as a 14-bit up-counter
				1: DACNT halts at H'0003
5, 4	_	All 1	R	Reserved
				These bits are always read as 1 and cannot modified.
3	OEB	0	R/W	Output Enable B
				Enables or disables output on PWM (D/A) ch

disabled

enabled

0: PWM (D/A) in user state: Normal operation

0: PWM (D/A) channel B output (at the PWX

1: PWM (D/A) channel B output (at the PWX

REJ09B0300-0300 **₹ENES∆S**

Rev. 3.00 Mar 21, 2006 page 248 of 788

				Selects the phase of the PWM (D/A) output
				0: Direct PWM (D/A) output
				1: Inverted PWM (D/A) output
0	CKS	0	R/W	Clock Select
				Selects the PWM (D/A) resolution. If the sy (\$\phi\$) frequency is 10 MHz, resolutions of 100 ns, can be selected.

 (t_{cyc})

 $(t_{cyc}) \times 2$

0: Operates at resolution (T) = system cloc

1: Operates at resolution (T) = system cloc

RENESAS

Rev. 3.00 Mar 21, 2006 pag

when the lower byte is written to, the lower-byte write data and TEMP value are combined 16-bit value is written in the register.

Read: When the upper byte is read from, the upper-byte value is transferred to the CPU lower-byte value is transferred to TEMP. Next, when the lower byte is read from, the levalue in TEMP is transferred to the CPU.

These registers should always be accessed 16 bits at a time with a MOV instruction, an byte should always be accessed before the lower byte. Correct data will not be transfer the upper byte or only the lower byte is accessed. Also note that a bit manipulation instruction cannot be used to access these registers.

Example 1: Write to DACNT

MOV.W RO, @DACNT; Write RO contents to DACNT

Example 2: Read DADRA

MOV.W @DADRA, RO ; Copy contents of DADRA to RO

Table 10.2 Read and Write Access Methods for 16-Bit Registers

		Read	Write		
Register Name	Word	Byte	Word	Ву	
DADRA and DADRB	Yes	Yes	Yes	×	
DACNT	Yes	×	Yes	×	

Legend:

Yes: Permitted type of access. Word access includes successive byte accesses to the (first) and lower byte (second).

x: This type of access may give incorrect results.

Rev. 3.00 Mar 21, 2006 page 250 of 788

REJ09B0300-0300

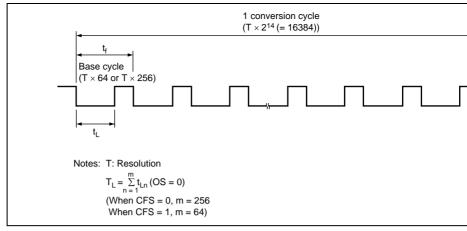


Figure 10.2 PWM D/A Operation

Rev. 3.00 Mar 21, 2006 pag REJ0

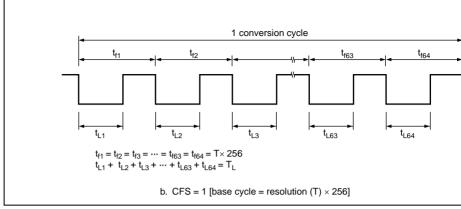
1 25.6 1. Always low (or high)						П (ОГО)	12			U	U
1 25.6 1. Always low (or high) (DADR = H'0003 to H'00FF) 12 0 0 0 0 1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 12 0 0 0 1 51.2 1 51.2 1 1 1 1 1 1 51.2 1 51.2 1 51.2 1 6 6 6 1 1 25.6 1. Always low (or high) (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0003 to H'00FF) 12 0 0 0 1 51.2 1 51.2 0 0 0 1 51.2 0 0 0 0 0 0 0 0 1 51.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						` ,				<u> </u>	
(DADR = H'0003 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'FFFF) 1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 2. (Data value) × T (DADR = H'0401 to H'FFFD) 1 51.2 1. Always low (or high) (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0003 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'0FFFF) 1 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						`	10	0	0	0	0
H'00FF) 2. (Data value) × T (DADR = H'0103 to H'FFFF) 1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 2. (Data value) × T (DADR = H'0401 to H'FFFD) 1 51.2 1. Always low (or high) (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0003 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'07FF) 10 0 0 0 0 0 0			1	25.6		1. Always low (or high)	14				
2. (Data value) × T (DADR = H'0103 to H'FFFF) 1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								_	_	_	
1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						,	12			0	0
1 0.2 0 12.8 3276.8 1. Always low (or high) (DADR = H'0001 to H'03FD) 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						` ,	40	_	_	_	_
(DADR = H'0001 to H'03FD) 2. (Data value) × T (DADR = H'0401 to H'FFFD) 1 51.2 1 51.2 (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0003 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'FFFF) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				`	10	U	U		U		
H'03FD) 2. (Data value) × T (DADR = H'0401 to H'FFFD) 1. Always low (or high) (DADR = H'0003 to H'00FF) 2. (Data value) × T (DADR = H'0103 to H'FFFF) 1. Always low (or high) 1. Always low (or hi	1	0.2	0	12.8	3276.8	1. Always low (or high)	14				
2. (Data value) × T (DADR = H'0401 to H'FFFD) 1 51.2 1 51.2 1 Always low (or high) (DADR = H'0003 to H'00FF) 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								<u> </u>			
(DADR = H'0401 to H'FFFD) 1 51.2 1 Always low (or high)				· · · · · · · · · · · · · · · · · · ·	12			0	0		
H'FFFD) 1 51.2 1. Always low (or high)											
(DADR = H'0003 to H'00FF) 12 0 0 2. (Data value) × T (DADR = H'0103 to H'FFFF) 10 0 0 0 0							10	0	0	0	0
H'00FF) 2. (Data value) × T (DADR = H'0103 to H'FFFF) 12 0 0 0 0			1	51.2		1. Always low (or high)	14				
2. (Data value) × T (DADR = H'0103 to H'FFFF)						(DADR = H'0003 to					
(DADR = H'0103 to 10 0 0 0 0 H'FFFF)						H'00FF)	12			0	0
H'FFFF)				` ,							
lote: * This column indicates the conversion cycle when specific DADR bits are fixed						`	10	0	0	0	0
	ote:	* This o	olum	n indica	ates the con	version cycle when spec	ific DADR	bit	s a	re	fixe

1638.4

1. Always low (or high)

H'03FD)

(DADR = H'0001 to


0 0

0.1

6.4

REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 page 252 of 788

a. CFS = 0 [base cycle = resolution (T) \times 64]

 $t_{L1} + t_{L2} + t_{L3} + \dots + t_{L255} + t_{L256} = T_L$

Figure 10.3 Output Waveform (OS = 0, DADR Corresponds to T_L)

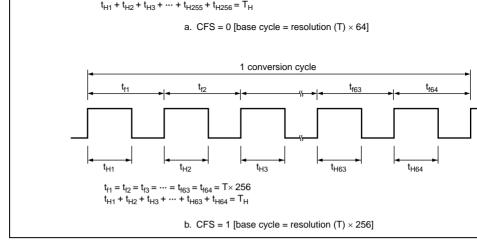


Figure 10.4 Output Waveform (OS = 1, DADR Corresponds to T_H)

An example of setting CFS to 1 (basic cycle = resolution (T) \times 256) and OS to 1 (PWM output) is shown as an additional pulse. When CFS is set to 1, the duty ratio of the basi determined by the upper eight bits (DA13 to DA6) in DADR, and the position of the acquire is determined by the following six bits (DA5 to DA0) as shown in figure 10.5.

Table 10.4 shows the position of the additional pulse.

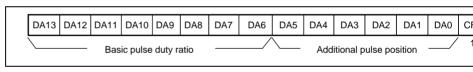


Figure 10.5 D/A Data Register Configuration when CFS = 1

Here, the case of DADR = H'0207 (B'0000 0010 0000 0111) is considered. Figure 10.6 output waveform. Because CFS = 1 and the value of upper eight bits is B'0000 0010, the ratio of the basic pulse is $2/256 \times (T)$ of high width.

Rev. 3.00 Mar 21, 2006 page 254 of 788 REJ09B0300-0300

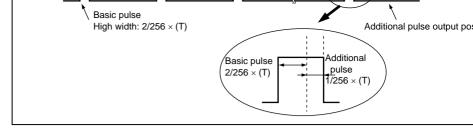
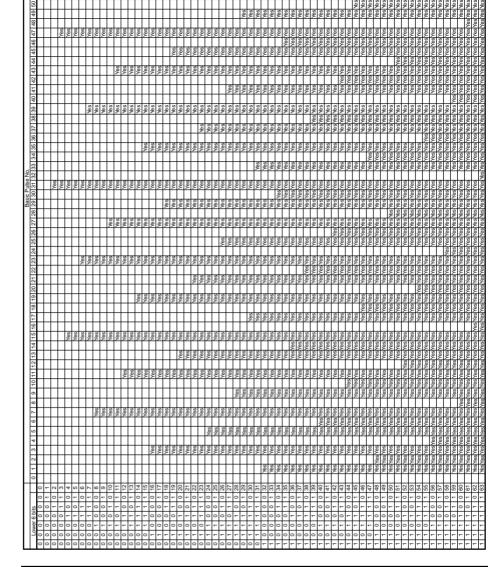



Figure 10.6 Output Waveform when DADR = H'0207 (OS = 1)

Note that the case of CFS = 0 (basic cycle = resolution $(T) \times 64$) is similar other than of the basic pulse is determined by the upper six bits, and the position of the additional determined by the following eight bits.

Rev. 3.00 Mar 21, 2006 page 256 of 788 REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 paç REJ0

Rev. 3.00 Mar 21, 2006 page 258 of 788 REJ09B0300-0300

- Selection of four clock sources
 - One of the three internal clocks ($\phi/2$, $\phi/8$, or $\phi/32$), or an external clock input can be (enabling use as an external event counter).
 - Two independent comparators
 - Two independent waveforms can be output.
 - Four independent input capture channels

Buffer modes can be specified.

The rising or falling edge can be selected.

Counter clearing

The free-running counters can be cleared on compare-match A.

Seven independent interrupts

requested independently.

Special functions provided by automatic addition function

The contents of OCRAR and OCRAF can be added to the contents of OCRA auto enabling a periodic waveform to be generated without software intervention. The ICRD can be added automatically to the contents of OCRDM \times 2, enabling input of operations in this interval to be restricted.

Two compare-match interrupts, four input capture interrupts, and one overflow int

Rev. 3.00 Mar 21, 2006 pag

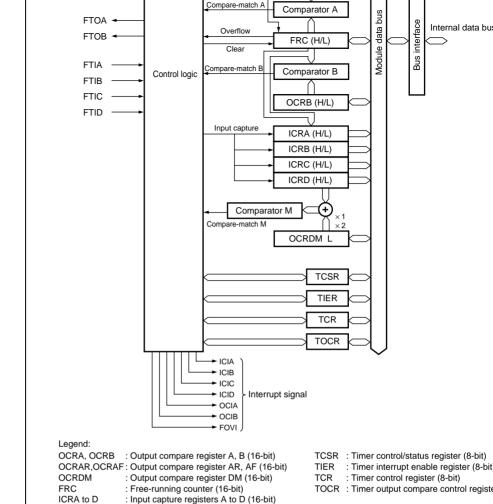


Figure 11.1 Block Diagram of 16-Bit Free-Running Timer

Rev. 3.00 Mar 21, 2006 page 260 of 788 REJ09B0300-0300

Output compare B output pin	FIOD	Output	Output compare B outpo
Input capture A input pin	FTIA	Input	Input capture A input
Input capture B input pin	FTIB	Input	Input capture B input
Input capture C input pin	FTIC	Input	Input capture C input
Input capture D input pin	FTID	Input	Input capture D input

11.3 **Register Descriptions**

The FRT has the following registers.

- Free-running counter (FRC)
- Output compare register A (OCRA)
- Output compare register B (OCRB)
- Input capture register A (ICRA)
- Input capture register B (ICRB)
- Input capture register C (ICRC)
- Input capture register D (ICRD)
- Output compare register AR (OCRAR) • Output compare register AF (OCRAF)
 - Output compare register DM (OCRDM)
 - Timer interrupt enable register (TIER)
 - Timer control/status register (TCSR)
- Timer control register (TCR)
- Timer output compare control register (TOCR)

Note: OCRA and OCRB share the same address. Register selection is controlled by

and OCRDM. Register selection is controlled by the ICRS bit in TOCR.

bit in TOCR. ICRA, ICRB, and ICRC share the same addresses with OCRAR

The FRT has two output compare registers, OCRA and OCRB, each of which is a 16-b readable/writable register whose contents are continually compared with the value in F a match is detected (compare-match), the corresponding output compare flag (OCFA o set to 1 in TCSR. If the OEA or OEB bit in TOCR is set to 1, when the OCR and FRC match, the output level selected by the OLVLA or OLVLB bit in TOCR is output at the compare output pin (FTOA or FTOB). Following a reset, the FTOA and FTOB output until the first compare-match. OCR should always be accessed in 16-bit units; cannot be in 8-bit units. OCR is initialized to H'FFFF.

11.3.3 Input Capture Registers A to D (ICRA to ICRD)

is detected, the current FRC value is transferred to the corresponding input capture registo ICRD). At the same time, the corresponding input capture flag (ICFA to ICFD) in To 1. The FRC contents are transferred to ICR regardless of the value of ICF. The input edge is selected by the input edge select bits (IEDGA to IEDGD) in TCR.

ICRC and ICRD can be used as ICRA and ICRB buffer registers, respectively, by mean

enable bits A and B (BUFEA and BUFEB) in TCR. For example, if an input capture of

The FRT has four input capture registers, ICRA to ICRD, each of which is a 16-bit rear register. When the rising or falling edge of the signal at an input capture input pin (FTI

ICRC is specified as the ICRA buffer register, the FRC contents are transferred to ICR transferred to the buffer register ICRC.

To ensure input capture, the input capture pulse width should be at least 1.5 system clo

To ensure input capture, the input capture pulse width should be at least 1.5 system clo a single edge. When triggering is enabled on both edges, the input capture pulse width least 2.5 system clocks (ϕ) .

ICRA to ICRD should always be accessed in 16-bit units; cannot be accessed in 8-bit unitialized to H'0000.

Rev. 3.00 Mar 21, 2006 page 262 of 788 REJ09B0300-0300

following addition of OCRAF, while 0 is output on a compare-match A following add OCRAR.

When using the OCRA automatic addition function, do not select internal clock $\phi/2$ as input clock together with a set value of H'0001 or less for OCRAR (or OCRAF).

OCRAR and OCRAF should always be accessed in 16-bit units; cannot be accessed in OCRAR and OCRAF are initialized to H'FFFF.

11.3.5 Output Compare Register DM (OCRDM)

the ICRDMS bit is set to 1.

OCRDM is a 16-bit readable/writable register in which the upper 8 bits are fixed at H the ICRDMS bit in TOCR is set to 1 and the contents of OCRDM are other than H'00 operation of ICRD is changed to include the use of OCRDM. The point at which inpu occurs is taken as the start of a mask interval. Next, twice the contents of OCRDM is contents of ICRD, and the result is compared with the FRC value. The point at which match is taken as the end of the mask interval. New input capture D events are disable mask interval. A mask interval is not generated when the contents of OCRDM are H'0

OCRDM should always be accessed in 16-bit units; cannot be accessed in 8-bit units. initialized to H'0000.

				0: ICIA requested by ICFA is disabled
				1: ICIA requested by ICFA is enabled
6	ICIBE	0	R/W	Input Capture Interrupt B Enable
				Selects whether to enable input capture interequest (ICIB) when input capture flag B (ICTCSR is set to 1.
				0: ICIB requested by ICFB is disabled
				1: ICIB requested by ICFB is enabled
5	ICICE	0	R/W	Input Capture Interrupt C Enable
				Selects whether to enable input capture inte request (ICIC) when input capture flag C (IC TCSR is set to 1.
				0: ICIC requested by ICFC is disabled
				1: ICIC requested by ICFC is enabled
4	ICIDE	0	R/W	Input Capture Interrupt D Enable
				Selects whether to enable input capture inte request (ICID) when input capture flag D (ICTCSR is set to 1.
				0: ICID requested by ICFD is disabled
				1: ICID requested by ICFD is enabled
3	OCIAE	0	R/W	Output Compare Interrupt A Enable

Rev. 3.00 Mar 21, 2006 page 264 of 788 REJ09B0300-0300

TCSR is set to 1.

Selects whether to enable output compare in request (OCIA) when output compare flag A

0: OCIA requested by OCFA is disabled1: OCIA requested by OCFA is enabled

Selects whether to enable a free-running tir request interrupt (FOVI) when the timer ove (OVF) in TCSR is set to 1.
0: FOVI requested by OVF is disabled
1: FOVI requested by OVF is enabled

Reserved

This bit is always read as 1 and cannot be

R

11.3.7 Timer Control/Status Register (TCSR)

TCSR is used for counter clear selection and control of interrupt request signals.

Bit	Bit Name	Initial Value	R/W	Description
7	ICFA	0	R/(W)*	Input Capture Flag A
				This status flag indicates that the FRC valutransferred to ICRA by means of an input of signal. When BUFEA = 1, ICFA indicates to ICRA value has been moved into ICRC an FRC value has been transferred to ICRA. Of written to this bit to clear the flag.
				[Setting condition]
				When an input capture signal causes the F be transferred to ICRA
				[Clearing condition]
				Read ICFA when ICFA = 1, then write 0 to

		•		[]
				When an input capture signal causes the FR be transferred to ICRB
				[Clearing condition]
				Read ICFB when ICFB = 1, then write 0 to IC
5	ICFC	0	R/(W)*	Input Capture Flag C
				This status flag indicates that the FRC value transferred to ICRC by means of an input ca signal. When BUFEA = 1, on occurrence of a capture signal specified by the IEDGC bit at input pin, ICFC is set but data is not transfer ICRC. In buffer operation, ICFC can be used external interrupt signal by setting the ICICE Only 0 can be written to this bit to clear the fill
				[Setting condition]
				When an input capture signal is received

R/(W)* Input Capture Flag D 4 **ICFD** 0 This status flag indicates that the FRC value transferred to ICRD by means of an input ca

[Clearing condition] Read ICFD when ICFD = 1, then write 0 to I Rev. 3.00 Mar 21, 2006 page 266 of 788 REJ09B0300-0300 RENESAS

[Setting condition]

[Clearing condition]

Read ICFC when ICFC = 1, then write 0 to I

signal. When BUFEB = 1, on occurrence of capture signal specified by the IEDGD bit at input pin, ICFD is set but data is not transfer ICRD. In buffer operation, ICFD can be used external interrupt signal by setting the ICIDE Only 0 can be written to this bit to clear the f

When an input capture signal is received

		Read OCFA when OCFA = 1, then write 0 t
OCFB	0	R/(W)* Output Compare Flag B
		This status flag indicates that the FRC valu the OCRB value. Only 0 can be written to the clear the flag.
		[Setting condition]
		When FRC = OCRB
		[Clearing condition]
		Read OCFB when OCFB = 1, then write 0 to
OVF	0	R/(W)* Timer Overflow
		This status flag indicates that the FRC has Only 0 can be written to this bit to clear the
		[Setting condition]
		When FRC overflows (changes from H'FFF
		[Clearing condition]
		Read OVF when OVF = 1, then write 0 to 0

R/W

0: FRC clearing is disabled
1: FRC is cleared at compare-match A

Note: * Only 0 can be written to clear the flag.

0

1

CCLRA

Counter Clear A

match).

This bit selects whether the FRC is to be cl compare-match A (when the FRC and OCF

Rev. 3.00 Mar 21, 2006 pag

6	IEDGB	0	R/W	Input Edge Select B
				Selects the rising or falling edge of the input signal (FTIB).
				0: Capture on the falling edge of FTIB
				1: Capture on the rising edge of FTIB
5	IEDGC	0	R/W	Input Edge Select C
				Selects the rising or falling edge of the input signal (FTIC).
				0: Capture on the falling edge of FTIC
				1: Capture on the rising edge of FTIC
4	IEDGD	0	R/W	Input Edge Select D
				Selects the rising or falling edge of the input signal (FTID).
				0: Capture on the falling edge of FTID
				1: Capture on the rising edge of FTID
3	BUFEA	0	R/W	Buffer Enable A
				Selects whether ICRC is to be used as a buf for ICRA.
				0: ICRC is not used as a buffer register for IC
				1: ICRC is used as a buffer register for ICRA
2	BUFEB	0	R/W	Buffer Enable B
				Selects whether ICRD is to be used as a buf for ICRB.

0: Capture on the falling edge of FTIA 1: Capture on the rising edge of FTIA

Rev. 3.00 Mar 21, 2006 page 268 of 788 REJ09B0300-0300 RENESAS

0: ICRD is not used as a buffer register for IC 1: ICRD is used as a buffer register for ICRE

1.3.9 Timer Output Compare Control Register (TOCR)

Initial Value

Bit Name

Bit

TOCR enables output from the output compare pins, selects the output levels, switches between output compare registers A and B, controls the ICRD and OCRA operating numbers switches access to input capture registers A, B, and C.

Description

R/W

7	ICRDMS	0	R/W	Input Capture D Mode Select
				Specifies whether ICRD is used in the norm mode or in the operating mode using OCRI
				0: The normal operating mode is specified to
				1: The operating mode using OCRDM is sp ICRD
6	OCRAMS	0	R/W	Output Compare A Mode Select
				Specifies whether OCRA is used in the nor operating mode or in the operating mode us and OCRAF.
				0: The normal operating mode is specified
				The operating mode using OCRAR and specified for OCRA
5	ICRS	0	R/W	Input Capture Register Select
				The same addresses are shared by ICRA aby ICRB and OCRAF, and by ICRC and OCICRS bit determines which registers are set the shared addresses are read from or writ operation of ICRA, ICRB, and ICRC is not a
				0: ICRA, ICRB, and ICRC are selected
				1: OCRAR, OCRAF, and OCRDM are sele

Rev. 3.00 Mar 21, 2006 pag REJ09

				output pin (FTOA).
				0: Output compare A output is disabled
				1: Output compare A output is enabled
2	OEB	0	R/W	Output Enable B
				Enables or disables output of the output comoutput pin (FTOB).
				0: Output compare B output is disabled
				1: Output compare B output is enabled
1	OLVLA	0	R/W	Output Level A
				Selects the level to be output at the output of output pin (FTOA) in response to compare-n (signal indicating a match between the FRC values). When the OCRAMS bit is 1, this bit
				0: 0 is output at compare-match A
				1: 1 is output at compare-match A
0	OLVLB	0	R/W	Output Level B
				Selects the level to be output at the output coutput pin (FTOB) in response to compare-n (signal indicating a match between the FRC values).
				0: 0 is output at compare-match B
				1: 1 is output at compare-match B

R/W

Output Enable A

Enables or disables output of the output com

3

OEA

0

REJ09B0300-0300 RENESAS

Rev. 3.00 Mar 21, 2006 page 270 of 788

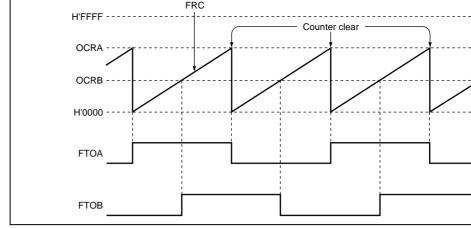


Figure 11.2 Example of Pulse Output

Rev. 3.00 Mar 21, 2006 pag REJ0

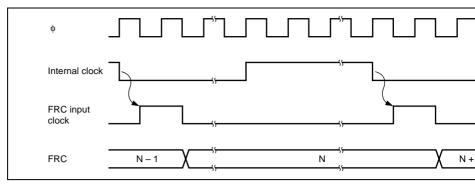


Figure 11.3 Increment Timing with Internal Clock Source

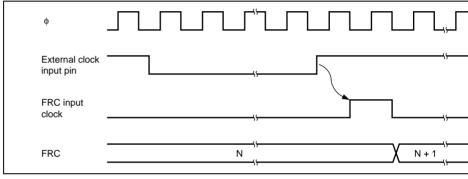


Figure 11.4 Increment Timing with External Clock Source

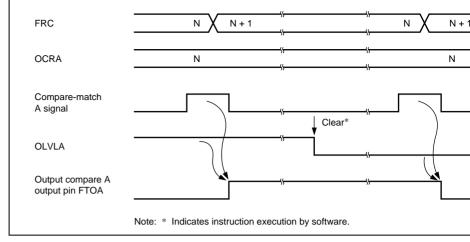


Figure 11.5 Timing of Output Compare A Output

11.5.3 FRC Clear Timing

FRC can be cleared when compare-match A occurs. Figure 11.6 shows the timing of toperation.

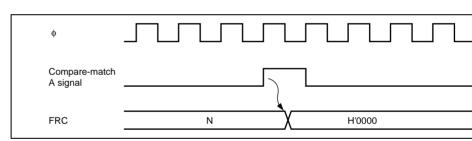


Figure 11.6 Clearing of FRC by Compare-Match A Signal

Rev. 3.00 Mar 21, 2006 pag REJ0

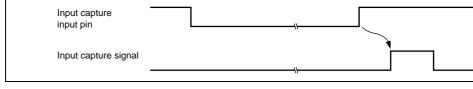


Figure 11.7 Input Capture Input Signal Timing (Usual Case)

If ICRA to ICRAD are read when the corresponding input capture signal arrives, the in capture signal is delayed by one system clock (ϕ) . Figure 11.8 shows the timing for this

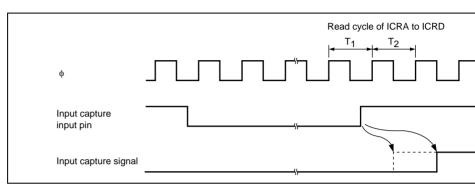


Figure 11.8 Input Capture Input Signal Timing (When ICRA to ICRD are

11.5.5 Buffered Input Capture Input Timing

ICRC and ICRD can operate as buffers for ICRA and ICRB, respectively. Figure 11.9 input capture operates when ICRC is used as ICRA's buffer register (BUFEA = 1) and IEDGC are set to different values (IEDGA = 0 and IEDGC = 1, or IEDGA = 1 and IED so that input capture is performed on both the rising and falling edges of FTIA.

Rev. 3.00 Mar 21, 2006 page 274 of 788 REJ09B0300-0300

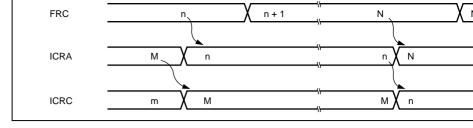
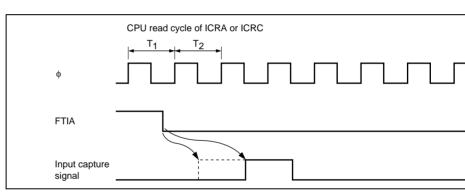



Figure 11.9 Buffered Input Capture Timing

Even when ICRC or ICRD is used as a buffer register, its input capture flag is set by t transition of its input capture signal. For example, if ICRC is used to buffer ICRA, where transition selected by the IEDGC bit occurs on the FTIC input capture line, ICFC will if the ICICE bit is set at this time, an interrupt will be requested. The FRC value will a transferred to ICRC, however. In buffered input capture, if either set of two registers the will be transferred (ICRA and ICRC, or ICRB and ICRD) is being read when the input input signal arrives, input capture is delayed by one system clock (ϕ). Figure 11.10 sh timing when BUFEA = 1.

Figure 11.10 Buffered Input Capture Timing (BUFEA = 1)

Rev. 3.00 Mar 21, 2006 pag REJ0

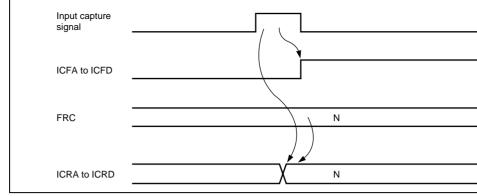


Figure 11.11 Timing of Input Capture Flag (ICFA, ICFB, ICFC, or ICFD) S

11.5.7 Timing of Output Compare Flag (OCF) setting

The output compare flag, OCFA or OCFB, is set to 1 by a compare-match signal gener the FRC value matches the OCRA or OCRB value. This compare-match signal is gene last state in which the two values match, just before FRC increments to a new value. W FRC and OCRA or OCRB value match, the compare-match signal is not generated unt cycle of the clock source. Figure 11.12 shows the timing of setting the OCFA or OCFB

Rev. 3.00 Mar 21, 2006 page 276 of 788 REJ09B0300-0300

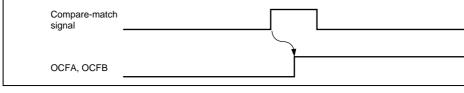


Figure 11.12 Timing of Output Compare Flag (OCFA or OCFB) Setti

Timing of FRC Overflow Flag Setting 11.5.8

The FRC overflow flag (OVF) is set to 1 when FRC overflows (changes from H'FFFF Figure 11.13 shows the timing of setting the OVF flag.

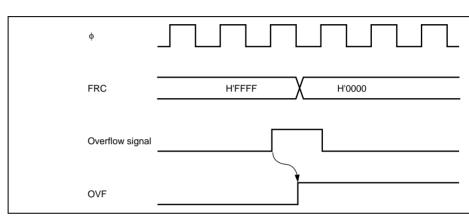


Figure 11.13 Timing of Overflow Flag (OVF) Setting

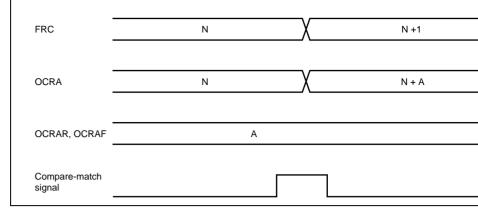


Figure 11.14 OCRA Automatic Addition Timing

11.5.10 Mask Signal Generation Timing

When the ICRDMS bit in TOCR is set to 1 and the contents of OCRDM are other than signal that masks the ICRD input capture signal is generated. The mask signal is set by capture signal. The mask signal is cleared by the sum of the ICRD contents and twice t OCRDM contents, and an FRC compare-match. Figure 11.15 shows the timing of setting signal. Figure 11.16 shows the timing of clearing the mask signal.

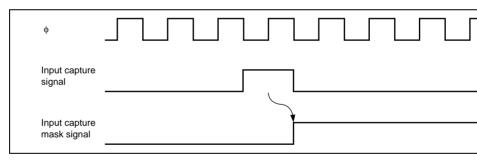


Figure 11.15 Timing of Input Capture Mask Signal Setting

Rev. 3.00 Mar 21, 2006 page 278 of 788

REJ09B0300-0300

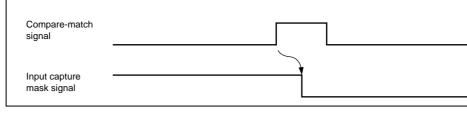


Figure 11.16 Timing of Input Capture Mask Signal Clearing

11.6 Interrupt Sources

The free-running timer can request seven interrupts: ICIA to ICID, OCIA, OCIB, and interrupt can be enabled or disabled by an enable bit in TIER. Independent signals are interrupt controller for each interrupt. Table 11.2 lists the sources and priorities of the

The ICIA, ICIB, OCIA, and OCIB interrupts can be used as the on-chip DTC activation

Table 11.2 FRT Interrupt Sources

Interrupt	Interrupt Source	Interrupt Flag	DTC Activation
ICIA	Input capture of ICRA	ICFA	Enabled
ICIB	Input capture of ICRB	ICFB	Enabled
ICIC	Input capture of ICRC	ICFC	Disabled
ICID	Input capture of ICRD	ICFD	Disabled
OCIA	Compare match of OCRA	OCFA	Enabled
OCIB	Compare match of OCRB	OCFB	Enabled
FOVI	Overflow of FRC	OVF	Disabled

Rev. 3.00 Mar 21, 2006 pag REJ09

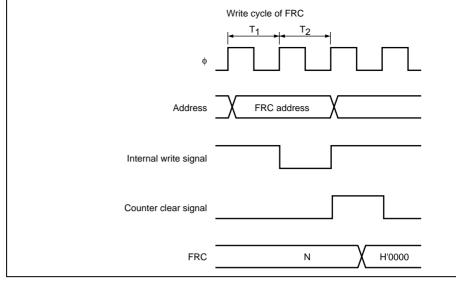


Figure 11.17 FRC Write-Clear Conflict

Rev. 3.00 Mar 21, 2006 page 280 of 788 REJ09B0300-0300

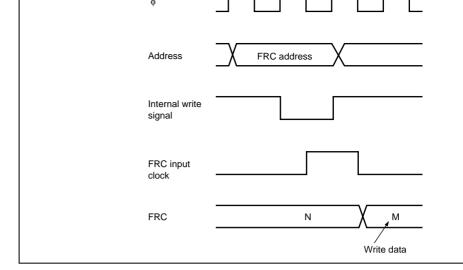


Figure 11.18 FRC Write-Increment Conflict

the automatic addition is not written to OCRA. Figure 11.20 shows the timing for this t conflict.

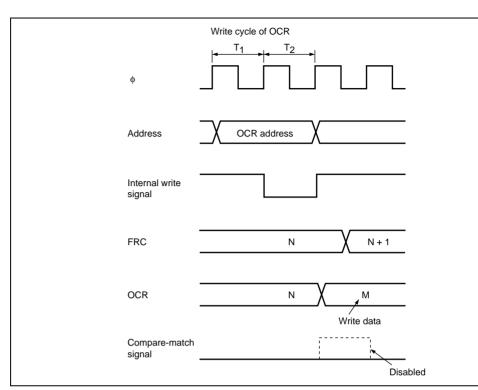
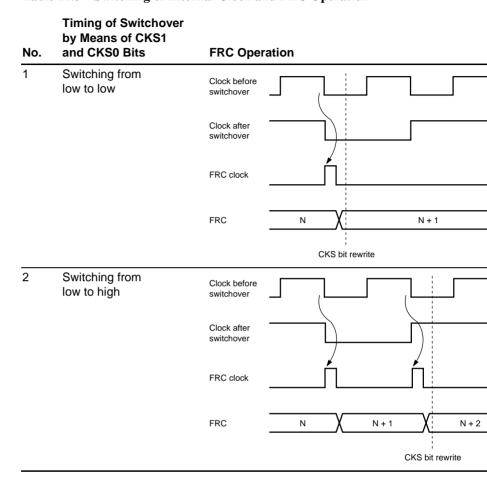


Figure 11.19 Conflict between OCR Write and Compare-Match (When Automatic Addition Function Is Not Used)

Rev. 3.00 Mar 21, 2006 page 282 of 788 REJ09B0300-0300



Internal write signal	
OCRAR (OCRAF)	Old data New data
Compare-match signal	Disabled
FRC	N N+1
OCRA	N X
	Automatic addition is not performed because compare-match signals are disabled.

Figure 11.20 Conflict between OCRAR/OCRAF Write and Compare-M (When Automatic Addition Function Is Used)

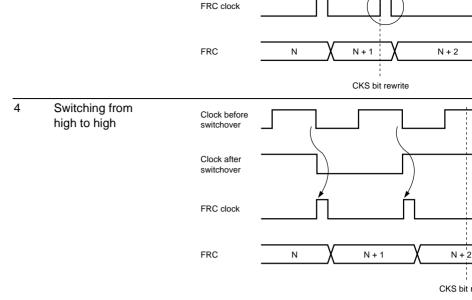

Rev. 3.00 Mar 21, 2006 pag REJ0 edge that triggers the FRC clock, and FRC is incremented. Switching between an internal and external clock can also cause FRC to increment.

Table 11.3 Switching of Internal Clock and FRC Operation

Rev. 3.00 Mar 21, 2006 page 284 of 788 REJ09B0300-0300

Note: * Generated on the assumption that the switchover is a falling edge; FRC is it

11.7.5 Module Stop Mode Setting

FRT operation can be enabled or disabled using the module stop control register. The setting is for FRT operation to be halted. Register access is enabled by canceling the mode. For details, refer to section 26, Power-Down Modes.

Rev. 3.00 Mar 21, 2006 page 286 of 788 REJ09B0300-0300

This LSI also has a similar on-chip 8-bit timer module (TMR_Y and TMR_X) with twenth can be used through connection to the timer connection.

12.1 Features

- Selection of clock sources
 - TMR_0, TMR_1: The counter input clock can be selected from six internal clock
 TMR_V_TMR_Y. The counter input clock can be selected from three internal.
 - TMR_Y, TMR_X: The counter input clock can be selected from three internal an external clock

— The counters can be cleared on compare-match A or compare-match B, or by a

pulse output or PWM output with an arbitrary duty cycle. (The TMR_Y does r

Operation as a 16-bit timer can be performed using TMR_0 as the upper half a

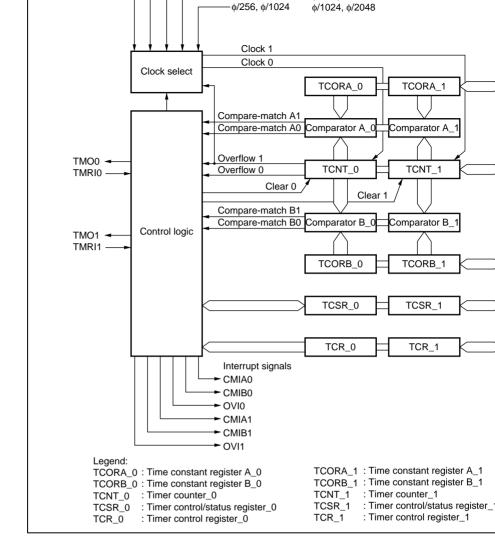
TMR_1 can be used to count TMR_0 compare-match occurrences (compare-m

- Selection of three ways to clear the counters
 - reset signal.
- Timer output controlled by two compare-match signals
 - The timer output signal in each channel is controlled by two independent comp signals, enabling the timer to be used for various applications, such as the general controlled by two independent comparisons.

timer output pin.)Cascading of TMR 0 and TMR 1

- (TMD V and TMD V connet be accorded
 - (TMR_Y and TMR_X cannot be cascaded.)

as the lower half (16-bit count mode).


mode).

- Multiple interrupt sources for each channel
- TMR_0, TMR_1, and TMR_Y: Three types of interrupts: Compare-match A, of match B, and overflow
 - TMR_X: Input capture

TIMH261A_010020020700

Rev. 3.00 Mar 21, 2006 pag REJ09

 $Figure~12.1~~Block~Diagram~of~8\text{-}Bit~Timers~(TMR_0~and~TMR_1)$

Rev. 3.00 Mar 21, 2006 page 288 of 788 REJ09B0300-0300

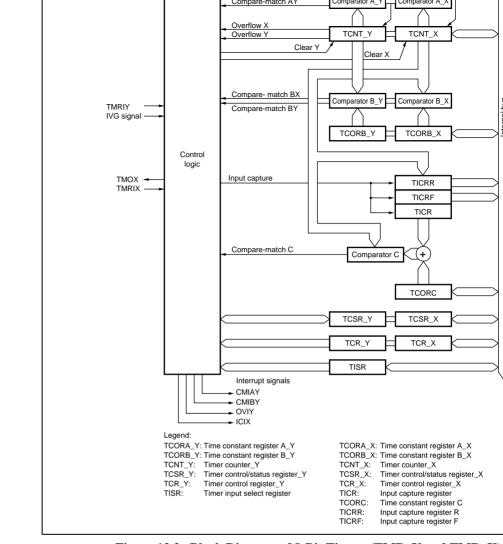


Figure 12.2 Block Diagram of 8-Bit Timers (TMR_Y and TMR_X)

Rev. 3.00 Mar 21, 2006 pag

Timer reset input	TMRI0	Input	External reset input for the
Timer output	TMO1	Output	Output controlled by comp
Timer clock input	TMCI1	Input	External clock input for th
Timer reset input	TMRI1	Input	External reset input for the
Timer clock/reset input	VSYNCI/TMIY (TMCIY/TMRIY)	Input	External clock input/external input for the counter
Timer output	TMOX	Output	Output controlled by comp
Timer clock/reset input	HFBACKI/TMIX (TMCIX/TMRIX)	Input	External clock input/external clock input for the counter
	Timer output Timer clock input Timer reset input Timer clock/reset input Timer output Timer clock/reset	Timer output TMO1 Timer clock input TMCI1 Timer reset input TMRI1 Timer clock/reset VSYNCI/TMIY (TMCIY/TMRIY) Timer output TMOX Timer clock/reset HFBACKI/TMIX	Timer output TMO1 Output Timer clock input TMCI1 Input Timer reset input TMRI1 Input Timer clock/reset input VSYNCI/TMIY (TMCIY/TMRIY) Timer output TMOX Output Timer clock/reset HFBACKI/TMIX Input

section 3.2.3, Serial Timer Control Register (STCR). For details on timer connection re-

refer to section 13.3.3, Timer Connection Register S (TCONRS).

12.3 **Register Descriptions**

The TMR has the following registers. For details on the serial timer control register, re-

- Timer counter (TCNT)
- Time constant register A (TCORA)
 - Time constant register B (TCORB)
 - Timer control register (TCR)
 - Timer control/status register (TCSR)
 - Timer input select register (TISR)*1
 - Time constant register C (TCORC)*2
- Input capture register R (TICRR)*2
- Input capture register F (TICRF)*2

Notes: 1. TISR is only for the TMR_Y.

2. TCORC, TICRR, and TICRF are only for the TMR_X.

Rev. 3.00 Mar 21, 2006 page 290 of 788

REJ09B0300-0300 RENESAS

12.3.2 **Time Constant Register A (TCORA)**

register, so they can be accessed together by word access. TCORA is continually com the value in TCNT. When a match is detected, the corresponding compare-match flag in TCSR is set to 1. Note however that comparison is disabled during the T2 state of a write cycle. The timer output from the TMO pin can be freely controlled by these con A signals and the settings of output select bits OS1 and OS0 in TCSR. TCORA is init H'FF.

TCORA is an 8-bit readable/writable register. TCORA_0 and TCORA_1 comprise a

12.3.3 **Time Constant Register B (TCORB)**

TCORB is an 8-bit readable/writable register. TCORB_0 and TCORB_1 comprise a s register, so they can be accessed together by word access. TCORB is continually com the value in TCNT. When a match is detected, the corresponding compare-match flag in TCSR is set to 1. Note however that comparison is disabled during the T2 state of a write cycle. The timer output from the TMO pin can be freely controlled by these con B signals and the settings of output select bits OS3 and OS2 in TCSR. TCORB is initial H'FF.

12.3.4 **Timer Control Register (TCR)**

TCR selects the TCNT clock source and the condition by which TCNT is cleared, and enables/disables interrupt requests.

Rev. 3.00 Mar 21, 2006 pag

REJ0

6	CMIEA	0	R/W	Compare-Match Interrupt Enable A
				Selects whether the CMFA interrupt request (CM enabled or disabled when the CMFA flag in TCS 1. Note that a CMIA interrupt is not generated by regardless of the CMIEA value.
				0: CMFA interrupt request (CMIA) is disabled
				1: CMFA interrupt request (CMIA) is enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				Selects whether the OVF interrupt request (OVI) or disabled when the OVF flag in TCSR is set to that an OVI interrupt is not generated by TMR_X regardless of the OVIE value.
				0: OVF interrupt request (OVI) is disabled
				1: OVF interrupt request (OVI) is enabled
4	CCLR1	0	R/W	Counter Clear 1, 0
3	CCLR0	0	R/W	These bits select the method by which the timer cleared.
				00: Clearing is disabled
				01: Cleared on compare-match A
				10: Cleared on compare-match B
				11: Cleared on rising edge of external reset input
2	CKS2	0	R/W	Clock Select 2 to 0

Rev. 3.00 Mar 21, 2006 page 292 of 788 REJ09B0300-0300 RENESAS

CKS1

CKS0

0

0

1

0

For details, see table 12.2.

R/W These bits select the clock input to TCNT and co

condition, together with the ICKS1 and ICKS0 bi

	0	1	1		1	Increments at falling edge of internal of	
	1	0	0			Increments at overflow signal from TC	
TMR_1	0	0	0			Disables clock input	
	0	0	1	0		Increments at falling edge of internal of	
	0	0	1	1		Increments at falling edge of internal of	
	0	1	0	0		Increments at falling edge of internal of	
	0	1	0	1		Increments at falling edge of internal of	
	0	1	1	0		Increments at falling edge of internal of	
	0	1	1	1		Increments at falling edge of internal of	
	1	0	0			Increments at compare-match A from	
TMR_Y	0	0	0			Disables clock input	
	0	0	1			Increments at falling edge of internal of	
	0	1	0			Increments at falling edge of internal of	
	0	1	1			Increments at falling edge of internal of	
	1	0	0			Disables clock input	
TMR_X	0	0	0			Disables clock input	
	0	0	1			Increments at falling edge of internal of	
	0	1	0			Increments at falling edge of internal of	
	0	1	1			Increments at falling edge of internal of	
	1	0	0			Disables clock input	
Common	1	0	1			Increments at rising edge of external of	
	1	1	0			Increments at falling edge of external	
	1	1	1			Increments at both rising and falling e external clock.	
Note: *	* If the TMR_0 clock input is set as the TCNT_1 overflow signal and the TMR_1 clock in the TCNT_0 compare-match signal simultaneously, a count-up clock cannot be general						

Increments at falling edge of internal of

Increments at falling edge of internal of

Rev. 3.00 Mar 21, 2006 pag

REJ09

				When the values of TCNT_0 and TCORB_0
				[Clearing conditions]
				• Read CMFB when CMFB = 1, then write
				When the DTC is activated by a CMIB into
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_0 and TCORA_0
				[Clearing conditions]
				• Read CMFA when CMFA = 1, then write
				When the DTC is activated by a CMIA into
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT_0 overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when OVF = 1, then write 0 in OV

R/W

Rev. 3.00 Mar 21, 2006 page 294 of 788 REJ09B0300-0300

4

ADTE

0

RENESAS

A/D Trigger Enable

compare-match A.

disabled

enabled

Enables or disables A/D converter start reque

0: A/D converter start requests by compare-m

1: A/D converter start requests by compare-m

				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1, 0
0	OS0	0	R/W	These bits specify how the TMO0 pin output changed by compare-match A of TCORA_0 TCNT_0.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
Note:	·) can be writter	າ, for flag	clearing.
• T(CSR 1			
Bit	_	Initial Value	R/W	Description
Bit 7	_	Initial Value	R/W R/(W)*	Description Compare-Match Flag B
	Bit Name			·

[0	[Clearing conditions				
•	Read CMFA when CMFA = 1, then write				
•	When the DTC is activated by a CMIA int				

R/(W)*

6

CMFA

0

RENESAS

[Clearing conditions]

Compare-Match Flag A

[Setting condition]

Read CMFB when CMFB = 1, then write When the DTC is activated by a CMIB in

When the values of TCNT_1 and TCORA_1

Rev. 3.00 Mar 21, 2006 pag

REJ09

3	OS3	0	R/W	Output Select 3, 2
2	OS2	0	R/W	These bits specify how the TMO1 pin output I changed by compare-match B of TCORB_1 a TCNT_1.
				00: No change
				01: 0 is output
				10: 1 is output
				11: Output is inverted (toggle output)
1	OS1	0	R/W	Output Select 1, 0
0	OS0	0	R/W	These bits specify how the TMO1 pin output I changed by compare-match A of TCORA_1 a

TCNT_1. 00: No change 01: 0 is output 10: 1 is output

This bit is always read as 1 and cannot be mo

11: Output is inverted (toggle output)

Only 0 can be written, for flag clearing.

RENESAS

Rev. 3.00 Mar 21, 2006 page 296 of 788

REJ09B0300-0300

			 When the DTC is activated by a CMIB in
6	CMFA	0	R/(W)*1 Compare-Match Flag A
			[Setting condition]
			When the values of TCNT_Y and TCORA_Y
			[Clearing conditions]
			 Read CMFA when CMFA = 1, then write
			 When the DTC is activated by a CMIA in
5	OVF	0	R/(W)*1 Timer Overflow Flag
			[Setting condition]

R/W

When TCNT_Y overflows from H'FF to H'00

Read OVF when OVF = 1, then write 0 in OV

Enables or disables the ICF interrupt reques

Rev. 3.00 Mar 21, 2006 pag

REJ09

0: ICF interrupt request (ICIX) is disabled1: ICF interrupt request (ICIX) is enabled

[Clearing condition]

Input Capture Interrupt Enable

the ICF bit in TCSR_X is set to 1.

ICIE

4

0

				11: Output is inverted (toggle output)		
1	OS1	0	R/W	Output Select 1, 0		
0	OS0	0	R/W	These bits specify how the TMOY pin*2 out be changed by compare-match A of TCOR/TCNT_Y.		
				00: No change		
				01: 0 is output		
				10: 1 is output		
				11: Output is inverted (toggle output)		
Notes	: 1. Only (can be written	, for flag	clearing.		
2. This product does not have a TMOY external output pin.						
• TO	CSR_X					
Bit	Bit Name	Initial Value	R/W	Description		
7	CMFB	0	R/(W)*	Compare-Match Flag B		

		•	, (,	
				[Setting condition]
				When the values of TCNT_X and TCORB_X r
				[Clearing conditions]
				• Read CMFB when CMFB = 1, then write 0
				When the DTC is activated by a CMIB inter-
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When the values of TCNT_X and TCORA_X r
				[Clearing conditions]
				• Read CMFA when CMFA = 1, then write 0

Rev. 3.00 Mar 21, 2006 page 298 of 788 REJ09B0300-0300

RENESAS

• When the DTC is activated by a CMIA into

			When a rising edge and falling edge is detect external reset signal in that order, after the ICTCONRI of the timer connection is set to 1
			[Clearing condition]
			Read ICF when ICF = 1, then write 0 in ICF
OS3	0	R/W	Output Select 3, 2
OS2	0	R/W	These bits specify how the TMOX pin output changed by compare-match B of TCORB_X TCNT_X.
			00: No change
			01: 0 is output
			10: 1 is output
			11: Output is inverted (toggle output)
OS1	0	R/W	Output Select 1, 0
OS0	0	R/W	These bits specify how the TMOX pin output changed by compare-match A of TCORA_X TCNT_X.
			00: No change
			01: 0 is output
			10: 1 is output

[Setting condition]

Note: * Only 0 can be written, for flag clearing.

3 2

11: Output is inverted (toggle output)

Rev. 3.00 Mar 21, 2006 pag REJ09

ICORC is an 8-bit readable/writable register. The sum of contents of ICORC and IIC compared with TCNT. When a match is detected, a compare-match C signal is generate However, comparison at the T2 state in the write cycle to TCORC and at the input capt TICR is disabled. TCORC is initialized to H'FF. The TCORC function is used for the t connection. For details, refer to section 13. Timer Connection.

12.3.8 **Input Capture Registers R and F (TICRR, TICRF)**

TICRR and TICRF are 8-bit read-only registers. The contents of TCNT are transferred rising edge and falling edge of the external reset input in that order, when the ICST bit of the timer connection is set to 1. The ICST bit is cleared to 0 when one capture opera TICRR and TICRF are initialized to H'00. The TICRR and TICRF functions are used f connection. For details, refer to section 13, Timer Connection.

12.3.9 **Timer Input Select Register (TISR)**

TISR selects a signal source of external clock/reset input for the counter.

Bit	Bit Name	Initial Value	R/W	Description
7	_	All 1	R/(W)	Reserved
to 1				The initial values should not be modified.
0	IS	0	R/W	Input Select
				Selects an internal synchronization signal (IVC timer clock/reset input pin VSYNCI/TMIY (TMC as the signal source of external clock/reset inp TMR_Y counter.
				0: IVG signal is selected
				1: VSYNCI/TMIY (TMCIY/TMRIY) is selected

Rev. 3.00 Mar 21, 2006 page 300 of 788 REJ09B0300-0300

RENESAS

2. Set the OS3 to OS0 bits in TCSR to B'0110 so that 1 is output according to the con of TCORA and 0 is output according to the compare match of TCORB.

According to the above settings, the waveforms with the TCORA cycle and TCORB can be output without the intervention of software.

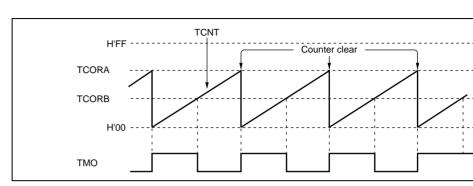


Figure 12.3 Pulse Output Example

Rev. 3.00 Mar 21, 2006 pag

REJ09

Figure 12.4 Count Timing for Internal Clock Input

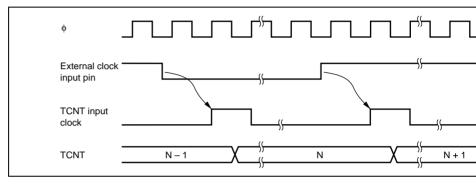


Figure 12.5 Count Timing for External Clock Input (Both Edges)

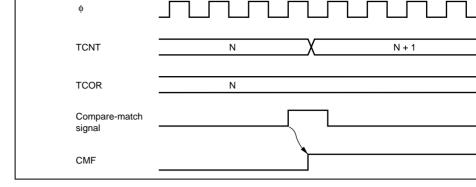


Figure 12.6 Timing of CMF Setting at Compare-Match

Timing of Timer Output at Compare-Match 12.5.3

When a compare-match signal occurs, the timer output changes as specified by the OS bits in TCSR. Figure 12.7 shows the timing of timer output when the output is set to to compare-match A signal.

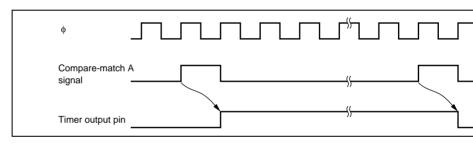


Figure 12.7 Timing of Toggled Timer Output by Compare-Match A Sig

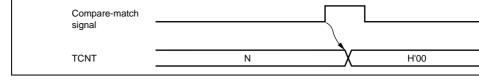


Figure 12.8 Timing of Counter Clear by Compare-Match

12.5.5 TCNT External Reset Timing

TCNT is cleared at the rising edge of an external reset input, depending on the settings CCLR1 and CCLR0 bits in TCR. The width of the clearing pulse must be at least 1.5 st 12.9 shows the timing of clearing the counter by an external reset input.

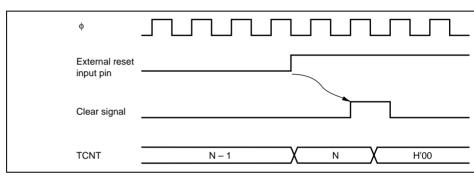


Figure 12.9 Timing of Counter Clear by External Reset Input

Rev. 3.00 Mar 21, 2006 page 304 of 788 REJ09B0300-0300

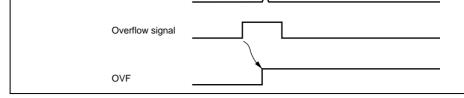


Figure 12.10 Timing of OVF Flag Setting

12.6 **Operation with Cascaded Connection**

If bits CKS2 to CKS0 in either TCR_0 or TCR_1 are set to B'100, the 8-bit timers of channels are cascaded. With this configuration, a single 16-bit timer can be used (16-bit timer mode) or the compare-matches of the 8-bit timer of channel 0 can be counted by the 8 channel 1 (compare-match count mode).

12.6.1 **16-Bit Count Mode**

When bits CKS2 to CKS0 in TCR_0 are set to B'100, the timer functions as a single 1 with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits.

Setting of Compare-Match Flags:

- The CMF flag in TCSR_0 is set to 1 when a 16-bit compare-match occurs.
- The CMF flag in TCSR_1 is set to 1 when a lower 8-bit compare-match occurs.

Rev. 3.00 Mar 21, 2006 pag

REJ09

Pin Output:

- Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR_0 is in accordant 16-bit compare-match conditions.
- Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR_1 is in accordate lower 8-bit compare-match conditions.

12.6.2 Compare-Match Count Mode

When bits CKS2 to CKS0 in TCR_1 are B'100, TCNT_1 counts the occurrence of comA for channel 0. Channels 0 and 1 are controlled independently. Conditions such as set CMF flag, generation of interrupts, output from the TMO pin, and counter clearing are accordance with the settings for each channel.

12.7 Input Capture Operation

TMR_X has input capture registers (TICR, TICRR and TICRF). A narrow pulse width measured with TICRR and TICRF, using a single capture operation controlled by the It TCONRI of the timer connection. If the falling edge of TMRIX is detected after its risi been detected while the ICST bit is set to 1, the value of TCNT at that time is transferred TICRR and TICRF, and the ICST bit is cleared to 0.

The input signal to TMRIX can be switched by the setting of the other bits in TCONRI

Rev. 3.00 Mar 21, 2006 page 306 of 788 REJ09B0300-0300

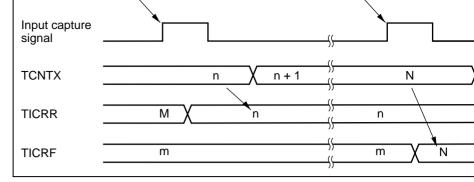


Figure 12.11 Timing of Input Capture Operation

If the input capture signal is input while TICRR and TICRF are being read, the input of signal is delayed by one system clock (φ) cycle. Figure 12.12 shows the timing of this

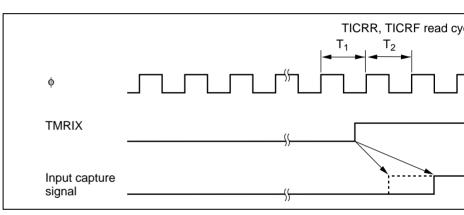


Figure 12.12 Timing of Input Capture Signal (Input Capture Signal Is Input during TICRR and TICRF Read)

Rev. 3.00 Mar 21, 2006 pag REJ0

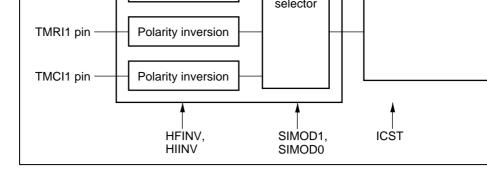


Figure 12.13 Input Capture Signal Selection

Bit 1

HIINV

Description

Table 12.3 Input Capture Signal Selection

Bit 7

SIMOD1

Bit 4

ICST

TCONRI

Bit 6

SIMOD0

0	_	_	_	_	Input capture function not us
1	0	0	0	_	TMIX pin input selection
			1		Inverted TMIX pin input sele
		1	_	0	TMRI1 pin input selection
			_	1	Inverted TMRI1 pin input se
	1	1		0	TMCI1 pin input selection
			_	1	Inverted TMCI1 pin input se

Bit 3

HFINV

Rev. 3.00 Mar 21, 2006 page 308 of 788 REJ09B0300-0300

Table 12.4 Interrupt Sources of 8-Bit Timers TMR_0, TMR_1, TMR_Y, and T

Channel	Name	Interrupt Source	Flag	Activation	Pr
TMR_0	CMIA0	TCORA_0 compare-match	CMFA	Enabled	Hiç
	CMIB0	TCORB_0 compare-match	CMFB	Enabled	_ 1
	OVI0	TCNT_0 overflow	OVF	Disabled	
TMR_1	CMIA1	TCORA_1 compare-match	CMFA	Enabled	
	CMIB1	TCORB_1 compare-match	CMFB	Enabled	
	OVI1	TCNT_1 overflow	OVF	Disabled	
TMR_Y	CMIAY	TCORA_Y compare-match	CMFA	Enabled	
	CMIBY	TCORB_Y compare-match	CMFB	Enabled	
	OVIY	TCNT_Y overflow	OVF	Disabled	
TMR_X	ICIX	Input capture	ICF	Disabled	Lo

Rev. 3.00 Mar 21, 2006 pag REJ09

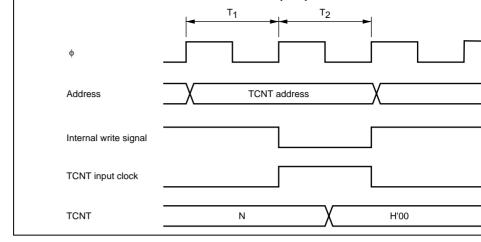


Figure 12.14 Conflict between TCNT Write and Clear

Rev. 3.00 Mar 21, 2006 page 310 of 788 REJ09B0300-0300

Figure 12.15 Conflict between TCNT Write and Increment

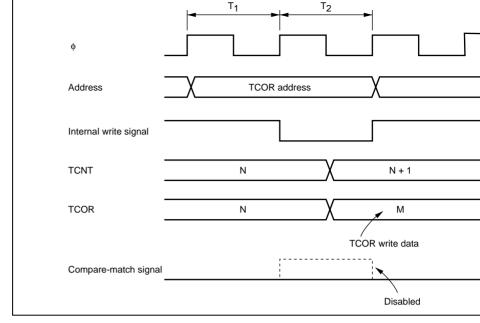
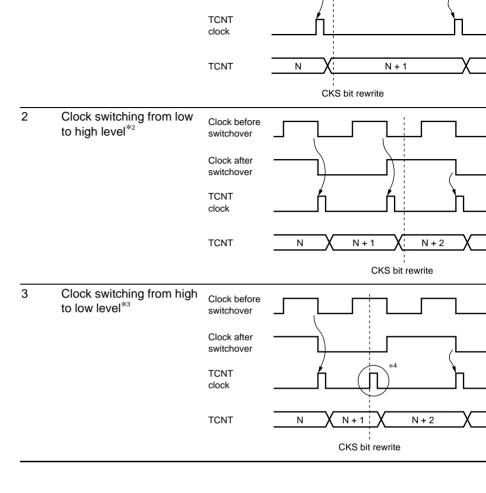


Figure 12.16 Conflict between TCOR Write and Compare-Match


Toggle output	High
1 output	
0 output	
No change	Low

12.9.5 Switching of Internal Clocks and TCNT Operation

TCNT may increment erroneously when the internal clock is switched over. Table 12 relationship between the timing at which the internal clock is switched (by writing to and CKS0 bits) and the TCNT operation.

When the TCNT clock is generated from an internal clock, the falling edge of the interpulse is detected. If clock switching causes a change from high to low level, as shown table 12.6, a TCNT clock pulse is generated on the assumption that the switchover is a edge, and TCNT is incremented.

Erroneous incrementation can also happen when switching between internal and exter

Rev. 3.00 Mar 21, 2006 page 314 of 788

REJ09B0300-0300

CIUCK						-
TCNT	N	$\supset \! \subset$	N + 1	$\supset \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	N + 2	$\supset \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
					i	
				(CKS bit rev	vrite

Notes: 1. Includes switching from low to stop, and from stop to low.

- 2. Includes switching from stop to high.
- 3. Includes switching from high to stop.
- Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

12.9.6 Mode Setting with Cascaded Connection

If the 16-bit count mode and compare-match count mode are set simultaneously, the inpulses for TCNT_0 and TCNT_1 are not generated, and thus the counters will stop op Simultaneous setting of these two modes should therefore be avoided.

12.9.7 Module Stop Mode Setting

TMR operation can be enabled or disabled using the module stop control register. The setting is for TMR operation to be halted. Register access is enabled by canceling the mode. For details, refer to section 26, Power-Down Modes.

Rev. 3.00 Mar 21, 2006 pag

REJ09

Rev. 3.00 Mar 21, 2006 page 316 of 788 REJ09B0300-0300

- Five input pins and four output pins, all of which can be designated for phase inve
 Positive logic is assumed for all signals used within the timer connection facility.
- An edge-detection circuit is connected to the input pins, simplifying signal input d
- TMR_X can be used for PWM input signal decoding.
 TMR X can be used for clamp waveform generation.
- An external clock signal divided by TMR_1 can be used as the FRT capture input
- An external clock signal divided by TMR_1 can be used as the FRT capture in
 An internal synchronization signal can be generated using the FRT and TMR.
- An internal synchronization signal can be generated using the FRT and TMR_Y.

 A signal generated/modified using an input signal and timer connection can be sel

Figure 13.1 shows a block diagram of the timer connection facility.

Rev. 3.00 Mar 21, 2006 pag

REJ09

output.

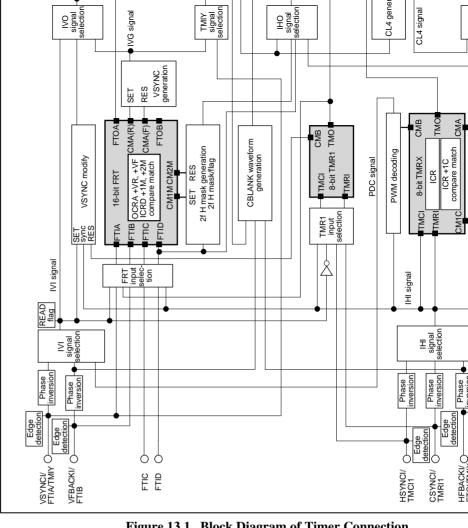


Figure 13.1 Block Diagram of Timer Connection

Rev. 3.00 Mar 21, 2006 page 318 of 788

REJ09B0300-0300

input pin			input pin or FTIA inpu input pin
Horizontal synchronization signal input pin	HSYNCI	Input	Horizontal synchroniz input pin or TMCI1 in
Composite synchronization signal input pin	CSYNCI	Input	Composite synchroni input pin or TMRI1 in
Spare vertical synchronization signal input pin	VFBACKI	Input	Spare vertical synchr signal input pin or FT
Spare horizontal synchronization signal input pin	HFBACKI	Input	Spare horizontal sync signal input pin or FT pin/TMIX input pin

VSYNCO

HSYNCO

CLAMPO

CBLANK

Output

Output

Output

Output

Vertical synchronization signal

Horizontal synchronization signal

Clamp waveform output pin

Blanking waveform output pin

output pin

output pin

13.3

The timer connection has the following registers.

Register Descriptions

- Timer connection register I (TCONRI)
- Timer connection register O (TCONRO)
- Timer connection register S (TCONRS)
- Edge sense register (SEDGR)

Vertical synchronizat

output pin or FTOA o

Horizontal synchroniz

output pin or TMO1 c Clamp waveform out

Blanking waveform o

FTIC input pin

				• Mode
				00: No signal
				01: S-on-G mode
				10: Composite mode
				11: Separate mode
				IHI Signal
				00: HFBACKI input
				01: CSYNCI input
				1X: HSYNCI input
				IVI Signal
				00: VFBACKI input
				01: PDC input
				10: PDC input
				11: VSYNCI input
5	SCONE	0	R/W	Synchronization Signal Connection Enable
				Selects the signal source of the FRT FTI in TMR_1 TMI1 input and TMCI1/TMRI1 input details, see table 13.2.

signais.

Rev. 3.00 Mar 21, 2006 page 320 of 788 REJ09B0300-0300

1, the contents of TCNT at those points a into TICRR and TICRF, respectively, and is cleared to 0. [Clearing condition] When a rising edge followed by a falling e detected on TMRIX

[Setting condition]

When 1 is written in ICST after reading IC

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ0

- 0: The HFBACKI pin state is used directly HFBACKI input
- 1: The HFBACKI pin state is inverted before the HFBACKI input
- 0: The VFBACKI pin state is used directly a
 - VFBACKI input 1: The VFBACKI pin state is inverted before
 - the VFBACKI input
 - HIINV

VFINV

- 0: The HSYNCI and CSYNCI pin states are
- directly as the HSYNCI and CSYNCI inp 1: The HSYNCI and CSYNCI pin states are before use as the HSYNCI and CSYNCI

1: The VSYNCI pin state is inverted before

VFBACKI

input

FTID

FTID

input

signal

IHI

TMCI1

TMCI1

input

signal

IHI

- VIINV
- 0: The VSYNCI pin state is used directly as

VSYNCI input

TMO₁

signal

- **VSYNCI** input

IVI

signal

Legend: X: Don't care

1

Table 13.2 Synchronization Signal Connection Enable

Bit 5			Description		
00015	N41 -	ET!A	ETID		

			•		
SCONE	Mode	FTIA	FTIB	FTIC	
0	Normal connection (Initial value)	FTIA	FTIB	FTIC	
		input	input	input	

Rev. 3.00 Mar 21, 2006 page 322 of 788 REJ09B0300-0300

Synchronization signal

connection mode

K/VV (CLAMPO), and blanking waveform (CBL output is disabled, the state of the relevan determined by port DR and DDR, FRT, T PWM settings. Output enabling/disabling control does no port, FRT, or TMR input functions, but so TMR input signal sources are determined SCONE bit in TCONRI. HOE: 0: The P44/TMO1/HIRQ1/HSYNCO pin fe the P44/TMO1/HIRQ1 pin 1: The P44/TMO1/HIRQ1/HSYNCO pin for the HSYNCO pin VOE: 0: The P61/FTOA/CIN1/KIN1/VSYNCO p as the P61/FTOA/CIN1/KIN1 pin 1: The P61/FTOA/CIN1/KIN1/VSYNCO p as the VSYNCO pin CLOE: 0: The P64/FTIC/CIN4/KIN4/CLAMPO pi as the P64/FTIC/CIN4/KIN4 pin 1: The P64/FTIC/CIN4/KIN4/CLAMPO pi as the CLAMPO pin CBOE: 0: The P27/A15/PW15/CBLANK pin function P27/A15/PW15 pin In mode 1: 1: The P27/A15/PW15/CBLANK pin func A15 pin In modes 2 and 3: 1: The P27/A15/PW15/CBLANK pin func CBLANK pin

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ09

- U: The IHO signal is used directly as the H output 1: The IHO signal is inverted before use as
- VOINV:
 - 0: The IVO signal is used directly as the V
 - output 1: The IVO signal is inverted before use as
 - VSYNCO output

HSYNCO output

- CLOINV:
- 0: The CLO signal (CL1, CL2, CL3, or CL4 used directly as the CLAMPO output
- 1: The CLO signal (CL1, CL2, CL3, or CL4

CBLANK output

- inverted before use as the CLAMPO our CBOINV:
- 0: The CBLANK signal is used directly as t output 1: The CBLANK signal is inverted before u

Rev. 3.00 Mar 21, 2006 page 324 of 788 REJ09B0300-0300

01: The IHI signal (with 2fH modification
1X: The CL1 signal is selected
• ISGENE = 1
XX: The IHG signal is selected

6

5

4

ISGENE

HOMOD1

HOMOD0

0

0

0

R/W

R/W

R/W

0: The TMR_X registers are accessed a H'(FF)FFF0 to H'(FF)FFF5

1: The TMR Y registers are accessed a H'(FF)FFF0 to H'(FF)FFF5

Selects internal synchronization signals and CL4 signals) as the signal sources IVO, and CLO signals together with the HOMODO, VOMOD1, VOMODO, CLMO

Horizontal Synchronization Output Mode

These bits select the signal source and

00: The IHI signal (without 2fH modification)

Rev. 3.00 Mar 21, 2006 pag

REJ09

method for the IHO signal.

ISGENE = 0

selected

RENESAS

Internal Synchronization Signal

CLMOD0 bits.

				synchronization) is selected
				10: The IVI signal (with fall modification, synchronization) is selected
				11: The IVI signal (with fall modification a synchronization) is selected
				• ISGENE = 1
				XX: The IVG signal is selected
1	CLMOD1	0	R/W	Clamp Waveform Mode Select 1, 0
0	CLMOD0	0	R/W	These bits select the signal source for th (clamp waveform).

ISGENE = 0
 00: The CL1 signal is selected
 01: The CL2 signal is selected
 1X: The CL3 signal is selected

Legend:

X: Don't care

Table 13.3 Registers Accessible by TMR_X/TMR_Y

MRX/Y	H'FFF0	H'FFF1	H'FFF2	H'FFF3	H'FFF4	H'FFF5	H'FFF6
	TMR_X	TMR_X	TMR_X	TMR_X	TMR_X	TMR_X	TMR_X
	TCR_X	TCSR_X	TICRR	TICRF	TCNT_X	TCORC	TCORA_X
	TMR_Y	TMR_Y	TMR_Y	TMR_Y	TMR_Y	TMR_Y	_
	TCR_Y	TCSR_Y	TCORA_Y	TCORB_Y	TCNT_Y	TISR	

ISGENE = 1

XX: The CL4 signal is selected

Rev. 3.00 Mar 21, 2006 page 326 of 788 REJ09B0300-0300

				When a rising edge is detected on the VS
6	HEDG	0	R/(W)*1	HSYNCI Edge
				Detects a rising edge on the HSYNCI pin
				[Clearing condition]
				When 0 is written in HEDG after reading I
				[Setting condition]
				When a rising edge is detected on the HS
5	CEDG	0	R/(W)*1	CSYNCI Edge
				Detects a rising edge on the CSYNCI pin
				[Clearing condition]
				When 0 is written in CEDG after reading
				[Setting condition]
				When a rising edge is detected on the CS
4	HFEDG	0	R/(W)*1	HFBACKI Edge
				Detects a rising edge on the HFBACKI pi
				[Clearing condition]

[Clearing condition]

[Setting condition]

When 0 is written in VEDG after reading

When 0 is written in HFEDG after reading

When a rising edge is detected on the HF

Rev. 3.00 Mar 21, 2006 pag

REJ0

RENESAS

[Setting condition]

				Detects the occurrence of an IHI signal 2ff modification condition. The generation of a falling/rising edge in the IHI signal during a interval is expressed as the occurrence of modification condition. For details, see sec
				[Clearing condition]
				When 0 is written in PREQF after reading
				[Setting condition]
				When an IHI signal 2fH modification condit detected
1	IHI	Undefined*2	R	IHI Signal Level
				Indicates the current level of the IHI signal source and phase inversion selection for the signal depends on the contents of TCONR bit to determine whether the input signal is negative, then maintain the IHI signal at puphase by modifying TCONRI.
				0: The IHI signal is low
				1: The IHI signal is high
0	IVI	Undefined*2	R	IVI Signal Level
				Indicates the current level of the IVI signal source and phase inversion selection for the depends on the contents of TCONRI. Readetermine whether the input signal is positive.

R/(W) Pre-Equalization Flag

2. The initial value is undefined since it depends on the pin state. Rev. 3.00 Mar 21, 2006 page 328 of 788 REJ09B0300-0300

Notes: 1. Only 0 can be written, to clear the flag.

PREQF

RENESAS

negative, then maintain the IVI signal at po

phase by modifying TCONRI. 0: The IVI signal is low 1: The IVI signal is high

The timer counter (TCNT) in TMR X is set to count the internal clock pulses and to be the rising edge of the external reset signal (IHI signal). The value to be used as the thr deciding the pulse width is written in TCORB. The PWM decoder contains a delay la uses the IHI signal as data and compare-match signal B (CMB) as a clock, and the sta signal (the result of the pulse width decision) at the first compare-match signal B timi TCNT is reset by the rise of the IHI signal is output as the PDC signal.

The pulse width setting using TICRR and TICRF of TMR_X can be used to determine width decision threshold. Examples of TCR and TCORB settings of TMR_X are shown 13.4 and 13.5, and the PWM decoding timing chart is shown in figure 13.2.

Table 13.4 Examples of TCR Settings

CKS2 to CKS0

2 to 0

Bit	Abbreviation	Contents	Description
7	CMIEB	0	Interrupts due to compare-match and
6	CMIEA	0	are disabled
5	OVIE	0	
4 and 3	CCLR1 and CCLR0	11	TCNT is cleared by the rising edge of external reset signal (IHI signal)

Incremented on internal clock (b)

Rev. 3.00 Mar 21, 2006 pag

REJ09

Table 13.5 Examples of TCORB (Pulse Width Threshold) Settings

001

	φ: 10 MHz	φ: 12 MHz	φ: 16 MHz	φ: 20 Ν
H'07	0.8 µs	0.67 μs	0.5 µs	0.4 µs
H'0F	1.6 µs	1.33 µs	1 µs	0.8 µs
H'1F	3.2 µs	2.67 µs	2 µs	1.6 µs
H'3F	6.4 µs	5.33 µs	4 µs	3.2 µs
H'7F	12.8 µs	10.67 µs	8 µs	6.4 µs

Counter reset caused by IHI signal

Counter clear caused by TCNT overflow

At the 2nd compare-match, IHI signal is not tested

Figure 13.2 Timing Chart for PWM Decoding

13.4.2 Clamp Waveform Generation (CL1/CL2/CL3 Signal Generation)

The timer connection facility and TMR_X can be used to generate signals with differencycles and rising/falling edges (clamp waveforms) in synchronization with the input significant signal). Three clamp waveforms can be generated: the CL1 to CL3 signals. In addition, signal can be generated using TMR_Y.

The CL1 signal rises simultaneously with the rise of the IHI signal, and when the CL1 high, the CL2 signal rises simultaneously with the fall of the IHI signal. The fall of bot and CL2 signals can be specified by TCORA. The rise of the CL3 signal can be specific simultaneous with the sampling of the fall of the IHI signal using the system clock, and the CL3 signal can be specified by TCORC. The CL3 signal can also fall when the IHI rises.

TCNT in TMR_X is set to count internal clock pulses and to be cleared on the rising edexternal reset signal (IHI signal).

The value to be used as the CL1 signal pulse width is written in TCORA. Write a value more in TCORA when internal clock ϕ is selected as the TMR_X counter clock, and a H'01 or more when ϕ /2 is selected. When internal clock ϕ is selected, the CL1 signal pulse (TCORA set value + 3 ± 0.5). When the CL2 signal is used, the setting must be made this pulse width is greater than the IHI signal pulse width.

The value to be used as the CL3 signal pulse width is written in TCORC. TICR in TMI captures the value of TCNT at the inverse of the external reset signal edge (in this case edge of the IHI signal). The timing of the fall of the CL3 signal is determined by the su

Rev. 3.00 Mar 21, 2006 page 330 of 788 REJ09B0300-0300

Both the rise and the fall of the CL3 signal are synchronized with the system clock an width is fixed, but there is a variation in the phase relationship with the IHI signal equation the resolution of the system clock.

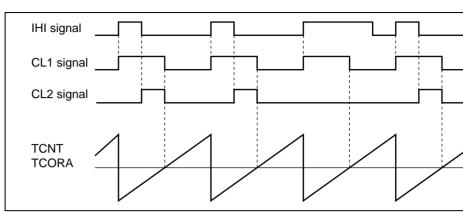


Figure 13.3 Timing Chart for Clamp Waveform Generation (CL1 and CL2

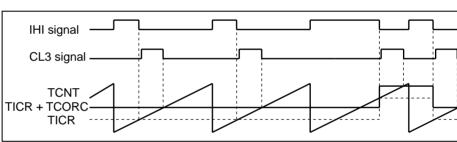


Figure 13.4 Timing Chart for Clamp Waveform Generation (CL3 Sign

(inverse of the IVI signal). The value to be used as the division factor is written in TCC the TMO output method is specified by the OS bits in TCSR.

Examples of TCR and TCSR settings in TMR_1, and TCR and TCSR settings in the Fl shown in table 13.6, and the timing chart for measurement of the IVI signal and IHI sig waveform periods is shown in figure 13.5. The period of the IHI signal divided wavefo by $(ICRD(3) - ICRD(2)) \times resolution$.

Rev. 3.00 Mar 21, 2006 page 332 of 788 REJ09B0300-0300

	1 and 0	CKS1 and CKS0	01
TCSR in FRT	0	CCLRA	0

2 to 0

TCSR in TMR_1 3 to 0

TCR in FRT

CKS2 to CKS0

OS3 to OS0

IEDGB

101

0011

1001

0/1

RENESAS

the rvi signal)

256

TCNT is incremented on edge of the external cloc

Not changed by compare output inverted by compa (toggle output): Division

When TCORB < TCORA on compare-match B, an on compare-match A: Dir

 FRC value is transferr on falling edge of inpu input B (IHI divided sign

 FRC value is transferr on rising edge of inpurinput B (IHI divided signal

FRC is incremented on in

FRC clearing is disabled

Rev. 3.00 Mar 21, 2006 pag

REJ09

waveform)

waveform)

clock: $\phi/8$

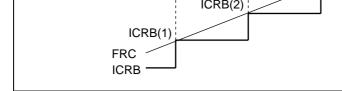
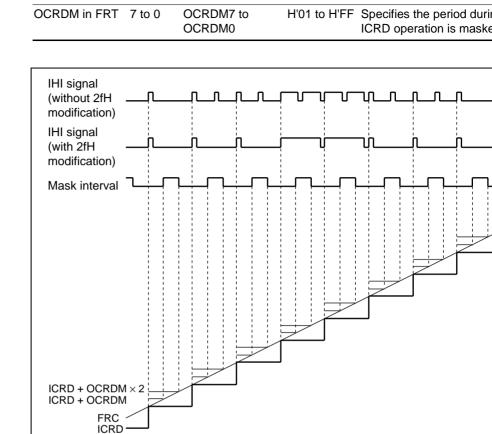


Figure 13.5 Timing Chart for Measurement of IVI Signal and IHI Signal Divided Waveform Periods

13.4.4 2fH Modification of IHI Signal


By using the timer connection facility and FRT, even if there is a part of the IHI signal the frequency, this can be eliminated. In order for this function to operate properly, the of the IHI signal must be approximately 30% or less, or approximately 70% or above.

The 8-bit OCRDM contents or twice the OCRDM contents can be added automatically captured in ICRD in the FRT, and compare-matches generated at these points. The interbetween the two compare-matches is called a mask interval. A value equivalent to appr 1/3 the IHI signal period is written in OCRDM. ICRD is set so that capture is performerise of the IHI signal.

Since the IHI signal supplied to the IHO signal selection circuit is normally set on the IHI signal and reset on the fall, its waveform is the same as that of the original IHI signal 2fH modification is selected, IHI signal edge detection is disabled during mask interval is also disabled during these intervals.

Examples of TCR, TCSR, TOCR, and OCRDM settings in the FRT are shown in table the 2fH modification timing chart is shown in figure 13.6.

Rev. 3.00 Mar 21, 2006 page 334 of 788 REJ09B0300-0300

7

TOCR in FRT

ICRDMS

1

ICRD is set to the operat

which OCRDM is used

Rev. 3.00 Mar 21, 2006 pag

REJ09

Figure 13.6 2fH Modification Timing Chart

written in TCORB.

Since the IVI signal supplied to the IVO signal selection circuit is normally set on the r IVI signal and reset on the fall, its waveform is the same as that of the original IVI sign fall modification is selected, a reset is performed on a TMR_1 TCORB compare-match TMR 1.

The fall of the waveform generated in this way can be synchronized with the rise of the regardless of whether or not fall modification is selected.

Examples of TCR, TCSR, and TCORB settings in TMR_1 are shown in table 13.8, and modification/IHI synchronization timing chart is shown in figure 13.7.

Rev. 3.00 Mar 21, 2006 page 336 of 788 REJ09B0300-0300

	2 to 0	CKS2 to CKS0	101	TCNT is incremented on the of the external clock (IHI sign
TCSR in TMR_1	3 to 0	OS3 to OS0	0011	Not changed by compare-ma output inverted by compare-r (toggle output)
			1001	When TCORB < TCORA, 1 c compare-match B, 0 output o match A
TCORB in T	MR_1		H'03 (example)	Compare-match on the 4th (erise of the IHI signal after the inverse of the IVI signal
IHI signal				حصنن نرنب
IVI signal (PD	C signal)			
IVO signal (without fall m with IHI synch				
IVO signal (with fall modi	,			
IVO signal (with fall modi and IHI synch	ification —			- 4

Figure 13.7 Fall Modification and IHI Synchronization Timing Char

signai)

Rev. 3.00 Mar 21, 2006 page

REJO

OCRAR or OCRAF, alternately, each time a compare-match occurs. A value correspond 0 interval of the IVG signal is written in OCRAR, and a value corresponding to the 1 in the IVG signal is written in OCRAF. The IVG signal is set by a compare-match after a

addition, and reset by a compare-match after an OCRAF addition.

The IHG signal is the TMR_Y timer output. TMR_Y is set to count internal clock puls be cleared on a TCORA compare-match, to fix the period and set the timer output. TCO so as to reset the timer output. The IVG signal is connected as the TMR_Y reset input (and the rise of the IVG signal can be treated in the same way as a TCORA compare-ma

The CL4 signal is a waveform that rises within one system clock period after the fall of signal, and has an interval of 1 for 6 system clock periods.

Examples of TCR, TCSR, TCORA, and TCORB settings in TMR_Y, and TCR, OCRA OCRAF, and TOCR settings in the FRT are shown in table 13.9, and the IHG signal/IV timing chart is shown in figure 13.8.

Rev. 3.00 Mar 21, 2006 page 338 of 788 REJ09B0300-0300

	_		(example)	J	'
TCR in FRT	1 and 0	CKS1 and CKS0	01	FRC is incremented	d on intern
OCRAR in FRT			H'7FEF (example)	IVG signal 0 interval = φ × 262016	IVG sigr $\phi \times 262^{\circ}$ times II-
OCRAF in FRT			H'000F (example)	IVG signal 1 interval = $\phi \times 128$	
TOCR in FRT	6	OCRAMS	1	OCRA is set to the which OCRAR and	

CKS2 to CKS0 001

0110

H'3F

H'03

(example)

OS3 to OS0

TCNT is incremented on inter

0 output on compare-match E

1 output on compare-match A

IHG signal period = $\phi \times 256$

IHG signal 1 interval = $\phi \times 16$

Rev. 3.00 Mar 21, 2006 pag

REJ0

φ/4

2 to 0

3 to 0

TCSR in

TMR_Y

TCORA in TMR_Y

TCORB in TMR_Y

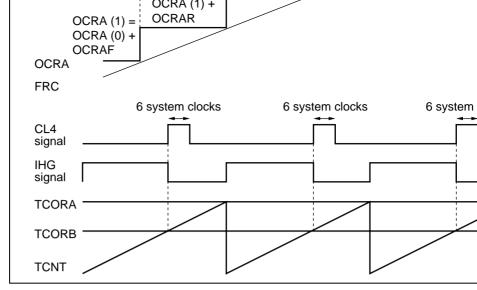


Figure 13.8 IVG Signal/IHG Signal/CL4 Signal Timing Chart

		modification)	part in the HFBACKI input
		CL1 signal	HFBACKI input 1 interval is changed b
		IHG signal	Internal synchronization signal is output
S-on-G mode	CSYNCI input	IHI signal (without 2fH modification)	CSYNCI input (composite synchroniza is output directly
		IHI signal (with 2fH modification)	Double-frequency part of CSYNCI input synchronization signal) is eliminated by
		CL1 signal	CSYNCI input (composite synchroniza horizontal synchronization signal part i before output
		IHG signal	Internal synchronization signal is output
Composite mode	HSYNCI input	IHI signal (without 2fH modification)	HSYNCI input (composite synchroniza is output directly
		IHI signal (with 2fH modification)	Double-frequency part of HSYNCI input synchronization signal) is eliminated by
		CL1 signal	HSYNCI input (composite synchroniza horizontal synchronization signal part i before output
		IHG signal	Internal synchronization signal is output
Separate mode	HSYNCI input	IHI signal (without 2fH modification)	HSYNCI input (horizontal synchronizatioutput directly
		IHI signal (with 2fH modification)	Meaningless unless there is a double- part in the HSYNCI input (horizontal synchronization signal)
		CL1 signal	HSYNCI input (horizontal synchronization interval is changed before output
		IHG signal	Internal synchronization signal is output
			Rev. 3.00 Mar 21, 2006 pa REJ0
		RE	NESAS

IHI signal (without

2fH modification) IHI signal (with 2fH HFBACKI input is output directly

Meaningless unless there is a double-

No signal

HFBACKI

input

		modification, with IHI synchronization)	synchronized with HFBACKI input
		IVI signal (with fall modification, without IHI synchronization)	VFBACKI input fall is modified before
		IVI signal (with fall modification and IHI synchronization)	VFBACKI input fall is modified and synchronized with HFBACKI input output
		IVG signal	Internal synchronization signal is o
S-on-G mode or composite mode	PDC signal	IVI signal (without fall modification or IHI synchronization)	CSYNCI/HSYNCI input (composite synchronization signal) vertical synchronization signal part is sepa before output
		IVI signal (without fall modification, with IHI synchronization)	CSYNCI/HSYNCI input (composite synchronization signal) vertical synchronization signal part is sepa signal is synchronized with CSYNC input before output
		IVI signal (with fall modification, without IHI synchronization)	CSYNCI/HSYNCI input (composite synchronization signal) vertical synchronization signal part is sepa fall is modified before output
		IVI signal (with fall modification and IHI synchronization)	CSYNCI/HSYNCI input (composite synchronization signal) vertical synchronization signal part is sepa modified, and signal is synchronize CSYNCI/HSYNCI input before output
		IVG signal	Internal synchronization signal is o

VFBACKI

input

No signal

IVI signal (without fall

modification or IHI

synchronization) IVI signal (without fall VFBACKI input is output directly

Meaningless unless VFBACKI inpu

Rev. 3.00 Mar 21, 2006 page 342 of 788

REJ09B0300-0300

modification, without IHI synchronization)	fall is modified before output
IVI signal (with fall	VSYNCI input (vertical synchroniz
modification and IHI	fall is modified and signal is synch
synchronization)	HSYNCI input (horizontal synchro

signal) before output

Internal synchronization signal is

13.4.9 CBLANK Output

Using the signals generated/selected with timer connection, it is possible to generate a based on the composite synchronization signal (blanking waveform).

One kind of blanking waveform is generated by combining HFBACKI and VFBACK with the phase polarity made positive by means of bits HFINV and VFINV in TCONI IVO signal.

The logic of CBLANK output waveform generation is shown in figure 13.9.

IVG signal

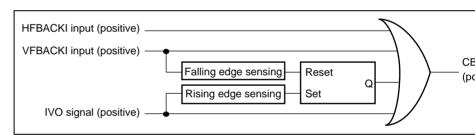


Figure 13.9 CBLANK Output Waveform Generation

REJ09

Rev. 3.00 Mar 21, 2006 page 344 of 788 REJ09B0300-0300

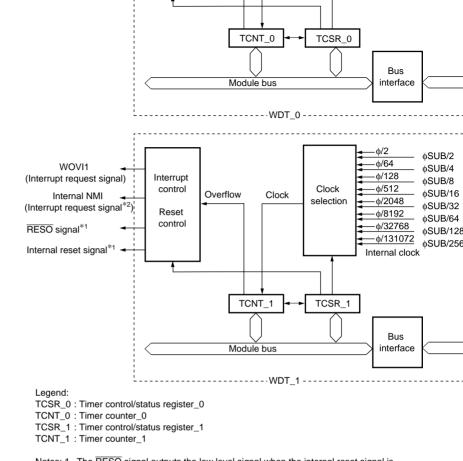
timer operation, an interval timer interrupt is generated each time the counter overflow diagram of the WDT_0 and WDT_1 is shown in figure 14.1.

14.1 Features

- Selectable from eight (WDT_0) or 16 (WDT_1) counter input clocks.
- Switchable between watchdog timer mode and interval timer mode

Watchdog Timer Mode:

- If the counter overflows, an internal reset or an internal NMI interrupt is generated
- When the LSI is selected to be internally reset at counter overflow, a low level sig from the RESO pin if the counter overflows.


Internal Timer Mode:

• If the counter overflows, an internal timer interrupt (WOVI) is generated.

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ09

Notes: 1. The RESO signal outputs the low level signal when the internal reset signal is generated due to a TCNT overflow of either WDT_0 or WDT_1. The internal reset signal first resets the WDT in which the overflow has occurred first.

The internal NMI interrupt signal can be independently output from either WDT_0 or WDT_1.The interrupt controller does not distinguish the NMI interrupt request from WDT_0 from that from WDT_1.

Figure 14.1 Block Diagram of WDT

Rev. 3.00 Mar 21, 2006 page 346 of 788

REJ09B0300-0300

External sub-clock input EXCL pin	Input	Inputs the clock pulses to the WD prescaler counter

14.3 Register Descriptions

The WDT has the following registers. To prevent accidental overwriting, TCSR and To be written to in a method different from normal registers. For details, refer to section Notes on Register Access. For details on the system control register, refer to section 3 Control Register (SYSCR).

- Timer counter (TCNT)
- Timer control/status register (TCSR)

14.3.1 Timer Counter (TCNT)

TCNT is an 8-bit readable/writable up-counter.

TCNT is initialized to H'00 when the TME bit in the timer control/status register (TCs cleared to 0.

				When TCNT overflows (changes from H'FF to
				However, when internal reset request general selected in watchdog timer mode, OVF is clear automatically by the internal reset.
				[Clearing conditions]
				 When TCSR is read when OVF = 1*2, the written to OVF
				When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watch interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting
				When this bit is cleared, TCNT stops counting initialized to H'00.
4	_	0	R/(W)	Reserved
				The initial value should not be modified.
3	RST/NMI	0	R/W	Reset or NMI
				Selects to request an internal reset or an NN when TCNT has overflowed.
				0: An NMI interrupt is requested

Rev. 3.00 Mar 21, 2006 page 348 of 788

REJ09B0300-0300

RENESAS

1: An internal reset is requested

Indicates that TCNT has overflowed (changes

to H'00).

[Setting condition]

100: φ/2048 (frequency: 52.4 ms) 101: $\phi/8192$ (frequency: 209.7 ms) 110: φ/32768 (frequency: 0.84 s)

111: \(\psi/131072 \) (frequency: 3.36 s)

Notes: 1. Only 0 can be written, to clear the flag.

least twice.

2. When OVF is polled with the interval timer interrupt disabled, OVF = 1 mus

RENESAS

Rev. 3.00 Mar 21, 2006 pag

REJ0

				[Clearing conditions]
				 When TCSR is read when OVF = 1*2, ther written to OVF
				When 0 is written to TME
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watch interval timer.
				0: Interval timer mode
				1: Watchdog timer mode
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting
				When this bit is cleared, TCNT stops counting initialized to H'00.
4	PSS	0	R/W	Prescaler Select
				Selects the clock source to be input to TCNT.

R/W

Rev. 3.00 Mar 21, 2006 page 350 of 788

RST/NMI 0

REJ09B0300-0300

3

RENESAS

(PSS)

Reset or NMI

when TCNT has overflowed. 0: An NMI interrupt is requested 1: An internal reset is requested

However, when internal reset request general selected in watchdog timer mode, OVF is clear

1: Counts the divided cycle of φSUB-based p

Selects to request an internal reset or an NMI

automatically by the internal reset.

111:

SUB/256 (cycle: 2 s)

Notes: 1. Only 0 can be written, to clear the flag.

least twice.

Notes: 1. Only 0 can be written, to clear the flag.2. When OVF is polled with the interval timer interrupt disabled, OVF = 1 mus

Rev. 3.00 Mar 21, 2006 pag REJ09

010: φ/128 (frequency: 3.28 ms) 011: φ/512 (frequency: 13.1 ms) 100: φ/2048 (frequency: 52.4 ms) 101: φ/8192 (frequency: 209.7 ms) 110: φ/32768 (frequency: 0.84 s) 111: φ/131072 (frequency: 3.36 s)

000: φSUB/2 (cycle: 15.6 ms) 001: φSUB/4 (cycle: 31.3 ms) 010: φSUB/8 (cycle: 62.5 ms) 011: φSUB/16 (cycle: 125 ms) 100: φSUB/32 (cycle: 250 ms) 101: φSUB/64 (cycle: 500 ms) 110: φSUB/128 (cycle: 1 s)

When PSS = 1:

overflows by rewriting the TCNT value (normally be writing H'00) before overflows o

If the RST/NMI bit of TCSR is set to 1, when the TCNT overflows, an internal reset si

If the RST/NMI bit of TCSR is set to 1, when the TCNT overflows, an internal reset size LSI is issued for 518 system clocks, and the low level signal is simultaneously output for RESO pin for 132 states, as shown in figure 14.2. If the RST/NMI bit is cleared to 0, we TCNT overflows, an NMI interrupt request is generated. Here, the output from the RESO RESO PERSON NAMI interrupt request is generated.

An internal reset request from the watchdog timer and a reset input from the \overline{RES} pin a processed in the same vector. Reset source can be identified by the XRST bit status in a reset caused by a signal input to the \overline{RES} pin occurs at the same time as a reset caused overflow, the \overline{RES} pin reset has priority and the XRST bit in SYSCR is set to 1.

An NMI interrupt request from the watchdog timer and an interrupt request from the N processed in the same vector. Do not handle an NMI interrupt request from the watchde and an interrupt request from the NMI pin at the same time.

Rev. 3.00 Mar 21, 2006 page 352 of 788 REJ09B0300-0300

remains high.

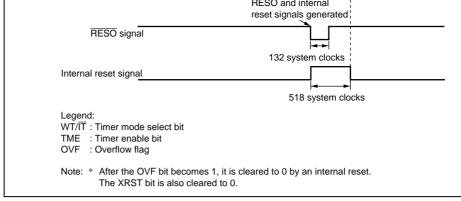


Figure 14.2 Watchdog Timer Mode (RST/ \overline{NMI} = 1) Operation

Rev. 3.00 Mar 21, 2006 pag REJ0

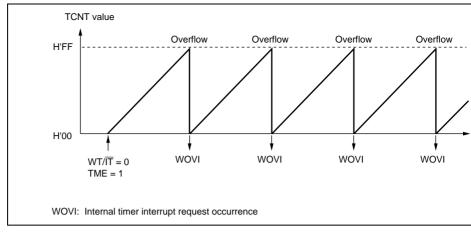


Figure 14.3 Interval Timer Mode Operation

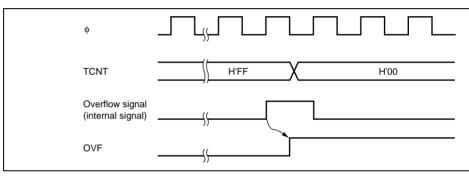


Figure 14.4 OVF Flag Set Timing

Rev. 3.00 Mar 21, 2006 page 354 of 788 REJ09B0300-0300

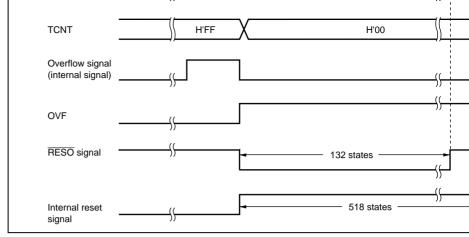


Figure 14.5 Output Timing of RESO signal

14.5 Interrupt Sources

During interval timer mode operation, an overflow generates an interval timer interrupt. The interval timer interrupt is requested whenever the OVF flag is set to 1 in TCSR. C cleared to 0 in the interrupt handling routine.

When the NMI interrupt request is selected in watchdog timer mode, an NMI interrup generated by an overflow.

Table 14.2 WDT Interrupt Source

Name	Interrupt Source	Interrupt Flag	DTC Ac
WOVI	TCNT overflow	OVF	Not poss

Rev. 3.00 Mar 21, 2006 pag REJ0

writing to TCN1 and TCSR (Example of WD1_0): These registers must be written word transfer instruction. They cannot be written to by a byte transfer instruction.

TCNT and TCSR both have the same write address. Therefore, satisfy the relative cond shown in figure 14.6 to write to TCNT or TCSR. To write to TCNT, the upper bytes m the value H'5A and the lower bytes must contain the write data before the transfer instrexecution. To write to TCSR, the upper bytes must contain the value H'A5 and the low must contain the write data.

Figure 14.6 Writing to TCNT and TCSR (WDT 0)

Reading from TCNT and TCSR (Example of WDT_0): These registers are read in the way as other registers. The read address is H'FFA8 for TCSR and H'FFA9 for TCNT.

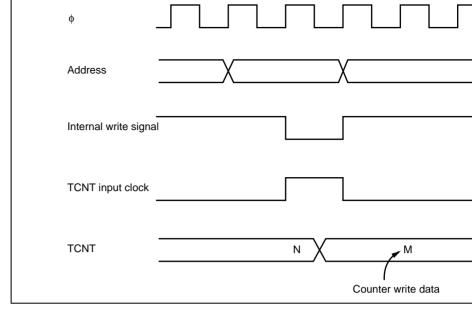


Figure 14.7 Conflict between TCNT Write and Increment

14.6.3 Changing Values of CKS2 to CKS0 Bits

If bits CKS2 to CKS0 in TCSR are written to while the WDT is operating, errors could the incrementation. Software must stop the watchdog timer (by clearing the TME bit to changing the values of bits CKS2 to CKS0.

14.6.4 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched from watchdog timer to interval timer, while the WDT is open could occur in the incrementation. Software must stop the watchdog timer (by clearing bit to 0) before switching the mode.

Rev. 3.00 Mar 21, 2006 pag REJ09

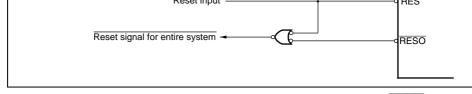


Figure 14.8 Sample Circuit for Resetting System by RESO Signal

Counter Values during Transitions between High-Speed, Sub-Active, an

Modes

When WDT_1 is used as a clock counter and is allowed to transit between high-speed a sub-active or watch mode, the counter does not display the correct value due to internal switching.

Specifically, when transiting from high-speed mode to sub-active or watch mode, that is control clock for WDT_1 switches from the main clock to the sub-clock, the counter in timing is delayed for approximately two to three clock cycles.

Similarly, when transiting from sub-active or watch mode to high-speed mode, the clock supplied until stabilized internal oscillation is available because the main clock oscillation sub-clock mode. The counter is therefore prevented from incrementing for the time state STS2 to STS0 bits in SBYCR after internal oscillation starts, thus producing counter differences for this time.

Special care must be taken when using WDT_1 as a clock counter. Note that no counter difference is produced while operated in the same mode.

Rev. 3.00 Mar 21, 2006 page 358 of 788 REJ09B0300-0300

14.6.6

SCI 2 can handle communication using the waveform based on the Infrared Data Ass (IrDA) standard version 1.0.

15.1 **Features**

- Choice of asynchronous or clocked synchronous serial communication mode
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and be executed simultaneously. Double-buffering is used in both the transmitter and t enabling continuous transmission and continuous reception of serial data.

- The on-chip baud rate generator allows any bit rate to be selected An external clock can be selected as a transfer clock source.
- Choice of LSB-first or MSB-first transfer (except in the case of asynchronous mod
- Four interrupt sources

Four interrupt sources — transmit-end, transmit-data-empty, receive-data-full, and error — that can issue requests.

The transmit-data-empty and receive-data-full interrupt sources can activate the D

Asynchronous Mode:

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors
- Break detection: Break can be detected by reading the RxD pin level directly in ca framing error

Rev. 3.00 Mar 21, 2006 pag

REJ09

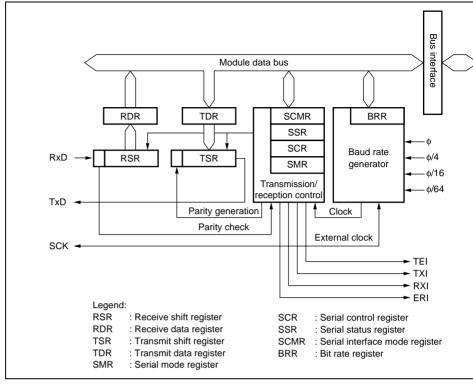


Figure 15.1 Block Diagram of SCI

Rev. 3.00 Mar 21, 2006 page 360 of 788 REJ09B0300-0300

		TxD0	Output	Channel 0 transmit data output
1		SCK1	Input/Output	Channel 1 clock input/output
		RxD1	Input	Channel 1 receive data input
		TxD1	Output	Channel 1 transmit data output
2		SCK2	Input/Output	Channel 2 clock input/output
		RxD2/IrRxD	Input	Channel 2 receive data input (normal/IrD
		TxD2/IrTxD	Output	Channel 2 transmit data output (normal/l
Note:	*	Pin names SCk	(, RxD, and TxD	are used in the text for all channels, omittin

Channel 0 receive data input

Input

channel designation.

RXD0

15.3 **Register Descriptions**

The SCI has the following registers for each channel.

- Receive shift register (RSR)
- Receive data register (RDR)
- Transmit data register (TDR)
- Transmit shift register (TSR)
- Serial mode register (SMR)
- Serial control register (SCR)
- Serial status register (SSR)
 - Serial interface mode register (SCMR)

 - Bit rate register (BRR)
- Keyboard comparator control register (KBCOMP)

data, it transfers the received serial data from RSR to RDR where it is stored. After this receive the next data. Since RSR and RDR function as a double buffer in this way, con receive operations can be performed. After confirming that the RDRF bit in SSR is set RDR for only once. RDR cannot be written to by the CPU. RDR is initialized to H'00.

15.3.3 Transmit Data Register (TDR)

TDR is an 8-bit register that stores transmit data. When the SCI detects that TSR is emtransfers the transmit data written in TDR to TSR and starts transmission. The double-structures of TDR and TSR enables continuous serial transmission. If the next transmit already been written to TDR when one frame of data is transmitted, the SCI transfers the data to TSR to continue transmission. Although TDR can be read from or written to by all times, to achieve reliable serial transmission, write transmit data to TDR for only or confirming that the TDRE bit in SSR is set to 1. TDR is initialized to H'FF.

15.3.4 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the transfers transmit data from TDR to TSR, then sends the data to the TxD pin. TSR can directly accessed by the CPU.

Rev. 3.00 Mar 21, 2006 page 362 of 788 REJ09B0300-0300

				 Selects 7 bits as the data length. LSB-fi and the MSB of TDR is not transmitted transmission.
				In clocked synchronous mode, a fixed data bits is used.
5	PE	0	R/W	Parity Enable (enabled only in asynchrono
				When this bit is set to 1, the parity bit is actransmit data before transmission, and the checked in reception. For a multiprocesso parity bit addition and checking are not peregardless of the PE bit setting.
4	O/E	0	R/W	Parity Mode (enabled only when the PE bi asynchronous mode)
				0: Selects even parity.
				1: Selects odd parity.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchro
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits

R/W

6

CHR

0

1: Clocked synchronous mode

0: Selects 8 bits as the data length.

Character Length (enabled only in asynch

In reception, only the first stop bit is check second stop bit is 0, it is treated as the sta

Rev. 3.00 Mar 21, 2006 pag

REJ0

RENESAS

next transmit frame.

00: φ clock (n = 0)
01: φ/4 clock (n = 1)
10: φ/16 clock (n = 2)
11: $\phi/64$ clock (n = 3)
For the relation between the bit rate registe and the baud rate, see section 15.3.9, Bit R

rate generator.

n in BRR.

Description

Register (BRR). n is the decimal display of

15.3.6 Serial Control Register (SCR)

section 15.8, Interrupt Sources.

Bit Name

Bit

SCR is a register that performs enabling or disabling of SCI transfer operations and into requests, and selection of the transfer clock source. For details on interrupt requests, re-

R/W

Initial Value

7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt requenabled.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrare enabled.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is en
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enable

Rev. 3.00 Mar 21, 2006 page 364 of 788

REJ09B0300-0300

1	CKE1	0	R/W	Clock Enable 1, 0
0	CKE0	0	R/W	These bits select the clock source and SC function.
				Asynchronous mode
				00: Internal clock
				(SCK pin functions as I/O port.)
				01: Internal clock
				(Outputs a clock of the same frequency as from the SCK pin.)
				1X: External clock
				(Inputs a clock with a frequency 16 times from the SCK pin.)
				Clocked synchronous mode
				0X: Internal clock (SCK pin functions as cl
				1X: External clock (SCK pin functions as o
Lege	end:			
X:	Don't care			

2

TEIE

0

R/W

enabled.

Multiprocessor Communication Function.

When this bit is set to 1, a TEI interrupt re

Transmit End Interrupt Enable

				 When a TXI interrupt request is issue the DTC to write data to TDR
6	RDRF	0	R/(W)*	Receive Data Register Full
				Indicates that receive data is stored in R
				[Setting condition]
				When serial reception ends normally and data is transferred from RSR to RDR
				[Clearing conditions]
				 When 0 is written to RDRF after read RDRF = 1
				 When an RXI interrupt request is issues the DTC to read data from RDR
				The RDRF flag is not affected and retain previous value when the RE bit in SCR is 0.
5	ORER	0	R/(W)*	Overrun Error
				[Setting condition]
				When the next data is received while RD
				[Clearing condition]
				When 0 is written to ORER after reading ORER = 1
Day	2.00 Mar 2	4 2006 200	- 266 of 700	
	. 3.00 Mar 2 09B0300-030		ge 366 of 788	
			₹€	ENESAS

[Setting conditions]

[Clearing conditions]

TDRE = 1

When the TE bit in SCR is 0

TDR is ready for data write

When data is transferred from TDR to

· When 0 is written to TDRE after read

PER	0	R/(W)*	Parity Error
			[Setting condition]
			When a parity error is detected during re
			[Clearing condition]
			When 0 is written to PER after reading F
TEND	1	R	Transmit End
			[Setting conditions]
			When the TE bit in SCR is 0
			• When TDRE = 1 at transmission of t
			a 1-byte serial transmit character
			[Clearing conditions]
			 When 0 is written to TDRE after reac TDRE = 1
			When a TXI interrupt request is issu the DTC to write data to TDR
MPB	0	R	Multiprocessor Bit
			MPB stores the multiprocessor bit in the frame. When the RE bit in SCR is cleared previous state is retained.
			previous state is retained.

R/W

Only 0 can be written, to clear the flag.

0

3

2

1

0

Note:

MPBT

Multiprocessor Bit Transfer

the transmit frame.

MPBT stores the multiprocessor bit to b

Rev. 3.00 Mar 21, 2006 pag

REJ0

				•
				0: TDR contents are transmitted with LSE
				Receive data is stored as LSB first in RD
				1: TDR contents are transmitted with MS
				Receive data is stored as MSB first in RD
				The SDIR bit is valid only when the 8-bit is used for transmission/reception; when data format is used, data is always transmitted/received with LSB-first.
2	SINV	0	R/W	Data Invert
				Specifies inversion of the data logic level bit does not affect the logic level of the party bit is inverted, invert the SMR.
				0: TDR contents are transmitted as they Receive data is stored as it is in RDR.
				 TDR contents are inverted before bein transmitted. Receive data is stored in i form in RDR.
1	_	1	R	Reserved
				This bit is always read as 1 and cannot b
0	SMIF	0	R/W	Serial Communication Interface Mode Se
				0: Normal asynchronous or clocked sync

Data Transfer Direction

Selects the serial/parallel conversion form

SDIK

Rev. 3.00 Mar 21, 2006 page 368 of 788 REJ09B0300-0300

mode

1: Reserved mode

Mode	Bit Rate	Error
Asynchronous mode	$B = \frac{\phi \times 10^6}{64 \times 2^{2n-1} \times (N+1)}$	Error (%) = { $\frac{\phi \times 10^6}{B \times 64 \times 2^{2n-1} \times (N)}$
Clocked synchronous mode	$B = \frac{\phi \times 10^6}{64 \times 2^{2n-1} \times (N+1)}$	_
Logond:		

Legend:

Bit rate (bit/s)

BRR setting for baud rate generator $(0 \le N \le 255)$

Operating frequency (MHz)

Determined by the SMR settings shown in the following table. n:

SMR Setting

CKS1	CKS0	n	
0	0	0	
0	1	1	
1	0	2	
1	1	3	

Table 15.3 shows sample N settings in BRR in normal asynchronous mode. Table 15. maximum bit rate settable for each frequency. Table 15.6 shows sample N settings in clocked synchronous mode. Tables 15.5 and 15.7 show the maximum bit rates with exinput.

Rev. 3.00 Mar 21, 2006 pag

REJ09

					Oper	ating Fre	equen	су ф (М	Hz)	
	3.6864				4			4.9152		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Err (%)	
110	2	64	0.70	2	70	0.03	2	86	0.3	
150	1	191	0.00	1	207	0.16	1	255	0.0	
300	1	95	0.00	1	103	0.16	1	127	0.0	
600	0	191	0.00	0	207	0.16	0	255	0.0	
1200	0	95	0.00	0	103	0.16	0	127	0.0	
2400	0	47	0.00	0	51	0.16	0	63	0.0	

0.16

0.16

0.00

Note: Make the settings so that the error does not exceed 1%.

REJ09B0300-0300 RENESAS

Rev. 3.00 Mar 21, 2006 page 370 of 788

Legend:

υ

0.00

0.00

0.00

0.00

—: Can be set, but there will be a degree of error.

0.16

0.16

0.16

0.16

0.16

0.00

0.21

0.21

-0.70

1.14

-2.48

-2.48

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Error

(%)

0.31

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-1.70

0.00

n

Ν

1.

110	2	174	-0.26	2	177	-0.25	2
150	2	127	0.00	2	129	0.16	2
300	1	255	0.00	2	64	0.16	2
600	1	127	0.00	1	129	0.16	1
1200	0	255	0.00	1	64	0.16	1
2400	0	127	0.00	0	129	0.16	0
4800	0	63	0.00	0	64	0.16	0
9600	0	31	0.00	0	32	-1.36	0
19200	0	15	0.00	0	15	1.73	0
31250	0	9	-1.70	0	9	0.00	0

0.00

—: Can be set, but there will be a degree of error.

UUG

1200

2400

4800

9600

19200

31250

38400

Bit Rate

(bit/s)

38400

Legend:

11

155

77

38

19

9

5

4

Ν

9.8304

0

0

0

0

0

0

0

n

0

7

0.10

0.16

0.16

0.16

-2.34

-2.34

0.00

-2.34

Error

(%)

19

159

79

39

19

9

5

4

Ν

10

0

0

0

0

0

0

0

n

0

Note: Make the settings so that the error does not exceed 1%.

7

0.00

0.00

0.00

0.00

0.00

0.00

2.40

0.00

Error

(%)

90

191

95

47

23

11

5

Ν

212

155

77

155

77

155

77

38

19

11

9

0

12

0

0

0

0

0

0

n

Operating Frequency ϕ (MHz)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Error

(%)

0.03

0.16

0.16

0.16

0.16 0.16

0.16

0.16

-2.34

0.00

-2.34

0

0

0

0

0

0

n

2

2

2

1 1

0

0

0

0

0

Rev. 3.00 Mar 21, 2006 pag REJ09

RENESAS

1.73

0.200	•	. •	0.00	•		•	•	. •	0.00
38400	_	_	_	0	11	0.00	0	12	0.16
			Ор	eratin	g Freq	uency ф ((MHz)		
		18	3		19.60	808		20	0
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	3	79	-0.12	3	86	0.31	3	88	-0.25
150	2	233	0.16	2	255	0.00	3	64	0.16
300	2	116	0.16	2	127	0.00	2	129	0.16
600	1	233	0.16	1	255	0.00	2	64	0.16
1200	1	166	0.16	1	127	0.00	1	129	0.16
2400	0	233	0.16	0	255	0.00	1	64	0.16

0.00

0.00

0.00

-1.70

0.00

0.16

0.16

-1.36

0.00

1.73

0.00

0.00

0.00

0.00

0.00

0.00

-1.70

0.10

0.16

0.16

0.16

0.16

0.16

0.00

UUG

0.10

0.16

0.16

0.16

-0.93

-0.93

0.00

Legend:

—: Can be set, but there will be a degree of error.

Note: Make the settings so that the error does not exceed 1%.

Rev. 3.00 Mar 21, 2006 page 372 of 788

0.16

-0.69

1.02

0.00

-2.34

REJ09B0300-0300

6	187500 0	0	18	562500)
6.144	192000 0	0	19.6608	614400 C)
7.3728	230400 0	0	20	625000 C)
8	250000 0	0			
Table 15.5	Maximum Bit F	Rate with Extern	al Clock Inp	ut (Asynchronous l	Mode
φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)	φ (MHz)	External Input Clock (MHz)	Ma Ra
2	0.5000	31250	9.8304	2.4576	153
2.097152	0.5243	32768	10	2.5000	150
2.4576	0.6144	38400	12	3.0000	18
3	0.7500	46875	12.288	3.0720	192
3.6864	0.9216	57600	14	3.5000	218
4	1.0000	62500	14.7456	3.6864	230
4.9152	1.2288	76800	16	4.0000	250
5	1.2500	78125	17.2032	4.3008	268
6	15.000	93750	18	4.5000	28

REJ09

14.7456

17.2032

3.6864

4.9152

6.144

7.3728

1.5360

1.8432

2.0000

19.6608

4.9152 5.0000

Rev. 3.00 Mar 21, 2006 pag

5k 0 99 0 199 1 99 1 10k 0 49 0 99 0 199 0 25k 0 19 0 39 0 79 0 50k 0 9 0 19 0 39 0 100k 0 4 0 9 0 19 0 250k 0 1 0 3 0 7 0 500k 0 0* 0 1* 0 3 0 1M 0 0 0 1 0 0 1 2.5M 0 0 0 1 0 0 0 5M Legend: Blank: Cannot be set. : Can be set, but there will be a degree of error. **: Continuous transfer or reception is not possible.											
25k 0 19 0 39 0 79 0 50k 0 9 0 19 0 39 0 100k 0 4 0 9 0 19 0 250k 0 1 0 3 0 7 0 500k 0 0* 0 1* 0 3 0 1M	5k	0	99	0	199	1	99	1			
50k 0 9 0 19 0 39 0 100k 0 4 0 9 0 19 0 250k 0 1 0 3 0 7 0 500k 0 0* 0 1* 0 3 0 1M 0 0 0 1 0 0 1 2.5M 0 0 0 0 1 0	10k	0	49	0	99	0	199	0			
100k 0 4 0 9 0 19 0 250k 0 1 0 3 0 7 0 500k 0 0* 0 1* 0 3 0 1M 0 0 0 1 0 0 1 0 0 5M 0 5M 5M 0 1 1 0 <td>25k</td> <td>0</td> <td>19</td> <td>0</td> <td>39</td> <td>0</td> <td>79</td> <td>0</td> <td></td>	25k	0	19	0	39	0	79	0			
250k	50k	0	9	0	19	0	39	0			
500k	100k	0	4	0	9	0	19	0			
1M 0 0 0 1 2.5M 0 5M Legend: Blank: Cannot be set. —: Can be set, but there will be a degree of error.	250k	0	1	0	3	0	7	0			
2.5M 0 5M Legend: Blank: Cannot be set. —: Can be set, but there will be a degree of error.	500k	0	0*	0	1*	0	3	0			
5M Legend: Blank: Cannot be set. —: Can be set, but there will be a degree of error.	1M			0	0	0	1				
Legend: Blank: Cannot be set. —: Can be set, but there will be a degree of error.	2.5M							0			
Blank: Cannot be set. —: Can be set, but there will be a degree of error.	5M										
—: Can be set, but there will be a degree of error.	Legen	d:									
•	Blank:	-									
*: Continuous transfer or reception is not possible.	— :	Can be set, but there will be a degree of error.									
	*:					•					

*: Table 15.7 Maximum Bit Rate with External Clock Input (Clocked Synchronous

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
2	0.3333	333333.3

0.6667

1.0000

1.3333

Rev. 3.00 Mar 21, 2006 page 374 of 788

1k

2.5k

External Input

Clock (MHz)

2.0000

2.3333

2.6667

3.0000

3.3333

0*

(

C

(

(

C

C

(

C

Max

Rate

10	1.6667	1666666.7	20

666666.7

1000000.0

1333333.3

φ (MHz)

5 4	IrCKS1 IrCKS0	0	R/W R/W	These bits specify the high-level width of t pulse during IrTxD output pulse encoding IrDA function is enabled.
				000: B × 3/16 (B: Bit rate)
				001: _{\$\phi\$} /2
				010: φ/4
				011: φ/8
				100: ф /16
				101:
				110:
				111:

R/W

R/W

R/W

R/W

R/W

IrCKS2

KBADE

KBCH2

KBCH1

KBCH0

0

0

0

0

0

6

3

2

1

0

and RXD2 pins, respectively

Bits related to the A/D converter

For details, refer to section 21.3.4, Keyboa

Comparator Control Register (KBCOMP).

Rev. 3.00 Mar 21, 2006 pag

REJ09

IrDA Clock Select 2 to 0

1: TxD2/IrTxD and RxD2/IrRxD pins funct and IrRxD pins, respectively

transmission or reception, enabling continuous data transfer and reception.

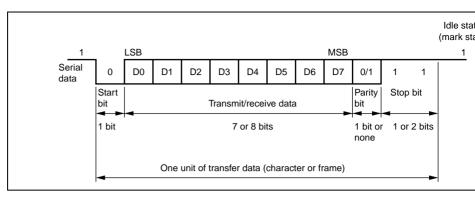


Figure 15.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

Rev. 3.00 Mar 21, 2006 page 376 of 788 REJ09B0300-0300

CHR	PE	MP	STOP	1	_ 2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	s				8-bit	data				STOP	-	
0	0	0	1	s				8-bit	data				STOP	STOP	
0	1	0	0	s				8-bit	data				Р	STOP	
0	1	0	1	s				8-bit	data				Р	STOP	STOP
1	0	0	0	s			7	-bit da	ıta			STOP	-		
1	0	0	1	s			7	-bit da	ıta			STOP	STOP	-	
1	1	0	0	s			7	-bit da	ıta			Р	STOP	-	
1	1	0	1	s			7	-bit da	ıta			Р	STOP	STOP	
0	_	1	0	s				8-bit	data				MPB	STOP	
0	_	1	1	s				8-bit	data				MPB	STOP	STOP

Legend:

1

S: Start bit STOP: Stop bit

P: Parity bit MPB: Multiprocessor bit

0

1

1

s

S

RENESAS

7-bit data

7-bit data

MPB STOP

MPB STOP STOP

$$M = \{ (0.5 - \frac{1}{2N}) - \frac{D - 0.5}{N} (1 + F) - (L - 0.5) F \} \times 100 \quad [\%] \quad \dots \quad \text{Formula (1)}$$

M: Reception margin (%)

N : Ratio of bit rate to clock (N = 16)

D : Clock duty (D = 0.5 to 1.0)

L : Frame length (L = 9 to 12)

F : Absolute value of clock rate deviation

Assuming values of F=0 and D=0.5 in formula (1), the reception margin is determine formula below.

$$M = \{0.5 - 1/(2 \times 16)\} \times 100$$
 [%] = 46.875 %

However, this is only the computed value, and a margin of 20% to 30% should be allow system design.

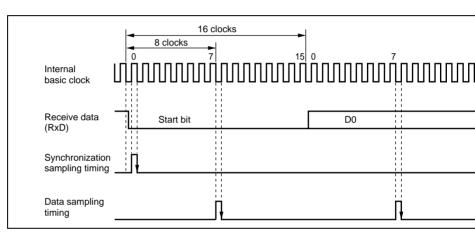


Figure 15.3 Receive Data Sampling Timing in Asynchronous Mode

REJ09B0300-0300

rising edge of the clock is in the middle of the transmit data, as shown in figure 15.4.

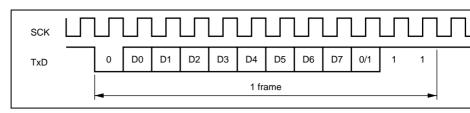


Figure 15.4 Relation between Output Clock and Transmit Data Phas (Asynchronous Mode)

Rev. 3.00 Mar 21, 2006 pag

supplied even during initialization. [1] Set the clock selection in SCR. Start initialization Be sure to clear bits RIE, TIE, TEIE, and MPIE, and bits TE and RE. to 0. Clear TE and RE bits in SCR to 0 When the clock is selected in asynchronous mode, it is output Set CKE1 and CKE0 bits in SCR [1] immediately after SCR settings are (TE and RE bits are 0) [2] Set the data transfer/receive formation Set data transfer/receive format in [2] in SMR and SCMR. SMR and SCMR [3] Write a value corresponding to the bit rate to BRR. Not necessary if Set value in BRR [3] an external clock is used. Wait [4] Wait at least one bit interval, then set the TE bit or RE bit in SCR to No Also set the RIE, TIE, TEIE, and 1-bit interval elapsed? MPIE bits. Yes Setting the TE and RE bits enable the TxD and RxD pins to be used. Set TE and RE bits in SCR to 1, and set RIE, TIE, TEIE, [4] and MPIE bits

Figure 15.5 Sample SCI Initialization Flowchart

Rev. 3.00 Mar 21, 2006 page 380 of 788 REJ09B0300-0300

<Initialization completion>

request (TXI) is generated. Because the TXI interrupt routine writes the next trans TDR before transmission of the current transmit data has finished, continuous tran be enabled.

- 3. Data is sent from the TxD pin in the following order: start bit, transmit data, parity multiprocessor bit (may be omitted depending on the format), and stop bit.
- 4. The SCI checks the TDRE flag at the timing for sending the stop bit.
- 5. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent serial transmission of the next frame is started.
- 6. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and the state" is entered in which 1 is output. If the TEIE bit in SCR is set to 1 at this time interrupt request is generated.

Figure 15.7 shows a sample flowchart for transmission in asynchronous mode.

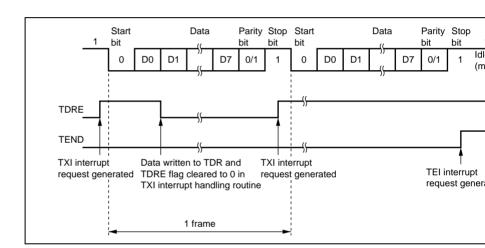


Figure 15.6 Example of SCI Transmit Operation in Asynchronous Mode (Examble Data, Parity, One Stop Bit)

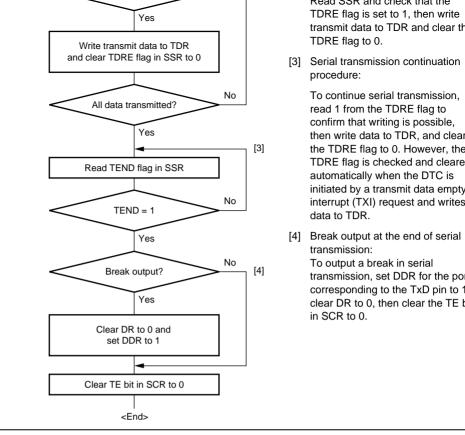


Figure 15.7 Sample Serial Transmission Flowchart

Rev. 3.00 Mar 21, 2006 page 382 of 788 REJ09B0300-0300

time, an ERI interrupt request is generated. Receive data is not transferred to RDR flag remains to be set to 1.

- flag remains to be set to 1.

 3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transf RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is gene
 - RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is gene 4. If a framing error (when the stop bit is 0) is detected, the FER bit in SSR is set to 1 data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI int
 - request is generated.

 5. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt generated. Because the RXI interrupt routine reads the receive data transferred to 1.

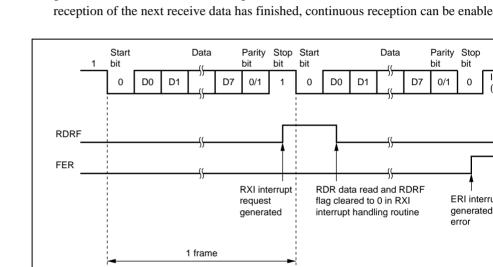


Figure 15.8 Example of SCI Receive Operation in Asynchronous Moc (Example with 8-Bit Data, Parity, One Stop Bit)

Rev. 3.00 Mar 21, 2006 pag

$RDRF^*$	ORER	FER	PER	Receive Data	Receive Error Type
1	1	0	0	Lost	Overrun error
0	0	1	0	Transferred to RDR	Framing error
0	0	0	1	Transferred to RDR	Parity error
1	1	1	0	Lost	Overrun error + frami
1	1	0	1	Lost	Overrun error + parity
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	1	1	Lost	Overrun error + frami parity error
Niata: *	The DE	DE floor	-4-:4	-1-1- it beed before date w	

Note: * The RDRF flag retains the state it had before data reception.

Rev. 3.00 Mar 21, 2006 page 384 of 788 REJ09B0300-0300

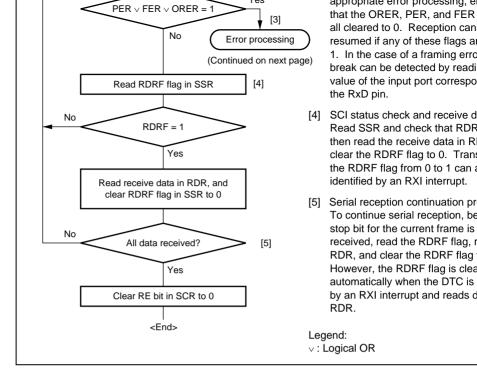


Figure 15.9 Sample Serial Reception Flowchart (1)

REJ09

Rev. 3.00 Mar 21, 2006 pag

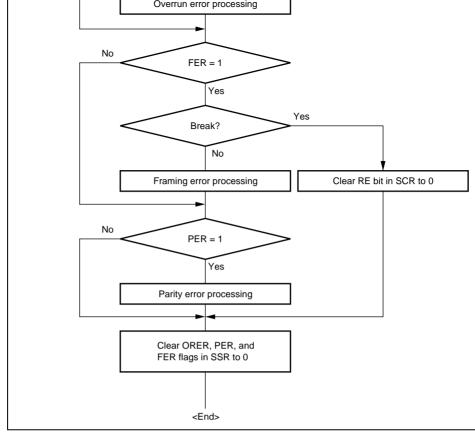


Figure 15.9 Sample Serial Reception Flowchart (2)

Rev. 3.00 Mar 21, 2006 page 386 of 788 REJ09B0300-0300

transmission cycle and the data transmission cycle. If the multiprocessor bit is 1, the c transmission cycle, and if the multiprocessor bit is 0, the cycle is a data transmission of 15.10 shows an example of inter-processor communication using the multiprocessor f transmitting station first sends the ID code of the receiving station with which it wants serial communication as data with a 1 multiprocessor bit added. It then sends transmit with a 0 multiprocessor bit added. The receiving station skips data until data with a 1 multiprocessor bit is sent. When data with a 1 multiprocessor bit is received, the recei compares that data with its own ID. The station whose ID matches then receives the d Stations whose ID does not match continue to skip data until data with a 1 multiproce again received.

the specified receiving station. The multiprocessor bit is used to differentiate between

transfer of receive data from RSR to RDR, error flag detection, and setting the SSR st RDRF, FER, and ORER in SSR to 1 are prohibited until data with a 1 multiprocessor received. On reception of a receive character with a 1 multiprocessor bit, the MPB bit to 1 and the MPIE bit is automatically cleared, thus normal reception is resumed. If th SCR is set to 1 at this time, an RXI interrupt is generated.

The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is

When the multiprocessor format is selected, the parity bit setting is invalid. All other are the same as those in normal asynchronous mode. The clock used for multiprocessor communication is the same as that in normal asynchronous mode.

Rev. 3.00 Mar 21, 2006 pag

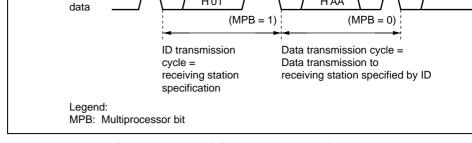


Figure 15.10 Example of Communication Using Multiprocessor Forma (Transmission of Data H'AA to Receiving Station A)

15.5.1 Multiprocessor Serial Data Transmission

Figure 15.11 shows a sample flowchart for multiprocessor serial data transmission. For transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission, cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI operations are as those in asynchronous mode.

Rev. 3.00 Mar 21, 2006 page 388 of 788 REJ09B0300-0300

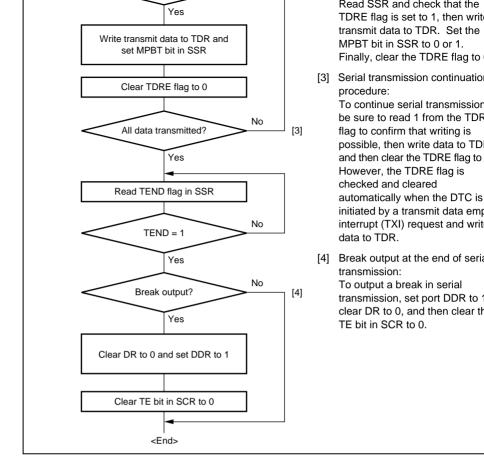


Figure 15.11 Sample Multiprocessor Serial Transmission Flowchard

REJ09

Rev. 3.00 Mar 21, 2006 pag

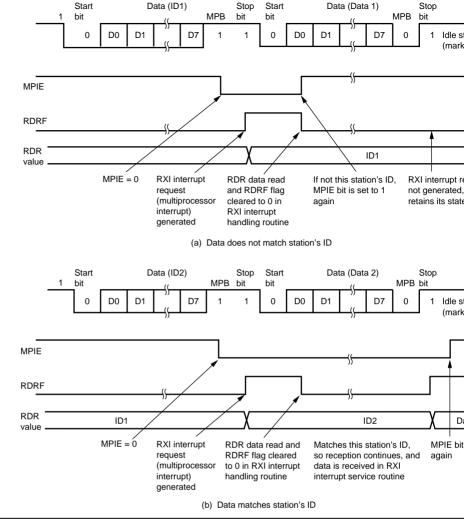
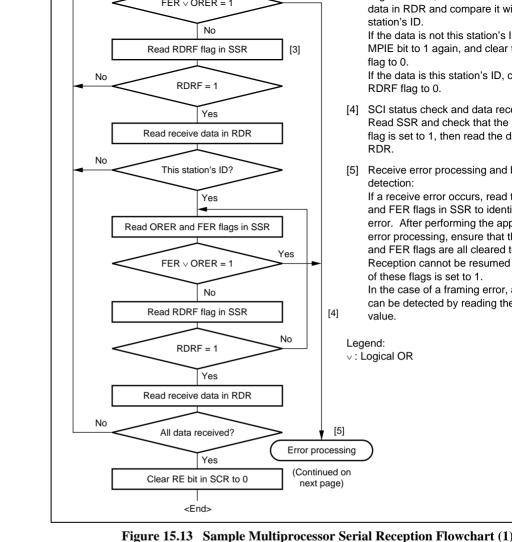



Figure 15.12 Example of SCI Receive Operation (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 3.00 Mar 21, 2006 page 390 of 788 REJ09B0300-0300

rigure 13.13 Sample Muniprocessor Serial Reception Flowchart (1)

Rev. 3.00 Mar 21, 2006 pag

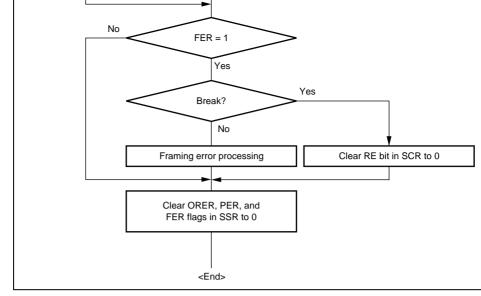
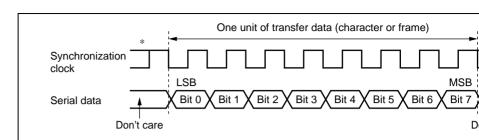



Figure 15.13 Sample Multiprocessor Serial Reception Flowchart (2)

Rev. 3.00 Mar 21, 2006 page 392 of 788 REJ09B0300-0300

duplex communication by use of a common clock. Both the transmitter and the receive a double-buffered structure, so that the next transmit data can be written during transmit previous receive data can be read during reception, enabling continuous data transfer.

on is added. Inside the Sel, the transmitter and receiver are independent units, chaom

Note: * High except in continuous transfer/reception

Figure 15.14 Data Format in Clocked Synchronous Communication (LSB

15.6.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting or and CKE0 bits in SCR. When the SCI is operated on an internal clock, the synchroniz is output from the SCK pin. Eight synchronization clock pulses are output in the trans character, and when no transfer is performed the clock is fixed high.

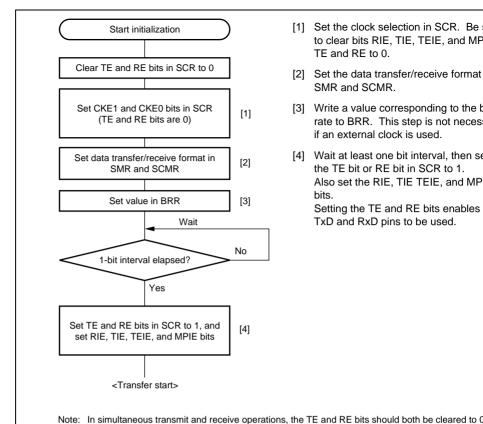


Figure 15.15 Sample SCI Initialization Flowchart

Rev. 3.00 Mar 21, 2006 page 394 of 788 REJ09B0300-0300

set to 1 simultaneously.

Because the TXI interrupt routine writes the next transmit data to TDR before trans the current transmit data has finished, continuous transmission can be enabled.

3. 8-bit data is sent from the TxD pin synchronized with the output clock when output mode has been specified and synchronized with the input clock when use of an ex-

dansinission. If the TIE of in Sex is set to T at this time, a TXI interrupt request

- 4. The SCI checks the TDRE flag at the timing for sending the last bit.
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial to
- of the next frame is started. 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TxD pin ma

has been specified.

output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI inte is generated. The SCK pin is fixed high.

Figure 15.17 shows a sample flow chart for serial data transmission. Even if the TDRI cleared to 0, transmission will not start while a receive error flag (ORER, FER, or PE Make sure to clear the receive error flags to 0 before starting transmission. Note that of RE bit to 0 does not clear the receive error flags.

Rev. 3.00 Mar 21, 2006 pag

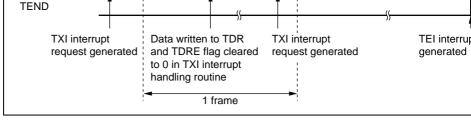


Figure 15.16 Example of SCI Transmit Operation in Clocked Synchronous

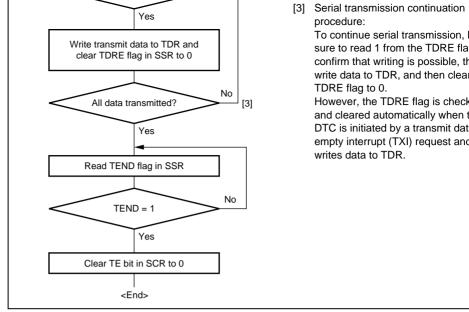


Figure 15.17 Sample Serial Transmission Flowchart

- an ERI interrupt request is generated. Receive data is not transferred to RDR. The F remains to be set to 1.
- 3. If reception finishes successfully, the RDRF bit in SSR is set to 1, and receive data transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt regenerated. Because the RXI interrupt routine reads the receive data transferred to R reception of the next receive data has finished, continuous reception can be enabled.

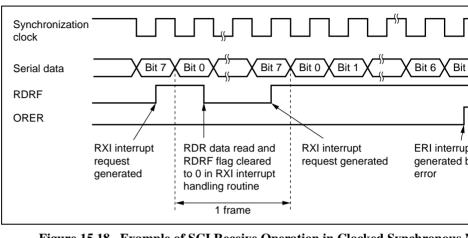
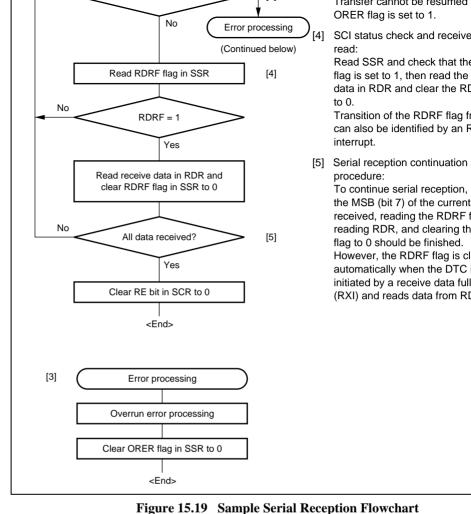



Figure 15.18 Example of SCI Receive Operation in Clocked Synchronous I

Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the FER, PER, and RDRF bits to 0 before resuming reception. Figure 15.19 shows a sample for serial data reception.

REJ09

Rev. 3.00 Mar 21, 2006 pag

a single instruction. To switch from receive mode to simultaneous transmit and receive check that the SCI has finished reception, and clear the RE bit to 0. Then after checking RDRF bit in SSR and receive error flags (ORER, FER, and PER) are cleared to 0, set the RE bits to 1 simultaneously with a single instruction.

Rev. 3.00 Mar 21, 2006 page 400 of 788

REJ09B0300-0300

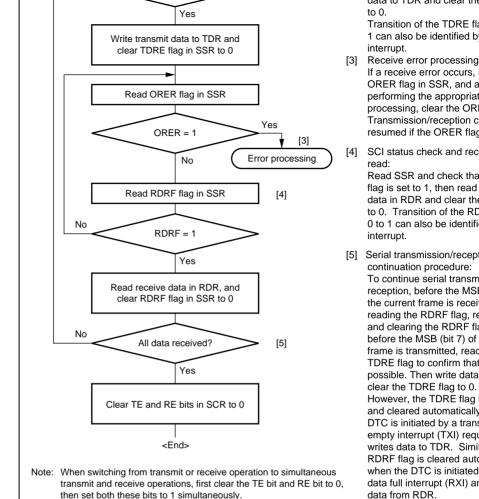


Figure 15.20 Sample Flowchart of Simultaneous Serial Transmission and R

uala lu TDN anu cieai liik

Transition of the TDRE fla 1 can also be identified by

Receive error processing If a receive error occurs, ORER flag in SSR, and a

performing the appropriat processing, clear the ORI Transmission/reception c

resumed if the ORER flag

Read SSR and check tha flag is set to 1, then read

data in RDR and clear the to 0. Transition of the RD 0 to 1 can also be identified

Serial transmission/recept

continuation procedure: To continue serial transm

reception, before the MSI

the current frame is recei reading the RDRF flag, re and clearing the RDRF fla

before the MSB (bit 7) of

frame is transmitted, read TDRE flag to confirm that

possible. Then write data clear the TDRE flag to 0. However, the TDRE flag

and cleared automatically DTC is initiated by a trans empty interrupt (TXI) requ

writes data to TDR. Simil RDRF flag is cleared auto

when the DTC is initiated

data full interrupt (RXI) ar data from RDR.

REJ09

Rev. 3.00 Mar 21, 2006 pag

to 0.

interrupt.

read:

interrupt.

In the system defined by the IrDA standard version 1.0, communication is started at a to of 9600 bps, which can be modified as required. The IrDA interface provided by this L incorporate the capability of automatic modification of the transfer rate; the transfer rat modified through programming.

Figure 15.21 IrDA Block Diagram

Rev. 3.00 Mar 21, 2006 page 402 of 788 REJ09B0300-0300

MHz, a high-level pulse width of at least 1.4 µs to 1.6 µs can be specified.

For serial data of level 1, no pulses are output.

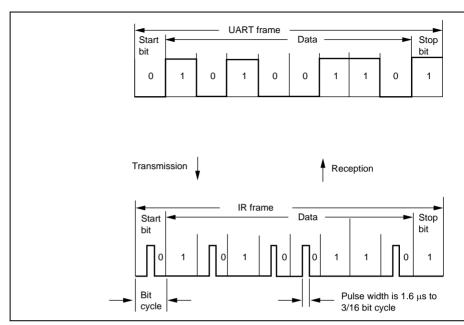


Figure 15.22 IrDA Transmission and Reception

Reception: During reception, IR frames are converted to UART frames using the IrD before inputting to SCI_2.

Data of level 0 is output each time a high-level pulse is detected and data of level 1 is no pulse is detected in a bit cycle. If a pulse has a high-level width of less than 1.41 μ minimum width allowed, the pulse is recognized as level 0.

Rev. 3.00 Mar 21, 2006 pag REJ09

6.144	100	100	100	
7.3728	100	100	100	
8	100	100	100	
9.8304	100	100	100	
10	100	100	100	
12	101	101	101	
12.288	101	101	101	
14	101	101	101	
14.7456	101	101	101	
16	101	101	101	
16.9344	101	101	101	
17.2032	101	101	101	
18	101	101	101	
19.6608	101	101	101	
	101	101	101	

Ψ (····· ·-/

2.097152

2.4576

3.6864

4.9152

Rev. 3.00 Mar 21, 2006 page 404 of 788 REJ09B0300-0300

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt the DTC to allow data transfer. The RDRF flag is automatically cleared to 0 at the PDRF flag is automatically cleared to 0 at the DDRF flag is automatically cleared to 0 at the DDRF flag is automatically cleared to 0 at the DDRF flag is automatically cleared to 0 at t

A TEI interrupt is requested when the TEND flag is set to 1 while the TEIE bit is set to interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt has prior acceptance. However, note that if the TDRE and TEND flags are cleared simultaneous TXI interrupt routine, the SCI cannot branch to the TEI interrupt routine later.

Table 15.11 SCI Interrupt Sources

transfer by the DTC.

Channel	Name	Interrupt Source	Interrupt Flag	DTC Activation
0	ERI0	Receive error	ORER, FER, PER	Not possible
	RXI0	Receive data full	RDRF	Possible
	TXI0	Transmit data empty	TDRE	Possible
	TEI0	Transmit end	TEND	Not possible
1	ERI1	Receive error	ORER, FER, PER	Not possible
	RXI1	Receive data full	RDRF	Possible
	TXI1	Transmit data empty	TDRE	Possible
	TEI1	Transmit end	TEND	Not possible
2	ERI2	Receive error	ORER, FER, PER	Not possible
	RXI2	Receive data full	RDRF	Possible
	TXI2	Transmit data empty	TDRE	Possible
	TEI2	Transmit end	TEND	Not possible

15.9.2 Break Detection and Processing

When framing error detection is performed, a break can be detected by reading the RxI directly. In a break, the input from the RxD pin becomes all 0s, and so the FER flag in and the PER flag may also be set. Note that, since the SCI continues the receive operate after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

15.9.3 Mark State and Break Detection

and level are determined by DR and DDR of the port. This can be used to set the TxD pmark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both DDR and DR to 1. Since is cleared to 0 at this point, the TxD pin becomes an I/O port, and 1 is output from the send a break during serial transmission, first set DDR to 1 and DR to 0, and then clear to 0. When the TE bit is cleared to 0, the transmitter is initialized regardless of the currensmission state, the TxD pin becomes an I/O port, and 0 is output from the TxD pin.

When the TE bit in SCR is 0, the TxD pin is used as an I/O port whose direction (input

15.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous M

Transmission cannot be started when a receive error flag (ORER, FER, or RER) is SSF even if the TDRE flag in SSR is cleared to 0. Be sure to clear the receive error flags to starting transmission. Note also that the receive error flags cannot be cleared to 0 even bit in SCR is cleared to 0.

15.9.5 Relation between Writing to TDR and TDRE Flag

Data can be written to TDR irrespective of the TDRE flag status in SSR. However, if the swritten to TDR when the TDRE flag is 0, that is, when the previous data has not been transferred to TSR yet, the previous data in TDR is lost. Be sure to write transmit data after verifying that the TDRE flag is set to 1.

Rev. 3.00 Mar 21, 2006 page 406 of 788 REJ09B0300-0300

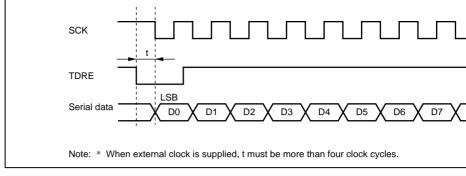


Figure 15.23 Example of Transmission Using DTC in Clocked Synchronou

15.9.7 SCI Operations during Mode Transitions

Transmission: Before making a transition to module stop, software standby, or sub-s stop all transmit operations (TE = TIE = TEIE = 0). TSR, TDR, and SSR are reset. The the output pins during each mode depend on the port settings, and the pins output a his signal after mode cancellation. If a transition is made during data transmission, the data transmitted will be undefined.

To transmit data in the same transmission mode after mode cancellation, set TE to 1, 1 write to TDR, clear TDRE in this order, and then start transmission. To transmit data transmission mode, initialize the SCI first.

Figure 15.24 shows a sample flowchart for mode transition during transmission. Figure 15.26 show the pin states during transmission.

Before making a transition from the transmission mode using DTC transfer to module software standby, or sub-sleep mode, stop all transmit operations (TE = TIE = TEIE = TE and TIE to 1 after mode cancellation generates a TXI interrupt request to start transusing the DTC.

Rev. 3.00 Mar 21, 2006 pag

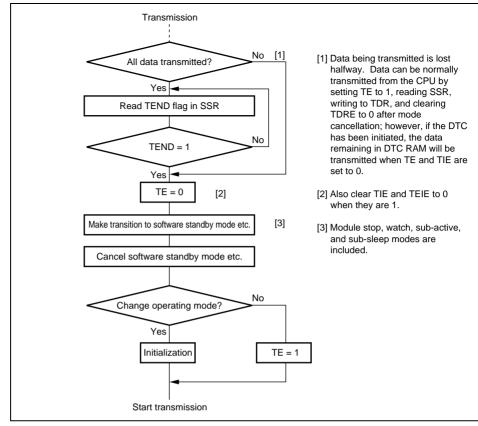


Figure 15.24 Sample Flowchart for Mode Transition during Transmission

Rev. 3.00 Mar 21, 2006 page 408 of 788 REJ09B0300-0300

Figure 15.25 Pin States during Transmission in Asynchronous Mode (Intern

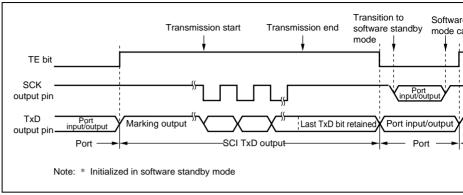


Figure 15.26 Pin States during Transmission in Clocked Synchronous M (Internal Clock)

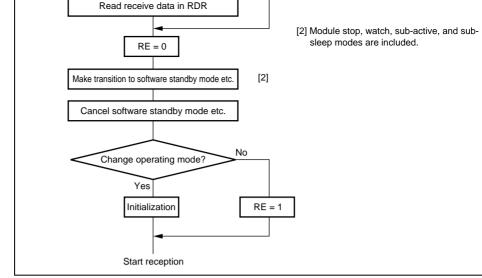


Figure 15.27 Sample Flowchart for Mode Transition during Reception

Rev. 3.00 Mar 21, 2006 page 410 of 788 REJ09B0300-0300

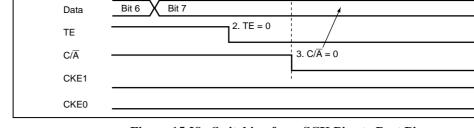


Figure 15.28 Switching from SCK Pins to Port Pins

To prevent the low pulse output that is generated when switching the SCK pins to the specify the SCK pins for input (pull up the SCK/port pins externally), and follow the below with DDR = 1, DR = 1, C/\overline{A} = 1, CKE1 = 0, CKE1 = 0, and TE = 1.

- 1. End serial data transmission
- 2. TE bit = 0
- 3. CKE1 bit = 1
- 4. C/\overline{A} bit = 0 (switch to port output)
- 5. CKE1 bit = 0

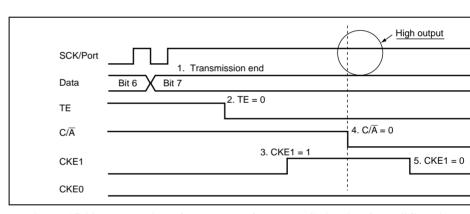


Figure 15.29 Prevention of Low Pulse Output at Switching from SCK Pins to

Rev. 3.00 Mar 21, 2006 pag

Rev. 3.00 Mar 21, 2006 page 412 of 788 REJ09B0300-0300

This LSI has a two-channel I'C bus interface. The I'C bus interface conforms to and p subset of the Philips I'C bus (inter-IC bus) interface functions. The register configurate controls the I'C bus differs partly from the Philips configuration, however.

16.1 Features

- Selection of addressing format or non-addressing format
 - I²C bus format: addressing format with an acknowledge bit, for master/slave op
 - Clocked synchronous serial format: non-addressing format without an acknow master operation only

— Formatless (for IIC 0 only): non-addressing format with a clock pin dedicated

- formatless; for slave operation only

 Conforms to Philips I²C bus interface (I²C bus forms)
- Conforms to Philips I²C bus interface (I²C bus format)
- Two ways of setting slave address (I²C bus format)

• Wait function in master mode (I²C bus format)

- Start and stop conditions generated automatically in master mode (I²C bus format)
- Selection of the acknowledge output level in reception (I²C bus format)
- Automatic loading of an acknowledge bit in transmission (I²C bus format)
- A wait can be inserted by driving the SCL pin low after data transfer, excludin
 - acknowledgement.
- The wait can be cleared by clearing the interrupt flag.
- Wait function (I²C bus format)
 - A wait request can be generated by driving the SCL pin low after data transfer
 - The wait request is cleared when the next transfer becomes possible.
- Interrupt sources
 - Data transfer end (including when a transition to transmit mode with I²C bus for when ICDR data is transferred, or during a wait state)

Rev. 3.00 Mar 21, 2006 pag REJ0

pull outputs) function as NMOS open-drain outputs when the bus drive function

- Automatic switching from formatless mode to I²C bus format (IIC_0 only)
 - - Formatless operation (no start/stop conditions, non-addressing mode) in slave m
 - Operation using a common data pin (SDA) and independent clock pins (VSYNG — Automatic switching from formatless mode to I²C bus format on the fall of the S

Rev. 3.00 Mar 21, 2006 page 414 of 788 REJ09B0300-0300

RENESAS

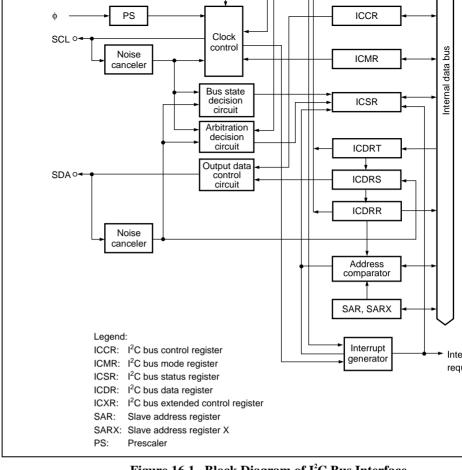


Figure 16.1 Block Diagram of I²C Bus Interface

Rev. 3.00 Mar 21, 2006 pag REJ09

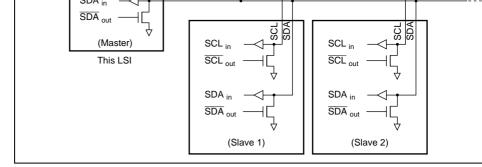


Figure 16.2 I²C Bus Interface Connections (Example: This LSI as Maste

16.2 Input/Output Pins

Table 16.1 summarizes the input/output pins used by the I²C bus interface.

Table 16.1 Pin Configuration

Channel	Symbol	Input/Output	Function
0 SCL0		Input/Output	Serial clock input/output pin of IIC
	SDA0	Input/Output	Serial data input/output pin of IIC
	VSYNCI	Input	Formatless serial clock input pin
1	SCL1	Input/Output	Serial clock input/output pin of IIC

Input/Output

Note: * In the text, the channel subscript is omitted, and only SCL and SDA are used

Serial data input/output pin of IIC

Rev. 3.00 Mar 21, 2006 page 416 of 788 REJ09B0300-0300

SDA1

RENESAS

- I²C bus status register (ICSR)
 - I²C bus data register (ICDR)
 - I²C bus mode register (ICMR)

 - Slave address register (SAR)
 - Second slave address register (SARX)
 - I²C bus extended control register (ICXR)
 - DDC switch register (DDCSWR) (for IIC 0 only)

16.3.1 I²C Bus Data Register (ICDR)

ICDR is an 8-bit readable/writable register that is used as a transmit data register whe transmitting and a receive data register when receiving. ICDR is internally divided int register (ICDRS), receive buffer (ICDRR), and transmit buffer (ICDRT). Data transfe these three registers are performed automatically in accordance with changes in the bu they affect the status of internal flags such as ICDRE and ICDRF.

In master transmit mode with the I²C bus format, writing transmit data to ICDR should performed after start condition detection. When the start condition is detected, previous is ignored. In slave transmit mode, writing should be performed after the slave addres and the TRS bit is automatically changed to 1.

If the IIC is in transmit mode (TRS = 1) and ICDRT has the next transmit data (the IC 0) after successful transmission/reception of one frame of data using ICDRS, data is to automatically from ICDRT to ICDRS.

If the IIC is in transmit mode (TRS = 1) and ICDRT has the next data (the ICDRE fla is transferred automatically from ICDRT to ICDRS, following transmission of one fra using ICDRS. When the ICDRE flag is 1 and the next transmit data writing is waited, transferred automatically from ICDRT to ICDRS by writing to ICDR. If I'C is in rece

(TRS = 0), no data is transferred from ICDRT to ICDRS. Note that data should not be ICDR in receive mode.

Rev. 3.00 Mar 21, 2006 pag

and receive data are stored differently. Transmit data should be written justified toward side when MLS = 0 in ICMR, and toward the LSB side when MLS = 1. Receive data b be read from the LSB side when MLS = 0, and from the MSB side when MLS = 1.

ICDR can be written to and read from only when the ICE bit is set to 1 in ICCR. The ir of ICDR is undefined.

16.3.2 Slave Address Register (SAR)

SAR sets the slave address and selects the communication format. If the LSI is in slave the I²C bus format selected, when the FS bit is set to 0 and the upper 7 bits of SAR mat upper 7 bits of the first frame received after a start condition, the LSI operates as the slave specified by the master device. SAR can be accessed only when the ICE bit in ICCR is 0.

Bit	Bit Name	Initial Value	R/W	Description
7	SVA6	0	R/W	Slave Address 6 to 0
6	SVA5	0	R/W	Set a slave address.
5	SVA4	0	R/W	
4	SVA3	0	R/W	
3	SVA2	0	R/W	
2	SVA1	0	R/W	
1	SVA0	0	R/W	
0	FS	0	R/W	Format Select
				Selects the communication format together wit bit in SARX and the SW bit in DDCSWR. Refer 16.2.
				This bit should be set to 0 when general call ac recognition is performed.

Rev. 3.00 Mar 21, 2006 page 418 of 788

REJ09B0300-0300

	SVAX4	0	R/W	
	SVAX3	0	R/W	
	SVAX2	0	R/W	
	SVAX1	0	R/W	
	SVAX0	0	R/W	
	FSX	1	R/W	Format Select X
				Selects the communication format together w in SAR and the SW bit in DDCSWR. Refer to
_				

Initial Value R/W

R/W

R/W

Bit Name

0

0

SVAX6

SVAX5

Bit 7

6

Description

Second Slave Address 6 to 0

Set the second slave address.

Rev. 3.00 Mar 21, 2006 pag

REJO

			3
			 General call address recognized
	1	0	I ² C bus format
			SAR slave address ignored
			 SARX slave address recognized
			General call address ignored
		1	Clocked synchronous serial format
			 SAR and SARX slave addresses ignored
			 General call address ignored
1	0	0	Formatless mode (start/stop conditions not detec
		1	Acknowledge bit used
	1	0	
		1	Formatless mode (start/stop conditions not detec
			No acknowledge bit
			Do not set this mode when automatic switching bus format is performed by means of the DDCS'

SAR slave address recognized SARX slave address ignored

- I²C bus format: addressing format with an acknowledge bit
- Clocked synchronous serial format: non-addressing format without an acknowledge master mode only
- Formatless mode (for IIC_0 only): non-addressing format with or without an ackno slave mode only, start/stop conditions not detected

Rev. 3.00 Mar 21, 2006 page 420 of 788 REJ09B0300-0300

-0300 **3**51

			This bit is valid only in master mode with the I format.
			Data and the acknowledge bit are transferr consecutively with no wait inserted.
			 After the fall of the clock for the final data b the IRIC flag is set to 1 in ICCR, and a wait (with SCL at the low level). When the IRIC cleared to 0 in ICCR, the wait ends and the acknowledge bit is transferred.
			For details, refer to section 16.4.7, IRIC Setting and SCL Control.
CKS2	0	R/W	Transfer Clock Select 2 to 0
CKS1	0	R/W	These bits are used only in master mode.
CKS0	0	R/W	These bits select the required transfer rate, to the IICX1 (IIC_1) and IICX0 (IIC_0) bits in ST table 16.3.

1: LSB-first

Wait Insertion Bit

R/W

6

5 4 3 WAIT

0

Set this bit to 0 when the I2C bus format is use

001: 2 bits
010: 3 bits
011: 4 bits
100: 5 bits
101: 6 bits
110: 7 bits
111: 8 bits

transfer.

000: 9 bits

I²C Bus Format Clocked Synchronous Serial

000: 8 bits 001: 1 bits 010: 2 bits 011: 3 bits 100: 4 bits 101: 5 bits 110: 6 bits 111: 7 bits

0	1	0	0	ф/80	62.5 kHz	100 kHz	125 kHz	200 kHz
0	1	0	1	ф/100	50.0 kHz	80.0 kHz	100 kHz	160 kHz
0	1	1	0	ф/112	44.6 kHz	71.4 kHz	89.3 kHz	143 kHz
0	1	1	1	ф/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz
1	0	0	0	φ/56	89.3 kHz	143 kHz	179 kHz	286 kHz
1	0	0	1	φ/80	62.5 kHz	100 kHz	125 kHz	200 kHz
1	0	1	0	ф/96	52.1 kHz	83.3 kHz	104 kHz	167 kHz
1	0	1	1	ф/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz
1	1	0	0	ф/160	31.3 kHz	50.0 kHz	62.5 kHz	100 kHz
1	1	0	1	ф/200	25.0 kHz	40.0 kHz	50.0 kHz	80.0 kHz
1	1	1	0	ф/224	22.3 kHz	35.7 kHz	44.6 kHz	71.4 kHz
1	1	1	1	ф/256	19.5 kHz	31.3 kHz	39.1 kHz	62.5 kHz
Note:	*	Outside t mode: ma			ce specifica	ations (stand	ard mode: m	nax. 100 kHz

φ/48

φ/64

104 kHz

78.1 kHz

167 kHz

125 kHz

208 kHz

156 kHz

0

0

1

1

Rev. 3.00 Mar 21, 2006 pag

333 kHz

250 kHz

				 I²C bus interface modules can perform trans operation, and the ports function as the SCL input/output pins. ICMR and ICDR can be ad
6	IEIC	0	R/W	I ² C Bus Interface Interrupt Enable
				0: Disables interrupts from the I ² C bus interface CPU
				1: Enables interrupts from the I ² C bus interface CPU.
5	MST	0	R/W	Master/Slave Select
4	TRS	0	R/W	Transmit/Receive Select
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
				Both these bits will be cleared by hardware wh lose in a bus contention in master mode with the format. In slave receive mode with I ² C bus form R/W bit in the first frame immediately after the condition sets these bits in receive mode or tra automatically by hardware.
				Modification of the TRS bit during transfer is de transfer is completed, and the changeover is m completion of the transfer.

				oonamon 1)
				When 1 is written in MST after reading MS MST clearing condition 2)
				[TRS clearing conditions]
				 When 0 is written by software (except for condition 3)
				When 0 is written in TRS after reading TR TRS setting condition 3)
				3 When lost in bus contention in I ² C bus form mode
				4. When the SW bit in DDCSWR is changed
				[TRS setting conditions]
				 When 1 is written by software (except for conditions 3 and 4)
				When 1 is written in TRS after reading TR TRS clearing conditions 3 and 4)
				3. When 1 is received as the R/\overline{W} bit after th address matching in I^2C bus format slave
3	ACKE	0	R/W	Acknowledge Bit Decision and Selection
				0: The value of the acknowledge bit is ignore continuous transfer is performed. The value received acknowledge bit is not indicated bit in ICSR, which is always 0.

RENESAS

transfer is halted.

have no significance.

1: If the received acknowledge bit is 1, contin

Depending on the receiving device, the acknown may be significant, in indicating completion of of the received data, for instance, or may be f

Rev. 3.00 Mar 21, 2006 pag

In slave mode:

has been issued.

has been issued.

· Writing to the BBSY flag is disabled. [BBSY setting condition]

When the SDA level changes from high to low u

condition of SCL = high, assuming that the start

[BBSY clearing condition]

When the SDA level changes from low to high u condition of SCL = high, assuming that the stop

To issue a start/stop condition, use the MOV ins The I²C bus interface must be set in master tran before the issue of a start condition. Set MST to

to 1 before writing 1 in BBSY and 0 in SCP. The BBSY flag can be read to check whether th

(SCL, SDA) is busy or free. The SCP bit is always read as 1. If 0 is written,

not stored.

[Setting conditions]

transmit/receive clock)

while the ALIE bit is 1 I²C bus format slave mode:

RENESAS

I²C bus format master mode:

When a start condition is detected in the bu

after a start condition is issued (when the I

set to 1 because of first frame transmission When a wait is inserted between the data a acknowledge bit when the WAIT bit is 1 (fa

 At the end of data transfer (rise of the 9th transmit/receive clock while no wait is inse When a slave address is received after bus is lost (the first frame after the start condition If 1 is received as the acknowledge bit (wh bit in ICSR is set to 1) when the ACKE bit i When the AL flag is set to 1 after bus arbiti

When the slave address (SVA or SVAX) m (when the AAS or AASX flag in ICSR is se the end of data transfer up to the subseque retransmission start condition or stop cond detection (rise of the 9th transmit/receive c When the general call address is detected received as the R/W bit and the ADZ flag in to 1) and at the end of data reception up to subsequent retransmission start condition condition detection (rise of the 9th receive If 1 is received as the acknowledge bit (wh bit in ICSR is set to 1) while the ACKE bit is When a stop condition is detected (when the ESTP flag in ICSR is set to 1) while the ST

Rev. 3.00 Mar 21, 2006 pag

When the ICDRE or ICDRF flag is set to 1 in an mode:

- When a start condition is detected in transm (when a start condition is detected in transm
- and the ICDRE flag is set to 1)
- When data is transferred among the ICDR r buffer (when data is transferred from ICDRT in transmit mode and the ICDRE flag is set t when data is transferred from ICDRS to ICD

receive mode and the ICDRF flag is set to 1 [Clearing conditions]

- Under the conditions with the conditions when 0 is written in IRIC after reading IRIC
- When ICDR is read from or written to by the may not function as a clearing condition dep the situation. For details, see the description operation given below.)

Note: * Only 0 can be written, to clear the flag.

without CPU intervention.

When, with the I²C bus format selected, IRIC is set to 1 and an interrupt is generated, or

When the DTC is used, IRIC is cleared automatically and transfer can be performed co

must be checked in order to identify the source that set IRIC to 1. Although each source corresponding flag, caution is needed at the end of a transfer.

When the ICDRE or ICDRE flag is set, the IRTR flag may or may not be set. The IRTR

When the ICDRE or ICDRF flag is set, the IRTR flag may or may not be set. The IRTI DTC start request flag) is not set at the end of a data transfer up to detection of a retran start condition or stop condition after a slave address (SVA) or general call address ma bus format slave mode.

Even when the IRIC flag and IRTR flag are set, the ICDRE or ICDRF flag may not be IRIC and IRTR flags are not cleared at the end of the specified number of transfers in c

Rev. 3.00 Mar 21, 2006 page 428 of 788

REJ09B0300-0300

1	1	1	0	0		0	0	0	0
1	1	1	0	0	1↑	0	0	0	0
1	0	1	0	0	1↑	0	0	0	0
1	0	1	0	0		0	0	0	0
1	0	1	0	0	_	0	0	0	0
1	0	1	0	0		0	0	0	0
1	0	1	0	0	1↑	0	0	0	0
0↓	0↓	1	0	0	_	0	1↑	0	0
1	_	0↓	0	0	_	0	0	0	0
Lege	end:								
0:									
1:	1-state	etained							
— :	Previous	s state r	etained						
0↓:	Cleared	to 0							
1↑:	Set to 1								

_

_

Rev. 3.00 Mar 21, 2006 pag

0↓

0↓

0↓

0↓

0↓

1↑

Start cond

Wait state

Transmiss (ACKE=1

Transmiss ICDRE=0

ICDR write state

Transmiss ICDRE=1

ICDR write

state or af condition

Automatic from ICDF the above

Reception ICDRF=0

ICDR read state

Reception ICDRF=1

ICDR read state

Automatic from ICDF with the al

Arbitration

Stop cond

0	1	1	0	0	11/0*2	_	0	0	0
0	0	1	0	0	11/0*2	_	_	_	_
0	0	1	0	0	_	_	0↓	0↓	ο↓
0	0	1	0	0	_	_		_	
0	0	1	0	0	_	_	0↓	0↓	0↓
0	0	1	0	0	11/0*2	_	0	0	0
0	_	0↓	1 ¹ /0*3	0/1↑*3	_	_	_	_	_
Leg	end:								
0:	0-state	retained							
1:	1: 1-state retained								
—:	-: Previous state retained								
0↓:	Cleare	d to 0							
1↑:	Set to	1							
Not	es: 1.	Set to 1	when 1 is	receive	ed as a	R/W b	it followi	ng an ad	ddress.
	2.	Set to 1	when the	AASX b	oit is se	t to 1.		-	
	3. When ESTP=1, STOP is 0, or when STOP=1, ESTP is 0.						0.		

11

1¹/0*2 —

11

0↓

0↓

0↓

0↓

0

0

0

11/0*1 1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

Rev. 3.00 Mar 21, 2006 page 430 of 788 REJ09B0300-0300

RENESAS

(SARX ≠ F

SARS mat

frame (SA

Transmiss

= 1 and A0

Transmiss ICDRE = 0

ICDR write above stat

Transmiss ICDRE = 1

ICDR write above stat

Automatic from ICDR with the ab

Reception ICDRF=0

ICDR read state

Reception ICDRF = 1

ICDR read state

Automatic from ICDR with the ab

Stop condi

11

11

0↓

1

0↓

11

0

11

0

0

0

0

0

11

0\

1

0↓

1↑

0↓

0

0

0

0

0

			When a stop condition is detected during frame
			[Clearing conditions]
			 When 0 is written in ESTP after reading ES
			 When the IRIC flag in ICCR is cleared to 0
6	STOP	0	R/(W)* Normal Stop Condition Detection Flag
			This bit is valid in I ² C bus format slave mode.
			[Setting condition]

When a stop condition is detected after frame completion. [Clearing conditions] • When 0 is written in STOP after reading ST

- When the IRIC flag is cleared to 0

Rev. 3.00 Mar 21, 2006 pag

			[Setting conditions]
			I ² C bus format slave mode:
			 When the ICDRE or ICDRF flag in ICDR is s when AASX = 1
			Master mode or clocked synchronous serial form with I ² C bus format, or formatless mode:
			 When the ICDRE or ICDRF flag is set to 1
			[Clearing conditions]
			 When 0 is written after reading IRTR = 1
			 When the IRIC flag is cleared to 0 while ICE
4	AASX	0	R/(W)* Second Slave Address Recognition Flag
			In I ² C bus format slave receive mode, this flag is the first frame following a start condition matche SVAX6 to SVAX0 in SARX.
			[Setting condition]
			When the second slave address is detected in s receive mode and $FSX = 0$ in $SARX$
			[Clearing conditions]
			 When 0 is written in AASX after reading AAS
			 When a start condition is detected
			 In master mode

				Whe	en ALSL = 1
					If the internal SDA and SDA pin disagree a SCL in master transmit mode
				1	If the SDA pin is driven low by another dev the I ² C bus interface drives the SDA pin low start condition instruction was executed in a transmit mode
				[Cle	earing conditions]
					When ICDR is written to (transmit mode) o (receive mode)
				• '	When 0 is written in AL after reading AL =
2	AAS	0	R/(W)*	Slav	ve Address Recognition Flag
				the to S	C bus format slave receive mode, this flag first frame following a start condition match VA0 in SAR, or if the general call address ected.
				[Set	ting condition]
				inclu	en the slave address or general call addrest uding a R/\overline{W} bit is H'00) is detected in slave de and FS = 0 in SAR
				[Cle	earing conditions]
				• '	When ICDR is written to (transmit mode) o

RENESAS

(receive mode)

• In master mode

• When 0 is written in AAS after reading AAS

Rev. 3.00 Mar 21, 2006 pag

REJ0

• If the internal SCL line is high at the fall of

master transmit mode

[Clearing conditions] • When ICDR is written to (transmit mode) or (receive mode)

LQY = 0

- When 0 is written in ADZ after reading ADZ
- In master mode

If a general call address is detected while FS=1 FSX=0, the ADZ flag is set to 1; however, the g address is not recognized (AAS flag is not set to

Rev. 3.00 Mar 21, 2006 page 434 of 788 REJ09B0300-0300

RENESAS

- When 0 is received as the acknowledge bit
 - ACKE=1 in transmit mode
 - When 0 is written to the ACKE bit

Receive mode:

- 0: Returns 0 as acknowledge data after data re
- 1: Returns 1 as acknowledge data after data re
- When this bit is read, the value loaded from the (returned by the receiving device) is read in tra

(when TRS = 1). In reception (when TRS = 0), by internal software is read.

When this bit is written, acknowledge data that after receiving is rewritten regardless of the TF the ICSR register bit is written using bit-manip instructions, the acknowledge data should be i the acknowledge data setting is rewritten by th

reading value. Write the ACKE bit to 0 to clear the ACKB flag transmission is ended and a stop condition is i master mode, or before transmission is ended

released to issue a stop condition by a master

Note: Only 0 can be written to clear the flag.

Rev. 3.00 Mar 21, 2006 pag

				1: Enables automatic switching of IIC channel 0 formatless mode to I ² C bus format
6	SW	0	R/W	DDC Mode Switch
				0: Uses IIC channel 0 with the I ² C bus format
				1: Uses IIC channel 0 in formatless mode
				[Setting condition]
				When 1 is written in SW after reading SW = 0
				[Clearing conditions]
				When 0 is written by software
				 When a falling edge is detected on the SCL SWE = 1
5	IE	0	R/W	DDC Mode Switch Interrupt Enable Bit
				Disables interrupts when automatic format sw executed
				Enables interrupts when automatic format sw executed
4	IF	0	R/(W)*1	DDC Mode Switch Interrupt Flag
				Indicates an interrupt request to the CPU is ger when automatic format switching is executed for
				[Setting condition]
				When a falling edge is detected on the SCL pin SWE = 1

Rev. 3.00 Mar 21, 2006 page 436 of 788 REJ09B0300-0300

RENESAS

[Clearing condition]

When 0 is written in IF after reading IF = 1

0111: IIC_0 and IIC_1 internal latches cleared

1---: Invalid setting

signal is generated for the internal latch circuit corresponding module, and the internal state of module is initialized.

When a write operation is performed on these

These bits can only be written to; they are always

1. Write data to this bit is not retained. To perform IIC clearance, bits CLR3 to CLR0 i

written to simultaneously using an MOV instru use a bit manipulation instruction such as BCL

When clearing is required again, all the bits mu to in accordance with the setting. If the function of these bits is not used, set all of

to CLR0 bits to 1 when writing to DDCSWR.

Notes: 1. Only 0 can be written, to clear the flag.

2. This bit is always read as 1.

				 Enables IRIC flag setting and interrupt generathe stop condition is detected (STOP = 1 or E slave mode.
				 Disables IRIC flag setting and interrupt gener the stop condition is detected.
6	HNDS	0	R/W	Handshake Receive Operation Select
				Enables or disables continuous receive operation mode.

When the HNDS bit is cleared to 0, receive ope performed continuously after data has been rec successfully while ICDRF flag is 0.

0: Enables continuous receive operation 1: Disables continuous receive operation

When the HNDS bit is set to 1, SCL is fixed to the and the next data transfer is disabled after data received successfully while the ICDRF flag is 0. line is released and next receive operation is en reading the receive data in ICDR.

[Setting conditions]

from ICDRS to ICDRR.

(1) When data is received successfully while (at the rise of the 9th clock pulse). (2) When ICDR is read successfully in receive data was received while ICDRF = 1. [Clearing conditions] When ICDR (ICDRR) is read. When 0 is written to the ICE bit. · When the IIC is internally initialized using the

When data is received successfully and tra

CLR0 bits in DDCSWR.

When ICDRF is set due to the condition (2) ab is temporarily cleared to 0 when ICDR (ICDRR however, since data is transferred from ICDRS

immediately, ICDRF is set to 1 again.

Note that ICDR cannot be read successfully in mode (TRS = 1) because data is not transferre ICDRS to ICDRR. Be sure to read data from IC receive mode (TRS = 0).

Rev. 3.00 Mar 21, 2006 pag

thus allowing the next data to be written to.

[Setting conditions]

- When the start condition is detected from the state with I2C bus format or serial format.
- When I²C bus mode is switched to formatles SW bit in DDCSWR is set to 1).
- When data is transferred from ICDRT to ICE
- 1. When data transmission completed while
- 0 (at the rise of the 9th clock pulse).
- 2. When data is written to ICDR in transmit data transmission was completed while [Clearing conditions]
- When data is written to ICDR (ICDRT). When the stop condition is detected with I²C
 - or serial format.
 - When 0 is written to the ICE bit.

 - When the IIC is internally initialized using the CLR0 bits in DDCSWR. Note that if the ACKE bit is set to 1 with I2C bus
 - enabling acknowledge bit decision, ICDRE is no
 - data transmission is completed while the acknow
 - is 1. When ICDRE is set due to the condition (2) about is temporarily cleared to 0 when data is written (ICDRT); however, since data is transferred from ICDRS immediately, ICDRE is set to 1 again. D

data to ICDR when TRS = 0 because the ICDR

is invalid during the time.

When the SDA pin state disagrees with the bus interface outputs at the rise of SCL, or v SCL pin is driven low by another device.
When the SDA pin state disagrees with the bus interface outputs at the rise of SCL, or v SDA line is driven low by another device in i after the start condition instruction was executed.

1	FNC1	0	R/W	Function Bit
0	FNC0	0	R/W	Cancels some restrictions on usage. For detail section 16.6, Usage Notes.
				00: Restrictions on operation remaining in effection
				01: Setting prohibited
				10: Setting prohibited
				11: Restrictions on operation canceled

Rev. 3.00 Mar 21, 2006 pag REJ09

IIC_0 only is capable of formatless operation, as shown in figure 16.4.

The serial format is a non-addressing format with no acknowledge bit. This is shown in 16.5.

Figure 16.6 shows the I²C bus timing.

The symbols used in figures 16.3 to 16.6 are explained in table 16.6.



Figure 16.3 I²C Bus Data Format (I²C Bus Format)

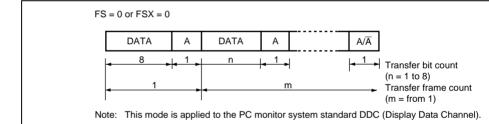


Figure 16.4 I²C Bus Data Format (Formatless) (IIC_0 Only)

Rev. 3.00 Mar 21, 2006 page 442 of 788 REJ09B0300-0300

RENESAS

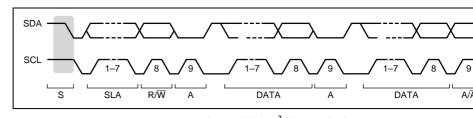


Figure 16.6 I²C Bus Timing

Table 16.6 I²C Bus Data Format Symbols

Legend	
S	Start condition. The master device drives SDA from high to low while SCL
SLA	Slave address. The master device selects the slave device.
R/W	Indicates the direction of data transfer: from the slave device to the maste when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is
A	Acknowledge. The receiving device drives SDA low to acknowledge a translave device returns acknowledge in master transmit mode, and the master returns acknowledge in master receive mode.)
DATA	Transferred data. The bit length of transferred data is set with the BC2 to ICMR. The MSB first or LSB first is switched with the MLS bit in ICMR.

Р Stop condition. The master device drives SDA from low to high while SCL

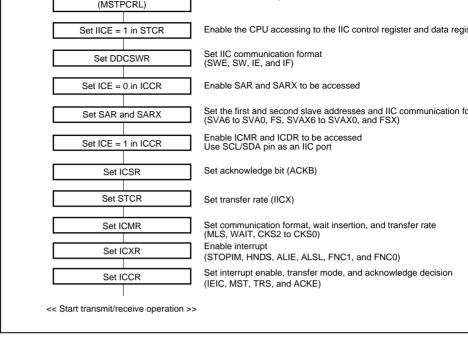


Figure 16.7 Sample Flowchart for IIC Initialization

Note: Be sure to modify the ICMR register after transmit/receive operation has been a lift the ICMR register is modified during transmit/receive operation, bit counter BC0 will be modified erroneously, thus causing incorrect operation.

16.4.3 Master Transmit Operation

In I^2C bus format master transmit mode, the master device outputs the transmit clock at data, and the slave device returns an acknowledge signal.

Figure 16.8 shows the sample flowchart for the operations in master transmit mode.

Rev. 3.00 Mar 21, 2006 page 444 of 788 REJ09B0300-0300

RENESAS

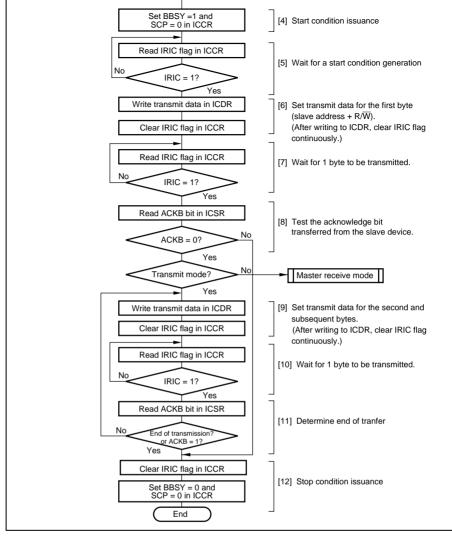


Figure 16.8 Sample Flowchart for Operations in Master Transmit Mo

Rev. 3.00 Mar 21, 2006 pag

- 5. Then the IRIC and IRTR flags are set to 1. If the IEIC bit in ICCR has been set to 1 interrupt request is sent to the CPU. 6. Write the data (slave address + R/\overline{W}) to ICDR.
- With the I²C bus format (when the FS bit in SAR or the FSX bit in SARX is 0), the data following the start condition indicates the 7-bit slave address and transmit/rece

direction (R/W). To determine the end of the transfer, the IRIC flag is cleared to 0. After writing to I IRIC continuously so no other interrupt handling routine is executed. If the time for

transmission of one frame of data has passed before the IRIC clearing, the end of transmission of one frame of data has passed before the IRIC clearing, the end of transmission of one frame of data has passed before the IRIC clearing. cannot be determined. The master device sequentially sends the transmission clock data written to ICDR. The selected slave device (i.e. the slave device with the mate address) drives SDA low at the 9th transmit clock pulse and returns an acknowledg

- 7. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of transmit clock pulse. After one frame has been transmitted, SCL is automatically fi synchronization with the internal clock until the next transmit data is written. 8. Read the ACKB bit in ICSR to confirm that ACKB is cleared to 0. When the slave
- not acknowledged (ACKB bit is 1), operate step [12] to end transmission, and retry transmit operation. 9. Write the transmit data to ICDR. As indicating the end of the transfer, the IRIC flag is cleared to 0. Perform the ICD
- - the IRIC flag clearing sequentially, just as in step [6]. Transmission of the next fram performed in synchronization with the internal clock. 10. When one frame of data has been transmitted, the IRIC flag is set to 1 at the rise of

to be transmitted, go to step [9] to continue the next transmission operation. When device has not acknowledged (ACKB bit is set to 1), operate step [12] to end transn

- transmit clock pulse. After one frame has been transmitted, SCL is automatically fi synchronization with the internal clock until the next transmit data is written. 11. Read the ACKB bit in ICSR.
- Confirm that the slave device has been acknowledged (ACKB bit is 0). When there

Rev. 3.00 Mar 21, 2006 page 446 of 788

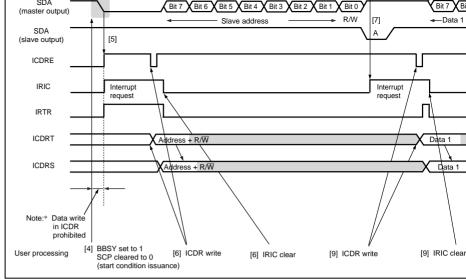


Figure 16.9 Example of Operation Timing in Master Transmit Mode (MLS =

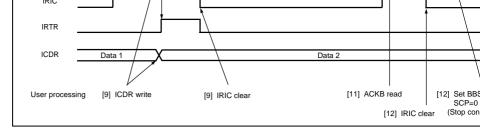


Figure 16.10 Example of Stop Condition Issuance Operation Timing in Master Transmit Mode (MLS = WAIT = 0)

16.4.4 Master Receive Operation

In I²C bus format master receive mode, the master device outputs the receive clock, recand returns an acknowledge signal. The slave device transmits data.

The master device transmits data containing the slave address and R/\overline{W} (1: read) in the following the start condition issuance in master transmit mode, selects the slave device switches the mode for receive operation.

Rev. 3.00 Mar 21, 2006 page 448 of 788 REJ09B0300-0300

RENESAS

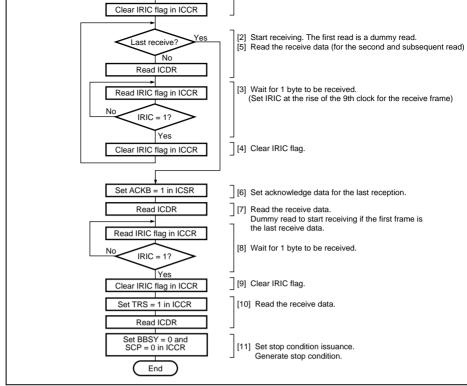


Figure 16.11 Sample Flowchart for Operations in Master Receive Mo (HNDS = 1)

Rev. 3.00 Mar 21, 2006 pag

2. When ICDR is read (dummy data read), reception is started, the receive clock is ou synchronization with the internal clock, and data is received. (Data from the SDA p sequentially transferred to ICDRS in synchronization with the rise of the receive clo

3. The master device drives SDA low to return the acknowledge data at the 9th receiv

- pulse. The receive data is transferred from ICDRS to ICDRR at the rise of the 9th c setting the ICDRF, IRIC, and IRTR flags to 1. If the IEIC bit has been set to 1, an i request is sent to the CPU. The master device drives SCL low from the fall of the 9th receive clock pulse to the reading.
 - 4. Clear the IRIC flag to clear the wait state. Go to step [6] to halt reception operation if the next frame is the last receive data.
 - 5. Read ICDR receive data. This clears the ICDRF flag to 0. The master device output

7. Read ICDR receive data. This clears the ICDRF flag to 0. The master device output

- Data can be received continuously by repeating steps [3] to [5].

receive clock continuously to receive the next data.

- 6. Set the ACKB bit to 1 so as to return the acknowledge data for the last reception.
- 8. When one frame of data has been received, the ICDRF, IRIC, and IRTR flags are se

receive clock to receive data.

- rise of the 9th receive clock pulse.
- 9. Clear the IRIC flag to 0.
- 10. Read ICDR receive data after setting the TRS bit. This clears the ICDRF flag to 0. 11. Clear the BBSY bit and SCP bit to 0 in ICCR. This changes SDA from low to high is high, and generates the stop condition.

Rev. 3.00 Mar 21, 2006 page 450 of 788 REJ09B0300-0300

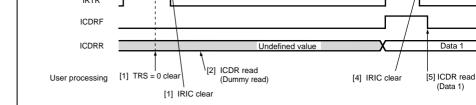


Figure 16.12 Example of Operation Timing in Master Receive Mode (MLS = WAIT = 0, HNDS = 1)

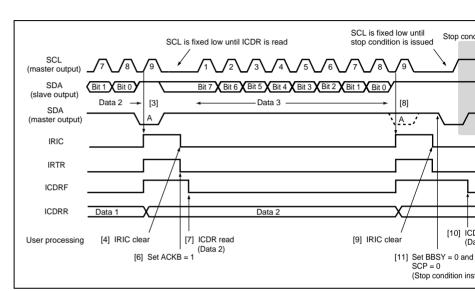


Figure 16.13 Example of Stop Condition Issuance Operation Timing in Master Receive Mode (MLS = WAIT = 0, HNDS = 1)

Receive Operation Using the Wait Function:

Figures 16.14 and 16.15 show the sample flowcharts for the operations in master rece (WAIT = 1).

Rev. 3.00 Mar 21, 2006 pag REJ0

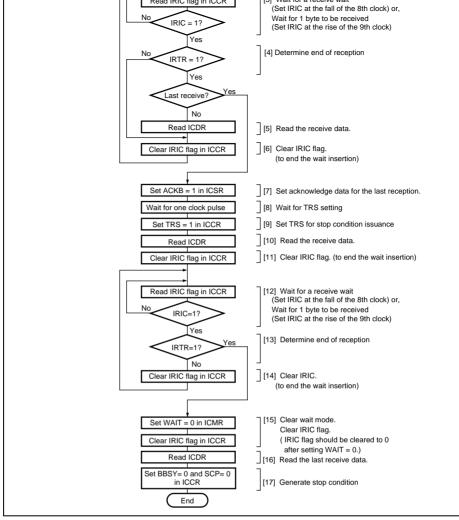


Figure 16.14 Sample Flowchart for Operations in Master Receive Mod (Receiving Multiple Bytes) (WAIT = 1)

Rev. 3.00 Mar 21, 2006 page 452 of 788 REJ09B0300-0300

2

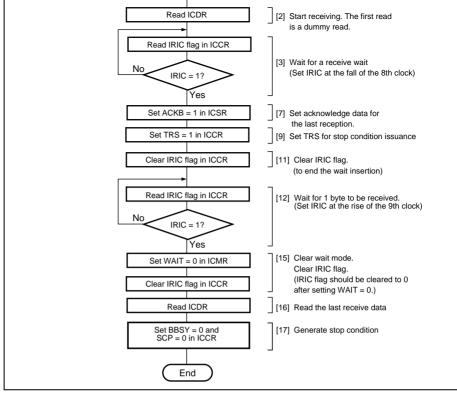


Figure 16.15 Sample Flowchart for Operations in Master Receive Mo (Receiving a Single Byte) (WAIT = 1)

Clear the ACKB bit in ICSR to 0 to set the acknowledge data.

Clear the HNDS bit in ICXR to 0 to cancel the handshake function.

Clear the IRIC flag to 0, and then set the WAIT bit in ICMR to 1.

- 2. When ICDR is read (dummy data is read), reception is started, the receive clock is
- synchronization with the internal clock, and data is received. 3. The IRIC flag is set to 1 in either of the following cases. If the IEIC bit in ICCR has
- 1, an interrupt request is sent to the CPU.
- At the fall of the 8th receive clock pulse for one frame

SCL is automatically fixed low in synchronization with the internal clock until t

— At the rise of the 9th receive clock pulse for one frame

The IRTR and ICDRF flags are set to 1, indicating that one frame of data has be

- received. The master device outputs the receive clock continuously to receive the
- 4. Read the IRTR flag in ICSR.
 - If the IRTR flag is 0, execute step [6] to clear the IRIC flag to 0 to release the wait If the IRTR flag is 1 and the next data is the last receive data, execute step [7] to ha 5. If IRTR flag is 1, read ICDR receive data.
 - 6. Clear the IRIC flag. When the flag is set as the first case in step [3], the master devi the 9th clock and drives SDA low at the 9th receive clock pulse to return an acknow
 - Data can be received continuously by repeating steps [3] to [6].

 - 7. Set the ACKB bit in ICSR to 1 so as to return the acknowledge data for the last rece
 - pulse for the next receive data. 9. Set the TRS bit in ICCR to 1 to switch from receive mode to transmit mode. The T

signal.

flag clearing.

- becomes valid when the rising edge of the next 9th clock pulse is input.
- 10. Read the ICDR receive data.

REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 page 454 of 788

RENESAS

8. After the IRIC flag is set to 1, wait for at least one clock pulse until the rise of the f

13. Read the IRTR flag in ICSR.

condition.

- If the IRTR flag is 0, execute step [14] to clear the IRIC flag to 0 to release the wa
 - If the IRTR flag is 1 and data reception is complete, execute step [15] to issue the
- 14. If IRTR flag is 0, clear the IRIC flag to 0 to release the wait state.

Execute step [12] to read the IRIC flag to detect the end of reception.

- 15. Clear the WAIT bit in CMR to cancel the wait mode.
- Then, clear the IRIC flag. Clearing of the IRIC flag should be done while WAIT = WAIT bit is cleared to 0 after clearing the IRIC flag and then an instruction to issu condition is executed, the stop condition may not be issued correctly.)
- 16. Read the last ICDR receive data.
- 17. Clear the BBSY bit and SCP bit to 0 in ICCR. This changes SDA from low to high is high, and generates the stop condition.

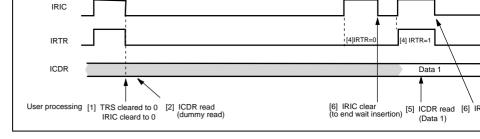


Figure 16.16 Example of Master Receive Mode Operation Timing (MLS = ACKB = 0, WAIT = 1)

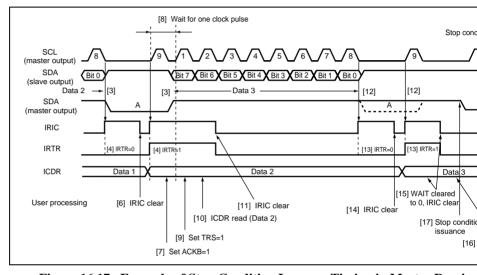


Figure 16.17 Example of Stop Condition Issuance Timing in Master Receive (MLS = ACKB = 0, WAIT = 1)

Rev. 3.00 Mar 21, 2006 page 456 of 788 REJ09B0300-0300

Receive Operation Using the HNDS Function (HNDS = 1):					
Figure 16.18 shows the sample flowchart for the operations in slave receive mode (H)					

Rev. 3.00 Mar 21, 2006 pag REJ09

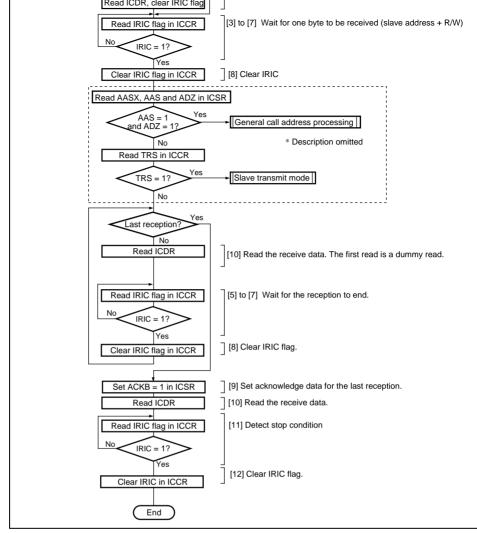


Figure 16.18 Sample Flowchart for Operations in Slave Receive Mode (HNI

Rev. 3.00 Mar 21, 2006 page 458 of 788 REJ09B0300-0300

3. When the start condition output by the master device is detected, the BBSY flag ir to 1. The master device then outputs the 7-bit slave address and transmit/receive d (R/W), in synchronization with the transmit clock pulses.

> 4. When the slave address matches in the first frame following the start condition, the operates as the slave device specified by the master device. If the 8th data bit (R/V

TRS bit remains cleared to 0, and slave receive operation is performed. If the 8th of (R/W) is 1, the TRS bit is set to 1, and slave transmit operation is performed. Whe address does not match, receive operation is halted until the next start condition is

the IRIC flag to 0.

- 5. At the 9th clock pulse of the receive frame, the slave device returns the data in the as an acknowledge signal. 6. At the rise of the 9th clock pulse, the IRIC flag is set to 1. If the IEIC bit has been interrupt request is sent to the CPU.
 - If the AASX bit has been set to 1, IRTR flag is also set to 1.

master device to transfer the next data.

- 7. At the rise of the 9th clock pulse, the receive data is transferred from ICDRS to IC setting the ICDRF flag to 1. The slave device drives SCL low from the fall of the
- clock pulse until data is read from ICDR.
- 8. Confirm that the STOP bit is cleared to 0, and clear the IRIC flag to 0.
- 9. If the next frame is the last receive frame, set the ACKB bit to 1.
- Receive operations can be performed continuously by repeating steps [5] to [10].

10. If ICDR is read, the ICDRF flag is cleared to 0, releasing the SCL bus line. This e

- 11. When the stop condition is detected (SDA is changed from low to high when SCL BBSY flag is cleared to 0 and the STOP bit is set to 1. If the STOPIM bit has been
 - 0, the IRIC flag is set to 1.
 - 12. Confirm that the STOP bit is set to 1, and clear the IRIC flag to 0.

Rev. 3.00 Mar 21, 2006 pag

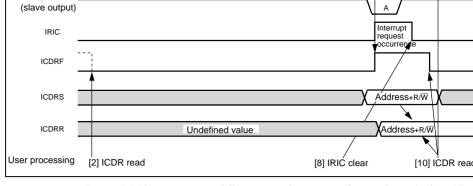


Figure 16.19 Example of Slave Receive Mode Operation Timing (1) (MLS = 0, HNDS= 1)

Rev. 3.00 Mar 21, 2006 page 460 of 788 REJ09B0300-0300

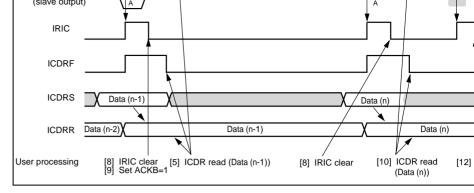


Figure 16.20 Example of Slave Receive Mode Operation Timing (2) (MLS = 0, HNDS= 1)

Continuous Receive Operation:

Figure 16.21 shows the sample flowchart for the operations in slave receive mode (H)

Rev. 3.00 Mar 21, 2006 pag REJ0

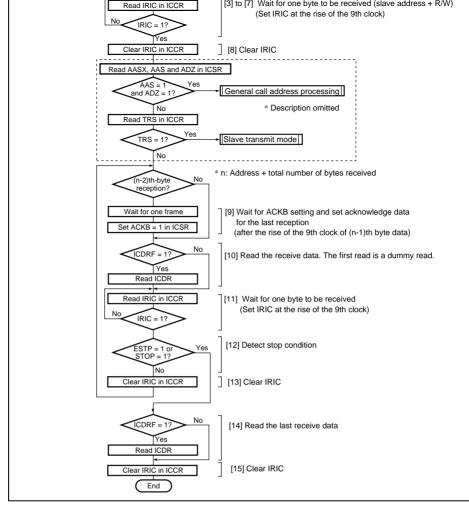


Figure 16.21 Sample Flowchart for Operations in Slave Receive Mode (HNI

Rev. 3.00 Mar 21, 2006 page 462 of 788 REJ09B0300-0300

operates as the slave device specified by the master device. If the 8th data bit (R/V TRS bit remains cleared to 0, and slave transmit operation is performed. When the address does not match, receive operation is halted until the next start condition is 5. At the 9th clock pulse of the receive frame, the slave device returns the data in the

(R/W) in synchronization with the transmit clock pulses.

as an acknowledge signal. 6. At the rise of the 9th clock pulse, the IRIC flag is set to 1. If the IEIC bit has been interrupt request is sent to the CPU.

to 1. The master device then outputs the 7-bit slave address and transmit/receive d

4. When the slave address matches in the first frame following the start condition, the

- If the AASX bit has been set to 1, the IRTR flag is also set to 1.
- 7. At the rise of the 9th clock pulse, the receive data is transferred from ICDRS to IC
- setting the ICDRF flag to 1.
 - 8. Confirm that the STOP bit is cleared to 0 and clear the ICIC flag to 0.
- 9. If the next read data is the third last receive frame, wait for at least one frame time ACKB bit. Set the ACKB bit after the rise of the 9th clock pulse of the second last frame.
 - 10. Confirm that the ICDRF flag is set to 1 and read ICDR. This clears the ICDRF fla 11. At the rise of the 9th clock pulse or when the receive data is transferred from IRD

cleared to 0, the IRIC flag is set to 1. In this case, execute step [14] to read the last

- ICDRR due to ICDR read operation, the IRIC and ICDRF flags are set to 1. 12. When the stop condition is detected (SDA is changed from low to high when SCL BBSY flag is cleared to 0 and the STOP or ESTP flag is set to 1. If the STOPIM b
- data. 13. Clear the IRIC flag to 0.
- Receive operations can be performed continuously by repeating steps [9] to [13].
- 14. Confirm that the ICDRF flag is set to 1, and read ICDR.
- 15. Clear the IRIC flag.

Rev. 3.00 Mar 21, 2006 pag

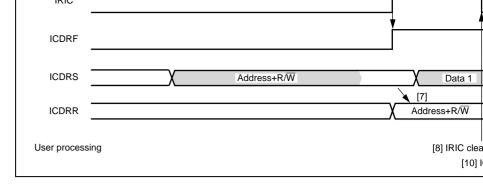


Figure 16.22 Example of Slave Receive Mode Operation Timing (1) (MLS = ACKB = 0, HNDS = 0)

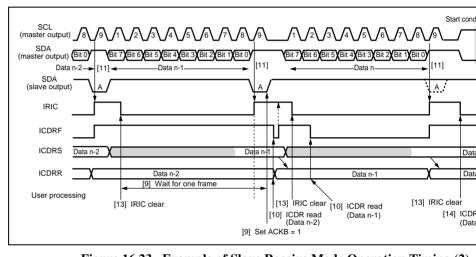


Figure 16.23 Example of Slave Receive Mode Operation Timing (2) (MLS = ACKB = 0, HNDS = 0)

Rev. 3.00 Mar 21, 2006 page 464 of 788 REJ09B0300-0300

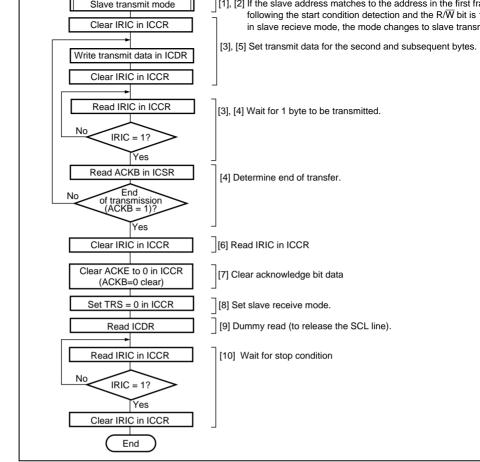


Figure 16.24 Sample Flowchart for Slave Transmit Mode

bit in ICCR has been set to 1, an interrupt request is sent to the CPU. At the same ti ICDRE flag is set to 1. The slave device drives SCL low from the fall of the transm until ICDR data is written, to disable the master device to output the next transfer c

transmit mode automatically. The fixed mag is set to 1 at the fise of the 5th clock. If

The IRIC flag is cleared to 0 to detect the end of transmission. Processing from the register writing to the IRIC flag clearing should be performed continuously. Preven

4. The master device drives SDA low at the 9th clock pulse, and returns an acknowled As this acknowledge signal is stored in the ACKB bit in ICSR, this bit can be used determine whether the transfer operation was performed successfully. When one fra has been transmitted, the IRIC flag in ICCR is set to 1 at the rise of the 9th transmit pulse. When the ICDRE flag is 0, the data written into ICDR is transferred to ICDR transmission starts, and the ICDRE and IRIC flags are set to 1 again. If the ICDRE been set to 1, this slave device drives SCL low from the fall of the transmit clock up

5. To continue transmission, write the next data to be transmitted into ICDR. The ICD

3. After clearing the IRIC flag to 0, write data to ICDR. At this time, the ICDRE flag 0. The written data is transferred to ICDRS, and the ICDRE and IRIC flags are set to The slave device sequentially sends the data written into ICDRS in accordance with output by the master device.

> cleared to 0. The IRIC flag is cleared to 0 to detect the end of transmission. Process the ICDR register writing to the IRIC flag clearing should be performed continuous any other interrupt processing from being inserted.

9. Dummy-read ICDR to release SDA on the slave side.

interrupt processing from being inserted.

Transmit operations can be performed continuously by repeating steps [4] and [5]. 6. Clear the IRIC flag to 0.

8. Clear the TRS bit to 0 for the next address reception, to set slave receive mode.

written to ICDR.

- 7. To end transmission, clear the ACKE bit in ICCR to 0, to clear the acknowledge bit

REJ09B0300-0300

the ACKB bit to 0.

Rev. 3.00 Mar 21, 2006 page 466 of 788

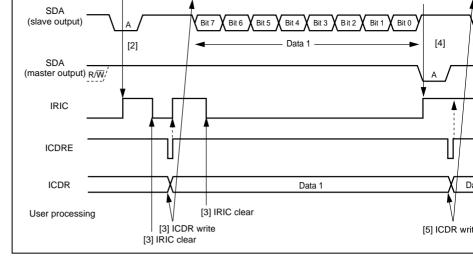


Figure 16.25 Example of Slave Transmit Mode Operation Timing (MLS = 0)

Rev. 3.00 Mar 21, 2006 page

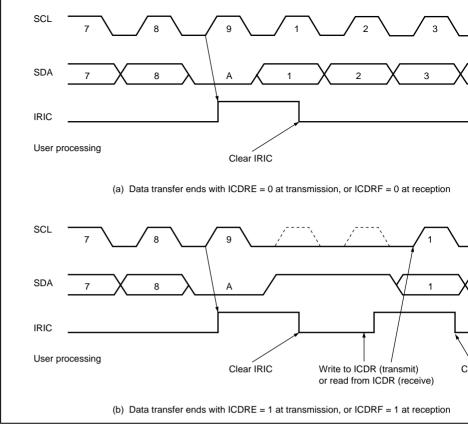


Figure 16.26 IRIC Setting Timing and SCL Control (1)

Rev. 3.00 Mar 21, 2006 page 468 of 788 REJ09B0300-0300

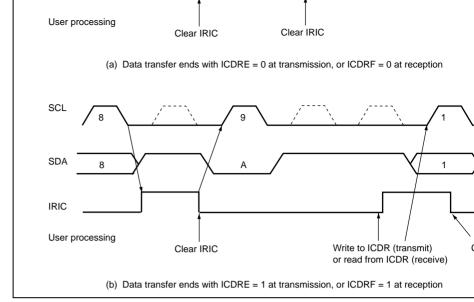


Figure 16.27 IRIC Setting Timing and SCL Control (2)

Rev. 3.00 Mar 21, 2006 pag REJ0

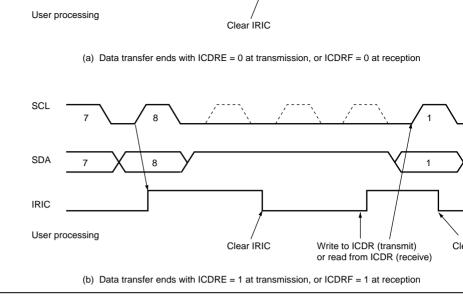


Figure 16.28 IRIC Setting Timing and SCL Control (3)

16.4.8 Automatic Switching from Formatless Mode to I²C Bus Format

Setting the SW bit to 1 in DDCSWR enables formatless mode to be selected as the IIC operating mode. Switching from formatless mode to the I²C bus format (slave mode) is automatically when a falling edge is detected on the SCL pin.

The following four preconditions are necessary for this operation:

- A common data pin (SDA) for formatless and I²C bus format operation
- Separate clock pins for formatless operation (VSYNCI) and I²C bus format operation
- A fixed 1 level for the SCL pin during formatless operation (the SCL pin does not of level)

Rev. 3.00 Mar 21, 2006 page 470 of 788

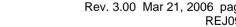
REJ09B0300-0300

bit to 1 or clear it to 0 according to the transfer direction (transmission or reception) in mode, then set the SW bit to 1. After automatic switching from formatless mode to the format (slave mode), the TRS bit is automatically cleared to 0 in order to wait for slav reception.

If a falling edge is detected on the SCL pin during formatless operation, the mode of t interface is immediately switched to I²C bus format before a stop condition is detected

16.4.9 Operation Using DTC

This LSI provides the DTC to allow continuous data transfer. The DTC is initiated where flag is set to 1, which is one of the two interrupt flags (IRTR and IRIC). When the AC the ICDRE, IRIC, and IRTR flags are set at the end of data transmission regardless of acknowledge bit value. If the ACKE bit is 1, the ICDRE, IRIC, and IRTR flags are set transmission is completed with the acknowledge bit value of 0, and if the ACKE bit is


IRIC flag is set when data transmission is completed with the acknowledge bit value of

When initiated, the DTC transfers specified number of bytes, clears the ICDRE, IRIC flags to 0. Therefore, no interrupt is generated during continuous data transfer; howev transmission is completed with the acknowledge bit value of 1 when the ACKE bit is is not initiated, thus allowing an interrupt to be generated if enabled.

The acknowledge bit may indicate specific events such as completion of receive data for some receiving devices, and for other receiving devices, the acknowledge bit may 1, indicating no specific events.

The 1^2 C bus format provides for selection of the slave device and transfer direction by the slave address and the R/\overline{W} bit, confirmation of reception with the acknowledge bit of the last frame, and so on. Therefore, continuous data transfer using the DTC must be in conjunction with CPU processing by means of interrupts.

Table 16.7 shows some examples of processing using the DTC. These examples assurnumber of transfer data bytes is known in slave mode.

reception	,	, ,
Dummy data (H'FF) write	_	_
Last frame processing	Not necessary	Reception by CPU (ICDR read)
Transfer request processing after	1st time: Clearing by CPU	Not necessary
last frame processing	2nd time: Stop condition issuance by CPU	
Setting of number of DTC transfer data frames	Transmission: Actual data count + 1 (+1 equivalent to slave address + R/W bits)	Reception: Actual data count

Transmission by

DTC (ICDR write)

CPU (ICDR read)

DTC (ICDR read)

Reception by

Reception

(ICDR re

Reception (ICDR re

Not nece

Reception

data cou

Transmission by

Processing by

Not necessary

DTC (ICDR write)

DTC (ICDR write)

Automatic clearing

on detection of stop

dummy data (H'FF)

condition during transmission of

Transmission:

to dummy data (H'FF))

Actual data count

+ 1 (+1 equivalent

16.4.10 Noise Canceler

read

Actual data

transmission/

The logic levels at the SCL and SDA pins are routed through noise cancelers before be internally. Figure 16.29 shows a block diagram of the noise canceler.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or input signal is sampled on the system clock, but is not passed forward to the next circuit outputs of both latches agree. If they do not agree, the previous value is held.

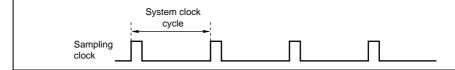


Figure 16.29 Block Diagram of Noise Canceler

Initialization of Internal State

The IIC has a function for forcible initialization of its internal state if a deadlock occu communication.

Initialization is executed in accordance with the setting of bits CLR3 to CLR0 in DDO clearing ICE bit. For details on the setting of bits CLR3 to CLR0, see section 16.3.7, l Register (DDCSWR).

Scope of Initialization: The initialization executed by this function covers the follow

- ICDRE and ICDRF internal flags
- Transmit/receive sequencer and internal operating clock counter
- Internal latches for retaining the output state of the SCL and SDA pins (wait, clock output, etc.)

The following items are not initialized:

- Actual register values (ICDR, SAR, SARX, ICMR, ICCR, ICSR, ICXR (except for and ICDRF flags), DDCSWR)
- Internal latches used to retain register read information for setting/clearing flags in ICCR, ICSR, and DDCSWR
- The value of the ICMR bit counter (BC2 to BC0)
- Generated interrupt sources (interrupt sources transferred to the interrupt controlle

Rev. 3.00 Mar 21, 2006 pag

- Similarly, when clearing is required again, all the bits must be written to simultaneous accordance with the setting.
 - If a flag clearing setting is made during transmission/reception, the IIC module will
 transmitting/receiving at that point and the SCL and SDA pins will be released. Wh
 transmission/reception is started again, register initialization, etc., must be carried of
 necessary to enable correct communication as a system.

The value of the BBSY bit cannot be modified directly by this module clear function, be stop condition pin waveform is generated according to the state and release timing of the SDA pins, the BBSY bit may be cleared as a result. Similarly, state switching of other flags may also have an effect.

2. Execute a stop condition issuance instruction (write 0 to BBSY and SCP) to clear the

To prevent problems caused by these factors, the following procedure should be used vinitializing the IIC state.

- 1. Execute initialization of the internal state according to the setting of bits CLR3 to C ICE bit clearing.
 - bit to 0, and wait for two transfer rate clock cycles.

 3. Re-execute initialization of the internal state according to the setting of bits CLR3 t
 - ICE bit clearing.
 - 4. Initialize (re-set) the IIC registers.

REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 page 474 of 788

Channel	Name	Enable Bit	Interrupt Source	Interrupt Flag	DTC Activation
0	IICI0	IEIC	I ² C bus interface interrupt request	IRIC	Possible
	DDCSWI	IE	Format automatic switch interrupt	IF	Not possible
1	IICI1	IEIC	I ² C bus interface interrupt request	IRIC	Possible

16.6 Usage Notes

- 1. In master mode, if an instruction to generate a start condition is issued and then an to generate a stop condition is issued before the start condition is output to the I²C condition will be output correctly. To output the start condition followed by the starter issuing the instruction that generates the start condition, read DR in each I²C pin, and check that SCL and SDA are both low. The pin states can be monitored b DR even if the ICE bit is set to 1. Then issue the instruction that generates the stop Note that SCL may not yet have gone low when BBSY is cleared to 0.
- 2. Either of the following two conditions will start the next transfer. Pay attention to conditions when accessing to ICDR.
 Write to ICDR when ICE = 1 and TRS = 1 (including automatic transfer from
 - Write to ICDR when ICE = 1 and TRS = 1 (including automatic transfer fro ICDRS)
 - Read from ICDR when ICE = 1 and TRS = 0 (including automatic transfer from ICDRR)
- Table 16.9 shows the timing of SCL and SDA outputs in synchronization with the clock. Timings on the bus are determined by the rise and fall times of signals affect bus load capacitance, series resistance, and parallel resistance.

Retransmission start condition output setup time	t _{staso}	1t _{sclo}	ns
Stop condition output setup time	t _{stoso}	$0.5t_{\text{SCLO}} + 2t_{\text{cyc}}$	ns
Data output setup time (master)	t _{SDASO}	$1t_{\text{SCLLO}} - 3t_{\text{cyc}}$	ns
Data output setup time (slave)	_	$1t_{\text{SCLL}} - (6t_{\text{cyc}} \text{ or } 12t_{\text{cyc}})$	*)
Data output hold time	t _{sdaho}	3t _{cyc}	ns

Characteristics. Note that the I²C bus interface AC timing specifications will not be

the SCL line. To insure proper operation at the set transfer rate, adjust the pull-up re and load capacitance so that the SCL rise time does not exceed the values given in the

4. SCL and SDA inputs are sampled in synchronization with the internal clock. The A therefore depends on the system clock cycle t_{cwc} , as shown in section 28, Electrical

system clock frequency of less than 5 MHz. 5. The I²C bus interface specification for the SCL rise time t_x is 1000 ns or less (300 n speed mode). In master mode, the I²C bus interface monitors the SCL line and sync one bit at a time during communication. If t_v (the time for SCL to go from low to V the time determined by the input clock of the I²C bus interface, the high period of S extended. The SCL rise time is determined by the pull-up resistance and load capac

	1	17.5 t _{cyc}	Standard mode	1000	100	1000	1000	1000
_			High-speed mode	300	300	300	300	300
_								

6. The I²C bus interface specifications for the SCL and SDA rise and fall times are un and 300 ns. The I²C bus interface SCL and SDA output timing is prescribed by t table 16.9. However, because of the rise and fall times, the I²C bus interface specif not be satisfied at the maximum transfer rate. Table 16.11 shows output timing cal different operating frequencies, including the worst-case influence of rise and fall t_{BUFO} fails to meet the I²C bus interface specifications at any frequency. The solutio to provide coding to secure the necessary interval (approximately 1 µs) between is stop condition and issuance of a start condition, or (b) to select devices whose input permits this output timing for use as slave devices connected to the I²C bus. $t_{\scriptscriptstyle SCLLO}$ in high-speed mode and $t_{\scriptscriptstyle STASO}$ in standard mode fail to satisfy the I 2C bus integrated by the standard mode and the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the standard mode fail to satisfy the I 2C bus integrated by the standard mode fail to satisfy the I 2C but the standard mode fail to satisfy the stan specifications for worst-case calculations of t_s/t_{sr}. Possible solutions that should be include (a) adjusting the rise and fall times by means of a pull-up resistor and capa (b) reducing the transfer rate to meet the specifications, or (c) selecting devices where the specifications is the specification of th

timing permits this output timing for use as slave devices connected to the I'C bus

Rev. 3.00 Mar 21, 2006 pag

t _{stoso}	$0.5 t_{SCLO} + 2 t_{cyc}$ $(-t_{Sr})$	Standard mode	-1000	4000	4400	4250	4200	4125
		High-speed mode	-300	600	1350	1200	1150	1075
t _{sdaso}	1 t _{scllo} *3 -3 t _{cyc}	Standard mode	-1000	250	3100	3325	3400	3513
(master)	$(-t_{Sr})$	High-speed mode	-300	100	400	625	700	813
t _{sdaso}	1 t _{scll} *3	Standard mode	-1000	250	1300	2200	2500	2950
(slave)	-12 t _{cyc} *2							
	$(-t_{sr})$	High-speed mode	-300	100	-1400 ^{*1}	¹ –500 ^{*1}	-200 ^{*1}	250
t _{sdaho}	3 t _{cyc}	Standard mode	0	0	600	375	300	188
		High-speed mode	0	0	600	375	300	188
Notes:	is necessa fall times b (d) select The value CKS0 to 0 maximum met must	meet the I ² C bus in ary: (a) secure a spoy means of a pull slave devices who is in the above table CKS2. Depending transfer rate; the integral to the IICX bit is secured.	tart/stop coll-up resistonse input to the will vary on the free refore, who	ondition in and castiming permited in the castiming permited in the castimination in the cast	issuance pacitive rmits this ing on the may no not the I ² e actual	e interval load; (os output ne settir ot be pos C bus in setting	al; (b) adj c) reduce t timing. ngs of the ssible to a nterface s condition	ust the IIC: achiespects.

 $0.5 t_{SCLO} (-t_{Sf})$

 $0.5 t_{SCLO} - 1 t_{cvc}$

 $0.5 t_{\text{SCLO}} - 1 t_{\text{cyc}}$

1 t_{SCLO} (- t_{Sr})

 $(-t_{sr})$

 $(-t_{sf})$

tscuo

t_{BUFO}

 $\mathbf{t}_{\text{STAHO}}$

 t_{STASO}

Standard mode

Standard mode

Standard mode

Standard mode

High-speed mode

High-speed mode

High-speed mode

High-speed mode

-250

-250

-1000

-300

-250

-250

-1000

-300

4700

1300

4700

1300

4000

600

4700

600

4750

1000*1

3800*1

750*1

4550

800

9000

2200

4750

1000*1

3875*1

825*1

4625

875

9000

2200

4750

1000*1

3900*1

850*1

4650

900

9000

2200

4750

1000

3938

888*

4688

938

9000

2200

3. Calculated using the I²C bus specification values (standard mode: 4700 ns n

speed mode: 1300 ns min.).

Rev. 3.00 Mar 21, 2006 page 478 of 788

REJ09B0300-0300

BBSY bit in ICCR is cleared to 0, the stop condition has been generated, and the breleased, then read ICDR with TRS cleared to 0.

instruction for issuance of the stop condition (writing of 0 to BBSY and SCP in IC actual generation of the stop condition, the clock may not be output correctly in su master transmission.

Note that if the receive data (ICDR data) is read in the interval between execution

Clearing of the MST bit after completion of master transmission/reception, or other m of IIC control bits to change the transmit/receive operating mode or settings, must be during interval (a) in figure 16.30 (after confirming that the BBSY bit in ICCR has be 0).

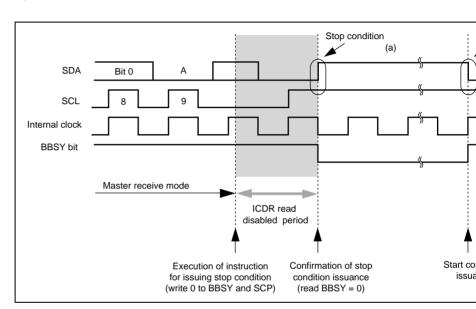


Figure 16.30 Notes on Reading Master Receive Data

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits ICXR.

Rev. 3.00 Mar 21, 2006 pag REJ0

Rev. 3.00 Mar 21, 2006 page 480 of 788 REJ09B0300-0300

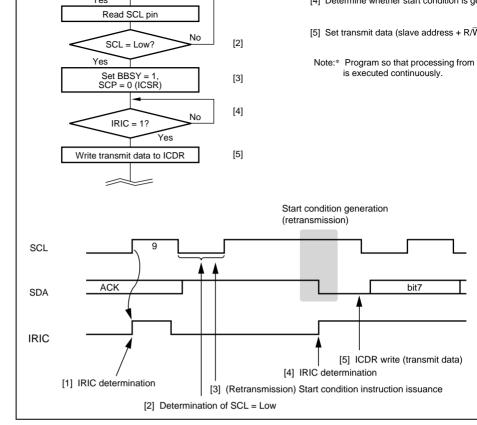


Figure 16.31 Flowchart for Start Condition Issuance Instruction for Retransn Timing

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits ICXR.

RENESAS

Rev. 3.00 Mar 21, 2006 pag REJ0

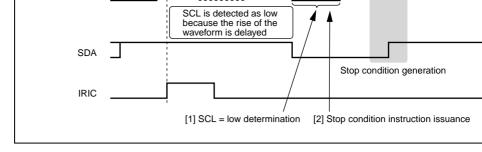


Figure 16.32 Stop Condition Issuance Timing

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits to ICXR.

Rev. 3.00 Mar 21, 2006 page 482 of 788 REJ09B0300-0300

— Error phenomenon

Normally, WAIT State will be cancelled by clearing the IRIC flag bit from 1 to fall of the 8th clock in WAIT State. In this case, if the IRIC flag bit is cleared by 7th clock fall and the 8th clock fall, the IRIC flag clear- data will be retained in Therefore, the WAIT State will be cancelled right after WAIT insertion on 8th

Restrictions

Please clear the IRIC flag before the rise of the 7th clock (the counter value of through BC0 should be 2 or greater), after the IRIC flag is set to 1 on the rise clock.

If the IRIC flag-clear is delayed due to the interrupt or other processes and the counter is turned to 1 or 0, please confirm the SCL pins are in L' state after the value of BC2 through BC0 is turned to 0, and clear the IRIC flag. (See figure 1)

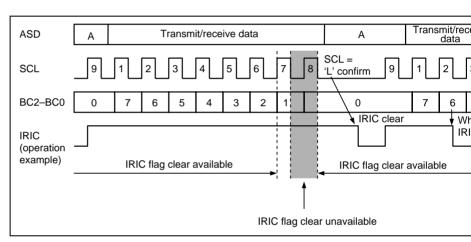


Figure 16.33 IRIC Flag Clear Timing on WAIT Operation

Rev. 3.00 Mar 21, 2006 pag REJ0

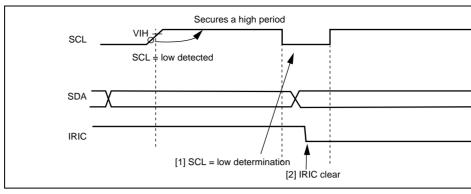


Figure 16.34 IRIC Flag Clearing Timing When WAIT = 1

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits to ICXR.

Rev. 3.00 Mar 21, 2006 page 484 of 788 REJ09B0300-0300

the receive operation of the next slave address.

— Monitor the BC2 to BC0 bit counter in ICMR; when the count is 000 (8th or 9 pulse), wait for at least two transfer clock times in order to read ICDR or read/ICCR during the time other than the shaded time.

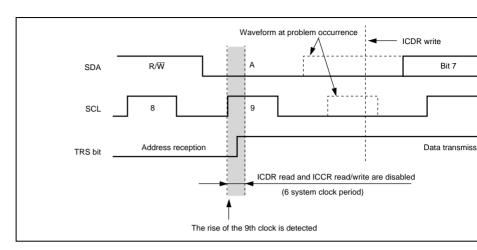


Figure 16.35 ICDR Read and ICCR Access Timing in Slave Transmit M

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits ICXR.

(transmit mode) internally and thus the acknowledge bit is not transmitted after the been received at the 9th clock pulse.

To receive the address in slave mode, clear the TRS bit to 0 during the time indicate figure 16.36. To release the SCL low level that is held by means of the wait functio mode, clear the TRS bit to and then dummy-read ICDR.

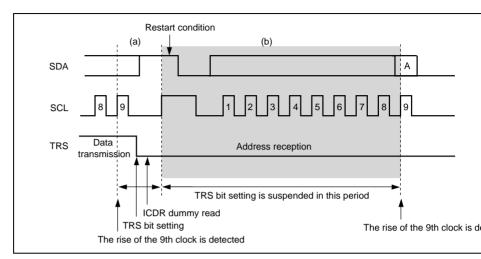


Figure 16.36 TRS Bit Set Timing in Slave Mode

Note: This restriction on usage can be canceled by setting the FNC1 and FNC0 bits to ICXR.

Rev. 3.00 Mar 21, 2006 page 486 of 788 REJ09B0300-0300

figure 16.37.)

In multi-master mode, a bus conflict could happen. When The I²C bus interface is master mode, check the state of the AL bit in the ICSR register every time after or data has been transmitted or received.

When arbitration is lost during transmitting the second frame or subsequent frame avoidance measures.

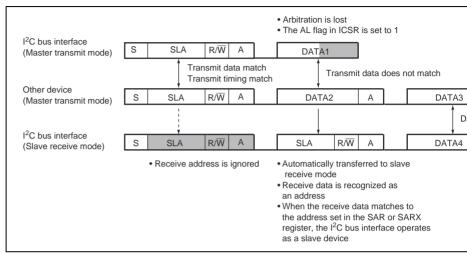


Figure 16.37 Diagram of Erroneous Operation when Arbitration is Lo

bit is erroneously set to 1 and a transition to master mode is occurred during data to reception in slave mode. In multi-master mode, pay attention to the setting of the when a bus conflict may occur. In this case, the MST bit in the ICCR register should according to the order below.

Though it is prohibited in the normal I²C protocol, the same problem may occur w

- (a) Make sure that the BBSY flag in the ICCR register is 0 and the bus is free before the MST bit.
- (b) Set the MST bit to 1.

Rev. 3.00 Mar 21, 2006 pag REJ09

TCDR is accessed correctly. To access ICDR correctly, read ICDR after setting feet or write to ICDR after setting transmit mode.

16. Note on ACKE and TRS bits in slave mode

mode (TRS = 1) and then the address is received in slave mode without performing processing, interrupt handling may start at the rising edge of the 9th clock pulse eve address does not match. Similarly, if the start condition or address is transmitted from master device in slave transmit mode (TRS = 1), the IRIC flag may be set after the is set and 1 received as the acknowledge bit value (ACKB = 1), thus causing an inte source even when the address does not match.

In the I²C bus interface, if 1 is received as the acknowledge bit value (ACKB = 1) in

To use the I²C bus interface module in slave mode, be sure to follow the procedures A. When having received 1 as the acknowledge bit value for the last transmit data a

- of a series of transmit operation, clear the ACKE bit in ICCR once to initialize t bit to 0. B. Set receive mode (TRS = 0) before the next start condition is input in slave mode Complete transmit operation by the procedure shown in figure 16.24, in order to
- from slave transmit mode to slave receive mode.

16.6.1 **Module Stop Mode Setting**

The IIC operation can be enabled or disabled using the module stop control register. The setting is for the IIC operation to be halted. Register access is enabled by canceling mo mode. For details, refer to section 26, Power-Down Modes.

17.1 **Features**

- Conforms to PS/2 interface specifications
- Direct bus drive (via the KCLK and KD pins)
- Interrupt sources: on completion of data reception and on detection of clock edge
- Error detection: parity error and stop bit monitoring

IFKEY10A_000020020700

Rev. 3.00 Mar 21, 2006 pag REJ09

RENESAS

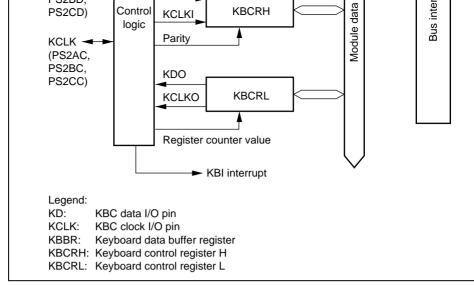


Figure 17.1 Block Diagram of Keyboard Buffer Controller

Rev. 3.00 Mar 21, 2006 page 490 of 788

REJ09B0300-0300

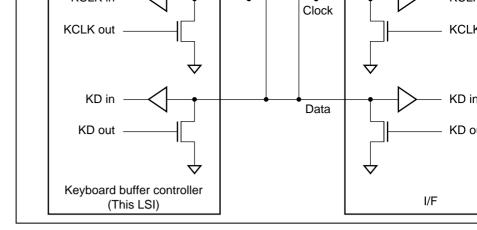


Figure 17.2 Keyboard Buffer Controller Connection

Abbreviation*

17.2 **Input/Output Pins**

Table 17.1 lists the input/output pins used by the keyboard buffer controller.

Table 17.1 Pin Configuration

Name

KBC data I/O pin (KD2)

Channel

0	KBC clock I/O pin (KCLK0)	PS2AC	I/O	KBC clock i
	KBC data I/O pin (KD0)	PS2AD	I/O	KBC data ir
1	KBC clock I/O pin (KCLK1)	PS2BC	I/O	KBC clock i
	KBC data I/O pin (KD1)	PS2BD	I/O	KBC data ir
2	KBC clock I/O pin (KCLK2)	PS2CC	I/O	KBC clock i

Note: These are the external I/O pin names. In the text, clock I/O pins are referre and data I/O pins as KD, omitting the channel designations.

> Rev. 3.00 Mar 21, 2006 pag REJ09

I/O

1/0

Function

KBC data in

PS2CD

17.3.1 Keyboard Control Register H (KBCRH)

Initial Value

Bit

5

4

KDI

KBFSEL

Bit Name

KBCRH indicates the operating status of the keyboard buffer controller.

R/W

R

R/W

7	KBIOE	0	R/W	Keyboard In/Out Enable
				Selects whether or not the keyboard buffer is used.
				0: The keyboard buffer controller is non-op (KCLK and KD signal pins have port fun
				 The keyboard buffer controller is enable transmission and reception (KCLK and I pins are in the bus drive state)
6	KCLKI	1	R	Keyboard Clock In
				Monitors the KCLK I/O pin. This bit cannot modified.
				0: KCLK I/O pin is low
				1: KCLK I/O pin is high

Description

Rev. 3.00 Mar 21, 2006 page 492 of 788 REJ09B0300-0300

1

1

Keyboard Data In

0: KD I/O pin is low 1: KD I/O pin is high

Monitors the KDI I/O pin. This bit cannot be

Keyboard Buffer Register Full Select
Selects whether the KBF bit is used as the
buffer register full flag or as the KCLK fall i
flag. When KBFSEL is cleared to 0, the KE
KBCRL should be cleared to 0 to disable ro
0: KBF bit is used as KCLK fall interrupt fla
1: KBF bit is used as keyboard buffer regis

		0: [Clearing condition]
		Read KBF when KBF =1, then write 0 in k
		1: [Setting conditions]
		 When data has been received normal been transferred to KBBR while KBFS (keyboard buffer register full flag)
		When a KCLK falling edge is detected KBFSEL = 0 (KCLK interrupt flag)
0	R/(W)*	Parity Error
		Indicates that an odd parity error has occu
		0: [Clearing condition]
		Read PER when PER =1, then write 0 in
		1: [Setting condition]
		When an odd parity error occurs
0	R	Keyboard Stop
		Indicates the receive data stop bit. Valid of KBF = 1.
	•	` ,

the received data is in KBBR.

* Only 0 can be written for clearing the flag.

1

0

Note:

0: 0 stop bit received 1: 1 stop bit received

Rev. 3.00 Mar 21, 2006 pag

REJ0

			1: Loading of receive data into KBBR is en
KCLKO	1	R/W	Keyboard Clock Out
			Controls KBC clock I/O pin output.
			0: KBC clock I/O pin is low
			1: KBC clock I/O pin is high
KDO	1	R/W	Keyboard Data Out
			Controls KBC data I/O pin output.
			0: KBC data I/O pin is low

of Loading of receive data into KBBR is dis

This bit is always read as 1 and cannot be

1: KBC data I/O pin is high

Reserved

Rev. 3.00 Mar 21, 2006 page 494 of 788

1

6

5

REJ09B0300-0300 **₹ENES∆S**

0001: Start bit
0010: KB0
0011: KB1
0100: KB2
0101: KB3
0110: KB4
0111: KB5
1000: KB6
1001: KB7
1010: Parity bit
1011: —
11 : —

17.3.3 Keyboard Data Buffer Register (KBBR)

KBBR stores receive data. Its value is valid only when KBF = 1.

Bit	Bit Name	Initial Value	R/W	Description
7	KB7	0	R	Keyboard Data 7 to 0
6	KB6	0	R	8-bit read only data.
5	KB5	0	R	Initialized to H'00 by a reset, in standby r
4	KB4	0	R	mode, subactive mode, subsleep mode,
3	KB3	0	R	stop mode, and when KBIOE is cleared t
2	KB2	0	R	
1	KB1	0	R	
0	KB0	0	R	

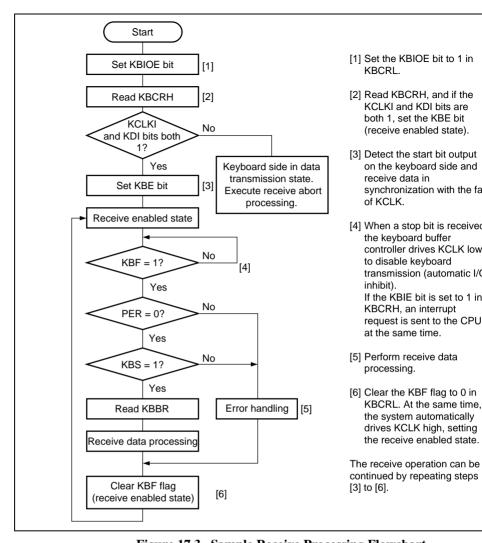


Figure 17.3 Sample Receive Processing Flowchart

Rev. 3.00 Mar 21, 2006 page 496 of 788 REJ09B0300-0300

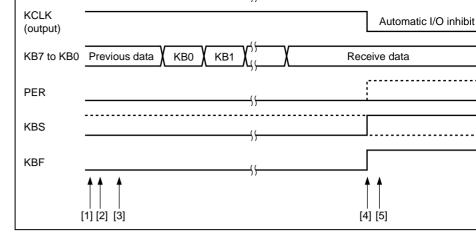


Figure 17.4 Receive Timing

17.4.2 Transmit Operation

In a transmit operation, KCLK (clock) is an output on the keyboard side, and KD (dat output on the chip (system) side. KD outputs a start bit, 8 data bits (LSB-first), an odd and a stop bit, in that order. The KD value is valid when KCLK is high. A sample transprocessing flowchart is shown in figure 17.5, and the transmit timing in figure 17.6.

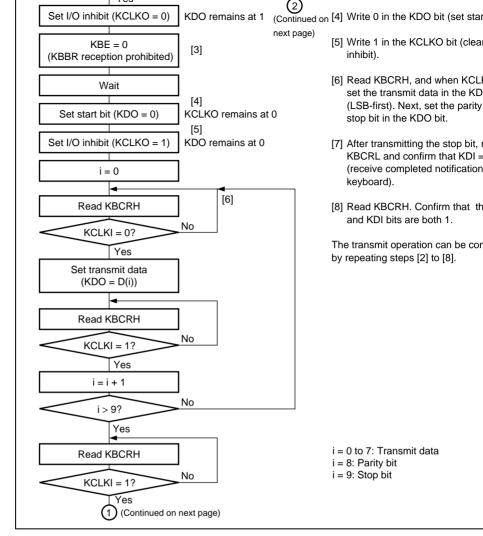


Figure 17.5 (1) Sample Transmit Processing Flowchart

Rev. 3.00 Mar 21, 2006 page 498 of 788 REJ09B0300-0300

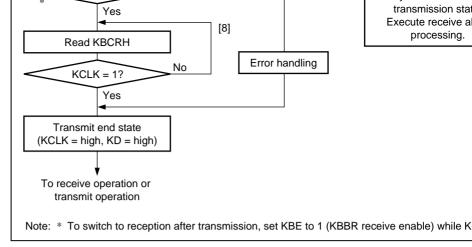


Figure 17.5 (2) Sample Transmit Processing Flowchart

Rev. 3.00 Mar 21, 2006 pag

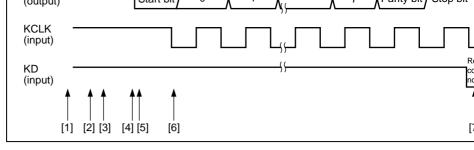


Figure 17.6 Transmit Timing

17.4.3 Receive Abort

side) in the event of a protocol error, etc. In this case, the system holds the clock low. It reception, the keyboard also outputs a clock for synchronization, and the clock is monitous the keyboard output clock is high. If the clock is low at this time, the keyboard judges to an abort request from the system, and data transmission from the keyboard is aborted. System can abort reception by holding the clock low for a certain period. A sample reception synchronization in figure 17.7, and the receive abort timing in figure 17.7.

This LSI (system side) can forcibly abort transmission from the device connected to it

Rev. 3.00 Mar 21, 2006 page 500 of 788 REJ09B0300-0300

RENESAS

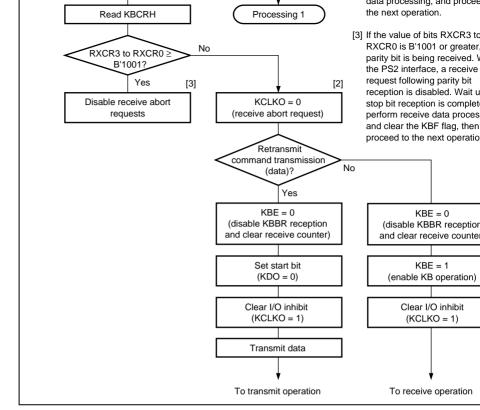


Figure 17.7 (1) Sample Receive Abort Processing Flowchart

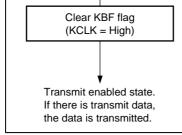


Figure 17.7 (2) Sample Receive Abort Processing Flowchart

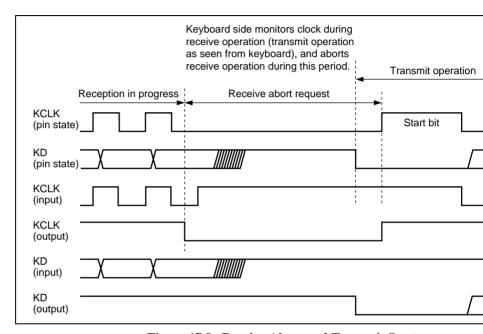


Figure 17.8 Receive Abort and Transmit Start (Transmission/Reception Switchover) Timing

Rev. 3.00 Mar 21, 2006 page 502 of 788 REJ09B0300-0300

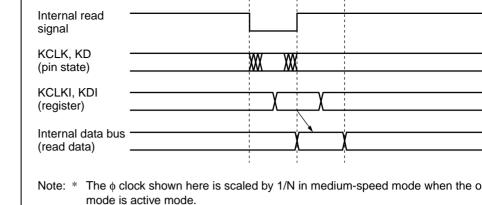


Figure 17.9 KCLKI and KDI Read Timing

Rev. 3.00 Mar 21, 2006 pag

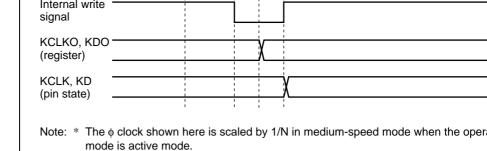


Figure 17.10 KCLKO and KDO Write Timing

Rev. 3.00 Mar 21, 2006 page 504 of 788

REJ09B0300-0300

RENESAS

KCLK (pin)		11th fall		
Internal KCLK				
Falling edg	е			
RXCR3 to RXCR0	B'1010	X		B'0000
KBF .				
KCLK (output)				Automatic I/O inhibit
Note: * TI	he φ clock shown he	ere is scale	ed by 1	I/N in medium-speed mode when the

mode is active mode. Figure 17.11 KBF Setting and KCLK Automatic I/O Inhibit Generation 7

Rev. 3.00 Mar 21, 2006 pag

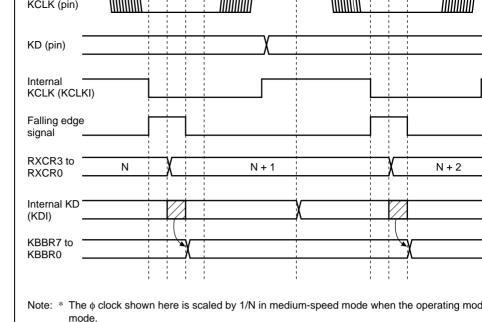
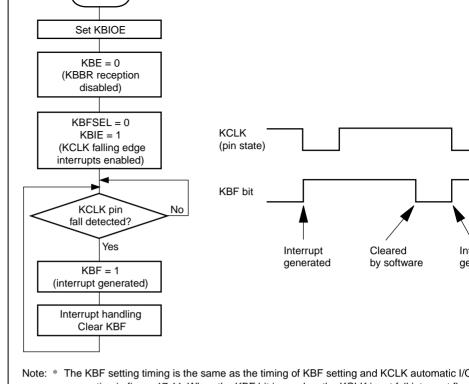



Figure 17.12 Receive Counter and KBBR Data Load Timing

Rev. 3.00 Mar 21, 2006 page 506 of 788

REJ09B0300-0300

RENESAS

generation in figure 17.11. When the KBF bit is used as the KCLK input fall interrupt flag automatic I/O inhibit function does not operate.

Figure 17.13 Example of KCLK Input Fall Interrupt Operation

timing of KBIOE setting and KCLK falling edge detection.

Figure 17.14 KBIOE Setting and KCLK Falling Edge Detection Timin

17.5.2 Module Stop Mode Setting

Keyboard buffer controller operation can be enabled or disabled using the module stop register. The initial setting is for keyboard buffer controller operation to be halted. Reg is enabled by canceling module stop mode. For details, refer to section 26, Power-Dow

Rev. 3.00 Mar 21, 2006 page 508 of 788 REJ09B0300-0300

Communication is carried out via seven control signals from the host processor (CS1, ECS2, CS3, CS4, HA0, IOR, and IOW), six output signals to the host processor (GA2 HIRQ11, HIRQ12, HIRQ3, and HIRQ4), and an 8-bit bidirectional command/data bu HDB0). The $\overline{CS1}$, $\overline{CS2}$ (or $\overline{ECS2}$), $\overline{CS3}$ and $\overline{CS4}$ signals select one of the four interface

18.1 **Features**

- Control of the fast GATE A20 function
- Shutdown of the XBS module by the HIFSD pin
- Five host interrupt requests

IFHSTX0A_000020020700

Rev. 3.00 Mar 21, 2006 pag

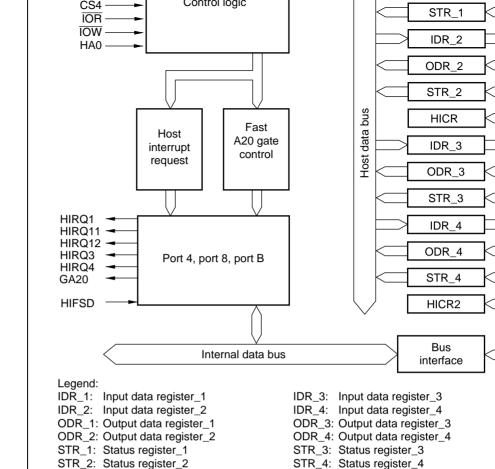


Figure 18.1 Block Diagram of XBS

HICR2: Host interface control register 2

Rev. 3.00 Mar 21, 2006 page 510 of 788 REJ09B0300-0300

HICR:

Host interface control register

RENESAS

		P30		
Host interrupt 11	HIRQ11	P43	Output	Interrupt output 11 to host
Host interrupt 1	HIRQ1	P44	Output	Interrupt output 1 to host
Host interrupt 12	HIRQ12	P45	Output	Interrupt output 12 to host
Host interrupt 3	HIRQ3	PB0	Output	Interrupt output 3 to host
Host interrupt 4	HIRQ4	PB1	Output	Interrupt output 4 to host
Gate A20	GA20	P81	Output	A20 gate control signal output
HIF shutdown	HIFSD	P82	Input	Host interface shutdown control
$\frac{\text{HICR.}}{\text{CS2}}$ is	XBS channel 2 a	and the $\overline{0}$ 120E = 0,	CS2 pin ca	the CS2E bit in STCR and the FO in be used when CS2E = 1. When $\overline{2}$ is used when FGA20E = 1. In the

CS₁

CS2

ECS2

CS3

CS4

HA0

P95

P81

P90

PB2

PB3

P80

HDB7 to HDB0 P37 to I/O

Input

Input

Input

Input

Input

Chip select 1

Chip select 2*

Chip select 3

Chip select 4

Command/data

Data bus

Rev. 3.00 Mar 21, 2006 pag

REJ09

Host interface chip select signal

Host interface address select significant In host read access, this signal: status registers (STR 1 to STR registers (ODR_1 to ODR_4). Ir access to the data registers (IDI IDR_4), this signal indicates who host is writing a command or da

Host interface data bus

ODR_1, STR_1

ODR 2, STR 2

ODR_3, STR_3

ODR_4, STR_4

- Host interface control register 2 (HICK2)
 - Input data register (IDR)
 - Output data register (ODR)
 - Status register (STR)

18.3.1 System Control Register 2 (SYSCR2)

SYSCR2 controls the operations of port 6 and host interface.

Bit	Bit Name	Initial Value	R/W	Description
7	KWUL1	0	R/W	Key Wakeup Level 1 and 0
6	KWUL0	0	R/W	Sets the port 6 input level. The input level of multiplexing pins is also changed by these
				00: Port 6 is in the standard input level
				01: Port 6 is in input level 1
				10: Port 6 is in input level 2
				11: Port 6 is in input level 3
5	P6PUE	0	R/W	Port 6 Input Pull-Up MOS Extra (P6PUE)
				Controls and selects the current specification port 6 input pull-up MOS.
				0: Standard current specification
				1: Current limited specification
4	_	0	_	Reserved
				Only 0 should be written to this bit.

Rev. 3.00 Mar 21, 2006 page 512 of 788 REJ09B0300-0300

RENESAS

			Enabling setting is valid when the HI12E b
CS3E	0	R/W	CS3 Enable
			0: Channel 3 functions disabled
			1: Channel 3 functions enabled (channel 3 enabled)
			Enabling setting is valid when the HI12E b
HI12E	0	R/W	Host Interface Enable Bit
			0: Host interface functions are disabled
			1: Host interface functions are enabled (se CS2E to CS4E, FGA20E, and SDE are
			Enabling setting is valid in single-chip mod

2

1

0

CS4E

0

CS4 Enable

enabled)

0: Channel 4 functions disabled

1: Channel 4 functions enabled (channel 4

R/W

Rev. 3.00 Mar 21, 2006 pag

				completed interrupt request disable
				 Input data register (IDR_2) reception completed interrupt request enable
1	IBFIE1	0	R/W —	Input Data Register Full Interrupt Ena
				Enables or disables the IBF1 interrupt internal CPU.
				Input data register (IDR_1) receptioncompleted interrupt request disable
				 Input data register (IDR_1) reception completed interrupt request enable

Bit

2

7 to 3 —

Bit Name

IBFIE2

Value

All 1

0

Slave

R/W

Host

Description

These bits are always read as 1 and of

Input Data Register Full Interrupt Ena Enables or disables the IBF2 interrupt

0: Input data register (IDR_2) reception

Reserved

modified.

internal CPU.

Rev. 3.00 Mar 21, 2006 page 514 of 788

REJ09B0300-0300

0: XBS fast A20 gate function disable 1: XBS fast A20 gate function enable When the fast A20 gate is disabled,

A20 gate can be implemented by the

operation of the P81 output. When the host interface (XBS) fast A function is enabled, the DDR bit for I

set to 1. Therefore, the state of the F cannot be monitored by reading the P81.

A fast A20 gate function is also provi LPC. The state of the P81/GA20 pin monitored by reading the LPC's GA2

Rev. 3.00 Mar 21, 2006 pag

					Enables or disables the IBF4 interrupt internal CPU.
					 Input data register (IDR_4) reception completed interrupt request disable
					 Input data register (IDR_4) reception completed interrupt request enable
1	IBFIE3	0	R/W	_	Input Data Register Full Interrupt Ena
					Enables or disables the IBF3 interrupt internal CPU.

0: Input data register (IDR_3) reception completed interrupt request disable

					 Input data register (IDR_3) reception completed interrupt request enabled
0	_	0	_	_	Reserved
					The initial value should not be change

_			_		ino or b bit in o in to indicate who
4	IDR4		R	W	written information is a command or
3	IDR3	_	R	W	
2	IDR2	_	R	W	
1	IDR1	_	R	W	
0	IDR0	_	R	W	
18.3.	.4 Outr	out Data Re	egister 1	(ODR)	
ODR	l is a regist	ter in which	ı data to l	be output f	from the slave processor (this LSI) to the

R

R

W

W

R/W

R

R

R

Host

Slave

R/W

R/W

R/W

Description

most data bus is written into ibn_ii a edge of IOW. The HA0 state is also

the C/D bit in STR_n to indicate whe

The ODR_n contents are output on t

bus when HA0 is low, \overline{CSn} (n = 1 to

Rev. 3.00 Mar 21, 2006 pag

REJ09

6

5

Bit

7

1

0

IDR6

IDR5

OI processor is stored.

Bit Name

ODR7

ODR1

ODR0

Initial

Value

6	ODR6	_	R/W	R	bus when HA0 is and IOR is low.
5	ODR5	_	R/W	R	and ION is low.
4	ODR4	_	R/W	R	
3	ODR3	_	R/W	R	
2	ODR2	_	R/W	R	

				writes to IDR, and indicates whether I contains data or a command.
				0: Contents of input data register (IDF
				 Contents of input data register (IDF command
DBU	0	R/W	R	Defined by User
				The user can use these bits as neces
IBF	0	R	R	Input Buffer Full
				This bit is an internal interrupt source processor (this LSI).
				The IBF flag setting and clearing cond different when the fast A20 gate is used details see table 18.5.
				[Clearing Condition]
				0: When the slave processor reads ID
				[Setting Condition]
				1: When the host processor writes to
OBF	0	R/(W)*	R	Output Buffer Full
				[Clearing Condition]
				When the host processor reads OD slave writes 0 in the OBF bit
				[Setting Condition]
				1: When the slave processor writes to
	IBF	IBF 0	IBF 0 R	IBF 0 R R

3

 C/\overline{D}

0

R

R

Command/Data

Receives the HA0 input when the hos

Rev. 3.00 Mar 21, 2006 page 518 of 788

REJ09B0300-0300 RENESAS

OBF	Falling edge of slave's internal write signal when writing to ODR1	Rising edge of host's read signal (\bar{l} reading ODR1
Note: *	The IBF flag setting and clearing condit used. For details see table 18.5.	tions are different when the fast A20

18.4 **Operation**

18.4.1 **Host Interface Activation**

The host interface is activated by setting the HI12E bit in SYSCR2 to 1 in single-chip When the host interface is activated, all related I/O ports (data port 3, control ports 8 a host interrupt request port 4) become dedicated host interface ports. Setting the CS3E CS4E bit to 1 enables the number of host interface channels to be extended to four, an channel 3 and 4 related I/O port (part of port B for control and host interrupt requests) host interface port.

		1	Host interface channel 1, 3, and 4 functions operating
			Operation of channel 2 halted
			Pins P43, P81, and P90 operate as I/O ports. $\overline{\text{CS2}}$ o input does not operate.
1	0	0	Host interface channel 1 and 2 functions operating
			Operation of channels 3 and 4 halted
			Pins PB0 to PB3 operate as I/O ports. $\overline{\text{CS3}}$ and $\overline{\text{CS4}}$ not operate.
		1	Host interface channel 1, 2, and 4 functions operating
			Operation of channel 3 halted
			Pins PB0 and PB2 operate as I/O ports. CS3 input doperate.
	1	0	Host interface channel 1 to 3 functions operating
			Operation of channel 4 halted
			Pins PB1 and PB3 operate as I/O ports. CS4 input of operate.
		1	Host interface channel 1 to 4 functions operating

REJ09B0300-0300

1

0

1

RENESAS

or ECS2, CS3, and CS4 inputs do not operate.

Host interface channel 1 and 4 functions operating

Pins P43, P81, P90, PB0, and PB2 operate as I/O p

Host interface channel 1 and 3 functions operating

Pins P43, P81, P90, PB1, and PB3 operate as I/O p

Operation of channels 2 and 3 halted

Operation of channels 2 and 4 halted

or ECS2 and CS3 inputs do not operate.

or ECS2 and CS4 inputs do not operate.

			1	Setting prohibited
		1	0	Data read from output data register n
			1	Status read from status register n (ST
	1	0	0	Data written to input data register n (I
			1	Command written to input data registe
		1	0	Idle state
			1	Idle state
n = 1 to 4				

Note: n = 1 to

18.4.3 A20 Gate

The A20 gate signal can mask address A20 to emulate an addressing mode used by percomputers with an 8086*-family CPU. A regular-speed A20 gate signal can be output firmware control. Fast A20 gate output is enabled by setting the FGA20E bit (bit 0) to (H'FFF0).

Note: * Intel microprocessor.

Regular A20 Gate Operation: Output of the A20 gate signal can be controlled by an command followed by data. When the slave processor (this LSI) receives data, it norm interrupt routine activated by the IBF1 interrupt to read IDR1. If the data follows an F command, software copies bit 1 of the data and outputs it at the gate A20 pin.

Fast A20 Gate Operation: When the FGA20E bit is set to 1, P81/GA20 is used for of fast A20 gate signal. Bit P81DDR must be set to 1 to assign this pin for output. When for P81 is set to 1, the state of the P81/GA20 pin cannot be monitored by reading the P81. The state of the P81/GA20 pin can be monitored by reading the GA20 bit in the HICR2 register. The initial output from this pin will be a logic 1, which is the initial vafterward, the host processor can manipulate the output from this pin by sending com-

data. This function is available only when register IDR1 is accessed using CS1. The si processor (this LSI) decodes the commands input from the host processor. When an H

GA20 (P81)	Rising edge of the host's write signal (IOW) when bit 1 of the written data is and the data follows an H'D1 host command

Rising edge of the host's write (IOW) when bit 1 of the written and the data follows an H'D1 h command

Also, when bit FGA20E in HICF to 0

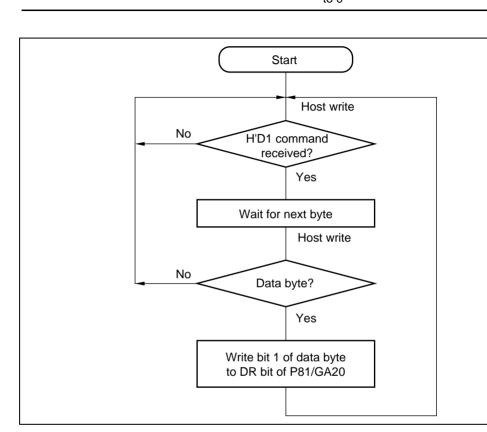


Figure 18.2 GA20 Output

Rev. 3.00 Mar 21, 2006 page 522 of 788

REJ09B0300-0300

0	0 data [*]	0	0	
1	H'FF command	0	Q (0)	
1	H'D1 command	0	Q	Turn-on seque
0	1 data*1	0	1	(abbreviated f
1/0	Command other than H'FF and H'D1	1	Q (1)	
1	H'D1 command	0	Q	Turn-off seque
0	0 data*2	0	0	(abbreviated for
1/0	Command other than H'FF and H'D1	1	Q (0)	·
1	H'D1 command	0	Q	Cancelled sec
1	Command other than H'D1	1	Q	
1	H'D1 command	0	Q	Retriggered se
1	H'D1 command	0	Q	
1	H'D1 command	0	Q	Consecutively
0	Any data	0	1/0	sequences
1	H'D1 command	0	Q (1/0)	
Notes	: 1. Arbitrary data with bit 1 set	to 1.		

the HIFSD pin. The HIF constantly monitors the HIFSD pin, and when this pin goes I the host interface output pins (HIRQ1, HIRQ11, HIRQ12, HIRQ3, HIRQ4, and GA20 high-impedance state. At the same time, the host interface input pins (CS1, CS2 or EC)

2. Arbitrary data with bit 1 cleared to 0.

18.4.4 Host Interface Pin Shutdown Function

Host interface output can be placed in the high-impedance state according to the state HIFSD pin. Setting the SDE bit to 1 in the SYSCR2 register when the HI12E bit is se

CS4, \overline{ION} , \overline{IOR} , and HA0) are disabled (fixed at the high input state internally) regard pin states, and the signals of the multiplexed functions of these pins (input block) are fixed internally. As a result, the host interface I/O pins (HDB7 to HDB0) also go to the impedance state.

HIRQ11	P43	Δ	Output	HI12E = 1 and CS2E = 1 and P43I		
HIRQ1	P44	Δ	Output	HI12E = 1 and P44DDR = 1		
HIRQ12	P45	Δ	Output	HI12E = 1 and P45DDR = 1		
HIRQ3	PB0	Δ	Output	HI12E = 1 and CS3E = 1 and PB0		
HIRQ4	PB1	Δ	Output	HI12E = 1 and CS4E = 1 and PB1		
GA20	P81	Δ	Output	HI12E = 1 and FGA20E = 1		
HIFSD	P82	_	Input	HI12E = 1 and SDE = 1		
Legend:						
O: Pins	shut down by	shutdow	n function			
The IRQ2/ADTRG input signal is also fixed in the case of P90 shutdown, the TMCI signal in the case of P43 shutdown, and the TMRI/CSYNCI in the case of P45 shut						
Δ: Pins shut down only when the XBS function is selected by means of a register setti						
—: Pin not shut down						

IOR

ĪŌW

CS₁

CS2

ECS2

CS3

CS4

HA0

HDB7 to

HDB0

P93

P94

P95

P81

P90

PB2

PB3

P80

P30

P37 to

0

0

0

Δ

Δ

Δ

Δ

0

0

Input

Input

Input

Input

Input

Input

Input

Input

I/O

HI12E = 1

HI12E = 1 and CS2E = 1 and FGA

HI12E = 1 and CS2E = 1 and FGA

HI12E = 1 and CS3E = 1

HI12E = 1 and CS4E = 1

REJ09B0300-0300 **₹ENES∆S**

Rev. 3.00 Mar 21, 2006 page 524 of 788

Table 18.8	Input Buffer Full Interrupts		
Interrupt	Description		
IBF1	Requested when IBFIE1 is set		

IBF4	Requested when IBFIE4 is set to 1 and IDR_4 is full
IBF3	Requested when IBFIE3 is set to 1 and IDR_3 is full
IBF2	Requested when IBFIE2 is set to 1 and IDR_2 is full
IBF1	Requested when IBFIE1 is set to 1 and IDR_1 is full

18.5.2 HIRQ11, HIRQ1, HIRQ12, HIRQ3, and HIRQ4

Bits P45DR to P43DR in the port 4 data register (P4DR) and bits PB1ODR and PB0C port B data register (PBODR) can be used as host interrupt request latches. When they host interrupt request output, set each bit in the data direction register (DDR) of the pi

The corresponding bits in P4DR are cleared to 0 by the host processor's read signal (\overline{I} and HA0 are low, when \overline{IOR} goes low and the host reads ODR_1, HIRQ1 and HIRQ1 to 0. If $\overline{CS2}$ and HA0 are low, when \overline{IOR} goes low and the host reads ODR_2, HIRQ1 to 0. The corresponding bit in PBODR is cleared to 0 by the host's read signal (\overline{IOR}). HA0 are low, when \overline{IOR} goes low and the host reads ODR_3, HIRQ3 is cleared to 0. HA0 are low, when \overline{IOR} goes low and the host reads ODR_4, HIRQ4 is cleared to 0.

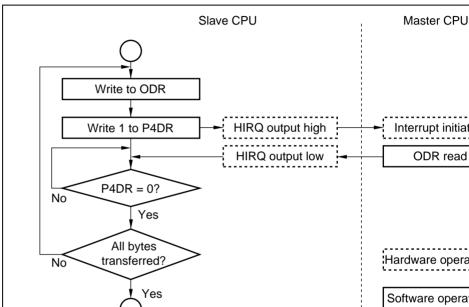

a host interrupt request, normally on-chip firmware writes 1 in the corresponding bit. the interrupt, the host's interrupt handling routine reads the output data register (ODR ODR_3, or ODR_4) and this clears the host interrupt latch to 0.

Table 18.9 indicates how these bits are set and cleared. Figure 18.3 shows the process

Table 18.9 indicates how these bits are set and cleared. Figure 18.3 shows the process flowchart form.

HIRQ12 (P45)	Internal CPU reads 0 from bit P45DR, the writes 1	en Internal CPU writes 0 in b host reads output data reg (ODR 1)
HIRQ3 (PB0)	Internal CPU reads 0 from bit PB0ODR, then writes 1	Internal CPU writes 0 in bi or host reads output data (ODR_3)
HIRQ4 (PB1)	Internal CPU reads 0 from bit PB1ODR, then writes 1	Internal CPU writes 0 in bi or host reads output data (ODR_4)
	Slave CPU	, Master CPL

(ODR_1)

Rev. 3.00 Mar 21, 2006 page 526 of 788

REJ09B0300-0300

RENESAS

Figure 18.3 HIRQ Output Flowchart (Example of Channels 1 and 2)

The host interface provides buffering of asynchronous data from the host processor ar processor (this LSI), but an interface protocol must be followed to implement necessa and avoid data contention. For example, if the host and slave processors try to access input or output data register simultaneously, the data will be corrupted. Interrupts can design a simple and effective protocol.

Also, if two or more of pins $\overline{CS1}$ to $\overline{CS4}$ are driven low simultaneously in attempting access, signal contention will occur within the chip, and a through-current may result. must therefore be avoided.

18.6.2 Module Stop Mode Setting

XBS operation can be enabled or disabled using the module stop control register. The setting is for XBS operation to be halted. Register access is enabled by canceling mod mode. For details, refer to section 26, Power-Down Modes.

Rev. 3.00 Mar 21, 2006 page 528 of 788 REJ09B0300-0300

It is also provided with power-down functions that can control the PCI clock and shut host interface.

19.1 **Features**

- Supports LPC interface I/O read cycles and I/O write cycles
 - Uses four signal lines (LAD3 to LAD0) to transfer the cycle type, address, and
 - Uses three control signals: clock (LCLK), reset (LRESET), and frame (LFRAM
- Has three register sets comprising data and status registers
 - The basic register set comprises three bytes: an input register (IDR), output reg and status register (STR). — Channels 1 and 2 have fixed I/O addresses of H'60/H'64 and H'62/H'66, respec
 - A20 gate function is also provided. — The I/O address can be set for channel 3. Sixteen bidirectional data register by manipulated in addition to the basic register set.
- Supports SERIRQ

 - Host interrupt requests are transferred serially on a single signal line (SERIRQ — On channel 1, HIRQ1 and HIRQ12 can be generated.
 - On channels 2 and 3, SMI, HIRQ6, and HIRQ9 to HIRQ11 can be generated.
 - Operation can be switched between quiet mode and continuous mode.
 - The CLKRUN signal can be manipulated to restart the PCI clock (LCLK).
- Eleven interrupt sources
 - The LPC module can be shut down by inputting the LPCPD signal.
 - Three pins, PME, LSMI, and LSCI, are provided for general input/output.

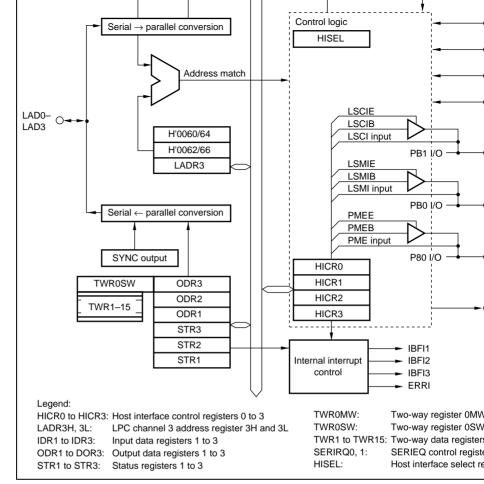


Figure 19.1 Block Diagram of LPC

Rev. 3.00 Mar 21, 2006 page 530 of 788 REJ09B0300-0300

				termination signal
LPC reset	LRESET	P35	Input*1	LPC interface reset sign
LPC clock	LCLK	P36	Input	33 MHz PCI clock signa
Serialized interrupt request	SERIRQ	P37	Input/ output*1	Serialized host interrupt signal, synchronized wit (SMI, IRQ1, IRQ6, IRQ6
LSCI general output	LSCI	PB1	Output*1*2	General output
LSMI general output	LSMI	PB0	Output*1*2	General output
PME general output	PME	P80	Output*1 *2	General output

P81

P82

P83

Notes: 1. Pin state monitoring input is possible in addition to the LPC interface control

P34

Input*1

Output*1 *2

output*1*2

Input/

Input*1

input/output function. 2. Only 0 can be output. If 1 is output, the pin goes to the high-impedance sta external resistor is necessary to pull the signal up to V_{cc}.

LPC frame

GATE A20

LPC clock run

LPC power-down

LFRAME

GA20

CLKRUN

LPCPD

REJ09

synchronized with LCLI

Transfer cycle start and

A20 gate control signal

LCLK restart request significant

of serial host interrupt re

LPC module shutdown

- Host interface control register 1 (HICR1)
 - Host interface control register 2 (HICR2)
 - Host interface control register 3 (HICR3)
 - LPC channel 3 address registers (LADR3H, LADR3L)
 - Input data register 1 (IDR1)
 - Output data register 1 (ODR1)
 - Status register 1 (STR1)
 - Input data register 2 (IDR2)
 - Output data register 2 (ODR2)
 - Status register 2 (STR2)
 - Input data register 3 (IDR3)
 - Output data register 3 (ODR3)
 - Status register 3 (STR3)
 - Bidirectional data registers 0 to 15 (TWR0 to TWR15)
 - SERIRQ control register 0 (SIRQCR0)
 - SERIRQ control register 1 (SIRQCR1)
 - Host interface select register (HISEL)

CLKRUN, and LPCPD.
• LPC3E
0: LPC channel 3 operation is disabled
No address (LADR3) matches for IDR3, STR3, or TWR0 to TWR15
1: LPC channel 3 operation is enabled
• LPC2E
0: LPC channel 2 operation is disabled
No address (H'0062, 66) matches for IDI STR2
1: LPC channel 2 operation is enabled
• LPC1E
0: LPC channel 1 operation is disabled
No address (H'0060, 64) matches for ID STR1
1: LPC channel 1 operation is enabled
Rev 3.00 Mar 21, 2006, page

Bit Name Initial Value Slave Host Description

R/W

R/W

R/W

LPC Enable 3 to 1

Enable or disable the host interface fund single-chip mode. When the host interface

(one of the three bits is set to 1), process transfer between the slave processor (th the host processor is performed using pi LADO, LFRAME, LRESET, LCLK, SERIF

Bit 7

6

5

LPC3E

LPC2E

LPC1E

0

0

0

REJ09

					0: Fast A20 gate function disabled
					Other function of pin P81 is enabled
					GA20 output internal state is initialized
					1: Fast A20 gate function enabled
					 GA20 pin output is open-drain (externa up resistor required)
3	SDWNE	0	R/W	_	LPC Software Shutdown Enable
					Controls host interface shutdown. For det LPC shutdown function, and the scope of by an LPC reset and an LPC shutdown, s 19.4.4, Host Interface Shutdown Function
					0: Normal state, LPC software shutdown senabled
					[Clearing conditions]
					Writing 0
					LPC hardware reset or LPC software

bit for P81 must not be set to 1.

• LPC hardware shutdown release (risir

LPC hardware shutdown state setting e
 Hardware shutdown state when LPCF

• Writing 1 after reading SDWNE = 0

LPCPD signal)

low

[Setting condition]

RENESAS

Rev. 3.00 Mar 21, 2006 page 534 of 788

					0	x: PME output disabled, other pin is enabled
					1	0: PME output enabled, PME goes to 0 level
					1	PME output enabled, PME high-impedance
1	LSMIE	0	R/W	_	LSMI ou	tput Enable
					bit in HI	LSMI output in combination wit CR1. LSMI pin output is open-dr pull-up resistor is needed to pul
						e LSMI output function is used, must not be set to 1.
					LSMIE	LSMIB
					0	x: LSMI output disabled, othe pin is enabled
					1	0: LSMI output enabled, LSMI goes to 0 level
					1	1: LSMI output enabled, LSMI high-impedance

for P80 must not be set to 1.

PMEB

PMEE

Rev. 3.00 Mar 21, 2006 pag REJ09

LSCIE	LSCIB
0	x: LSCI output disabled, other f pin is enabled
1	0: LSCI output enabled, LSCI p goes to 0 level
1	1: LSCI output enabled, LSCI p

for PB1 must not be set to 1.

high-impedance

Legend:

X: Don't care

Rev. 3.00 Mar 21, 2006 page 536 of 788 REJ09B0300-0300

- Bus idle, or transfer cycle not subject processing is in progress
- Cycle type or address indeterminate
- transfer cycle

[Clearing conditions]

- - LPC hardware reset or LPC software
 - · LPC hardware shutdown or LPC soft shutdown
 - Forced termination (abort) of transfer subject to processing
 - Normal termination of transfer cycle : processing
 - 1: Host interface is performing transfer of processing

[Setting condition] Match of cycle type and address

Rev. 3.00 Mar 21, 2006 pag

REJ09

					Li C naluwale lesel of Li C software i
					 LPC hardware shutdown or LPC softw shutdown
					SERIRQ is set to continuous mode
					There are no further interrupts for tran host in quiet mode
					1: LCLK restart request issued
					[Setting condition]
					In quiet mode, SERIRQ interrupt output b necessary while LCLK is stopped
5	IRQBSY	0	R	_	SERIRQ Busy

Indicates that the host interface's SERIRO

• LPC hardware reset or LPC software • LPC hardware shutdown or LPC softw

 End of SERIRQ transfer frame 1: SERIRQ transfer processing in progres

Start of SERIRQ transfer frame

engaged in transfer processing. 0: SERIRQ transfer frame wait state

[Clearing conditions]

shutdown

[Setting condition]

Rev. 3.00 Mar 21, 2006 page 538 of 788

REJ09B0300-0300

Writing 0 LPC hardware reset 1: LPC software reset state [Setting condition] Writing 1 after reading LRSTB = 0 **SDWNB** 0 R/W LPC Software Shutdown Bit Controls host interface shutdown. For de-LPC shutdown function, and the scope of initialization by an LPC reset and an LPC see section 19.4.4, Host Interface Shutd Function (LPCPD). 0: Normal state [Clearing conditions] Writing 0 LPC hardware reset or LPC software LPC hardware shutdown LPC hardware shutdown release

R/W

3

2

PMEB

0

RENESAS

(rising edge of LPCPD signal when S

1: LPC software shutdown state

Writing 1 after reading SDWNB = 0

Controls PME output in combination with bit. For details, refer to description on the

Rev. 3.00 Mar 21, 2006 pag

REJ09

[Setting condition]

PME Output Bit

in HICR0.

bit. For details, refer to description on the in HICR0.

19.3.2 Host Interface Control Registers 2 and 3 (HICR2, HICR3)

Bits 6 to 0 in HICR2 control interrupts from the host interface (LPC) module to the sla processor (this LSI). Bit 7 in HICR2 and HICR3 monitor host interface pin states.

The pin states can be monitored regardless of the host interface operating state or the o state of the functions that use pin multiplexing.

HICR2

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	Description
7	GA20	Undefined	R	_	GA20 Pin Monitor
6	LRST	0	R/(W)*	_	LPC Reset Interrupt Flag
					This bit is a flag that generates an ERRI in when an LPC hardware reset occurs.
					0: [Clearing condition]
					Writing 0 after reading LRST = 1
					1: [Setting condition]
					LRESET pin falling edge detection

Rev. 3.00 Mar 21, 2006 page 540 of 788 REJ09B0300-0300

				-
				 LPC hardware reset and LPC software
				1: [Setting condition]
				LPCPD pin falling edge detection
4	ABRT	0	R/(W)* —	LPC Abort Interrupt Flag
				This bit is a flag that generates an ERRI when a forced termination (abort) of an I cycle occurs.
				0: [Clearing conditions]
				 Writing 0 after reading ABRT = 1
				 LPC hardware reset and LPC software
				 LPC hardware shutdown and LPC so shutdown
				1: [Setting condition]
				LFRAME pin falling edge detection during transfer cycle
3	IBFIE3	0	R/W —	IDR3 and TWR Receive Completion Inte

completed interrupt requests enabled

Enables or disables IBFI3 interrupt to the

0: Input data register IDR3 and TWR red completed interrupt requests disabled

Input data register (IDR3) receive co

Rev. 3.00 Mar 21, 2006 pag

REJ09

1: [When TWRIE = 0 in LADR3]

interrupt requests enabled [When TWRIE = 1 in LADR3] Input data register (IDR3) and TWR

processor (this LSI).

1	IBFIE1	0	R/W	_	IDR1 Receive Completion Interrupt Enabl
					Enables or disables IBFI1 interrupt to the processor (this LSI).
					 Input data register (IDR1) receive comp interrupt requests disabled
					 Input data register (IDR1) receive comp interrupt requests enabled
0	ERRIE	0	R/W	_	Error Interrupt Enable
					Enables or disables ERRI interrupt to the processor (this LSI).
					0: Error interrupt requests disabled
					1: Error interrupt requests enabled
Note:	* Only	0 can be writt	en to bit	ts 6 to 4	4, to clear the flag.

R/W

Bit Name Initial Value Slave Host Description

R

R

R

R

R

interrupt requests enabled

HICR3

•	111	CIV.

LFRAME

SERIRQ

LRESET

LPCPD

REJ09B0300-0300

Bit

7

6

5

4

3

2	PME	Undefined	R
1	LSMI	Undefined	R
0	LSCI	Undefined	R

Rev. 3.00 Mar 21, 2006 page 542 of 788

CLKRUN Undefined

Undefined

Undefined

Undefined

Undefined

LFRAME Pin Monitor

CLKRUN Pin Monitor

SERIRQ Pin Monitor

LRESET Pin Monitor

LPCPD Pin Monitor

PME Pin Monitor LSMI Pin Monitor LSCI Pin Monitor

•	Bit 7	0	R/W	Channel 3 Address Bits 7 to 3
;	Bit 6	0	R/W	
;	Bit 5	0	R/W	
	Bit 4	0	R/W	
;	Bit 3	0	R/W	
)	_	0	R/W	Reserved
				This bit is readable/writable, however, only 0 st written to this bit.
	Bit 1	0	R/W	Channel 3 Address Bit 1
)	TWRE	0	R/W	Bidirectional Data Register Enable
				Enables or disables bidirectional data register
				0: TWR operation is disabled
				TWR-related I/O address match determination
				1: TWR operation is enabled
				Rev. 3.00 Mar 21, 2006 pag

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Description

Channel 3 Address Bits 15 to 8:

When LPC3E = 1, an I/O address received in a

cycle is compared with the contents of LADR3.

determining an IDR3, ODR3, or STR3 address

of LADR3 is regarded as 0, and the value of bi When determining a TWR0 to TWR15 address

of LADR3 is inverted, and the values of bits 3 t

ignored. Register selection according to the bit

address match determination is as shown in ta

RENESAS

REJ09

7

6

5

4

3

2

1

0

Bit

7

6 5 4

2

Bit 15

Bit 14

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

LADR3L

0

0

0

0

0

0

0

0

Bit Name Initial Value R/W

Bit 4	0	0	0	1	I/O write	TWR1 to TWR15 write
	1	1	1	1		
Bit 4	0	0	0	0	I/O read	TWR0SW read
Bit 4	0	0	0	1	I/O read	TWR1 to TWR15 read
	1	1	1	1		

0

I/O write

Transfer

Host Register S

IDR1 write, $C/\overline{D}1$ IDR1 write, $C/\overline{D}1$ IDR2 write, $C/\overline{D}2$

IDR2 write, C/D2

TWR0MW write

19.3.4 Input Data Registers 1 to 3 (IDR1 to IDR3)

Bit 4

0

0

0

The IDR registers are 8-bit read-only registers for the slave processor (this LSI), and 8-only registers for the host processor. The registers selected from the host according to t

I/O Address

address are shown in the following table. For information on IDR3 selection, see section LPC Channel 3 Address Register (LADR3). Data transferred in an LPC I/O write cycle to the selected register. The state of bit 2 of the I/O address is latched into the C/\overline{D} bit is indicate whether the written information is a command or data. The initial values of ID are undefined.

Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle
0000 0000 0110	0	0	0	0	I/O write
0000 0000 0110	0	1	0	0	I/O write
0000 0000 0110	0	0	1	0	I/O write
0000 0000 0110	0	1	1	0	I/O write

Rev. 3.00 Mar 21, 2006 page 544 of 788 REJ09B0300-0300

Bits 15 to 4	Bit 3	Bit 2	Bit 1	Bit 0	Cycle	Host Register
0000 0000 0110	0	0	0	0	I/O read	ODR1 read
0000 0000 0110	0	0	1	0	I/O read	ODR2 read

ranster

19.3.6 Bidirectional Data Registers 0 to 15 (TWR0 to TWR15)

The TWR registers are sixteen 8-bit readable/writable registers to both the slave proce LSI) and the host processor. In TWR0, however, two registers (TWR0MW and TWR0 allocated to the same address for both the host address and the slave address. TWR0M write-only register for the host processor, and a read-only register for the slave proces

TWR0SW is a write-only register for the slave processor and a read-only register for the slave processor and processor. When the host and slave processors begin a write, after the respective TWF have been written to, access right arbitration for simultaneous access is performed by status flags to see if those writes were valid. For the registers selected from the host ac the I/O address, see section 19.3.3, LPC Channel 3 Address Register (LADR3).

Data transferred in an LPC I/O write cycle is written to the selected register; in an LPC cycle, the data in the selected register is transferred to the host. The initial values of T

TWR15 are undefined.

19.3.7 Status Registers 1 to 3 (STR1 to STR3)

The STR registers are 8-bit registers that indicate status information during host interf processing. Bits 3, 1, and 0 of STR1 to STR3, and bits 7 to 4 of STR3, are read-only by the host processor and the slave processor (this LSI). However, only 0 can be written STR1 to STR3 and bits 6 and 4 of STR3, from the slave processor (this LSI), in order flags to 0. The registers selected from the host processor according to the I/O address the following table. For information on STR3 selection, see section 19.3.3, LPC Chan

Address Register (LADR3). In an LPC I/O read cycle, the data in the selected register transferred to the host processor. The initial values of STR1 to STR3 are H'00.

					0: Contents of data register (IDR) are data
					1: Contents of data register (IDR) are a co
2	DBU12	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF1	0	R	R	Input Buffer Full
					Set to 1 when the host processor writes to bit is an internal interrupt source to the sla processor (this LSI). IBF is cleared to 0 w slave processor reads IDR.
					The IBF1 flag setting and clearing condition different when the fast A20 gate is used. It see table 19.3.
					0: [Clearing condition]
					When the slave processor reads IDR
					1: [Setting condition]
					When the host processor writes to IDR us write cycle

Bit Name Initial Value Slave Host Description

R/W

R/W

R/W

R/W

R

R

R

R

R

R

Defined by User

Command/Data

The user can use these bits as necessary

When the host processor writes to an IDR bit 2 of the I/O address is written into this indicate whether IDR contains data or a c

Bit

DBU17

DBU16

DBU15

DBU14

C/D1

0

0

0

0

7

6

5

3

REJ09B0300-0300 RENESAS

Rev. 3.00 Mar 21, 2006 page 546 of 788

cycle, or the slave processor writes 0 to

When the slave processor writes to ODF

The user can use this bit as necessary.

REJ0

1: [Setting condition]

Note: * Only 0 can be written to clear the flag.

• STR2

			R/W		
Bit	Bit Name	Initial Value	Slave	Host	Description
7	DBU27	0	R/W	R	Defined by User
6	DBU26	0	R/W	R	The user can use these bits as necessar
5	DBU25	0	R/W	R	
4	DBU24	0	R/W	R	
3	C/D2	0	R	R	Command/Data
					When the host processor writes to an ID bit 2 of the I/O address is written into this indicate whether IDR contains data or a
					0: Contents of data register (IDR) are da
					1: Contents of data register (IDR) are a d
2	DBU22	0	R/W	R	Defined by User

			different when the fast A20 gate is used. I see table 19.3.
			0: [Clearing condition]
			When the slave processor reads IDR
			1: [Setting condition]
			When the host processor writes to IDR us cycle
OBF2	0	R/(W)* R	Output Buffer Full
			Set to 1 when the slave processor (this LS ODR. Cleared to 0 when the host process ODR.
			0: [Clearing condition]
			When the host processor reads ODR using

cycle, or the slave processor writes 0 to the

1: [Setting condition]

When the slave processor writes to ODR Only 0 can be written to clear the flag.

Rev. 3.00 Mar 21, 2006 page 548 of 788 REJ09B0300-0300

0

				1: [Setting condition]
				When the host processor writes to TWR write cycle
6	OBF3B	0	R/(W)* R	Bidirectional Data Register Output Buffe
				Set to 1 when the slave processor (this I TWR15. OBF3B is cleared to 0 when the processor reads TWR15.
				0: [Clearing condition]
				When the host processor reads TWR15 read cycle, or the slave processor writes OBF3B bit
				1: [Setting condition]
				When the slave processor writes to TW
5	MWMF	0	R R	Master Write Mode Flag
				Set to 1 when the host processor writes MWMF is cleared to 0 when the slave p (this LSI) reads TWR15.
				0: [Clearing condition]
				When the slave processor reads TWR1
				1: [Setting condition]
				When the host processor writes to TWF

0: [Clearing condition]

When the slave processor reads TWR15

write cycle while SWMF = 0

Rev. 3.00 Mar 21, 2006 pag REJ09

					When the host processor writes to an IDF bit 2 of the I/O address is written into this indicate whether IDR contains data or a
					0: Contents of data register (IDR) are data
					1: Contents of data register (IDR) are a co
2	DBU32	0	R/W	R	Defined by User
					The user can use this bit as necessary.
1	IBF3A	0	R	R	Input Buffer Full
					Set to 1 when the host processor writes to bit is an internal interrupt source to the sla processor (this LSI). IBF is cleared to 0 w slave processor reads IDR.
					The IBF1 flag setting and clearing conditi different when the fast A20 gate is used. see table 19.3.
					0: [Clearing condition]
					When the slave processor reads IDR
					1: [Setting condition]
					When the host processor writes to IDR us write cycle

R

R

3

C/D3

0

REJ09B0300-0300 RENESAS

Rev. 3.00 Mar 21, 2006 page 550 of 788

When the host processor reads TWR15 u read cycle, or the slave processor writes (

When the slave processor writes to TWR0

writes to an IDR written into this

SWMF bit

MWMF = 0

Command/Data

1: [Setting condition]

cycle, or the slave processor writes 0 to

When the slave processor writes to ODF

1: [Setting condition]

Note: Only 0 can be written to clear the flag.

STR3 (TWRE = 0 and SELSTR3 = 1)

2

DBU32

0

			R/	W	
Bit	Bit Name	Initial Value	Slave	Host	
7	DBU37	0	R/W	R	Defined by User
6	DBU36	0	R/W	R	The user can use these bits as necessar
5	DBU35	0	R/W	R	
4	DBU34	0	R/W	R	
3	C/D3	0	R	R	Command/Data
					When the host processor writes to an ID bit 2 of the I/O address is written into this indicate whether IDR contains data or a
					0: Contents of data register (IDR) are da
					1: Contents of data register (IDR) are a

R

R/W

RENESAS

Defined by User

The user can use this bit as necessary.

Rev. 3.00 Mar 21, 2006 pag

REJ0

				different when the fast A20 gate is used. I see table 19.3.
				0: [Clearing condition]
				When the slave processor reads IDR
				1: [Setting condition]
				When the host processor writes to IDR us write cycle
0	OBF3A	0	R/(W)* R	Output Buffer Full
				Set to 1 when the slave processor (this LS ODR. OBF3A is cleared to 0 when the hoprocessor reads ODR.

When the slave processor writes to ODR Only 0 can be written to clear the flag.

19.3.8 SERIRQ Control Registers 0 and 1 (SIRQCR0, SIRQCR1)

The SIRQCR registers contain status bits that indicate the SERIRQ operating mode and

Rev. 3.00 Mar 21, 2006 page 552 of 788 REJ09B0300-0300

specify SERIRQ interrupt sources.

RENESAS

When the host processor reads ODR using cycle, or the slave processor writes 0 to the

0: [Clearing condition]

1: [Setting condition]

					LPC hardware reset, LPC software re
					 Specification by SERIRQ transfer cycles frame
					1: Quiet mode
					[Setting condition]
					Specification by SERIRQ transfer cycle s
6	SELREQ	0	R/W	_	Start Frame Initiation Request Select
					Selects whether start frame initiation is r when one or more interrupt requests are when all interrupt requests are cleared, i mode.
					0: Start frame initiation is requested whe interrupt requests are cleared in quiet
					Start frame initiation is requested whe more interrupt requests are cleared in
5	IEDIR	0	R/W	_	Interrupt Enable Direct Mode
					Specifies whether LPC channel 2 and channel 2 second channel 2 second channel 2 and channel 2 second channel 2 and channel 2 second channel 2 and channel 2
					Host interrupt is requested when host enable bit and corresponding OBF are
					1: Host interrupt is requested when host enable bit is set to 1

[Clearing conditions]

Rev. 3.00 Mar 21, 2006 page

REJO

- Writing 0 to SMIE3B LPC hardware reset, LPC software re-Clearing OBF3B to 0 (when IEDIR = 0 1: [When IEDIR = 0] Host SMI interrupt request by setting (is enabled [When IEDIR = 1] Host SMI interrupt is requested
 - [Setting condition] Writing 1 after reading SMIE3B = 0 3 SMIE3A R/W Host SMI Interrupt Enable 3A 0

Enables or disables a host SMI interrupt r when OBF3A is set by an ODR3 write. Host SMI interrupt request by OBF3A a

LPC hardware reset, LPC software re-Clearing OBF3A to 0 (when IEDIR = 0

Host SMI interrupt is requested

Writing 1 after reading SMIE3A = 0

SMIE3A is disabled [Clearing conditions]

[Setting condition]

Writing 0 to SMIE3A

1: [When IEDIR = 0] Host SMI interrupt request by setting (is enabled [When IEDIR = 1]

Rev. 3.00 Mar 21, 2006 page 554 of 788

REJ09B0300-0300

- Writing 0 to SMIE2 LPC hardware reset, LPC software re Clearing OBF2 to 0 (when IEDIR = 0 1: [When IEDIR = 0] Host SMI interrupt request by setting is enabled [When IEDIR = 1] Host SMI interrupt is requested [Setting condition] Writing 1 after reading SMIE2 = 0 1 IRQ12E1 0 R/W Host IRQ12 Interrupt Enable 1 Enables or disables a host IRQ12 interru when OBF1 is set by an ODR1 write.
 - Writing 0 to IRQ12E1 1: Host IRQ12 interrupt request by setting is enabled [Setting condition]

0: Host IRQ12 interrupt request by OBF

IRQ12E1 is disabled [Clearing conditions]

Clearing OBF1 to 0

Writing 1 after reading IRQ12E1 = 0

REJ09

Rev. 3.00 Mar 21, 2006 pag

- Writing 0 to IRQ1E1
 - LPC hardware reset, LPC software re-

 - Clearing OBF1 to 0
 - 1: Host IRQ1 interrupt request by setting
 - is enabled

[Setting condition] Writing 1 after reading IRQ1E1 = 0

Host IRQ11 interrupt request by setting

Host IRQ11 interrupt is requested.

Writing 1 after reading IRQ11E3 = 0

to 1 is enabled [When IEDIR = 1]

[Setting condition]

SIRQCR1

			R/W		
Bit	Bit Name	Initial Value	Slave	Host	Description
7	IRQ11E3	0	R/W	_	Host IRQ11 Interrupt Enable 3
					Enables or disables a host IRQ11 interruption on the observation when OBF3A is set by an ODR3 write.
					0: Host IRQ11 interrupt request by OBF3/ IRQ11E3 is disabled
					[Clearing conditions]
					Writing 0 to IRQ11E3
					• LPC hardware reset, LPC software re-
					• Clearing OBF3A to 0 (when IEDIR = 0
					1: [When IEDIR = 0]

Rev. 3.00 Mar 21, 2006 page 556 of 788 REJ09B0300-0300

LPC hardware reset, LPC software reset.
 Clearing OB3FA to 0 (when IEDIR = 1: [When IEDIR = 0]
 Host IRQ10 interrupt request by setting to 1 is enabled
 [When IEDIR = 1]
 Host IRQ10 interrupt is requested.

 [Setting condition]

R/W

Writing 0 to IRQ10E3

Writing 1 after reading IRQ10E3 = 0

Enables or disables a host IRQ9 interrupt when OBF3A is set by an ODR3 write.

0: Host IRQ9 interrupt request by OBF3A

LPC hardware reset, LPC software re

Writing 1 after reading IRQ9E3 = 0

Rev. 3.00 Mar 21, 2006 pag

REJ09

Host IRQ9 Interrupt Enable 3

IRQ9E3 is disabled [Clearing conditions]

Writing 0 to IRQ9E3

Clearing OBF3A to 0 (when IEDIR = 1: [When IEDIR = 0]
 Host IRQ9 interrupt request by settin 1 is enabled
 [When IEDIR = 1]
 Host IRQ9 interrupt is requested.

 [Setting condition]

5

IRQ9E3

0

- Writing 0 to IRQ6E3
 LPC hardware reset, LPC software re
 Clearing OBF3A to 0 (when IEDIR = 0
 1: [When IEDIR = 0]
 Host IRQ6 interrupt request by setting 1 is enabled
 [When IEDIR = 1]
 Host IRQ6 interrupt is requested.
 - [Setting condition]

 Writing 1 after reading IRQ6E3 = 0

 3 IRQ11E2 0 R/W Host IRQ11 Interrupt Enable 2

Host IRQ11 interrupt request by settin
1 is enabled
[When IEDIR = 1]
Host IRQ11 interrupt is requested.
[Setting condition]
Writing 1 after reading IRQ11E2 = 0

RENESAS

Enables or disables a host IRQ11 interruption when OBF2 is set by an ODR2 write.

0: Host IRQ11 interrupt request by OBF2

LPC hardware reset, LPC software re Clearing OBF2 to 0 (when IEDIR = 0)

IRQ11E2 is disabled [Clearing conditions]

Writing 0 to IRQ11E2

1: [When IEDIR = 0]

Rev. 3.00 Mar 21, 2006 page 558 of 788

- Writing 0 to IRQ10E2
 LPC hardware reset, LPC software reset, LPC sof
 - Host IRQ10 interrupt is requested.

 [Setting condition]

Writing 1 after reading IRQ10E2 = 0

1 IRQ9E2 0 R/W — Host IRQ9 Interrupt Enable 2
Enables or disables a host IRQ9 interrupt when OBF2 is set by an ODR2 write.

0: Host IRQ9 interrupt request by OBF2

when OBF2 is set by an ODR2 write.

0: Host IRQ9 interrupt request by OBF2 is disabled

[Clearing conditions]

Writing 0 to IRQ9E2

LPC hardware reset, LPC software resets to 0 (when IEDIR = 0)

[When IEDIR = 1]

Host IRQ9 interrupt is requested.

[Setting condition]

Writing 1 after reading IRQ9E2 = 0

1: [When IEDIR = 0]

is enabled

Host IRQ9 interrupt request by setting

Rev. 3.00 Mar 21, 2006 pag

REJ09

- Writing 0 to IRQ6E2
- · LPC hardware reset, LPC software re-
 - Clearing OBF2 to 0 (when IEDIR = 0)

Host IRQ6 interrupt request by setting OE

1: [When IEDIR = 0]

enabled

[When IEDIR = 1]

Host IRQ6 interrupt is requested.

[Setting condition]

Writing 1 after reading IRQ6E2 = 0

				monaco
				1: [When TWRE = 1]
				Bits 7 to 4 in STR3 are status bits of t interface.
				[When TWRE = 0]
				Bits 7 to 4 in STR3 are user bits.
6	SELIRQ110	W	_	SERIRQ Output Select
5	SELIRQ100	W	_	Selects the pin output status of host inte
4	SELIRQ9 0	W	_	requests (HIRQ11, HIRQ10, HIRQ9, HIF HIRQ12, and HIRQ1) of the LPC.
3	SELIRQ6 0	W	_	• •
2	SELSMI 0	W	_	0: [When host interrupt request is cleared
1	SELIRQ121	W	_	SERIRQ pin output is in the high-imp state.
0	SELIRQ1 1	W	_	[When host interrupt request is set]
				SERIRQ pin output is 0.
				1: [When host interrupt request is cleare

state.

REJ09

Rev. 3.00 Mar 21, 2006 pag

Selects the function of bits 7 to 4 in STR combination with the TWRE bit in LADR: description on STR3 in section 19.3.7, S Registers 1 to 3 (STR1 to STR3), for det 0: Bits 7 to 4 in STR3 are status bits of the status bits

interface.

SERIRQ pin output is 0.

[When host interrupt request is set] SERIRQ pin output is in the high-imperation. host interface's input/output pins.

Use the following procedure to activate the host interface after a reset release.

- 1. Read the signal line status and confirm that the LPC module can be connected. Also
- 2. When using channel 3, set LADR3 to determine the channel 3 I/O address and whe bidirectional data registers are to be used.
- 3. Set the enable bit (LPC3E to LPC1E) for the channel to be used.
- 4. Set the enable bits (GA20E, PMEE, LSMIE, and LSCIE) for the additional function used.

6. As a precaution, clear the interrupt flags (LRST, SDWN, ABRT, OBF). Read IDR

There are ten kinds of LPC transfer cycle: memory read, memory write, I/O read, I/O v

5. Set the selection bits for other functions (SDWNE, IEDIR).

the LPC module is initialized internally.

- to clear IBF.
- 7. Set interrupt enable bits (IBFIE3 to IBFIE1, ERRIE) as necessary.

19.4.2 LPC I/O Cycles

read, DMA write, bus master memory read, bus master memory write, bus master I/O is bus master I/O write. Of these, the chip's LPC supports only I/O read and I/O write cycle. An LPC transfer cycle is started when the LFRAME signal goes low in the bus idle started.

LFRAME signal goes low when the bus is not idle, this means that a forced termination the LPC transfer cycle has been requested.

In an I/O read cycle or I/O write cycle, transfer is carried out using LAD3 to LAD0 in a following order, in synchronization with LCLK. The host can be made to wait by sending value other than B'0000 in the slave's synchronization return cycle, but with the chip's value of B'0000 is always returned.

Rev. 3.00 Mar 21, 2006 page 562 of 788 REJ09B0300-0300

10	Data 1	Slave	Bits 3 to 0	Turnaround
11	Data 2	Slave	Bits 7 to 4	Synchronization
12	Turnaround (recovery)	Slave	1111	Turnaround (recovery)
13	Turnaround	None	ZZZZ	Turnaround
The ti	iming of the LFRAM	IE, LCLK, ar	nd LAD signal	s is shown in figure

HOST

Host

Host

Host

Host

Host

Host

None

Slave

0000

0000

12

Bits 15 to

Bits 11 to 8

Bits 7 to 4

Bits 3 to 0

1111

ZZZZ

0000

Start

Address 1

Address 2

Address 3

Address 4

Data 1

Data 2

Turnaround

(recovery)

Cycle type/direction

HOST

Host

Host

Host

Host

Host

Host

Host

Host

None

Slave

Slave

None

REJ09

shown in figures 19.2 and 19

Start

Address 1

Address 2

Address 3

Address 4

(recovery)

Turnaround

Turnaround

Synchronization

Cycle type/direction

2

3

4

5

6

7

8

9

Figure 19.2 Typical LFRAME Timing

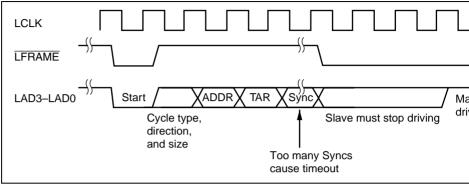


Figure 19.3 Abort Mechanism

Regular A20 Gate Operation: Output of the A20 gate signal can be controlled by an command followed by data. When the slave processor (this LSI) receives data, it norm interrupt routine activated by the IBF1 interrupt to read IDR1. At this time, firmware of data following an H'D1 command and outputs it at the gate A20 pin.

Fast A20 Gate Operation: The internal state of GA20 output is initialized to 1 when 0. When the FGA20E bit is set to 1, P81/GA20 is used for output of a fast A20 gate si state of the P81/GA20 pin can be monitored by reading the GA20 bit in HICR2.

processor can manipulate the output from this pin by sending commands and data. The only available via the IDR1 register. The host interface decodes commands input from When an H'D1 host command is detected, bit 1 of the data following the host command from the GA20 output pin. This operation does not depend on firmware or interrupts, than the regular processing using interrupts. Table 19.3 shows the conditions that set a GA20 (P81). Figure 19.4 shows the GA20 output in flowchart form. Table 19.4 indicated GA20 output signal values.

The initial output from this pin will be a logic 1, which is the initial value. Afterward,

Table 19.3 GA20 (P81) Set/Clear Timing

Pin Name	Setting Condition	Clearing Condition
GA20 (P81)	When bit 1 of the data that follows an H'D1 host command is 1	When bit 1 of the data that H'D1 host command is 0

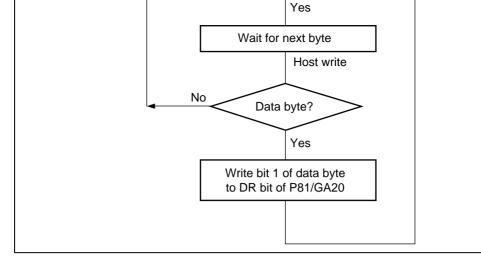


Figure 19.4 GA20 Output

0	1 data*1	0
1/0	Command other than H'FF and H'D1	1
1	H'D1 command	0
0	0 data*2	0
1/0	Command other than H'FF and H'D1	1
1	H'D1 command	0
1	Command other than H'D1	1
1	H'D1 command	0
1	H'D1 command	0
1	H'D1 command	0
0	Any data	0
1	H'D1 command	0
Notes	1. Arbitrary data with bit 1 set to2. Arbitrary data with bit 1 clear	

0

0

0

HD1 Command

H'FF command

H'D1 command

0 data*2

0

1

1

runi-on seq

Turn-on seq (abbreviated

Turn-off seq

(abbreviated

Cancelled s

Retriggered

Consecutive sequences

REJO

0

Q

1 Q (1)

Q

0 Q (0)

Q

Q Q

Q Q

1/0 Q (1/0)

Q (0)

Placing the slave processor in sleep mode or software standby mode is effective in reducurrent dissipation in the shutdown state. If software standby mode is set, some means provided for exiting software standby mode before clearing the shutdown state with the signal.

If the SDWNE bit has been set to 1 beforehand, the LPC hardware shutdown state is er same time as the $\overline{\text{LPCPD}}$ signal falls, and prior preparation is not possible. If the LPC shutdown state is set by means of the SDWNB bit, on the other hand, the LPC software state cannot be cleared at the same time as the rise of the $\overline{\text{LPCPD}}$ signal. Taking these procedure uses a combination of LPC software and LPC hardware shutdown.

1. Clear the SDWNE bit to 0.

bit is cleared automatically.

- 2. Set the ERRIE bit to 1 and wait for an interrupt by the SDWN flag.
- 3. When an ERRI interrupt is generated by the SDWN flag, check the host interface in status flags and perform any necessary processing.
- 4. Set the SDWNB bit to 1 to set LPC software standby mode.
- 5. Set the SDWNE bit to 1 and make a transition to LPC hardware standby mode. The
- 6. Check the state of the LPCPD signal to make sure that the LPCPD signal has not rissteps 3 to 5. If the signal has risen, clear SDWNE to 0 to return to the state in step 1
- 7. Place the slave processor in sleep mode or software standby mode as necessary.
- 8. If software standby mode has been set, exit software standby mode by some means independent of the LPC.9. When a rising edge is detected in the LPCPD signal, the SDWNE bit is automatical
- 9. When a rising edge is detected in the LPCPD signal, the SDWNE bit is automatical to 0. If the slave processor has been placed in sleep mode, the mode is exited by me LRESET signal input, on completion of the LPC transfer cycle, or by some other m

Rev. 3.00 Mar 21, 2006 page 568 of 788

REJ09B0300-0300

LSMI	PB0	Δ	I/O	Hi-Z, only when LSMIE = 1
PME	P80	Δ	I/O	Hi-Z, only when PMEE = 1
GA20	P81	Δ	I/O	Hi-Z, only when FGA20E = 1
CLKRUN	P82	0	Input	Hi-Z
LPCPD	P83	×	Input	Needed to clear shutdown s
Legend:				
O: Pin that i	s shutdown b	y the shutdov	vn function	
Δ: Pin that is shutdown only when the LPC function is selected by register setting				

In the LPC shutdown state, the LPC's internal state and some register bits are initializ

0

O

Δ

Input

I/O

I/O

Hi-Z

Hi-Z

Hi-Z, only when LSCIE = 1

Pin that is not shutdown

P36

P37

PB1

order of priority of LPC shutdown and reset states is as follows. 1. System reset (reset by STBY or RES pin input, or WDT0 overflow)

- All register bits, including bits LPC3E to LPC1E, are initialized.
- 2. LPC hardware reset (reset by LRESET pin input)
- LRSTB, SDWNE, and SDWNB bits are cleared to 0.
- 3. LPC software reset (reset by LRSTB)
- SDWNE and SDWNB bits are cleared to 0.
- 4. LPC hardware shutdown
 - SDWNB bit is cleared to 0.
- 5. LPC software shutdown

LCLK

LSCI

SERIRQ

Rev. 3.00 Mar 21, 2006 pag

REJ09

Host interface flags (IBF1, IBF2, IBF3A, IBF3B, MWMF, C/\overline{D}1 to C/\overline{D}3, OBF1, OBF2, OBF3A, OBF3B, SWMF, DBU), GA20 (internal state)	Initialized	Initialized	R
Host interrupt enable bits (IRQ1E1, IRQ12E1, SMIE2, IRQ6E2, IRQ9E2 to IRQ11E2, SMIE3B, SMIE3A, IRQ6E3, IRQ9E3 to IRQ11E3), Q/C flag, SELREQ bit	Initialized	Initialized	R
LRST flag	Initialized (0)	Can be set/cleared	C
SDWN flag	Initialized (0)	Initialized (0)	C
LRSTB bit	Initialized (0)	HR: 0 SR: 1	0
SDWNB bit	Initialized (0)	Initialized (0)	H S
SDWNE bit	Initialized (0)	Initialized (0)	H
Host interface operation control bits (LPC3E to LPC1E, FGA20E, LADR3, IBFIE1 to IBFIE3, PMEE, PMEB, LSMIE, LSMIB, LSCIE, LSCIB, TWRE, SELSTR3, SELIRQ1, SELSMI, SELIRQ6, SELIRQ9 to SELIRQ12)	Initialized	Retained	R
LRESET signal	Input (port function	Input	In
LPCPD signal	_	Input	Ir
LAD3 to LAD0, LFRAME, LCLK, SERIRQ, CLKRUN signals	_	Input	Н
PME, LSMI, LSCI, GA20 signals (when function is selected)	_	Output	Н
PME, LSMI, LSCI, GA20 signals (when function is not selected)	_	Port function	Р
Note: System reset: Reset by STBY input, RES input, or LPC reset: Reset by LPC hardware reset (HR) or L LPC shutdown: Reset by LPC hardware shutdown	PC software	e reset (SR)	tdo
Rev. 3.00 Mar 21, 2006 page 570 of 788			
REJ09B0300-0300			į

OLIVINE & and investor mags



Figure 19.5 Power-Down State Termination Timing

Figure 19.6 SERIRQ Timing

The serialized interrupt transfer cycle frame configuration is as follows. Two of the star comprising each frame are the recover state in which the SERIRQ signal is returned to at the end of the frame, and the turnaround state in which the SERIRQ signal is not driver recover state must be driven by the host or slave processor that was driving the precedi

Rev. 3.00 Mar 21, 2006 page 572 of 788 REJ09B0300-0300

IRQ6	Slave	3	Drive possible in LPC channels 2
IRQ7	Slave	3	
IRQ8	Slave	3	
IRQ9	Slave	3	Drive possible in LPC channels 2
IRQ10	Slave	3	Drive possible in LPC channels 2
IRQ11	Slave	3	Drive possible in LPC channels 2
IRQ12	Slave	3	Drive possible in LPC channel 1
IRQ13	Slave	3	
IRQ14	Slave	3	
IRQ15	Slave	3	
IOCHCK	Slave	3	
Stop	Host	Undefined	First, 1 or more idle states, then 2 0-driven by host 2 states: Quiet mode next 3 states: Continuous mode next
	IRQ7 IRQ8 IRQ9 IRQ10 IRQ11 IRQ12 IRQ13 IRQ14 IRQ15 IOCHCK	IRQ7 Slave IRQ8 Slave IRQ9 Slave IRQ10 Slave IRQ11 Slave IRQ12 Slave IRQ13 Slave IRQ14 Slave IRQ15 Slave IOCHCK Slave	IRQ7 Slave 3 IRQ8 Slave 3 IRQ9 Slave 3 IRQ10 Slave 3 IRQ11 Slave 3 IRQ12 Slave 3 IRQ13 Slave 3 IRQ14 Slave 3 IRQ15 Slave 3 IOCHCK Slave 3

Slave

Slave

Slave

IRQ3

IRQ4

IRQ5

6

cycle that ended before that cycle. In continuous mode, the host initiates host interrupt transfer cycles at regular intervals

initiated in the next transfer cycle is selected by the stop frame of the serialized interru

3

3

3

mode, the slave processor with interrupt sources requiring a request can also initiate a transfer cycle, in addition to the host. In quiet mode, since the host does not necessarily interrupt transfer cycles, it is possible to suspend the clock (LCLK) supply and enter t down state. In order for a slave to transfer an interrupt request in this case, a request to

REJ09

sent to the host. The timing for this operation is shown in figure 19.7.

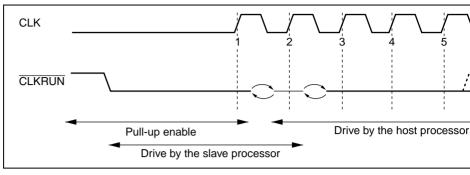


Figure 19.7 Clock Start Request Timing

Cases other than SERIRQ in quiet mode when clock restart is required must be handled different protocol, using the \overline{PME} signal, etc.

Rev. 3.00 Mar 21, 2006 page 574 of 788 REJ09B0300-0300

corresponding enable bit.

interrupt enable bit.

Interrupt

Table 19.7 Receive Complete Interrupts and Error Interrupt

IBFI1	When IBFIE1 is set to 1 and IDR1 reception is completed
IBFI2	When IBFIE2 is set to 1 and IDR2 reception is completed
IBFI3	When IBFIE3 is set to 1 and IDR3 reception is completed, or when IBFIE3 are set to 1 and reception is completed up to TWR15
ERRI	When ERRIE is set to 1 and one of LRST, SDWN and ABRT is set

19.5.2 SMI, HIRQ1, HIRQ6, HIRQ9 to HIRQ12

Description

The host interface can request seven kinds of host interrupt by means of SERIRQ. HI HIRQ12 are used on LPC channel 1 only, while SMI, HIRQ6, HIRQ9 to HIRQ11 car requested from LPC channel 2 or 3.

There are two ways of clearing a host interrupt request.

When the IEDIR bit is cleared to 0 in SIRQCR0, host interrupt sources and LPC chan linked to the host interrupt request enable bits. When the OBF flag is cleared to 0 by a ODR or TWR15 by the host in the corresponding LPC channel, the corresponding hos enable bit is automatically cleared to 0, and the host interrupt request is cleared.

When the IEDIR bit is set to 1 in SIRQCR0, LPC channel 2 and 3 interrupt requests a only upon the host interrupt enable bits. The host interrupt enable bit is not cleared wh channel 2 or 3 is cleared. Therefore, SMIE2, SMIE3A and SMIE3B, IRQ6E2 and IRQ IRQ9E2 and IRQ9E3, IRQ10E2 and IRQ10E3, and IRQ11E2 and IRQ11E3 lose their functional differences. In order to clear a host interrupt request, it is necessary to clear

Rev. 3.00 Mar 21, 2006 pag

SMI	Internal CPU	Internal CPU
(IEDIR = 0)		
(ILDII(= 0)	 writes to ODR2, then reads 0 from bit SMIE2 and writes 1 	 writes 0 to bit SMIE2, reads ODR2
	 writes to ODR3, then reads 0 from bit SMIE3A and writes 1 	 writes 0 to bit SMIE3A reads ODR3
	 writes to TWR15, then reads 0 from bit SMIE3B and writes 1 	 writes 0 to bit SMIE3E reads TWR15
SMI	Internal CPU	Internal CPU
(IEDIR = 1)	• reads 0 from bit SMIE2, then writes 1	• writes 0 to bit SMIE2
	• reads 0 from bit SMIE3A, then writes 1	 writes 0 to bit SMIE3A
	• reads 0 from bit SMIE3B, then writes 1	• writes 0 to bit SMIE3E
HIRQi	Internal CPU	Internal CPU
(i = 6, 9 to 11) (IEDIR = 0)	 writes to ODR2, then reads 0 from bit IRQiE2 and writes 1 	 writes 0 to bit IRQiE2, reads ODR2
	 writes to ODR3, then reads 0 from bit IRQiE3 and writes 1 	CPU writes 0 to bit IRe reads ODR3
HIRQi	Internal CPU	Internal CPU
(i = 6, 9 to 11)	• reads 0 from bit IRQiE2, then writes 1	• writes 0 to bit IRQiE2
(IEDIR = 1)	 reads 0 from bit IRQiE3, then writes 1 	 writes 0 to bit IRQiE3

Rev. 3.00 Mar 21, 2006 page 576 of 788

REJ09B0300-0300

0 from bit IRQ12E1 and writes 1

HIRQ12

(independent

from IEDIR)

Internal CPU writes to ODR1, then reads Internal CPU writes 0 to b

or host reads ODR1

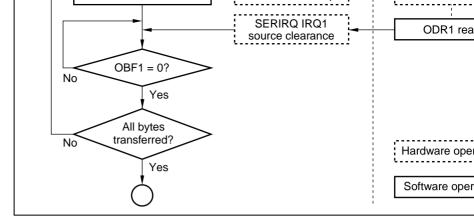


Figure 19.8 HIRQ Flowchart (Example of Channel 1)

19.6 Usage Notes

19.6.1 Module Stop Mode Setting

LPC operation can be enabled or disabled using the module stop control register. The setting is for LPC operation to be halted. Register access is enabled by canceling mod mode. For details, refer to section 26, Power-Down Modes.

19.6.2 Notes on Using Host Interface

The host interface provides buffering of asynchronous data from the host processor ar processor (this LSI), but an interface protocol that uses the flags in STR must be follo data contention. For example, if the host and slave processor both try to access IDR or same time, the data will be corrupted. To prevent simultaneous accesses, IBF and OB used to allow access only to data for which writing has finished.

Rev. 3.00 Mar 21, 2006 pag REJ0

Register	Host Address when LADR3 = H'A24F	Host Address when LADR: H'3FD0
IDR3	H'A24A and H'A24E	H'3FD0 and H'3FD4
ODR3	H'A24A	H'3FD0
STR3	H'A24E	H'3FD4
TWR0MW	H'A250	H'3FC0
TWR0SW	H'A250	H'3FC0
TWR1	H'A251	H'3FC1
TWR2	H'A252	H'3FC2
TWR3	H'A253	H'3FC3
TWR4	H'A254	H'3FC4
TWR5	H'A255	H'3FC5
TWR6	H'A256	H'3FC6
TWR7	H'A257	H'3FC7
TWR8	H'A258	H'3FC8

Rev. 3.00 Mar 21, 2006 page 578 of 788

REJ09B0300-0300

H'A259

H'A25A

H'A25B

H'A25C

H'A25D

H'A25E

H'A25F

TWR9

TWR10

TWR11

TWR12

TWR13

TWR14

TWR15

H'3FC9

H'3FCA

H'3FCB

H'3FCC

H'3FCD

H'3FCE

H'3FCF

- Output voltage: 0 V to AVref
- D/A output retaining function in software standby mode

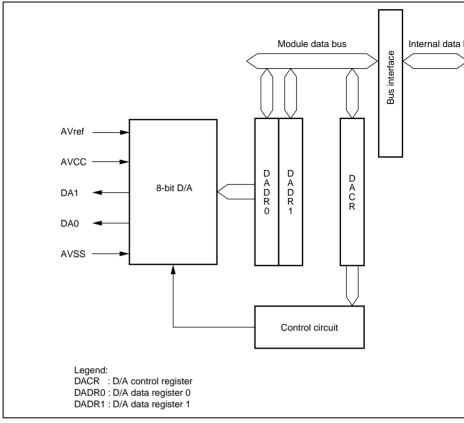


Figure 20.1 Block Diagram of D/A Converter

Rev. 3.00 Mar 21, 2006 pag

REJ09

Analog ground pin	AVSS	Input	Analog block ground and referen
Analog output pin 0	DA0	Output	Channel 0 analog output
Analog output pin 1	DA1	Output	Channel 1 analog output
Reference power supply pin	AVref	Input	Analog block reference voltage

20.3 Register Descriptions

The D/A converter has the following registers.

- D/A data register 0 (DADR0)
- D/A data register 1 (DADR1)
- D/A control register (DACR)

20.3.1 D/A Data Registers 0 and 1 (DADR0, DADR1)

DADR0 and DADR1 are 8-bit readable/writable registers that store data for D/A convergence when analog output is permitted, D/A data register contents are converted and output to output pins. DADR0 and DADR1 are initialized to H'00.

Rev. 3.00 Mar 21, 2006 page 580 of 788 REJ09B0300-0300

				are enabled
6	DAOE0	0	R/W	D/A Output Enable 0
				Controls D/A conversion and analog output.
				0: Analog output DA0 is disabled
				1: D/A conversion for channel 0 and analog are enabled
5	DAE	0	R/W	D/A Enable
				Controls D/A conversion in conjunction with and DAOE1 bits. When the DAE bit is cleared conversion for channels 0 and 1 is controlled.

R

Reserved

1: D/A conversion for channel 1 and analog

When the DAE bit is set to 1, D/A conversion channels 0 and 1 are controlled as one. Cor result output is controlled by the DAOE0 and bits. For details, see table 20.2 below.

These bits are always read as 1 and cannot

Rev. 3.00 Mar 21, 2006 pag

REJ09

All 1

to

0

1	0	0	Disables D/A conversion for channel 0
			Enables D/A conversion for channel 1
		1	Enables D/A conversion for channels 0 and 1
	1	_	Enables D/A conversion for channels 0 and 1

20.4 Operation

The D/A converter incorporates two channels of the D/A circuits and can be converted individually.

When the DAOE bit in DACR is set to 1, D/A conversion is enabled and conversion reoutput.

An example of D/A conversion of channel 0 is shown below. The operation timing is si

2. When the DAOE0 bit in DACR is set to 1, D/A conversion starts. After the interval

3. Conversion starts immediately after DADR0 is modified. After the interval of t_{DCONV}

figure 20.2.

- 1. Write conversion data to DADR0.
- conversion results are output from the analog output pin DA0. The conversion result output continuously until DADR0 is modified or the DAOE0 bit is cleared to 0. The

DADR contents/256 × AVref

value is calculated by the following formula:

- conversion results are output.
- 4. When the DAOE0 bit is cleared to 0, analog output is disabled.

Rev. 3.00 Mar 21, 2006 page 582 of 788 REJ09B0300-0300

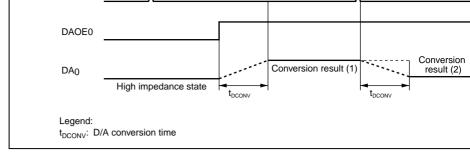


Figure 20.2 D/A Converter Operation Example

20.5 Usage Note

When this LSI enters software standby mode with D/A conversion enabled, the D/A cretained, and the analog power supply current is equal to as during D/A conversion. If power supply current needs to be reduced in software standby mode, clear the DAOE and DAE bits all to 0 to disable D/A output.

20.5.1 Module Stop Mode Setting

D/A converter operation can be enabled or disabled using the module stop control reg initial setting is for D/A converter operation to be halted. Register access is enabled by module stop mode. For details, refer to section 26, Power-Down Modes.

Rev. 3.00 Mar 21, 2006 pag REJ09

Rev. 3.00 Mar 21, 2006 page 584 of 788 REJ09B0300-0300

- 10-bit resolution
 - Input channels: eight analog input channels and 16 digital input channels
 - Analog conversion voltage range can be specified using the reference power suppl
 - Conversion time: 13.4 µs per channel (at 10-MHz operation)

pin (AVref) as an analog reference voltage.

- Two kinds of operating modes
 - Single mode: Single-channel A/D conversion
 - Scan mode: Continuous A/D conversion on 1 to 4 channels
- · Four data registers
 - Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three kinds of conversion start
 - Software, 8-bit timer (TMR) conversion start trigger, or external trigger signal
- Interrupt request

ADCMS33A_010020020700

— A/D conversion end interrupt (ADI) request can be generated

REJ09

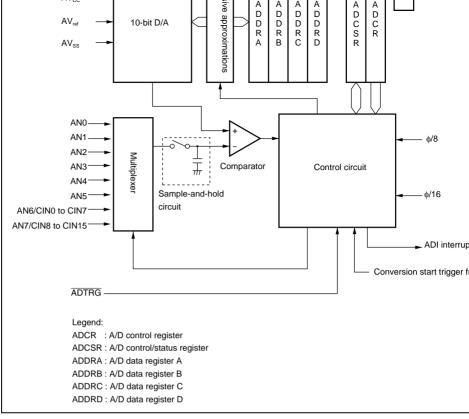


Figure 21.1 Block Diagram of A/D Converter

Rev. 3.00 Mar 21, 2006 page 586 of 788 REJ09B0300-0300

Table 21.1 Pin Configuration

Pin Name

Analog power

Analog input pin 6

Analog input pin 7

input pin

Expanded A/D

pins 0 to 15

conversion input

A/D external trigger

Symbol

 AV_{cc}

AN6

AN7

ADTRG

CIN0 to

CIN15

supply pin			
Analog ground pin	AV _{ss}	Input	Analog block ground and reference v
Reference power supply pin	AVref	Input	Reference voltage for A/D conversion
Analog input pin 0	AN0	Input	Group 0 analog input pins
Analog input pin 1	AN1	Input	
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Group 1 analog input pins
Analog input pin 5	AN5	Input	

Input

Input

Input

Input

I/O

Input

Function

conversion

channels 0 to 15

Analog block power supply and refere

External trigger input pin for starting A

Expanded A/D conversion input (digit

Can be used as digital input pins

Rev. 3.00 Mar 21, 2006 pag

REJ09

- A/D control/status register (ADCSR)
 - A/D control register (ADCR)
 - Keyboard comparator control register (KBCOMP)

21.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the A/D conversion. The ADDR registers, which store a conversion result for each channel in table 21.2.

The converted 10-bit data is stored to bits 15 to 6. The lower 6-bit data is always read a

The data bus between the CPU and the A/D converter is 8-bit width. The upper byte ca directly from the CPU, but the lower byte should be read via a temporary register. The register contents are transferred from the ADDR when the upper byte data is read. When the ADDR, read the upper byte before lower byte or in word units.

Table 21.2 Analog Input Channels and Corresponding ADDR Registers

Α	nalog Input Channel	A/D Data Register to Store A/I Conversion Results	
Group 0	Group 1		
AN0	AN4	ADDRA	
An1	AN5	ADDRB	
AN2	AN6, or CIN0 to CIN7	ADDRC	
AN3	AN7, or CIN8 to CIN15	ADDRD	

Rev. 3.00 Mar 21, 2006 page 588 of 788

REJ09B0300-0300

				 When A/D conversion ends in single r When A/D conversion ends on all cha specified in scan mode [Clearing conditions] When 0 is written after reading ADF = When DTC starts by an ADI interrupt a read
6	ADIE	0	R/W	A/D Interrupt Enable
				Enables ADI interrupt by ADF when this b
5	ADST	0	R/W	A/D Start
				Setting this bit to 1 starts A/D conversion. this bit to 0 stops A/D conversion. In singl bit is cleared to 0 automatically when conthe specified channel ends. In scan mode continues sequentially on the specified channel bit is cleared to 0 by software, a reset transition to standby mode or module stop
4	SCAN	0	R/W	Scan Mode
				Selects the A/D conversion operating most setting of this bit must be made when conhalted (ADST = 0).

R/W

1: Conversion time is 134 states (max) Switch conversion time while ADST is 0.

3

CKS

0

0: Single mode 1: Scan mode

Clock Select

Rev. 3.00 Mar 21, 2006 pag

REJ09

Sets A/D conversion time. The input char must be made when conversion is halted 0: Conversion time is 266 states (max)

Note: * Only 0 can be written for clearing the flag.

Initial Value

21.3.3 A/D Control Register (ADCR)

Bit Name

Bit

ADCR enables A/D conversion started by an external trigger signal.

R/W

7	TRGS1	0	R/W	Timer Trigger Select 1 and 0
6	TRGS0	0	R/W	Enable the start of A/D conversion by a trig Only set bits TRGS1 and TRGS0 when conhalted (ADST = 0).
				00: A/D conversion start by external trigger
				01: A/D conversion start by external trigger
				 A/D conversion start by conversion trig TMR is enabled
				11: A/D conversion start by ADTRG pin is
5 to (0 —	All 1	R	Reserved
				These bits are always read as 1 and cannot modified.

010: AN2

011: AN3

100: AN4

101: AN5

Description

110: AN6, or CIN0 to CIN7

111: AN7, or CIN8 to CIN15

010: AN0 to

011: AN0 to

101: AN4 ar

110: AN4 to CIN0 to CIN

111: AN4 to CIN0 to CIN or CIN8 to C

100: AN4

Rev. 3.00 Mar 21, 2006 page 590 of 788 REJ09B0300-0300

				Selects whether channed are used as analog pins with the KBCH2 to KBC description for bits 2 to converter are set to digit to CIN15).	s or digital pins, in co CHO bits. For details, 0. Analog pins of the	
2	KBCH2	0	R/W	Keyboard A/D Channel Select 2 to 0		
1	KBCH1	0	R/W	These bits select a channel of digital input		
0	KBCH0	0	R/W	conversion, in combination with the KBADI input channel setting must be made while halted.		
				Channel 6	Channel 7	
				0xxx: Selects AN6	AN7	
				1000: Selects CIN0	CIN8	
				1001: Selects CIN1	CIN9	
				1010: Selects CIN2	CIN10	
				1011: Selects CIN3	CIN11	
				1100: Selects CIN4	CIN12	
				1101: Selects CIN5	CIN13	
				1110: Selects CIN6	CIN14	
				1111: Selects CIN7	CIN15	
Leg x:	gend: Don't care					

5

4

3

IrCKS1

IrCKS0

KBADE

0

0

0

R/W

R/W

R/W

Keyboard A/D Enable (AN6, AN7)

Rev. 3.00 Mar 21, 2006 pag

REJ09

21.4.1 Single Mode

In single mode, A/D conversion is to be performed only once on the specified single ch Operations are as follows.

- 1. A/D conversion on the specified channel is started when the ADST bit in ADCSR i by software or an external trigger input.
- 2. When A/D conversion is completed, the result is transferred to the A/D data registe corresponding to the channel.
- 3. On completion of A/D conversion, the ADF bit in ADCSR is set to 1. If the ADIE I 1 at this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When conversion ends, the automatically cleared to 0, and the A/D converter enters wait state.

21.4.2 Scan Mode

ADST bit is set to 1 by software, or by timer or external trigger input, A/D conversion first channel in the group (AN0 when CH2 = 0; AN4 when CH2 = 1). When two or more channels are selected, after conversion of the first channel ends, cor the second channel (AN1 or AN5) starts immediately. A/D conversion continues cyclic

selected channels until the ADST bit is cleared to 0. The conversion results are transfer

Scan mode is useful for monitoring analog inputs in a group of one or more channels.

storage into the ADDR registers corresponding to the channels. Typical operations when three channels (AN0 to AN2) are selected in scan mode are do

below.

to 1 and conversion of the first channel (AN0) starts again. If the ADIE bit is set to time, an ADI interrupt is requested after A/D conversion ends.

5. Steps 2 to 4 are repeated as long as the ADST bit remains set to 1. When the ADS cleared to 0, A/D conversion stops. After that, if the ADST bit is set to 1, A/D con starts again from the first channel (AN0).

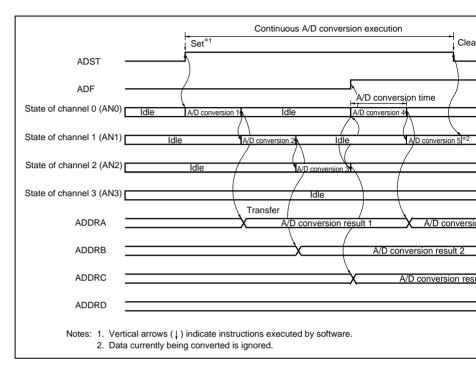


Figure 21.2 Example of A/D Converter Operation

(Scan Mode, Channels AN0 to AN2 Selected)

conversion time therefore varies within the ranges indicated in table 21.3.

In scan mode, the values given in table 21.3 apply to the first conversion time. In the se subsequent conversions, the conversion time is 256 state (fixed) when CKS = 0 and 128 (fixed) when CKS = 1.

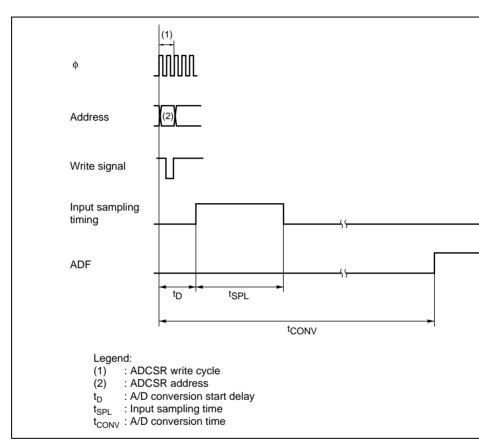


Figure 21.3 A/D Conversion Timing

Rev. 3.00 Mar 21, 2006 page 594 of 788

REJ09B0300-0300

21.4.4 External Trigger Input Timing

A/D conversion can be externally triggered. When the TRGS1 and TRGS0 bits are see ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADT the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both sing modes, are the same as when the ADST bit has been set to 1 by software. Figure 21.4 timing.

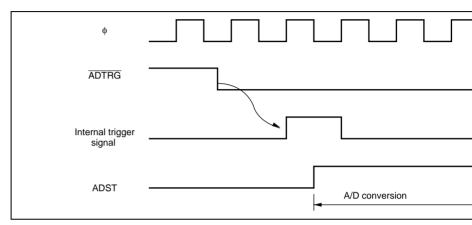


Figure 21.4 External Trigger Input Timing

Rev. 3.00 Mar 21, 2006 pag

2006 paq REJ09 This LSI's A/D conversion accuracy definitions are given below.

- Resolution
- The number of A/D converter digital output codes
- Quantization error
 - The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 21.5).
- Offset error

The deviation of the analog input voltage value from the ideal A/D conversion char when the digital output changes from the minimum voltage value B'00000000000 (B'0000000001 (H'001) (see figure 21.6).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion char when the digital output changes from B'1111111110 (H'3FE) to B'1111111111 (H'3Figure 21.6).

Nonlinearity error

The error with respect to the ideal A/D conversion characteristics between the zero the full-scale voltage. Does not include the offset error, full-scale error, or quantiza (see figure 21.6).

Absolute accuracy

The deviation between the digital value and the analog input value. Includes the off full-scale error, quantization error, and nonlinearity error.

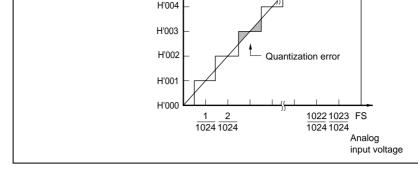


Figure 21.5 A/D Conversion Accuracy Definitions

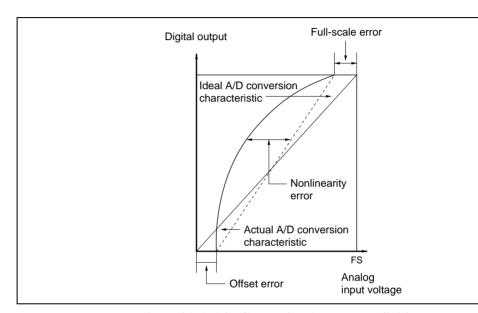


Figure 21.6 A/D Conversion Accuracy Definitions

insufficient and it may not be possible to guarantee the A/D conversion accuracy. Howelease capacitance is provided externally in single mode, the input load will essentially conly the internal input resistance of $10~\text{k}\Omega$, and the signal source impedance is ignored. since a low-pass filter effect is obtained in this case, it may not be possible to follow an signal with a large differential coefficient (e.g., voltage fluctuation ratio of 5 mV/ μ s or (see figure 21.7). When converting a high-speed analog signal or converting in scan most impedance buffer should be inserted. For details on the 5-V version, refer to section 28 Characteristics.

21.7.2 Influences on Absolute Accuracy

Adding capacitance results in coupling with ground, and therefore noise in ground may affect the absolute accuracy. Be sure to make the connection to an electrically stable gras AVss.

Care is also required to insure that filter circuits do not communicate with digital signa mounting board, so acting as antennas.

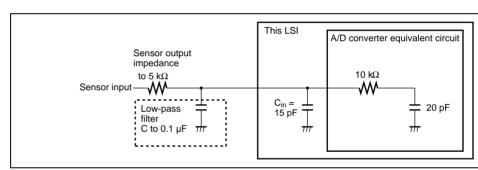


Figure 21.7 Example of Analog Input Circuit

Rev. 3.00 Mar 21, 2006 page 598 of 788 REJ09B0300-0300

RENESAS

The voltage applied to digital input pin Chan should be in the range $A \vee ss \leq Chan$ and $Vss \le CINn \le Vcc$ (n = 0 to 15).

Relation between AVcc, AVss and Vcc, Vss

For the relationship between AVcc, AVss and Vcc, Vss, set AVss = Vss. If the A/ is not used, the AVcc and AVss pins must on no account be left open.

• AVref pin reference voltage specification range The reference voltage of the AVref pin should be in the range AVref \leq AVcc.

21.7.4 **Notes on Board Design**

In board design, digital circuitry and analog circuitry should be as mutually isolated a and layout in which digital circuit signal lines and analog circuit signal lines cross or proximity should be avoided as far as possible. Failure to do so may result in incorrec of the analog circuitry due to inductance, adversely affecting A/D conversion values. circuitry must be isolated from the analog input signals (AN0 to AN7), analog referen (AV_{res}) , and analog power supply (AV_{cc}) by the analog ground (AV_{ss}) . Also, the analog (AV_{ss}) should be connected at one point to a stable digital ground (V_{ss}) on the board.

21.7.5 **Notes on Noise Countermeasures**

A protection circuit connected to prevent damage due to an abnormal voltage such as surge at the analog input pins (AN0 to AN7) and analog reference voltage (AV_{ref}) show connected between AVcc and AVss as shown in figure 21.8. Also, the bypass capacito connected to AVcc and AV_m, and the filter capacitor connected to AN2 to AN7, must

connected to AV_{ss}.

If a filter capacitor is connected, the input currents at the analog input pins (AN0 to A averaged, and so an error may arise. Also, when A/D conversion is performed frequer scan mode, if the current charged and discharged by the capacitance of the sample-and in the A/D converter exceeds the current input via the input impedance (R_{in}), an error

the analog input pin voltage. Careful consideration is therefore required when decidin constants.

> Rev. 3.00 Mar 21, 2006 pag REJ0



Figure 21.8 Example of Analog Input Protection Circuit

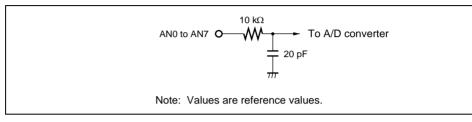


Figure 21.9 Equivalent Circuit of Analog Input Pin

21.7.6 Module Stop Mode Setting

A/D converter operation can be enabled or disabled using the module stop control regist initial setting is for A/D converter operation to be halted. Register access is enabled by module stop mode. For details, refer to section 26, Power-Down Modes.

Rev. 3.00 Mar 21, 2006 page 600 of 788 REJ09B0300-0300

RENESAS

H8S/2160B	4 kbytes	H'E080-H'EFFF, H'FF(
H8S/2141B	4 kbytes	H'E080-H'EFFF, H'FF0
H8S/2140B	4 kbytes	H'E080-H'EFFF, H'FF0
H8S/2145B	8 kbytes	H'D080-H'EFFF, H'FF
H8S/2148B	4 kbytes	H'E080-H'EFFF, H'FF0

H8S/2161B

RAM Capacitance

4 kbytes

RAM Address

H'E080-H'EFFF, H'FF

Product Classification

Flash memory version

Rev. 3.00 Mar 21, 2006 page 602 of 788 REJ09B0300-0300

RENESAS

Size

H8S/2161B	128 kbytes	H'000000-H'01FFFF (mod H'0000-H'DFFF (mode 3)
H8S/2160B	64 kbytes	H'000000-H'00FFFF (mod H'0000-H'DFFF (mode 3)
H8S/2141B	128 kbytes	H'000000-H'01FFFF (mod H'0000-H'DFFF (mode 3)
H8S/2140B	64 kbytes	H'000000-H'00FFFF (mod

256 kbytes

128 kbytes

RAM Capacitance

H8S/2145B

H8S/2148B

Product Classification

Programming/erase methods

The flash memory is programmed 128 bytes at a time. Erase is performed in single The flash memory is configured as follows:

— 64-kbyte version: 8 kbytes \times 2 blocks, 16 kbytes \times 1 block, 28 kbytes \times 1 block kbyte × 4 blocks

Erasing one block takes 100 ms (typ.).

kbytes \times 1 block, and 1 kbyte \times 4 blocks — 256-kbyte version: 64 kbytes × 3 blocks, 32 kbytes × 1 block, and 4 kbytes × 8

— 128-kbyte version: 32 kbytes × 2 blocks, 8 kbytes × 2 blocks, 16 kbytes × 1 blocks

- To erase the entire flash memory, each block must be erased in turn.
- Programming/erase time It takes 10 ms (typ.) to program the flash memory 128 bytes at a time; 80 µs (typ.)

ROMF254A_010020020700

Rev. 3.00 Mar 21, 2006 pag REJ09

RAM Address

H'0000-H'DFFF (mode 3)

H'000000-H'03FFFF (mod H'0000-H'DFFF (mode 3)

H'000000-H'01FFFF (mod H'0000-H'DFFF (mode 3)

A second of the second of programmed

Automatic bit rate adjustment

With data transfer in boot mode, this LSI's bit rate can be automatically adjusted to transfer bit rate of the host.

• Programming/erasing protection

Sets protection against flash memory programming/erasing via hardware, software, protection.

• Programmer mode

In addition to on-board programming mode, programmer mode is supported to programse the flash memory using a PROM programmer.

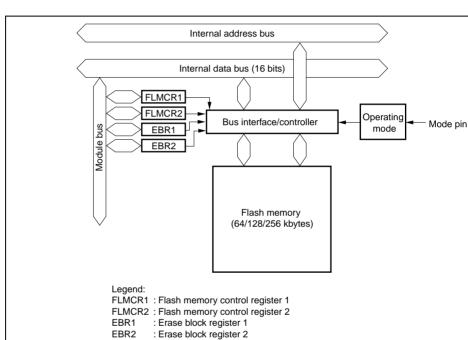


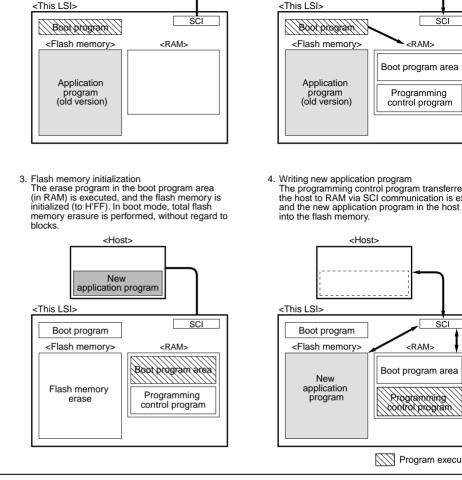
Figure 23.1 Block Diagram of Flash Memory

Rev. 3.00 Mar 21, 2006 page 604 of 788

REJ09B0300-0300



Figure 23.2 Flash Memory State Transitions


Table 23.1 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mo
Total erase	Yes	Yes
Block erase	No	Yes
Programming control program*	Program/program-verify	Program/program
		Erase/erase-verify

Note: * Should be provided by the user, in accordance with the recommended algo-

Rev. 3.00 Mar 21, 2006 pag REJ09

application program

Figure 23.3 Boot Mode

Rev. 3.00 Mar 21, 2006 page 606 of 788 REJ09B0300-0300

application program

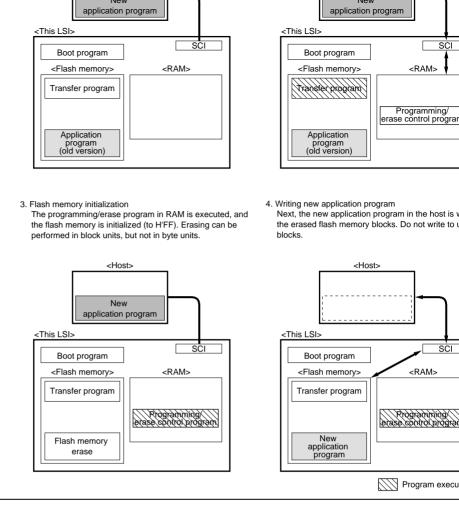


Figure 23.4 User Program Mode (Example)

Rev. 3.00 Mar 21, 2006 pag

REJ09

units starting from an address whose lower bits are H'00 or H'80.

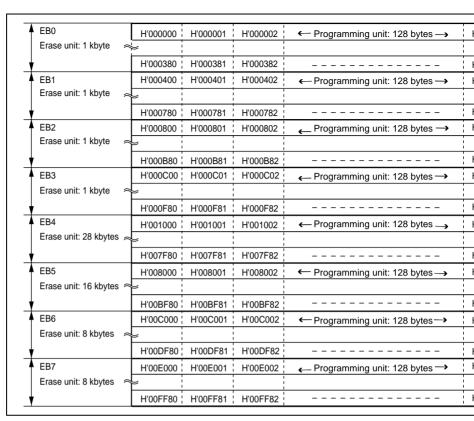


Figure 23.5 64-Kbyte Flash Memory Block Configuration

Rev. 3.00 Mar 21, 2006 page 608 of 788 REJ09B0300-0300

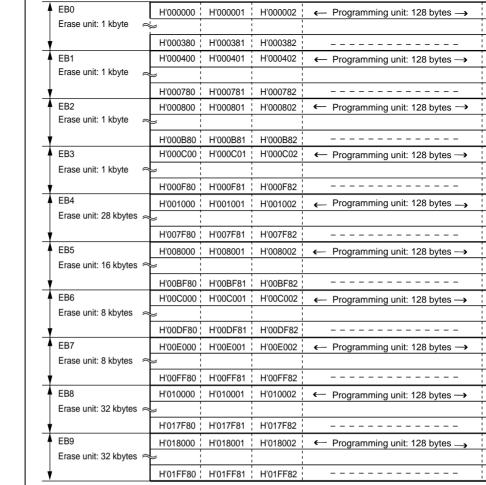
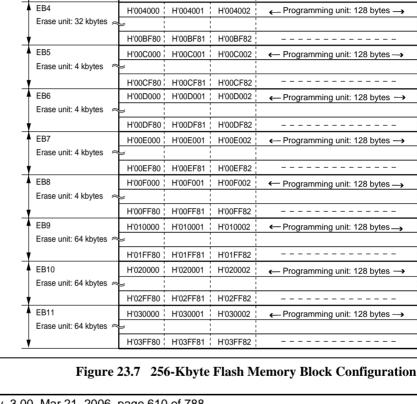



Figure 23.6 128-Kbyte Flash Memory Block Configuration

Rev. 3.00 Mar 21, 2006 pag

REJ09

H'000F81

H'001001

H'001F81

H'002001

H'002F81

H'003001

H'003F81

H'000F80

H'001000

H'001F80 ¦

H'002000 :

H'002F80 :

H'003000

H'003F80 :

H'000002

H'000F82

H'001002

H'001F82

H'002002

H'002F82

H'003002

H'003F82

← Programming unit: 128 bytes →

Programming unit: 128 bytes —

Programming unit: 128 bytes -

← Programming unit: 128 bytes →

H'000

H'000I

H'001

H'0011

H'002

H'002

H'003

H'003

H'004

H'00B

H'00C

H'00C

H'00D

H'00D

H'00E

H'00E

H'00F

H'00F H'010

H'01F

H'0200

H'02F

H'0300

H'03F

EB0

EB1

EB2

EB3

Erase unit: 4 kbytes 😞

Erase unit: 4 kbytes

Erase unit: 4 kbytes

Erase unit: 4 kbytes

Rev. 3.00 Mar 21, 2006 page 610 of 788

REJ09B0300-0300

MD0	Input	Sets this LSI's operating mode
P92	Input	Sets this LSI's operating mode
P91	Input	Sets this LSI's operating mode
P90	Input	Sets this LSI's operating mode
TxD1	Output	Serial transmit data output
RxD1	Input	Serial receive data input

serial/timer control register, refer to section 3.2.3, Serial Timer Control Register (STC

23.5 Register Descriptions

The flash memory has the following registers. To access FLMCR1, FLMCR2, EBR1, the FLSHE bit in the serial/timer control register (STCR) should be set to 1. For detail

- Flash memory control register 1 (FLMCR1)
 - Flash memory control register 2 (FLMCR2)
- Erase block register 1 (EBR1)
- Erase block register 2 (EBR2)

23.5.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1, used together with FLMCR2, makes the flash memory transit to program a program-verify mode, erase mode, or erase-verify mode. For details on register setting section 23.8, Flash Memory Programming/Erasing.

FLMCR1 is initialized to H'80 by a reset, or in hardware standby mode, software stan sub-active mode, sub-sleep mode, or watch mode.

Ο, .		, till 0		110001100
				These bits are always read as 0 and cannot modified.
3	EV	0	R/W	Erase-Verify
				When this bit is set to 1 while SWE = 1, the memory transits to erase-verify mode. Wher cleared to 0, erase-verify mode is cancelled
2	PV	0	R/W	Program-Verify
				When this bit is set to 1 while SWE = 1, the memory transits to program-verify mode. We cleared to 0, program-verify mode is cancell
1	E	0	R/W	Erase
				When this bit is set to 1 while SWE = 1 and the flash memory transits to erase mode. W cleared to 0, erase mode is cancelled.
0	Р	0	R/W	Program
				When this bit is set to 1 while SWE = 1 and the flash memory transits to program mode. cleared to 0, program mode is cancelled.

R

5, 4 —

All 0

the ESU and PSU bits in FLMCR2, and all EBR2 bits cannot be set to 1. Do not clear the

and SWE to 0 simultaneously.

Reserved

Rev. 3.00 Mar 21, 2006 page 612 of 788

REJ09B0300-0300

				state.
				For details, see section 23.9.3, Error Pr
6 to 2	_	All 0	R/(W)	Reserved
				The initial values should not be modifie
1	ESU	0	R/W	Erase Setup
				When this bit is set to 1 while SWE = 1 memory transits to the erase setup state cleared to 0, the erase setup state is cathis bit to 1 before setting the E bit in F
0	PSU	0	R/W	Program Setup
				When this bit is set to 1 while SWE = 1 memory transits to the program setup sis cleared to 0, the program setup state

R

Flash memory error

Indicates that an error has occurred dur memory programming/erasing. When the to 1, flash memory goes to the error-pro

Set this bit to 1 before setting the P bit i

Rev. 3.00 Mar 21, 2006 pag

REJ0

7

FLER

0

to 1.

				(H'001000 to H'007FFF) are to be erase
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of EB3 to H'000FFF) is to be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of EB2 to H'000BFF) is to be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of EB1 to H'0007FF) is to be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of EB0 to H'0003FF) is to be erased.
Note:	* In norr	nal mode, this	s bit is always	read as 0 and cannot be modified.

R/W

R/(W)

R/W

R/W*

R/W

R/W

R/W

Initial Value

Initial Value

All 0

0

0

0

0

Bit

Bit

7

6

5

4

7 to 0

Bit Name

EBR2 (64-kbyte version)

Bit Name

EB7

EB6

EB5

EB4

Description

Description

The initial values should not be modified

When this bit is set to 1, 8 kbytes of EB (H'00E000 to H'00FFFF) are to be erase When this bit is set to 1, 8 kbytes of EB6

(H'00C000 to H'00DFFF) are to be eras

When this bit is set to 1, 16 kbytes of EE

(H'008000 to H'00BFFF) are to be erase

When this bit is set to 1, 28 kbytes of EE

Reserved

Rev. 3.00 Mar 21, 2006 page 614 of 788 REJ09B0300-0300 RENESAS

Description

• EBR2 (128-kbyte version) **Bit Name**

Initial Value

Bit

7	EB7	0	R/W*	When this bit is set to 1, 8 kbytes of EE (H'00E000 to H'00FFFF) are to be eras
6	EB6	0	R/W	When this bit is set to 1, 8 kbytes of EE (H'00C000 to H'00DFFF) are to be era
5	EB5	0	R/W	When this bit is set to 1, 16 kbytes of E (H'008000 to H'00BFFF) are to be eras
4	EB4	0	R/W	When this bit is set to 1, 28 kbytes of E (H'001000 to H'007FFF) are to be eras
3	EB3	0	R/W	When this bit is set to 1, 1 kbyte of EB3 to H'000FFF) is to be erased.
2	EB2	0	R/W	When this bit is set to 1, 1 kbyte of EB2 to H'000BFF) is to be erased.
1	EB1	0	R/W	When this bit is set to 1, 1 kbyte of EB to H'0007FF) is to be erased.
0	EB0	0	R/W	When this bit is set to 1, 1 kbyte of EB0 to H'0003FF) is to be erased.

R/W

Note: * In normal mode, this bit is always read as 0 and cannot be modified.

Rev. 3.00 Mar 21, 2006 pag

REJO

1	EB9	0	R/W*	When this bit is set to 1, 64 kbytes of EE (H'010000 to H'01FFFF) are to be erase
0	EB8	0	R/W*	When this bit is set to 1, 4 kbytes of EB8 to H'00FFFF) are to be erased.
<u>-</u>				

R/W

R/W*

R/W

R/W

Description

(H'020000 to H'02FFFF) are to be erase

When this bit is set to 1, 4 kbytes of EB

(H'00E000 to H'00EFFF) are to be erase

When this bit is set to 1, 4 kbytes of EB6 (H'00D000 to H'00DFFF) are to be eras

When this bit is set to 1, 4 kbytes of EBS (H'00C000 to H'00CFFF) are to be eras

Bit Bit Name Initial Value

EB7

EB6

EB5

7

6

5

Note:

EBR2 (256-kbyte version)

0

0

0

4	EB4	0	R/W	When this bit is set to 1, 32 kbytes of EE (H'004000 to H'00BFFF) are to be erase
3	EB3	0	R/W	When this bit is set to 1, 4 kbytes of EB3 to H'003FFF) is to be erased.
2	EB2	0	R/W	When this bit is set to 1, 4 kbytes of EB2 to H'002FFF) is to be erased.
1	EB1	0	R/W	When this bit is set to 1, 4 kbytes of EB to H'001FFF) is to be erased.
0	EB0	0	R/W	When this bit is set to 1, 4 kbytes of EB0 to H'000FFF) is to be erased.

In normal mode, this bit is always read as 0 and cannot be modified.

REJ09B0300-0300 **₹ENES∆S**

Rev. 3.00 Mar 21, 2006 page 616 of 788

In normal mode (mode 3), up to 56 kbytes of ROM can be used.

Table 23.3 Operating Modes and ROM

Operating Modes			Mode Pins		MDCR
MCU Operating Mode	CPU Operating Mode	Mode	MD1	MD0	EXPE
Mode 1	Normal	Expanded mode with on-chip ROM disabled	0	1	1
Mode 2	Advanced	Single-chip mode	1	0	0
	Advanced	Expanded mode with on-chip ROM enabled	1	0	1
Mode 3	Normal	Single-chip mode	1	1	0
	Normal	Expanded mode with on-chip ROM enabled	1	1	1

23.7 **On-Board Programming Modes**

An on-board programming mode is used to perform on-chip flash memory programm and verification. This LSI has two on-board programming modes: boot mode and user mode. Table 23.4 shows pin settings for boot mode. In user program mode, operation is enabled by setting control bits. For details on flash memory mode transitions, see fi

REJ09

23.7.1 Boot Mode

Table 23.5 shows the boot mode operations between reset end and branching to the procontrol program.

1. When boot mode is used, the flash memory programming control program must be

- the host beforehand. Prepare a programming control program in accordance with the description in section 23.8, Flash Memory Programming/Erasing. In boot mode, if a exists in the flash memory (except in the case that all data are 1), all blocks in the flammory are erased. Use boot mode at initial writing in the on-board state, or forced when user program mode cannot be executed because the program to be initiated in program mode was mistakenly erased.
- 2. The SCI_1 should be set to asynchronous mode, and the transfer format as follows: 1 stop bit, and no parity.
- 3. When the boot program is initiated, this LSI measures the low-level period of async SCI communication data (H'00) transmitted continuously from the host. This LSI the calculates the bit rate of transmission from the host, and adjusts the SCI_1 bit rate that of the host. The reset should end with the RxD1 pin high. The RxD1 and TxD1 should be pulled up on the board if necessary. After the reset ends, it takes approximates before this LSI is ready to measure the low-level period.
- 4. After matching the bit rates, this LSI transmits one H'00 byte to the host to indicate bit rate adjustment. The host should confirm that this adjustment end indication (H' been received normally, and transmit one H'55 byte to this LSI. If reception could r performed normally, initiate boot mode again by a reset. Depending on the host's trate and system clock frequency of this LSI, there will be a discrepancy between the
- 5. In boot mode, a part of the on-chip RAM area is used by the boot program. Address H'FFE080 to H'FFE87F*1 is the area to which the programming control program is from the host. Note, however, that ID codes are assigned to addresses H'FFE080 to H'FFE087*2. The boot program area cannot be used until the execution state in boot

clock frequency of this LSI within the ranges listed in table 23.6.

of the host and this LSI. To operate the SCI properly, set the host's transfer bit rate

Rev. 3.00 Mar 21, 2006 page 618 of 788

REJ09B0300-0300

beginning of the programming control program, since the stack pointer (SP), in pa used implicitly in subroutine calls, etc.

7. Boot mode can be cleared by a reset. Cancel the reset *4 after driving the reset pin ! at least 20 states, and then setting the mode pins. Boot mode is also cleared when a overflow occurs.

- 8. Do not change the mode pin input levels in boot mode. If mode pin input levels are from low to high during reset, operating modes are switched and the state of ports used for address output and bus control output signals (AS, RD, and HWR) are ch Therefore, set these pins carefully not to be output signals during reset or not to co
- LSI external signals. 9. All interrupts are disabled during programming or erasing of the flash memory.
- Notes: 1. Address area for the H8S/2140B, H8S/2141B, H8S/2148B, H8S/2160B, at
- 2. Address area for the H8S/2140B, H8S/2141B, H8S/2148B, H8S/2160B, and H8S/2161B. On the H8S/2145B, the address area is from H'FFD080 to H'I 3. RAM address for the H8S/2140B, H8S/2141B, H8S/2148B, H8S/2160B, a H8S/2161B. On the H8S/2145B, the address is H'FFD088.

impedance state.

4. After reset is cancelled, mode pin input settings must satisfy the mode program.

H8S/2161B. On the H8S/2145B, the address area is from H'FFD080 to H'I

- setup time ($t_{MDS} = 4$ states).
- 5. The ports that also have address output functions output low as address ou the mode pins are set to mode 1 during a reset. In modes other than mode 1 the high impedance state. Bus control output signals output high when the are set to mode 1 during a reset. In modes other than mode 1, it enters the 1

Rev. 3.00 Mar 21, 2006 pag

REJ09

	Continuously transmits data H'00	H'00, H'00 · · · H'00	Measures low-level period of receive
Bit rate adjustment	at specified bit rate. Transmits data H'55 when data H'00 is received error-free.	H'00 H'55	Calculates bit rate and sets it in BRF Transmits data H'00 to host as adjus indication.
Bit ra	Receives data H'AA.◀	H'AA	After receiving data H'55, transm H'AA to host.
gram	Transmits number of bytes (N) of programming control program to be transferred as 2-byte data (low-order byte	High-order byte and low-order byte	Echobacks the 2-byte data recei
ntrol prog	following high-order byte).	Echoback	Echobacks the 2-byte data recei
mming cor	Transmits 1-byte of programming control program (repeated for N times).	H'XX Echoback	Echobacks received data to host transfers it to RAM (repeated for
Transfer of programming control program			
rase	Boot program ←	H'FF	Checks flash memory data, erase
Flash memory erase	erase error Receives data H'AA.	H'AA	memory blocks in case of written existing, and transmits data H'AA (If erase could not be done, trans H'FF to host and aborts operation
			Branches to programming control transferred to on-chip RAM and s execution.

Rev. 3.00 Mar 21, 2006 page 620 of 788 REJ09B0300-0300

4C3/4

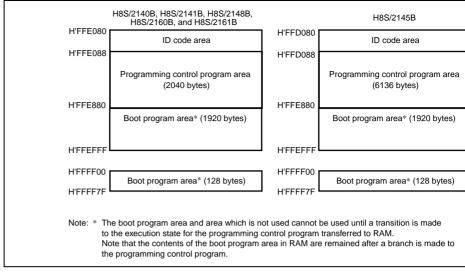


Figure 23.8 On-Chip RAM Area in Boot Mode

In boot mode, this LSI checks the contents of the 8-byte ID code area as shown below that the programming control program corresponds with this LSI. To originally write programming control program to be used in boot mode, the above 8-byte ID code must the beginning of the program.

Rev. 3.00 Mar 21, 2006 pag REJ0

Figure 23.9 ID Code Area

23.7.2 User Program Mode

program mode by branching to a user program/erase control program. The user must see conditions and provide on-board means of supplying programming data. The flash mer contain the user program/erase control program or a program which provides the user program/erase control program from external memory. Because the flash memory itself read during programming/erasing, transfer the user program/erase control program to o RAM, as like in boot mode. Figure 23.10 shows a sample procedure for programming/enser program mode. Prepare a user program/erase control program in accordance with description in section 23.8, Flash Memory Programming/Erasing.

On-board programming/erasing of an individual flash memory block can also be performed to the control of the co

Rev. 3.00 Mar 21, 2006 page 622 of 788 REJ09B0300-0300

RENESAS

Figure 23.10 Programming/Erasing Flowchart Example in User Program

23.8 Flash Memory Programming/Erasing

A software method, using the CPU, is employed to program and erase flash memory i board programming modes. Depending on the FLMCR1 and FLMCR2 settings, the fl operates in one of the following four modes: program mode, program-verify mode, er and erase-verify mode. The programming control program in boot mode and the user program/erase control program in user program mode use these operating modes in co perform programming/erasing. Flash memory programming and erasing should be per accordance with the descriptions in section 23.8.1, Program/Program-Verify and section Erase/Erase-Verify, respectively.

Rev. 3.00 Mar 21, 2006 pag

REJ09

performed even if writing fewer than 128 bytes. In this case, H'FF data must be wri extra addresses. 3. Prepare the following data storage areas in RAM: a 128-byte programming data are byte reprogramming data area, and a 128-byte additional-programming data area. P

2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer m

reprogramming data computation and additional programming data computation ac

4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data


additional-programming data area to the flash memory. The program address and 1 data are latched in the flash memory. The lower 8 bits of the start address in the flash destination area must be H'00 or H'80. 5. The time during which the P bit is set to 1 is the programming time. Figure 23.11 sl

figure 23.11.

- allowable programming times. 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runs The overflow cycle should be longer than $(y + z^2 + \alpha + \beta) \mu s$.
- 7. For a dummy write to a verify address, write 1-byte data H'FF to an address whose
 - are B'00. Verify data can be read in words from the address to which a dummy writ performed. 8. The maximum number of repetitions of the program/program-verify sequence to the
 - is (N).

Rev. 3.00 Mar 21, 2006 page 624 of 788

REJ09B0300-0300

Reprogram Data Computation Table				
	Original Data (D)	Verify Data (V)	Reprogram Data (X)	Comments
	0	0	1	Programming completed
	0	1	0	Programming incomplete; reprogram
	1	0	1	
	1	1	1	Still in erased state: no action

Figure 23.11 Program/Program-Verify Flowchart

Rev. 3.00 Mar 21, 2006 pag REJ0

- 3. The time during which the E bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overprogramming due to program runs
- An overflow cycle of approximately $(y + z + \alpha + \beta)$ ms is allowed.
- 5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose bits are B'00. Verify data can be read in longwords from the address to which a dun was performed.
- 6. If the read data is unerased, set erase mode again, and repeat the erase/erase-verify before. The maximum number of repetitions of the erase/erase-verify sequence is N

Rev. 3.00 Mar 21, 2006 page 626 of 788 REJ09B0300-0300

RENESAS

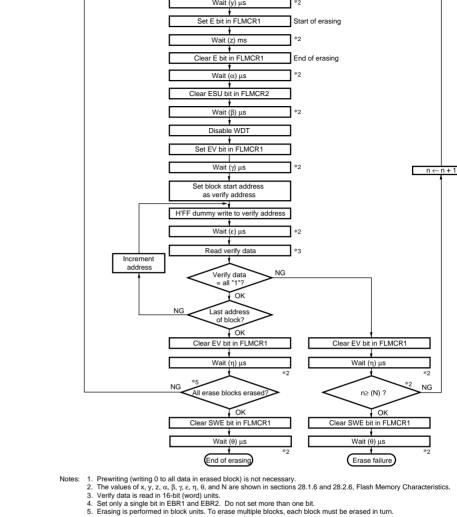


Figure 23.12 Erase/Erase-Verify Flowchart

Rev. 3.00 Mar 21, 2006 pag

REJ09

or aborted by a reset (including WD1 overflow reset), or a transition to hardware stand software standby mode, sub-active mode, sub-sleep mode or watch mode. Flash memory registers 1 and 2 (FLMCR1 and FLMCR2) and erase block registers 1 and 2 (EBR1 an are initialized. In a reset via the \overline{RES} pin, the reset state is not entered unless the \overline{RES} p low until oscillation stabilizes after powering on. In the case of a reset during operation RES pin low for the RES pulse width specified in the AC Characteristics section.

23.9.2 **Software Protection**

Software protection can be implemented against programming/erasing of all flash mem by clearing the SWE bit in FLMCR1 to 0. When software protection is in effect, setting bit in FLMCR1 does not cause a transition to program mode or erase mode. By setting block registers 1 and 2 (EBR1 and EBR2), erase protection can be set for individual block

EBR1 and EBR2 are set to H'00, erase protection is set for all blocks.

23.9.3 **Error Protection**

programming/erasing, or operation is not performed in accordance with the program/er algorithm, and the program/erase operation is aborted. Aborting the program/erase ope prevents damage to the flash memory due to overprogramming or overerasing. When the following errors are detected during programming/erasing of flash memory,

In error protection, an error is detected when the CPU's runaway occurs during flash m

bit in FLMCR2 is set to 1, and the error protection state is entered.

- When the flash memory of is read during programming/erasing (including vector re instruction fetch) • Immediately after exception handling (excluding a reset) during programming/erasi
- When a SLEEP instruction is executed (transits to software standby mode, sleep mo
- active mode, sub-sleep mode, or watch mode) during programming/erasing
- When the bus ownership is released during programming/erasing

Rev. 3.00 Mar 21, 2006 page 628 of 788 REJ09B0300-0300

RENESAS

- In order to give the highest priority to programming/erasing operations, disable all int including NMI input during flash memory programming/erasing (the P or E bit in FlM to 1) or boot program execution*1.
 - 1. If an interrupt is generated during programming/erasing, operation in accordance v program/erase algorithm is not guaranteed. 2. CPU runaway may occur because normal vector reading cannot be performed in it
 - exception handling during programming/erasing*2.
 - 3. If an interrupt occurs during boot program execution, the normal boot mode seque be executed.

Notes: 1. Interrupt requests must be disabled inside and outside the CPU until the pr control program has completed programming.

2. The vector may not be read correctly for the following two reasons:

If flash memory is read while being programmed or erased (while the FLMCR1 is set to 1), correct read data will not be obtained (undefined v

returned). If the interrupt entry in the vector table has not been programmed

exception handling will not be executed correctly.

Rev. 3.00 Mar 21, 2006 pag

REJ09

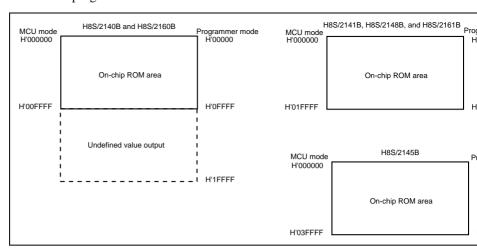


Figure 23.13 Memory Map in Programmer Mode

Rev. 3.00 Mar 21, 2006 page 630 of 788 REJ09B0300-0300

2. Notes on power on/off

1111201 101 of the programming voltage to 3.0 v.

- At powering on or off the Vcc power supply, fix the \overline{RES} pin to low and set the fla to hardware protection state. This power on/off timing must also be satisfied at a p power-on caused by a power failure and other factors.
 - 3. Perform flash memory programming/erasing in accordance with the recommended
 - In the recommended algorithm, flash memory programming/erasing can be perform subjecting this LSI to voltage stress or sacrificing program data reliability. When s
 - or E bit in FLMCR1 to 1, set the watchdog timer against program runaway. 4. Do not set/clear the SWE bit during program execution in the flash memory.
 - Do not set/clear the SWE bit during program execution in the flash memory. An in least 100 µs is necessary between program execution or data reading in flash mem SWE bit clearing. When the SWE bit is set to 1, flash memory data can be modified
 - flash memory data can be read only in program-verify or erase-verify mode. Do no flash memory for a purpose other than verification during programming/erasing. I the SWE bit during programming, erasing, or verifying.
 - 5. Do not use interrupts during flash memory programming/erasing In order to give the highest priority to programming/erasing operation, disable all including NMI input when the flash memory is programmed or erased.
 - 6. Do not perform additional programming. Programming must be performed in the Program the area with 128-byte programming-unit blocks in on-board programming programmer mode only once. Perform programming in the state where the program
 - block is fully erased. 7. Ensure that the PROM programmer is correctly attached before programming.

If the socket, socket adapter, or product index does not match the specifications, to

- current flows and the product may be damaged. 8. Do not touch the socket adapter or LSI while programming.
 - Touching either of these can cause contact faults and write errors.

Rev. 3.00 Mar 21, 2006 page 632 of 788 REJ09B0300-0300

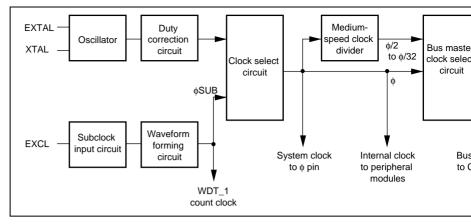


Figure 24.1 Block Diagram of Clock Pulse Generator

The bus master clock is selected as either high-speed mode or medium-speed mode by according to the settings of the SCK2 to SCK0 bits in the standby control register. For the standby control register, refer to section 26.1.1, Standby Control Register (SBYCI)

The subclock input is controlled by software according to the EXCLE bit setting in the control register. For details on the low power control register, refer to section 26.1.2, Control Register (LPWRCR).

Rev. 3.00 Mar 21, 2006 pag REJ0

resistance R_d , given in table 24.1, should be used. An A1-cut parallel-resonance crystal should be used.

Figure 24.3 shows the equivalent circuit of a crystal resonator. A resonator having the characteristics given in table 24.2 should be used.

A crystal resonator with frequency identical to that of the system clock (φ) should be us

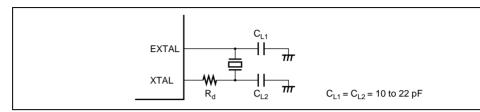


Figure 24.2 Typical Connection to Crystal Resonator

Table 24.1 Damping Resistance Values

Frequency (MHz)	2	4	8	10	12	16
$R_{d}(\Omega)$	1 k	500	200	0	0	0

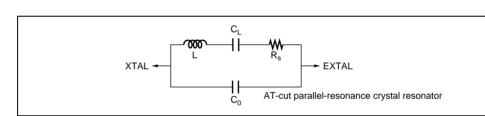


Figure 24.3 Equivalent Circuit of Crystal Resonator

Rev. 3.00 Mar 21, 2006 page 634 of 788

REJ09B0300-0300

Figure 24.4 shows a typical method of connecting an external clock signal. To leave to open, incidental capacitance should be 10 pF or less.

To input an inverted clock to the XTAL pin, the external clock should be set to high in mode, subactive mode, subsleep mode, and watch mode. External clock input conditions shown in table 24.3. The frequency of the external clock should be the same as that of clock (ϕ) .

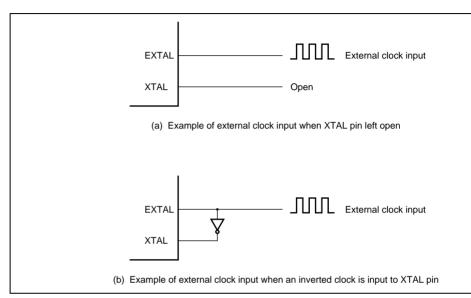


Figure 24.4 Example of External Clock Input

high level							
External clock rising time	t _{EXr}	_	10	_	5	ns	
External clock falling time	t _{EXf}	_	10	_	5	ns	
Clock pulse width	t _{cL}	0.4	0.6	0.4	0.6	t _{cyc}	φ ≥ 5 M
low level		80	_	80	_	ns	φ < 5 N
Clock pulse width	t _{cH}	0.4	0.6	0.4	0.6	t _{cyc}	φ ≥ 5 M
high level		80	_	80	_	ns	φ < 5 N

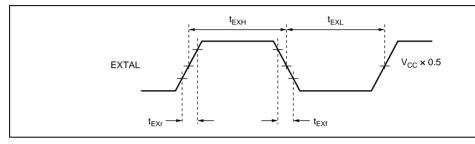


Figure 24.5 External Clock Input Timing

The oscillator and duty correction circuit have a function to adjust the waveform of the clock input that is input to the EXTAL pin. When a specified clock signal is input to the pin, internal clock signal output is determined after the external clock output stabilizati time (t_{DEXT}) has passed. As the clock signal output is not determined during the t_{DEXT} cyc signal should be set to low to hold it in reset state. Table 24.4 shows the external clock stabilization delay time. Figure 24.6 shows the timing of the external clock output stabilization.

Rev. 3.00 Mar 21, 2006 page 636 of 788 REJ09B0300-0300

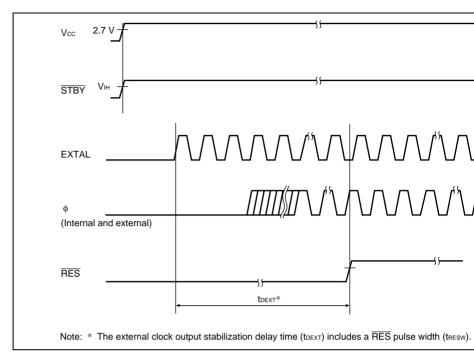


Figure 24.6 Timing of External Clock Output Stabilization Delay Tim

24.2 **Duty Correction Circuit**

The duty correction circuit is valid when the oscillating frequency is 5 MHz or more. the duty of a clock that is output from the oscillator, and generates the system clock (6

24.3 **Medium-Speed Clock Divider**

The medium-speed clock divider divides the system clock (ϕ), and generates $\phi/2$, $\phi/4$, and $\phi/32$ clocks.

Rev. 3.00 Mar 21, 2006 pag

REJ09

The subclock input circuit controls subclock input from the EXCL pin.

Inputting the Subclock: To use the subclock, a 32.768-kHz external clock should be it the EXCL pin. At this time, the P96DDR bit in P9DDR should be cleared to 0, and the in LPWRCR should be set to 1.

Subclock input conditions are shown in table 24.5. When the subclock is not used, subclock is not used, subclock input conditions are shown in table 24.5.

Table 24.5 Subclock Input Conditions

		Vcc = 2.7 to 5.5 V					
Item	Symbol	Min	Тур	Max	Unit	Meas Cond	
Subclock input pulse width low level	t _{EXCLL}	_	15.26	_	μs	Figur	
Subclock input pulse width high level	t _{EXCLH}	_	15.26	_	μs		
Subclock input rising time	t _{EXCLr}	_	_	10	ns		
Subclock input falling time	t _{EXCLf}	_	_	10	ns		

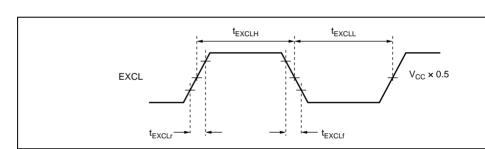


Figure 24.7 Subclock Input Timing

Rev. 3.00 Mar 21, 2006 page 638 of 788

REJ09B0300-0300

As described in the hardware manual (clock pulse generator/subclock input circui subclock is not used, the subclock input should not be enabled (EXCLE = 0).

24.6 Subclock Waveform Forming Circuit

To remove noise from the subclock input at the EXCL pin, the subclock is sampled by clock. The sampling frequency is set by the NESEL bit in LPWRCR.

The subclock is not sampled in subactive mode, subsleep mode, or watch mode.

24.7 Clock Select Circuit

The clock select circuit selects the system clock that is used in this LSI.

A clock generated by an oscillator to which the EXTAL and XTAL pins are input is s system clock when returning from high-speed mode, medium-speed mode, sleep mod or standby mode.

A subclock input from the EXCL pin is selected as a system clock in subactive mode, mode, or watch mode. At this time, modules such as the CPU, TMR_0, TMR_1, WDT_1, ports, and interrupt controller and their functions operate depending on the φ count clock and sampling clock for each timer are divided φSUB clocks.

REJ09

AZ — Open

Figure 24.8 Processing for X1 and X2 Pins

24.9 Usage Notes

24.9.1 Note on Resonator

Since all kinds of characteristics of the resonator are closely related to the board design user, use the example of resonator connection in this document for only reference; be s an resonator that has been sufficiently evaluated by the user. Consult with the resonator manufacturer about the resonator circuit ratings which vary depending on the stray cap the resonator and installation circuit. Make sure the voltage applied to the oscillator pir exceed the maximum rating.

24.9.2 Notes on Board Design

When using a crystal resonator, the crystal resonator and its load capacitors should be p close as possible to the XTAL and EXTAL pins.

Other signal lines should be routed away from the oscillator circuit to prevent inductive interference with the correct oscillation as shown in figure 24.9.

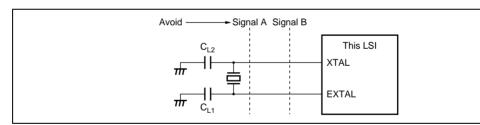


Figure 24.9 Note on Board Design of Oscillator Circuit Section

Rev. 3.00 Mar 21, 2006 page 640 of 788 REJ09B0300-0300

System clock frequency for the CPU operation can be selected as $\phi/2$, $\phi/4$, $\phi/8$, $\phi/1$

Subactive mode

The CPU operates based on the subclock and on-chip peripheral modules other than

The CPU and on-chip peripheral modules other than TMR 0, TMR 1, WDT 0, a

- Sleep mode
- The CPU stops but on-chip peripheral modules continue operating. Subsleep mode

TMR_1, WDT_0, and WDT_1 stop operating.

- stop operating. · Watch mode
 - The CPU and on-chip peripheral modules other than WDT_1 stop operating.
- Software standby mode Clock oscillation stops, and the CPU and on-chip peripheral modules stop operating
- Hardware standby mode Clock oscillation stops, and the CPU and on-chip peripheral modules enter reset st
- Module stop mode Independently of above operating modes, on-chip peripheral modules that are not

cleared to 0. For details on STCR, see section 3.2.3, Serial Timer Control Register (S'

Register Descriptions 25.1

stopped individually.

Power-down modes are controlled by the following registers. To access SBYCR, LPV MSTPCRH, and MSTPCRL, the FLSHE bit in the serial timer control register (STCR

- Standby control register (SBYCR)
- Low power control register (LPWRCR)
 - Module stop control register H (MSTPCRH)

 - Module stop control register L (MSTPCRL)

Rev. 3.00 Mar 21, 2006 pag REJ09

			mode or medium-speed mode:
			0: Shifts to sleep mode
			 Shifts to software standby mode, subactive m watch mode
			When the SLEEP instruction is executed in subamode:
			0: Shifts to subsleep mode
			1: Shifts to watch mode or high-speed mode
			Note that the SSBY bit is not changed even if a transition occurs by an interrupt.
STS2	0	R/W	Standby Timer Select 2 to 0
STS1	0	R/W	Selects the wait time for clock stabilization from
STS0	0	R/W	oscillation start when canceling software standb watch mode, or subactive mode. Select a wait ti (oscillation stabilization time) or more, dependin operating frequency. Table 25.1 shows the relat between the STS2 to STS0 values and wait time

			requirements. Normally the minimum value is recommended.
3	 0	R	Reserved

Rev. 3.00 Mar 21, 2006 page 642 of 788 REJ09B0300-0300

6 5

With an external clock, there are no specific wai

This bit is always read as 0, and cannot be mod

010: Medium-speed clock: $\phi/4$ 011: Medium-speed clock: φ/8 100: Medium-speed clock: $\phi/16$ 101: Medium-speed clock: $\phi/32$ 11X: —

Legend:

X: Don't care

Table 25.1 Operating Frequency and Wait Time

STS2	STS1	STS0	Wait Time	20 MHz	10 MHz	8 MHz	6 MHz	4 MHz	2 M
0	0	0	8192 states	0.4	8.0	1.0	1.3	2.0	4.1
0	0	1	16384 states	8.0	1.6	2.0	2.7	4.1	8.2
0	1	0	32768 states	2.0	3.3	4.1	5.5	8.2	16.
0	1	1	65536 states	4.1	6.6	8.2	10.9	16.4	32.
1	0	0	131072 states	8.2	13.1	16.4	21.8	32.8	65.
1	0	1	262144 states	16.4	26.2	32.8	43.6	65.6	131
1	1	0	Reserved	_	_	_	_	_	
1	1	1	16 states*	8.0	1.6	2.0	2.7	4.0	8.0

Shaded cells indicate the recommended specification.

Note: * This setting cannot be made in the flash-memory version of this LSI.

Rev. 3.00 Mar 21, 2006 pag

REJ09

				mode or medium-speed mode:
				0: Shifts to sleep mode, software standby mode mode
				 Shifts directly to subactive mode, or shifts to sor software standby mode
				When the SLEEP instruction is executed in subamode:
				0: Shifts to subsleep mode or watch mode
				 Shifts directly to high-speed mode, or shifts to mode
6	LSON	0	R/W	Low-Speed On Flag
				Specifies the operating mode to be entered after the SLEEP instruction. This bit also controls when to high-speed mode or subactive mode when was is cancelled.
				When the SLEEP instruction is executed in high mode or medium-speed mode:
				0: Shifts to sleep mode, software standby mode mode
				1: Shifts to watch mode or subactive mode
				When the SLEEP instruction is executed in subamode:

RENESAS

Rev. 3.00 Mar 21, 2006 page 644 of 788

REJ09B0300-0300

0: Shifts directly to watch mode or high-speed m1: Shifts to subsleep mode or watch mode

When watch mode is cancelled:
0: Shifts to high-speed mode
1: Shifts to subactive mode

4	EXCLE	0	R/W	Subclock Input Enable
				Enables/disables subclock input from the EXC
				0: Disables subclock input from the EXCL pin
				1: Enables subclock input from the EXCL pin
3	_	0	R/W	Reserved
				An undefined value is read from this bit. This b be set to 1.
2 to	0 —	All 0	R	Reserved
				These bits are always read as 0 and cannot be

Module Stop Control Registers H and L (MSTPCRH, MSTPCRL) 25.1.3

MSTPCRH and MSTPCRL specify on-chip peripheral modules to shift to module sto module units. Each module can enter module stop mode by setting the corresponding

R/W

R/W

R/W

R/W

Initial Value

0*

0

Do not set this bit to 1.

MSTPCRH

Bit Name

MSTP15

MSTP14

MSTP8

Bit

7

6

Note:

'-	5	MSTP13	1	R/W	16-bit free-running timer (FRT)
	4	MSTP12	1	R/W	8-bit timers (TMR_0, TMR_1)
•	3	MSTP11	1	R/W	8-bit PWM timer (PWM), 14-bit PWM timer
'-	2	MSTP10	1	R/W	D/A converter
	1	MSTP9	1	R/W	A/D converter

Corresponding Module

Data transfer controller (DTC)

8-bit timers (TMR_X, TMR_Y), timer conne

Rev. 3.00 Mar 21, 2006 pag

REJ09

				keyboard matrix interrupt mask register (KM keyboard matrix interrupt mask register A (K port 6 pull-up MOS control register (KMPCR
1	MSTP1	1*	R/W	_
0	MSTP0	1	R/W	Host interface (LPC), wake-up event interrup register B (WUEMRB)
Note:	* This b	it can be read t	rom or w	ritten to, however, operation is not affected.

Host interface (XBS), keyboard buffer control

R/W

25.2 **Mode Transitions and LSI States**

Figure 25.1 shows the enabled mode transition diagram. The mode transition from program execution state to program halt state is performed by the SLEEP instruction. The mode from program halt state to program execution state is performed by an interrupt. The \overline{S} causes a mode transition from any state to hardware standby mode. The RES input cau-

transition from a state other than hardware standby mode to the reset state. Table 25.2 st LSI internal states in each operating mode.

1

MSTP2

2

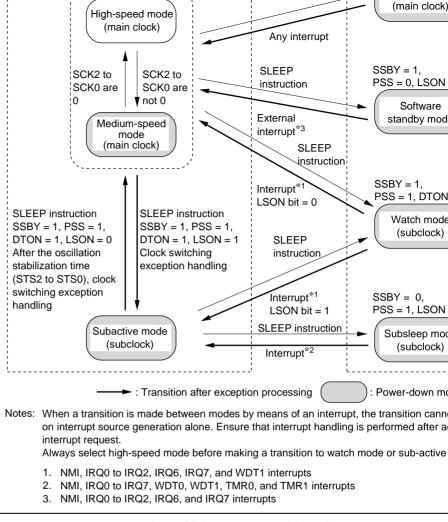


Figure 25.1 Mode Transition Diagram

Rev. 3.00 Mar 21, 2006 pag

REJ09

Sleep mode

SLEEP instruction

	110117_1	"'9	mg	"'g	(retained)	(retained)	орстаноп	operation	(retained)
	FRT TMR_X, TMR_Y	Function- ing	Function- ing	Function- ing	Function- ing/Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)	Halted (retained)
	Timer connection	-							
	IIC_0								
	IIC_1	-							
	LPC								
	SCI_0	Function-	Function-		Function- ing/Halted	Halted	Halted	Halted	Halted
	SCI_1	ing -	ing	ing	(reset)	(reset)	(reset)	(reset)	(reset)
	SCI_2								
Peripheral modules		Function- ing	Function- ing	Function- ing	Function- ing/Halted	Halted (reset)	Halted (reset)	Halted (reset)	Halted (reset)
modules	PWMX	- 1119	iiig	iiig	(reset)	(16361)	(16361)	(16361)	(16361)
	XBS, Keyboard buffer controller								
	D/A	-							
	A/D	_							
	RAM	Function- ing	Function- ing	Function- ing (DTC)	Function- ing	Retained	Function- ing	Retained	Retained
	I/O	Function- ing	Function- ing	Function- ing	Function- ing	Retained	Function- ing	Function- ing	Retained
Note:	"Halted (reset)" mea	ans that inte	ernal registe	ister values er values an nich a stop s	d internal s	tates are ini	tialized.	

Speeu operation

ing

Function-

Medium-

operation

Function-

Function-

Function-

speed

ing

ing

Function-

Function-

Function-

Function-

Function-

ing

ing

ing

ing

Function-

Function-

ing/Halted

(retained)

Function-

Function-

Function-

ing/Halted

ing

ing

ing

Function-

ing

Halted

(retained)

Subclock

operation

(retained)

(retained)

Halted

Halted

Function-

ing

Halted

(retained)

Subclock

operation

Subclock

operation

Subclock

operation

Function-

ing

Halted

(retained)

Subclock

operation

Subclock

operation

Subclock

operation

Function-

Halted

Halted

Halted

Halted

(retained

(retained

(retained

(retained

ing

Function-

Function-

Function-

Function-

Function-

ing

ing

ing

External

Peripheral DTC

modules

NMI

IRQ0 to IRQ7 KIN0 to KIN15 WUE0 to WUE7

WDT_1

WDT_0

TMR_0,

TMR_1

Rev. 3.00 Mar 21, 2006 page 648 of 788 REJ09B0300-0300 RENESAS memory is accessed in 4 states, and internal I/O registers in 8 states.

By clearing all of bits SCK2 to SCK0 to 0, a transition is made to high-speed mode at the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, and bit in LPWRCR is cleared to 0, a transition is made to sleep mode. When sleep mode an interrupt, medium-speed mode is restored. When the SLEEP instruction is executed SSBY bit set to 1, the LSON bit cleared to 0, and the PSS bit in TCSR (WDT_1) clear operation shifts to software standby mode. When software standby mode is cleared by interrupt, medium-speed mode is restored.

When the \overline{RES} pin is set low and medium-speed mode is cancelled, operation shifts to state. The same applies in the case of a reset caused by overflow of the watchdog time

When the STBY pin is driven low, medium-speed mode is cancelled and a transition in hardware standby mode.

Figure 25.2 shows an example of medium-speed mode timing.

Figure 25.2 Medium-Speed Mode Timing

25.4 Sleep Mode

The CPU makes a transition to sleep mode if the SLEEP instruction is executed when t bit in SBYCR is cleared to 0 and the LSON bit in LPWRCR is cleared to 0. In sleep me operation stops but the peripheral modules do not stop. The contents of the CPU's interregisters are retained.

Sleep mode is exited by any interrupt, the \overline{RES} pin, or the \overline{STBY} pin.

When an interrupt occurs, sleep mode is exited and interrupt exception handling starts. is not exited if the interrupt is disabled, or interrupts other than NMI are masked by the

Setting the \overline{RES} pin level low cancels sleep mode and selects the reset state. After the obstabilization time has passed, driving the \overline{RES} pin high causes the CPU to start reset exhandling.

When the \overline{STBY} pin level is driven low, sleep mode is cancelled and a transition is machardware standby mode.

Rev. 3.00 Mar 21, 2006 page 650 of 788

REJ09B0300-0300

states of on-chip peripheral modules other than the SCI, PWM, and PWMX, are retain as the prescribed voltage is supplied.

Software standby mode is cleared by an external interrupt (NMI, IRQ0 to IRQ2, IRQ6 the RES pin input, or STBY pin input.

When an external interrupt request signal is input, system clock oscillation starts, and elapse of the time set in bits STS2 to STS0 in SBYCR, software standby mode is clea interrupt exception handling is started. When clearing software standby mode with an IRQ2, IRQ6, or IRQ7 interrupt, set the corresponding enable bit to 1 and ensure that r with a higher priority than interrupts IRQ0 to IRQ2, IRQ6, and IRQ7 is generated. So standby mode cannot be cleared if an interrupt enable bit corresponding to an IRQ0 to IRQ6, or IRQ7 interrupt is cleared to 0 or if the interrupt has been masked on the CPU

When the RES pin is driven low, system clock oscillation is started. At the same time clock oscillation starts, the system clock is supplied to the entire LSI. Note that the RI be held low until clock oscillation stabilizes. When the RES pin goes high after clock

When the STBY pin is driven low, software standby mode is cancelled and a transitio hardware standby mode.

stabilizes, the CPU begins reset exception handling.

pin.

Figure 25.3 shows an example in which a transition is made to software standby mode falling edge of the NMI pin, and software standby mode is cleared at the rising edge of

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSI to 1, and a SLEEP instruction is executed, causing a transition to software standby mo

Software standby mode is then cleared at the rising edge of the NMI pin.

Rev. 3.00 Mar 21, 2006 pag REJ0

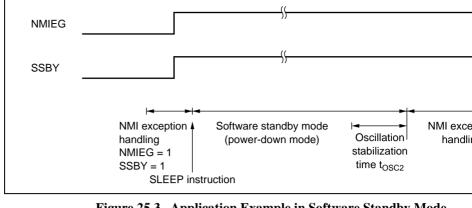
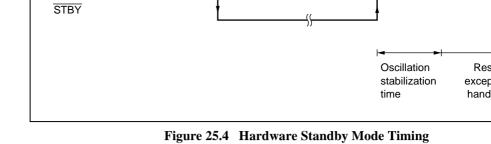


Figure 25.3 Application Example in Software Standby Mode

25.6 **Hardware Standby Mode**

The CPU makes a transition to hardware standby mode from any mode when the STBY driven low.


In hardware standby mode, all functions enter the reset state. As long as the prescribed supplied, on-chip RAM data is retained. The I/O ports are set to the high-impedance sta

In order to retain on-chip RAM data, the RAME bit in SYSCR should be cleared to 0 b driving the STBY pin low. Do not change the state of the mode pins (MD1 and MD0) LSI is in hardware standby mode.

Hardware standby mode is cleared by the STBY pin input or the RES pin input.

When the STBY pin is driven high while the RES pin is low, clock oscillation is started that the RES pin is held low until system clock oscillation stabilizes. When the RES pin subsequently driven high after the clock oscillation stabilization time has passed, reset handling starts.

Rev. 3.00 Mar 21, 2006 page 652 of 788 REJ09B0300-0300

25.7 Watch Mode

The CPU makes a transition to watch mode when the SLEEP instruction is executed i mode or subactive mode with the SSBY bit in SBYCR set to 1, the DTON bit in LPW cleared to 0, and the PSS bit in TCSR (WDT 1) set to 1.

In watch mode, the CPU is stopped and peripheral modules other than WDT_1 are also The contents of the CPU's internal registers, several on-chip peripheral module register chip RAM data are retained and the I/O ports retain their values before transition as loop prescribed voltage is supplied.

Watch mode is exited by an interrupt (WOVI1, NMI, IRQ0 to IRQ2, IRQ6, or IRQ7), input, or \overline{STBY} pin input.

When an interrupt occurs, watch mode is exited and a transition is made to high-speed medium-speed mode when the LSON bit in LPWRCR cleared to 0 or to subactive mo LSON bit is set to 1. When a transition is made to high-speed mode, a stable clock is the entire LSI and interrupt exception handling starts after the time set in the STS2 to SBYCR has elapsed. In the case of an IRQ0 to IRQ2, IRQ6, or IRQ7 interrupt, watch exited if the corresponding enable bit has been cleared to 0. In the case of interrupts for chip peripheral modules, watch mode is not exited if the interrupt enable register has ledisable the reception of that interrupt, or the interrupt is masked by the CPU.

Rev. 3.00 Mar 21, 2006 pag REJ09

The CPU makes a transition to subsleep mode when the SLEEP instruction is executed subactive mode with the SSBY bit in SBYCR cleared to 0, the LSON bit in LPWRCR

and the PSS bit in TCSR (WDT_1) set to 1.

In subsleep mode, the CPU is stopped. Peripheral modules other than TMR_0, TMR_1 and WDT_1 are also stopped. The contents of the CPU's internal registers, several on-

and WDT_1 are also stopped. The contents of the CPU's internal registers, several onperipheral module registers, and on-chip RAM data are retained and the I/O ports retain values before transition as long as the prescribed voltage is supplied.

Subsleep mode is exited by an interrupt (interrupts by on-chip peripheral modules, NM IRQ7), the \overline{RES} pin input, or the \overline{STBY} pin input.

When an interrupt occurs, subsleep mode is exited and interrupt exception handling sta

In the case of an IRQ0 to IRQ7 interrupt, subsleep mode is not exited if the correspond

bit has been cleared to 0. In the case of interrupts from the on-chip peripheral modules, mode is not exited if the interrupt enable register has been set to disable the reception of interrupt, or the interrupt is masked by the CPU.

When the \overline{RES} pin is driven low, system clock oscillation starts. Simultaneously with t system clock oscillation, the system clock is supplied to the entire LSI. Note that the \overline{R} be held low until clock oscillation is stabilized. If the \overline{RES} pin is driven high after the c oscillation stabilization time has passed, the CPU begins reset exception handling.

If the STBY pin is driven low, the LSI enters hardware standby mode.

Rev. 3.00 Mar 21, 2006 page 654 of 788 REJ09B0300-0300

executes programs. Peripheral modules other than TMR 0, TMR 1, WDT 0, and WI also stopped.

When operating the CPU in subactive mode, the SCK2 to SCK0 bits in SBYCR must

Subactive mode is exited by the SLEEP instruction, RES pin input, or STBY pin input

When the SLEEP instruction is executed with the SSBY bit in SBYCR set to 1, the D LPWRCR cleared to 0, and the PSS bit in TCSR (WDT_1) set to 1, the CPU exits suband a transition is made to watch mode. When the SLEEP instruction is executed with bit in SBYCR cleared to 0, the LSON bit in LPWRCR set to 1, and the PSS bit in TC set to 1, a transition is made to subsleep mode. When the SLEEP instruction is execut SSBY bit in SBYCR set to 1, the DTON bit and LSON bit in LPWRCR set to 10, and

For details of direct transitions, see section 25.11, Direct Transitions.

in TCSR (WDT 1) set to 1, a direct transition is made to high-speed mode.

When the \overline{RES} pin is driven low, system clock oscillation starts. Simultaneously with system clock oscillation, the system clock is supplied to the entire LSI. Note that the I be held low until the clock oscillation is stabilized. If the RES pin is driven high after oscillation stabilization time has passed, the CPU begins reset exception handling.

If the STBY pin is driven low, the LSI enters hardware standby mode.

REJ09

After the reset state is cancelled, all modules other than DTC are in module stop mode.

While an on-chip peripheral module is in module stop mode, read/write access to its redisabled.

25.11 **Direct Transitions**

The CPU executes programs in three modes: high-speed, medium-speed, and subactive direct transition is made from high-speed mode to subactive mode, there is no interrupt program execution. A direct transition is enabled by setting the DTON bit in LPWRCR then executing the SLEEP instruction. After a transition, direct transition exception har starts.

speed mode with the SSBY bit in SBYCR set to 1, the LSON bit and DTON bit in LPV to 11, and the PSS bit in TSCR (WDT_1) set to 1.

The CPU makes a transition to subactive mode when the SLEEP instruction is executed

To make a direct transition to high-speed mode after the time set in the STS2 to STS0 l SBYCR has elapsed, execute the SLEEP instruction in subactive mode with the SSBY SBYCR set to 1, the LSON bit and DTON bit in LPWRCR set to 01, and the PSS bit in (WDT 1) set to 1.

Rev. 3.00 Mar 21, 2006 page 656 of 788

REJ09B0300-0300

25.12.2 Current Consumption when Waiting for Oscillation Stabilization

The current consumption increases during oscillation stabilization.

25.12.3 DTC Module Stop Mode

If the DTC module stop mode specification and DTC bus request occur simultaneously released to the DTC and the MSTP bit cannot be set to 1. After completing the DTC but the MSTP bit to 1 again.

Rev. 3.00 Mar 21, 2006 page 658 of 788 REJ09B0300-0300

- The MSB-side address is indicated for 16-bit addresses.
 - Registers are classified by functional modules.

 - The access size is indicated.
 - 2. Register Bits
 - (address order) above.
 - Reserved bits are indicated by in the bit name column.
 - The bit number in the bit-name column indicates that the whole register is allocate counter or for holding data.

Bit configurations of the registers are described in the same order as the Register A

- 16-bit registers are indicated from the bit on the MSB side.
- 3. Register States in Each Operating Mode
- Register states are described in the same order as the Register Addresses (address above.
- The register states described here are for the basic operating modes. If there is a sp for an on-chip peripheral module, refer to the section on that on-chip peripheral m
- 4. Register Select Conditions
- Register states are described in the same order as the Register Addresses (address above.
- For details on the register select conditions, refer to section 3.2.2, System Control (SYSCR), 3.2.3, Serial Timer Control Register (STCR), 26.1.3, Module Stop Con H and L (MSTPCRH, MSTPCRL), and the register descriptions for each module.

Bidirectional data register 0SW	TWR0SW	8	H'FE20
Bidirectional data register 1	TWR1	8	H'FE21
Bidirectional data register 2	TWR2	8	H'FE22
Bidirectional data register 3	TWR3	8	H'FE23
Bidirectional data register 4	TWR4	8	H'FE24
Bidirectional data register 5	TWR5	8	H'FE25
Bidirectional data register 6	TWR6	8	H'FE26
Bidirectional data register 7	TWR7	8	H'FE27
Bidirectional data register 8	TWR8	8	H'FE28
Bidirectional data register 9	TWR9	8	H'FE29
Bidirectional data register 10	TWR10	8	H'FE2A
Bidirectional data register 11	TWR11	8	H'FE2B
Bidirectional data register 12	TWR12	8	H'FE2C
Bidirectional data register 13	TWR13	8	H'FE2D
Bidirectional data register 14	TWR14	8	H'FE2E
Bidirectional data register 15	TWR15	8	H'FE2F
Input data register 3	IDR3	8	H'FE30
Output data register 3	ODR3	8	H'FE31
Status register 3	STR3	8	H'FE32

Rev. 3.00 Mar 21, 2006 page 660 of 788

REJ09B0300-0300

Appreviation

PGNOCR*1

PENOCR*1

PFNOCR*1

PCNOCR*1

PDNOCR*1

TWR0MW

OI DILS

8

8

8

8

Audiess

H'FE16

H'FE18

H'FE19

H'FE1C

H'FE1D

H'FE20

woule

PORT

PORT

PORT

PORT

PORT

LPC

LPC

LPC

LPC

LPC LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

LPC

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Register maine

Port G open drain control register

Port E open drain control register

Port F open drain control register

Port C open drain control register

Port D open drain control register

Bidirectional data register 0MW

Status register 1	STR1	8	H'FE3A
Input data register 2	IDR2	8	H'FE3C
Output data register 2	ODR2	8	H'FE3D
Status register 2	STR2	8	H'FE3E
Host interface select register	HISEL	8	H'FE3F
Host interface control register 0	HICR0	8	H'FE40
Host interface control register 1	HICR1	8	H'FE41
Host interface control register 2	HICR2	8	H'FE42
Host interface control register 3	HICR3	8	H'FE43
Wakeup event interrupt mask register B	WUEMRB*2	8	H'FE44
Port G output data register	PGODR*1	8	H'FE46
Port G input data register	PGPIN*1	8	H'FE47 (read)
Port G data direction register	PGDDR*1	8	H'FE47 (write)
Port E output data register	PEODR*1	8	H'FE48
Port F output data register	PFODR*1	8	H'FE49
Port E input data register	PEPIN*1	8	H'FE4A (read)
Port E data direction register	PEDDR*1	8	H'FE4A (write)
Port F input data register	PFPIN*1	8	H'FE4B (read)

IDR1

ODR1

H'FE38

H'FE39

8

8

LPC

INT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

REJ0

Input data register 1

Output data register 1

RENESAS

Rev. 3.00 Mar 21, 2006 pag

<u> </u>	HICR2 IDR_3	8	H'FE8
Input data register_3 Output data register_3	IDR_3	8	H'FE8
Output data register_3			IIILO
	ODR_3	8	H'FE8
Status register_3	STR_3	8	H'FE8
Input data register_4	IDR_4	8	H'FE8
Output data register_4	ODR_4	8	H'FE8
Status register_4	STR_4	8	H'FE8
I ² C bus extended control register_0	ICXR_0	8	H'FEC
I ² C bus extended control register_1	ICXR_1	8	H'FEC
Keyboard control register H_0	KBCRH_0	8	H'FEC
Keyboard control register L_0	KBCRL_0	8	H'FEC
Keyboard data buffer register_0	KBBR_0	8	H'FEC
Keyboard control register H_1	KBCRH_1	8	H'FEC

PCPIN**

PCDDR*1

PDPIN*1

PDDDR*1

8

8

8

8

H'FE4E

H'FE4E

H'FE4F

H'FE4F

(read)

(write)

(read)

PORT

PORT

PORT

PORT

XBS

XBS

XBS

XBS

XBS

XBS

XBS

IIC_0

IIC_1

buffer controller_0

buffer controller_0

buffer controller_0

buffer controller_1

Keyboard

Keyboard

Keyboard

Keyboard

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Port C input data register

Port D input data register

Port C data direction register

Port D data direction register

, , ,				buffer controller_2
Keyboard data buffer register_2	KBBR_2	8	H'FEE2	Keyboard buffer controller_2
Keyboard comparator control register	KBCOMP	8	H'FEE4	IrDA/ Extended A/D
DDC switch register	DDCSWR	8	H'FEE6	IIC_0
Interrupt control register A	ICRA	8	H'FEE8	INT
Interrupt control register B	ICRB	8	H'FEE9	INT
Interrupt control register C	ICRC	8	H'FEEA	INT
IRQ status register	ISR	8	H'FEEB	INT
IRQ sense control register H	ISCRH	8	H'FEEC	INT
IRQ sense control register L	ISCRL	8	H'FEED	INT
DTC enable register A	DTCERA	8	H'FEEE	DTC
DTC enable register B	DTCERB	8	H'FEEF	DTC
DTC enable register C	DTCERC	8	H'FEF0	DTC
DTC enable register D	DTCERD	8	H'FEF1	DTC
DTC enable register E	DTCERE	8	H'FEF2	DTC
DTC vector register	DTVECR	8	H'FEF3	DTC
Address break control register	ABRKCR	8	H'FEF4	INT

KBCRH_2

KBCRL_2

8

8

Keyboard control register H_2

Keyboard control register L_2

Rev. 3.00 Mar 21, 2006 pag

controller_1

8

8

8

8 8

8

8

REJO

Keyboard

Keyboard

buffer controller_2

H'FEE0

H'FEE1

Module stop control register H	MSTPCRH	MSTPCRH 8	
Module stop control register L	MSTPCRL	8	H'FF87
Serial mode register_1	SMR_1	8	H'FF88
I ² C bus control register_1	ICCR_1	8	H'FF88
Bit rate register_1	BRR_1	8	H'FF89
I ² C bus status register_1	ICSR_1	8	H'FF89
Serial control register_1	SCR_1	8	H'FF8A
Transmit data register_1	TDR_1	8	H'FF8B
Serial status register_1	SSR_1	8	H'FF8C
Receive data register_1	RDR_1	8	H'FF8D
Smart card mode register_1	SCMR_1	8	H'FF8E
I ² C bus data register_1	ICDR_1	8	H'FF8E
Second slave address register_1	SARX_1	8	H'FF8E
I ² C bus mode register_1	ICMR_1	8	H'FF8F
Slave address register_1	SAR_1	8	H'FF8F
Timer interrupt enable register	TIER	8	H'FF90
Timer control/status register	TCSR	8	H'FF91
Free running counter H	FRCH	8	H'FF92

FLMCR2

PCSR

EBR1

EBR2

SBYCR

LPWRCR

SYSCR2

8

8

8

8

8

8

8

H'FF81

H'FF82

H'FF82

H'FF83

H'FF83

H'FF84

H'FF85

FLASH

PWM

FLASH

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SCI_1

IIC_1

SCI_1

IIC_1

SCI_1

SCI_1

SCI_1

SCI_1

SCI_1

IIC_1

IIC_1

IIC_1

IIC_1

FRT

FRT

FRT

FLASH

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

Flash memory control register 2

Peripheral clock select register

Erase block register 1

Erase block register 2

Standby control register

Low power control register

System control register 2

Output control register AFH	OCRAFH	8	H'FF9A
Input capture register BL	ICRBL	8	H'FF9B
Output control register AFL	OCRAFL	8	H'FF9B
Input capture register CH	ICRCH	8	H'FF9C
Output compare register DMH	OCRDMH	8	H'FF9C
Input capture register CL	ICRCL	8	H'FF9D
Output compare register DML	OCRDML	8	H'FF9D
Input capture register DH	ICRDH	8	H'FF9E
Input capture register DL	ICRDL	8	H'FF9F
Serial mode register_2	SMR_2	8	H'FFA0
PWM (D/A) control register	DACR	8	H'FFA0
PWM (D/A) data register AH	DADRAH	8	H'FFA0
PWM (D/A) data register AL	DADRAL	8	H'FFA1
Bit rate register_2	BRR_2	8	H'FFA1
Serial control register_2	SCR_2	8	H'FFA2
Transmit data register_2	TDR_2	8	H'FFA3

OCRBL

TCR

TOCR

ICRAH

ICRAL

OCRARH

OCRARL

ICRBH

8

8

8

8

8

8

8

8

H'FF95

H'FF96

H'FF97

H'FF98

H'FF98

H'FF99

H'FF99

H'FF9A

FRT

SCI_2

PWMX

PWMX

PWMX

SCI_2

SCI_2

SCI_2

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

REJ09

Output control register BL

Input capture register AH

Input capture register AL

Output control register ARH

Output control register ARL

Input capture register BH

Timer output compare control

Timer control register

register

_	_		(read)
Port A output data register	PAODR	8	H'FFAA
Port A input data register	PAPIN	8	H'FFAB
Port A data direction register	PADDR	8	H'FFAB
Port 1 pull-up MOS control register	P1PCR	8	H'FFAC
Port 2 pull-up MOS control register	P2PCR	8	H'FFAD
Port 3 pull-up MOS control register	P3PCR	8	H'FFAE
Port 1 data direction register	P1DDR	8	H'FFB0
Port 2 data direction register	P2DDR	8	H'FFB1
Port 1 data register	P1DR	8	H'FFB2
Port 2 data register	P2DR	8	H'FFB3
Port 3 data direction register	P3DDR	8	H'FFB4
Port 4 data direction register	P4DDR	8	H'FFB5
Port 3 data register	P3DR	8	H'FFB6
Port 4 data register	P4DR	8	H'FFB7
Port 5 data direction register	P5DDR	8	H'FFB8
Port 6 data direction register	P6DDR	8	H'FFB9
Port 5 data register	P5DR	8	H'FFBA

DADRBH

DACNTL

DADRBL

TCSR_0

TCNT_0

TCNT_0

8

8

8

8

8

8

RENESAS

H'FFA6

H'FFA7

H'FFA7

H'FFA8

H'FFA8

(write)

H'FFA9

PWMX

PWMX

PWMX

WDT_0

WDT_0

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

WDT

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

PWM (D/A) data register BH

PWM (D/A) data register BL

Timer control/status register_0

PWM (D/A) counter L

Timer counter_0

Timer counter_0

Port 9 data direction register	P9DDR	8	H'FFC0	PORT	8
Port 9 data register	P9DR	8	H'FFC1	PORT	8
Interrupt enable register	IER	8	H'FFC2	INT	8
Serial timer control register	STCR	8	H'FFC3	SYSTEM	8
System control register	SYSCR	8	H'FFC4	SYSTEM	8
Mode control register	MDCR	8	H'FFC5	SYSTEM	8
Bus control register	BCR	8	H'FFC6	BSC	8
Wait state control register	WSCR	8	H'FFC7	BSC	8
Timer control register_0	TCR_0	8	H'FFC8	TMR_0	8
Timer control register_1	TCR_1	8	H'FFC9	TMR_1	8
Timer control/status register_0	TCSR_0	8	H'FFCA	TMR_0	8
Timer control/status register_1	TCSR_1	8	H'FFCB	TMR_1	16
Time constant register A_0	TCORA_0	8	H'FFCC	TMR_0	16
Time constant register A_1	TCORA_1	8	H'FFCD	TMR_1	16
Time constant register B_0	TCORB_0	8	H'FFCE	TMR_0	16
Time constant register B_1	TCORB_1	8	H'FFCF	TMR_1	16
Timer counter_0	TCNT_0	8	H'FFD0	TMR_0	16
Timer counter_1	TCNT_1	8	H'FFD1	TMR_1	16
	PWOERB	8	H'FFD2	PWM	8

P8DDR

P7PIN

PBDDR

P8DR

8

8

8

H'FFBD

H'FFBE

H'FFBE

H'FFBF

(write)

(read)

(write)

PORT

PORT

PORT

PORT

8

8

REJ0

Port 8 data direction register

Port B data direction register

Port 7 input data register

Port 8 data register

• –	_		
Receive data register_0	RDR_0	8	H'FFDD
Smart card mode register_0	SCMR_0	8	H'FFDE
I ² C bus data register_0	ICDR_0	8	H'FFDE
Second slave address register_0	SARX_0	8	H'FFDE
I ² C bus mode register_0	ICMR_0	8	H'FFDF
Slave address register_0	SAR_0	8	H'FFDF
A/D data register AH	ADDRAH	8	H'FFE0
A/D data register AL	ADDRAL	8	H'FFE1
A/D data register BH	ADDRBH	8	H'FFE2
A/D data register BL	ADDRBL	8	H'FFE3
A/D data register CH	ADDRCH	8	H'FFE4
A/D data register CL	ADDRCL	8	H'FFE5
A/D data register DH	ADDRDH	8	H'FFE6
A/D data register DL	ADDRDL	8	H'FFE7
A/D control/status register	ADCSR	8	H'FFE8
A/D control register	ADCR	8	H'FFE9

PWDR0 to

PWDR15

8

8

8

8

8

8

8

SMR_0

ICCR_0

BRR_0

ICSR 0

SCR_0

TDR_0

SSR_0

H'FFD7

H'FFD8

H'FFD8

H'FFD9

H'FFD9

H'FFDA

H'FFDB

H'FFDC

PWM

SCI_0

IIC_0

SCI_0

IIC 0

SCI_0

SCI_0

SCI_0

SCI_0

SCI_0

IIC_0

IIC_0

IIC_0

IIC_0

A/D converter 8

8

8

8

8

8

8

8

8

8

8

8

8

PWM data registers 0 to 15

Serial mode register_0

Bit rate register_0

I²C bus control register_0

I²C bus status register 0

Serial control register_0

Transmit data register_0

Serial status register_0

Rev. 3.00 Mar 21, 2006 page 668 of 788 REJ09B0300-0300

Timer control/status register_Y	TCSR_Y	8	H'FFF1	TMR_Y	16
Pull-up MOS control register	KMPCR	8	H'FFF2	PORT	8
Input capture register R	TICRR	8	H'FFF2	TMR_X	16
Time constant register A_Y	TCORA_Y	8	H'FFF2	TMR_Y	16
Keyboard matrix interrupt register A	KMIMRA	8	H'FFF3	INT	8
Input capture register F	TICRF	8	H'FFF3	TMR_X	16
Time constant register B_Y	TCORB_Y	8	H'FFF3	TMR_Y	16
Input data register_1	IDR_1	8	H'FFF4	XBS	8
Timer counter_X	TCNT_X	8	H'FFF4	TMR_X	16
Timer counter_Y	TCNT_Y	8	H'FFF4	TMR_Y	16
Output data register_1	ODR_1	8	H'FFF5	XBS	8
Timer constant register C	TCORC	8	H'FFF5	TMR_X	16
Timer input select register	TISR	8	H'FFF5	TMR_Y	16
Status register_1	STR_1	8	H'FFF6	XBS	8
Timer constant register A_X	TCORA_X	8	H'FFF6	TMR_X	16
Timer constant register B_X	TCORB_X	8	H'FFF7	TMR_X	16
D/A data register 0	DADR0	8	H'FFF8	D/A converte	r 8
D/A data register 1	DADR1	8	H'FFF9	D/A converte	r 8
D/A control register	DACR	8	H'FFFA	D/A converte	r 8
Input data register_2	IDR_2	8	H'FFFC	XBS	8
			Rev. 3.00	Mar 21, 200	6 pa
	25	N.C.C.	^	F	REJO

HICR

TCR_X

TCR_Y

KMIMR

TCSR_X

Host interface control register

Keyboard matrix interrupt register 6

Timer control/status register_X

Timer control register_X

Timer control register_Y

(1000)

H'FFF0

H'FFF0

H'FFF0

H'FFF1

H'FFF1

XBS

TMR_X

TMR_Y

TMR_X

INT

8

16

16

8

8

8

8

8

8

Status register_2	STR_2	8	H'FFFE	XBS	8
Timer connection register S	TCONRS	8	H'FFFE	Timer connection	8
Edge sense register	SEDGR	8	H'FFFF	Timer connection	8

Notes: 1. Can be used on the H8S/2160B and H8S/2161B.

2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

Rev. 3.00 Mar 21, 2006 page 670 of 788 REJ09B0300-0300

RENESAS

TWR0MW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR0SW	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR3	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR4	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR5	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR6	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR7	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR9	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TWR15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
DR3	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
ODR3	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
STR3*2	IBF3B	OBF3B	MWMF	SWMF	C/D3
STR3*3	DBU37	DBU36	DBU35	DBU34	C/D3

PENOCR*1

PFNOCR*1

PCNOCR*1

PDNOCR*1

LADR3H

LADR3L

Bit 15

Bit 7

Bit 14

Bit 6

Bit 13

Bit 5

Bit 12

Bit 4

PE7NOCR

PF7NOCR

PC7NOCR

PD7NOCR

PE6NOCR

PF6NOCR

PC6NOCR

PD6NOCR

PE5NOCR

PF5NOCR

PC5NOCR

PD5NOCR

PE4NOCR

PF4NOCR

PC4NOCR

PD4NOCR

PE3NOCR

PF3NOCR

PC3NOCR

PD3NOCR

PE2NOCR

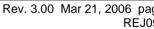
PF2NOCR

PC2NOCR

PD2NOCR

Bit 2

DBU32


DBU32

Bit 10

Bit 11

Bit 3

PE0NC

PF0NC

PC0NC

PD0NC

Bit 0

OBF3

OBF3

Bit 8

TWRE

PE1NOCR

PF1NOCR

PC1NOCR

PD1NOCR

Bit 1

IBF3A

IBF3A

Bit 9

Bit 1

PGODR*1	PG7ODR	PG6ODR	PG5ODR	PG4ODR	PG3ODR
PGPIN*1	PG7PIN	PG6PIN	PG5PIN	PG4PIN	PG3PIN
PGDDR*1	PG7DDR	PG6DDR	PG5DDR	PG4DDR	PG3DDR
PEODR*1	PE7ODR	PE60DR	PE5ODR	PE40DR	PE3ODR
PFODR*1	PF70DR	PF6ODR	PF5ODR	PF4ODR	PF3ODR
PEPIN*1	PE7PIN	PE6PIN	PE5PIN	PE4PIN	PE3PIN
PEDDR*1	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR
PFPIN*1	PF7PIN	PF6PIN	PF5PIN	PF4PIN	PF3PIN
PFDDR*1	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR
PCODR*1	PC7ODR	PC6ODR	PC5ODR	PC4ODR	PC3ODR
PDODR*1	PD7ODR	PD6ODR	PD5ODR	PD4ODR	PD3ODR
PCPIN*1	PC7PIN	PC6PIN	PC5PIN	PC4PIN	PC3PIN
PCDDR*1	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR
PDPIN*1	PD7PIN	PD6PIN	PD5PIN	PD4PIN	PD3PIN
PDDDR*1	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR
HICR2	_	_	_	_	_
IDR_3	IDR7	IDR6	IDR5	IDR4	IDR3
ODR_3	ODR7	ODR6	ODR5	ODR4	ODR3
STR_3	DBU	DBU	DBU	DBU	C/D

Rev. 3.00 Mar 21, 2006 page 672 of 788

REJ09B0300-0300

Bit 6

DBU26

SELIRQ11

CLKREQ

CLKRUN

WUEMR6

LPC2E

LRST

Bit 7

DBU27

LPC3E

LPCBSY

LFRAME

WUEMR7

GA20

SELSTR3

Bit 5

DBU25

LPC1E

IRQBSY

SDWN

SERIRQ

WUEMR5

SELIRQ10

Bit 4

DBU24

SELIRQ9

FGA20E

LRSTB

ABRT

LRESET

WUEMR4

Bit 3

C/D2

SELIRQ6

SDWNE

SDWNB

IBFIE3

LPCPD

WUEMR3

Bit 2

DBU22

SELSMI

PMEE

PMEB

IBFIE2

WUEMR2

PG2ODR

PG2PIN

PG2DDR

PE2ODR

PF2ODR

PE2PIN

PE2DDR

PF2PIN

PF2DDR

PC2ODR

PD2ODR

PC2PIN

PC2DDR

PD2PIN

PD2DDR

IBFIE4

IDR2

ODR2

DBU

PME

Bit 1

IBF2

SELIRQ12

LSMIE

LSMIB

IBFIE1

LSMI

WUEMR1

PG10DR

PG1PIN

PG1DDR

PE10DR

PF10DR

PE1PIN

PE1DDR

PF1PIN

PF1DDR

PC10DR

PD10DR

PC1PIN

PC1DDR

PD1PIN

PD1DDR

IBFIE3

IDR1

ODR1

IBF

Bit 0

OBF2

SELIRG

LSCIE

LSCIB

ERRIE

LSCI

WUEM

PG00D

PG0PIN

PG0DD

PE00D

PF0OD

PE0PIN

PE0DD

PF0PIN

PF0DD

PC0OD

PD00D

PC0PIN

PC0DD

PD0PIN

PD0DD

IDR0

ODR0

OBF

ODR2

STR2

HISEL

HICR0

HICR1

HICR2

HICR3

WUEMRB*5

DDCSWR	SWE	SW	IE	IF	CLR3
ICRA	ICRA7	ICRA6	ICRA5	ICRA4	ICRA3
ICRB	ICRB7	ICRB6	ICRB5	ICRB4	ICRB3
ICRC	ICRC7	ICRC6	ICRC5	ICRC4	ICRC3
ISR	IRQ7F	IRQ6F	IRQ5F	IRQ4F	IRQ3F
ISCRH	IRQ7SCB	IRQ7SCA	IRQ6SCB	IRQ6SCA	IRQ5SCE
ISCRL	IRQ3SCB	IRQ3SCA	IRQ2SCB	IRQ2SCA	IRQ1SCE
DTCERA	DTCEA7	DTCEA6	DTCEA5	DTCEA4	DTCEA3
DTCERB	DTCEB7	DTCEB6	DTCEB5	DTCEB4	DTCEB3
DTCERC	DTCEC7	DTCEC6	DTCEC5	DTCEC4	DTCEC3
DTCERD	DTCED7	DTCED6	DTCED5	DTCED4	DTCED3
DTCERE	DTCEE7	DTCEE6	DTCEE5	DTCEE4	DTCEE3
DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3
ABRKCR	CMF	_	_	_	_
BARA	A23	A22	A21	A20	A19
BARB	A15	A14	A13	A12	A11

KBCRL_0

KBBR_0

KBCRH_1

KBCRL_1

KBBR 1

KBCRH_2 KBCRL_2

KBBR 2

KBCOMP

KBE

KB7

KBIOE

KBE

KB7

KBIOE

KBE

KB7

ΙrΕ

KCLKO

KB6

KCLKI

KCLKO

KB6

KCLKI

KCLKO

IrCKS2

KB6

KDO

KB5

KDI

KDO

KB5

KDI

KDO

KB5

IrCKS1

KB4

KB4

KB4

IrCKS0

KBFSEL

KBFSEL

RXCR3

KB3

KBIE

KB3

KBIE

KB3

RXCR3

KBADE

RXCR3

RXCR2

KB2

KBF

KB2

KBF

KB2

RXCR2

KBCH2

CLR2

ICRA2

ICRB2

ICRC2

IRQ2F

IRQ5SCA

IRQ1SCA

DTCEA2

DTCEB2

DTCEC2

DTCED2

DTCEE2

DTVEC2

A18

A10

RXCR2

RXCR1

KB1

PER

KB1

PER

KB1

RXCR1

KBCH1

CLR1

ICRA1

ICRB1

ICRC1

IRQ1F

IRQ4SCB

IRQ0SCB

DTCEA1

DTCEB1

DTCEC1

DTCED1

DTCEE1

DTVEC1

A17

Α9

RXCR1

RXCR

KB0

KBS

RXCR

KB0

KBS

RXCR

KB0

KBCH

CLR0

ICRA

ICRB(

ICRC

IRQ0F

IRQ45

IRQ05

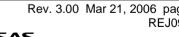
DTCE

DTCE

DTCE

DTCE

DTCE


DTVE BIE A16

Α8

REJ09

BRR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
ICSR_1	ESTP	STOP	IRTR	AASX	AL
SCR_1	TIE	RIE	TE	RE	MPIE
TDR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SSR_1	TDRE	RDRF	ORER	FER	PER
RDR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SCMR_1	_	_	_	_	SDIR
ICDR_1	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3
SARX_1	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2
ICMR_1	MLS	WAIT	CKS2	CKS1	CKS0
SAR_1	SVA6	SVA5	SVA4	SVA3	SVA2
TIER	ICIAE	ICIBE	ICICE	ICIDE	OCIAE
TCSR	ICFA	ICFB	ICFC	ICFD	OCFA
FRCH	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11
FRCL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
OCRAH	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11
OCRBH	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11
OCRAL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
OCRBL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TCR	IEDGA	IEDGB	IEDGC	IEDGD	BUFEA

EBR2

SBYCR

LPWRCR

MSTPCRH

MSTPCRL

SMR_1

ICCR_1

EB7

SSBY

DTON

MSTP15

MSTP7

 C/\overline{A}

ICE

EB6

STS2

LSON

MSTP14

MSTP6

CHR

IEIC

EB5

STS1

NESEL

MSTP13

MSTP5

PΕ

MST

EB4

STS0

EXCLE

MSTP12

MSTP4

O/E

TRS

EB3

MSTP11

MSTP3

STOP

ACKE

EB2

SCK2

MSTP10

MSTP2

MP

BBSY

Bit 2

AAS

TEIE

Bit 2

TEND

Bit 2

SINV

ICDR2

SVAX1

BC2

SVA1

OCIBE

OCFB

Bit 10

Bit 2

Bit 10

Bit 10

Bit 2

Bit 2

BUFEB

EB1

SCK1

MSTP9

MSTP1

CKS1

IRIC

Bit 1

ADZ

CKE1

Bit 1

MPB

Bit 1

ICDR1

SVAX0

BC1

SVA0

OVIE

OVF

Bit 9

Bit 1

Bit 9

Bit 9

Bit 1

Bit 1

CKS1

EB0

SCK0

MSTP8

MSTP0

CKS0

SCP

Bit 0

ACKB

CKE0

Bit 0

MPBT

Bit 0

SMIF

ICDR0

FSX

BC₀

FS

CCLRA

Bit 8

Bit 0

Bit 8

Bit 8

Bit 0

Bit 0

CKS0

O \	0,,,	0	. –	O/ -	0.0.
DACR	TEST	PWME	_	_	OEB
DADRAH	DA13	DA12	DA11	DA10	DA9
DADRAL	DA5	DA4	DA3	DA2	DA1
BRR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SCR_2	TIE	RIE	TE	RE	MPIE
TDR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SSR_2	TDRE	RDRF	ORER	FER	PER
RDR_2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SCMR_2	_	_	_	_	SDIR
DACNTH	UC7	UC6	UC5	UC4	UC3
DADRBH	DA13	DA12	DA11	DA10	DA9
DACNTL	UC8	UC9	UC10	UC11	UC12
DADRBL	DA5	DA4	DA3	DA2	DA1
TCSR_0	OVF	WT/IT	TME	_	RST/NMI
TCNT_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
PAODR	PA7ODR	PA6ODR	PA5ODR	PA4ODR	PA3ODR
PAPIN	PA7PIN	PA6PIN	PA5PIN	PA4PIN	PA3PIN

OCRAFH

OCRAFL

ICRCH

ICRCL

OCRDMH

OCRDML

ICRDH

ICRDL

SMR_2

ICRBL

Bit 15

Bit 7

Bit 7

Bit 15

Bit 15

Bit 7

Bit 7

Bit 15

Bit 7

 $C/\overline{\mathsf{A}}$

Bit 14

Bit 6

Bit 6

Bit 14

Bit 14

Bit 6

Bit 6

Bit 14

Bit 6

CHR

Bit 13

Bit 5

Bit 5

Bit 13

Bit 13

Bit 5

Bit 5

Bit 13

Bit 5

PΕ

Bit 12

Bit 4

Bit 4

Bit 12

Bit 12

Bit 4

Bit 4

Bit 12

Bit 4

O/Ē

Bit 11

Bit 3

Bit 3

Bit 11

Bit 11

Bit 3

Bit 3

Bit 11

Bit 3

STOP

Bit 10

Bit 2

Bit 2

Bit 10

Bit 10

Bit 2

Bit 2

Bit 10

Bit 2

MP

OEA

DA8

Bit 2

TEND

Bit 2

SINV

Bit 9

Bit 1

Bit 1

Bit 9

Bit 9

Bit 1

Bit 1

Bit 9

Bit 1

CKS1

os

DA7

Bit 1

MPB

Bit 1

DA7

CFS

CKS1

Bit 1

Rev. 3.00 Mar 21, 2006 pag

Bit 8

Bit 0

Bit 0

Bit 8

Bit 8

Bit 0

Bit 0

Bit 8

Bit 0

CKS0

CKS

DA6

PA0PI

PA10DR PA0O PA1PIN

DA0 CFS Bit 2 Bit 1 TEIE CKE1

> UC2 DA8

> > UC13

DA0

CKS2

Bit 2

PA2ODR

PA2PIN

UC1

MPBT Bit 0 SMIF UC0

DA6

REGS

REGS

CKS0

Bit 0

REJ09

CKE0 Bit 0

Bit 0

P5DR	_	_	_	_	_
P6DR	P67DR	P66DR	P65DR	P64DR	P63DR
PBODR	PB7ODR	PB6ODR	PB5ODR	PB4ODR	PB3ODR
PBPIN	PB7PIN	PB6PIN	PB5PIN	PB4PIN	PB3PIN
P8DDR	_	P86DDR	P85DDR	P84DDR	P83DDR
P7PIN	P77PIN	P76PIN	P75PIN	P74PIN	P73PIN
PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR
P8DR	_	P86DR	P85DR	P84DR	P83DR
P9DDR	P97DDR	P96DDR	P95DDR	P94DDR	P93DDR
P9DR	P97DR	P96DR	P95DR	P94DR	P93DR
IER	IRQ7E	IRQ6E	IRQ5E	IRQ4E	IRQ3E
STCR	IICS	IICX1	IICX0	IICE	FLSHE
SYSCR	CS2E	IOSE	INTM1	INTM0	XRST
MDCR	EXPE	_	_	_	_
BCR	_	ICIS0	BRSTRM	BRSTS1	BRSTS0
WSCR	_	_	ABW	AST	WMS1
TCR_0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0
TCR_1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0
TCSR_0	CMFB	CMFA	OVF	ADTE	OS3

P16DR

P26DR

P36DDR

P46DDR

P36DR

P46DR

P66DDR

P17DR

P27DR

P37DDR

P47DDR

P37DR

P47DR

P67DDR

P15DR

P25DR

P35DDR

P45DDR

P35DR

P45DR

P65DDR

P14DR

P24DR

P34DDR

P44DDR

P34DR

P44DR

P64DDR

P13DR

P23DR

P33DDR

P43DDR

P33DR

P43DR

P63DDR

P11DR

P21DR

P31DDR

P41DDR

P31DR

P41DR

P51DDR

P61DDR

P51DR

P61DR

PB10DR

PB1PIN

P81DDR

P71PIN

PB1DDR

P81DR

P91DDR

P91DR

IRQ1E

ICKS1

MDS1

IOS1

WC1

CKS1

CKS1

OS1

HIE

P12DR

P22DR

P32DDR

P42DDR

P32DR

P42DR

P52DDR

P62DDR

P52DR

P62DR

PB2ODR

PB2PIN

P82DDR

P72PIN

PB2DDR

P82DR

P92DDR

P92DR

IRQ2E

NMIEG

WMS0

CKS2

CKS2

OS2

P10DR

P20DR

P30DDI

P40DDI

P30DR

P40DR

P50DDI

P60DDI

P50DR

P60DR

PB0OD

PB0PIN

P80DDI

P70PIN

PB0DD

P80DR

P90DDI

P90DR

IRQ0E

ICKS0

RAME

MDS0

IOS0

WC0

CKS0

CKS0

OS0

P1DR

P2DR

P3DDR

P4DDR

P3DR

P4DR

P5DDR

P6DDR

_					
ICCR_0	ICE	IEIC	MST	TRS	ACKE
BRR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
ICSR_0	ESTP	STOP	IRTR	AASX	AL
SCR_0	TIE	RIE	TE	RE	MPIE
TDR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SSR_0	TDRE	RDRF	ORER	FER	PER
RDR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
SCMR_0	_	_	_	_	SDIR
ICDR_0	ICDR7	ICDR6	ICDR5	ICDR4	ICDR3
SARX_0	SVAX6	SVAX5	SVAX4	SVAX3	SVAX2
ICMR_0	MLS	WAIT	CKS2	CKS1	CKS0
SAR_0	SVA6	SVA5	SVA4	SVA3	SVA2
ADDRAH	AD9	AD8	AD7	AD6	AD5
ADDRAL	AD1	AD0	_	_	_
ADDRBH	AD9	AD8	AD7	AD6	AD5
ADDRBL	AD1	AD0	_	_	_
ADDRCH	AD9	AD8	AD7	AD6	AD5
ADDRCL	AD1	AD0	_	_	_
ADDRDH	AD9	AD8	AD7	AD6	AD5

Bit 4

OE12

OE4

OS12

OS4

Bit 4

O/E

Bit 5

OE13

OE5

OS13

OS5

Bit 5

PΕ

Bit 2

OE10

OE2

OS10

OS2

RS2

Bit 2

MP

BBSY

Bit 2

AAS

TEIE

Bit 2

TEND

Bit 2

SINV

ICDR2

SVAX1

BC2

SVA1

AD4

AD4

AD4

AD4

Bit 1

OE9

OE1

OS9

OS1

RS1

Bit 1

CKS1

IRIC

Bit 1

ADZ

CKE1

Bit 1

MPB

Bit 1

ICDR1

SVAX0

BC1

SVA0

AD3

AD3

AD3

Bit 3

OE11

OE3

OS11

OS3

RS3

Bit 3

STOP

Bit 0

OE8

OE0

OS8

OS0

RS0

Bit 0

CKS0

SCP

Bit 0

ACKB

CKE0

Bit 0

MPBT

Bit 0

SMIF

ICDR(

FSX

BC0

FS

AD2

AD2

AD2

REJ09

Bit 7

OE15

OE7

OS15

OS7

Bit 7

 C/\overline{A}

PWCKE

Bit 6

OE14

OE6

OS14

OS6

Bit 6

CHR

PWCKS

TCNT_1

PWOERB

PWOERA

PWDPRB

PWDPRA

PWDR0-15

PWSL

SMR_0

Rev. 3.00 Mar 21, 2006 pag

TCSR_Y	CMFB	CMFA	OVF	ICIE	OS3
KMPCR	KMIMR7	KMIMR6	KMIMR5	KMIMR4	KMIMR3
TICRR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TCORA_Y	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
KMIMRA	KMIMR15	KMIMR14	KMIMR13	KMIMR12	KMIMR11
TICRF	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TCORB_Y	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
IDR_1	IDR7	IDR6	IDR5	IDR4	IDR3
TCNT_X	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TCNT_Y	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
ODR_1	ODR7	ODR6	ODR5	ODR4	ODR3
TCORC	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TISR	_	_	_	_	_
STR_1	DBU17	DBU16	DBU15	DBU14	C/D1
TCORA_X	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
TCORB_X	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
DADR_0	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
DADR_1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3
DACR	DAOE1	DAOE0	DAE	_	_
IDR_2	IDR7	IDR6	IDR5	IDR4	IDR3
TCONRI	SIMOD1	SIMOD0	SCONE	ICST	HFINV
ODR_2	ODR7	ODR6	ODR5	ODR4	ODR3

OVIE

OVIE

OVF

KMIMR5

CMIEA

CMIEA

KMIMR6

CMFA

CCLR1

CCLR1

KMIMR4

ICF

CKS2

CKS2

OS₂

OS2

Bit 2

Bit 2

Bit 2

Bit 2

IDR2

Bit 2

Bit 2

ODR2

Bit 2

DBU12

Bit 2

Bit 2

Bit 2

Bit 2

IDR2

VFINV

ODR2

KMIMR2

KMIMR2

KMIMR10

CCLR0

CCLR0

KMIMR3

OS3

CKS1

CKS1

OS1

OS1

Bit 1

Bit 1

Bit 1

Bit 1

IDR1

Bit 1

Bit 1

ODR1

Bit 1

IBF1

Bit 1

Bit 1

Bit 1

Bit 1

IDR1

HIINV

ODR1

KMIMR1

KMIMR1

KMIMR9

CKS0

CKS0

KMIMR

OS0

OS0

Bit 0

Bit 0

Bit 0

Bit 0

IDR0

Bit 0

Bit 0

ODR0

Bit 0

OBF1

Bit 0

Bit 0

Bit 0

Bit 0

IDR0

VIINV

ODR0

KMIMR

KMIMR

TCR_X

TCR_Y

KMIMR

TCSR_X

CMIEB

CMIEB

KMIMR7

CMFB

- 2. When IWRE = 1 or SELSIR3 = 0 in LADR3L
 - 3. When TWRE = 0 and SELSTR3 = 1 in LADR3L
 - 4. All bits are reserved in the 64-kbyte flash memory version.
 - The EB11 and EB10 bits are reserved in the 128-kbyte flash memory version

5. Not supported by the H8S/2148B and H8S/2145B (5-V version).

Rev. 3.00 Mar 21, 2006 pag

REJ09

PCNOCR*1	Initialized	_	_	_	_	_	_	_	Initializ
PDNOCR*1	Initialized	_	_	_	_	_	_	_	Initializ
TWR0MW	_	_	_	_	_	_	_	_	_
TWR0SW	_	_	_	_	_	_	_	_	_
TWR1		_	_	_	_	_	_	_	_
TWR2		_	_	_	_	_	_	_	_
TWR3		_	_	_		_	_	_	_
TWR4		_	_	_		_	_	_	_
TWR5	_	_	_	_	_	_	_	_	_
TWR6	_	_	_	_	_	_	_	_	_
TWR7		_	_	_	_	_	_	_	_
TWR8		_	_	_	_	_	_	_	_
TWR9		_	_	_	_	_	_	_	_
TWR10	_	_	_	_	_	_	_	_	_
TWR11	_	_	_	_	_	_	_	_	_
TWR12	_	_	_	_	_	_	_	_	_
TWR13		_	_	_	_	_	_	_	_
TWR14	_	_	_	_	_	_	_	_	_
TWR15		_	_	_	_	_	_	_	_
IDR3		_	_	_	_	_	_	_	_
ODR3	_	_	_	_	_	_	_	_	_
STR3	Initialized	_	_	_	_	_	_	_	Initializ
LADR3H	Initialized	_	_	_	_	_	_	_	Initializ
LADR3L	Initialized	_	_	_	_	_	_	_	Initializ

Rev. 3.00 Mar 21, 2006 page 680 of 788 REJ09B0300-0300

SIRQCR0

SIRQCR1

IDR1 ODR1 Initialized

Initialized

RENESAS

Initializ

Initializ

HICR2	Initialized	_	_	_	_	_
HICR3	_	_	_	_	_	_
WUEMRB*	² Initialized	_	_	_	_	_
PGODR*1	Initialized	_	_	_	_	_
PGPIN*1	_	_	_	_	_	_
PGDDR*1	Initialized	_	_	_	_	_
PEODR*1	Initialized	_	_	_	_	_
PFODR*1	Initialized	_	_	_	_	_
PEPIN*1	_	_	_	_	_	_
PEDDR*1	Initialized	_	_	_	_	_
PFPIN*1	_	_	_	_	_	_
PFDDR*1	Initialized	_	_	_	_	_
PCODR*1	Initialized	_	_	_	_	_
PDODR*1	Initialized	_	_	_	_	_
PCPIN*1	_	_	_	_	_	_
PCDDR*1	Initialized	_	_	_	_	_
PDPIN*1	_	_	_	_	_	_
PDDDR*1	Initialized	_	_	_	_	_
HICR2	Initialized	_	_	_	_	_
IDR_3	_	_	_	_	_	_
ODR_3	_	_	_	_	_	_
STR_3	Initialized	_	_	_	_	_
IDR_4	_	_	_	_	_	_
ODR_4	_	_	_	_	_	_
STR_4	Initialized	_	_	_	_	_

HICR0

HICR1

Initialized

Initialized

Rev. 3.00 Mar 21, 2006 pag REJ09

Initial

Initial

Initial

Initial Initial

Initial Initial Initial

Initial

Initial Initial Initial

Initial

Initial Initial

Initial Initial Initial Initial

ICRC	Initialized	_	_	_	_	_	_
ISR	Initialized	_	_	_	_	_	_
ISCRH	Initialized	_	_	_	_	_	_
ISCRL	Initialized	_	_	_	_	_	_
DTCERA	Initialized	_	_	_	_	_	_
DTCERB	Initialized	_	_	_	_	_	_
DTCERC	Initialized	_	_	_	_	_	_
DTCERD	Initialized	_	_	_	_	_	_
DTCERE	Initialized	_	_	_	_	_	_
DTVECR	Initialized	_	_	_	_	_	_
ABRKCR	Initialized	_	_	_	_	_	_
BARA	Initialized	_	_	_	_	_	_
BARB	Initialized	_	_	_	_	_	_
BARC	Initialized	_	_	_	_	_	_
FLMCR1	Initialized	_	Initialized	_	Initialized	Initialized	_
FLMCR2	Initialized	_	Initialized	_	Initialized	Initialized	_

Initialized

Initializ Initializ

Initializ

Initializ Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ
Initializ

KBCRH_1

KBCRL_1

KBBR 1

KBCRH_2

KBCRL_2

KBBR_2

KBCOMP

DDCSWR

ICRA

ICRB

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

RDR_1	Initialized	_	Initialized	_	Initialized	Initialized
SCMR_1	Initialized	_	Initialized	_	Initialized	Initialized
ICDR_1	_	_	_	_	_	_
SARX_1	Initialized	_	_	_	_	_
ICMR_1	Initialized	_	_	_	_	_
SAR_1	Initialized	_	_	_	_	_
TIER	Initialized	_	_	_	_	_
TCSR	Initialized	_	_	_	_	_
FRCH	Initialized	_	_	_	_	_
FRCL	Initialized	_	_	_	_	_
OCRAH	Initialized	_	_	_	_	_
OCRBH	Initialized	_	_	_	_	_
OCRAL	Initialized	_	_	_	_	_
OCRBL	Initialized	_	_	_	_	_
TCR	Initialized	_	_	_	_	_
TOCR	Initialized	_	_	_	_	_
ICRAH	Initialized	_	_	_	_	_
OCRARH	Initialized	_	_	_	_	_

Initialized

LPWRCR

MSTPCRH

MSTPCRL

SMR_1

ICCR_1

BRR_1

ICSR 1

SCR_1

TDR_1

SSR_1

Initialized

Initial

Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial Initial

REJ09

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

BRR_2	Initialized	_	Initialized	_	Initialized	Initialized
SCR_2	Initialized	_	Initialized	_	Initialized	Initialized
TDR_2	Initialized	_	Initialized	_	Initialized	Initialized
SSR_2	Initialized	_	Initialized	_	Initialized	Initialized
RDR_2	Initialized	_	Initialized	_	Initialized	Initialized
SCMR_2	Initialized	_	_	_	_	_
DACNTH	Initialized	_	Initialized	_	Initialized	Initialized
DADRBH	Initialized	_	Initialized	_	Initialized	Initialized
DACNTL	Initialized	_	Initialized	_	Initialized	Initialized
DADRBL	Initialized	_	Initialized	_	Initialized	Initialized
TCSR_0	Initialized	_	_	_	_	_
TCNT_0	Initialized	_	_	_	_	_
PAODR	Initialized	_	_	_	_	_
PAPIN	_	_	_	_	_	_
PADDR	Initialized	_	_	_	_	_
P1PCR	Initialized	_	_	_	_	_
P2PCR	Initialized	_	_	_	_	_

Initialized

Initializ

Initializ

Initializ

Initializ

Initializ Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ Initializ Initializ Initializ

Initializ Initializ Initializ

Initialized

OCRAFL

OCRDMH

OCRDML

ICRCH

ICRCL

ICRDH

ICRDL

SMR_2

DACR

DADRAH

DADRAL

Initialized

P4DR	Initialized	_	_	_	_	_
P5DDR	Initialized	_	_	_	_	_
P6DDR	Initialized	_	_	_	_	_
P5DR	Initialized	_	_	_	_	_
P6DR	Initialized	_	_	_	_	_
PBODR	Initialized	_	_	_	_	_
PBPIN	_	_	_	_	_	_
P8DDR	Initialized	_	_	_	_	_
P7PIN	_	_	_	_	_	_
PBDDR	Initialized	_	_	_	_	_
P8DR	Initialized	_	_	_	_	_
P9DDR	Initialized	_	_	_	_	_
P9DR	Initialized	_	_	_	_	_
IER	Initialized	_	_	_	_	_
STCR	Initialized	_	_	_	_	_
SYSCR	Initialized	_	_	_	_	_
MDCR	Initialized	_	_	_	_	_
BCR	Initialized	_	_	_	_	_
WSCR	Initialized	_	_	_	_	_
TCR_0	Initialized	_	_	_	_	_
TCR_1	Initialized	_	_	_	_	_
TCSR_0	Initialized	_	_	_	_	_
TCSR_1	Initialized	_	_	_	_	_
TCORA_0	Initialized	_	_	_	_	_
TCORA_1	Initialized	_	_	_	_	_

P3DDR

P4DDR

P3DR

Initialized

Initialized

Initialized

Rev. 3.00 Mar 21, 2006 pag

Initial

Initial

Initial

Initial
Initial
Initial
Initial
Initial
Initial

Initial

Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial

Initial

Initial
Initial
Initial
Initial
Initial
Initial
Initial
Initial

REJ0

SSR_0	Initialized	_	Initialized	_	Initialized	Initialized
RDR_0	Initialized	_	Initialized	_	Initialized	Initialized
SCMR_0	Initialized	_	Initialized	_	Initialized	Initialized
ICDR_0	_	_	_	_	_	_
SARX_0	Initialized	_	_	_	_	_
ICMR_0	Initialized	_	_	_	_	_
SAR_0	Initialized	_	_	_	_	_
ADDRAH	Initialized	_	Initialized	_	Initialized	Initialized
ADDRAL	Initialized	_	Initialized	_	Initialized	Initialized
ADDRBH	Initialized	_	Initialized	_	Initialized	Initialized
ADDRBL	Initialized	_	Initialized	_	Initialized	Initialized
ADDRCH	Initialized	_	Initialized	_	Initialized	Initialized
ADDRCL	Initialized	_	Initialized	_	Initialized	Initialized
ADDRDH	Initialized	_	Initialized	_	Initialized	Initialized
ADDRDL	Initialized	_	Initialized	_	Initialized	Initialized
ADCSR	Initialized	_	Initialized	_	Initialized	Initialized

Initialized

PWOERA

PWDPRB

PWDPRA

PWDR0 to

PWDR15 SMR_0

ICCR 0

BRR_0

ICSR_0

SCR_0

TDR_0

PWSL

Initialized

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ Initializ

Initializ

Initializ Initializ

Initializ

Initializ

Initializ Initializ Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initializ

Initialized

TCSR_X	Initialized	_	_	_	_	_
TCSR_Y	Initialized	_	_	_	_	_
KMPCR	Initialized	_	_	_	_	_
TICRR	Initialized	_	_	_	_	_
TCORA_Y	Initialized	_	_	_	_	_
KMIMRA	Initialized	_	_	_	_	_
TICRF	Initialized	_	_	_	_	_
TCORB_Y	Initialized	_	_	_	_	_
IDR_1	_	_	_	_	_	_
TCNT_X	Initialized	_	_	_	_	_
TCNT_Y	Initialized	_	_	_	_	_
ODR_1	_	_	_	_	_	_
TCORC	Initialized	_	_	_	_	_
TISR	Initialized	_	_	_	_	_
STR_1	Initialized	_	_	_	_	_
TCORA_X	Initialized	_	_	_	_	_
TCORB_X	Initialized	_	_	_	_	_
DADR0	Initialized	_	_	_	_	_
DADR1	Initialized	_	_	_	_	_
DACR	Initialized	_	_	_	_	_
IDR_2	_	_	_	_	_	_
TCONRI	Initialized	_	_	_	_	_
ODR_2	_					
	•			•		

ICK_X

TCR_Y

KMIMR

IIIIIIaiizeu

Initialized

Initialized

IIIIIIai

Initial

Initial Initial Initial Initial Initial Initial Initial Initial Initial

Initial Initial

Initial Initial Initial Initial Initial Initial Initial Initial

Initial

REJ0

- - 2. Not supported by the H8S/2148B and H8S/2145B (5-V version).

Rev. 3.00 Mar 21, 2006 page 688 of 788 REJ09B0300-0300

RENESAS

H'FE1C	PCNOCR		
H'FE1D	PDNOCR		
H'FE20	TWR0MW	MSTP = 0, (HI12E = 0)*	MSTP = 0, (HI12E = 0)*
	TWR0SW		
H'FE21	TWR1		
H'FE22	TWR2		
H'FE23	TWR3		
H'FE24	TWR4		
H'FE25	TWR5		
H'FE26	TWR6		
H'FE27	TWR7		
H'FE28	TWR8		
H'FE29	TWR9		
H'FE2A	TWR10		
H'FE2B	TWR11		
H'FE2C	TWR12		
H'FE2D	TWR13		
H'FE2E	TWR14		
H'FE2F	TWR15		

H'FE36	SIRQCR0			
H'FE37	SIRQCR1			
H'FE38	IDR1]		
H'FE39	ODR1			
H'FE3A	STR1			
H'FE3C	IDR2			
H'FE3D	ODR2			
H'FE3E	STR2			
H'FE3F	HISEL			
H'FE40	HICR0			
H'FE41	HICR1			
H'FE42	HICR2			
H'FE43	HICR3			
H'FE44	WUEMRB	No condition	No condition	IN
H'FE46	PGODR	_	No condition	PC
H'FE47	PGPIN (read)			
	PGDDR (write)			
H'FE48	PEODR			
H'FE49	PFODR			
H'FE4A	PEPIN (read)			
	PEDDR (write)			
H'FE4B	PFPIN (read)			
	PFDDR (write)	1		
H'FE4C	PCODR	1		

Rev. 3.00 Mar 21, 2006 page 690 of 788 REJ09B0300-0300

PDODR

H'FE4D

H'FE81	IDR_3			
H'FE82	ODR_3			
H'FE83	STR_3			
H'FE84	IDR_4			
H'FE85	ODR_4			
H'FE86	STR_4			
H'FED4	ICXR_0	No condition	No condition	II
H'FED5	ICXR_1			П
H'FED8	KBCRH_0	MSTP2 = 0	MSTP2 = 0	K
H'FED9	KBCRL_0			b
H'FEDA	KBBR_0			
H'FEDC	KBCRH_1			
H'FEDD	KBCRL_1			
H'FEDE	KBBR_1			
H'FEE0	KBCRH_2			
H'FEE1	KBCRL_2			
H'FEE2	KBBR_2			
H'FEE4	KBCOMP	No condition	No condition	lı
	222212			е
H'FEE6	DDCSWR	MSTP4 = 0	MSTP4 = 0	
H'FEE8	ICRA	No condition	No condition	II
H'FEE9	ICRB			
H'FEEA	ICRC			
H'FEEB	ISR			

H'FEEC

H'FEED

ISCRH

ISCRL

BARA		
BARB		
BARC		
FLMCR1	FLSHE = 1 in STCR	FLSHE = 1 in STCR
FLMCR2		
PCSR	FLSHE = 0 in STCR	FLSHE = 0 in STCR
EBR1	FLSHE = 1 in STCR	FLSHE = 1 in STCR
SYSCR2	FLSHE = 0 in STCR	FLSHE = 0 in STCR
EBR2	FLSHE = 1 in STCR	FLSHE = 1 in STCR
SBYCR	FLSHE = 0 in STCR	FLSHE = 0 in STCR
LPWRCR		
MSTPCRH		
MSTPCRL		
SMR_1	MSTP6 = 0, IICE = 0 in STCR	MSTP6 = 0,IICE = 0 in STCR
ICCR_1	MSTP3 = 0, IICE = 1 in STCR	MSTP3 = 0, IICE = 1 in STCR
BRR_1	MSTP6 = 0, IICE = 0 in STCR	MSTP6 = 0, IICE = 0 in STCR
ICSR_1	MSTP3 = 0, IICE = 1 in STCR	MSTP3 = 0, IICE = 1 in STCR
	BARB BARC FLMCR1 FLMCR2 PCSR EBR1 SYSCR2 EBR2 SBYCR LPWRCR MSTPCRH MSTPCRL SMR_1 ICCR_1 BRR_1	BARB BARC FLMCR1 FLSHE = 1 in STCR FLMCR2 PCSR FLSHE = 0 in STCR EBR1 FLSHE = 1 in STCR SYSCR2 FLSHE = 0 in STCR EBR2 FLSHE = 0 in STCR EBR2 FLSHE = 0 in STCR EBR2 FLSHE = 0 in STCR SYSCR2 FLSHE = 0 in STCR ICSR_1 MSTPCRH MSTPCRH MSTPCRL MSTP6 = 0, IICE = 0 in STCR BRR_1 MSTP6 = 0, IICE = 1 in STCR BRR_1 MSTP6 = 0, IICE = 1 in STCR ICSR_1 MSTP3 = 0, IICE = 1 in STCR

No condition

No condition

IN

FL

Р١ FL

S١

FL

S١

S

IIC

S

IIC

H'FEF3

H'FEF4

DTVECR

ABRKCR

H'FF90	TIER	MSTP13 = 0		MSTP13 = 0
H'FF91	TCSR			
H'FF92	FRCH			
H'FF93	FRCL			
H'FF94	OCRAH	MSTP13 = 0	OCRS = 0 in TOCR	MSTP13 = 0
	OCRBH		OCRS = 1 in TOCR	
H'FF95	OCRAL		OCRS = 0 in TOCR	
	OCRBL		OCRS = 1 in TOCR	
H'FF96	TCR			
H'FF97	TOCR			
H'FF98	ICRAH		ICRS = 0 in TOCR	
	OCRARH		ICRS = 1 in TOCR	
	OCRARH			

STCR

STCR

MSTP3 = 0,

IICE = 1 in

ICDR_1

SARX_1

ICMR_1

SAR_1

H'FF8F

STCR

STCR

MSTP3 = 0,

IICE = 1 in

ICE = 1 in

ICE = 0 in

ICE = 1 in

ICE = 0 in

OCRS = 0 in F

OCRS = 0 in TOCR OCRS = 1 in TOCR

ICRS = 0 in TOCR ICRS = 1 in TOCR

REJ09

TOCR

OCRS = 1 in

TOCR

ICCR1

ICCR1

ICCR1

ICCR1

ICE = 1 in

ICE = 0 in

ICE = 1 in

ICE = 0 in

ICCR1

ICCR1

ICCR1

ICCR1

H'FF9B	ICRBL		ICRS = 0 in TOCR		ICRS = 0 in TOCR
	OCRAFL		ICRS = 1 in TOCR		ICRS = 1 in TOCR
H'FF9C	ICRCH		ICRS = 0 in TOCR		ICRS = 0 in TOCR
	OCRDMH		ICRS = 1 in TOCR		ICRS = 1 in TOCR
H'FF9D	ICRCL		ICRS = 0 in TOCR		ICRS = 0 in TOCR
	OCRDML		ICRS = 1 in TOCR		ICRS = 1 in TOCR
H'FF9E	ICRDH				
H'FF9F	ICRDL				
H'FFA0	SMR_2	MSTP5 = 0, III	CE = 0 in	MSTP5 = 0, III	CE = 0 in
	DADRAH	MSTP11 = 0, IICE = 1 in STCR	REGS = 0 in DACNT/ DADRB	MSTP11 = 0, IICE = 1 in STCR	REGS = 0 in DACNT/ DADRB
	DACR		REGS = 1 in DACNT/ DADRB		REGS = 1 in DACNT/ DADRB
H'FFA1	BRR_2	MSTP5 = 0, IICE = 0 in STCR		MSTP5 = 0, III	CE = 0 in
		SICK			

OCRAFH

.

TOCR

ICRS = 1 in

. ICRS = 1 in

TOCR

S

P۱

S

Р١

Rev. 3.00 Mar 21, 2006 page 694 of 788

		STCR		STCR		
	DADRBH	MSTP11 = 0, IICE = 1 in STCR	REGS = 0 in DACNT/ DADRB	MSTP11 = 0, IICE = 1 in STCR	REGS = 0 in DACNT/ DADRB	P
	DACNTH		REGS = 1 in DACNT/ DADRB		REGS = 1 in DACNT/ DADRB	
H'FFA7	DADRBL		REGS = 0 in DACNT/ DADRB		REGS = 0 in DACNT/ DADRB	
	DACNTL		REGS = 1 in DACNT/ DADRB		REGS = 1 in DACNT/ DADRB	
H'FFA8	TCSR_0	No condition		No condition		٧
	TCNT_0 (write)					
H'FFA9	TCNT_0 (read)					
H'FFAA	PAODR	No condition		No condition		P
H'FFAB	PAPIN (read)					
	PADDR (write)					
H'FFAC	P1PCR					
H'FFAD	P2PCR					
H'FFAE	P3PCR					
H'FFB0	P1DDR					
H'FFB1	P2DDR					
H'FFB2	P1DR					
H'FFB3	P2DR					
H'FFB4	P3DDR					

H'FFB5

P4DDR

H'FFBB	P6DR			
H'FFBC	PBODR			
H'FFBD	P8DDR (write)			
	PBPIN (read)			
H'FFBE	P7PIN (read)	1		
	PBDDR (write)	1		
H'FFBF	P8DR			
H'FFC0	P9DDR			
H'FFC1	P9DR			
H'FFC2	IER	No condition	No condition	IN
H'FFC3	STCR	No condition	No condition	S
H'FFC4	SYSCR			
H'FFC5	MDCR			
H'FFC6	BCR	No condition	No condition	BS
H'FFC7	WSCR			
H'FFC8	TCR_0	MSTP12 = 0	MSTP12 = 0	TN
H'FFC9	TCR_1			TN
H'FFCA	TCSR_0			
H'FFCB	TCSR_1			
H'FFCC	TCORA_0			
H'FFCD	TCORA_1			
H'FFCE	TCORB_0			
H'FFCF	TCORB_1			

Rev. 3.00 Mar 21, 2006 page 696 of 788 REJ09B0300-0300 RENESAS

H'FFD0

H'FFD1

TCNT_0

TCNT_1

		STCR		STCR	
H'FFD9	BRR_0	·		MSTP7 = 0, IICE = 0 in STCR	
	ICSR_0 MSTP4 = 0, IICE = 1 in STCR		MSTP4 = 0, IICE = 1 in STCR		
H'FFDA	SCR_0	MSTP7 = 0		MSTP7 = 0	
H'FFDB	TDR_0				
H'FFDC	SSR_0				
H'FFDD	RDR_0				
H'FFDE	SCMR_0	MSTP7 = 0, IICE = 0 in STCR		MSTP7 = 0, IICE = 0 in STCR	
	ICDR_0	MSTP4 = 0, IICE = 1 in	ICE = 1 in ICCR0	IICE = 1 in STCR	ICE = 1 in ICCR0
	SARX_0	STCR	ICE = 0 in ICCR0		ICE = 0 in ICCR0
H'FFDF	DF	_	ICE = 1 in ICCR0	MSTP4 = 0, IICE = 1 in	ICE = 1 in ICCR0
	SAR_0	STCR	ICE = 0 in ICCR0	STCR	ICE = 0 in ICCR0

MSTP7 = 0, IICE = 0 in

MSTP4 = 0, IICE = 1 in

STCR

H'FFD7

H'FFD8

PWDR0 to PWDR15

SMR_0

ICCR_0

REJ0

MSTP7 = 0, IICE = 0 in

MSTP4 = 0, IICE = 1 in

STCR

5

5

H'FFE5	ADDRCL						
H'FFE6	ADDRDH						
H'FFE7	ADDRDL						
H'FFE8	ADCSR	1					
H'FFE9	ADCR						
H'FFEA	TCSR_1	No condition		No condition		W	
	TCNT_1 (write)	1					
H'FFEB	TCNT_1 (read)						
H'FFF0	HICR	MSTP2 = 0, HIE = 1 in SYSCR		MSTP2 = 0, HIE = 1 in SYSCR		XE	
	TCR_X	MSTP8 = 0, HIE = 0 in	TMRX/Y = 0 in TCONRS	MSTP8 = 0, HIE = 0 in	TMRX/Y = 0 in TCONRS	TN	
	TCR_Y	SYSCR	TMRX/Y = 1 in TCONRS	SYSCR	TMRX/Y = 1 in TCONRS	TN	
H'FFF1	KMIMR	MSTP2 = 0, HIE = 1 in SYSCR				IIE = 1 in	IN
	TCSR_X	MSTP8 = 0, HIE = 0 in	TMRX/Y = 0 in TCONRS	MSTP8 = 0, HIE = 0 in	TMRX/Y = 0 in TCONRS	TN	
	TCSR_Y	SYSCR	TMRX/Y = 1	SYSCR	TMRX/Y = 1	ΤN	

H'FFF5	ODR_1	MSTP2 = 0, H SYSCR	IE = 1 in
	TCORC	MSTP8 = 0, HIE = 0 in	TMRX/Y = 0 in TCONRS
	TISR	SYSCR	TMRX/Y = 1 in TCONRS
H'FFF6	STR_1	MSTP2 = 0, H SYSCR	IE = 1 in
	TCORA_X	MSTP8 = 0,	TMRX/Y = 0
H'FFF7	TCORB_X	HIE = 0 in SYSCR	in TCONRS

H'FFF3

H'FFF4

KMIMRA

TICRF

IDR 1

TCNT_X

TCNT_Y

TCORB_Y

...

TMRX/Y = 0

in TCONRS

TMRX/Y = 1

in TCONRS

TMRX/Y = 0

in TCONRS

TMRX/Y = 1

in TCONRS

MSTP2 = 0, HIE = 1 in

MSTP2 = 0, HIE = 1 in

SYSCR

MSTP8 = 0,

HIE = 0 in

SYSCR

SYSCR

MSTP8 = 0,

HIE = 0 in

SYSCR

TMRX/Y = 0 in TCONRS

REJ09

...

TMRX/Y = 0

in TCONRS

TMRX/Y = 1

in TCONRS

TMRX/Y = 0

in TCONRS

TMRX/Y = 1

in TCONRS

TMRX/Y = 0

in TCONRS

TMRX/Y = 1 in TCONRS

MSTP2 = 0, HIE = 1 in

Rev. 3.00 Mar 21, 2006 pag

SYSCR

MSTP8 = 0,

HIE = 0 in

SYSCR

SYSCR

MSTP8 = 0.

HIE = 0 in

SYSCR

SYSCR

SYSCR

SYSCR MSTP8 = 0,

HIE = 0 in SYSCR

MSTP8 = 0, HIE = 0 in

	TCONRI	MSTP8 = 0, HIE = 0 in SYSCR	MSTP8 = 0, HIE = 0 in SYSCR
H'FFFD	ODR_2	MSTP2 = 0, HIE = 1 in SYSCR	MSTP2 = 0, HIE = 1 in SYSCR
	TCONRO	MSTP8 = 0, HIE = 0 in SYSCR	MSTP8 = 0, HIE = 0 in SYSCR
H'FFFE	STR_2	MSTP2 = 0, HIE = 1 in SYSCR	MSTP2 = 0, HIE = 1 in SYSCR
	TCONRS	MSTP8 = 0, HIE = 0 in	MSTP8 = 0, HIE = 0 in
H'FFFF	SEDGR	SYSCR	SYSCR

Ti CO

XE

Tit

СО

XE

Tit

СО H'E Although setting the XBS corresponding bits does not affected to the LPC or Note: the HI12E bit in SYSCR2 must not be set to 1 to use the LPC according to tl depending on the program development tool (emulator) configuration.

REJ09B0300-0300

Table 27.1 lists the absolute maximum ratings.

Table 27.1 Absolute Maximum Ratings

Item	Symbol	Value
Power supply voltage	V_{cc}, V_{cl}	-0.3 to +4.3
I/O buffer power supply voltage	V _{cc} B	-0.3 to +7.0
Input voltage (except ports 6, 7, and A, P97, P86, P52, and P42) (Ports C to G are added in the H8S/2160B and H8S/2161B.)	V _{in}	-0.3 to $V_{cc} + 0.3$
Input voltage (CIN input not selected for port 6)	V_{in}	-0.3 to V_{cc} + 0.3
Input voltage (CIN input not selected for port A)	V_{in}	-0.3 to $V_{cc}B + 0.3$
Input voltage (CIN input selected for port 6)	V_{in}	-0.3 V to lower of voltag V_{cc} + 0.3 and AV_{cc} + 0.3
Input voltage (CIN input selected for port A)	V_{in}	-0.3 V to lower of voltag $V_{cc}B + 0.3$ and $AV_{cc} + 0$
Input voltage (P97, P86, P52, P42)	V _{in}	-0.3 to +7.0
Input voltage (port 7)	V _{in}	-0.3 to AV _{cc} + 0.3
Reference supply voltage	AV_{ref}	-0.3 to AV _{cc} + 0.3
Analog power supply voltage	AV _{cc}	-0.3 to +4.3
Analog input voltage	$V_{\scriptscriptstyle AN}$	-0.3 to AV _{cc} + 0.3
Operating temperature	T _{opr}	-20 to +75
Operating temperature (flash memory programming/erasing)	T _{opr}	-20 to +75
Storage temperature	T _{stg}	-55 to +125

Cumbal Value

Caution: Permanent damage to the chip may result if absolute maximum ratings are e Ensure so that the impressed voltage does not exceed 4.3 V for pins for which maximum rating is determined by the voltage on the V_{cc} , AV_{cc} , and V_{cL} pins, opins for which the maximum rating is determined by $V_{cc}B$.

The V_{cc} and V_{cl} pins must be connected to the Vcc power supply.

Rev. 3.00 Mar 21, 2006 pag

Schmitt		(1)*8	\/ -	V ×02			V
trigger input	P67 to P60*2*6, KIN15 to KIN8*7,	(1)	V _T	$V_{cc} \times 0.2$ $V_{cc}B \times 0.2$		_	V
voltage	IRQ2 to IRQ0*3, IRQ5 to IRQ3		V_T^+	_	_	$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$	
			$V_T^+ - V_T^-$	$V_{cc} \times 0.05$ $V_{cc} B \times 0.05$	_	_	-
Schmitt	P67 to P60	_	V _T	$V_{cc} \times 0.2$	_	_	V
trigger input voltage (in	(KWUL = 00)		V _T	_	_	$V_{cc} \times 0.7$	
level		_	$V_{\scriptscriptstyle T}^{^+} - V_{\scriptscriptstyle T}^{^-}$	$V_{cc} \times 0.05$	_	_	
switching)*6	P67 to P60	_	V_{T}^{-}	$V_{cc} \times 0.3$	_	_	
	(KWUL = 01)		V_T^+	_	_	$V_{\text{cc}} \times 0.7$	
			$V_{\scriptscriptstyle T}^{^+} - V_{\scriptscriptstyle T}^{^-}$	$V_{cc} \times 0.05$	_	_	
	P67 to P60		V_{T}^{-}	$V_{cc} \times 0.4$	_	_	
	(KWUL = 10)		V _T ⁺	_	_	$V_{\text{cc}} \times 0.8$	
		_	$V_T^+ - V_T^-$	$V_{cc} \times 0.03$	_	_	
	P67 to P60		V_{T}^{-}	$V_{cc} \times 0.45$	_	_	
	(KWUL = 11)		V _T ⁺	_	_	$V_{cc} \times 0.9$	_
			$V_{\scriptscriptstyle T}^{\;\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\;\scriptscriptstyle -}$	0.05	_	_	
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V_{IH}	$V_{cc} \times 0.9$	_	$V_{cc} + 0.3$	V
	EXTAL	=		$V_{cc} \times 0.7$	_	V _{cc} + 0.3	
	PA7 to PA0*7			$V_{cc}B \times 0.7$		$V_{cc}B + 0.3$	

Symbol Min

Typ Max

Unit

Rev. 3.00 Mar 21, 2006 page 702 of 788 REJ09B0300-0300

Item

	H8S/2161B.)					
Input low voltage	RES, STBY, (3 MD1, MD0) V _{IL}	-0.3	_	$V_{cc} \times 0.1$	V
	PA7 to PA0		-0.3	_	V _{cc} B × 0.2	_
					0.8	_
	NMI, EXTAL, input pins except (1) and (3) above (Ports C to G are added in the H8S/2160B and H8S/2161B.))	-0.3	_	V _{cc} ×0.2	_
Output high voltage	(except P97,	V _{OH}	$V_{cc} - 0$ $V_{cc}B -$		_	V
	P86, P52, and P42)*4*5*8 (Ports C to F are added in the H8S/2160B and H8S/2161B.)		V _{cc} - 1 V _{cc} B -		_	V
	P97, P86, P52, and P42*4 (Port G is added in the H8S/2160B and H8S/2161B.)		0.5	_	_	V

H8S/2160B and

Rev. 3.00 Mar 21, 2006 pag REJ09

	RESO	_	_	0.4	V	ľ
1.	Do not leave the AVcc, AVref, and A	Vss pins	open even	if the A/D	converte	r a
	converter are not used.					
	Even if the A/D converter and D/A of	converter	are not us	ed, apply	a value ir	n th
	V to 3.6 V to AV _{cc} and AV _{ref} pins by	connect	ion to the p	ower supp	oly (V _{cc}),	or

Notes: 1

method. Ensure that $AV_{ref} \leq AV_{CC}$. 2. P67 to P60 include peripheral module inputs multiplexed on those pins.

- 3. IRQ2 includes the ADTRG signal multiplexed on that pin.
- P52/SCK0/SCL0, P97/SDA0, P86/SCK1/SCL1, P42/SCK2/SDA1, and port 0 NMOS push-pull outputs.

When the SCL0, SDA0, SCL1, or SDA1 (ICE = 1) pin is used as an output, i open-drain output. Therefore, an external pull-up resistor must be connected output high level.

P52/SCK0, P97, P86/SCK1, P42/SCK2 (ICE = 0), and port G high levels are NMOS.

An external pull-up resistor is necessary to provide high-level output from SC and SCK2.

- When IICS = 0, ICE = 0, and KBIOE = 0. Low-level output when the bus driven is selected is determined separately. 6. The upper limit of the port 6 applied voltage is V_{cc} + 0.3 V when CIN input is
- selected, and the lower of V_{cc} + 0.3 V and AV_{cc} + 0.3 V when CIN input is se When a pin is in output mode, the output voltage is equivalent to the applied 7. The upper limit of the port A applied voltage is $V_{cc}B + 0.3 V$ when CIN input
- selected, and the lower of $V_{cc}B$ + 0.3 V and AV_{cc} + 0.3 V when CIN input is When a pin is in output mode, the output voltage is equivalent to the applied
- 8. The port A characteristics depend on V_{cc}B, and the other pins characteristics on V_{cc}. 9. For flash memory programming/erasure, the applicable range is $V_{cc} = 3.0 \text{ V}$

Rev. 3.00 Mar 21, 2006 page 704 of 788

	Port 7		_	_	_	1.0	<u> </u>
Three-state leakage current (off state)	Ports 1 to 6, 8, 9, and B (Ports C to are added in the H8S/2160B and H8S/2161B.)	A*4, G	I _{TSI}	_	_	1.0	μА
Input	Ports 1 to 3		-I _P	5	_	150	μΑ
pull-up MOS current	Ports 6 (P6PUE = and B (Ports C to F are added in the H8S/2160B and H8S/2161B.)	: 0)	_	30	_	300	
	Ports A*4		_	30	_	600	
	Port 6 (P6PUE =	1)	_	3	_	100	
Input	RES	(4)	C _{in}	_	_	80	pF
capacitance	NMI	•		_	_	50	pF
	P52, P97, P42, P86, PA7 to PA2	•		_	_	20	pF
	Input pins except above (Ports C to G are added in the H8S/2160B and	(4)	_	_	_	15	pF

MD0

H8S/2161B.)

supply current		conversion			2.0	5.0		
		Idle		_	0.01	5.0	μA	A to
Analog	pow	er supply voltage*1	AV _{cc}	2.7	_	3.6	V	C
				2.0	_	3.6		lo
RAM st	andb	oy voltage	V_{RAM}	2.0	_	_	V	
Notes:		Do not leave the AV _{cc} , converter are not used.	AV_{ref} , and AV_{ref}	AV _{ss} pins o	pen even i	if the A/D	converte	r ar
	'	Even if the A/D convert V to 3.6 V to AV $_{ m cc}$ and R	AV _{ref} pins by					
		Current dissipation values are for V_{IH} min = V_{CC} – 0.2 V, V_{CC} B – 0.2 V, and						

During A/D conversion Al_{ref}

During A/D, D/A

supply

current

power

Reference

Idle

- $-0.2 \text{ V}, \text{ V}_{cc}\text{B} 0.2 \text{ V}, \text{ and}$ V_{\parallel} max = 0.2 V with all output pins unloaded and the on-chip pull-up MOSs state. 3. The values are for $V_{RAM} \le V_{CC} < 2.7 \text{ V}$, $V_{IH} \min = V_{CC} - 0.2 \text{ V}$, $V_{CC}B - 0.2 \text{ V}$, and
- $V_{\parallel} \max = 0.2 V.$

0.01

0.5

2.0

5.0

1.0

5.0

μΑ

mΑ

t

4. The port A characteristics depend on $V_{cc}B$, and the other pins characteristics

5. For flash memory programming/erasure, the applicable range is V_{cc} = 3.0 V

Rev. 3.00 Mar 21, 2006 page 706 of 788

· ·		PB1, PB0
Note:	*	Do not leave the AV _{CC} , AV _{ref} , and AV _{SS} pins open even if the A/D converter at converter are not used. Even if the A/D converter and D/A converter are not used, apply a value in 2.0 V to 3.6 V to AV _{CC} and AV _{ref} pins by connection to the power supply (V _{CC} other method. Ensure that AV _{ref} \leq AV _{CC} .

V_{IL}

 V_{OH}

 $V_{\scriptscriptstyle OL}$

PB1, PB0

P37 to P30,

P83 to P80, PB1, PB0

P82 to P80, PB1, PB0

P82 to P80,

P37, P33 to P30,

P37, P33 to P30,

Input low

Output high

Output low

voltage

voltage

voltage

 $V_{cc} \times 0.3$

 $V_{cc} \times 0.1$

 $V_{cc} \times 0.9$

٧

٧

٧

 $I_{OH} = -$

 $I_{OL} = 1$

REJ0

	runction selected)		
	Ports 1 to 3		
	RESO		
	Other output pins		
Permissible output	Total of ports 1 to 3		
low current (total)	Total of all output pins, including the above		

All output pins

Total of all output pins

output line, as show in figures 27.1 and 27.2.

Permissible output

Permissible output

high current (per pin)

_		1
_	_	1
		40

2

60

_	_	2
	_	30

Darlington pair

high current (total) Notes: 1. To protect chip reliability, do not exceed the output current values in table 27 2. When driving a Darlington pair or LED, always insert a current-limiting resist

 $\sum I_{OI}$

This LSI $2 k\Omega$ Port H

Figure 27.1 Darlington Pair Drive Circuit (Example)

Figure 27.2 LED Drive Circuit (Example)

Table 27.4 Bus Drive Characteristics

Conditions: $V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}, V_{ss} = 0 \text{ V}, Ta = -20 \text{ to } +75^{\circ}\text{C}$

Applicable Pins: SCL1, SCL0, SDA1, SDA0 (bus drive function selected)

Item	Symbol	Min	Тур	Max	Unit	Test Con
Schmitt trigger	V _T -	$V_{cc} \times 0.3$	_	_	V	V _{cc} = 2.7 \
input voltage	V _T ⁺	_	_	$V_{cc} \times 0.7$	_	$V_{cc} = 2.7$
	$V_{T}^{+}-V_{T}^{-}$	$V_{cc} \times 0.05$	_	_	_	V _{CC} = 2.7 \
Input high voltage	V _{IH}	$V_{cc} \times 0.7$	_	5.5	V	V _{cc} = 2.7 \
Input low voltage	V _{IL}	-0.5	_	$V_{cc} \times 0.3$	_	V _{CC} = 2.7 \
Output low voltage	V _{OL}	_	_	0.5	V	$I_{OL} = 8 \text{ mA}$
		_	_	0.4	_	$I_{OL} = 3 \text{ mA}$
Input capacitance	C _{in}	_	_	20	pF	$V_{in} = 0 \text{ V, 1}$ $T_{a} = 25^{\circ}\text{C}$
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μΑ	$V_{in} = 0.5 \text{ to}$
SCL, SDA output fall time	t _{Of}	20 + 0.1Cb	_	250	ns	V _{cc} = 2.7 \

Rev. 3.00 Mar 21, 2006 pag REJ0

			-OL
_	_	0.4	$I_{OL} = 3 \text{ mA}$

27.1.3 **AC Characteristics**

Figure 27.3 shows the test conditions for the AC characteristics.

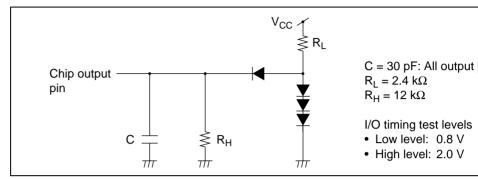


Figure 27.3 Output Load Circuit

		1	10 MHz	
Item	Symbol	Min	Max	Unit
Clock cycle time	t _{cyc}	100	500	ns
Clock high pulse width	t _{ch}	30	_	ns
Clock low pulse width	t _{cL}	30	_	ns
Clock rise time	t _{Cr}	_	20	ns
Clock fall time	t _{Cf}	_	20	ns
Oscillation settling time at reset (crystal)	t _{osc1}	20	_	ms
Oscillation settling time in software standby (crystal)	t _{osc2}	8	_	ms
External clock output stabilization delay time	t _{DEXT}	500	_	μs

Rev. 3.00 Mar 21, 2006 pag REJ09

Condition

Item	Symbol	Min	Max	Unit	С
RES setup time	t _{ress}	300		ns	Fi
RES pulse width	t _{RESW}	20		t _{cyc}	
NMI setup time (NMI)	t _{NMIS}	250		ns	Fi
NMI hold time (NMI)	t _{nmih}	10		ns	_
NMI pulse width (exiting software standby mode)	t _{NMIW}	200	_	ns	
IRQ setup time (IRQ7 to IRQ0)	t _{IRQS}	250	_	ns	_
IRQ hold time(IRQ7 to IRQ0)	t _{IRQH}	10	_	ns	_
IRQ pulse width (IRQ7, IRQ6, IRQ2 to IRQ0) (exiting software standby mode)	t _{IRQW}	200	_	ns	_

10 MHz

Rev. 3.00 Mar 21, 2006 page 712 of 788 REJ09B0300-0300

Item	Symbol	Min	Max	Unit	Co
Address delay time	t _{AD}	_	40	ns	Fi
Address setup time	t _{AS}	$0.5 \times t_{\scriptscriptstyle ext{cyc}} - 30$	_	ns	to
Address hold time	t _{AH}	$0.5 \times t_{\scriptscriptstyle ext{cyc}} - 20$	_	ns	
CS delay time (IOS)	t _{csd}	_	40	ns	
AS delay time	t _{ASD}	_	60	ns	
RD delay time 1	t _{RSD1}	_	60	ns	
RD delay time 2	t _{RSD2}	_	60	ns	
Read data setup time	t _{RDS}	35	_	ns	
Read data hold time	t _{RDH}	0	_	ns	
Read data access time 1	t _{ACC1}	_	$1.0 \times t_{\text{cyc}} - 60$	ns	
Read data access time 2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 50$	ns	
Read data access time 3	t _{ACC3}	_	$2.0 imes t_{\scriptscriptstyle cyc} - 60$	ns	
Read data access time 4	t _{ACC4}	_	$2.5 imes t_{\scriptscriptstyle ext{cyc}} - 50$	ns	
Read data access time 5	t _{ACC5}	_	$3.0 imes t_{ ext{cyc}} - 60$	ns	
HWR, LWR delay time 1	t _{wrd1}	_	60	ns	
HWR, LWR delay time 2	t _{wrd2}	_	60	ns	
HWR, LWR pulse width 1	t _{wsw1}	$1.0 \times t_{cyc} - 40$	_	ns	
HWR, LWR pulse width 2	t _{wsw2}	$1.5 \times t_{cyc} - 40$	_	ns	
Write data delay time	t _{wdd}	_	60	ns	_
Write data setup time	t _{wds}	0	_	ns	
					_

Write data hold time

WAIT setup time

WAIT hold time

20

60

10

 \mathbf{t}_{wdh}

 \mathbf{t}_{WTS}

 $\mathbf{t}_{\mathrm{wth}}$

ns

ns

ns

10 MHz

Address delay time	τ_{AD}	_	60		FIG
Address setup time	t _{AS}	$0.5 imes t_{ ext{cyc}} - 30$	_	ns	to 2
Address hold time	t _{AH}	$0.5 imes t_{ ext{cyc}} - 20$	_	ns	
CS delay time (IOS)	t _{CSD}	_	60	ns	
AS delay time	t _{ASD}	_	60	ns	
RD delay time 1	t _{RSD1}	_	60	ns	
RD delay time 2	t _{RSD2}	_	60	ns	
Read data setup time	t _{RDS}	35	_	ns	
Read data hold time	t _{RDH}	0	_	ns	
Read data access time 1	t _{ACC1}	_	$1.0 imes t_{\scriptscriptstyle ext{cyc}} - 80$	ns	
Read data access time 2	t _{ACC2}	_	$1.5 \times t_{\text{cyc}} - 50$	ns	
Read data access time 3	t _{ACC3}	_	$2.0 imes t_{\scriptscriptstyle ext{cyc}} - 80$	ns	
Read data access time 4	t _{ACC4}	_	$2.5 \times t_{_{\text{cyc}}} - 50$	ns	
Read data access time 5	t _{ACC5}	_	$3.0\times \rm t_{\rm cyc}-80$	ns	
HWR, LWR delay time 1	t _{wrd1}	_	60	ns	
HWR, LWR delay time 2	$\mathbf{t}_{_{\mathrm{WRD2}}}$	_	60	ns	
HWR, LWR pulse width 1	t _{wsw1}	$1.0 \times t_{\text{cyc}} - 40$	_	ns	
HWR, LWR pulse width 2	t _{wsw2}	$1.5 \times t_{\text{cyc}} - 40$	_	ns	
Write data delay time	t _{wdd}	_	60	ns	
Write data setup time	t _{wds}	0	_	ns	

20

60

10

ns

ns

ns

 $\mathbf{t}_{_{\mathrm{WDH}}}$

 \mathbf{t}_{WTS}

 $\mathbf{t}_{\mathrm{wth}}$

Rev. 3.00 Mar 21, 2006 page 714 of 788 REJ09B0300-0300 RENESAS

Write data hold time

WAIT setup time

WAIT hold time

				10 MHz		
		Symbol	Min	Max	Unit	Test
Output data de	lay time	t _{PWD}	_	100	ns	Figu
Input data setu	p time	t _{PRS}	50	_		
Input data hold	time	t _{PRH}	50			
Timer output de	elay time	t _{FTOD}		100	ns	Figu
Timer input set	up time	t _{FTIS}	50			
Timer clock inp	out setup time	t _{FTCS}	50			Figu
Timer clock pu	lse width					_
Single edge		t _{FTCWH}	1.5	_	t _{cyc}	_
Both edges			2.5	_		
Timer output de	elay time	t _{tmod}	_	100	ns	Figu
Timer reset inp	ut setup time	t _{TMRS}	50	_		Figu
Timer clock inp	out setup time	t _{TMCS}	50	_		Figu
Timer clock	Single edge	t _{rmcwh}	1.5		t _{cyc}	_
pulse width	Both edges	t _{TMCWL}	2.5	_		
Pulse output de	elay time	t _{PWOD}		100	ns	Figu
Input clock	Asynchronous	t _{Scyc}	4	_	t _{cyc}	Figu
cycle	Synchronous		6			
Input clock puls	se width	t _{sckw}	0.4	0.6	t _{scyc}	_
Input clock rise	time	t _{sckr}	_	1.5		_
Input clock fall	time	t _{sckf}		1.5		
-	Input data setu Input data hold Timer output de Timer input set Timer clock inp Timer clock pul Single edge Both edges Timer output de Timer reset inp Timer clock inp Timer clock pulse width Pulse output de Input clock cycle Input clock pulse Input clock rise	Both edges Timer output delay time Timer reset input setup time Timer clock input setup time Timer clock Single edge pulse width Both edges Pulse output delay time Input clock Asynchronous	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output data delay time t_{PWD} — Input data setup time t_{PRS} 50 Input data hold time t_{PRS} 50 Timer output delay time t_{FTID} — Timer input setup time t_{FTIS} 50 Timer clock input setup time t_{FTIS} 50 Timer clock pulse width Single edge t_{FTICWL} 1.5 Both edges t_{FTICWL} 2.5 Timer output delay time t_{TMOD} — Timer reset input setup time t_{TMOD} — Timer clock input setup time t_{TMOD} — Timer clock input setup time t_{TMOD} — Timer clock input setup time t_{TMOD} 50 Timer clock input setup time t_{TMOS} 50 Timer clock input setup time t_{TMCWL} 2.5 Pulse output delay time t_{TMCWL} 2.5 Pulse output delay time t_{PWOD} — Input clock Asynchronous t_{SCYC} 4 Input clock pulse width t_{SCKW} 0.4 Input clock rise time t_{SCKW} 0.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Rev. 3.00 Mar 21, 2006 pag REJ09

Condition

	RESO output pulse width	t _{RESOW}	132	_	t _{cyc}	
Note: *	Only peripheral modules that		l in subclo	ock operation		
Table 27.8	3 Timing of On-Chip Perip	oheral Modu	ıles (2)			
Condition:	$V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}, V_{cc}B$ operating frequency, $T_a = -$			$=0$ V, $\phi=$	2 MHz	to max
			Cor	ndition		
			10	MHz	_	
	Item	Symbol	Min	Max	Unit	Test
XBS read	CS/HA0 setup time	t _{HAR}	10	_	ns	Figur
cycle	CS/HA0 hold time	t _{HRA}	10	_	ns	_
	IOR pulse width	t _{HRPW}	220	_	ns	_
	HDB delay time	t _{HRD}	_	200	ns	_
	HDB hold time	t _{HRF}	0	40	ns	_
	HIRQ delay time	t _{HIRQ}		200	ns	<u>-</u> =
YRS write	CC/LIAO actus timo		10		ns	_
cycle	CS/HA0 setup time	t _{HAW}	10		113	_

50

100

50

85

25

 t_{TRGS}

 \mathbf{t}_{RESD}

Figure

Figure

ns

ns

ns

ns

ns

ns

ns

180

200

Rev. 3.00 Mar 21, 2006 page 716 of 788 REJ09B0300-0300

time

IOW pulse width

HDB hold time

GA20 delay time

HDB setup Fast A20 gate not t_{HDW}

Fast A20 gate

used

used

A/D

WDT

converter

Trigger input setup time

RESO output delay time

 $\mathbf{t}_{_{\mathrm{HWPW}}}$

 $\mathbf{t}_{\scriptscriptstyle{\mathsf{HWD}}}$

 $\boldsymbol{t}_{\text{HGA}}$

KCLK, KD input data setup time	t _{KBIS}	150	_	_	ns
KCLK, KD output delay time	$t_{_{KBOD}}$	_	_	450	ns
KCLK, KD capacitive load	Сь	_	_	400	рF

Table 27.10 I²C Bus Timing

Note:

NOLN, NO Imput data noid time

Conditions: $V_{cc}=2.7$ V to 3.6 V, $V_{ss}=0$ V, $\phi=5$ MHz to maximum operating frequency $T_a=-20$ to $+75^{\circ}C$

150

		Rating	gs		Test
Symbol	Min	Тур	Max	Unit	Conditio
t _{scl}	12	_	_	t _{cyc}	
t _{sclh}	3	_	_		_
t _{scll}	5	_	_		_
t _{sr}	_	_	7.5*		
t _{sf}	_	_	300	ns	_
t _{sp}	_	_	1	t _{cyc}	
t _{BUF}	5	_	_	t _{cyc}	_
t _{STAH}	3	_	_		_
t _{stas}	3	_	_	t _{cyc}	_
t _{stos}	3	_	_	t _{cyc}	_
t _{SDAS}	0.5	_	_		_
t _{SDAH}	0	_	_	ns	_
Сь	_	_	400	pF	_
	t _{SCL} t _{SCLH} t _{SCLH} t _{SCLL} t _{Sr} t _{Sr} t _{SP} t _{BUF} t _{STAH} t _{STAS} t _{STAS} t _{SDAS} t _{SDAH}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

details, see section 16.6, Usage Notes.

17.5 t_{cvc} can be set according to the clock selected for use by the I²C modul

Rev. 3.00 Mar 21, 2006 pag REJ09

input clock pulse width (L)	LCKL	11		
Transmit signal delay time	\mathbf{t}_{TXD}	2	_	11
Transmit signal floating delay time	t _{OFF}	_	_	28
Receive signal setup time	\mathbf{t}_{RXS}	7	_	_
Receive signal hold time	t _{RXH}	0	_	_

Rev. 3.00 Mar 21, 2006 page 718 of 788 REJ09B0300-0300

	10 MHz				
Item	Min	Тур	Max		
Resolution	10	10	10		
Conversion time	_	_	13.4		
Analog input capacitance	_	_	20		
Permissible signal-source impedance	_	_	5		
Nonlinearity error	_	_	±7.0		
Offset error	_	_	±7.5		
Full-scale error	_	_	±7.5		
Quantization error	_	_	±0.5		
Absolute accuracy	_	_	±8.0		

Rev. 3.00 Mar 21, 2006 pag REJ09

Condition

Item	Min	Тур	Max
Resolution	10	10	10
Conversion time	_	_	13.4
Analog input capacitance	_	_	20
Permissible signal-source impedance	_	_	5
Nonlinearity error	_	_	±11.0
Offset error	_	_	±11.5
Full-scale error	_	_	±11.5
Quantization error	_	_	±0.5
Absolute accuracy	_	_	±12.0

		Condition		
			10 MF	lz
	Item	Min	Тур	Max
Resolution		8	8	8
Conversion time	With 20 pF load capacitance			10
Absolute accuracy	With 2 MΩ load resistance	_	±2.0	±3.0
	With 4 MΩ load resistance			±2.0

Rev. 3.00 Mar 21, 2006 pag REJ09

		z3	8
	Wait time after P-bit clear*1	α	5
	Wait time after PSU-bit clear*1	β	5
	Wait time after PV-bit setting*1	γ	4
	Wait time after dummy write*1	ε	2
	Wait time after PV-bit clear*1	η	2
	Wait time after SWE-bit clear*1	θ	100
	Maximum programming count*1*4*5	N	_
Erase	Wait time after SWE-bit setting*1	Х	1
	Wait time after ESU-bit setting*1	у	100
	Wait time after E-bit setting*1 *6	Z	10
	Wait time after E-bit clear*1	α	10
	Wait time after ESU-bit clear*1	β	10
	Wait time after EV-bit setting*1	γ	20
	Wait time after dummy write*1	ε	2
	Wait time after EV-bit clear*1	η	4
	Wait time after SWE-bit clear*1	θ	100
	Maximum erase count*1 *6 *7	N	_

Wait time after SWE-bit setting*1

Wait time after PSU-bit setting*1

Wait time after P-bit setting*1 *4

10

100

30

200

10

10,000*9

100*8

10

1

50

28

198

 $t_{\scriptscriptstyle E}$

 $N_{\scriptscriptstyle WEC}$

 $\boldsymbol{t}_{\text{DRP}}$

Х

у

z1

z2

200

1200

32

202

12

1000

100

120

ms/ 128 bytes

ms/block

times

Years

μs

μs

μs

μs

μs

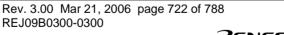
μs μs μs μs μs μs

times

μs μs

ms μs μs μs μs μs μs

times


Programming time*1*2*4

Reprogramming count

Data retention time*10

Erase time*1 *3 *6

Programming

z1, z2 and z3 to allow programming within the maximum programming time The wait time after P-bit setting (z1, z2, and z3) should be alternated according

number of writes (n) as follows: $1 \le n \le 6$ $z1 = 30\mu s$, $z3 = 10\mu s$

- $7 \le n \le 1000$ $z2 = 200 \mu s$
- 6. Maximum erase time (t_F (max))

including the minimum value.

- t_{E} (max) = Wait time after E-bit setting (z) × maximum erase count (N) 7. The maximum number of erases (N) should be set according to the actual
 - to allow erasing within the maximum erase time (t_{F} (max)).
 - 8. Minimum number of times for which all characteristics are guaranteed after (Guarantee range is 1 to minimum value).
 - Reference value for 25°C (as a guideline, rewriting should normally function
 - value). 10. Data retention characteristic when rewriting is performed within the specific

Rev. 3.00 Mar 21, 2006 pag

REJ09

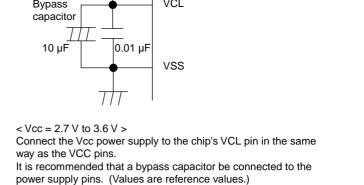


Figure 27.4 Connection of VCL Capacitor

Rev. 3.00 Mar 21, 2006 page 724 of 788 REJ09B0300-0300

Input voltage (CIN input not selected for port A)	V_{in}	-0.3 to $V_{cc}B + 0.3$
Input voltage (CIN input selected for port 6)	V _{in}	-0.3 V to lower of voltages V_{cc} + 0.3 and AV_{cc} + 0.3
Input voltage (CIN input selected for port A)	V _{in}	-0.3 V to lower of voltages $V_{cc}B + 0.3$ and $AV_{cc} + 0.3$
Input voltage (P97, P86, P52, P42)	V_{in}	-0.3 to +7.0
Input voltage (port 7)	V_{in}	-0.3 to AV _{cc} + 0.3
Reference supply voltage	AV_{ref}	-0.3 to AV _{cc} + 0.3
Analog power supply voltage	AV_cc	-0.3 to +7.0
Analog power supply voltage (3-V version product)	AV _{cc}	-0.3 to +4.3
Analog input voltage	V_{AN}	-0.3 to AV _{cc} + 0.3
Operating temperature	T_{opr}	Normal specification product: -20 t
		Wide range temperature specificat product: –40 to +85
		Rev. 3.00 Mar 21, 2006 RE
	₹€	NESAS

Power supply voltage*1

(power supply for port A)

Power supply voltage

(3-V version product)*1

I/O buffer power supply voltage

Power supply voltage (VCL pin)*2

Input voltage (except ports 6, 7,

and A, P97, P86, P52, P42)

Input voltage (CIN input not

selected for port 6)

 V_{cc}

 $V_{cc}B$

 $V_{\rm cc}$

 $V_{\scriptscriptstyle CL}$

 V_{in}

 V_{in}

-0.3 to +7.0

-0.3 to +7.0

-0.3 to +4.3

-0.3 to +4.3-0.3 to V_{cc} + 0.3

-0.3 to V_{cc} + 0.3

Notes: 1. Voltage applied to the VCC1 pin. Since both the VCC1 pin and VCL pin are to the VCC power supply on low-power voltage (3-V) products, VCL ratings be exceeded.

Power supply voltage pin used for operation within the chip. Do not apply povoltage to the VCL pin on 5-V/4-V products. Be sure to insert an external cap between the VCL pin and GND to regulate the internal voltage.

Rev. 3.00 Mar 21, 2006 page 726 of 788 REJ09B0300-0300

product), $T_a = -40$ to +85°C (wide range temperature specification product)

Item			Symbol	Min	Тур	Max	Unit
Schmitt	P67 to P60 (KWUL (1 = 00)*2**6, KIN15 to KIN8*7*8, IRQ2 to IRQ0*3,	(1)	V _T	1.0	_	_	V
trigger input voltage			V _T ⁺	_	_	$V_{cc} \times 0.7$ $V_{cc}B \times 0.7$	-
	IRQ5 to IRQ3		$V_{T}^{+} - V_{T}^{-}$	0.4	_		_
Schmitt	P67 to P60		V _T	$V_{cc} \times 0.3$	_	_	V
trigger input voltage	(KWUL = 01)		V _T ⁺	_	_	$V_{cc} \times 0.7$	=
(in level			$V_{T}^{+} - V_{T}^{-}$	$V_{cc} \times 0.05$	_	_	_
switching)*6	P67 to P60		V _T	$V_{cc} \times 0.4$	_	_	
	(KWUL = 10)		V _T ⁺	_	_	$V_{cc} \times 0.8$	
	P67 to P60		$V_T^+ - V_T^-$	$V_{cc} \times 0.03$	_	_	
			V _T	$V_{cc} \times 0.45$	_	_	
	(KWUL = 11)		V _T ⁺	_	_	$V_{cc} \times 0.9$	_
			$V_T^+ - V_T^-$	0.05	_	_	
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V _{IH}	V _{cc} – 0.7	_	V _{cc} + 0.3	V
	EXTAL			$V_{cc} \times 0.7$	_	V _{cc} + 0.3	
	PA7 to PA0*7			$V_{cc}B \times 0.7$	_	$V_{cc}B + 0.3$	
	Port 7			2.0	_	$AV_{cc} + 0.3$	
	P97, P86, P52, P42			$V_{cc} \times 0.7$	_	5.5	-
	Input pins except (1) and (2) above)	-	2.0	_	V _{cc} + 0.3	-

REJO

	Even if the A/D converter and D/A converter are not used, apply a value in th 2.0 V to 5.5 V to AV _{cc} and AV _{ref} pins by connection to the power supply (V _{cc}), other method. Ensure that AV _{ref} \leq AV _{cc} .
2.	P67 to P60 include peripheral module inputs multiplexed on those pins.
3.	IRQ2 includes the ADTRG signal multiplexed on that pin.
4.	P52/SCK0/SCL0, P97/SDA0, P86/SCK1/SCL1, P42/SCK2/SDA1, and port 0 NMOS push-pull outputs.
	When the SCL0, SDA0, SCL1, or SDA1 (ICE = 1) pin is used as an output, it open-drain output. Therefore, an external pull-up resistor must be connected output high level.
	P52/SCK0, P97, P86/SCK1, P42/SCK2 (ICE = 0), and port G high levels are NMOS.
	When the SCK0, SCK1, or SCK2 pin is used as an output, an external pull-u

must be connected in order to output high level.

is selected is determined separately.

Rev. 3.00 Mar 21, 2006 page 728 of 788

REJ09B0300-0300

Output high

Output low

voltage

voltage

All output pins

All output pins

Ports 1 to 3

(except RESO)*5

converter are not used.

P42*4

RESO

(except P97, P86, P52, and P42)*5 *8

P97, P86, P52, and

RENESAS

5. When IICS = 0, ICE = 0, and KBIOE = 0. Low-level output when the bus driv

6. The upper limit of the port 6 applied voltage is V_{cc} + 0.3 V when CIN input is selected, and the lower of V_{cc} + 0.3 V and AV_{cc} + 0.3 V when CIN input is set When a pin is in output mode, the output voltage is equivalent to the applied
7. The upper limit of the port A applied voltage is V_{cc}B + 0.3 V when CIN input selected, and the lower of V_{cc}B + 0.3 V and AV_{cc} + 0.3 V when CIN input is selected.
When a pin is in output mode, the output voltage is equivalent to the applied

 $V_{cc} - 0.5$ $V_{cc}B - 0.5$

V

V

٧

0.4

1.0

0.4

l,

I,

3.5 2.0

Do not leave the AV_{cct} AV_{cst} and AV_{cs} pins open even if the A/D converter are

 V_{ol}

Three-state leakage current (off state)	Ports 1 to 6 Ports 8, 9, A*4, E	3	I _{TSI}	_	_	1.0	μ
Input pull-up	Ports 1 to 3		-I _P	30	_	300	μA
MOS current	Ports A*4, B, 6 (P6PUE = 0)		_	60	_	600	μΑ
	Port 6 (P6PUE = 1)		_	15	_	200	μΑ
Input	RES	(4)	C _{in}	_	_	80	рF
capacitance	NMI	_		_	_	50	
	P52, P97, P42, P86, PA7 to PA2	2		_	_	20	
	Input pins excep above	t (4)	_	_	_	15	
Current	Normal operation	า	I _{cc}	_	55	70	m
dissipation*2	Sleep mode		_	_	36	55	m
	Standby mode*3		_	_	1.0	5.0	μΑ
				_	_	20.0	
Analog power	During A/D, D/A conversion		Al _{cc}	_	1.2	2.0	m
supply current	Idle		_	_	0.01	5.0	μA

Symbol

| | | |

Min

Тур

Max

10.0

1.0

1.0

Unit

μΑ

Item

STBY, NMI, MD1,

RES

MD0 Port 7

Input

leakage

current

Rev. 3.00 Mar 21, 2006 paç REJ0

RAM stan	dby voltage	$V_{\scriptscriptstyle{RAM}}$	2.0	_	_	V
Notes: 1.	Do not leave the AV _{cc} , A converter are not used.	AV_{ref} , and AV_{ref}	AV _{ss} pins o	pen even	if the A	D converter ar
	Even if the A/D converte V to 5.5 V to AV $_{\rm cc}$ and A method. Ensure that AV	V _{ref} pins b	y connecti		, , ,	,

- 2. Current dissipation values are for V_{IH} min = V_{cc} 0.2 V, V_{cc} B 0.2 V, and V_{II} V with all output pins unloaded and the on-chip pull-up MOSs in the off state
- 3. The values are for $V_{RAM} \le V_{CC} < 4.5 \text{ V}$, $V_{IH} \min = V_{CC} 0.2 \text{ V}$, $V_{CC}B 0.2 \text{ V}$, and $V_{\parallel} \text{ max} = 0.2 \text{ V}.$
- 4. The port A characteristics depend on V_{cc}B, and the other pins characteristics on V_{cc}.

2.0

l

5.5

	ii iQO to ii iQO						
		•	V _T	0.8	_		١
		-	V _T ⁺	_		$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$	_
		-	$V_{T}^{+} - V_{T}^{-}$	0.3	_		_
Schmitt	P67 to P60		V _T -	$V_{cc} \times 0.3$	_	_	,
trigger input	(KWUL = 01)	-	V _T +	_	_	$V_{cc} \times 0.7$	_
voltage (in level		-	$V_T^+ - V_T^-$	$V_{cc} \times 0.05$	_	_	_
switching)*6	P67 to P60		V _T -	$V_{cc} \times 0.4$	_	_	
	(KWUL = 10)	-	V _T ⁺	_	_	$V_{cc} \times 0.8$	
		-	$V_{T}^{+} - V_{T}^{-}$	$V_{cc} \times 0.03$	_	_	
	P67 to P60 (KWUL = 11)		V _T	$V_{cc} \times 0.45$	_	_	_
		-	V _T ⁺	_	_	$V_{cc} \times 0.9$	
		-	$V_{\scriptscriptstyle T}^{\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\scriptscriptstyle -}$	0.05	_	_	
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V _{IH}	V _{cc} – 0.7	_	V _{cc} + 0.3	
	EXTAL	_		$V_{cc} \times 0.7$	_	$V_{cc} + 0.3$	
	PA7 to PA0*7	_		$V_{cc}B \times 0.7$	_	$V_{cc}B + 0.3$	
	Port 7			2.0	_	$AV_{cc} + 0.3$	
	P97, P86, P52, P42	_		$V_{cc} \times 0.7$	_	5.5	_
	Input pins except (1) and (2) above			2.0	_	V _{cc} + 0.3	_
				R	ev. 3.00	Mar 21, 20	
			REI	NESAS			

 $V_{\scriptscriptstyle T}^{\;\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\;\scriptscriptstyle -}$

0.4

 $V_{cc} \times 0.7 \quad V \ V_{cc} B \times 0.7$

trigger input voltage $\begin{array}{c} = 00)^{*2*6}, \\ \hline \text{KIN15 to } \hline \text{KIN8}^{*7*8}, \\ \hline \hline \text{IRQ2 to } \hline \text{IRQ0}^{*3}, \\ \hline \hline \text{IRQ5 to } \hline \text{IRQ3} \\ \end{array}$

	(-)	
Output high voltage	All output pins (except P97, P86, P52, and P42)*4*5*8	V _{OH}

P97, P86, P52, and

converter are not used.

All output nins

P42*4

Output low

input pins except (1) and (3) above

voltage	(except RESO)*5	OL			0	·
	Ports 1 to 3		_	_	1.0	V
	RESO		_	_	0.4	V
Notes: 1.	Do not leave the AV _{cc}	, AV _{ref} , and A	V _{ss} pins c	pen even	if the A/D	converter

V

2.0 V to 5.5 V to AV $_{\rm cc}$ and AV $_{\rm ref}$ pins by connection to the power supply (V $_{\rm cc}$), other method. Ensure that $AV_{ref} \leq AV_{CC}$.

Even if the A/D converter and D/A converter are not used, apply a value in the

 $V_{cc} - 0.5$ $V_{cc}B - 0.5$

V

V

0.4

3.5

3.0

1.5

- 2. P67 to P60 include peripheral module inputs multiplexed on those pins.
- 3. IRQ2 includes the ADTRG signal multiplexed on that pin. 4. P52/SCK0/SCL0, P97/SDA0, P86/SCK1/SCL1, P42/SCK2/SDA1, and port (
 - NMOS push-pull outputs. When the SCL0, SDA0, SCL1, or SDA1 (ICE = 1) pin is used as an output, i open-drain output. Therefore, an external pull-up resistor must be connected

P52/SCK0, P97, P86/SCK1, P42/SCK2 (ICE = 0), and port G high levels are

Rev. 3.00 Mar 21, 2006 page 732 of 788

output high level.

NMOS.

REJ09B0300-0300

8.	The port A characteristics depend on $V_{cc}B$, and the other pins characteristic on V_{cc} .

current (off state)	А , Б				
Input pull-up			-I _P	30	
MOS current	Ports A*4, B, 6 (P6PUE = 0)		-	60	
	Port 6 (P6PUE = 1)		-	15	
	Ports 1 to 3			20	
	Ports A*4, B, 6 (P6PUE = 0)		_	40	
	Port 6 (P6PUE = 1)		_	10	
Input	RES	(4)	C _{in}	_	
capacitance	NMI	•		_	
	P52, P97, P42, P86, PA7 to PA2	•		_	
	Input pins except above	(4)	_	_	
Current	Normal operation		I _{cc}	_	
dissipation*2	Sleep mode			_	
	Standby mode*3		_	_	
				_	

STBY, NMI, MD1,

Ports 1 to 6, 8, 9, A*4, B

I

MD0 Port 7 1.0

1.0

1.0

300

600

200

200 500

150

80

50

20

15

58

46

5.0

20.0

μΑ

μA

μA

pF

 $\mathsf{m}\mathsf{A}$

mΑ

μΑ

t

to \

t

١

T

f

f

5

leakage

current

Three-state

leakage

current	conversion				
ourron	Idle				
Analog power supply voltage*1					

Analog power supply voltage*1	AV_cc	4.0	_	5.5	V
		2.0	_	5.5	
RAM standby voltage	V_{RAM}	2.0	_	_	V
Notes: 1. Do not leave the AV	AV, and	AV., pins	open even	if the A/	D converter

converter are not used.

Even if the A/D converter and D/A converter are not used, apply a value in 2.0 V to 5.5 V to AV_{cc} and AV_{ref} pins by connection to the power supply (V_{cc}

0.01

5.0

μΑ

- other method. Ensure that $AV_{ref} \leq AV_{cc}$. 2. Current dissipation values are for V_{H} min = V_{CC} – 0.2 V, V_{CC} B – 0.2 V, and V_{CC}
- V with all output pins unloaded and the on-chip pull-up MOSs in the off stat 3. Current dissipation values are for V_{H} min = V_{CC} – 0.2 V, V_{CC} B – 0.2 V, and V_{CC} V with all output pins unloaded and the on-chip pull-up MOSs in the off stat 4. The port A characteristics depend on VCCB, and the other pins characteristics
- on VCC.

voltage	KIN15 to KIN8***, IRQ2 to IRQ0*3, IRQ5 to IRQ3		$V_{T}^{ \star}$	_	_	$V_{cc} \times 0.7$ $V_{cc} B \times 0.7$		
	ings to ings	•	$V_T^+ - V_T^-$	$V_{cc} \times 0.05$ $V_{cc}B \times 0.05$	_	_	_	
Schmitt trigger input voltage (in level switching)*6	P67 to P60 (KWUL = 01)		V _T -	$V_{cc} \times 0.3$	_	_	V	
		•	V _T	_	_	$V_{cc} \times 0.7$	_	
		•	$V_{\scriptscriptstyle T}^{\;\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\;\scriptscriptstyle -}$	$V_{cc} \times 0.05$	_	_	-	
	P67 to P60 (KWUL = 10)		V _T -	$V_{cc} \times 0.4$	_	_	_	
		•	V _T ⁺	_	_	$V_{cc} \times 0.8$	_	
		•	$V_T^+ - V_T^-$	$V_{cc} \times 0.03$	_	_	_	
	P67 to P60		V _T -	$V_{cc} \times 0.45$	_	_	=	
	(KWUL = 11)		V _T ⁺	_	_	$V_{cc} \times 0.9$	_	
		•	$V_{\scriptscriptstyle T}^{\;\scriptscriptstyle +} - V_{\scriptscriptstyle T}^{\;\scriptscriptstyle -}$	0.05	_	_	=	
Input high voltage	RES, STBY, NMI, MD1, MD0	(2)	V _{IH}	$V_{cc} \times 0.9$	_	V _{cc} + 0.3	V	
	EXTAL	-		$V_{cc} \times 0.7$	_	V _{cc} + 0.3	_	
	PA7 to PA0*7	-		$V_{cc}B \times 0.7$	_	$V_{cc}B + 0.3$	_	
	Port 7			$V_{cc} \times 0.7$	_	$AV_{cc} + 0.3$	-	
	P97, P86, P52, P42	•		$V_{cc} \times 0.7$	_	5.5	_	
	Input pins except (1) and (2) above)		$V_{cc} \times 0.7$	_	V _{cc} + 0.3	-	

		_	
	P97, P86, P52, and P42*4		0.5
Output low voltage	All output pins (except RESO)*5	V _{oL}	_
	Ports 1 to 3	-	_
	RESO	-	_
	No not leave the AV_{cc} , AV_{cc} and onverter are not used.	/ _{ref} , and AV	_{ss} pins
_	ven if the A/D converter	and D/A co	nverte

NMI, EXTAL,

All output pins

(except P97, P86,

P52, and P42)*4 *5 *8

Output high

voltage

input pins except (1) and (3) above

Even if the A/D converter and D/A converter are not used, apply a value in V to 3.6 V to AV_{cc} and AV_{ref} pins by connection to the power supply (V_{cc}) , or

 V_{OH}

- method. Ensure that $AV_{ref} \leq AV_{CC}$.
- 2. P67 to P60 include peripheral module inputs multiplexed on those pins.
- 3. IRQ2 includes the ADTRG signal multiplexed on that pin.
- - 4. P52/SCK0/SCL0, P97/SDA0, P86/SCK1/SCL1, P42/SCK2/SDA1, and port

 - NMOS push-pull outputs.
 - When the SCL0, SDA0, SCL1, or SDA1 (ICE = 1) pin is used as an output, open-drain output. Therefore, an external pull-up resistor must be connected output high level.

-0.3

 $V_{cc} - 0.5$

 $V_{cc} - 1.0$

 $V_{cc}^{cc}B - 1.0$

 $V_{cc}B - 0.5$

P52/SCK0, P97, P86/SCK1, P42/SCK2 (ICE = 0), and port G high levels ar NMOS. When the SCK0, SCK1, or SCK 2 pin is used as an output, an external pull

must be connected in order to output high level. Rev. 3.00 Mar 21, 2006 pag

 $V_{cc} \times 0.2$

0.4

1.0 0.4 open even if the A/D converter a

V

V

V

٧

V

REJ09

9. For flash memory programming/erasure, the applicable range is $V_{\rm cc}$ = 3.0 V

Rev. 3.00 Mar 21, 2006 page 738 of 788 REJ09B0300-0300

	Port 7		_	_	_	1.0	
Three-state leakage current (off state)	Ports 1 to 6 Ports 8, 9, A*4, B		I _{TSI}	_	_	1.0	μΑ
Input pull-up	Ports 1 to 3		-I _P	5	_	150	μΑ
MOS current	Ports A*4, B, 6 (P6PUE = 0)		_	30	_	300	
	Port 6 (P6PUE = 1)		_	3	_	100	
Input capacitance	RES	(4)	C _{in}	_	_	80	pF
	NMI	•		_	_	50	
	P52, P97, P42, P86, PA7 to PA2	-		_	_	20	
	Input pins except above	(4)	_	_	_	15	
Current	Normal operation		I _{cc}	_	30	40	mA
dissipation*2	Sleep mode		_	_	20	32	mA
	Standby mode*3		_	_	1.0	5.0	μΑ
					_	20.0	
Analog power	During A/D, D/A conversion		Al _{cc}	_	1.2	2.0	mA

MD0

supply

current

Idle

0.01

5.0

μΑ

RAM st	and	lby voltage
Notes:	1.	Do not leave the AV _{CC} , AV _{ref} , and AV _{ss} pins open even if the A/D converter ar
		converter are not used.
		Even if the A/D converter and D/A converter are not used, apply a value in the
		2.0 V to 3.6 V to AV _{cc} and AV _{ref} pins by connection to the power supply (V_{cc}) ,
		other method. Ensure that $AV_{ret} \leq AV_{cc}$.

2.0

3.6

- 2. Current dissipation values are for V_{IH} min = V_{CC} 0.2 V, V_{CC} B 0.2 V, and V_{II} V with all output pins unloaded and the on-chip pull-up MOSs in the off state
- 3. The values are for $V_{RAM} \le V_{CC} < 2.7 \text{ V}$, $V_{IH} \min = V_{CC} 0.2 \text{ V}$, $V_{CC}B 0.2 \text{ V}$, and $V_{\parallel} \max = 0.2 V.$
- 4. The port A characteristics depend on VCCB, and the other pins characteristic
- 5. For flash memory programming/erasure, the applicable range is $V_{cc} = 3.0 \text{ V}$

voltage	P83 to P80, PB1, PB0			55		
Output high voltage	P37, P33 to P30, P82 to P80, PB1, PB0	V _{OH}	$V_{cc} \times 0.9$	_	V	I _c
Output low voltage	P37, P33 to P30, P82 to P80, PB1, PB0	V _{oL}	_	$V_{cc} \times 0.1$	V	Ic
	o not leave the AV _{cc} . A not used.	N _{ref} , and	AV _{ss} pins open	even if the	A/D co	onve

 V_{IL}

Note: * Do not leave the AV_{CC}, AV_{ref}, and AV_{SS} pins open even if the A/D converter as converter are not used.

Even if the A/D converter and D/A converter are not used, apply a value in 2.0 V to 3.6 V to AV_{CC} and AV_{ref} pins by connection to the power supply (V_{CC} other method. Ensure that AV_{ref} \leq AV_{CC}.

PB1, PB0

P37 to P30,

Input low

Rev. 3.00 Mar 21, 2006 pag

REJ0

 $V_{cc} \times 0.3$

	PA7 to PA4 (bus drive function selected)				
	Ports 1 to 3		_	_	10
	RESO		_	_	3
	Other output pins		_	_	2
Permissible output	Total of ports 1 to 3	\sum I _{OL}	_	_	80
low current (total)	Total of all output pins, including the above		_	_	120
Permissible output high current (per pin)	All output pins	-I _{OH}	_	_	2
Permissible output high current (total)	Total of all output pins	$\Sigma - I_{OH}$	_	_	40

PS2AD to PS2CD,

	RESO	
	Other output pins	
Permissible output	Total of ports 1 to 3	\sum I _{ol}
low current (total)	Total of all output pins, including the above	
Permissible output high current (per pin)	All output pins	–I _{он}
Permissible output high current (total)	Total of all output pins	$\sum -I_{OP}$

Notes: 1. To protect chip reliability, do not exceed the output current values in table 2 2. When driving a Darlington pair or LED, always insert a current-limiting resis output line, as show in figures 27.1 and 27.2.

Rev. 3.00 Mar 21, 2006 pag

REJ0

1 1

40

60

2

30

						а
Three-state leakage current (off state)	I _{TSI}	_	_	1.0	μA	$V_{in} = 0.5 \text{ to}$
SCL, SDA output fall time	t _{of}	20 + 0.1 Cl	o —	250	ns	
Conditions: $V_{cc} = 4$. $V_{cc}B = 4$.0 V to 5.5 V 2.7 V to 5.5			V (3-V ve	rsion pro	oduct),
Applicable Pins: PS fur	2AC, PS2A		, PS2BD, I	PS2CC, P	S2CD, P	A7 to PA4 (bu
Item	Symbol	Min	Тур	Max	Unit	Test Conditio
Output low voltage	V_{oL}	_	_	0.8	V	$I_{oL} = 16 \text{ mA},$ $V_{cc}B = 4.5 \text{ V to}$

 $V_{cc} \times 0.05$

 $V_{cc} \times 0.7$

-0.5

5.5

8.0

0.5 0.4

20

 $V_{cc} \times 0.3$

V

рF

I_{oL} = 16 mA V to 5.5 V

 $I_{OL} = 8 \overline{\text{mA}}$

 $I_{OL} = 3 \text{ mA}$

 $V_{in} = 0 \text{ V, f}$ $T_a = 25$ °C $V_{in} = 0.\overline{5}$ to

Test Condition $I_{OL} = 16 \text{ mA},$ $V_{cc}B = 4.5 \text{ V to}$ $I_{OL} = 8 \text{ mA}$

 $I_{OL} = 3 \text{ mA}$

 $V_{\scriptscriptstyle T}^{^+} - V_{\scriptscriptstyle T}^{^-}$

 $\boldsymbol{V}_{_{\boldsymbol{IH}}}$

 V_{IL}

 V_{ol}

Input high voltage

Input low voltage

Output low voltage

Input capacitance

0.5

0.4

Table 27.20 Clock Timing

operating frequency, $T_a = -20$ to +75°C (normal specification product)

 $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $V_{cc}B = 4.0 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to r operating frequency, $T_a = -20$ to +75°C (normal specification product) $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to r operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

		Cond	dition A	Conc	lition B	Cond	dition C	
		10	MHz	16 MHz		20 MHz		•
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit
Clock cycle time	t _{cyc}	100	500	62.5	500	50	500	ns
Clock high pulse width	t _{ch}	30	_	20	_	17	_	ns
Clock low pulse width	t _{CL}	30	_	20	_	17	_	ns
Clock rise time	t _{Cr}	_	20	_	10	_	8	ns
Clock fall time	t _{Cf}	_	20	_	10	_	8	ns
Oscillation settling time at reset (crystal)	t _{osc1}	20	_	10	_	10	_	ms
Oscillation settling time in software standby (crystal)	t _{osc2}	8	_	8	_	8	_	ms
External clock output stabilization delay time	t _{DEXT}	500	_	500	_	500	_	μs

Rev. 3.00 Mar 21, 2006 pag REJ09 2 MHz to maximum operating frequency, T_a = -20 to +75°C (normal sp product), T_a = -40 to +85°C (wide range temperature specification product).

Condition C: V_{cc} = 2.7 V to 3.6 V, V_{cc}B = 2.7 V to 5.5 V, V_{ss} = 0 V, φ = 32.768 kHz,

Condition B: $V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}, V_{cc} B = 4.0 \text{ V to } 5.5 \text{ V}, V_{ss} = 0 \text{ V}, \phi = 32.768 \text{ kHz},$

2 MHz to maximum operating frequency, $T_a = -20$ to +75°C

		Cond	lition A	Cond	dition B	Cond	lition C	
		10	MHz	16	MHz	20	MHz	
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit
RES setup time	t _{ress}	300	_	200	_	200	_	ns
RES pulse width	t _{RESW}	20	_	20	_	20	_	t _{cyc}
NMI setup time (NMI)	t _{NMIS}	250	_	150	_	150	_	ns
NMI hold time (NMI)	t _{nmih}	10	_	10	_	10	_	ns
NMI pulse width (NMI) (exiting software standby mode)	t _{NMIW}	200	_	200	_	200	_	ns
IRQ setup time (IRQ7 to IRQ0)	t _{IRQS}	250	_	150	_	150	_	ns
IRQ hold time (IRQ7 to IRQ0)	t _{IRQH}	10	_	10	_	10	_	ns
IRQ pulse width (IRQ7, IRQ6, IRQ2 to IRQ0) (exiting software standby mode)	t _{IRQW}	200	_	200	_	200	_	ns

Rev. 3.00 Mar 21, 2006 page 746 of 788

Condition B: $V_{cc} = 4.0 \text{ V to } 5.5 \text{ V}, V_{cc} B = 4.0 \text{ V to } 5.5 \text{ V}, V_{ss} = 0 \text{ V}, \phi = 2 \text{ MHz to r}$ operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product) $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to r operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

		Cond	ition A	Cond	lition B	Cond	ition C	
		10	MHz	16	MHz	20	MHz	
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit
Address delay time	t _{AD}	_	40	_	30	_	20	ns
Address setup time	t _{AS}	$0.5 \times t_{\text{cyc}} - 30$	_	$0.5 \times t_{cyc} - 20$	_	0.5 × t _{cyc} – 15	_	ns
Address hold time	t _{AH}	0.5 × t _{cyc} – 20	_	0.5 × t _{cyc} – 15	_	0.5 × t _{cyc} – 10	_	ns
CS delay time (IOS)	t _{CSD}	_	40	_	30	_	20	ns
AS delay time	t _{ASD}	_	60	_	45	_	30	ns
RD delay time 1	t _{RSD1}	_	60	_	45	_	30	ns
RD delay time 2	t _{RSD2}	_	60	_	45	_	30	ns
Read data setup time	t _{RDS}	35	_	20	_	15	_	ns
Read data hold time	t _{RDH}	0	_	0	_	0	_	ns

1.0 × Read data $\boldsymbol{t}_{_{\!\!\mathsf{ACC1}}}$ $1.0 \times$ 1.0 × ns $t_{\rm cyc}-60$ $t_{\text{cyc}} - 40$ $t_{\rm cyc} - 30$ access time 1

1.5 ×

 $t_{\rm cyc} - 50$

Read data

access time 2

 \mathbf{t}_{ACC2}

1.5 ×

 $t_{\text{cyc}} - 25$

ns

1.5×

 $t_{cyc} - 35$

access time 5	ACC5		$t_{\rm cyc} - 60$		t _{cyc} - 40		$t_{cyc} - 30$	
HWR, LWR delay time 1	\mathbf{t}_{WRD1}	_	60	_	45	_	30	ns
HWR, LWR delay time 2	\mathbf{t}_{WRD2}	_	60	_	45	_	30	ns
HWR, LWR pulse width 1	t _{wsw1}	1.0 × t _{cyc} - 40	_	1.0 × t _{cyc} - 30	_	1.0 × t _{cyc} – 20	_	ns
HWR, LWR pulse width 2	\mathbf{t}_{wsw2}	$1.5 \times t_{cyc} - 40$	_	$1.5 \times t_{\text{cyc}} - 30$	_	1.5 × t _{cyc} – 20	_	ns
Write data delay time	\mathbf{t}_{WDD}	_	60	_	45	_	30	ns
Write data setup time	t _{wds}	0	_	0	_	0	_	ns
Write data hold time	t _{wdh}	20	_	15	_	10	_	ns
WAIT setup time	t _{wrs}	60		45	_	30	_	ns
WAIT hold time	t _{wth}	10	_	5	_	5	_	ns

Rev. 3.00 Mar 21, 2006 page 748 of 788 REJ09B0300-0300

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 2 \text{ MHz}$ to roperating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

	Symbol	Condition A		Cond	lition B	Cond	ition C	_
		10	MHz	16	MHz	20 MHz		
Item		Min	Max	Min	Max	Min	Max	Uni
Address delay time	t _{AD}	_	60	_	45	_	30	ns
Address setup time	t _{AS}	0.5 × t _{cyc} – 50	_	0.5 × t _{cyc} - 35	_	0.5 × t _{cyc} - 25	_	ns
Address hold time	t _{AH}	0.5 × t _{cyc} – 20		0.5 × t _{cyc} – 15		0.5 × t _{cyc} – 10	_	ns
CS delay time (IOS)	t _{CSD}	_	60	_	45	_	30	ns
AS delay time	t _{ASD}	_	60	_	45	_	30	ns
RD delay time 1	t _{RSD1}	_	60	_	45	_	30	ns
RD delay time 2	t _{RSD2}	_	60	_	45	_	30	ns
Read data setup time	t _{RDS}	35	_	20	_	15	_	ns
Read data hold time	t _{RDH}	0	_	0	_	0	_	ns
Read data access time 1	t _{ACC1}	_	1.0 × t _{cyc} - 80	_	1.0 × t _{cyc} – 55	_	1.0 × t _{cyc} – 40	ns
Read data access time 2	t _{ACC2}	_	1.5 × t _{cyc} – 50	_	$2.5 \times t_{\text{cyc}} - 35$	_	2.5 × t _{cyc} – 25	ns
Read data	t _{ACC3}	_	2.0 ×	_	3.0 ×	_	3.0 ×	ns

 $\rm t_{\rm cyc}-80$

access time 3

Rev. 3.00 Mar 21, 2006 paç REJ0

 $\rm t_{\rm cyc}-40$

 $\rm t_{\rm cyc}-55$

delay time 1	WRD1				-			-
HWR, LWR delay time 2	$\mathbf{t}_{_{\mathrm{WRD2}}}$	_	60	_	45	_	30	ns
HWR, LWR pulse width 1	t _{wsw1}	1.0 × t _{cyc} – 40	_	1.0 × t _{cyc} – 30	_	1.0 × t _{cyc} – 20	_	ns
HWR, LWR pulse width 2	\mathbf{t}_{wsw2}	1.5 × t _{cyc} – 40	_	$1.5 \times t_{\text{cyc}} - 30$	_	$1.5 \times t_{\text{cyc}} - 20$	_	ns
Write data delay time	$\mathbf{t}_{_{\mathrm{WDD}}}$	_	60	_	45	_	30	ns
Write data setup time	$\mathbf{t}_{ ext{wds}}$	0	_	0	_	0	_	ns
Write data hold time	\mathbf{t}_{WDH}	20	_	15	_	10	_	ns
WAIT setup time	t _{wrs}	60	_	45	_	30	_	ns
WAIT hold time	t _{wth}	10	_	5	_	5	_	ns

 $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product),

time

 $T_a = -40$ to +85°C (wide range temperature specification product) Condition B: $V_{CC} = 4.0 \text{ V}$ to 5.5 V, $V_{CC}B = 4.0 \text{ V}$ to 5.5 V, $V_{SS} = 0 \text{ V}$,

 $\phi = 32.768 \text{ kHz}^*$, 2 MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{cc}B = 2.7 \text{ V}$ to 5.5 V, $V_{ss} = 0 \text{ V}$, $\phi = 32.768 \text{ kHz}$ 2 MHz to maximum operating frequency, $T_a = -20$ to +75°C

				Condition A 10 MHz			Condition B		Condition C 20 MHz	
Item			Symbol	Min	Max	Min	Max	Min	Max	Unit
I/O ports	Output data	delay time	t _{PWD}	_	100	_	50	_	50	ns
	Input data se	etup time	t _{PRS}	50	_	30	_	30	_	=
	Input data h	old time	t _{PRH}	50	_	30	_	30	_	=
FRT	Timer outpu	t delay time	t _{FTOD}	_	100	_	50	_	50	ns
	Timer input	setup time	t _{FTIS}	50	_	30	_	30	_	-
	Timer clock time	input setup	t _{FTCS}	50	_	30	_	30	_	_
		Single edge	t _{FTCWH}	1.5	_	1.5	_	1.5	_	t _{cyc}
	pulse width	Both edges	t _{FTCWL}	2.5	_	2.5	_	2.5	_	_
TMR	Timer outpu	t delay time	t _{tmod}	_	100	_	50	_	50	ns
	Timer reset time	input setup	t _{TMRS}	50	_	30	_	30	_	_
	Timer clock	input setup	t _{mcs}	50	_	30	_	30	_	_

Rev. 3.00 Mar 21, 2006 pag

REJ09

PWMX										
SCI	Input	Asynchronous	t _{Scyc}	4	_	4	_	4	_	t _{cyc}
	clock cycle	Synchronous	•	6	_	6	_	6	_	=
	Input clo	ock pulse width	t _{sckw}	0.4	0.6	0.4	0.6	0.4	0.6	t _{scyc}
	Input clo	ock rise time	t _{sckr}	_	1.5	_	1.5	_	1.5	t _{cyc}
	Input clo	ock fall time	t _{sckf}	_	1.5	_	1.5	_	1.5	-
		it data delay time d synchronous)	t _{TXD}	_	100	_	50	_	50	ns
		data setup time synchronous)	t _{RXS}	100	-	50	_	50	_	_
		data hold time synchronous)	t _{RXH}	100	_	50	_	50	_	-
A/D converter	Trigger	input setup time	t _{TRGS}	50	_	30	_	30	_	ns
WDT	RESO o	output delay time	t _{RESD}	_	200	_	120	_	100	ns
	RESO o	output pulse width	t _{RESOW}	132	_	132	_	132	_	t _{cyc}

Note: * Only peripheral modules that can be used in subclock operation

Rev. 3.00 Mar 21, 2006 page 752 of 788 REJ09B0300-0300

 $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product),

 $T_a = -40$ to +85°C (wide range temperature specification product)

Condition C: $V_{cc} = 2.7$ V to 3.6 V, $V_{cc}B = 2.7$ V to 5.5 V, $V_{ss} = 0$ V, $\phi = 2$ MHz to roperating frequency, $T_a = -20$ to $+75^{\circ}$ C

				••••	dition A		dition B		dition C	
				10 MHz		16 MHz		20 MHz		-
Item			Symbol	Min	Max	Min	Max	Min	Max	Unit
HIF	CS/HA0	setup time	t _{HAR}	10	_	10	_	10	_	ns
read cycle	CS/HA0	hold time	t _{HRA}	10		10	_	10	_	=
Cycle	IOR puls	se width	t _{HRPW}	220	_	120	_	120	_	_
	HDB del	ay time	t _{HRD}	_	200	_	100	_	100	_
	HDB hol	d time	t _{HRF}	0	40	0	25	0	25	
	HIRQ de	elay time	t _{HIRQ}	_	200	_	120	_	120	=
HIF	CS/HA0	setup time	t _{HAW}	10		10	_	10	_	=
write cycle	CS/HA0	hold time	t _{HWA}	10	_	10	_	10	_	_
Cyclc	IOW pul	se width	t _{HWPW}	100		60	_	60	_	=
	HDB setup time	Fast A20 gate not used	t _{HDW}	50	_	30	_	30	_	_
		Fast A20 gate used	_	85	_	55	_	45	_	-
	HDB hol	d time	t _{HWD}	25	_	15	_	15	_	_
	GA20 de	elay time	t _{HGA}		180		90		90	_

Table 27.25	I ² C Bus Timing	
Conditions:	$V_{\rm cc}$ = 4.0 V to 5.5 V, $V_{\rm cc}$ = 2.7 V to 3.6 V (3-V product), V ϕ = 5 MHz to maximum operating frequency,	$V_{\rm ss} = 0 \text{ V},$
	Ratings	Test

 \mathbf{t}_{KBIS}

 $\mathbf{t}_{_{\mathrm{KBOD}}}$

 $C_{\scriptscriptstyle b}$

100

150

115

ns

ns

рF

450

400

рF

400

			Rating	js –		Test
Item	Symbol	Min	Тур	Max	Unit	Conditions
SCL input cycle time	t _{scl}	12	_	_	t _{cyc}	
SCL input high pulse width	t _{sclh}	3	_	_	t _{cyc}	
SCL input low pulse width	t _{scll}	5	_	_	t _{cyc}	
SCL, SDA input rise time	t _{Sr}	_	_	7.5*	t _{cyc}	
SCL, SDA input fall time	t _{sf}	_	_	300	ns	
SCL, SDA input spike pulse elimination time	t _{sp}	_	_	1	t _{cyc}	
SDA input bus free time	t _{BUF}	5	_	_	t _{cyc}	
Start condition input hold time	t _{stah}	3	_	_	t _{cyc}	
Retransmission start condition input setup time	t _{stas}	3	_	_	t _{cyc}	
Stop condition input setup time	t _{stos}	3	_	_	t _{cyc}	
Data input setup time	t _{sdas}	0.5	_	_	t _{cyc}	
Data input hold time	t _{sdah}	0	_	_	ns	
	•					

 C_{h}

see section 16.6, Usage Notes.

Rev. 3.00 Mar 21, 2006 page 754 of 788

SCL, SDA capacitive load

REJ09B0300-0300

Note: *

NOLN, NO Input data noid time

KCLK, KD input data setup time

KCLK, KD output delay time

KCLK, KD capacitive load

RENESAS

17.5t_{ooc} can be set according to the clock selected for use by the I²C module.

input clock pulse width (L)	LCKL	11			
Transmit signal delay time	$\mathbf{t}_{\scriptscriptstyleTXD}$	2	_	11	_
Transmit signal floating delay time	t _{OFF}	_	_	28	-
Receive signal setup time	t _{RXS}	7	_	_	_
Receive signal hold time	t _{RXH}	0		_	-

 $T_a = -40$ to +85°C (wide range temperature specification product)

Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{ref} = 4.0 \text{ V}$ to AV_{cc}

 $V_{ss} = AV_{ss} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product), $T_{\rm s} = -40$ to +85 °C (wide range temperature specification product)

Condition C

10 MHz

Typ

10

Min

10

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{ref} = 2.7 \text{ V}$ to AV_{cc} $V_{ss} = AV_{ss} = 0 \text{ V}, \phi = 2 \text{ MHz}$ to maximum operating frequency, $T_{0} = -20 \text{ to } +75^{\circ}\text{C}$

Max

13.4

10

20

5

±7.0

±7.5

Min

10

Condition B

16 MHz

Max

10

8.4

20

10^{*1}

5*2

±3.0

±3.5

Min

10

Typ

10

Condition A

20 MHz

Typ

10

Max

10

6.7

20

10*

5*2

±3.

±3.

±3.

±0.

±4.

Full-sc	ale	error	_	_	±7.5	_	_	±3.5	_	_
Quanti	zati	on error	_	_	±0.5	_	_	±0.5	_	_
Absolu	te a	ccuracy	_		±8.0	_		±4.0		
Notes:	1.	When co	nversio	n time	≥ 11.17 µ	ıs (CKS	6 = 0, or	· φ ≤ 12 N	1Hz at (CKS = 1)
	2.	When co	nversio	n time	< 11.17 µ	ıs (φ >	12 MHz	at CKS =	= 1)	
	3.	At the ma	aximum	operat	ing frequ	ency ir	single	mode.		

RENESAS

Rev. 3.00 Mar 21, 2006 page 756 of 788

Item

Resolution

Analog input

capacitance

Offset error

Conversion time*3

Permissible signal-

source impedance

Nonlinearity error

 $V_{ss} = AV_{ss} = 0$ V, $\phi = 2$ MHz to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product),

 $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Min

10

Condition B

16 MHz

Max

10

Min

10

Typ

10

Condition A

20 MHz

Ma

10

6. 20

10 5* ±5 ±5 ±5 ±0 ±6

Typ

10

Condition C: $V_{CC} = 3.0 \text{ V}$ to 3.6 V^{*4} , $AV_{CC} = 3.0 \text{ V}$ to 3.6 V^{*4} , $AV_{ref} = 3.0 \text{ V}$ to $AV_{CC} = 3.0 \text{ V}$ $V_{cc}B = 3.0 \text{ V to } 5.5 \text{ V}^{*4}, V_{ss} = AV_{ss} = 0 \text{ V}, \phi = 2 \text{ MHz to maximum op}$

Max

10

frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$

Min

10

Item

Resolution

Condition C

10 MHz

Typ

10

Conversion time*3	_	_	13.4	_	_	8.4	_
Analog input capacitance	_	_	20	_	_	20	_
Permissible signal-	_	_	5	_	_	10*1	_
source impedance						5*2	
Nonlinearity error	_	_	±11.0	_	_	±5.0	_
Offset error	_	_	±11.5	_	_	±5.5	_
Full-scale error	_	_	±11.5	_	_	±5.5	_
Quantization error	_	_	±0.5	_	_	±0.5	_
Absolute accuracy	_	_	±12.0	_	_	±6.0	_

Notes: 1. When conversion time \geq 11.17 μ s (CKS = 0, or $\phi \leq$ 12 MHz at CKS = 1)

- 2. When conversion time < 11.17 μ s (ϕ > 12 MHz at CKS = 1)
- 3. At the maximum operating frequency in single mode.
- 4. When using CIN, ensure that $V_{cc} = 3.0 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ 3.6 V, $V_{cc}B = 3.0 \text{ V to } 5.5 \text{ V}.$

 $T_a = -40$ to +85°C (wide range temperature specification product)

Condition B: $V_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{cc} = 4.0 \text{ V}$ to 5.5 V, $AV_{ref} = 4.0 \text{ V}$ to AV_{cc} $V_{ss} = AV_{ss} = 0 \text{ V}, \phi = 2 \text{ MHz}$ to maximum operating frequency, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (normal specification product),

 $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide range temperature specification product)

Condition C: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{ref} = 2.7 \text{ V}$ to AV_{cc} $V_{ss} = AV_{ss} = 0 \text{ V}, \phi = 2 \text{ MHz}$ to maximum operating frequency, $T_{0} = -20 \text{ to } +75^{\circ}\text{C}$

		С	onditio	on C	С	onditio	on B	C	onditi	on
		10 MHz				16 MF	20 MHz			
Item		Min	Тур	Max	Min	Тур	Max	Min	Тур	٨
Resolution		8	8	8	8	8	8	8	8	8
Conversion time	With 20 pF load capacitance	_	_	10	_	_	10	_	_	1
Absolute accuracy	With 2 MΩ load resistance	_	±2.0	±3.0	_	±1.0	±1.5	_	±1.0	±
	With 4 MΩ load resistance	_	_	±2.0	_	_	±1.0	_	_	±

Rev. 3.00 Mar 21, 2006 page 758 of 788

Item		Symbol	Min	Тур	Max	Unit
Programming		t _p	_	10	200	ms/ 128 bytes
Erase time*1 *3	*6	$t_{\scriptscriptstyle E}$	_	100	1200	ms/block
Reprogrammin	ng count	N_{WEC}	_	_	100	times
Programming	Wait time after SWE-bit setting*1	Х	1	_	_	μs
	Wait time after PSU-bit setting*1	у	50	_	_	μs
	Wait time after P-bit setting*1*4	z1	28	30	32	μs
		z2	198	200	202	μs
		z3	8	10	12	μs
	Wait time after P-bit clear*1	α	5	_	_	μs
	Wait time after PSU-bit clear*1	β	5	_	_	μs
	Wait time after PV-bit setting*1	γ	4	_	_	μs
	Wait time after dummy write*1	ε	2	_	_	μs
	Wait time after PV-bit clear*1	η	2	_	_	μs
	Wait time after SWE-bit clear*1	θ	100	_	_	μs
	Maximum programming count*1*4*5	N	_	_	1000	times
Erase	Wait time after SWE-bit setting*1	Х	1	_	_	μs
	Wait time after ESU-bit setting*1	у	100	_	_	μs
	Wait time after E-bit setting*1 *6	Z	10	_	100	ms
	Wait time after E-bit clear*1	α	10	_	_	μs
	Wait time after ESU-bit clear*1	β	10	_	_	μs
	Wait time after EV-bit setting*1	γ	20	_	_	μs
	Wait time after dummy write*1	ε	2			μs
	Wait time after EV-bit clear*1	η	4			μs
	Wait time after SWE-bit clear*1	θ	100	_	_	μs
	Maximum erase count*1 *6 *7	N	_	_	120	times
•						_

Rev. 3.00 Mar 21, 2006 pag REJ09

z1, z2 and z3 to allow programming within the maximum programming time The wait time after P-bit setting (z1, z2, and z3) should be alternated accord

number of writes (n) as follows:

$$1 \le n \le 6$$
 $z1 = 30 \ \mu s, \ z3 = 10 \ \mu s$
 $7 \le n \le 1000$ $z2 = 200 \ \mu s$

- 6. Maximum erase time (t_F (max))
- t_{F} (max) = Wait time after E-bit setting (z) × maximum erase count (N)
- 7. The maximum number of erases (N) should be set according to the actual set to allow erasing within the maximum erase time ($t_{\scriptscriptstyle F}$ (max)).

27.2.7 **Usage Notes**

1. Internal step-down products

step down the microprocessor internal power supply voltage to the appropriate leve One or two (in parallel) internal voltage regulating capacitors (0.47 µF) should be in between the internal step-down pin (VCL pin) and VSS pin. The method of connec external capacitor(s) is shown in figure 27.5.

The H8S/2148 B-masked product (HD64F2148B) includes an internal step-down c

For the 5-V and 4-V version products whose power supply (VCC) voltage exceeds not connect the VCC power supply to the VCL pin of the internal step-down produc the VCC power supply to the VCC1 pin, as usual.)

For the 3-V version product whose power supply (VCC) voltage is 3.6 V or less, co system power supply to the VCL pin together with the VCC1 pins.

should be considered when designing the PC board patterns.

When switching from the F-ZTAT version product without the internal step-down f the F-ZTAT B-masked product with the internal step-down function, note that the V allocated to the same location as the VCC2 pin of the product without the internal s function. Therefore, the difference in the circuits between before and after the switch

The VCC power supply should not be connected to the The VCC2 pin of the product without the inf VCL pin of the product with the internal step-down function is allocated at the same location as function. (Connect the VCC power supply to other the product with the internal step-down fun-VCC1 pins as usual.) It is recommended that a bypass capacitor Be sure to connect power supply regulating capacitor(s) the power supply pins. (The values are refe to the VCL pin. One or two (parallel) 0.47-µF < Product without internal step-down function multilayer capacitors should be used near the VCL pin. HD64F2145BV For 3-V products used with the voltage of 3.6 V or less, HD64F2148BV connect the Vcc power supply in the same way as the products without the internal step-down function. < Product with internal step-down function >

HD64F2145B HD64F2148B

Figure 27.5 Connection of VCL Capacitor

Figure 27.6 System Clock Timing

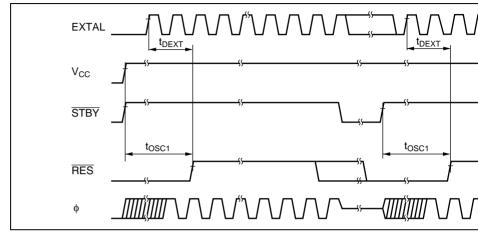


Figure 27.7 Oscillation Settling Timing

Note: i = 0 to 2, 6, 7

tosc2

Figure 27.8 Oscillation Setting Timing (Exiting Software Standby Mo

Rev. 3.00 Mar 21, 2006 pag REJ0



Figure 27.9 Reset Input Timing

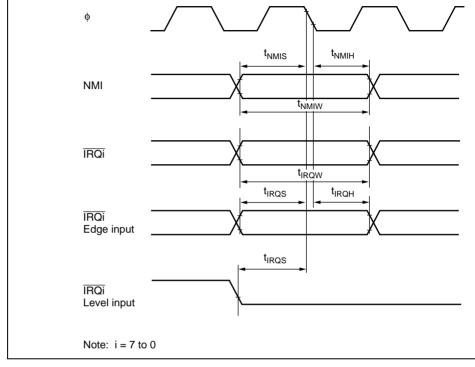
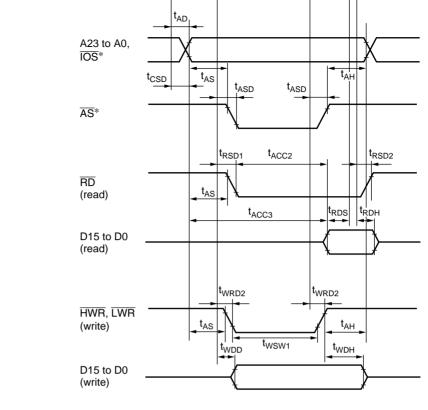



Figure 27.10 Interrupt Input Timing

Rev. 3.00 Mar 21, 2006 page 764 of 788

REJ09B0300-0300

Note: * $\overline{\text{AS}}$ and $\overline{\text{IOS}}$ are the same pin. The function is selected by the IOSE bit in SYS

Figure 27.11 Basic Bus Timing (Two-State Access)

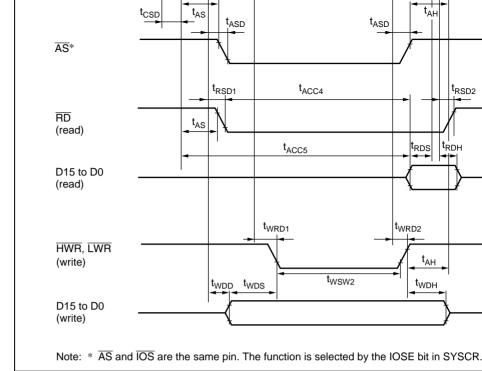


Figure 27.12 Basic Bus Timing (Three-State Access)

Rev. 3.00 Mar 21, 2006 page 766 of 788 REJ09B0300-0300

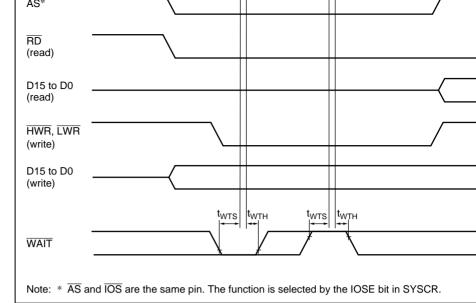


Figure 27.13 Basic Bus Timing (Three-State Access with One Wait Sta

REJ0

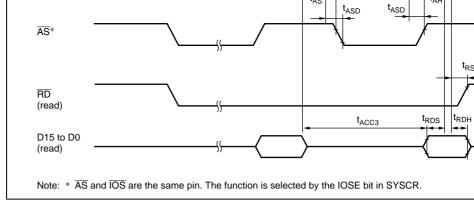


Figure 27.14 Burst ROM Access Timing (Two-State Access)

Rev. 3.00 Mar 21, 2006 page 768 of 788 REJ09B0300-0300

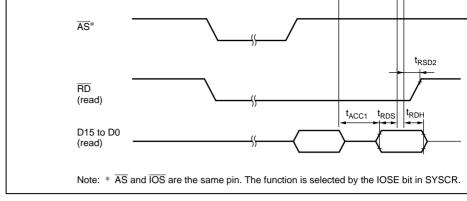


Figure 27.15 Burst ROM Access Timing (One-State Access)

Rev. 3.00 Mar 21, 2006 pag REJ09

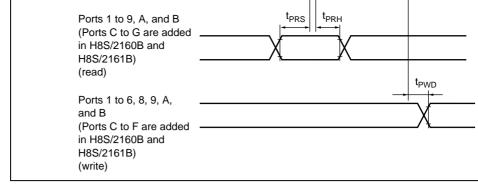


Figure 27.16 I/O Port Input/Output Timing

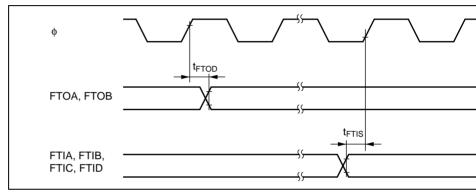


Figure 27.17 FRT Input/Output Timing

Rev. 3.00 Mar 21, 2006 page 770 of 788 REJ09B0300-0300

Figure 27.18 FRT Clock Input Timing

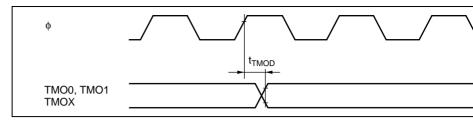


Figure 27.19 8-Bit Timer Output Timing

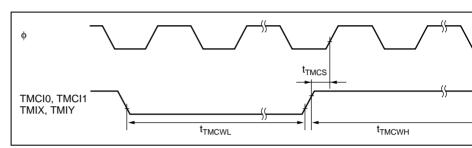


Figure 27.20 8-Bit Timer Clock Input Timing

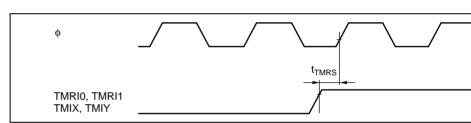


Figure 27.21 8-Bit Timer Reset Input Timing

REJ09

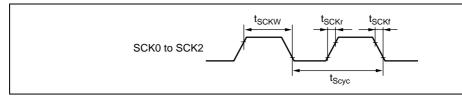


Figure 27.23 SCK Clock Input Timing

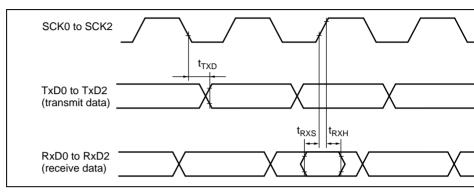


Figure 27.24 SCI Input/Output Timing (Synchronous Mode)

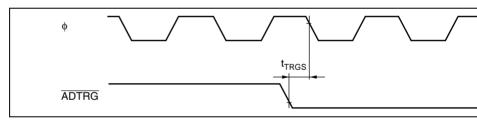


Figure 27.25 A/D Converter External Trigger Input Timing

Rev. 3.00 Mar 21, 2006 page 772 of 788

REJ09B0300-0300

Figure 27.26 WDT Output Timing (RESO)

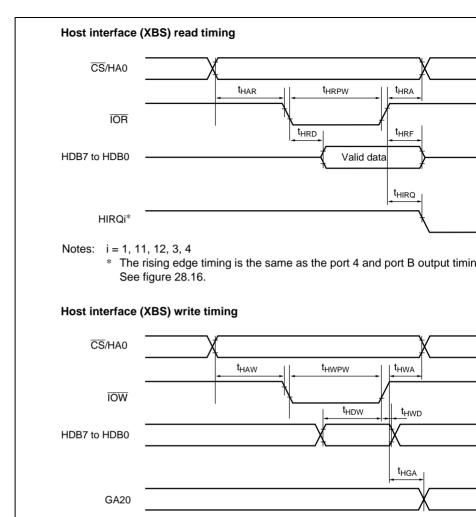


Figure 27.27 Host Interface (XBS) Timing

Rev. 3.00 Mar 21, 2006 pag REJ0

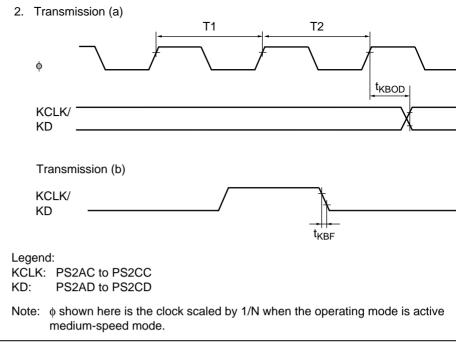


Figure 27.28 Keyboard Buffer Controller Timing

Rev. 3.00 Mar 21, 2006 page 774 of 788 REJ09B0300-0300

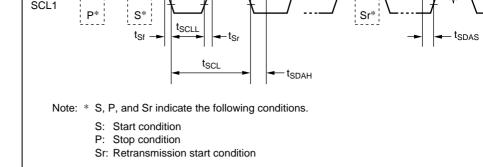


Figure 27.29 I²C Bus Interface Input/Output Timing

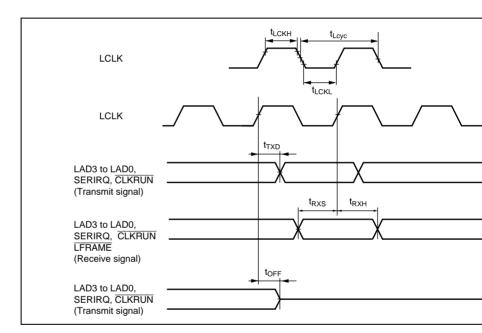


Figure 27.30 Host Interface (LPC) Timing

- - -

Rev. 3.00 Mar 21, 2006 pag

REJ09

Rev. 3.00 Mar 21, 2006 page 776 of 788 REJ09B0300-0300

Port 5	1	Т	Т	kept	kept
	2, 3 (EXPE = 1)	_			
	2, 3 (EXPE = 0)	_			
Port 6	1	Т	Т	kept	kept
	2, 3 (EXPE = 1)	_			
	2, 3 (EXPE = 0)				
Port 7	1	Т	Т	Т	Т
	2, 3 (EXPE = 1)				
	2, 3 (EXPE = 0)				
Port 8	1	Т	Т	kept	kept
	2, 3 (EXPE = 1)				
	2, 3 (EXPE = 0)				
Port 97 WAIT	1	Т	Т	T/kept	T/kept
	2, 3 (EXPE = 1)	_			
	2, 3 (EXPE = 0)	_		kept	kept

Т

Т

Т

kept*

Т

kept

kept

L

Т

Т

2, 3 (EXPE = 0)

2, 3 (EXPE = 0)

 $\frac{2, 3 \text{ (EXPE = 1)}}{2, 3 \text{ (EXPE = 0)}}$

 $\frac{2, 3 \text{ (EXPE = 1)}}{2, 3 \text{ (EXPE = 0)}}$

2, 3 (EXPE = 1) T

1

1

1

Port 2

Port 3

Port 4

D15 to D8

A15 to A8

output/ input port

I/O port

A15 to A8

Address output/ input port

I/O port

I/O port

I/O port

I/O port

I/O port

Input port

I/O port

WAIT/

I/O port

I/O port

REJ09

D15 to D8

kept*

Т

kept

kept

kept

kept

Т

kept

T/kept

kept

Rev. 3.00 Mar 21, 2006 pag

kept*

Т

kept

kept

kept

kept

Т

kept

T/kept

kept

RENESAS

kept*

Т

kept

kept

		2, 3 (EXPE = 0)	_						I/O port
Port B		1	Т	Т	T/kept	T/kept	T/kept	T/kept	D7 to D0/
D7 to D0		2, 3 (EXPE = 1)	-						I/O port
		2, 3 (EXPE = 0)	-		kept	kept	kept	kept	I/O port
Ports C to G		1	Т	Т	kept	kept	kept	kept	I/O port
(H8S/216		2, 3 (EXPE = 1)	-						
• • • • •	, ,	2, 3 (EXPE = 0)							
Legend	d:								
H:	High	า							
L:	Low	,							
T:	High-impedance state								
kept:	 Input ports are in the high-impedance state (when DDR = 0 and PCR = 1, input MOSs remain on). Output ports maintain their previous state. Depending on the pins, the on-chip peripheral modules may be initialized and th function determined by DDR and DR used. 								
							ized and the		

kept

kept

H/kept

kept

kept*

Т

Т

Т

Т

kept

kept

H/kept

kept

kept*

kept

kept

H/kept

kept

kept*

kept

kept

H/kept

kept

kept*

I/O port

I/O port

LWR/

I/O port

I/O port

I/O port

A23 to A16/ I/O port

2, 3 (EXPE = 0)

2, 3 (EXPE = 1)2, 3 (EXPE = 0)

2, 3 (EXPE = 1) $\overline{2}$, 3 (EXPE = 0)

2, 3 (EXPE = 1)

Data direction register

1

Ports 92, 91

Port 90

LWR

Port A

DDR:

Note:

A23 to A16

Rev. 3.00 Mar 21, 2006 page 778 of 788 REJ09B0300-0300 RENESAS

In the case of address output, the last address accessed is retained.

H8S/2145B	Flash memory version (3-V version)	HD64F2145BV	F2145BVFA10	100-pin QFP
			F2145BVTE10	100-pin TQF
	Flash memory version	HD64F2145B	F2145BFA20	100-pin QFP
	(5-V version)		F2145BTE20	100-pin TQF
H8S/2148B	Flash memory version (3-V version)	HD64F2148BV	F2148BVFA10	100-pin QFP
			F2148BVTE10	100-pin TQF
	Flash memory version	HD64F2148B	F2148BFA20	100-pin QFP
	(5-V version)		F2148BTE20	100-pin TQF
Note: * S	I code Some products above ar agency to conform the p	•	0 . 0 0	e. Please cont

(3-V version)

(3-V version)

Flash memory version

H8S/2140B

Rev. 3.00 Mar 21, 2006 pag

REJ09

100-pin TQF

100-pin QFP

100-pin TQF

F2141BVTE10

F2140BVFA10

F2140BVTE10

HD64F2140BV

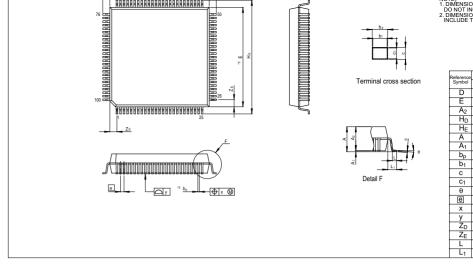


Figure C.1 Package Dimensions (FP-100B)

Rev. 3.00 Mar 21, 2006 page 780 of 788 REJ09B0300-0300

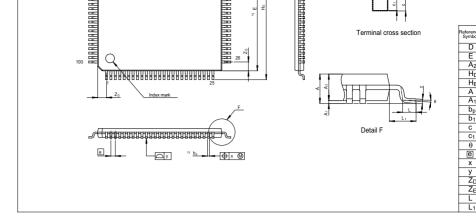


Figure C.2 Package Dimensions (TFP-100B)

Rev. 3.00 Mar 21, 2006 pag REJ09

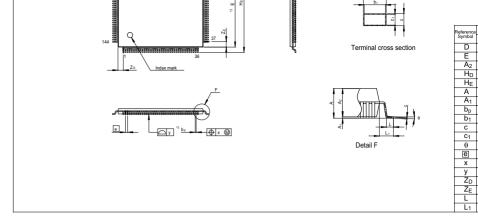


Figure C.3 Package Dimensions (TFP-144)

2EN	ESAS
	Rev. 3.00 Mar 21, 2006 pa REJ0
Buffered Input Capture Input274	DTCER150, 663,
BRR	DTC Vector Table
Break	Direct Transitions
Branch Instructions	DDCSWR436, 663,
Boot Mode618	DDCSWI
Block Transfer Mode 158	Data Transfer Instructions
Block Data Transfer Instructions50	Data Transfer Controller (DTC
Block Configuration 608	DAR
bit rate	DADR1580, 669,
Bit Manipulation Instructions46	DADR0 580, 669,
BCR 124, 667, 676, 685, 696	684,
Bcc48	DACR248, 581, 665, 6
BAR 94, 664, 673, 682, 692	DACNT245, 666,
	D/A Converter
Asynchronous Mode376	
Arithmetic Operations Instructions43	Crystal Resonator
Analog Input Channel588	CRB
ADI596	CRA
Addressing Modes51	Conversion Time
Address Space32	Condition-Code Register (CCR
Address Map71	Condition field
ADDR588, 668, 677, 686, 698	Compare-Match Count Mode
ADCSR 589, 668, 678, 686, 698	CMIBY
ADCR 590, 668, 678, 687, 698	CMIB
Activation by Software 163	CMIAY
Absolute Address53	CMIA
ABRKCR93, 663, 673, 682, 692	CMI
A20 Gate	Clocked Synchronous Mode
A/D Converter 585	Clock Pulse Generator

8-Bit PWM Timer (PWM)......231

8-Bit Timer (TMR)......287

Chain Transfer

Clamp Waveform Generation ... Clear Timing

Exception Handling81	Idle Cycle
Exception Vector Table82	IDR517, 661, 6
Extended Control Register (EXR)	IER96, 667, 6
External Trigger595	IHI signal divided waveform
	IICI
flash memory 603	Immediate
FLMCR1 611, 664, 674, 682, 692	Increment Timing
FLMCR2 613, 664, 674, 682, 692	Input Capture Input
Formatless	Instruction Set
FOV279	Interrupt Control Modes
framing error383	Interrupt Controller
FRC262, 664, 674, 683, 693	Interrupt Exception Handling
	Interrupt Exception Handling Ve
General Registers34	
-	Interrupt Mask Bit
Hardware Protection	Interval Timer Mode
Hardware Standby Mode 652	IrDA Operation
HICR514, 669, 678, 687, 698	ISCR95, 663, 6
HICR0533, 661, 672, 681, 690	ISR96, 663, 6
HICR1 533, 661, 672, 681, 690	
HICR2 540, 661, 672, 681, 690	KBBR495, 662, 6
HICR3 540, 661, 672, 681, 690	KBCOMP591, 663, 6
HIRQ 526	KBCR492, 662, 6
HISEL 561, 661, 672, 681, 690	Keyboard Buffer Controller
Host Interface LPC Interface (LPC) 529	KMIMR 97, 669, 6
Host Interface X-Bus Interface (XBS) 509	KMIMRA97, 669, 6

ICK...... 92, 202, 003, 003, 07

ICSR......431, 668, 67

ICXR......438, 662, 67

Rev. 3.00 Mar 21, 2006 page 784 of 788

	F J
NMI interrupt100	PBDDR211, 667, 6
Noise Canceler	PBODR212, 667, 6
Normal Mode	PBPIN212, 667, 6
	PCDDR218, 662, 6
OCI279	PCNOCR221, 660, 6
OCR 262, 665, 675, 683, 693	PCODR219, 662, 6
OCRDM263	PCPIN220, 662, 6
ODR517, 545, 661, 680, 690	PCSR238, 664, 6
ODR1672	PDDDR218, 662, 6
On-Board Programming Modes617	PDNOCR221, 660, 6
Operation field50	PDODR219, 662, 6
Output Compare Output273	PDPIN 220, 662, 6
overrun error	PEDDR223, 661, 6
OVI309	PENOCR226, 660, 6
OVIY 309	PEODR224, 661, 6
	PEPIN225, 661, 6
P1DDR 172, 666, 676, 685, 695	PFDDR223, 662, 6
P1DR 173, 666, 676, 685, 695	PFNOCR 226, 660, 6
P1PCR 173, 666, 676, 684, 695	PFODR224, 661, 6
P2DDR 175, 666, 676, 685, 695	PFPIN225, 661, 6
P2DR 176, 666, 676, 685, 695	PGDDR228, 661, 6
P2PCR 176, 666, 676, 684, 695	PGNOCR229, 660, 6
P3DDR179, 666, 676, 685, 695	PGODR228, 661, 6
P3DR 180, 666, 676, 685, 696	PGPIN229, 661, 6
, , , ,	, .
	Rev. 3.00 Mar 21, 2006 pag
RENG	REJOS

Module Stop Mode 656 MRA 147

MRB149 MSTPCR...... 645, 664, 674, 683, 692

Multiprocessor Communication Function

Poddr...... 193, 007, 0 P8DR......196, 667, 6

P9DDR......200, 667, 6 P9DR......201, 667, 6

PADDR 205, 666, 6

PAODR 205, 666, 6 PAPIN 206, 666, 6

parity error

	Subsleep Mode
RDR 362, 668, 677, 686, 697	SWDTEND
Register Direct	SYSCR 65, 667, 67
Register field50	SYSCR2512, 664, 67
Register Indirect 52	System Control Instructions
Register Indirect with Displacement 52	
Register Indirect with Post-Increment 52	TCNT291, 347, 666, 66
Register Indirect with Pre-Decrement 53	684, 68
Register information	TCNT Count Timing
Repeat Mode157	TCONRI 320, 670, 67
Reset	TCONRO 323, 670, 67
Reset Exception Handling 83	TCONRS 325, 670, 67
RSR362	TCOR291, 667, 67
RXI405	TCORC 300, 669, 67
	TCR268, 291, 665, 66
SAR 418, 668, 677, 686, 697	683, 68
SARX419, 668, 677, 686, 697	TCSR 265, 294, 348, 664, 66
SBYCR 642, 664, 674, 683, 692	675, 676, 683, 684, 685, 69
SCMR368, 668, 677, 686, 697	TDR 362, 668, 67
SCR 364, 668, 677, 686, 697	TEI
SEDGR 327, 670, 679, 688, 700	TICR
Serial Communication Interface	TICRF300, 669, 67
(SCI and IrDA)359	TICRR300, 669, 67
Serial Formats443	TIER264, 664, 67
Shift Instructions45	Timer Connection
Shutdown Function523	TISR300, 669, 67
Single Mode	TOCR269, 665, 67
SIRQCR 552, 661, 672, 680, 690	Toggle output
	·

PWDR...... 250, 008, 077, 080, 097

PWM Decoding329

PWOER 237, 667, 677, 686, 697

PWSL......234, 668, 677, 686, 697

RENESAS

Stack Status.....

STCR 66, 667, 67

STR 545, 661, 67

Subactive Mode

Rev. 3.00 Mar 21, 2006 page 786 of 788

REJ09B0300-0300

Rev. 3.00 Mar 21, 2006 pag REJ09

Rev. 3.00 Mar 21, 2006 page 788 of 788 REJ09B0300-0300

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2140B Group

Publication Date: 1st Edition, March 2002

Rev.3.00, March 21, 2006

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Customer Support Department

Global Strategic Communication Div.

Renesas Solutions Corp.

 $\hbox{@2006. Renesas Technology Corp., All rights reserved. Printed in Japan.}\\$

RENESAS SALES OFFICES

http://www.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.

Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <655-6213-0200, Fax: <655-6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehs Tel: <603> 7955-9390, Fax: <603> 7955-9510

H8S/2140B Group Hardware Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Digital Signal Processors & Controllers - DSP, DSC category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

 0W633-001-XTP
 0W888-002-XTP
 42634-3
 646890G
 66AK2E05XABD25
 66AK2G12ABY100
 66AK2G12ABY60
 66AK2G12ABYA100

 66AK2G12ABYA100E
 66AK2G12ABYA60E
 66AK2G12ABYA60E
 66AK2G12ABYT100
 66AK2H16DAAW2
 66AK2H12BAAW2

 66AK2H14DXAAWA24
 AD21477WYCPZ1A02
 AD21477WYSWZ1A02
 AD21479WYSWZ2A02
 AD21488WBSWZ2A02

 AD21489WBCPZ402
 AD21489WBSWZ4B02
 AD21571WCSWZ400
 AD21583WCBCZ4A10

 AD21584WCBCZ4A10
 ADBF592WYCPZ402
 ADBF608WCBCZ502
 ADBF608WCBCZ502RL
 ADBF700WCCPZ211

 ADBF702WCCPZ411
 ADBF703WCBCZ311
 ADBF703WCBCZ411
 ADBF704WCCPZ311
 ADBF706WCCPZ411
 ADBF707WCBCZ411

 ADN8835CP-EVALZ
 ADSC571WCSWZ300
 ADSC571WCSWZ400
 ADSC571WCSWZ500
 ADSC572WCBCZ400
 ADSC572WCBCZ400

 ADSC573WCBCZ402
 ADSC572WCBCZ4201
 ADSC573WCBCZ301
 ADSC573WCBCZ301
 ADSC573WCBCZ301