Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

16

H8S/2556 Group, H8S/2552 Group, H8S/2506 Group Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8S Family/H8S/2500 Series

H8S/2556	HD64F2556
H8S/2552	HD64F2552
H8S/2551	HD64F2551
H8S/2506	HD64F2506
H8S/2505	HD64F2505

Renesas Electronics

Rev.6.00 2009.09

- document, please confirm the latest product information with a Renesas sales office. Also, please pay and careful attention to additional and different information to be disclosed by Renesas such as that di through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesa assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the info included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the informatilight of the total system before deciding about the applicability of such information to the intended appl Renesas makes no representations, warranties or guaranties regarding the suitability of its products for particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure malfunction of which may cause a direct threat to human life or create a risk of human injury or which i especially high quality and reliability such as safety systems, or equipment or systems for transportatic traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea comm transmission. If you are considering the use of our products for such purposes, please contact a Rene sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth all
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes liste
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchase elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless I Technology Corp., its affiliated companies and their officers, directors, and employees against any and damages arising out of such applications.

- 9. You should use the products described herein within the range specified by Renesas, especially with r to the maximum rating, operating supply voltage range, movement power voltage range, heat radiatior characteristics, installation and other product characteristics. Renesas shall have no liability for malfun damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specharacteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical in injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design hardware and software including but not limited to redundancy, fire control and malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final prodisystem manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesa products are attached or affixed, the risk of accident such as swallowing by infants and small children i high. You should implement safety measures so that Renesas products may not be easily detached from products. Renesas shall have no liability for damages arising out of such detachment.
- This document may not be reproduced or duplicated, in any form, in whole or in part, without prior writ approval from Renesas.
- Please contact a Renesas sales office if you have any questions regarding the information contained in document, Renesas semiconductor products, or if you have any other inquiries.

Rev. 6.00 Sep. 24, 2009 Page ii of xlvi

REJ09B0099-0600

malfunctions may occur due to the false recognition of the pin state as an input Unused pins should be handled as described under Handling of Unused Pins in manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of regis settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, t states of pins are not guaranteed from the moment when power is supplied unti reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power reset function are not guaranteed from the moment when power is supplied untipower reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functi not access these addresses; the correct operation of LSI is not guaranteed if the accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal ha become stable. When switching the clock signal during program execution, wait unt target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an extern oscillator) during a reset, ensure that the reset line is only released after full stal of the clock signal. Moreover, when switching to a clock signal produced with ar external resonator (or by an external oscillator) while program execution is in pr wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number confirm that the change will not lead to problems.

The characteristics of MPU/MCU in the same group but having different type numay differ because of the differences in internal memory capacity and layout pa When changing to products of different type numbers, implement a system-eval test for each of the products.

RENESAS

Rev. 6.00 Sep. 24, 2009 P REJ09

- CPU and System-Control Modules
- On-Chip Peripheral Modules

The configuration of the functional description of each module differs according to the module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Eac includes notes in relation to the descriptions given, and usage notes are given, as required final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
- 10. Main Revisions for This Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier vers. This does not include all of the revised contents. For details, see the actual locations in the manual.

11. Index

Rev. 6.00 Sep. 24, 2009 Page iv of xlvi REJ09B0099-0600

List of on-chip peripheral functions:

Group Name	H8S/2556 Group	H8S/2552 Group	H8S/250
		H8S/2552	H8S/250
Product Name	H8S/2556	H8S/2551	H8S/250
Bus controller	O (16 bits)	O (16 bits)	O (16 bit
Data transfer controller (DTC)	0	0	0
PC break controller (PBC)	0	0	0
16-bit timer pulse unit (TPU)	× 6	× 6	× 6
8-bit timer (TMR)	× 4	× 4	× 4
Watch dog timer (WDT)	× 2	× 2	× 2
Serial communication interface (SCI)	× 5	× 5	× 5
I ² C bus interface 2 (IIC2)	× 2	× 2	× 2
IEBus [™] * ² controller (IEB)		× 1	
Controller area network (HCAN)	× 1		
D/A converter	× 2	× 2	× 2
A/D converter	× 16	× 16	× 16

Notes: 1. F-ZTAT is a trademark of Renesas Technology Corp.

2. IEBus is a trademark of NEC Electronics Corporation.

RENESAS

Rev. 6.00 Sep. 24, 2009 F REJ09

- In order to understand the overall functions of the chip Read the manual according to the contents. This manual can be roughly categorized in on the CPU, system control functions, peripheral functions and electrical characteristi
- In order to understand the details of the CPU's functions Read the H8S/2600 Series, H8S/2000 Series Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entry register. The addresses, bits, and initial values of the registers are summarized in section List of Registers.

-		
Examples:	Register name:	The following notation is used for cases when the sa similar function, e.g. 16-bit timer pulse unit or seria
		communication, is implemented on more than one c
		· •
		XXX_N (XXX is the register name and N is the cha
		number)
	Bit order:	The MSB is on the left and the LSB is on the right.
	Number notation:	Binary is B'xxxx, hexadecimal is H'xxxx, decimal
	Signal notation:	An overbar is added to a low-active signal: \overline{xxxx}

Related Manuals: The latest versions of all related manuals are available from our web si ensure you have the latest versions of all documents you require. http://www.renesas.com/

Rev. 6.00 Sep. 24, 2009 Page vi of xlvi REJ09B0099-0600

oomplier r dokuge	VCI.0.01 03013 Manual	

H8S, H8/300 Series Simulator/Debugger User's Manual

H8S, H8/300 Series High-performance Embedded Workshop User's Manual REJ10J20

Renesas

Rev. 6.00 Sep. 24, 2009 Pa REJ09

REJ10B02

All trademarks and registered trademarks are the property of their respective owners.

Rev. 6.00 Sep. 24, 2009 Page viii of xlvi REJ09B0099-0600

Secti	ion 2 C	PU	
2.1	Features		
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU	
	2.1.2	Differences from H8/300 CPU	
	2.1.3	Differences from H8/300H CPU	
2.2	CPU O	perating Modes	
	2.2.1	Normal Mode	
	2.2.2	Advanced Mode	
2.3	Addres	s Space	
2.4	Registe	er Configuration	
	2.4.1	General Registers	
	2.4.2	Program Counter (PC)	
	2.4.3	Extended Control Register (EXR)	
	2.4.4	Condition-Code Register (CCR)	
	2.4.5	Initial Values of CPU Registers	
		ormats	
	2.5.1	General Register Data Formats	
	2.5.2	Memory Data Formats	
2.6	Instruc	tion Set	
	2.6.1	Table of Instructions Classified by Function	
	2.6.2	Basic Instruction Formats	
2.7	Addressing Modes and Effective Address Calculation		
	2.7.1	Register Direct—Rn	
	2.7.2	Register Indirect—@ERn	
	2.7.3	Register Indirect with Displacement-@(d:16, ERn) or @(d:32, ERn)	
	2.7.4	Register Indirect with Post-Increment or Pre-Decrement-@ERn+ or @-	
	2.7.5	Absolute Address—@aa:8, @aa:16, @aa:24, or @aa:32	
	2.7.6	Immediate—#xx:8, #xx:16, or #xx:32	

RENESAS

Rev. 6.00 Sep. 24, 2009 P REJ09

3.1	Operating Mode Selection		
3.2	Register Descriptions		
	3.2.1 Mode Control Register (MDCR)		
	3.2.2 System Control Register (SYSCR)		
3.3	Operating Mode		
	3.3.1 Mode 6		
	3.3.2 Mode 7		
	3.3.3 Pin Functions		
3.4	Address Map in Each Operating Mode		
Sect	on 4 Exception Handling		
4.1	Exception Handling Types and Priority		
4.2	Exception Sources and Exception Vector Table		
4.3	Reset		
	4.3.1 Types of Reset		
	4.3.2 Reset Exception Handling		
	4.3.3 Interrupts after Reset		
	4.3.4 State of On-Chip Peripheral Modules after Reset Release		
4.4	Trace Exception Handling		
4.5	Interrupt Exception Handling		
4.6	Trap Instruction Exception Handling		
4.7	Stack State after Exception Handling		
4.8	Usage Note		
	-		
Sect	on 5 Interrupt Controller		
5.1	Features		
5.2	Input/Output Pins		
5.3	Register Descriptions		
	5.3.1 Interrupt Priority Registers A to M, and O (IPRA to IPRM, IPRO)		

Rev. 6.00 Sep. 24, 2009 Page x of xlvi REJ09B0099-0600

	5.5.4	Interrupt Exception Handling Sequence
	5.5.5	Interrupt Response Times
	5.5.6	DTC Activation by Interrupt
5.6	Usage	Notes
	5.6.1	Contention between Interrupt Generation and Disabling
	5.6.2	Instructions That Disable Interrupts
	5.6.3	When Interrupts Are Disabled
	5.6.4	Interrupts during Execution of EEPMOV Instruction
	5.6.5	IRQ Interrupt
	5.6.6	NMI Interrupt Usage Notes
Sect	ion 6 P	C Break Controller (PBC)
6.1	Feature	es
6.2	Regist	er Descriptions
	6.2.1	Break Address Register A (BARA)
	6.2.2	Break Address Register B (BARB)
	6.2.3	Break Control Register A (BCRA)
	6.2.4	Break Control Register B (BCRB)
6.3	Operat	ion
	6.3.1	PC Break Interrupt Due to Instruction Fetch
	6.3.2	PC Break Interrupt Due to Data Access
	6.3.3	Notes on PC Break Interrupt Handling
	6.3.4	Operation in Transitions to Power-Down Modes
	6.3.5	When Instruction Execution Is Delayed by One State
6.4	Usage	Notes
	6.4.1	Module Stop Mode Setting
	6.4.2	PC Break Interrupts
	6.4.3	CMFA and CMFB
	6.4.4	PC Break Interrupt when DTC Is Bus Master
		1

RENESAS

Rev. 6.00 Sep. 24, 2009 P REJ09

	7.3.1	Bus Width Control Register (ABWCR)
	7.3.2	Access State Control Register (ASTCR)
	7.3.3	Wait Control Registers H and L (WCRH, WCRL)
	7.3.4	Bus Control Register H (BCRH)
	7.3.5	Bus Control Register L (BCRL)
	7.3.6	Pin Function Control Register (PFCR)
7.4	Bus Co	ontrol
	7.4.1	Area Divisions
	7.4.2	Bus Specifications
	7.4.3	Bus Interface for Each Area
	7.4.4	Chip Select Signals
7.5	Basic 7	Fiming
	7.5.1	On-Chip Memory (ROM, RAM) Access Timing
	7.5.2	On-Chip Peripheral Module Access Timing
	7.5.3	External Address Space Access Timing
7.6	Basic H	Bus Interface
	7.6.1	Data Size and Data Alignment
	7.6.2	Valid Strobes
	7.6.3	Basic Timing
	7.6.4	Wait Control
7.7	Burst F	ROM Interface
	7.7.1	Basic Timing
	7.7.2	Wait Control
7.8	Idle Cy	/cle
7.9	Bus Release	
	7.9.1	Usage Note for Bus Mastership Release
7.10	Bus Ar	bitration
		Operation
		Bus Mastership Transfer Timing
		-

Rev. 6.00 Sep. 24, 2009 Page xii of xlvi

REJ09B0099-0600

RENESAS

	8.2.6	DTC Transfer Count Register B (CRB)
	8.2.7	DTC Enable Registers A to G, and I (DTCERA to DTCERG, and DTCE
	8.2.8	DTC Vector Register (DTVECR)
8.3	Activa	tion Sources
8.4	Locati	on of Register Information and DTC Vector Table
8.5	Operat	ion
	8.5.1	Normal Mode
	8.5.2	Repeat Mode
	8.5.3	Block Transfer Mode
	8.5.4	Chain Transfer
	8.5.5	Interrupts
	8.5.6	Operation Timing
	8.5.7	Number of DTC Execution States
8.6	Proced	lures for Using DTC
	8.6.1	Activation by Interrupt
	8.6.2	Activation by Software
8.7	Examp	bles of Use of the DTC
	8.7.1	Normal Mode
	8.7.2	Software Activation
8.8	Usage	Notes
	8.8.1	Module Stop Mode Setting
	8.8.2	On-Chip RAM
	8.8.3	DTCE Bit Setting
Sect	ion 9 I/	O Ports
9.1	Port 1.	
	9.1.1	Port 1 Data Direction Register (P1DDR)
	9.1.2	Port 1 Data Register (P1DR)
	9.1.3	Port 1 Register (PORT1)

Renesas

Rev. 6.00 Sep. 24, 2009 Pa REJ09

	9.3.5	Pin Functions
9.4	Port 4.	
	9.4.1	Port 4 Register (PORT4)
	9.4.2	Pin Functions
9.5	Port 5.	
	9.5.1	Port 5 Data Direction Register (P5DDR)
	9.5.2	Port 5 Data Register (P5DR)
	9.5.3	Port 5 Register (PORT5)
	9.5.4	Pin Functions
9.6	Port 7.	
	9.6.1	Port 7 Data Direction Register (P7DDR)
	9.6.2	Port 7 Data Register (P7DR)
	9.6.3	Port 7 Register (PORT7)
	9.6.4	Pin Functions
9.7	Port 9.	
	9.7.1	Port 9 Register (PORT9)
	9.7.2	Pin Functions
9.8	Port A	
	9.8.1	Port A Data Direction Register (PADDR)
	9.8.2	Port A Data Register (PADR)
	9.8.3	Port A Register (PORTA)
	9.8.4	Port A Pull-Up MOS Control Register (PAPCR)
	9.8.5	Port A Open Drain Control Register (PAODR)
	9.8.6	Pin Functions
	9.8.7	Input Pull-Up MOS Function (Port A)
9.9	Port B	
	9.9.1	Port B Data Direction Register (PBDDR)
	9.9.2	Port B Data Register (PBDR)
	9.9.3	Port B Register (PORTB)

Rev. 6.00 Sep. 24, 2009 Page xiv of xlvi

REJ09B0099-0600

RENESAS

	9.11.1	Port D Data Direction Register (PDDDR)
	9.11.2	Port D Data Register (PDDR)
	9.11.3	Port D Register (PORTD)
	9.11.4	Port D Pull-Up MOS Control Register (PDPCR)
	9.11.5	Pin Functions
	9.11.6	Input Pull-Up MOS Function (Port D)
9.12	Port E.	
	9.12.1	Port E Data Direction Register (PEDDR)
	9.12.2	Port E Data Register (PEDR)
	9.12.3	Port E Register (PORTE)
	9.12.4	Port E Pull-Up MOS Control Register (PEPCR)
	9.12.5	Pin Functions
	9.12.6	Input Pull-Up MOS Function (Port E)
9.13	Port F.	
	9.13.1	Port F Data Direction Register (PFDDR)
	9.13.2	Port F Data Register (PFDR)
	9.13.3	Port F Register (PORTF)
	9.13.4	Pin Functions
9.14	Port G.	
	9.14.1	Port G Data Direction Register (PGDDR)
	9.14.2	Port G Data Register (PGDR)
	9.14.3	Port G Register (PORTG)
	9.14.4	Pin Functions
9.15	Port H.	
	9.15.1	Port H Data Direction Register (PHDDR)
	9.15.2	Port H Data Register (PHDR)
	9.15.3	Port H Register (PORTH)
	9.15.4	Pin Functions
9.16	Port J	

RENESAS

Rev. 6.00 Sep. 24, 2009 Pa REJ09

10.3	Register Descriptions		
	10.3.1	Timer Control Register (TCR)	
	10.3.2	Timer Mode Register (TMDR)	
	10.3.3	Timer I/O Control Register (TIOR)	
		Timer Interrupt Enable Register (TIER)	
	10.3.5	Timer Status Register (TSR)	
	10.3.6	Timer Counter (TCNT)	
	10.3.7	Timer General Register (TGR)	
	10.3.8	Timer Start Register (TSTR)	
	10.3.9	Timer Synchro Register (TSYR)	
10.4	Operati	ion	
	10.4.1	Basic Functions	
	10.4.2	Synchronous Operation	
	10.4.3	Buffer Operation	
		Cascaded Operation	
	10.4.5	PWM Modes	
	10.4.6	Phase Counting Mode	
10.5	Interru	pts	
10.6	DTC A	ctivation	
10.7	A/D Co	onverter Activation	
10.8	Operati	ion Timing	
	10.8.1	Input/Output Timing	
	10.8.2	Interrupt Signal Timing	
10.9	Usage	Notes	
	10.9.1	Module Stop Mode Setting	
	10.9.2	Input Clock Restrictions	
	10.9.3	Caution on Period Setting	
	10.9.4	Contention between TCNT Write and Clear Operations	
	10.9.5	Contention between TCNT Write and Increment Operations	

Rev. 6.00 Sep. 24, 2009 Page xvi of xlvi

REJ09B0099-0600

RENESAS

11.1	Feature	28
11.2	Input/Output Pins	
11.3	Registe	er Descriptions
	11.3.1	Timer Counter (TCNT)
	11.3.2	Time Constant Register A (TCORA)
	11.3.3	Time Constant Register B (TCORB)
	11.3.4	Timer Control Register (TCR)
	11.3.5	Timer Control/Status Register (TCSR)
11.4	Operati	ion
	11.4.1	Pulse Output
11.5	Operati	ion Timing
	11.5.1	TCNT Incrementation Timing
	11.5.2	Timing of CMFA and CMFB Setting When a Compare-Match Occurs
	11.5.3	Timing of Timer Output When a Compare-Match Occurs
	11.5.4	Timing of Compare-Match Clear When a Compare-Match Occurs
	11.5.5	TCNT External Reset Timing
	11.5.6	Timing of Overflow Flag (OVF) Setting
11.6	Operati	ion with Cascaded Connection
	11.6.1	16-Bit Count Mode
	11.6.2	Compare-Match Count Mode
11.7	Interru	pt Sources
	11.7.1	Interrupt Sources and DTC Activation
	11.7.2	A/D Converter Activation
11.8	Usage	Notes
	11.8.1	Setting Module Stop Mode
	11.8.2	Contention between TCNT Write and Clear
	11.8.3	Contention between TCNT Write and Increment
	11.8.4	Contention between TCOR Write and Compare-Match
	11.8.5	Contention between Compare-Matches A and B

Renesas

Rev. 6.00 Sep. 24, 2009 Pag REJ09

12.4	4 Operation	
	12.4.1	Watchdog Timer Mode
	12.4.2	Interval Timer Mode
	12.4.3	Timing of Setting Overflow Flag (OVF)
	12.4.4	Timing of Setting Watchdog Timer Overflow Flag (WOVF)
12.5	Interru	pt Sources
12.6	Usage	Notes
	12.6.1	Notes on Register Access
	12.6.2	Contention between Timer Counter (TCNT) Write and Increment
	12.6.3	Changing Value of PSS or CKS2 to CKS0
	12.6.4	Switching between Watchdog Timer Mode and Interval Timer Mode
		Internal Reset in Watchdog Timer Mode
	12.6.6	OVF Flag Clearing in Interval Timer Mode
		Initialization of TCNT by the TME Bit
Secti	ion 13	Serial Communication Interface (SCI)
Secti 13.1		Serial Communication Interface (SCI)
	Feature	
13.1	Feature Input/C	S
13.1 13.2	Feature Input/C Registe	s Dutput Pins
13.1 13.2	Feature Input/C Registe 13.3.1	es Dutput Pins Pr Descriptions
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2	es Dutput Pins er Descriptions Receive Shift Register (RSR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3	S Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR) Transmit Shift Register (TSR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR) Transmit Shift Register (TSR) Serial Mode Register (SMR) Serial Control Register (SCR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR) Transmit Shift Register (TSR) Serial Mode Register (SMR) Serial Control Register (SCR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6 13.3.7 13.3.8	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR) Transmit Shift Register (TSR) Serial Mode Register (SMR) Serial Control Register (SCR) Serial Status Register (SSR) Smart Card Mode Register (SCMR)
13.1 13.2	Feature Input/C Registe 13.3.1 13.3.2 13.3.3 13.3.4 13.3.5 13.3.6 13.3.7 13.3.8 13.3.9	Ss Dutput Pins er Descriptions Receive Shift Register (RSR) Receive Data Register (RDR) Transmit Data Register (TDR) Transmit Shift Register (TSR) Serial Mode Register (SMR) Serial Control Register (SCR) Serial Status Register (SSR)

Rev. 6.00 Sep. 24, 2009 Page xviii of xlvi REJ09B0099-0600

RENESAS

	13.6.1	Clock		
	13.6.2	SCI Initialization (Clocked Synchronous Mode)		
	13.6.3	Serial Data Transmission (Clocked Synchronous Mode)		
	13.6.4	Serial Data Reception (Clocked Synchronous Mode)		
	13.6.5	Simultaneous Serial Data Transmission and Reception (Clocked Synchro		
		Mode)		
13.7	Operati	Operation in Smart Card Interface		
	13.7.1	Pin Connection Example		
	13.7.2	Data Format (Except for Block Transfer Mode)		
	13.7.3	Block Transfer Mode		
	13.7.4	Receive Data Sampling Timing and Reception Margin		
	13.7.5	Initialization		
	13.7.6	Serial Data Transmission (Except for Block Transfer Mode)		
	13.7.7	Serial Data Reception (Except for Block Transfer Mode)		
	13.7.8	Clock Output Control		
13.8	Interru	ot Sources		
	13.8.1	Interrupts in Normal Serial Communication Interface Mode		
	13.8.2	Interrupts in Smart Card Interface Mode		
13.9	Usage I	Notes		
	13.9.1	Module Stop Mode Setting		
	13.9.2	Break Detection and Processing (Asynchronous Mode Only)		
	13.9.3	Mark State and Break Detection (Asynchronous Mode Only)		
	13.9.4	Receive Error Flags and Transmit Operations		
		(Clocked Synchronous Mode Only)		
	13.9.5	Restrictions on Use of DTC		
	13.9.6	Operation in Case of Mode Transition		
	13.9.7	Notes when Switching from SCK Pin to Port Pin		

RENESAS

Rev. 6.00 Sep. 24, 2009 Pa REJ09

	14.3.7	I ² C Bus Transmit Data Register (ICDRT)
	14.3.8	I ² C Bus Receive Data Register (ICDRR)
	14.3.9	I ² C Bus Shift Register (ICDRS)
14.4	Operati	on
	14.4.1	I ² C Bus Format
	14.4.2	Master Transmit Operation
	14.4.3	Master Receive Operation
	14.4.4	Slave Transmit Operation
	14.4.5	Slave Receive Operation
	14.4.6	Clocked Synchronous Serial Format
	14.4.7	Noise Canceler
	14.4.8	Example of Use
14.5	Interru	pt Request
14.6	Bit Syn	chronous Circuit
14.7	Note or	1 Usage
	14.7.1	Setting Module Stop Mode
	14.7.2	Issuance of Stop and Repeated Start Conditions
	14.7.3	WAIT Bit in I ² C Bus Mode Register (ICMR)
	14.7.4	Usage Note on Master Receive Mode
	14.7.5	Restriction on Setting of Transfer Rate in Use of Multi-Master
	14.7.6	Restriction on Use of Bit Manipulation Instructions to Set MST and TRS
		Multi-Master Is Used
Secti	ion 15 λ	A/D Converter
15.1		·S
15.2	Input/C	Output Pins
15.3	Registe	r Descriptions
		A/D Data Registers A to D (ADDRA to ADDRD)
	15.3.2	A/D Control/Status Register (ADCSR)

Rev. 6.00 Sep. 24, 2009 Page xx of xlvi REJ09B0099-0600

	15.8.2	Permissible Signal Source Impedance
	15.8.3	Influences on Absolute Accuracy
	15.8.4	Range of Analog Power Supply and Other Pin Settings
	15.8.5	Notes on Board Design
	15.8.6	Notes on Noise Countermeasures
Secti	ion 16 I	D/A Converter
16.1	Feature	S
16.2	Input/C	Output Pins
16.3	Registe	r Descriptions
	16.3.1	D/A Data Registers 0, 1 (DADR0, DADR1)
	16.3.2	D/A Control Register (DACR)
16.4	Operati	on
16.5	Usage I	Notes
	16.5.1	Analog Power Supply Current in Power-Down Mode
	16.5.2	Setting for Module Stop Mode
Secti	ion 17]	EBus [™] Controller (IEB) [H8S/2552 Group]
17.1	Feature	·S
	17.1.1	IEBus Communications Protocol
	17.1.2	Communications Protocol
		Transfer Data (Data Field Contents)
	17.1.4	Bit Format
17.2		
17.3	Registe	r Descriptions
	17.3.1	IEBus Control Register (IECTR)
	17.3.2	IEBus Command Register (IECMR)
	17.3.3	IEBus Master Control Register (IEMCR)
	17.3.4	IEBus Master Unit Address Register 1 (IEAR1)

Renesas

Rev. 6.00 Sep. 24, 2009 Pa REJ09

	17.3.16	EBus Lock Address Register 2 (IELA2)
	17.3.17	' IEBus General Flag Register (IEFLG)
	17.3.18	EIEBus Transmit/Runaway Status Register (IETSR)
	17.3.19	IEBus Transmit/Runaway Interrupt Enable Register (IEIET)
	17.3.20	IEBus Transmit Error Flag Register (IETEF)
	17.3.21	IEBus Receive Status Register (IERSR)
		2 IEBus Receive Interrupt Enable Register (IEIER)
	17.3.23	EBus Receive Error Flag Register (IEREF)
17.4	Operati	on Descriptions
		Master Transmit Operation
		Slave Receive Operation
	17.4.3	Master Reception
		Slave Transmission
17.5	Interruj	pt Sources
17.6		Notes
	17.6.1	Setting Module Stop Mode
		TxRDY Flag and Underrun Error
	17.6.3	RxRDY Flag and Overrun Error
		Error Flag s in the IETEF
		Error Flags in IEREF
	17.6.6	Notes on Slave Transmission
	17.6.7	Notes on DTC Specification
		Error Handling in Transmission
		Power-Down Mode Operation
	17.6.10	Notes on Middle-Speed Mode
		Notes on Register Access
Sect	on 18	Controller Area Network (HCAN) [H8S/2556 Group]
18.1	геаште	S

Rev. 6.00 Sep. 24, 2009 Page xxii of xlvi REJ09B0099-0600

	18.3.10	Remote Request Register (RFPR)
	18.3.11	Interrupt Register (IRR)
	18.3.12	Mailbox Interrupt Mask Register (MBIMR)
	18.3.13	Interrupt Mask Register (IMR)
	18.3.14	Receive Error Counter (REC)
	18.3.15	Transmit Error Counter (TEC)
	18.3.16	Unread Message Status Register (UMSR)
	18.3.17	Local Acceptance Filter Masks (LAFML, LAFMH)
	18.3.18	Message Control (MC0 to MC15)
	18.3.19	Message Data (MD0 to MD15)
18.4	Operati	on
	18.4.1	Hardware and Software Resets
	18.4.2	Initialization after Hardware Reset
	18.4.3	Message Transmission
	18.4.4	Message Reception
	18.4.5	HCAN Sleep Mode
	18.4.6	HCAN Halt Mode
18.5	Interrup	pts
18.6	-	iterface
18.7	CAN Bus Interface	
18.8	Usage 1	Notes
		Module Stop Mode Setting
	18.8.2	Reset
	18.8.3	HCAN Sleep Mode
	18.8.4	Interrupts
	18.8.5	Error Counters
	18.8.6	Register Access
	18.8.7	HCAN Medium-Speed Mode
	18.8.8	Register Hold in Standby Modes and Watch Mode

Renesas

Rev. 6.00 Sep. 24, 2009 Pag REJ09

	20.1.2	Operating Mode
	20.1.3	Mode Comparison
	20.1.4	Flash MAT Configuration
	20.1.5	Block Division
	20.1.6	Programming/Erasing Interface
20.2	Pin Co	nfiguration
20.3	Registe	r Descriptions
	20.3.1	Programming/Erasing Interface Register
	20.3.2	Programming/Erasing Interface Parameter
	20.3.3	RAM Emulation Register (RAMER)
	20.3.4	Flash Vector Address Control Register (FVACR)
	20.3.5	Flash Vector Address Data Register (FVADR)
20.4	On-Boa	ard Programming Mode
	20.4.1	Boot Mode
	20.4.2	User Program Mode
	20.4.3	User Boot Mode
	20.4.4	Procedure Program and Storable Area for Programming Data
20.5	Protect	ion
	20.5.1	Hardware Protection
	20.5.2	Software Protection
	20.5.3	Error Protection
20.6	Flash N	Iemory Emulation in RAM
20.7	Switching between User MAT and User Boot MAT	
20.8	Usage Notes	
20.9	9 Programmer Mode	
	20.9.1	Pin Arrangement of Socket Adapter
	20.9.2	Programmer Mode Operation
		Memory-Read Mode
	20.9.4	Auto-Program Mode

Rev. 6.00 Sep. 24, 2009 Page xxiv of xlvi

REJ09B0099-0600

RENESAS

	21.1.2	Low-Power Control Register (LPWRCR)	
21.2	System	Clock Oscillator	
	21.2.1	Connecting Crystal Resonator	
	21.2.2	External Clock Input	
		Notes on Switching External Clock	
21.3	PLL Ci	rcuit	
21.4		n-Speed Clock Divider	
21.5	Bus Ma	aster Clock Selection Circuit	
21.6	System	Clock with IEBus	
21.7	Subclo	ck Oscillator	
	21.7.1	Connecting 32.768-kHz Crystal Resonator	
	21.7.2	Handling Pins when Subclock Is Not Used	
21.8	Subclo	ck Waveform Generation Circuit	
21.9	Usage I	Notes	
	21.9.1	Note on Crystal Resonator	
	21.9.2	Note on Board Design	
Secti	Section 22 Power-Down Modes		
22.1	Registe	r Descriptions	
	22.1.1	Standby Control Register (SBYCR)	
	22.1.2	Module Stop Control Registers A to C (MSTPCRA to MSTPCRC)	
22.2	Mediur	n-Speed Mode	
22.3	Sleep M	Лоde	
	22.3.1	Transition to Sleep Mode	
	22.3.2	Clearing Sleep Mode	
22.4	Softwa	re Standby Mode	
		Transition to Software Standby Mode	
	22.4.2	Clearing Software Standby Mode	
	22.4.3	Oscillation Settling Time after Clearing Software Standby Mode	

Renesas

Rev. 6.00 Sep. 24, 2009 Pag REJ09

	22.9.1	I/O Port Status
	22.9.2	Current Consumption during Oscillation Settling Wait Period
	22.9.3	DTC Module Stop
	22.9.4	On-Chip Peripheral Module Interrupt
	22.9.5	Writing to MSTPCR
	22.9.6	Entering Watch Mode and DTC Module Stop
Secti	ion 23 l	List of Registers
23.1	Registe	er Addresses (in address order)
23.2	Registe	r Bits
23.3	Registe	r States in Each Operating Mode
Secti	ion 24 l	Electrical Characteristics
24.1	Power	Supply Voltage and Operating Frequency Range
24.2	Absolu	te Maximum Ratings
24.3	DC Cha	aracteristics
24.4	AC Cha	aracteristics
	24.4.1	Power-On/Off Timing
		Clock Timing
	24.4.3	Control Signal Timing
	24.4.4	Bus Timing
		Timing of On-Chip Peripheral Modules
24.5	A/D Co	onversion Characteristics
24.6	D/A Co	onversion Characteristics
24.7		Iemory Characteristics
		·
App	endix	
A.	I/O Por	t States in Each Pin State
B.		t Codes

Rev. 6.00 Sep. 24, 2009 Page xxvi of xlvi REJ09B0099-0600

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Rev. 6.00 Sep. 24, 2009 Page xxviii of xlvi REJ09B0099-0600

Figure 1./	Pin Arrangement of H88/2552 Group (BP-1/6V)
Figure 1.8	Pin Arrangement of H8S/2506 Group (BP-176V)
Section 2 (CPU
Figure 2.1	Exception Vector Table (Normal Mode)
Figure 2.2	Stack Structure in Normal Mode
Figure 2.3	Exception Vector Table (Advanced Mode)
Figure 2.4	Stack Structure in Advanced Mode
Figure 2.5	Memory Map
Figure 2.6	CPU Registers
Figure 2.7	Usage of General Registers
Figure 2.8	Stack Status
Figure 2.9	General Register Data Formats (1)
Figure 2.9	General Register Data Formats (2)
Figure 2.10	Memory Data Formats
Figure 2.11	Instruction Formats (Examples)
Figure 2.12	Branch Address Specification in Memory Indirect Mode
Figure 2.13	State Transitions

Section 3 MCU Operating Modes

Figure 3.1	Address Map of H8S/2556, H8S/2552, and H8S/2506
Figure 3.2	Address Map of H8S/2551
Figure 3.3	Address Map of H8S/2505

Figure 2.14 Flowchart of Access Method for Registers with Write-Only Bits.....

Section 4 Exception Handling

Figure 4.1	Reset Sequence (Advanced Mode with On-Chip ROM Enabled)
Figure 4.2	Stack State after Exception Handling (Advanced Mode)
Figure 4.3	Operation when SP Value Is Odd

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Section 6	PC Break Controller (PBC)
Figure 6.1	Block Diagram of PC Break Controller
Figure 6.2	Operation in Power-Down Mode Transitions
Section 7	Bus Controller
Figure 7.1	Block Diagram of Bus Controller
Figure 7.2	Overview of Area Divisions
Figure 7.3	$\overline{\text{CSn}}$ Signal Output Timing (n = 0 to 7)
Figure 7.4	On-Chip Memory Access Cycle
Figure 7.5	Pin States during On-Chip Memory Access
Figure 7.6	On-Chip Peripheral Module Access Cycle
Figure 7.7	Pin States during On-Chip Peripheral Module Access
Figure 7.8	On-Chip Port H, Port J, and IIC2 Module Access Cycle
Figure 7.9	Pin States during On-Chip Port H, Port J, and IIC2 Module Access
Figure 7.10	On-Chip IEB Module Access Cycle
Figure 7.11	Pin States during On-Chip IEB Module Access
Figure 7.12	2 On-Chip HCAN Module Access Cycle
Figure 7.13	Pin States during On-Chip HCAN Module Access
Figure 7.14	Access Sizes and Data Alignment Control (8-Bit Access Space)
Figure 7.15	Access Sizes and Data Alignment Control (16-Bit Access Space)
Figure 7.16	5 Bus Timing for 8-Bit 2-State Access Space
Figure 7.17	⁷ Bus Timing for 8-Bit 3-State Access Space
Figure 7.18	B Bus Timing for 16-Bit 2-State Access Space (1) (Even Address Byte Acces
Figure 7.19	Bus Timing for 16-Bit 2-State Access Space (2) (Odd Address Byte Access
Figure 7.20	Bus Timing for 16-Bit 2-State Access Space (3) (Word Access)
Figure 7.21	Bus Timing for 16-Bit 3-State Access Space (1) (Even Address Byte Acces
Figure 7.22	2 Bus Timing for 16-Bit 3-State Access Space (2) (Odd Address Byte Access
Figure 7.23	Bus Timing for 16-Bit 3-State Access Space (3) (Word Access)
Figure 7.24	Example of Wait State Insertion Timing

Rev. 6.00 Sep. 24, 2009 Page xxx of xlvi

REJ09B0099-0600

RENESAS

Figure 8.4	Correspondence between DTC Vector Address and Register Information
Figure 8.5	Flowchart of DTC Operation
Figure 8.6	Memory Mapping in Normal Mode
Figure 8.7	Memory Mapping in Repeat Mode
Figure 8.8	Memory Mapping in Block Transfer Mode
Figure 8.9	Chain Transfer Operation
-	DTC Operation Timing (Example in Normal Mode or Repeat Mode)
-	DTC Operation Timing (Example in Block Transfer Mode, with Block Si
-	DTC Operation Timing (Example of Chain Transfer)

Section 9 I/O Ports

Figure 9.1	Types of Open Drain Outputs
------------	-----------------------------

Section 10 16-Bit Timer Pulse Unit (TPU)

Figure	10.1	Block Diagram of TPU
		Example of Counter Operation Setting Procedure
-		Free-Running Counter Operation
		Periodic Counter Operation
		Example of Setting Procedure for Waveform Output by Compare Match
Figure	10.6	Example of 0 Output/1 Output Operation
		Example of Toggle Output Operation
		Example of Input Capture Operation Setting Procedure
-		Example of Input Capture Operation
Figure	10.10	Example of Synchronous Operation Setting Procedure
Figure	10.11	Example of Synchronous Operation
-		Compare Match Buffer Operation
-		Input Capture Buffer Operation
		Example of Buffer Operation Setting Procedure
-		Example of Buffer Operation (1)
0		

RENESAS

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Figure	10.27	Example of Phase Counting Mode 3 Operation
Figure	10.28	Example of Phase Counting Mode 4 Operation
Figure	10.29	Phase Counting Mode Application Example
Figure	10.30	Count Timing in Internal Clock Operation
Figure	10.31	Count Timing in External Clock Operation
Figure	10.32	Output Compare Output Timing
Figure	10.33	Input Capture Input Signal Timing
Figure	10.34	Counter Clear Timing (Compare Match)
Figure	10.35	Counter Clear Timing (Input Capture)
Figure	10.36	Buffer Operation Timing (Compare Match)
Figure	10.37	Buffer Operation Timing (Input Capture)
Figure	10.38	TGI Interrupt Timing (Compare Match)
Figure	10.39	TGI Interrupt Timing (Input Capture)
Figure	10.40	TCIV Interrupt Setting Timing
Figure	10.41	TCIU Interrupt Setting Timing
Figure	10.42	Timing for Status Flag Clearing by CPU
Figure	10.43	Timing for Status Flag Clearing by DTC Activation
Figure	10.44	Phase Difference, Overlap, and Pulse Width in Phase Counting Mode
Figure	10.45	Contention between TCNT Write and Clear Operations
Figure	10.46	Contention between TCNT Write and Increment Operations
Figure	10.47	Contention between TGR Write and Compare Match
Figure	10.48	Contention between Buffer Register Write and Compare Match
Figure	10.49	Contention between TGR Read and Input Capture
Figure	10.50	Contention between TGR Write and Input Capture
Figure	10.51	Contention between Buffer Register Write and Input Capture
Figure	10.52	Contention between Overflow and Counter Clearing
Figure	10.53	Contention between TCNT Write and Overflow

Rev. 6.00 Sep. 24, 2009 Page xxxii of xlvi REJ09B0099-0600

Figure 11.10	Contention between TCNT Write and Clear
Figure 11.11	Contention between TCNT Write and Increment
Figure 11.12	Contention between TCOR Write and Compare-Match
C	
Section 12	Watchdog Timer (WDT)
Figure 12.1	Block Diagram of WDT_0 (1)
Figure 12.1	Block Diagram of WDT_1 (2)
Figure 12.2	Watchdog Timer Mode Operation
Figure 12.3	Interval Timer Mode Operation
Figure 12.4	Timing of OVF Setting
Figure 12.5	Timing of WOVF Setting
Figure 12.6	Writing to TCNT and TCSR (WDT_0)
Figure 12.7	Writing to RSTCSR
Figure 12.8	Contention between TCNT Write and Increment
-	
Section 13	Serial Communication Interface (SCI)
Section 13 Figure 13.1	Serial Communication Interface (SCI) Block Diagram of SCI
Figure 13.1	Serial Communication Interface (SCI) Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data
Figure 13.1	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data
Figure 13.1 Figure 13.2	Block Diagram of SCI
Figure 13.1 Figure 13.2	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode
Figure 13.1 Figure 13.2 Figure 13.3	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase
Figure 13.1 Figure 13.2 Figure 13.3	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Sample SCI Initialization Flowchart Example of Operation in Transmission in Asynchronous Mode
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Sample SCI Initialization Flowchart Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Sample SCI Initialization Flowchart Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Sample SCI Initialization Flowchart Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit) Sample Serial Transmission Flowchart Example of SCI Operation in Reception
Figure 13.1 Figure 13.2 Figure 13.3 Figure 13.4 Figure 13.5 Figure 13.6 Figure 13.7	Block Diagram of SCI Data Format in Asynchronous Communication (Example with 8-Bit Data Two Stop Bits) Receive Data Sampling Timing in Asynchronous Mode Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode) Sample SCI Initialization Flowchart Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit) Sample ScI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

RENESAS

Rev. 6.00 Sep. 24, 2009 Page REJ09

Figure 13.17 Sample Serial Transmission Flowchart
Figure 13.18 Example of SCI Operation in Reception
Figure 13.19 Sample Serial Reception Flowchart
Figure 13.20 Sample Flowchart of Simultaneous Serial Transmit and Receive Operation
Figure 13.21 (1) Schematic Diagram of Smart Card Interface Pin Connections
(Channels 0, 1, 3, and 4)
Figure 13.21 (2) Schematic Diagram of Smart Card Interface Pin Connections
(Channel 2)
Figure 13.22 Normal Smart Card Interface Data Format
Figure 13.23 Direct Convention (SDIR = SINV = $O/\overline{E} = 0$)
Figure 13.24 Inverse Convention (SDIR = SINV = $O/\overline{E} = 1$)
Figure 13.25 Receive Data Sampling Timing in Smart Card Interface Mode
(Using Clock of 372 Times the Transfer Rate)
Figure 13.26 Retransfer Operation in SCI Transmit Mode
Figure 13.27 TEND Flag Generation Timing in Transmission Operation
Figure 13.28 Example of Transmission Processing Flow
Figure 13.29 Retransfer Operation in SCI Receive Mode
Figure 13.30 Example of Reception Processing Flow
Figure 13.31 Timing for Fixing Clock Output Level
Figure 13.32 Clock Halt and Restart Procedure
Figure 13.33 Example of Clocked Synchronous Transmission by DTC
Figure 13.34 Sample Flowchart for Mode Transition during Transmission
Figure 13.35 Asynchronous Transmission Using Internal Clock
Figure 13.36 Clocked Synchronous Transmission Using Internal Clock
Figure 13.37 Sample Flowchart for Mode Transition during Reception
Figure 13.38 Operation when Switching from SCK Pin to Port Pin
Figure 13.39 Operation when Switching from SCK Pin to Port Pin
(Example of Preventing Low-Level Output)

Rev. 6.00 Sep. 24, 2009 Page xxxiv of xlvi REJ09B0099-0600

RENESAS

Figure 1	14.11	Slave Receive Mode Operation Timing (1)
-		Slave Receive Mode Operation Timing (2)
-		Clocked Synchronous Serial Transfer Format
•		Transmit Mode Operation Timing
-		Receive Mode Operation Timing
		Block Diagram of Noise Canceler
•		Sample Flowchart for Master Transmit Mode
•		Sample Flowchart for Master Receive Mode
-		Sample Flowchart for Slave Transmit Mode
•		Sample Flowchart for Slave Receive Mode
-		The Timing of the Bit Synchronous Circuit
Figure 1	14.21	The Timing of the Bit Synchronous Circuit

Section 15 A/D Converter

Figure	15.1	Block Diagram of A/D Converter
Figure	15.2	Access to ADDR (When Reading H'AA40)
Figure	15.3	A/D Conversion Timing (Single-Chip Mode, Channel 1 Selected)
Figure	15.4	A/D Conversion Timing (Scan Mode, Channels AN0 to AN2 Selected)
Figure	15.5	A/D Conversion Timing
Figure	15.6	External Trigger Input Timing
Figure	15.7	A/D Conversion Accuracy Definitions
Figure	15.8	A/D Conversion Accuracy Definitions
Figure	15.9	Example of Analog Input Circuit
-		Example of Analog Input Protection Circuit
Figure	15.11	Analog Input Pin Equivalent Circuit

Section 16 D/A Converter

Figure 16.1	Block Diagram of D/A Converter
Figure 16.2	D/A Converter Operation Example

Rev. 6.00 Sep. 24, 2009 Pag Renesas

REJ09

Figure 17.10 Error Occurrence in the Broadcast Reception (DEE = 1)
Figure 17.11 Master Receive Operation Timing
Figure 17.12 Slave Transmit Operation Timing
Figure 17.13 Relationships among Transfer Interrupt Sources
Figure 17.14 Relationships among Receive Interrupt Sources
Figure 17.15 Error Processing in Transfer
Figure 17.15 Error Processing in Transfer

Section 18 Controller Area Network (HCAN) [H8S/2556 Group]

Figure	18.1	HCAN Block Diagram
Figure	18.2	Message Control Register Configuration
Figure	18.3	Standard Format
Figure	18.4	Extended Format
		Message Data Configuration
		Hardware Reset Flowchart
Figure	18.7	Software Reset Flowchart
Figure	18.8	Detailed Description of One Bit
		Transmission Flowchart
Figure	18.10	Transmit Message Cancellation Flowchart
Figure	18.11	Reception Flowchart
Figure	18.12	Unread Message Overwrite Flowchart
Figure	18.13	HCAN Sleep Mode Flowchart
-		HCAN Halt Mode Flowchart
		DTC Transfer Flowchart
-		High-Speed Interface Using PCA82C250
-		HCAN Transmit Procedure

Section 20 Flash Memory

Figure 20.1	Block Diagram of Flash Memory
Figure 20.2	Mode Transition of Flash Memory

Rev. 6.00 Sep. 24, 2009 Page xxxvi of xlvi REJ09B0099-0600

RENESAS

	(Overview)
Figure 20.14	Procedure for Programming User MAT in User Boot Mode
Figure 20.15	Procedure for Erasing User MAT in User Boot Mode
Figure 20.16	Transitions to Error-Protection State
Figure 20.17	Emulation of Flash Memory in RAM
Figure 20.18	Example of a RAM-Overlap Operation
Figure 20.19	Programming of the Data after Tuning
Figure 20.20	Switching between the User MAT and User Boot MAT
Figure 20.21	On-Chip Flash Memory Map
Figure 20.22	Pin arrangement of Socket Adapter
Figure 20.23	Boot Program States
Figure 20.24	Bit-Rate-Adjustment Sequence
Figure 20.25	Communication Protocol Format
Figure 20.26	New Bit-Rate Selection Sequence
Figure 20.27	Programming Sequence
Figure 20.28	Erasure Sequence
Figure 20.29	Memory Read Timing after Command Programming
Figure 20.30	Waveform of Transition from Memory-Read Mode to Other Mode
Figure 20.31	Waveform of \overline{CE} , \overline{OE} Enable State Read
Figure 20.32	Waveform of \overline{CE} , \overline{OE} Clock System Read
Figure 20.33	Waveform of Automatic Programming Mode
Figure 20.34	Waveform in Auto-Erase Mode
Figure 20.35	Waveform in Status-Read Mode
Figure 20.36	Oscillation Stabilized Time, Programmer Mode Setup Time and Power Fa
	Sequence

Section 21 Clock Pulse Generator

Figure 21.1	Block Diagram of Clock Pulse Generator
Figure 21.2	Connection of Crystal Resonator (Example)

Rev. 6.00 Sep. 24, 2009 Page REJ09

Section 22	Power-Down Modes
Figure 22.1	Mode Transition Diagram
Figure 22.2	Medium-Speed Mode Transition and Clearance Timing
Figure 22.3	Software Standby Mode Application Example
Figure 22.4	Hardware Standby Mode Timing
Section 24	Electrical Characteristics
Figure 24.1	(1) Power Supply Voltage and Operating Ranges
	(H8S/2552 Group, H8S/2506 Group)
-	(2) Power Supply Voltage and Operating Ranges (H8S/2556 Group)
Figure 24.2	Output Load Circuit
•	Power-On/Off Timing
Figure 24.4	Power-On Timing
Figure 24.5	System Clock Timing
Figure 24.6	Oscillator Settling Timing
Figure 24.7	Reset Input Timing
Figure 24.8	Interrupt Input Timing
Figure 24.9	Basic Bus Timing: Two-State Access
U) Basic Bus Timing: Three-State Access
	Basic Bus Timing: Three-State Access, One Wait
Figure 24.12	2 Burst ROM Access Timing: Two-State Access
	B External Bus-Released Timing
	I/O Port Input/Output Timing
	5 TPU Input/Output Timing
	5 TPU Clock Input Timing
Figure 24.17	7 8-Bit Timer Output Timing
Figure 24.18	3 8-Bit Timer Clock Input Timing
	9 8-Bit Timer Reset Input Timing
Figure 24.20) WDT_1 Output Timing

Rev. 6.00 Sep. 24, 2009 Page xxxviii of xlvi

REJ09B0099-0600

RENESAS

Rev. 6.00 Sep. 24, 2009 Page REJ09

RENESAS

Rev. 6.00 Sep. 24, 2009 Page xl of xlvi REJ09B0099-0600

Table 2.3	Data Transfer Instructions
Table 2.4	Arithmetic Operations Instructions (1)
Table 2.4	Arithmetic Operations Instructions (2)
Table 2.5	Logic Operations Instructions
Table 2.6	Shift Instructions
Table 2.7	Bit Manipulation Instructions (1)
Table 2.7	Bit Manipulation Instructions (2)
Table 2.8	Branch Instructions
Table 2.9	System Control Instructions
Table 2.10	Block Data Transfer Instructions
Table 2.11	Addressing Modes
Table 2.12	Absolute Address Access Ranges
Table 2.13	Effective Address Calculation (1)
Table 2.13	Effective Address Calculation (2)
Section 3	MCU Operating Modes
Table 3.1	MCU Operating Mode Selection
Table 3.2	Pin Function in Each Operating Mode

Section 4 Exception Handling

Table 4.1	Exception Types and Priority
Table 4.2	Exception Handling Vector Table
Table 4.3	Types of Reset
Table 4.4	State of CCR and EXR after Trace Exception Handling
Table 4.5	State of CCR and EXR after Trap Instruction Exception Handling

Section 5 Interrupt Controller

Table 5.1	Pin Configuration
Table 5.0	Interment Sources, Master Addresses, and Interment Drighting

 Table 5.2
 Interrupt Sources, Vector Addresses, and Interrupt Priorities

RENESAS

Rev. 6.00 Sep. 24, 2009 Pa REJ09

Table 7.3	Data Buses Used and Valid Strobes
Table 7.4	Pin States in Idle Cycle
Table 7.5	Pin States in Bus Mastership Released State
Section 8	Data Transfer Controller (DTC)
Table 8.1	Activation Source and DTCER Clearing
Table 8.2	Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs
Table 8.3	Register Function in Normal Mode
Table 8.4	Register Function in Repeat Mode
Table 8.5	Register Function in Block Transfer Mode
Table 8.6	DTC Execution Status
Table 8.7	Number of States Required for Each Execution Status
Section 9	I/O Ports
Table 9.1	Port Functions
Table 9.2	Input Pull-Up MOS States (Port A)
Table 9.3	Input Pull-Up MOS States (Port B)
Table 9.4	Input Pull-Up MOS States (Port C)
Table 9.5	Input Pull-Up MOS States (Port D)

Table 9.6Input Pull-Up MOS States (Port E).....Table 9.7Examples of Ways to Handle Unused Input Pins.....

Section 10 16-Bit Timer Pulse Unit (TPU)

Table 10.1	TPU Functions
Table 10.2	TPU Pins
Table 10.3	CCLR0 to CCLR2 (channels 0 and 3)
	CCLR0 to CCLR2 (channels 1, 2, 4, and 5)
	TPSC0 to TPSC2 (channel 0)
	TPSC0 to TPSC2 (channel 1)
1 abic 10.0	11 500 to 11 502 (chaliner 1)

Rev. 6.00 Sep. 24, 2009 Page xlii of xlvi

REJ09B0099-0600

RENESAS

Table 10.18	TIOR_4
Table 10.19	TIOR_5
	TIORH_0
	TIORL_0
Table 10.22	TIOR_1
	TIOR_2
	TIORH_3
	TIORL_3
	TIOR_4
Table 10.27	TIOR_5
Table 10.28	Register Combinations in Buffer Operation
Table 10.29	Cascaded Combinations
Table 10.30	PWM Output Registers and Output Pins
Table 10.31	Phase Counting Mode Clock Input Pins
Table 10.32	Up/Down-Count Conditions in Phase Counting Mode 1
Table 10.33	Up/Down-Count Conditions in Phase Counting Mode 2
Table 10.34	Up/Down-Count Conditions in Phase Counting Mode 3
Table 10.35	Up/Down-Count Conditions in Phase Counting Mode 4
	TPU Interrupts

Section 11 8-Bit Timers (TMR)

Table 11.1	Pin Configuration
	8-Bit Timer Interrupt Sources
	Timer Output Priorities
	Switching of Internal Clock and TCNT Operation
1000 11.4	Switching of internal clock and TCIVI operation

Section 12 Watchdog Timer (WDT)

Table 12.1	Pin Configuration
Table 12.2	WDT Interrupt Source

RENESAS

Rev. 6.00 Sep. 24, 2009 Pag REJ09

	(when S = 372)
Table 13.10	Serial Transfer Formats (Asynchronous Mode)
Table 13.11	SSR Status Flags and Receive Data Handling
Table 13.12	Interrupt Sources of Serial Communication Interface Mode
	Interrupt Sources in Smart Card Interface Mode
Section 14	I ² C Bus Interface 2 (IIC2)
Table 14.1	I ² C Bus Interface Pins
Table 14.2	Transfer Rate
Table 14.3	Interrupt Requests
Table 14.4	Time for Monitoring SCL
	-
Section 15	A/D Converter
Table 15.1	Pin Configuration
Table 15.2	Analog Input Channels and Corresponding ADDR Registers
Table 15.3	A/D Conversion Time (Single Mode)
Table 15.4	A/D Conversion Time (Scan Mode)
Table 15.5	A/D Converter Interrupt Source
Table 15.6	Analog Pin Specifications
Section 16	D/A Converter
Table 16.1	Pin Configuration
Table 16.2	D/A Conversion Control
Section 17	IEBus™ Controller (IEB) [H8S/2552 Group]
Table 17.1	Mode Types
Table 17.2	Transfer speed and Maximum Number of Transfer Bytes in Each Communi
	Mode
Table 17.3	Contents of Message Length bits
Rev. 6.00 Se	p. 24. 2009 Page xliv of xlvi

REJ09B0099-0600

Section 20 Flash Memory

Table 20.1	MD Pin Setting and Operating Mode
Table 20.2	Comparison of Programming Modes
Table 20.3	Pin Configuration
Table 20.4	Register/Parameter and Target Mode
Table 20.5	Parameters and Target Modes
Table 20.6	Division of User MAT Area
Table 20.7	System Clock Frequency for Automatic-Bit-Rate Adjustment by This LSI
Table 20.8	Executable MAT
Table 20.9 (1) Useable Area for Programming in User Program Mode
Table 20.9 (2	2) Useable Area for Erasure in User Program Mode
Table 20.9 (3	3) Useable Area for Programming in User Boot Mode
Table 20.9 (4	Useable Area for Erasure in User Boot Mode
Table 20.10	Hardware Protection
Table 20.11	Software Protection
Table 20.12	Setting Procedure of each Operation Mode of Programmer Mode
Table 20.13	Each Command in Programmer Mode
Table 20.14	Return Codes in Status-Read Mode
Table 20.15	True Value Table of Status Polling Output
Table 20.16	Inquiry and Selection Commands
Table 20.17	Programming/Erasing Command
Table 20.18	Status Code
Table 20.19	Error Code
Table 20.20	AC Characteristics in Memory Read Mode
Table 20.21	AC Characteristics in Transition from Memory-Read Mode to Other Mod
Table 20.22	AC Characteristics in Memory-Read Mode
Table 20.23	AC Characteristics in Auto-Program Mode
Table 20.24	AC Characteristic in Auto-Erase Mode

Renesas

Rev. 6.00 Sep. 24, 2009 Pa REJ09

Table 22.3	Oscillation Settling Time Settings
Table 22.4	φ Pin State in Each Processing State
Section 24	Electrical Characteristics
Table 24.1	Absolute Maximum Ratings
Table 24.2	DC Characteristics (1)
Table 24.2	DC Characteristics (2)
Table 24.2	DC Characteristics (3)
Table 24.3	Permissible Output Currents
Table 24.4	Bus Drive Characteristics
Table 24.5	Power-On/Off Timing
Table 24.6	Clock Timing (1)
Table 24.6	Clock Timing (2)
Table 24.7	Control Signal Timing
Table 24.8	Bus Timing
Table 24.9	Timing of On-Chip Peripheral Modules
Table 24.10	I ² C Bus Interface 2 Timing
	D/A Conversion Characteristics
	Flash Memory Characteristics

Rev. 6.00 Sep. 24, 2009 Page xlvi of xlvi REJ09B0099-0600

- PC break controller
- Data transfer controller (DTC)
- 16-bit timer-pulse unit (TPU)
- 8-bit timer (TMR)
- Watchdog timer (WDT)
- Serial communication interface (SCI)
- I²C bus interface 2 (IIC2)
- 10-bit A/D converter
- 8-bit D/A converter
- IEBus[™] controller (IEB) (H8S/2552, H8S/2551)
- Controller area network (HCAN) (H8S/2556)
- On-chip memory

ROM	Part No.	ROM	RAM	Remarks
Flash memory	HD64F2556	512 kbytes	32 kbytes	
version	HD64F2552	512 kbytes	32 kbytes	
	HD64F2551	384 kbytes	24 kbytes	
	HD64F2506	512 kbytes	32 kbytes	
	HD64F2505	384 kbytes	32 kbytes	

Rev. 6.00 Sep. 24, 2009 P REJ09

- Supports various power down modes
- Compact package

Package	Code* ²	Body Size	Pin Pitch
QFP-144	FP-144J/FP-144JV	$20.0\times20.0\ mm$	0.5 mm
LFBGA-176*1	BP-176V	$13.0 \times 13.0 \text{ mm}$	0.8 mm

Notes: 1. Available only in the H8S/2552 Group and H8S/2506 Group.

2. Package code ending in the letter V designate Pb-free Product.

1.2 Internal Block Diagram

Figures 1.1 to 1.3 show the internal block diagrams.

Rev. 6.00 Sep. 24, 2009 Page 2 of 928 REJ09B0099-0600

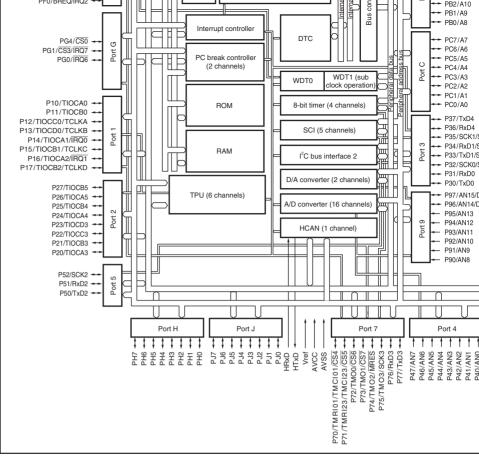


Figure 1.1 Internal Block Diagram of H8S/2556 Group

Rev. 6.00 Sep. 24, 2009 P REJ09

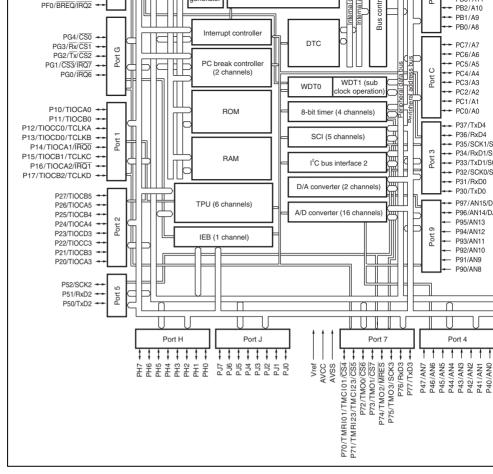


Figure 1.2 Internal Block Diagram of H8S/2552 Group

Rev. 6.00 Sep. 24, 2009 Page 4 of 928 REJ09B0099-0600

RENESAS

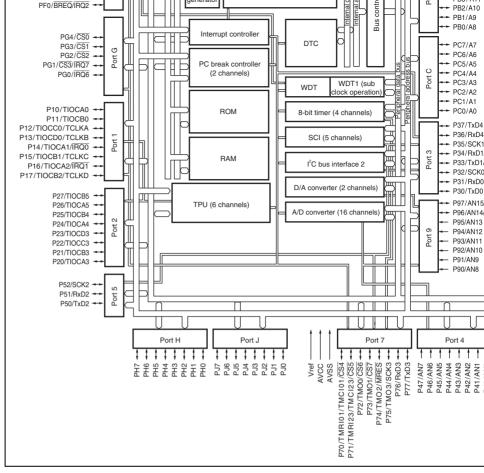


Figure 1.3 Internal Block Diagram of H8S/2506 Group

Rev. 6.00 Sep. 24, 2009 P REJ09

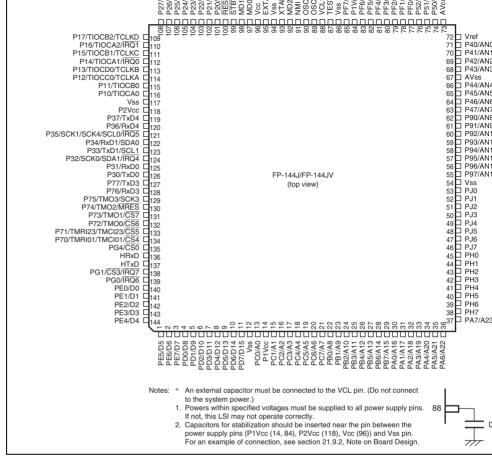


Figure 1.4 Pin Arrangement of H8S/2556 Group (FP-144J and FP-144JV)

Rev. 6.00 Sep. 24, 2009 Page 6 of 928 REJ09B0099-0600

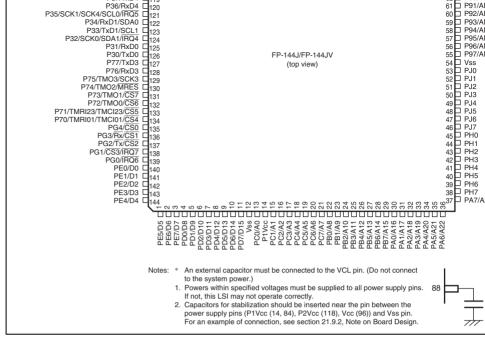


Figure 1.5 Pin Arrangement of H8S/2552 Group (FP-144J and FP-144JV

Rev. 6.00 Sep. 24, 2009 P REJ09

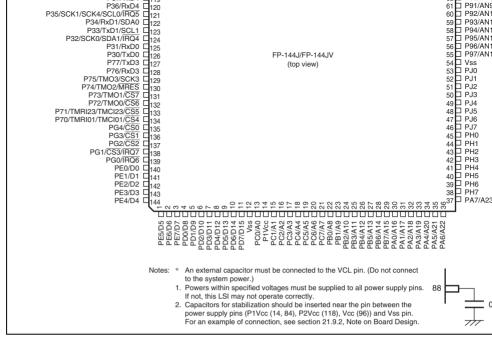


Figure 1.6 Pin Arrangement of H8S/2506 Group (FP-144J and FP-144JV)

Rev. 6.00 Sep. 24, 2009 Page 8 of 928 REJ09B0099-0600

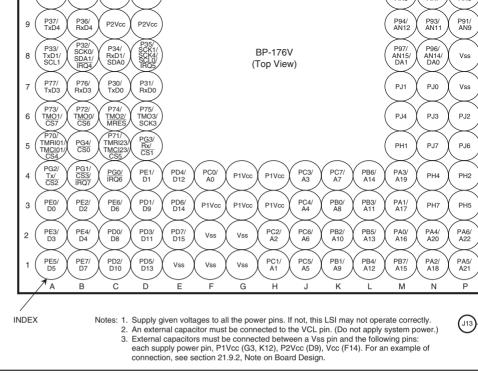


Figure 1.7 Pin Arrangement of H8S/2552 Group (BP-176V)

Rev. 6.00 Sep. 24, 2009 P REJ09



Figure 1.8 Pin Arrangement of H8S/2506 Group (BP-176V)

Rev. 6.00 Sep. 24, 2009 Page 10 of 928 REJ09B0099-0600

_			-	
3	B1	PE7/D7	PE7	CE
4	C2	D8	PD0	D0
5	D3	D9	PD1	D1
6	C1	D10	PD2	D2
7	D2	D11	PD3	D3
8	E4	D12	PD4	D4
9	D1	D13	PD5	D5
10	E3	D14	PD6	D6
11	E2	D15	PD7	D7
12	G2, G1, F2, F1, E1	Vss	Vss	Vss
13	F4	PC0/A0	PC0	A0
14	H4, H3, G4, G3, F3	P1Vcc	P1Vcc	Vcc
15	H1	PC1/A1	PC1	A1
16	H2	PC2/A2	PC2	A2
17	J4	PC3/A3	PC3	A3
18	J3	PC4/A4	PC4	A4
19	J1	PC5/A5	PC5	A5

Rev. 6.00 Sep. 24, 2009 Pa REJ09

20				
27	L2	PB5/A13	PB5	A13
28	L4	PB6/A14	PB6	A14
29	M1	PB7/A15	PB7	A15
30	M2	PA0/A16	PA0	A16
31	M3	PA1/A17	PA1	A17
32	N1	PA2/A18	PA2	A18
33	M4	PA3/A19	PA3	NC
34	N2	PA4/A20	PA4	NC
35	P1	PA5/A21	PA5	NC
36	P2	PA6/A22	PA6	NC
37	R1	PA7/A23	PA7	NC
38	N3	PH7	PH7	NC
39	R2	PH6	PH6	NC
40	P3	PH5	PH5	NC
41	N4	PH4	PH4	NC
42	R3	PH3	PH3	NC
43	P4	PH2	PH2	NC
44	M5	PH1	PH1	NC
45	R4	PH0	PH0	NC
46	N5	PJ7	PJ7	NC
47	P5	PJ6	PJ6	NC

Rev. 6.00 Sep. 24, 2009 Page 12 of 928 REJ09B0099-0600

RENESAS

5-	P8, P7	V 33	735	¥33
55	M8	P97/AN15/DA1	P97/AN15/DA1	NC
56	N8	P96/AN14/DA0	P96/AN14/DA0	NC
57	R8	P95/AN13	P95/AN13	NC
58	M9	P94/AN12	P94/AN12	NC
59	N9	P93/AN11	P93/AN11	NC
60	R9	P92/AN10	P92/AN10	NC
61	P9	P91/AN9	P91/AN9	NC
62	M10	P90/AN8	P90/AN8	NC
63	N10	P47/AN7	P47/AN7	NC
64	R10	P46/AN6	P46/AN6	NC
65	P10	P45/AN5	P45/AN5	NC
66	N11	P44/AN4	P44/AN4	NC
67	R12, R11	AVss	AVss	Vss
68	P11	P43/AN3	P43/AN3	NC
69	M11	P42/AN2	P42/AN2	NC
70	P12	P41/AN1	P41/AN1	NC
71	N12	P40/AN0	P40/AN0	NC
72	R15, R14, R13	Vref	Vref	Vcc
73	P14, P13, N13, M12	AVcc	AVcc	Vcc
74	P15	P50/TxD2	P50/TxD2	NC

Rev. 6.00 Sep. 24, 2009 Pa

REJ09

81	L13	HWR	PF4	NC
82	L14	RD	PF5	NC
83	L15	AS	PF6	NC
84	K12	P1Vcc	P1Vcc	Vcc
85	K13	PF7/ø	PF7/ø	NC
86	K15, K14	Vss	Vss	Vss
87	J12	TEST	TEST	Vss
88	J13	VCL	VCL	VCL
89	J15	OSC2	OSC2	NC
90	J14	OSC1	OSC1	Vss
91	H12	NMI	NMI	Vcc
92	H13	MD2	MD2	Vss
93	G15	XTAL	XTAL	XTAL
94	H15, H14, G14, G13, G12, F13, F12	Vss	Vss	Vss
95	F15	EXTAL	EXTAL	EXTAL
96	F14	Vcc	Vcc	Vcc
97	E12	MD0	MD0	Vss
98	E15	MD1	MD1	Vss
99	E14	STBY	STBY	Vcc
100	E13	RES	RES	RES

Rev. 6.00 Sep. 24, 2009 Page 14 of 928 REJ09B0099-0600

RENESAS

107	515	120/1100/03	120/110043	NO
108	B14	P27/TIOCB5	P27/TIOCB5	NC
109	A15	P17/TIOCB2/ TCLKD	P17/TIOCB2/ TCLKD	NC
110	C13	P16/TIOCA2/IRQ1	P16/TIOCA2/IRQ1	Vss
111	B13	P15/TIOCB1/ TCLKC	P15/TIOCB1/ TCLKC	NC
112	C12	P14/TIOCA1/IRQ0	P14/TIOCA1/IRQ0	Vss
113	B12	P13/TIOCD0/ TCLKB	P13/TIOCD0/ TCLKB	NC
114	D11	P12/TIOCC0/ TCLKA	P12/TIOCC0/ TCLKA	NC
115	C11	P11/TIOCB0	P11/TIOCB0	NC
116	B11	P10/TIOCA0	P10/TIOCA0	NC
117	B10, A14, A13, A12, A11, A10	Vss	Vss	Vss
118	D10, D9, C10, C9	P2Vcc	P2Vcc	Vcc
119	A9	P37/TxD4	P37/TxD4	NC
120	B9	P36/RxD4	P36/RxD4	NC
121	D8	P35/SCK1/SCK4/ SCL0/IRQ5	P35/SCK1/SCK4/ SCL0/IRQ5	NC
122	C8	P34/RxD1/SDA0	P34/RxD1/SDA0	NC
123	A8	P33/TxD1/SCL1	P33/TxD1/SCL1	NC
124	B8	P32/SCK0/SDA1/ IRQ4	P32/SCK0/SDA1/ IRQ4	NC

Rev. 6.00 Sep. 24, 2009 Pa

REJ09

101	AU	170/11/00/		140
132	B6	P72/TMO0/CS6	P72/TMO0	NC
133	C5	P71/TMRI23/	P71/TMRI23/	NC
		TMCI23/CS5	TMCI23	
134	A5	P70/TMRI01/	P70/TMRI01/	NC
		TMCI01/CS4	TMCI01	
135	B5	PG4/CS0	PG4	NC
136	D5	HRxD* ¹	HRxD* ¹	NC
		PG3/Rx/CS1*2	PG3/Rx* ²	
		PG3/CS1*3	PG3* ³	
137	A4	HTxD* ¹	HTxD* ¹	NC
		PG2/Tx/CS2*2	PG2/Tx ^{*2}	
		PG2/CS2*3	PG2* ³	
138	B4	PG1/CS3/IRQ7	PG1/IRQ7	NC
139	C4	PG0/IRQ6	PG0/IRQ6	NC
140	A3	PE0/D0	PE0	NC
141	D4	PE1/D1	PE1	NC
142	B3	PE2/D2	PE2	NC
143	A2	PE3/D3	PE3	Vcc
144	B2	PE4/D4	PE4	Vss

Notes: 1. Symbol name for the H8S/2556 Group

2. Symbol name for the H8S/2552 Group

3. Symbol name for the H8S/2506 Group

4. Available only in the H8S/2552 Group and H8S/2506 Group.

5. NC pins should be left open.

Rev. 6.00 Sep. 24, 2009 Page 16 of 928 REJ09B0099-0600

RENESAS

	P1Vcc	14, 84	F3, G3, G4, H3, H4, K12	I	Power supply pin for ports indicated that its po supplied by P1Vcc (see table 1.1).
	P2Vcc	118	C9, C10, D9, D10	I	Pins for connecting a capacitor to stabilize the step-down voltage.
					Power supply pin for ports indicated that its por supplied by P2Vcc (see table 1.1).
	VCL	88	J13	0	Pin for connecting the on-chip step-down power a capacitor for voltage stabilization. Must not b connected to a power supply. A capacitor of 0. be connected between this pin and Vss. (Place the pin.)
	VSS	12, 54, 86, 94, 117	G2, G1, F2, F1, E1, R7, R6, P8, P7, K15, K14, H15, H14, G14, G13, G12, F13, F12, B10, A14, A13, A12, A11, A10	1	Ground pins. Connect this pin to the system po (0V).
Clock	XTAL	93	G15	I	For connection to a crystal resonator. For exan connecting crystal resonator and external clock section 21, Clock Pulse Generator.
	EXTAL	95	F15	I	For connection to a crystal resonator or a ceral resonator. This pin can be also used for extern input. For examples of connecting crystal reson external clock input, see section 21, Clock Puls Generator.

Rev. 6.00 Sep. 24, 2009 Pa REJ09

mode control	MD1 MD0	98 97	E15 E12		be changed during operation. Be sure to fix the the mode pins (MD2 to MD0) by pull-down or pu except for mode changing.
System control	RES*1	100	E13	I	Reset input pin. When this pin is low, this LSI er power-on reset state.
	MRES ^{*1}	130	C6	I	Reset input pin. When this pin is low, this LSI er manual reset state.
	STBY*1	99	E14	I	When this pin is low, a transition is made to hard standby mode.
	BREQ	77	N15	I	Indicates that an external bus master is requesti mastership.
	BACK	78	M14	0	Indicates that the bus is released to an external master.
	TEST*1	87	J12	I	Test pin. Connect to a Vss.
Interrupts	NMI* ¹	91	H12	I	Nonmaskable interrupt pin. If this pin is not used be fixed-high.
	IRQ7	138	B4	Ι	These pins request maskable interrupts.
	IRQ6	139	C4		
	IRQ5	121	D8		
	IRQ4	124	B8		
	IRQ3	80	M15		
	IRQ2	77	N15		
	IRQ1	110	C13		
	IRQ0	112	C12		

Rev. 6.00 Sep. 24, 2009 Page 18 of 928 REJ09B0099-0600

			J1, J3, J4, H2, H1, F4		
Data bus	D15 to D0	11 to 1, 144 to 140	E2, E3, D1, E4, D2, C1, D3, C2, B1, C3, A1, B2, A2, B3, D4, A3	I/O	Bi-directional bus.
Bus	CS7	131	A6	0	Chip select signals for areas 7 to 0.
control	CS6	132	B6		Pins $\overline{\text{CS2}}$ and $\overline{\text{CS1}}$ are not supported by the H
	CS5	133	C5		Group.
	CS4	134	A5		
	CS3	138	B4		
	CS2	137	A4		
	CS1	136	D5		
	CS0	135	B5		
	ĀS	83	L15	0	Indicates that data output on the address bus i when this pin is a low level.
	RD	82	L14	0	Indicates that an access to the external address in progress when this pin is a low level.
	HWR	81	L13	0	Strobe signal. Indicates that data on the upper to D8) of the data bus is valid during a write ac
	LWR	80	M15	0	Strobe signal. Indicates that data on the upper D0) of the data bus is valid during a write acce

Rev. 6.00 Sep. 24, 2009 Pa REJ09

	TIOCB0	115	C11		output compare output, or PWM output.
	TIOCC0	114	D11		
	TIOCD0	113	B12		
	TIOCA1	112	C12	I/O	Pins for the TGRA_1 and TGRB_1 input capture
	TIOCB1	111	B13		output compare output, or PWM output.
	TIOCA2	110	C13	I/O	Pins for the TGRA_2 and TGRB_2 input capture
	TIOCB2	109	A15		output compare output, or PWM output.
	TIOCA3	101	D15	I/O	Pins for the TGRA_3 and TGRD_3 input capture
	TIOCB3	102	D14	output compare output, or PWM output.	output compare output, or PWM output.
	TIOCC3	103	D13		
	TIOCD3	104	C15		
	TIOCA4	105	D12	I/O	Pins for the TGRA_4 and TGRB_4 input capture
	TIOCB4	106	C14		output compare output, or PWM output.
	TIOCA5	107	B15	I/O	Pins for the TGRA_5 and TGRB_5 input capture
	TIOCB5	108	B14		output compare output, or PWM output.
8-bit timer	ТМОЗ	129	D6, C6,	0	Compare-match output pins
	TMO2	130	A6, B6		
	TMO1	131			
	TMO0	132			
	TMCI23	133	C5	I	Pins for external clock input to the counter
	TMCI01	134	A5		
	TMRI23	133	C5	I	Counter reset input pins.
	TMRI01	134	A5		

Rev. 6.00 Sep. 24, 2009 Page 20 of 928 REJ09B0099-0600

card	TxD0	126	C7		
interface F	RxD4	120	B9	I	Data input pins
F	RxD3	128	B7		
F	RxD2	75	N14		
F	RxD1	122	C8		
F	RxD0	125	D7		
5	SCK4	121	D8	I/O	Clock input/output pins
S	SCK3	129	D6		SCK4 and SCK1 are NMOS push-pull outputs
S	SCK2	76	M13		
S	SCK1	121	D8		
S	SCK0	124	B8		
I ² C bus	SCL1	123	A8	I/O	I ² C clock input/output pins. These pins are cap
interface g	SCL0	121	D8		driving bus. Pin SCL0 is an NMOS open-dra
	SDA1	124	B8	I/O	I^2C data input/output pins. These pins are capa
5	SDA0	122	C8		driving bus. Pin SDA0 is an NMOS open-drain
	AN15 to ANO	55 to 66, 68 to 71	M8, N8, R8, M9, N9, R9, P9, M10, N10, R10, P10, N11, P11, M11, P12, N12	I	Analog input pins for A/D converter.
7	ADTRG	80	M15	I	Pin for input of an external trigger to start A/D
	DA1	55	M8	0	Analog output pins for the D/A converter.
converter [DA0	56	N8		

Rev. 6.00 Sep. 24, 2009 Pa REJ09

IEBus™	Tx	137	A4	0	Transmit data output pin for the IEB.
controller (IEB)					(Supported only by the H8S/2552 Group.)
(122)	Rx	136	D5	I	Receive data input pin for the IEB.
_					(Supported only by the H8S/2552 Group.)
Controller	HTxD	137	A4	0	Pin for CAN bus transmission.
area network					(Supported only by the H8S/2556 Group.)
(HCAN)	HRxD	136	D5	I	Pin for CAN bus reception.
_					(Supported only by the H8S/2556 Group.)
I/O ports	P17 to P10	109 to 116	A15, C13, B13, C12, B12, D11, C11, B11	I/O	8-bit I/O pins
	P27 to P20	108 to 101	B14, B15, C14, D12, C15, D13, D14, D15	I/O	8-bit I/O pins
	P37 to	119 to	A9, B9,	I/O	8-bit I/O pins.
	P30	126	D8, C8, A8, B8, D7, C7		Pins P34 and P35 are NMOS push-pull outputs
	P47 to P40	63 to 66, 68 to 71	N10, R10, P10, N11, P11, M11, P12, N12	I	8-bit input pins
	P52 to P50	76 to 74	M13, N14, P15	I/O	3-bit I/O pins

Rev. 6.00 Sep. 24, 2009 Page 22 of 928 REJ09B0099-0600

RENESAS

PA7 to PA0	37 to 30	R1, P2, P1, N2, M4, N1, M3, M2	I/O	8-bit I/O pins
PB7 to PB0	29 to 22	M1, L4, L2, L1, L3, K2, K1, K3	I/O	8-bit I/O pins
PC7 to PC0	21 to 15, 13	K4, J2, J1, J3, J4, H2, H1, F4	I/O	8-bit I/O pins
PD7 to PD0	11 to 4	E2, E3, D1, E4, D2, C1, D3, C2	I/O	8-bit I/O pins
PE7 to PE0	3 to 1, 144 to 140	B1, C3, A1, B2, A2, B3, D4, A3	I/O	8-bit I/O pins
PF7 to PF0	85, 83 to 77	K13, L15, L14, L13, M15, L12, M14, N15	I/O	8-bit I/O pins
PG4 to PG0	135 to 139	B5, D5, A4, B4, C4	I/O	5-bit I/O pins Pins PG3 and PG2 are not supported by the H Group.

Rev. 6.00 Sep. 24, 2009 Pa REJ09

- Notes: 1. Countermeasure against noise should be executed or may result in malfunction
 - 2. Available only in the H8S/2552 Group and H8S/2506 Group.

Rev. 6.00 Sep. 24, 2009 Page 24 of 928 REJ09B0099-0600

- Upward-compatible with H8/300 and H8/300H CPU
 - Can execute H8/300 and H8/300H CPU object programs
- General-register architecture
 - Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-b
- 65 basic instructions
 - 8/16/32-bit arithmetic and logic instructions
 - Multiply and divide instructions
 - Powerful bit-manipulation instructions
- Eight addressing modes
 - Register direct [Rn]
 - Register indirect [@ERn]
 - Register indirect with displacement [@(d:16,ERn) or @(d:32,ERn)]
 - Register indirect with post-increment or pre-decrement [@ERn+ or @-ERn]

RENESAS

- Absolute address [@aa:8, @aa:16, @aa:24, or @aa:32]
- Immediate [#xx:8, #xx:16, or #xx:32]
- Program-counter relative [@(d:8,PC) or @(d:16,PC)]
- Memory indirect [@@aa:8]
- 16-Mbyte address space
 - Program: 16 Mbytes
 - Data: 16 Mbytes
- High-speed operation
 - All frequently-used instructions execute in one or two states
 - 8/16/32-bit register-register add/subtract : 1 state
 - 8 × 8-bit register-register multiply : 12 states
 - $-16 \div 8$ -bit register-register divide : 12 states

2.1.1 Differences between H8S/2600 CPU and H8S/2000 CPU

The differences between the H8S/2600 CPU and the H8S/2000 CPU are shown below.

- Register configuration
 - The MAC register is supported by the H8S/2600 CPU only.
- Basic instructions
 - The four instructions MAC, CLRMAC, LDMAC, and STMAC are supported by t H8S/2600 CPU only.
- The number of execution states of the MULXU and MULXS instructions;

		E	xecution States
Instruction	Mnemonic	H8S/2600	H8S/2000
MULXU	MULXU.B Rs, Rd	3	12
	MULXU.W Rs, ERd	4	20
MULXS	MULXS.B Rs, Rd	4	13
	MULXS.W Rs, ERd	5	21

In addition, there are differences in address space, CCR and EXR register functions, and down modes, etc., depending on the model.

Rev. 6.00 Sep. 24, 2009 Page 26 of 928 REJ09B0099-0600

- Enhanced addressing
 - The addressing modes have been enhanced to make effective use of the 16-Mbyt space.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - Signed multiply and divide instructions have been added.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

2.1.3 Differences from H8/300H CPU

In comparison to the H8/300H CPU, the H8S/2000 CPU has the following enhancemen

- Additional control register
 - One 8-bit control registers have been added.
- Enhanced instructions
 - Addressing modes of bit-manipulation instructions have been enhanced.
 - Two-bit shift instructions have been added.
 - Instructions for saving and restoring multiple registers have been added.
 - A test and set instruction has been added.
- Higher speed
 - Basic instructions execute twice as fast.

Rev. 6.00 Se

Linear access is provided to a maximum address space of 64 kbytes.

• Extended Registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-b segments of 32-bit registers. When En is used as a 16-bit register it can contain any var when the corresponding general register (Rn) is used as an address register. If the gen register is referenced in the register indirect addressing mode with pre-decrement (@-post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corre extended register (En) will be affected.

Instruction Set

All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses

In normal mode the top area starting at H'0000 is allocated to the exception vector tab branch address is stored per 16 bits. Figure 2.1 shows the structure of the exception vector table in normal mode. For details of the exception vector table, see section 4, Exception Handling.

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instruses an 8-bit absolute address included in the instruction code to specify a memory op that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the top area from to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure

When the program counter (PC) is pushed onto the stack in a subroutine call, and the condition-code register (CCR) and extended control register (EXR) are pushed onto the in exception handling, they are stored as shown in figure 2.2. EXR is not pushed onto in interrupt control mode 0. For details, see section 4, Exception Handling.

Rev. 6.00 Sep. 24, 2009 Page 28 of 928 REJ09B0099-0600

Figure 2.1 Exception Vector Table (Normal Mode)

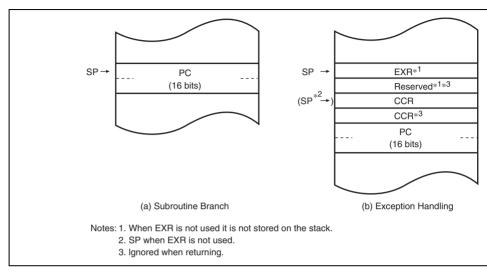


Figure 2.2 Stack Structure in Normal Mode

2.2.2 Advanced Mode

- Address Space Linear access is provided to a maximum 16-Mbyte address space.
- Extended Registers (En)

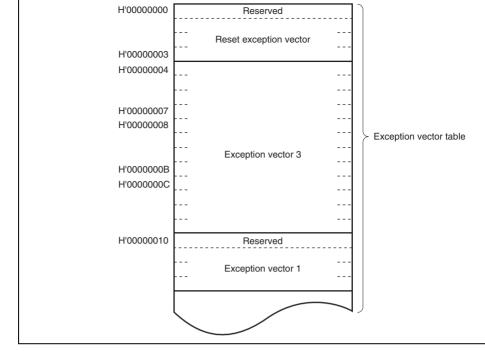


Figure 2.3 Exception Vector Table (Advanced Mode)

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instrusted uses an 8-bit absolute address included in the instruction code to specify a memory of that contains a branch address. In advanced mode, the operand is a 32-bit longword of providing a 32-bit branch address. The upper 8 bits of these 32 bits is a reserved area regarded as H'00. Branch addresses can be stored in the area from H'00000000 to H'00 Note that the first part of this range is also the exception vector table.

Rev. 6.00 Sep. 24, 2009 Page 30 of 928 REJ09B0099-0600

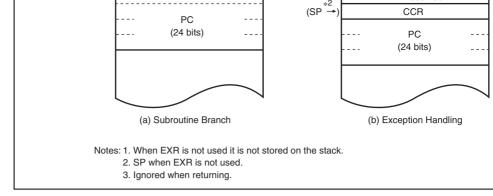


Figure 2.4 Stack Structure in Advanced Mode

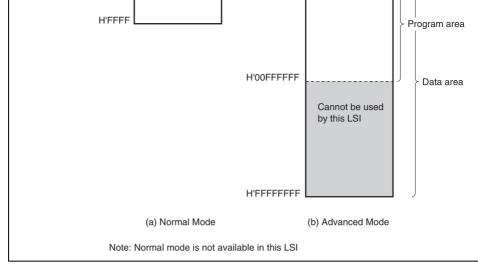


Figure 2.5 Memory Map

Rev. 6.00 Sep. 24, 2009 Page 32 of 928 REJ09B0099-0600

ER3	E3	R3H		R3L
ER4	E4	R4H		R4L
ER5	E5	R5H		R5L
ER6	E6	R6H		R6L
ER7 (SP)	E7	R7H		R7L
Control Reg	isters (CR) 23	PC		
		10		
			EXR	7 6 5 4 3 2 1 0 T 12 11 1 7 6 5 4 3 2 1 0
Legend:			0011	
CCR I	:Interrupt mask bit	H U N Z V C	:Half-ca :User bi :Negativ :Zero fla :Overflo :Carry fl	t re flag Ig w flag
UI Note: * The in	:User bit or interrupt mask bit* terrupt mask bit is not available in this LSI.			
Note. * The II	nemupi mask bit is not available in this LSI.			

Figure 2.6 CPU Registers

Renesas

(R0 to R7). These registers are functionally equivalent, providing a maximum sixteen 16-registers. The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers designated by the letters RH (R0H to R RL (R0L to R7L). These registers are functionally equivalent, providing a maximum sixte 2 egisters.

The usage of each register can be selected independently.

General register ER7 has the function of stack pointer (SP) in addition to its general-regist function, and is used implicitly in exception handling and subroutine calls. Figure 2.8 shot stack.

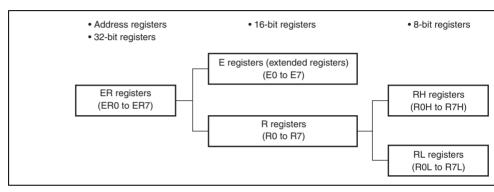
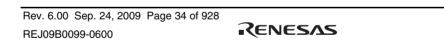



Figure 2.7 Usage of General Registers

2.4.2 Program Counter (PC)

This 24-bit counter indicates the address of the next instruction the CPU will execute. The of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (instruction is fetched, the least significant PC bit is regarded as 0.)

2.4.3 Extended Control Register (EXR)

EXR is an 8-bit register that manipulates the LDC, STC, ANDC, ORC, and XORC instru-When these instructions except for the STC instruction is executed, all interrupts include will be masked for three states after execution is completed.

Bit	Bit Name	Initial Value	R/W	Description
7	Т	0	R/W	Trace Bit
				When this bit is set to 1, a trace exception generated each time an instruction is ex When this bit is cleared to 0, instructions executed in sequence.
6 to 3	—	All 1	_	Reserved
				These bits are always read as 1.
2	12	1	R/W	These bits designate the interrupt mask
1	11	1	R/W	7). For details, see section 5, Interrupt C
0	10	1	R/W	

Renesas

				Masks interrupts other than NMI when see NMI is accepted regardless of the I bit se I bit is set to 1 by hardware at the start of exception-handling sequence. For details section 5, Interrupt Controller.
6	UI	Undefined	R/W	User Bit or Interrupt Mask Bit
				Can be written and read by software usin LDC, STC, ANDC, ORC, and XORC inst This bit cannot be used as an interrupt m this LSI.
5	Н	Undefined	R/W	Half-Carry Flag
				When the ADD.B, ADDX.B, SUB.B, SUB CMP.B, or NEG.B instruction is executed is set to 1 if there is a carry or borrow at H cleared to 0 otherwise. When the ADD.W SUB.W, CMP.W, or NEG.W instruction is executed, the H flag is set to 1 if there is borrow at bit 11, and cleared to 0 otherwi When the ADD.L, SUB.L, CMP.L, or NEC instruction is executed, the H flag is set to there is a carry or borrow at bit 27, and co 0 otherwise.
4	U	Undefined	R/W	User Bit
				Can be written and read by software usin LDC, STC, ANDC, ORC, and XORC inst
3	Ν	Undefined	R/W	Negative Flag
				Stores the value of the most significant b as a sign bit.

Rev. 6.00 Sep. 24, 2009 Page 36 of 928 REJ09B0099-0600

RENESAS

Add instructions, to indicate a carry
Subtract instructions, to indicate a be
Shift and rotate instructions, to indicate
The carry flag is also used as a bit accubit manipulation instructions.

2.4.5 Initial Values of CPU Registers

Reset exception handling loads the CPU's program counter (PC) from the vector table, of trace bit in EXR to 0, and sets the interrupt mask bits in CCR and EXR to 1. The other C and the general registers are not initialized. In particular, the stack pointer (ER7) is not in The stack pointer should therefore be initialized by an MOV.L instruction executed immafter a reset.

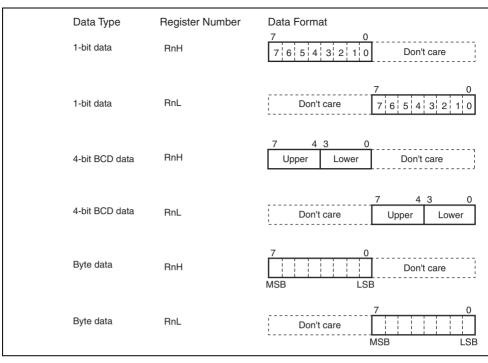


Figure 2.9 General Register Data Formats (1)

Rev. 6.00 Sep. 24, 2009 Page 38 of 928 REJ09B0099-0600

1	31				16	15							
			 -		-		-	-			 	-	
	MSB	En								Rn			L
	Legend:												
	ERn	: General register ER											
	En	: General register E											
	Rn	: General register R											
	RnH	: General register RH											
	RnL	: General register RL											
	MSB	: Most significant bit											
	LSB	: Least significant bit											

Figure 2.9 General Register Data Formats (2)

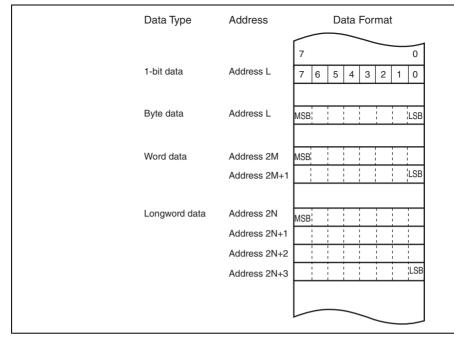


Figure 2.10 Memory Data Formats

2.6 Instruction Set

The H8S/2000 CPU has 65 types of instructions. The instructions are classified by function table 2.1.

Rev. 6.00 Sep. 24, 2009 Page 40 of 928 REJ09B0099-0600

RENESAS

	ADDS, SUBS	L
	MULXU, DIVXU, MULXS, DIVXS	B/W
	EXTU, EXTS	W/L
	TAS* ⁴	В
Logic operations	AND, OR, XOR, NOT	B/W/L
Shift	SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR	B/W/L
Bit manipulation	BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR	В
Branch	Bcc* ² , JMP, BSR, JSR, RTS	
System control	TRAPA, RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP	
Block data transfer	EEPMOV	_

Legend:

- B: Byte
- W: Word
- L: Longword
- Notes: 1. POP.W Rn and PUSH.W Rn are identical to MOV.W @SP+, Rn and MOV.W @-SP. POP.L ERn and PUSH.L ERn are identical to MOV.L @SP+, ERn and ERn, @-SP.
 - 2. Bcc is the general name for conditional branch instructions.
 - 3. Cannot be used in this LSI.
 - 4. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS in
 - 5. Only register ER0 to ER6 should be used when using the STM/LDM instruction

RENESAS

ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
EXR	Extended control register
CCR	Condition-code register
Ν	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
PC	Program counter
SP	Stack pointer
#IMM	Immediate data
disp	Displacement
+	Addition
-	Subtraction
×	Multiplication
÷	Division
^	Logical AND
V	Logical OR
\oplus	Logical XOR

Rev. 6.00 Sep. 24, 2009 Page 42 of 928 REJ09B0099-0600

MOV	B/W/L	(EAS) \rightarrow Rd, RS \rightarrow (EAd) Moves data between two general registers or between a gene register and memory, or moves immediate data to a general re
MOVFPE	В	Cannot be used in this LSI.
MOVTPE	В	Cannot be used in this LSI.
POP	W/L	@SP+ → Rn Pops a general register from the stack. POP.W Rn is identical MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L @SP+,
PUSH	W/L	$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is ident MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn,
LDM* ²	L	@SP+ \rightarrow Rn (register list) Pops two or more general registers from the stack.
STM* ²	L	Rn (register list) \rightarrow @-SP Pushes two or more general registers onto the stack.
Notes: 1.	Refers to the	operand size.

Notes: 1. Refers to the operand size.

B: Byte

W: Word

L: Longword

2. Only register ER0 to ER6 should be used when using the STM/LDM instruction

Renesas

DEC		Increments or decrements a general register by 1 or 2. (Byte or can be incremented or decremented by 1 only.)				
ADDS	L	$Rd \pm 1 \to Rd, \ Rd \pm 2 \to Rd, \ Rd \pm 4 \to Rd$				
SUBS		Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit				
DAA	В	Rd decimal adjust \rightarrow Rd				
DAS		Decimal-adjusts an addition or subtraction result in a general re referring to the CCR to produce 4-bit BCD data.				
MULXU	B/W	$Rd \times Rs \rightarrow Rd$ Performs unsigned multiplication on data in two general registe 8 bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.				
MULXS	B/W	$Rd \times Rs \rightarrow Rd$ Performs signed multiplication on data in two general registers: bits × 8 bits \rightarrow 16 bits or 16 bits × 16 bits \rightarrow 32 bits.				
DIVXU	B/W	Rd \div Rs \rightarrow Rd Performs unsigned division on data in two general registers: eit bits \div 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits \div 16 16-bit quotient and 16-bit remainder.				
Note: * Refers to the operand size.						

B: Byte

W: Word

L: Longword

Rev. 6.00 Sep. 24, 2009 Page 44 of 928 REJ09B0099-0600

		Takes the two's complement (arithmetic complement) of data i general register.
EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by padding with zeros left.
EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the bits of a 32-bit register to longword size, by extending the sign
TAS* ²	В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @ERd) Tests memory contents, and sets the most significant bit (bit 7</bit>
Notes: 1.	. Refers to the	operand size.

B: Byte

W: Word

L: Longword

2. Only register ER0, ER1, ER4, or ER5 should be used when using the TAS in:

NOT	B/W/L	$\sim \text{Rd} \rightarrow \text{Rd}$
		Takes the one's complement of general register contents.
Note:	* Refers to the	operand size.
	B: Byte	
	W: Word	

L: Longword

Table 2.6Shift Instructions

Instruction	Size*	Function		
SHAL $B/W/L$ Rd (shift) \rightarrow Rd				
SHAR		Performs an arithmetic shift on general register contents. 1-bit or 2-bit shifts are possible.		
SHLL	B/W/L	$Rd (shift) \rightarrow Rd$		
SHLR		Performs a logical shift on general register contents. 1-bit or 2-bit shifts are possible.		
ROTL	B/W/L	Rd (rotate) \rightarrow Rd		
ROTR		Rotates general register contents. 1-bit or 2-bit rotations are possible.		
ROTXL	B/W/L	Rd (rotate) \rightarrow Rd		
ROTXR		Rotates general register contents through the carry flag. 1-bit or 2-bit rotations are possible.		
Note: * Ref	fers to the	operand size.		
B: Byt	е			
W: Wo	rd			
L: Lor	ngword			

Rev. 6.00 Sep. 24, 2009 Page 46 of 928 REJ09B0099-0600

-	-	Inverts a specified bit in a general register or memory operand number is specified by 3-bit immediate data or the lower three general register.
BTST	В	~ (<bit-no.> of <ead>) \rightarrow Z Tests a specified bit in a general register or memory operand or clears the Z flag accordingly. The bit number is specified by immediate data or the lower three bits of a general register.</ead></bit-no.>
BAND	В	$C \land (\text{sbit-No.> of } \text{}) \rightarrow C$ ANDs the carry flag with a specified bit in a general register or operand and stores the result in the carry flag.
BIAND	В	$C \land \leftarrow$ (<bit-no.> of <ead>) $\rightarrow C$ ANDs the carry flag with the inverse of a specified bit in a gen register or memory operand and stores the result in the carry to The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BOR	В	$C \lor (\text{sbit-No.> of } \text{}) \rightarrow C$ ORs the carry flag with a specified bit in a general register or r operand and stores the result in the carry flag.
BIOR	В	$C \lor \leftarrow$ (<bit-no.> of <ead>) $\rightarrow C$ ORs the carry flag with the inverse of a specified bit in a gener or memory operand and stores the result in the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
Note: *	Refers to th	ne operand size.

B: Byte

RENESAS

		carry flag.
BILD	В	~ (<bit-no.> of <ead>) \rightarrow C Transfers the inverse of a specified bit in a general register or n operand to the carry flag. The bit number is specified by 3-bit immediate data.</ead></bit-no.>
BST	В	$C \rightarrow$ (<bit-no.> of <ead>) Transfers the carry flag value to a specified bit in a general regi memory operand.</ead></bit-no.>
BIST	В	$\sim C \rightarrow (\text{sbit-No.> of })$ Transfers the inverse of the carry flag value to a specified bit in general register or memory operand. The bit number is specified by 3-bit immediate data.
Note: *	* Refers to the	e operand size

Note: * Refers to the operand size.

B: Byte

Rev. 6.00 Sep. 24, 2009 Page 48 of 928 REJ09B0099-0600

BCC(BHS)	Carry clear (high or same)	C = 0
BCS(BLO)	Carry set (low)	C = 1
BNE	Not equal	Z = 0
BEQ	Equal	Z = 1
BVC	Overflow clear	V = 0
BVS	Overflow set	V = 1
BPL	Plus	N = 0
BMI	Minus	N = 1
BGE	Greater or equal	$N \oplus V = 0$
BLT	Less than	N ⊕ V = 1
BGT	Greater than	$Z_{\vee}(N\oplusV)=0$
BLE	Less or equal	$Z \lor (N \oplus V) = 1$

JMP	 Branches unconditionally to a specified address.
BSR	 Branches to a subroutine at a specified address.
JSR	 Branches to a subroutine at a specified address.
RTS	 Returns from a subroutine

Renesas

NOP		Logically XORs the CCR or EXR contents with immediate data. $PC + 2 \rightarrow PC$
XORC	В	$CCR \oplus \#IMM \rightarrow CCR, EXR \oplus \#IMM \rightarrow EXR$
ORC	В	CCR \lor #IMM \rightarrow CCR, EXR \lor #IMM \rightarrow EXR Logically ORs the CCR or EXR contents with immediate data.
ANDC	В	CCR \land #IMM \rightarrow CCR, EXR \land #IMM \rightarrow EXR Logically ANDs the CCR or EXR contents with immediate data.
		Transfers CCR or EXR contents to a general register or memor Although CCR and EXR are 8-bit registers, word-size transfers performed between them and memory. The upper 8 bits are va

Note: * Refers to the operand size.

B: Byte

W: Word

Rev. 6.00 Sep. 24, 2009 Page 50 of 928 REJ09B0099-0600

else next;

Transfers a data block. Starting from the address set in ER5, t data for the number of bytes set in R4L or R4 to the address lo in ER6. Execution of the next instruction begins as soon as the transfe completed.

2.6.2 Basic Instruction Formats

This LSI instructions consist of 2-byte (1-word) units. An instruction consists of an oper (op field), a register field (r field), an effective address extension (EA field), and a cond (cc).

Figure 2.11 shows examples of instruction formats.

• Operation Field

Indicates the function of the instruction, the addressing mode, and the operation to be out on the operand. The operation field always includes the first four bits of the instr Some instructions have two operation fields.

• Register Field

Specifies a general register. Address registers are specified by 3 bits, and data register bits or 4 bits. Some instructions have two register fields. Some have no register field

- Effective Address Extension
 8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement.
- Condition Field

Specifies the branching condition of Bcc instructions.

RENESAS

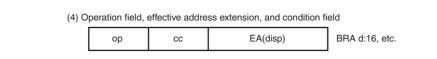


Figure 2.11 Instruction Formats (Examples)

2.7 Addressing Modes and Effective Address Calculation

The H8S/2000 CPU supports the eight addressing modes listed in table 2.11. Each instruct a subset of these addressing modes. Arithmetic and logic instructions can use the register and immediate modes. Data transfer instructions can use all addressing modes except pro counter relative and memory indirect. Bit manipulation instructions use register direct, re indirect, or the absolute addressing mode to specify an operand, and register direct (BSET BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit nur the operand.

Rev. 6.00 Sep. 24, 2009 Page 52 of 928 REJ09B0099-0600

7	Program-counter relative	@(d:8,PC)/@(d:16,PC)
8	Memory indirect	@@aa:8

2.7.1 Register Direct—Rn

The register field of the instruction specifies an 8-, 16-, or 32-bit general register contain operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

2.7.2 Register Indirect—@ERn

The register field of the instruction code specifies an address register (ERn) which conta address of the operand on memory. If the address is a program instruction address, the lebits are valid and the upper 8 bits are all assumed to be 0 (H'00).

2.7.3 Register Indirect with Displacement—@(d:16, ERn) or @(d:32, ERn)

A 16-bit or 32-bit displacement contained in the instruction is added to an address regist specified by the register field of the instruction, and the sum gives the address of a mem operand. A 16-bit displacement is sign-extended when added.

2.7.4 Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-

Register indirect with post-increment—@**ERn+:** The register field of the instruction specifies an address register (ERn) which contains the address of a memory operand. Af operand is accessed, 1, 2, or 4 is added to the address register contents and the sum is sto address register. The value added is 1 for byte access, 2 for word transfer instruction, or

Renesas

The instruction code contains the absolute address of a memory operand. The absolute ad may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24), or 32 bits long (@aa:32). Table 2.12 indicates the accessible absolute address ranges.

To access data, the absolute address should be 8 bits (@aa:8), 16 bits (@aa:16), or 32 bit (@aa:32) long. For an 8-bit absolute address, the upper 24 bits are all assumed to be 1 (H For a 16-bit absolute address the upper 16 bits are a sign extension. A 32-bit absolute address the entire address space.

A 24-bit absolute address (@aa:24) indicates the address of a program instruction. The up bits are all assumed to be 0 (H'00).

Absolute Address		Normal Mode*	Advanced Mode
Data address	8 bits (@aa:8)	H'FF00 to H'FFFF	H'FFFF00 to H'FFF
	16 bits (@aa:16)	H'0000 to H'FFFF	H'000000 to H'007 H'FF8000 to H'FFF
	32 bits (@aa:32)		H'000000 to H'FFF
Program instruction address	24 bits (@aa:24)	_	
Note: * Normal mode	e is not available in thi	s LSI.	

Table 2.12 Absolute Address Access Ranges

2.7.6 Immediate—#xx:8, #xx:16, or #xx:32

The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data operand.

Rev. 6.00 Sep. 24, 2009 Page 54 of 928 REJ09B0099-0600

RENESAS

instruction, so the possible branching range is -126 to +128 bytes (-63 to +64 words) or +32768 bytes (-16383 to +16384 words) from the branch instruction. The resulting value be an even number.

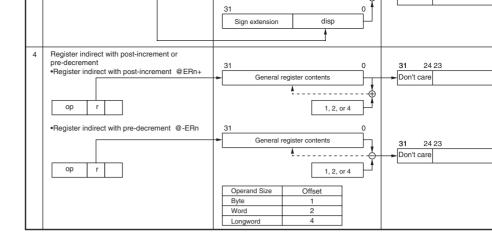
2.7.8 Memory Indirect—@@aa:8

This mode can be used by the JMP and JSR instructions. The instruction code contains a absolute address specifying a memory operand. This memory operand contains a branch The upper bits of the absolute address are all assumed to be 0, so the address range is 0 t (H'0000 to H'00FF in normal mode*, H'000000 to H'000FF in advanced mode). In normat the memory operand is a word operand and the branch address is 16 bits long. In advance the memory operand is a longword operand, the first byte of which is assumed to be 0 (I

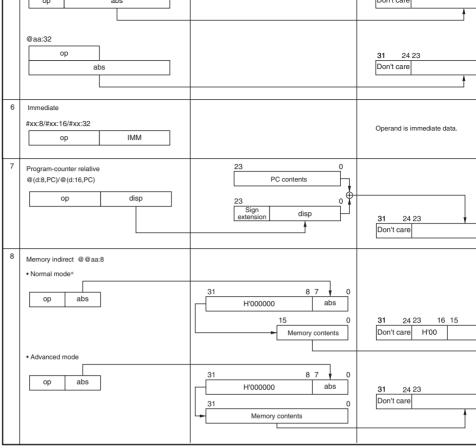
Note that the first part of the address range is also the exception vector area. For further see section 4, Exception Handling.

If an odd address is specified in word or longword memory access, or as a branch address least significant bit is regarded as 0, causing data to be accessed or instruction code to be at the address preceding the specified address. (For further information, see section 2.5.2 Data Formats.)

Note: * Normal mode is not available in this LSI.


Figure 2.12 Branch Address Specification in Memory Indirect Mode

2.7.9 Effective Address Calculation


Table 2.13 indicates how effective addresses are calculated in each addressing mode. In r mode the upper 8 bits of the effective address are ignored in order to generate a 16-bit address are ignored in order to generate a 16-bit address are ignored.

Rev. 6.00 Sep. 24, 2009 Page 56 of 928 REJ09B0099-0600

Renesas

Note: * Normal mode is not available in this LSI.

Rev. 6.00 Sep. 24, 2009 Page 58 of 928 REJ09B0099-0600

The reset state can also be entered by a watchdog timer overflow.

• Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the processing flow due to an exception source, such as a reset, trace, interrupt, or trap in The CPU fetches a start address (vector) from the exception vector table and branche address. For further details, see section 4, Exception Handling.

Program Execution State

In this state, the CPU executes program instructions in sequence.

Bus-Released State

In a product which has a bus master other than the CPU, such as a data transfer contra (DTC), the bus-released state occurs when the bus has been released in response to a request from a bus master other than the CPU.

While the bus is released, the CPU halts operations.

• Power-down State

This is a power-down state in which the CPU stops operating. The program stop stat when a SLEEP instruction is executed or the CPU enters hardware standby mode. For details, see section 22, Power-Down Modes.

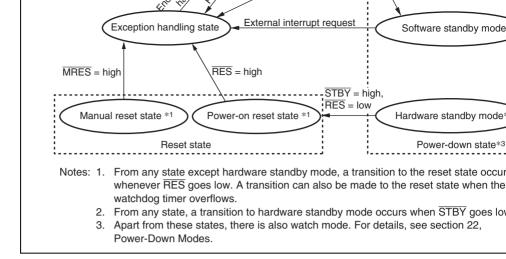


Figure 2.13 State Transitions

Rev. 6.00 Sep. 24, 2009 Page 60 of 928 REJ09B0099-0600

With the STM or LDM instruction, the ER7 register is used as the stack pointer, and thu be used as a register that allows save (STM) or restore (LDM) operation.

With a single STM or LDM instruction, two to four registers can be saved or restored. T available registers are as follows:

For two registers: ER0 and ER1, ER2 and ER3, or ER4 and ER5

For three registers: ER0 to ER2, or ER4 to ER6

For four registers: ER0 to ER3

For the H8S or H8/300 Series C/C++ Compiler, the STM/LDM instruction including EF created.

2.9.3 Bit Manipulation Instructions

When bit-manipulation is used with registers that include write-only bits, bits to be man may not be manipulated properly or bits unrelated to the bit-manipulation may be chang

Some values read from write-only bits are fixed and some are undefined. When such bit operands of bit-manipulation instructions that use read values in arithmetic operations (I BTST, BAND, BIAND, BOR, BIOR, BXOR, BIXOR, BLD, BILD), the desired bit-ma will not be executed.

Also, bit-manipulation instructions that write back data according to the results of arithm operations (BSET, BCLR, BNOT, BST, BIST) may change bits that are not related to the manipulation. Therefore, special care is necessary when using these instructions with regionclude write-only bits.

RENESAS

In the following example, the BCLR instruction specifies P14 as an input. Before the operation, P17 to P14 are set as output pins and P13 to P10 are set as input pins. The P1DDR is H'F0.

	P17	P16	P15	P14	P13	P12	P11
I/O	Output	Output	Output	Output	Input	Input	Input
P1DDR	1	1	1	1	0	0	0

To switch P14 from an output to an input, the value of bit 4 in P1DDR has to be chan 1 to 0 (from H'F0 to H'E0). The BCLR instruction used to clear bit 4 in P1DDR is as

BCLR #4, @P1DDR

However, the above bit-manipulation of the write-only P1DDR register may cause the following problem.

The data in P1DDR is read in bytes. Data read from P1DDR is undefined. Thus, regar whether the value in the register is 0 or 1, it is impossible to tell which value will be rebits in P1DDR are write-only, thus read as undefined. The actual value in P1DDR is H us assume that the value read is H'F8, where the value of bit 3 is read as 1 rather than value of 0.

	P17	P16	P15	P14	P13	P12	P11
I/O	Output	Output	Output	Output	Input	Input	Input
P1DDR	1	1	1	1	0	0	0
Read value	1	1	1	1	1	0	0

Rev. 6.00 Sep. 24, 2009 Page 62 of 928 REJ09B0099-0600

BCLR instruction is complete.

	P17	P16	P15	P14	P13	P12	P11
I/O	Output	Output	Output	Input	Output	Input	Input
P1DDR	1	1	1	0	1	0	0
Write value	1	1	1	0	1	0	0

This instruction was meant to change the value of P1DDR to H'E0, but H'E8 was wr instead. P13, which should be an input pin, has been turned into an output pin. Note the error in this case occurred because bit 3 in P1DDR was read as 1, the values read 7 to 0 in P1DDR are undefined. Bit-manipulation instructions that write back values change any bit from 0 to 1 or 1 to 0. Section 2.9.4, Access Method for Registers with Only Bits, describes a way to avoid this possibility when changing the values of regi include write-only bits.

The BCLR instruction can be used to clear flags in the internal I/O registers to 0. In a if it is obvious that a given flag has been set to 1 because an interrupt handler has been there is no need to read the flag.

2.9.4 Access Method for Registers with Write-Only Bits

A read value from a write-only bit using a data-transfer or a bit-manipulation instruction undefined. To avoid using the read value for subsequent operations, follow the procedur below to access registers that include write-only bits.

When writing to registers that include write-only bits, set up a work area in memory suc chip RAM, write the data to the work area, read the data back from the memory, and the the data to the registers that include write-only bits.

RENESAS

Figure 2.14 Flowchart of Access Method for Registers with Write-Only Bit

Consider the following example, where only bit 4 in P1DDR of port 1 is cleared.
 P1DDR is an 8-bit register that consists of write-only bits and specifies input or output each pin of port 1. Reading of these bits is not valid, since values read are specified as undefined.

In the following example, the BCLR instruction specifies P14 as an input. Start by wr initial value H'F0, which will be written to P1DDR, to the work area (RAM0) in mem

MOV.B	#H'FO, ROL
MOV.B	ROL, @RAMO
MOV.B	ROL, @P1DDR

	P17	P16	P15	P14	P13	P12	P11
I/O	Output	Output	Output	Output	Input	Input	Input
P1DDR	1	1	1	1	0	0	0

RAM0	1	1	1	1	0	0	0

P14 is now an output. To switch P14 from an output to an input, the value of bit 4 in H has to be changed from 1 to 0 (from H'F0 to H'E0). Clear bit 4 of RAM0 using the BC instruction.

BCLR	#4,	@RAM0

Rev. 6.00 Sep. 24, 2009 Page 64 of 928 REJ09B0099-0600

1101.12	erunio,	нон	
MOV.B	ROL,	@P1DDR	

	P17	P16	P15	P14	P13	P12	P11
I/O	Output	Output	Output	Input	Input	Input	Input
P1DDR	1	1	1	0	0	0	0

	RAM0	1	1	1	0	0	0	0
--	------	---	---	---	---	---	---	---

Following this procedure in access to registers that include write-only bits makes the of the program independent of the type of instruction.

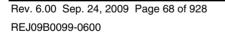
Rev. 6.00 Sep. 24, 2009 Page 66 of 928 REJ09B0099-0600

8-bit bus mode.

In mode 7, the external address space cannot be used. Mode pins should not be changed operations.

МСИ				CPU			External
Operating Mode	MD2	MD1	MD0	Operating Mode	Description	On-Chip ROM	Initial Width
6	1	1	0	Advanced mode	On-chip ROM valid expansion mode	Enabled	8 bits
7	1	1	1	Advanced mode	Single-chip mode	Enabled	_

Table 3.1 MCU Operating Mode Selection



	Initial		
Bit Name	Value	R/W	Descriptions
_	1		Reserved
			This bit is always read as 1 and cannot be modified
_	All 0		Reserved
			These bits are always read as 0 and cannot be m
MDS2	*	R	Mode Select 2 to 0
MDS1	*	R	These bits indicate the input levels at mode pins
MDS0	*	R	MD0 (the current operating mode). Bits MDS2 to correspond to pins MD2 to MD0, respectively. MI MDS0 are read-only bits and cannot be modified. input levels at mode pins MD2 to MD0 are latched these bits when MDCR is read. These latches are canceled by a power-on reset, but retained by a r reset.
	 MDS2 MDS1 MDS0	Bit NameValue1All 0MDS2*MDS1*MDS0*	Bit NameValueR/W1All 0MDS2*RMDS1*RMDS0*R

Note: * Determined by the setting of pins MD2 to MD0.

3.2.2 System Control Register (SYSCR)

SYSCR performs the selection of interrupt control mode, the selection of NMI detection selection of enable/disable of $\overline{\text{MRES}}$ pin input, and the selection of valid/invalid of on-ch

				01: Setting prohibited
				10: Interrupt control mode 2
				11: Setting prohibited
3	NMIEG	0	R/W	NMI Edge Select
				Performs input edge selection of the NMI pin.
				 Interrupt request is generated at the falling ec input.
				 Interrupt request is generated at the rising ed input.
2	MRESE	0	R/W	Manual Reset Selection Bit
				Selects enable/disable of the $\overline{\text{MRES}}$ pin input.
				0: Disables manual reset.
				1: Enables manual reset. The $\overline{\text{MRES}}$ pin input is
1	_	0		Reserved
				This bit is always read as 0 and cannot be modi
0	RAME	1	R/W	RAM Enable
				Selects valid/invalid of the on-chip RAM. The Raminitialized when a reset is canceled.
				0: The on-chip RAM is disabled.
				1: The on-chip RAM is enabled.

Renesas

The address (A7 to A0) is output when the corresponding DDR is set to 1 at port C.

Ports D and E are data buses, and a part of the port F is the bus control signal.

Immediately after a reset, 8-bits bus mode is set and all the areas become 8-bit access spather However, when any of the areas is set to 16-bit access space by the bus controller, 16-bit mode is set and port E becomes the data bus.

3.3.2 Mode 7

The CPU can access a 16-Mbyte address space in advanced mode. The on-chip ROM is we the external address space cannot be accessed.

All the I/O port can be used as an input/output port.

3.3.3 Pin Functions

Table 3.2 shows the pin functions in modes 6 and 7.

Rev. 6.00 Sep. 24, 2009 Page 70 of 928 REJ09B0099-0600

PF3	P*/C	
PF2 to PF0	P*/C	

Legend:

P: Input/output port

A: Address bus output

D: Data bus Input/output

C: Control signal, clock Input/output

*: Immediately after a reset

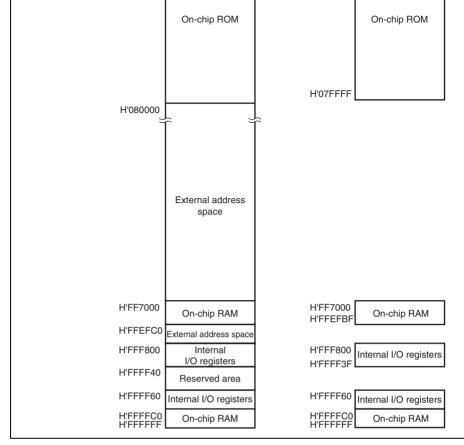


Figure 3.1 Address Map of H8S/2556, H8S/2552, and H8S/2506

Rev. 6.00 Sep. 24, 2009 Page 72 of 928 REJ09B0099-0600

RENESAS

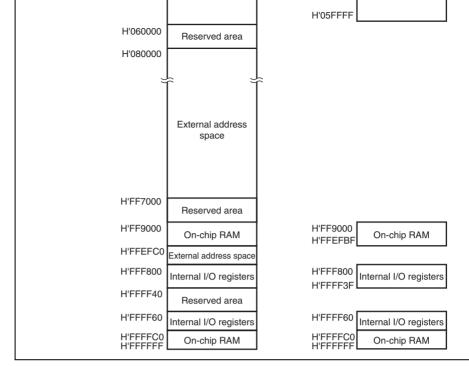


Figure 3.2 Address Map of H8S/2551

Renesas

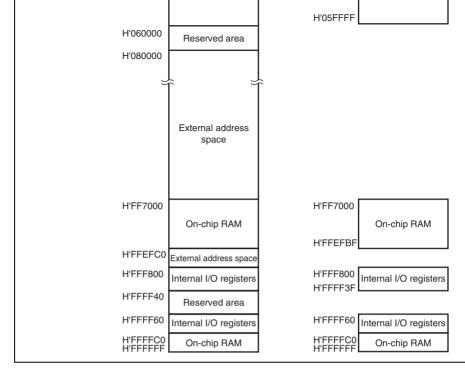


Figure 3.3 Address Map of H8S/2505

Rev. 6.00 Sep. 24, 2009 Page 74 of 928 REJ09B0099-0600

interrupt control mode set by the INTM0 and INTM1 bits in SYSCR.

Priority	Exception Type	Start of Exception Handling
High	Reset	Starts immediately after a low-to-high transition at th and $\overline{\text{MRES}}$ pins, or when the watchdog timer overflo CPU enters the power-on reset state when the $\overline{\text{RES}}$ The CPU enters the manual reset state when the $\overline{\text{MF}}$ low.
	Trace	Starts when execution of the current instruction or ex handling ends, if the trace (T) bit is set to 1. Trace is only in interrupt control mode 2. Trace exception har not executed after execution of an RTE instruction.
	Interrupt	Starts when execution of the current instruction or ex handling ends, if an interrupt request has been issue Interrupt detection is not performed on completion of ORC, XORC, or LDC instruction execution, or on cor of reset exception handling.
↓ Low	Trap instruction (TRAPA)	Started by execution of a trap instruction (TRAPA). T instruction exception handling requests are accepted times in program execution state.

Table 4.1Exception Types and Priority

4.2 Exception Sources and Exception Vector Table

Different vector address is assigned to each exception source. Table 4.2 lists the exception and their vector addresses.

Renesas

Direct transitions*3		6	H'0018 to H'001B
External interrupt (NM	VII)	7	H'001C to H'001F
Trap instruction (four	sources)	8	H'0020 to H'0023
		9	H'0024 to H'0027
		10	H'0028 to H'002B
		11	H'002C to H'002F
Reserved for system	use	12	H'0030 to H'0033
		13	H'0034 to H'0037
		14	H'0038 to H'003B
		15	H'003C to H'003F
External interrupt	IRQ0	16	H'0040 to H'0043
	IRQ1	17	H'0044 to H'0047
	IRQ2	18	H'0048 to H'004B
	IRQ3	19	H'004C to H'004F
	IRQ4	20	H'0050 to H'0053
	IRQ5	21	H'0054 to H'0057
	IRQ6	22	H'0058 to H'005B
	IRQ7	23	H'005C to H'005F
Internal interrupt*2		24	H'0060 to H'0063
		127	H'01FC to H'01FF

Notes: 1. Indicates lower 16 bits of the address.

2. For details on the internal interrupt vector table, see section 5.4.3, Interrupt Ex Handling Vector Table.

3. Direct transitions are not supported in this LSI.

Rev. 6.00 Sep. 24, 2009 Page 76 of 928 REJ09B0099-0600

RENESAS

4.3.1 Types of Reset

The LSI supports two types of resets: power-on reset and manual reset.

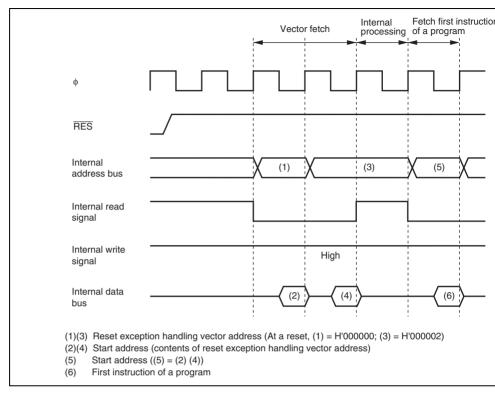
Table 4.3 shows the types of reset. Set to power-on reset when the power is tuned on.

The CPU internal status is initialized both by the power-on reset and the manual reset. E power-on reset, all registers of the on-chip peripheral modules are initialized; by a manu registers of the on-chip peripheral modules, except for the bus controller and I/O ports, a initialized. The status of the bus controller and I/O ports is maintained.

By a manual reset, on-chip peripheral modules are initialized and thus ports used as inpupins of the on-chip peripheral modules are switched to input/output ports controlled by IDR.

	Reset Sh	ift Conditions	Internal State		
Types	MRES	RES	CPU	On-Chip Peripheral Mod	
Power-on reset	*	Low	Initialized	Initialized	
Manual reset	Low	High	Initialized	Initialized except for bus o and I/O ports	

Table 4.3Types of Reset


Legend:

*: Don't care

The power-on reset and the manual reset are also available for the reset by the watchdog To enable the $\overline{\text{MRES}}$ pin, set the MRESE bit in SYSCR to 1.

RENESAS

2. The reset exception handling vector address is read and transferred to the PC, and pro execution starts from the address indicated by the PC.

Figures 4.1 shows an example of the reset sequence.

Figure 4.1 Reset Sequence (Advanced Mode with On-Chip ROM Enabled

Rev. 6.00 Sep. 24, 2009 Page 78 of 928 REJ09B0099-0600

H'FF, and all modules except the DTC enter module stop mode. Consequently, on-chip module registers cannot be read or written to. Register reading and writing is enabled whe module stop mode is exited.

4.4 Trace Exception Handling

Trace is enabled in interrupt control mode 2. Trace mode is not entered in interrupt cont 0, irrespective of the state of the T bit. For details on the interrupt control mode, see sect Interrupt Controller.

If the T bit in EXR is set to 1, trace mode is entered. In trace mode, a trace exception has occurs on completion of each instruction. After execution of trace exception handling, the EXR is cleared to 0 and trace mode is canceled. Trace mode is not affected by interrupt Table 4.4 shows the state of CCR and EXR after execution of trace exception handling. are accepted even within the trace exception handling routine.

The T bit saved on the stack retains its value of 1, and when control is returned from the exception handling routine by the RTE instruction, trace mode resumes. Trace exception is not carried out after execution of the RTE instruction.

4.5 Interrupt Exception Handling

Interrupts are controlled by the interrupt controller. The interrupt controller has two intercontrol modes and can assign interrupts other than NMI to eight priority/mask levels to emultiplexed interrupt control. For details, see section 5, Interrupt Controller.

Interrupt exception handling is conducted as follows:

- 1. The values in the program counter (PC), condition code register (CCR), and extended (EXR) are saved to the stack.
- 2. The interrupt mask bit is updated and the T bit is cleared to 0.
- 3. A vector address corresponding to the interrupt source is generated, the start address from the vector table to the PC, and program execution begins from that address.

4.6 Trap Instruction Exception Handling

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap in exception handling can be executed at all times in the program execution state.

Trap instruction exception handling is conducted as follows:

- 1. The values in the program counter (PC), condition code register (CCR), and extended (EXR) are saved to the stack.
- 2. The interrupt mask bit is updated and the T bit is cleared to 0.
- 3. A vector address corresponding to the interrupt source is generated, the start address from the vector table to the PC, and program execution starts from that address.

Rev. 6.00 Sep. 24, 2009 Page 80 of 928 REJ09B0099-0600

Legend:

- 1: Set to 1
- 0: Cleared to 0
- --: Retains value prior to execution

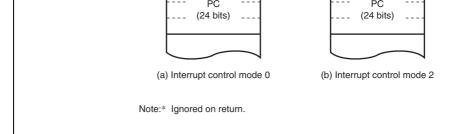


Figure 4.2 Stack State after Exception Handling (Advanced Mode)

4.8 Usage Note

When accessing word data or longword data, this LSI assumes that the lowest address bit stack should always be accessed by word transfer instruction or longword transfer instruct the value of the stack pointer (SP: ER7) should always be kept even. Use the following instructions to save registers:

PUSH.W Rn (or MOV.W Rn, @-SP) PUSH.L ERn (or MOV.L ERn, @-SP)

Use the following instructions to restore registers:

POP.W	Rn	(or	MOV.W	@SP+,	Rn)
POP.L	ERn	(or	MOV.L	@SP+,	ERn)

Setting the SP to an odd value may lead to a malfunction. Figure 4.3 shows an example o happens when the SP value is odd.

Rev. 6.00 Sep. 24, 2009 Page 82 of 928 REJ09B0099-0600

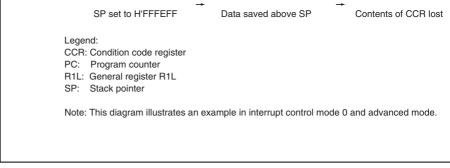


Figure 4.3 Operation when SP Value Is Odd

Rev. 6.00 Sep. 24, 2009 Page 84 of 928 REJ09B0099-0600

- Priorities settable with IPR
 - An interrupt priority register (IPR) is provided for setting interrupt priorities. Eig levels can be set for each module for all interrupts except NMI. NMI is assigned highest priority level of 8, and can be accepted at all times.
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnec the source to be identified in the interrupt handling routine.
- Nine external interrupt pins
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or edge can be selected for NMI.
 - Falling edge, rising edge, both edges, or level sensing can be independently select IRQ7 to IRQ0.
- DTC control
 - The DTC can be activated by an interrupt request.

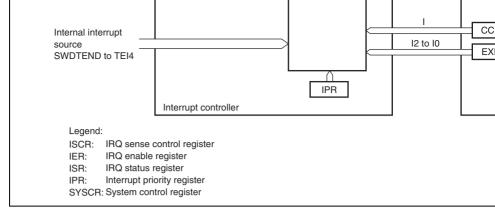


Figure 5.1 Block Diagram of Interrupt Controller

Rev. 6.00 Sep. 24, 2009 Page 86 of 928 REJ09B0099-0600

INGO	input	hising edge, failing edge, both edges, of level sensing can be
IRQ5	Input	
IRQ4	Input	
IRQ3	Input	
IRQ2	Input	
IRQ1	Input	
IRQ0	Input	

Renesas

- Interrupt priority register A (IPRA)
- Interrupt priority register B (IPRB)
- Interrupt priority register C (IPRC)
- Interrupt priority register D (IPRD)
- Interrupt priority register E (IPRE)
- Interrupt priority register F (IPRF)
- Interrupt priority register G (IPRG)
- Interrupt priority register H (IPRH)
- Interrupt priority register I (IPRI)
- Interrupt priority register J (IPRJ)
- Interrupt priority register K (IPRK)
- Interrupt priority register L (IPRL)
- Interrupt priority register M (IPRM)
- Interrupt priority register O (IPRO)

Rev. 6.00 Sep. 24, 2009 Page 88 of 928 REJ09B0099-0600

				This bit is always read as 0 and cannot be mod
6	IPR6	1	R/W	These bits set the priority of the corresponding
5	IPR5	1	R/W	source.
4	IPR4	1	R/W	000: Priority level 0 (lowest)
				001: Priority level 1
				010: Priority level 2
				011: Priority level 3
				100: Priority level 4
				101: Priority level 5
				110: Priority level 6
				111: Priority level 7 (highest)
3		0	_	Reserved
				This bit is always read as 0 and cannot be mod
2	IPR2	1	R/W	These bits set the priority of the corresponding
1	IPR1	1	R/W	source.
0	IPR0	1	R/W	000: Priority level 0 (lowest)
				001: Priority level 1
				010: Priority level 2
				011: Priority level 3
				100: Priority level 4
				101: Priority level 5
				110: Priority level 6
				111: Priority level 7 (highest)

Renesas

5	IRQ5E	0	R/W	IRQ5 Enable
				The IRQ5 interrupt request is enabled when this
4	IRQ4E	0	R/W	IRQ4 Enable
				The IRQ4 interrupt request is enabled when this
3	IRQ3E	0	R/W	IRQ3 Enable
				The IRQ3 interrupt request is enabled when this
2	IRQ2E	0	R/W	IRQ2 Enable
				The IRQ2 interrupt request is enabled when this
1	IRQ1E	0	R/W	IRQ1 Enable
				The IRQ1 interrupt request is enabled when this
0	IRQ0E	0	R/W	IRQ0 Enable
				The IRQ0 interrupt request is enabled when this

Rev. 6.00 Sep. 24, 2009 Page 90 of 928 REJ09B0099-0600

					01: Interrupt request is generated at falling edge of IF
					10: Interrupt request is generated at rising edge of \overline{IR}
					11: Interrupt request is generated at both falling and edges of IRQ7 input
1	3	IRQ6SCB	0	R/W	IRQ6 Sense Control B
1	2	IRQ6SCA	0	R/W	IRQ6 Sense Control A
					00: Interrupt request is generated at $\overline{\text{IRQ6}}$ input level
					01: Interrupt request is generated at falling edge of $\overline{\text{IF}}$
					10: Interrupt request is generated at rising edge of \overline{IR}
					11: Interrupt request is generated at both falling and edges of IRQ6 input
1	1	IRQ5SCB	0	R/W	IRQ5 Sense Control B
1	0	IRQ5SCA	0	R/W	IRQ5 Sense Control A
					00: Interrupt request is generated at $\overline{\text{IRQ5}}$ input level
					01: Interrupt request is generated at falling edge of $\overline{\text{IF}}$
					10: Interrupt request is generated at rising edge of \overline{IR}
					11: Interrupt request is generated at both falling and edges of IRQ5 input
ç)	IRQ4SCB	0	R/W	IRQ4 Sense Control B
8	3	IRQ4SCA	0	R/W	IRQ4 Sense Control A
					00: Interrupt request is generated at $\overline{\text{IRQ4}}$ input level
					01: Interrupt request is generated at falling edge of $\overline{\text{IF}}$
					10: Interrupt request is generated at rising edge of \overline{IR}
					11: Interrupt request is generated at both falling and edges of IRQ4 input
-					

Renesas

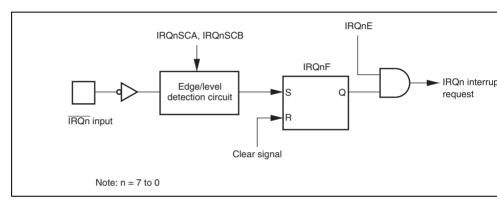
5	IRQ2SCB	0	R/W	IRQ2 Sense Control B
4	IRQ2SCA	0	R/W	IRQ2 Sense Control A
				00: Interrupt request is generated at $\overline{IRQ2}$ input le
				01: Interrupt request is generated at falling edge input
				10: Interrupt request is generated at rising edge of input
				11: Interrupt request is generated at both falling a edges of IRQ2 input
3	IRQ1SCB	0	R/W	IRQ1 Sense Control B
2	IRQ1SCA	0	R/W	IRQ1 Sense Control A
				00: Interrupt request is generated at IRQ1 input le
				01: Interrupt request is generated at falling edge input
				10: Interrupt request is generated at rising edge of input
				11: Interrupt request is generated at both falling a edges of IRQ1 input

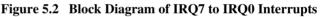
Rev. 6.00 Sep. 24, 2009 Page 92 of 928 REJ09B0099-0600

5.3.4 IRQ Status Register (ISR)

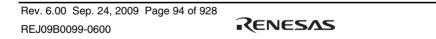
ISR indicates the status of IRQ7 to IRQ 0 interrupt requests.

		Initial		
Bit	Bit Name	Value	R/W*	Description
7	IRQ7F	0	R/W	IRQ7 to IRQ0 flags
6	IRQ6F	0	R/W	These bits indicate the status of IRQ7 to IRQ0 i
5	IRQ5F	0	R/W	requests.
4	IRQ4F	0	R/W	[Setting condition]
3	IRQ3F	0	R/W	 When the interrupt source selected by the l registers occurs
2	IRQ2F	0	R/W	0
1	IRQ1F	0	R/W	[Clearing conditions]
0	IRQ0F	0	R/W	 Cleared by reading IRQnF flag when IRQn writing 0 to IRQnF flag
				 When interrupt exception handling is execu- low-level detection is set and IRQn (n = 0 to is high
				• When IRQn interrupt exception handling is while detection of falling edge, rising edge, edges is set
				 When the DTC is activated by an IRQn inter the DISEL bit in MRB of the DTC with the to counter other than 0 is cleared to 0


Note: * Only 0 can be written to this bit to clear the flag.


RENESAS

IRQ7 to IRQ0 Interrupts: IRQ7 to IRQ0 interrupts are requested by an input signal at t to IRQ0 pins. IRQ7 to IRQ0 interrupts have the following features:


- Using ISCR, it is possible to select whether an interrupt is generated by a low level, faedge, rising edge, or both edges, at the IRQ7 to IRQ0 pins.
- Enabling or disabling of IRQ7 to IRQ0 interrupt requests can be selected with IER.
- The interrupt priority level can be set with IPR.
- The status of IRQ7 to IRQ0 interrupt requests is indicated in ISR. ISR flags can be clo by software.

A block diagram of IRQ7 to IRQ0 interrupts is shown in figure 5.2.

The set timing for IRQ7F to IRQ0F is shown in figure 5.3.

The detection of IRQ7 to IRQ0 interrupts does not depend on whether the relevant pin h set for input or output. However, when a pin is used as an external interrupt input pin, do the corresponding DDR to 0 to use the pin as an I/O pin for another function. The IRQ7 IRQ0F interrupt request flags can be set to 1 when the setting condition is satisfied, regarder to a settings. Accordingly, refer to only necessary flags.

5.4.2 Internal Interrupts

For each on-chip peripheral module, there are flags that indicate the interrupt request state enable bits that select enabling or disabling of these interrupts. If both of these are set to particular interrupt source, an interrupt request is sent to the interrupt controller.

5.4.3 Interrupt Exception Handling Vector Table

Table 5.2 shows interrupt exception handling sources, vector addresses, and interrupt pr For default priorities, the lower the vector number, the higher the priority.

Priorities among modules can be set by means of the IPR. Modules set at the same prior conform to their default priorities. Priorities within a module are fixed.

	IRQ4	20	H'0050	IPRB2 to IPRB0
	IRQ5	21	H'0054	
	IRQ6	22	H'0058	IPRC6 to IPRC4
	IRQ7	23	H'005C	
DTC	SWDTEND (completion of software initiation data transfer)	24	H'0060	IPRC2 to IPRC0
Watchdog timer 0	WOVI0 (interval timer 0)	25	H'0064	IPRD6 to IPRD4
PC break	PC break	27	H'006C	IPRE6 to IPRE4
A/D	ADI (completion of A/D conversion)	28	H'0070	IPRE2 to IPRE0
Watchdog timer 1	WOVI1 (interval timer 1)	29	H'0074	_
_	Reserved	30	H'0078	
		31	H'007C	
TPU channel 0	TGI0A (TGR0A input capture/compare-match)	32	H'0080	IPRF6 to IPRF4
	TGI0B (TGR0B input capture/compare-match)	33	H'0084	
	TGI0C (TGR0C input capture/compare-match)	34	H'0088	

Rev. 6.00 Sep. 24, 2009 Page 96 of 928 REJ09B0099-0600

TGI1A (TGR1A input capture/compare-match)	40	H'00A0	IPRF2 to IPRF0
TGI1B (TGR1B input capture/compare-match)	41	H'00A4	
TCI1V (overflow 1)	42	H'00A8	
TCI1U (underflow 1)	43	H'00AC	
TGI2A (TGR2A input capture/compare-match)	44	H'00B0	IPRG6 to IPRG4
TGI2B (TGR2B input capture/compare-match)	45	H'00B4	
TCI2V (overflow 2)	46	H'00B8	
TCI2U (underflow 2)	47	H'00BC	
TGI3A (TGR3A input capture/compare-match)	48	H'00C0	IPRG2 to IPRG0
TGI3B (TGR3B input capture/compare-match)	49	H'00C4	
TGI3C (TGR3C input capture/compare-match)	50	H'00C8	
TGI3D (TGR3D input capture/compare-match)	51	H'00CC	
TCI3V (overflow 3)	52	H'00D0	
Reserved	53 54 55	H'00D4 H'00D8 H'00DC	
	capture/compare-match) TGI1B (TGR1B input capture/compare-match) TCI1V (overflow 1) TCI1U (underflow 1) TGI2A (TGR2A input capture/compare-match) TGI2B (TGR2B input capture/compare-match) TCI2V (overflow 2) TCI2U (underflow 2) TGI3A (TGR3A input capture/compare-match) TGI3B (TGR3B input capture/compare-match) TGI3C (TGR3C input capture/compare-match) TGI3D (TGR3D input capture/compare-match) TGI3D (TGR3D input capture/compare-match) TGI3V (overflow 3)	capture/compare-match)TGI1B (TGR1B input capture/compare-match)41TCI1V (overflow 1)42TCI1U (underflow 1)43TGI2A (TGR2A input capture/compare-match)44TGI2B (TGR2B input capture/compare-match)45TCI2V (overflow 2)46TCI2U (underflow 2)47TGI3A (TGR3A input capture/compare-match)48capture/compare-match)49TGI3B (TGR3B input capture/compare-match)50TGI3C (TGR3C input capture/compare-match)51TGI3D (TGR3D input capture/compare-match)51TGI3V (overflow 3)52Reserved535454	capture/compare-match)TGI1B (TGR1B input capture/compare-match)41H'00A4TCI1V (overflow 1)42H'00A8TCI1U (underflow 1)43H'00ACTGI2A (TGR2A input capture/compare-match)44H'00B0TGI2B (TGR2B input capture/compare-match)45H'00B4TCI2V (overflow 2)46H'00B8TCI2U (underflow 2)47H'00BCTGI3A (TGR3A input capture/compare-match)48H'00C0TGI3B (TGR3B input capture/compare-match)49H'00C4TGI3D (TGR3C input capture/compare-match)50H'00C8TGI3D (TGR3C input capture/compare-match)51H'00C0TGI3D (TGR3D input capture/compare-match)51H'00C4TGI3D (TGR3D input capture/compare-match)51H'00C4TGI3D (TGR3D input capture/compare-match)51H'00D8TCI3V (overflow 3)52H'00D0Reserved 5353H'00D454H'00D854H'00D8

Renesas

5	capture/compare-match)			
	TGI5B (TGR5B input capture/compare-match)	61	H'00F4	
_	TCI5V (overflow 5)	62	H'00F8	
	TCI5U (underflow 5)	63	H'00FC	
	CMIA0 (compare-match A0)	64	H'0100	IPRI6 to IPRI4
channel 0	CMIB0 (compare-match B0)	65	H'0104	
	OVI0 (overflow 0)	66	H'0108	
_	Reserved	67	H'010C	
	CMIA1 (compare-match A1)	68	H'0110	IPRI2 to IPRI0
channel 1	CMIB1 (compare-match B1)	69	H'0114	
	OVI1 (overflow 1)	70	H'0118	_
_	Reserved	71	H'011C	
SCI channel 0	ERI0 (receive error 0)	80	H'0140	IPRJ2 to IPRJ0
<u> </u>	RXI0 (receive completion 0)	81	H'0144	
-	TXI0 (transmit data empty 0)	82	H'0148	
	TEI0 (transmit end 0)	83	H'014C	
SCI channel 1	ERI1 (receive error 1)	84	H'0150	IPRK6 to IPRK4
_	RXI1 (receive completion 1)	85	H'0154	
	TXI1 (transmit data empty 1)	86	H'0158	
	TEI1 (transmit end 1)	87	H'015C	
				IPRK2 to IPRK0
SCI channel 2	ERI2 (receive error 2)	88	H'0160	

Rev. 6.00 Sep. 24, 2009 Page 98 of 928 REJ09B0099-0600

CMIB3 (compare-match B3)	97	H'0184	_	
OVI3 (overflow 3)	98	H'0188	-	
Reserved	99	H'018C	-	
IERSI (reception status)	104	H'01A0	IPRM6 to IPRM4	
IERxI (RxRDY)	105	H'01A4	-	
IETxI (TxRDY)	106	H'01A8	-	
IETSI (transmission status)	107	H'01AC	-	
ERS0, OVR0, RM1, SLE0	108	H'01B0	IPRM2 to IPRM0	
RM0	109	H'01B4	-	
IICI0 (1-byte transmission/ reception completion)	110	H'01B8	-	
IICI1 (1-byte transmission/ reception completion)	111	H'01BC		
ERI3 (receive error 3)	120	H'01E0	IPRO6 to IPRO4	
RXI3 (receive completion 3)	121	H'01E4	-	
TXI3 (transmit data empty 3)	122	H'01E8	-	
TEI3 (transmit end 3)	123	H'01EC	-	
ERI4 (receive error 4)	124	H'01F0	IPRO2 to IPRO0	
RXI4 (receive completion 4)	125	H'01F4	-	
TXI4 (transmit data empty 4)	126	H'01F8	-	
TEI4 (transmit end 4)	127	H'01FC	-	
	OVI3 (overflow 3) Reserved IERSI (reception status) IERXI (RxRDY) IETXI (TxRDY) IETSI (transmission status) ERS0, OVR0, RM1, SLE0 RM0 IICI0 (1-byte transmission/ reception completion) IICI1 (1-byte transmission/ reception completion) ERI3 (receive error 3) RXI3 (receive error 3) RXI3 (transmit data empty 3) TEI3 (transmit end 3) ERI4 (receive error 4) RXI4 (receive completion 4) TXI4 (transmit data empty 4)	OVI3 (overflow 3)98Reserved99IERSI (reception status)104IERXI (RxRDY)105IETXI (TxRDY)106IETSI (transmission status)107ERS0, OVR0, RM1, SLE0108RM0109IICI0 (1-byte transmission/ reception completion)110IICI1 (1-byte transmission/ reception completion)120RXI3 (receive error 3)121TXI3 (transmit data empty 3)122TEI3 (transmit end 3)123ERI4 (receive completion 4)125TXI4 (transmit data empty 4)126	OVI3 (overflow 3)98H'0188Reserved99H'018CIERSI (reception status)104H'01A0IERXI (RxRDY)105H'01A4IETXI (TxRDY)106H'01A8IETSI (transmission status)107H'01ACERS0, OVR0, RM1, SLE0108H'01B0RM0109H'01B4IICI0 (1-byte transmission/ reception completion)110H'01B8IICI1 (1-byte transmission/ reception completion)111H'01BCERI3 (receive error 3)120H'01E0RXI3 (receive completion 3)121H'01E4TXI3 (transmit data empty 3)122H'01E0ERI4 (receive completion 4)125H'01F4TXI4 (transmit data empty 4)126H'01F8	

Note: * Indicates lower 16 bits of the start address.

RENESAS

Table 5.3 shows the interrupt control modes.

The interrupt controller performs interrupt control according to the interrupt control mode the INTM1 and INTM0 bits in SYSCR, the priorities set in IPR, and the masking state in by the I bit in the CPU's CCR, and bits I2 to I0 in EXR.

Interrupt	SYSCR		Priority Setting	Interrupt	
Control Mode	INTM1	INTM0	Register	Mask Bits	Description
0	0	0	_	I	Interrupt mask control is performed by the I bit.
	-	1		_	Setting prohibited
2	1	0	IPR	I2 to I0	8-level interrupt mask cor performed by bits I2 to I0 8 priority levels can be se IPR.
_		1	_	_	Setting prohibited

Table 5.3 Interrupt Control Modes

Figures 5.4 shows a block diagram of the priority decision circuit.

Rev. 6.00 Sep. 24, 2009 Page 100 of 928 REJ09B0099-0600

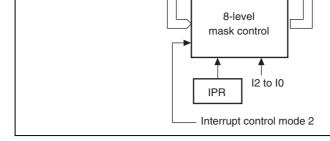


Figure 5.4 Block Diagram of Interrupt Control Operation

All i	nterrup	ts
-------	---------	----

Legend: X: Don't care

2

8-Level Control: In interrupt control mode 2, 8-level mask level determination is perform the selected interrupts in interrupt acceptance control according to the interrupt priority let (IPR).

The interrupt source selected is the interrupt with the highest priority level, and whose private level set in IPR is higher than the mask level.

Table 5.5	Interrupts Selected in Each Interrupt Control Mode (2)
-----------	---

Interrupt Control Mode	Selected Interrupts
0	All interrupts
2	Highest priority-level (IPR) interrupt whose priority level is g than the mask level (IPR > I2 to I0)

Default Priority Determination: When an interrupt is selected by 8-level control, its pridetermined and a vector number is generated.

If the same value is set for IPR, acceptance of multiple interrupts is enabled, and so only interrupt source with the highest priority according to the preset default priorities is select has a vector number generated. Interrupt sources with a lower priority than the accepted i source are held pending.

Table 5.6 shows operations and control signal functions in each interrupt control mode.

Rev. 6.00 Sep. 24, 2009 Page 102 of 928 REJ09B0099-0600

- X: No operation. (All interrupts enabled)
- IM: Used as interrupt mask bit
- PR: Sets priority
- -: Not used
- Notes: 1. Set to 1 when an interrupt is accepted.
 - 2. Keep the initial setting.

5.5.2 Interrupt Control Mode 0

Enabling and disabling of IRQ interrupts and on-chip peripheral module interrupts can be means of the I bit in the CPU's CCR. Interrupts are enabled when the I bit is cleared to disabled when set to 1.

Figure 5.5 shows a flowchart of the interrupt acceptance operation in this case.

- 1. If an interrupt source occurs when the corresponding interrupt enable bit is set to 1, a interrupt request is sent to the interrupt controller.
- 2. The I bit is referred to. If the I bit is cleared to 0, an interrupt request is accepted. If t set to 1, only an NMI interrupt is accepted, and other interrupt requests are held pend
- 3. Interrupt requests are sent to the interrupt controller, the highest-ranked interrupt acc the priority system is accepted, and other interrupt requests are held pending.
- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC and CCR are saved to the stack area by interrupt exception handling. The PC the stack shows the address of the first instruction to be executed after returning from interrupt handling routine.
- 6. Next, the I bit in CCR is set to 1. This masks all interrupts except NMI.

Renesas

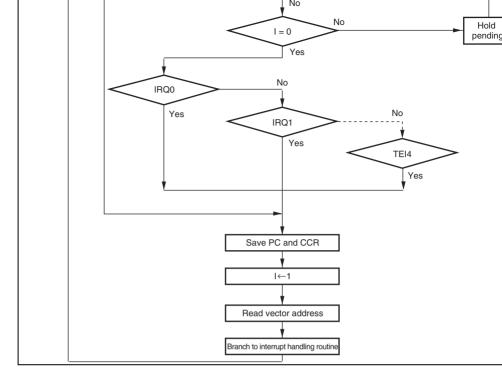
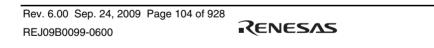



Figure 5.5 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 0

interrupt requests are held pending. If a number of interrupt requests with the same p generated at the same time, the interrupt request with the highest priority according t priority system shown in table 5.2 is selected.

- 3. Next, the priority of the selected interrupt request is compared with the interrupt mass in EXR. An interrupt request with a priority no higher than the mask level set at that held pending, and only an interrupt request with a priority higher than the interrupt m is accepted.
- 4. When the CPU accepts an interrupt request, it starts interrupt exception handling after execution of the current instruction has been completed.
- 5. The PC, CCR, and EXR are saved to the stack area by interrupt exception handling. saved on the stack shows the address of the first instruction to be executed after retu the interrupt handling routine.
- The T bit in EXR is cleared to 0. The interrupt mask level is rewritten with the priori
 the accepted interrupt.
 If the accepted interrupt is NMI, the interrupt mask level is set to H'7.

7. The CPU generates a vector address for the accepted interrupt and starts execution or interrupt handling routine at the address indicated by the contents of the vector address indicated by the vector add

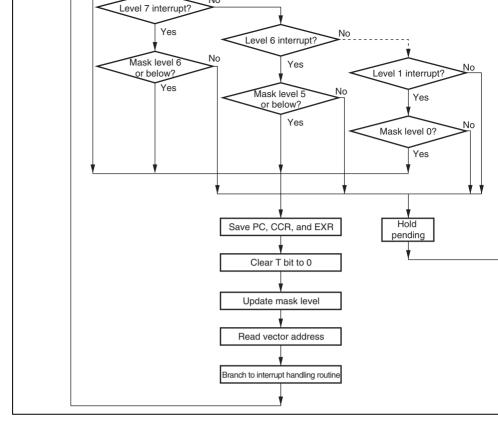


Figure 5.6 Flowchart of Procedure up to Interrupt Acceptance in Interrupt Control Mode 2

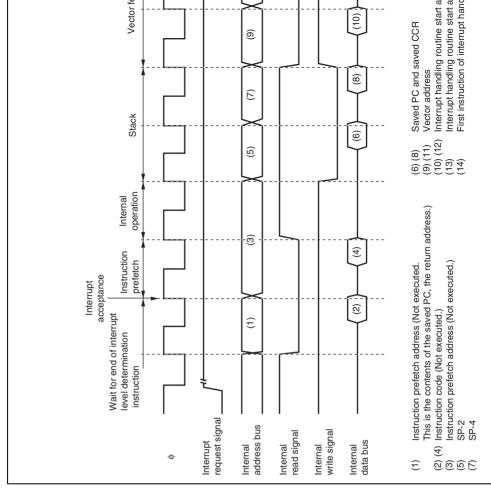


Figure 5.7 Interrupt Exception Handling

Rev. 6.00 Sep. 24, 2009 Page 108 of 928 REJ09B0099-0600

Renesas

No.	Execution Status	INTM1 = 0	INTM1 = 1	INTM1 = 0	IN
1	Interrupt priority determination*1	3	3	3	3
2	Number of wait states until executing instruction ends* ²	1 to 19 + 2·S _i	1 to 19 + 2·S _I	1 to 19 + 2·S _i	1 2·
3	PC, CCR, EXR stack save	2·S _κ	3⋅S _κ	2⋅S _κ	3.
4	Vector fetch	S	S,	2.S	2.
5	Instruction fetch*3	2·S	2·S	2·S	2.
6	Internal processing*4	2	2	2	2
Total	(using on-chip memory)	11 to 31	12 to 32	12 to 32	13

Notes: 1. Two states in case of internal interrupt.

- 2. Refers to MULXS and DIVXS instructions.
- 3. Prefetch after interrupt acceptance and interrupt handling routine prefetch.
- 4. Internal processing after interrupt acceptance and internal processing after ve
- 5. Not available in this LSI.

Legend:

m: Number of wait states in an external device access.

Note: * Not available in this LSI.

5.5.6 DTC Activation by Interrupt

The DTC can be activated by an interrupt. In this case, the following selections can be m

- 1. Interrupt request to CPU
- 2. Activation request to DTC
- 3. Multiple selection of 1 and 2 above.

For details on interrupt request, which enables DTC activation, see section 8, Data Transf Controller (DTC). Figure 5.8 shows a block diagram of DTC and interrupt controller.

Rev. 6.00 Sep. 24, 2009 Page 110 of 928 REJ09B0099-0600

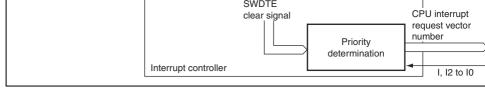


Figure 5.8 DTC and Interrupt Controller

Interrupt controller of DTC control has the following three main functions.

Interrupt Source Selection: For interruption source, select DTC activation request or C interruption request by the DTCE bits in DTCERA to DTCERG, and DTCERI of the D'DTC data transfer, the DTCE bit is cleared to 0, and an interrupt request to the CPU can by the setting of the DISEL bit in MRB of the DTC. When DTC performs data transfer prescribed number of times and transfer counter becomes 0, the DTCE bit should be cleared an interrupt request to the CPU is made after DTC data transfer.

Priority Determination: DTC activation source is selected according to priority of defa setting. Mask level and priority level do not affect the selection. For details, see section Location of Register Information and DTC Vector Table.

DTCE	DESEL	DTC	CPU
0	*	Х	#
1	0	#	Х
	1	0	#

Legend:

#: Corresponding interrupt is used. Interrupt source is cleared.

(The CPU should clear the source flag in the interrupt processing routine.)

O: Corresponding interrupt is used. Interrupt source is not cleared.

X: Corresponding interrupt cannot be used.

*: Don't care

Usage Note: Interrupt sources of the SCI and A/D converter are cleared when the DTC rewrites prescribed register, and they do not depend on the DTCE or DISEL bit.

5.6 Usage Notes

5.6.1 Contention between Interrupt Generation and Disabling

When an interrupt enable bit is cleared to 0 to disable interrupt requests, the disabling bec effective after execution of the instruction.

When an interrupt enable bit is cleared to 0 by an instruction such as BCLR or MOV, and interrupt is generated during execution of the instruction, the interrupt concerned will stil enabled on completion of the instruction, and so interrupt exception handling for that inter be executed on completion of the instruction. However, if there is an interrupt request of priority than that interrupt, interrupt exception handling will be executed for the higher-printerrupt, and the lower-priority interrupt will be ignored.

Rev. 6.00 Sep. 24, 2009 Page 112 of 928 REJ09B0099-0600

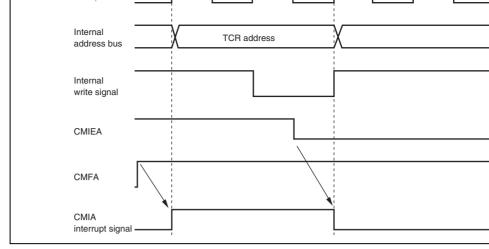


Figure 5.9 Contention between Interrupt Generation and Disabling

5.6.2 Instructions That Disable Interrupts

The instructions that disable interrupt requests directly after execution are LDC, ANDC, and XORC. After any of these instructions are executed, all interrupts including NMI ar and the next instruction is always executed.

When the I bit is set by one of these instructions, the new value becomes valid two state execution of the instruction ends.

5.6.3 When Interrupts Are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.

RENESAS

exception handling starts at a break in the transfer cycle. The PC value saved on the stack case is the address of the next instruction.

Therefore, if an interrupt is generated during execution of an EEPMOV.W instruction, th following coding should be used.

```
L1: EEPMOV.W
MOV.W R4,R4
BNE L1
```

5.6.5 IRQ Interrupt

When operating by clock input, acceptance of input to an IRQ is synchronized with the cl software standby mode and watch mode, the input is accepted asynchronously. For detail input conditions, see section 24.4.3, Control Signal Timing.

5.6.6 NMI Interrupt Usage Notes

The NMI interrupt is part of the exception processing performed cooperatively by the LS internal interrupt controller and the CPU when the system is operating normally under the specified electrical conditions. No operations, including NMI interrupts, are guaranteed w operation is not normal (runaway status) due to software problems or abnormal input to the pins. In such cases, the LSI may be restored to the normal program execution state by apprexternal reset.

Rev. 6.00 Sep. 24, 2009 Page 114 of 928 REJ09B0099-0600

- 24-bit break address
 - Bit masking possible
- Four types of break compare conditions
 - Instruction fetch
 - Data read
 - Data write
 - Data read/write
- Bus master
 - Either CPU or CPU/DTC can be selected
- The timing of PC break exception handling after the occurrence of a break condition follows:
 - Immediately before execution of the instruction fetched at the set address (instrufetch)
 - Immediately after execution of the instruction that accesses data at the set addres access)
- Module stop mode can be set

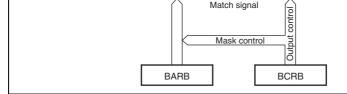


Figure 6.1 Block Diagram of PC Break Controller

6.2 Register Descriptions

The PC break controller has the following registers.

- Break address register A (BARA)
- Break address register B (BARB)
- Break control register A (BCRA)
- Break control register B (BCRB)

6.2.1 Break Address Register A (BARA)

BARA is a 32-bit readable/writable register that specifies the channel A break address.

Bit	Bit Name	Initial Value	R/W	Description
31 to 24		Undefined	—	Reserved
				These bits are read as an undefined valu cannot be modified.
23 to 0	BAA23 to BAA0	H'000000	R/W	These bits set the PC break address of a A.

Rev. 6.00 Sep. 24, 2009 Page 116 of 928 REJ09B0099-0600

RENESAS

				[Setting condition]
				When a condition set for channel A is satisfied
				[Clearing condition]
				When 0 is written to CMFA after reading* ² CMF.
6	CDA	0	R/W	CPU Cycle/DTC Cycle Select A
				Selects the channel A break condition bus mast
				0: CPU
				1: CPU or DTC
5	BAMRA2	0	R/W	Break Address Mask Register A2 to A0
4	BAMRA1	0	R/W	These bits specify which bits of the break addre
3	BAMRA0	0	R/W	BARA are to be unmasked.
				000: BAA23 to BAA0 (All bits are unmasked)
				001: BAA23 to BAA1 (Lowest bit is masked)
				010: BAA23 to BAA2 (Lower 2 bits are masked)
				011: BAA23 to BAA3 (Lower 3 bits are masked)
				100: BAA23 to BAA4 (Lower 4 bits are masked)
				101: BAA23 to BAA8 (Lower 8 bits are masked)
				110: BAA23 to BAA12 (Lower 12 bits are masked
				111: BAA23 to BAA16 (Lower 16 bits are masked
2	CSELA1	0	R/W	Break Condition Select
1	CSELA0	0	R/W	These bits select the break condition of channel
				00: Instruction fetch is used as the break condition
				01: Data read cycle is used as the break conditi
				10: Data write cycle is used as the break condit
				11: Data read/write cycle is used as the break c

BCRB is the channel B break control register. The bit configuration is the same as for BC

6.3 Operation

The operation flow from break condition setting to PC break interrupt exception handling shown in section 6.3.1, PC Break Interrupt Due to Instruction Fetch, and section 6.3.2, PC Interrupt Due to Data Access, taking the example of channel A.

6.3.1 PC Break Interrupt Due to Instruction Fetch

1. Set the break address in BARA.

For a PC break caused by an instruction fetch, set the address of the first instruction b break address.

2. Set the break conditions in BCR.

Set bit 6 (CDA) to 0 to select the CPU because the bus master must be the CPU for a caused by an instruction fetch. Set the address bits to be masked to bits 5 to 3 (BAMR BAMRA0). Set bits 2 and 1 (CSELA1 and CSELA0) to 00 to specify an instruction for the break condition. Set bit 0 (BIEA) to 1 to enable break interrupts.

- 3. When the instruction at the set address is fetched, a PC break request is generated imr before execution of the fetched instruction, and the condition match flag (CMFA) is s
- 4. After priority determination by the interrupt controller, PC break interrupt exception h is started.

Rev. 6.00 Sep. 24, 2009 Page 118 of 928 REJ09B0099-0600

- 3. After execution of the instruction that performs a data access on the set address, a PG request is generated and the condition match flag (CMFA) is set.
- 4. After priority determination by the interrupt controller, PC break interrupt exception is started.

6.3.3 Notes on PC Break Interrupt Handling

- When a PC break interrupt is generated at the transfer address of an EEPMOV.B ins PC break exception handling is executed after all data transfers have been completed EEPMOV.B instruction has ended.
- When a PC break interrupt is generated at a DTC transfer address PC break exception handling is executed after the DTC has completed the specified data transfers, or after data for which the DISEL bit is set to 1 has been transferred.

6.3.4 Operation in Transitions to Power-Down Modes

The operation when a PC break interrupt is set for an instruction fetch at the address after SLEEP instruction is shown below.

• When the SLEEP instruction causes a transition from high-speed (medium-speed) m sleep mode

After execution of the SLEEP instruction, a transition is not made to sleep mode, and exception handling is executed. After execution of PC break exception handling, the instruction at the address after the SLEEP instruction is executed (figure 6.2 (A)).

RENESAS

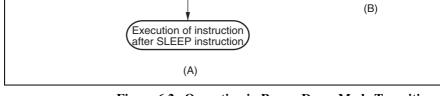


Figure 6.2 Operation in Power-Down Mode Transitions

6.3.5 When Instruction Execution Is Delayed by One State

While the break interrupt enable bit is set to 1, instruction execution in the following case state later than usual.

- For 1-word branch instructions (Bcc d:8, BSR, JSR, JMP, TRAPA, RTE, and RTS) in ROM or RAM
- When break interruption by instruction fetch is set, the set address indicates on-chip F RAM space, and that address is used for data access
- When break interruption by instruction fetch is set, if the instruction to be executed immediately before the set instruction has one of the addressing modes shown below, address indicates on-chip ROM or RAM

Addressing modes: @ERn, @(d:16,ERn), @(d:32,ERn), @-ERn/ERn+, @aa:8, @aa: @aa:32, @(d:8,PC), @(d:16,PC), @@aa:8

• When break interruption by instruction fetch is set, if the instruction to be executed immediately before the set instruction is NOP or SLEEP, or has #xx, Rn as its address mode, and that instruction is located in on-chip ROM or RAM

Rev. 6.00 Sep. 24, 2009 Page 120 of 928 REJ09B0099-0600

The PC break interrupt is shared by channels A and B. The channel from which the requissued must be determined by the interrupt handler.

6.4.3 CMFA and CMFB

The CMFA and CMFB flags are not automatically cleared to 0, so 0 must be written to 0 CMFB after first reading the flag while it is set to 1. If the flag is left set to 1, another in will be requested after interrupt handling ends.

6.4.4 PC Break Interrupt when DTC Is Bus Master

A PC break interrupt generated when the DTC is the bus master is accepted after the bus mastership has been transferred to the CPU by the bus controller.

6.4.5 PC Break Set for Instruction Fetch at Address Following BSR, JSR, JMP RTE, or RTS Instruction

Even if the instruction at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction is fetched, it is not executed, and so a PC break interrupt is not generated by instruction fetch at the next address.

6.4.6 I Bit Set by LDC, ANDC, ORC, or XORC Instruction

When the I bit is set by an LDC, ANDC, ORC, or XORC instruction, a PC break interrube becomes valid two states after the end of the executing instruction. If a PC break interrup for the instruction following one of these instructions, since interrupts, including NMI, a disabled for a 3-state period in the case of LDC, ANDC, ORC, and XOR, the next instrualways executed. For details, see section 5, Interrupt Controller.

Renesas

destination is not executed.

Rev. 6.00 Sep. 24, 2009 Page 122 of 928 REJ09B0099-0600

- Bus specifications can be set independently for each area
- Burst ROM interface can be set
- Basic bus interface
 - H8S/2552 Group, H8S/2506 Group: Chip select signals (CS0 to CS7) can be out areas 0 to 7.
 - H8S/2556 Group: Chip select signals ($\overline{CS0}$, $\overline{CS3}$ to $\overline{CS7}$) can be output for areas 7.
 - 8-bit access or 16-bit access can be selected for each area
 - 2-state access or 3-state access can be selected for each area
 - Program wait states can be inserted for each area
- Burst ROM interface
 - Burst ROM interface can be selected for area 0
 - One or two states can be selected for the burst cycle
- Idle cycle insertion
 - Idle cycle can be inserted between consecutive read accesses to different externa
 - Idle cycle can be inserted before a write access to an external area immediately a
 access to an external area
- Bus mastership arbitration
 - The on-chip bus arbiter arbitrates the bus mastership among CPU and DTC.
- Other features
 - External bus mastership release function

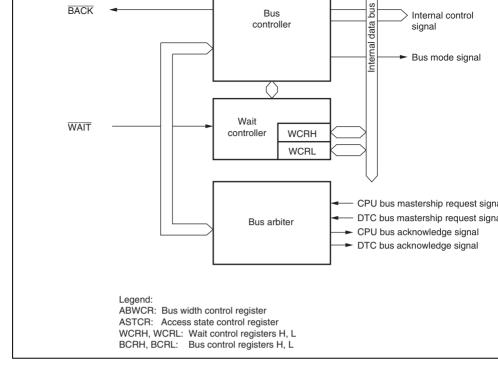


Figure 7.1 Block Diagram of Bus Controller

Rev. 6.00 Sep. 24, 2009 Page 124 of 928 REJ09B0099-0600

High write	HWR	Output	Strobe signal indicating that external addres to be written, and upper half (D15 to D8) of enabled.
Low write	LWR	Output	Strobe signal indicating that external addres to be written, and lower half (D7 to D0) of da enabled.
Chip select 0 to 7	$\overline{\text{CS0}}$ to $\overline{\text{CS7}}^*$	Output	Strobe signal indicating that areas 0 to 7 are
Wait	WAIT	Input	Wait request signal when accessing externa access space.
Bus mastership request	BREQ	Input	Request signal that releases bus to external
Bus mastership request acknowledge	BACK	Output	Acknowledge signal indicating that bus has released.

Note: * $\overline{CS1}$ and $\overline{CS2}$ are not provided in the H8S/2556 Group.

7.3 **Register Descriptions**

The bus controller has the following registers.

- Bus width control register (ABWCR)
- Access state control register (ASTCR)
- Wait control register H (WCRH)
- Wait control register L (WCRL)
- Bus control register H (BCRH)
- Bus control register L (BCRL)
- Pin function control register (PFCR)

5	ABW5	1	R/W	designated for 8-bit access or 16-bit access.
4	ABW4	1	R/W	0: Area n is designated for 16-bit access
3	ABW3	1	R/W	1: Area n is designated for 8-bit access
2	ABW2	1	R/W	Note: $n = 7$ to 0
1	ABW1	1	R/W	
0	ABW0	1	R/W	

7.3.2 Access State Control Register (ASTCR)

ASTCR designates each area as either a 2-state access space or a 3-state access space.

ASTCR sets the number of access states for the external memory space. The number of a states for on-chip memory and internal I/O registers is fixed regardless of the settings in A

		Initial		
Bit	Bit Name	Value	R/W	Description
7	AST7	1	R/W	Area 7 to 0 Access State Control
6	AST6	1	R/W	These bits select whether the corresponding area
5	AST5	1	R/W	designated as a 2-state access space or a 3-state space. Wait state insertion is enabled or disabled
4	AST4	1	R/W	same time.
3	AST3	1	R/W	0: Area n is designated for 2-state access
2	AST2	1	R/W	Wait state insertion in area n external space is o
1	AST1	1	R/W	1: Area n is designated for 3-state access
0	AST0	1	R/W	Wait state insertion in area n external space is e
				Note: $n = 7$ to 0

Rev. 6.00 Sep. 24, 2009 Page 126 of 928 REJ09B0099-0600

RENESAS

6	W70	1	R/W	These bits select the number of program wait sta area 7 in external address space is accessed wh AST7 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
5	W61	1	R/W	Area 6 Wait Control 1 and 0
4	W60	1	R/W	These bits select the number of program wait sta area 6 in external address space is accessed wh AST6 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
3	W51	1	R/W	Area 5 Wait Control 1 and 0
2	W50	1	R/W	These bits select the number of program wait sta area 5 in external address space is accessed wh AST5 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
	-			

• WCRL

		Initial		
Bit	Bit Name	Value	R/W	Description
7	W31	1	R/W	Area 3 Wait Control 1 and 0
6	W30	1	R/W	These bits select the number of program wait state area 3 in external address space is accessed while AST3 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted
5	W21	1	R/W	Area 2 Wait Control 1 and 0
4	W20	1	R/W	These bits select the number of program wait state area 2 in external address space is accessed while AST2 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted

Rev. 6.00 Sep. 24, 2009 Page 128 of 928 REJ09B0099-0600

1	W01	1	R/W	Area 0 Wait Control 1 and 0
0	W00	1	R/W	These bits select the number of program wait sta area 0 in external address space is accessed wh AST0 bit in ASTCR is set to 1.
				00: Program wait states are not inserted
				01: 1 program wait state is inserted
				10: 2 program wait states are inserted
				11: 3 program wait states are inserted

				external read cycles in different areas
				1: Idle cycle is inserted in case of consecutive ex read cycles in different areas
6	ICIS0	1	R/W	Idle Cycle Insertion 0
				Selects whether or not one idle cycle state is to a inserted between bus cycles when consecutive e read and write cycles are performed.
				0: Idle cycle is not inserted in case of consecutiv external read and write cycles
				1: Idle cycle is inserted in case of consecutive ex read and write cycles
5	BRSTRM	0	R/W	Burst ROM Enable
				Selects whether area 0 is used as a burst ROM i
				0: Area 0 is basic bus interface
				1: Area 0 is burst ROM interface
4	BRSTS1	1	R/W	Burst Cycle Select 1
				Selects the number of burst cycles for the burst linterface.
				0: Burst cycle comprises 1 state
				1: Burst cycle comprises 2 states
3	BRSTS0	0	R/W	Burst Cycle Select 0
				Selects the number of words that can be access burst ROM interface burst access.
				0: Max. 4 words in burst access
				1: Max. 8 words in burst access

Rev. 6.00 Sep. 24, 2009 Page 130 of 928 REJ09B0099-0600

		Initial		
Bit	Bit Name	Value	R/W	Description
7	BRLE	0	R/W	Bus Release Enable
				Enables or disables external bus release.
				0: External bus release is disabled. $\overline{\text{BREQ}}$ and $\overline{\text{BREQ}}$ be used as I/O ports.
				1: External bus release is enabled.
6	_	0	R/W	Reserved
				The write value should always be 0.
5	—	0	-	Reserved
				This bit is always read as 0 and cannot be modifi
4		0	R/W	Reserved
				The write value should always be 0.
3	_	1	R/W	Reserved
				The write value should always be 1.
2, 1		All 0	R/W	Reserved
				The write value should always be 0.
0	WAITE	0	R/W	WAIT Pin Enable
				Selects enabling or disabling of wait input by the
				0: Wait input by the \overline{WAIT} pin is disabled. The \overline{Wat} can be used as I/O port.
				1: Wait input by the \overline{WAIT} pin is enabled.

				BUZZ signal.
				0: Functions as PF1 input/output pins
				1: Functions as BUZZ output pins
4	_	0	R/W	Reserved
				The write value should always be 0.

Rev. 6.00 Sep. 24, 2009 Page 132 of 928 REJ09B0099-0600

- 0010: A8 and A9 output enabled. A10 to A23 output disabled.
- 0011: A8 to A10 output enabled. A11 to A23 output
- 0100: A8 to A11 output enabled. A12 to A23 output
- 0101: A8 to A12 output enabled. A13 to A23 output
- 0110: A8 to A13 output enabled. A14 to A23 output
- 0111: A8 to A14 output enabled. A15 to A23 output
- 1000: A8 to A15 output enabled. A16 to A23 output
- 1001: A8 to A16 output enabled. A17 to A23 output
- 1010: A8 to A17 output enabled. A18 to A23 outpu
- 1011: A8 to A18 output enabled. A19 to A23 output
- 1100: A8 to A19 output enabled. A20 to A23 output
- 1101: A8 to A20 output enabled. A21 to A23 output
- 1110: A8 to A21 output enabled. A22 and A23 outp disabled.
- 1111: A8 to A23 output enabled.

Renesas

Note: * Not available in this LSI.

Rev. 6.00 Sep. 24, 2009 Page 134 of 928 REJ09B0099-0600

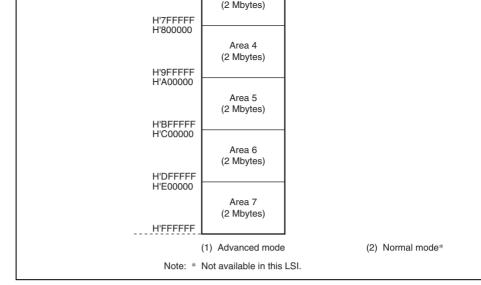


Figure 7.2 Overview of Area Divisions

7.4.2 Bus Specifications

The external address space bus specifications consist of three elements: bus width, numl access states, and number of program wait states.

The bus width and number of access states for on-chip memory and internal I/O register fixed, and are not affected by the bus controller.

Bus width: A bus width of 8 or 16 bits can be selected with ABWCR. An area for which bus is selected functions as an 8-bit access space, and an area for which a 16-bit bus is suffunctions as a 16-bit access space.

RENESAS

inter 2 state access space is acoignated, wait insertion is assuced

Number of program wait states: When 3-state access space is designated by ASTCR, the number of program wait states to be inserted automatically is selected with WCRH and W From 0 to 3 program wait states can be selected.

ABWCR	ASTCR	WCRH, WCRL		Bus Specifications (Basic Bus Interfac			
ABWn	ASTn	Wn1	Wn0	Bus Width	Number of Access States	Number of Pr Wait States	
0	0	_	_	16	2	0	
	1	0	0	_	3	0	
			1	_		1	
		1	0	-		2	
			1			3	
1	0		_	8	2	0	
	1	0	0	_	3	0	
			1	_		1	
		1	0	_		2	
			1			3	

 Table 7.2
 Bus Specifications for Each Area (Basic Bus Interface)

7.4.3 Bus Interface for Each Area

The initial state of each area is basic bus interface, 3-state access space. The initial bus we selected according to the operating mode. The bus specifications described here cover bas only, and sections 7.6, Basic Bus Interface, and 7.7, Burst ROM Interface, on each memorinterface should be referred to for further details.

Rev. 6.00 Sep. 24, 2009 Page 136 of 928 REJ09B0099-0600

RENESAS

space excluding on-chip RAM and internal I/O registers, is external address space. The RAM is enabled when the RAME bit in the system control register (SYSCR) is set to 1; RAME bit is cleared to 0, the on-chip RAM is disabled and the corresponding space bec external address space.

When external address space of area 7 is accessed, the $\overline{CS7}$ signal can be output.

Only the basic bus interface can be used for area 7.

7.4.4 Chip Select Signals

This LSI can output chip select signals ($\overline{CS0}$ to $\overline{CS7}$) to areas 0 to 7, and these signals at low respectively when the corresponding external address space area is accessed. Figure an example of \overline{CSn} (n = 0 to 7) signal output timing. Enabling or disabling of the \overline{CSn} signerformed by setting the data direction register (DDR) for the port corresponding to the \overline{CSn} pin.

In ROM-enabled extended mode, pins $\overline{CS0}$ to $\overline{CS7}$ are all placed in the input state after on reset, and so the corresponding DDR should be set to 1 when outputting signals $\overline{CS0}$ For details, see section 9, I/O Ports.

Figure 7.3 CSn Signal Output Timing (n = 0 to 7)

Rev. 6.00 Sep. 24, 2009 Page 138 of 928 REJ09B0099-0600

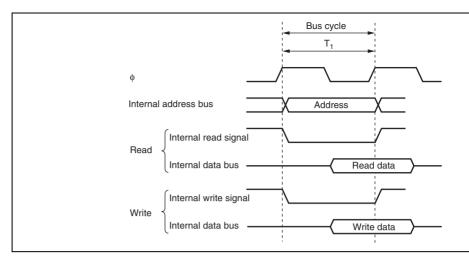


Figure 7.4 On-Chip Memory Access Cycle

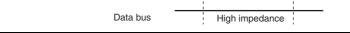


Figure 7.5 Pin States during On-Chip Memory Access

7.5.2 On-Chip Peripheral Module Access Timing

On-Chip Peripheral Module Access Timing Excluding Port H, Port J, IIC2, IEB, an HCAN: The on-chip peripheral modules are accessed in two states except for port H, por IEB, and HCAN. The data bus width is either 8 bits or 16 bits, depending on the particula I/O register being accessed. Figure 7.6 shows the access timing for the on-chip peripheral modules. Figure 7.7 shows the pin states.

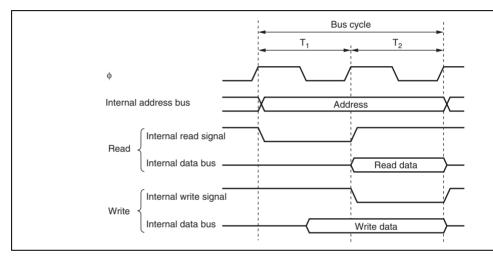


Figure 7.6 On-Chip Peripheral Module Access Cycle

Rev. 6.00 Sep. 24, 2009 Page 140 of 928 REJ09B0099-0600

Figure 7.7 Pin States during On-Chip Peripheral Module Access

On-Chip Port H, Port J, and IIC2 Module Access Timing: On-chip port H, port J, ar modules are accessed in four states. At this time, the data bus width is 8 bits. Figure 7.8 chip port H, port J, and IIC2 module access timing, and figure 7.9 shows the pin states.

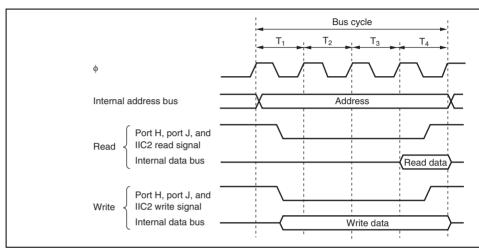


Figure 7.8 On-Chip Port H, Port J, and IIC2 Module Access Cycle

RENESAS

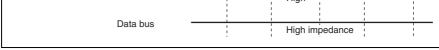


Figure 7.9 Pin States during On-Chip Port H, Port J, and IIC2 Module Acco

On-Chip IEB Module Access Timing (H8S/2552 Group Only): On-chip IEB module is accessed in four states. At this time, the data bus width is 8 bits. Figure 7.10 shows on-ch module access timing, and figure 7.11 shows the pin states.

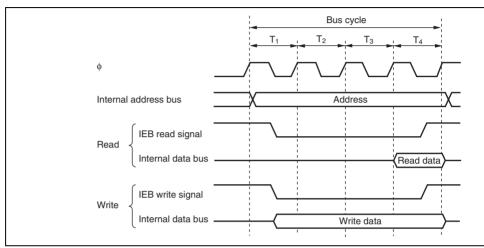
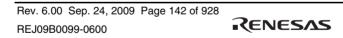



Figure 7.10 On-Chip IEB Module Access Cycle

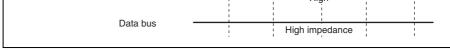


Figure 7.11 Pin States during On-Chip IEB Module Access

On-Chip HCAN Module Access Timing (H8S/2556 Group Only): On-chip HCAN m accessed in five states. At this time, the data bus width is 16 bits. Figure 7.12 shows on-HCAN module access timing, and figure 7.13 shows the pin states.

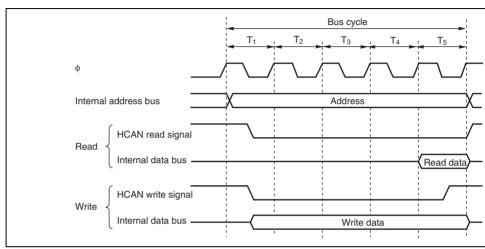


Figure 7.12 On-Chip HCAN Module Access Cycle

Rev. 6.00 Sep. 24, 2009 Pag RENESAS

REJ09

Figure 7.13 Pin States during On-Chip HCAN Module Access

7.5.3 External Address Space Access Timing

The external address space is accessed with an 8-bit or 16-bit data bus width in a two-stat three-state bus cycle. In three-state access, wait states can be inserted. For further details, section 7.6.3, Basic Timing.

Rev. 6.00 Sep. 24, 2009 Page 144 of 928 REJ09B0099-0600

SIZC.

8-Bit Access Space: Figure 7.14 illustrates data alignment control for the 8-bit access space, the upper data bus (D15 to D8) is always used for accesses. The a data that can be accessed at one time is one byte: a word transfer instruction is performe byte accesses, and a longword transfer instruction, as four-byte accesses.

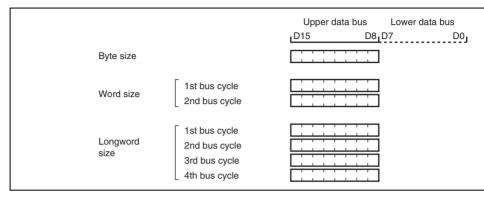


Figure 7.14 Access Sizes and Data Alignment Control (8-Bit Access Spac

16-Bit Access Space: Figure 7.15 illustrates data alignment control for the 16-bit access With the 16-bit access space, the upper data bus (D15 to D8) and lower data bus (D7 to used for accesses. The amount of data that can be accessed at one time is one byte or on and a longword transfer instruction is performed as two-word accesses.

In byte access, whether the upper or lower data bus is used is determined by whether the even or odd. The upper data bus is used for an even address, and the lower data bus for a address.

RENESAS

7.6.2 Valid Strobes

Table 7.3 shows the data buses used and valid strobes for the access spaces.

In read access, the $\overline{\text{RD}}$ signal is valid without discrimination between the upper and lower of the data bus.

In write access, the \overline{HWR} signal is valid for the upper half of the data bus, and the \overline{LWR} the lower half.

Area	Access Size	Read/ Write	Address	Valid Strobe	Upper Data Bus (D15 to D8)	Lower I (D7 to I
8-bit access space	Byte	Read	—	RD	Valid	Invalid
		Write	_	HWR	Valid	Hi-Z
16-bit access space	Byte	Read	Even	RD	Valid	Invalid
			Odd	RD	Invalid	Valid
		Write	Even	HWR	Valid	Hi-Z
			Odd	LWR	Hi-Z	Valid
	Word	Read	_	RD	Valid	Valid
		Write		HWR, LWR	Valid	Valid

Table 7.3 Data Buses Used and Valid Strobes

Legend:

Hi-Z: High impedance

Invalid: Input state; input value is ignored.

Rev. 6.00 Sep. 24, 2009 Page 146 of 928 REJ09B0099-0600

RENESAS

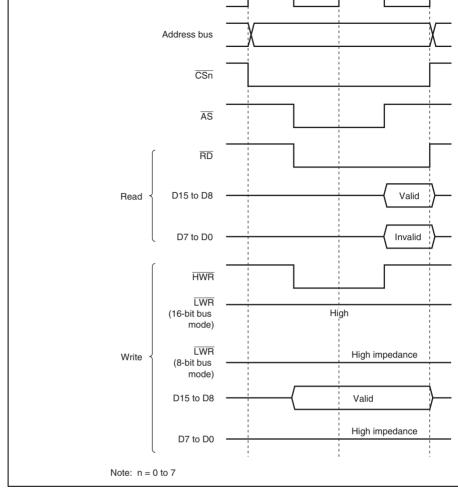
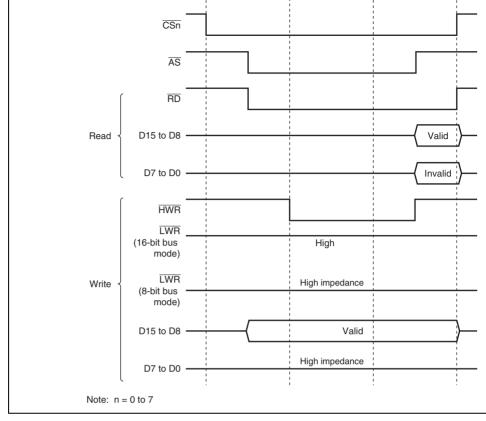
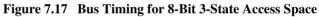




Figure 7.16 Bus Timing for 8-Bit 2-State Access Space

REJ09

Rev. 6.00 Sep. 24, 2009 Page 148 of 928 REJ09B0099-0600

RENESAS

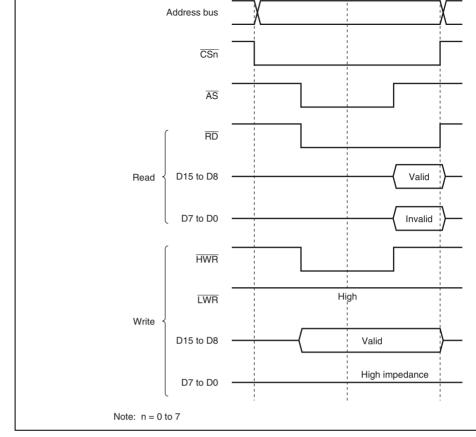


Figure 7.18 Bus Timing for 16-Bit 2-State Access Space (1) (Even Address Byte

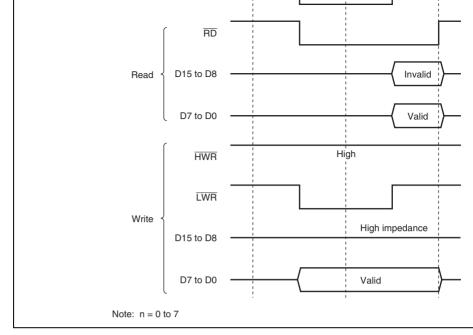
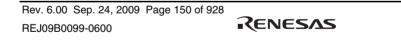



Figure 7.19 Bus Timing for 16-Bit 2-State Access Space (2) (Odd Address Byte A

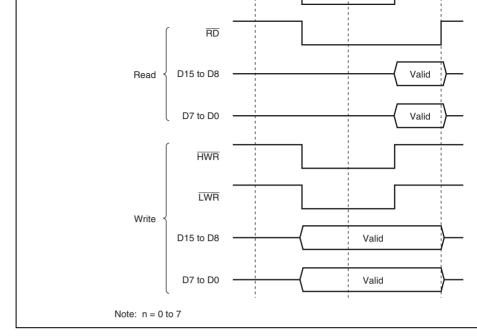


Figure 7.20 Bus Timing for 16-Bit 2-State Access Space (3) (Word Access

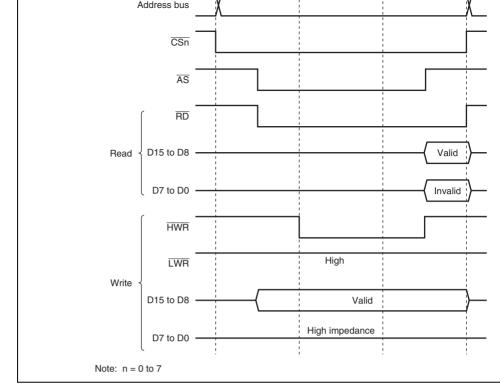
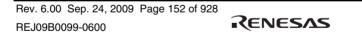



Figure 7.21 Bus Timing for 16-Bit 3-State Access Space (1) (Even Address Byte A

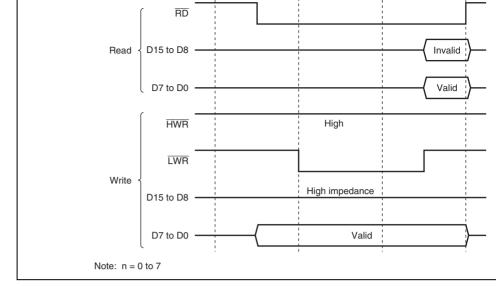


Figure 7.22 Bus Timing for 16-Bit 3-State Access Space (2) (Odd Address Byte

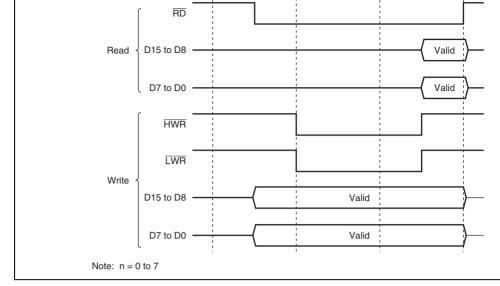


Figure 7.23 Bus Timing for 16-Bit 3-State Access Space (3) (Word Access)

Rev. 6.00 Sep. 24, 2009 Page 154 of 928 REJ09B0099-0600 carried out according to the settings of WCRH and WCRL. Then, if the \overline{WAIT} pin is low falling edge of ϕ in the last T₂ or T_w state, a T_w state is inserted. If the \overline{WAIT} pin is held states are inserted until it goes high.

Figure 7.24 shows an example of wait state insertion timing.

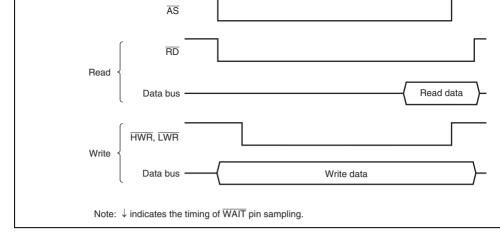


Figure 7.24 Example of Wait State Insertion Timing

Rev. 6.00 Sep. 24, 2009 Page 156 of 928 REJ09B0099-0600

7.7.1 Dasic Tilling

The number of access states in the initial cycle (full access) of the burst ROM interface is accordance with the setting of the AST0 bit in ASTCR. Also, when the AST0 bit is set t states can be inserted. One or two states can be selected for the burst cycle, according to setting of the BRSTS1 bit in BCRH. Wait states cannot be inserted. When area 0 is designed burst ROM space, it becomes 16-bit access space regardless of the setting of the ABW0 ABWCR.

When the BRSTS0 bit in BCRH is cleared to 0, burst access of up to 4 words is perform the BRSTS0 bit is set to 1, burst access of up to 8 words is performed.

The basic access timing for burst ROM space is shown in figures 7.25 and 7.26. The tim in figure 7.25 is for the case where the AST0 and BRSTS1 bits are both set to 1, and tha 7.26 is for the case where both these bits are cleared to 0.

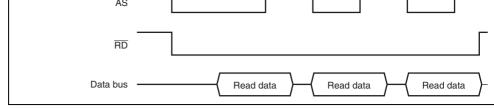


Figure 7.25 Example of Burst ROM Access Timing (When AST0 = BRSTS1 =

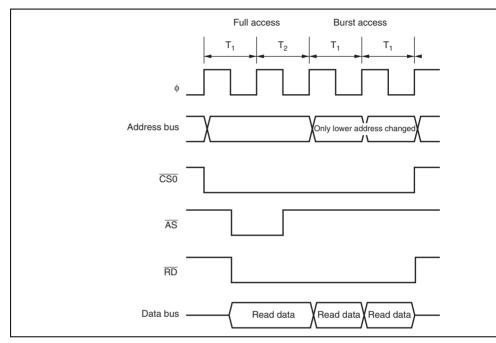


Figure 7.26 Example of Burst ROM Access Timing (When AST0 = BRSTS1 =

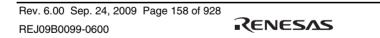


Figure 7.27 shows an example of the operation in this case. In this example, bus cycle A cycle from ROM with a long output floating time, and bus cycle B is a read cycle from S each being located in a different area. In (a), an idle cycle is not inserted, and a collision of cycle B between the read data from ROM and that from SRAM. In (b), an idle cycle is in and a data collision is prevented.

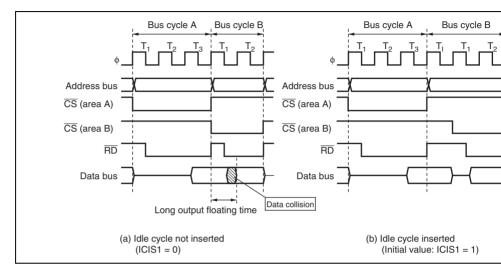
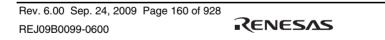



Figure 7.27 Example of Idle Cycle Operation (1)

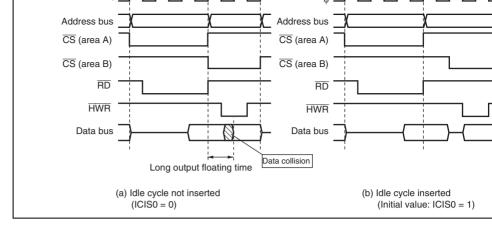


Figure 7.28 Example of Idle Cycle Operation (2)

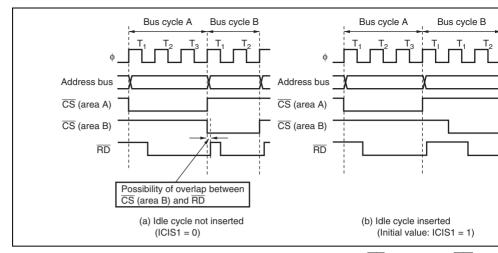


Figure 7.29 Relationship between Chip Select (\overline{CS}) and Read (\overline{RD})

Table 7.4 shows the pin states in an idle cycle.

Table 7.4Pin States in Idle Cycle

Pins	Pin State
A23 to A0	Contents of next bus cycle
D15 to D0	High impedance
CSn	High
ĀS	High
RD	High
HWR	High
LWR	High

Rev. 6.00 Sep. 24, 2009 Page 162 of 928 REJ09B0099-0600

RENESAS

In the external bus mastership released state, an internal bus master can perform accesse internal bus. When an internal bus master wants to make an external access, it temporari activation of the bus cycle, and waits for the bus mastership request from the external bus to be dropped.

When the \overline{BREQ} pin is driven high, the \overline{BACK} pin is driven high at the prescribed timin external bus mastership released state is terminated.

In the event of simultaneous external bus mastership release request and external access generation, the order of priority is as follows:

(High) External bus mastership release > Internal bus master external access (L

Table 7.5 shows the pin states in the external bus mastership released state.

Table 7.5Pin States in Bus Mastership Released State

Pins	Pin State
A23 to A0	High impedance
D15 to D0	High impedance
CSn	High impedance
ĀS	High impedance
RD	High impedance
HWR	High impedance
LWR	High impedance

RENESAS

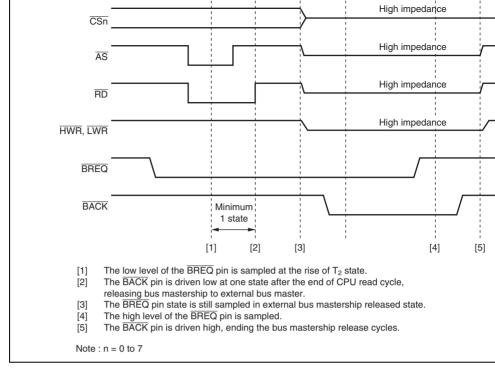


Figure 7.30 Bus Mastership Released State Transition Timing

7.9.1 Usage Note for Bus Mastership Release

When a transition to software standby mode or watch mode is made, external bus masters release function is aborted. In the state where MSTPCR is set to H'FFFFFF, and a transitis sleep mode is made, external bus mastership release function is aborted. When external bus mastership release function is used in sleep mode, MSTPCR should not be set to H'FFFF

Rev. 6.00 Sep. 24, 2009 Page 164 of 928 REJ09B0099-0600

7.10.1 Operation

The bus arbiter detects the bus masters' bus mastership request signals, and if the bus m is requested, sends a bus mastership request acknowledge signal to the bus master. If the mastership requests from more than one bus master, the bus mastership request acknowl signal is sent to the one with the highest priority. When a bus master receives the bus marequest acknowledge signal, it takes possession of the bus until that signal is canceled.

The order of priority of the bus masters is as follows:

(High) DTC > CPU (Low)

An internal bus access by an internal bus master, and external bus mastership release, ca executed in parallel.

In the event of simultaneous external bus mastership release request, and internal bus m external access request generation, the order of priority is as follows:

(High) External bus mastership release > Internal bus master external access (L

7.10.2 Bus Mastership Transfer Timing

Even if a bus mastership request is received from a bus master with a higher priority tha the bus master that has acquired the bus and is currently operating, the bus mastership is necessarily transferred immediately. There are specific times at which each bus master or relinquish the bus mastership.

CPU: The CPU is the lowest-priority bus master, and if a bus mastership request is rece the DTC, the bus arbiter transfers the bus mastership to the bus master that issued the retiming for transfer of the bus mastership is as follows:

RENESAS

information write (3 states).

7.10.3 Usage Note for External Bus Mastership Release

External bus mastership release can be performed on completion of an external bus cycle signal remains low until the end of the external bus cycle. Therefore, when external bus mastership release is performed, the \overline{CS} signal may change from the low level to the high impedance state.

7.11 Resets and the Bus Controller

In a power-on reset, this LSI, including the bus controller, enters the reset state at that point an executing bus cycle is discontinued.

In a manual reset, the bus controller's registers and internal state are maintained, and an e external bus cycle is completed. In this case, \overline{WAIT} input is ignored and write data is not guaranteed.

Rev. 6.00 Sep. 24, 2009 Page 166 of 928 REJ09B0099-0600

8.1 Features

- Transfer is possible over any number of channels
 - One activation source can trigger a number of data transfers (chain transfer)
- Three transfer modes
 - Normal, repeat, and block transfer modes are available
- The direct specification of 16-Mbyte address space is possible
- Transfer can be set in byte or word units
- A CPU interrupt can be requested for the interrupt that activated the DTC
- Activation by software is possible
- Module stop mode can be set

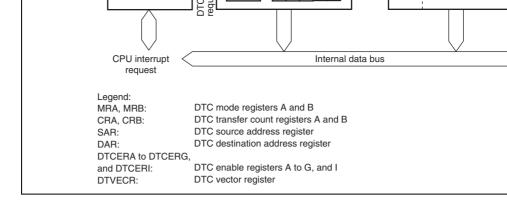


Figure 8.1 Block Diagram of DTC

Rev. 6.00 Sep. 24, 2009 Page 168 of 928 REJ09B0099-0600

These six registers cannot be directly accessed from the CPU. When activated, the DTC set of register information that is stored in on-chip RAM and transfers data to the corres DTC registers. After the data transfer, it writes a set of updated register inform ation bac RAM.

- DTC enable registers A to G, and I (DTCERA to DTCERG, and DTCERI)
- DTC vector register (DTVECR)

			(by +1 when $Sz = 0$; by +2 when $Sz = 1$)
_			11: SAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)
5	DM1	Undefined —	Destination Address Mode 1 and 0
4	DM0	Undefined —	These bits specify a DAR operation after a data
			0X: DAR is fixed
			10: DAR is incremented after a transfer (by +1 when Sz = 0; by +2 when Sz = 1)
			11: DAR is decremented after a transfer (by -1 when Sz = 0; by -2 when Sz = 1)
3	MD1	Undefined —	DTC Mode 1 and 0
2	MD0	Undefined —	These bits specify the DTC transfer mode.
			00: Normal mode
			01: Repeat mode
			10: Block transfer mode
			11:—
1	DTS	Undefined —	DTC Transfer Mode Select
			Specifies whether the source side or the destin is set to be a repeat area or block area, in repe or block transfer mode.
			0: Destination side is repeat area or block area
			1: Source side is repeat area or block area
_			

Rev. 6.00 Sep. 24, 2009 Page 170 of 928 REJ09B0099-0600

0.2.2 DIC WOULD Register D (WIND)

MRB is an 8-bit register that selects the DTC operating mode.

Bit	Bit Name	Initial Value	R/W	Description
7	CHNE	Undefined	_	DTC Chain Transfer Enable
				This bit specifies a chain transfer. For details, section 8.5.4, Chain Transfer.
				In data transfer with CHNE set to 1, determina end of the specified number of transfers, clear interrupt source flag, and clearing of DTCER, a performed.
				0: DTC data transfer completed (waiting for sta
				1: DTC data transfer (reads new register inform and transfers data)
6	DISEL	Undefined	_	DTC Interrupt Select
				This bit specifies whether CPU interrupt is disa enabled after a data transfer.
				0: Interrupt request is issued to the CPU when specified data transfer is completed. (The D the interrupt request flag that causes the ac
				1: The DTC issues interrupt request to the CP data transfer. (The DTC does not clear the request flag that causes the activation.)
5 to 0	_	Undefined	_	Reserved
				These bits have no effect on the DTC operation write value should always be 0.

0.2.5 DIC Hansler Count Register A (CRA)

CRA is a 16-bit register that designates the number of times that data is transferred by the

In normal mode, the entire CRA functions as a 16-bit transfer counter (1 to 65536). It is decremented by 1 every time data is transferred, and transfer ends when the count reached

In repeat mode or block transfer mode, the CRA is divided into two parts; the upper 8 bits (CRAH) and the lower 8 bits (CRAL). In repeat mode, CRAH holds the number of transfer CRAL functions as an 8-bit transfer counter (1 to 256). In block transfer mode, CRAH holds block size while CRAL functions as an 8-bit block size counter (1 to 256). CRAL is decred by 1 every time data is transferred, and the contents of CRAH are sent when the count reach H'00. These operations are repeated.

8.2.6 DTC Transfer Count Register B (CRB)

CRB is a 16-bit register that designates the number of times that data is transferred by the block transfer mode. It functions as a 16-bit transfer counter (1 to 65536) that is decrement every time data is transferred, and transfer ends when the count reaches H'0000.

8.2.7 DTC Enable Registers A to G, and I (DTCERA to DTCERG, and DTCER

DTCER is a set of registers to specify the DTC activation interrupt source, and comprised registers; DTCERA to DTCERG, and DTCERI. The correspondence between interrupt so and DTCE bits, and vector numbers generated by the interrupt controller are shown in tab For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR for read writing. When multiple activation sources are to be set at one time, only at the initial setti writing data is enabled after executing a dummy read on the relevant register with all the being masked.

Rev. 6.00 Sep. 24, 2009 Page 172 of 928 REJ09B0099-0600

[Retaining condition]

 When the DISEL bit is 0 and the specified nur transfers have not been completed

(n = A to G, and I)

8.2.8 DTC Vector Register (DTVECR)

DTVECR is an 8-bit readable/writable register that enables or disables DTC activation be software, and sets a vector number for the software activation interrupt.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	SWDTE	0	R/W	DTC Software Activation Enable
				Enables or disables the DTC software activation
				0: Disables the DTC software activation.
				1: Enables the DTC software activation.
				[Clearing conditions]
				 When the DISEL bit is 0 and the specified nur transfers have not ended
				 When 0 is written after a software-activated data transfer end interrupt (SWDTEND) request has sent to the CPU
				[Retaining conditions]
				• When the DISEL bit is 1 and data transfer has
				• When the specified number of transfers have
				• When the software-activated data transfer is in

8.3 Activation Sources

The DTC operates when activated by an interrupt request or by a write to DTVECR by so An activation interrupt request is specified by DTCER. When the corresponding bit is set becomes DTC activation source and when it is cleared to 0, it becomes CPU interrupt sou the end of a data transfer (or the last consecutive transfer in the case of chain transfer), the interrupt flag of activation source or corresponding DTCER bit is cleared. Table 8.1 show relationship between the activation source and DTCER clearing. The activation source flac case of RXI0, for example, is the RDRF flag in SCI_0.

Since there are a number of DTC activation sources, transferring the last byte (or word) d clear the flag of its activation source. Take appropriate steps at each interrupt processing.

When an interrupt has been designated as a DTC activation source, the existing CPU mas and interrupt controller priorities have no effect. If there are more than one activation sour the same time, the DTC operates in accordance with the default priority of the interrupt so

Figure 8.2 shows a block diagram of the DTC activation source control. For details, see s Interrupt Controller.

Rev. 6.00 Sep. 24, 2009 Page 174 of 928 REJ09B0099-0600

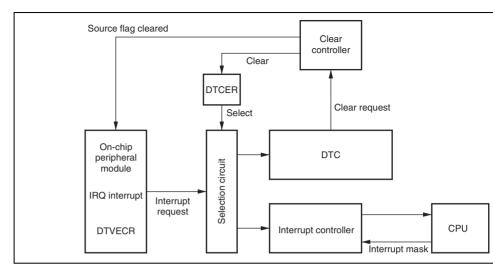


Figure 8.2 Block Diagram of DTC Activation Source Control

information from the vector address set for each activation source, and then reads the reginformation from that start address.

When the DTC is activated by software, the vector address is obtained from: $H'0400 + (DTVECR[6:0] \times 2)$. For example, if DTVECR is H'10, the vector address is H'0420.

The configuration of the vector address is the same in both normal* and advanced modes unit being used in both cases. These two bytes specify the lower bits of the register inforr start address.

Note: Normal mode is not supported in this LSI.

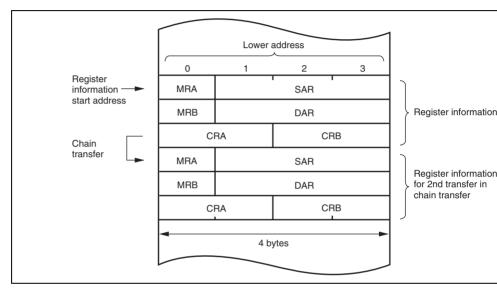


Figure 8.3 Location of DTC Register Information in Address Space

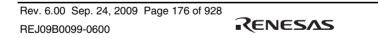


Figure 8.4 Correspondence between DTC Vector Address and Register Inform

L

	1104	20	110420	DICEAS
	IRQ5	21	H'042A	DTCEA2
	IRQ6	22	H'042C	DTCEA1
	IRQ7	23	H'042E	DTCEA0
A/D converter	ADI (A/D conversion end)	28	H'0438	DTCEB6
TPU	TGI0A	32	H'0440	DTCEB5
channel 0	TGI0B	33	H'0442	DTCEB4
	TGI0C	34	H'0444	DTCEB3
	TGI0D	35	H'0446	DTCEB2
TPU	TGI1A	40	H'0450	DTCEB1
channel 1	TGI1B	41	H'0452	DTCEB0
TPU	TGI2A	44	H'0458	DTCEC7
channel 2	TGI2B	45	H'045A	DTCEC6
TPU	TGI3A	48	H'0460	DTCEC5
channel 3	TGI3B	49	H'0462	DTCEC4
	TGI3C	50	H'0464	DTCEC3
	TGI3D	51	H'0466	DTCEC2
TPU	TGI4A	56	H'0470	DTCEC1
channel 4	TGI4B	57	H'0472	DTCEC0
TPU	TGI5A	60	H'0478	DTCED5
channel 5	TGI5B	61	H'047A	DTCED4
8-bit timer	CMIA0	64	H'0480	DTCED3
channel 0	CMIB0	65	H'0482	DTCED2

Rev. 6.00 Sep. 24, 2009 Page 178 of 928 REJ09B0099-0600

RENESAS

	IAL	50	110404	DIOLIO
8-bit timer	CMIA2	92	H'04B8	DTCEF5
channel 2	CMIB2	93	H'04BA	DTCEF4
8-bit timer	CMIA3	96	H'04C0	DTCEF3
channel 3	CMIB3	97	H'04C2	DTCEF2
IEB	IERxI	105	H'04D2	DTCEG6
(H8S/2552 Group only)	IETxl	106	H'04D4	DTCEG5
HCAN (H8S/2556 Group only)	RM0	109	H'04DA	DTCEG2
SCI	RXI3	121	H'04F2	DTCEI7
channel 3	TXI3	122	H'04F4	DTCEI6
SCI	RXI4	125	H'04FA	DTCEI5
channel 4	TXI4	126	H'04FC	DTCEI4

Note: * The DTCE bits with no corresponding interrupt are reserved, and should be v 0.

RENESAS

The 24-bit SAR designates the DTC transfer source address, and the 24-bit DAR designat transfer destination address. After each transfer, SAR and DAR are independently incremented, or left fixed depending on its register information.

Figure 8.5 shows the flowchart of DTC operation.

Rev. 6.00 Sep. 24, 2009 Page 180 of 928 REJ09B0099-0600

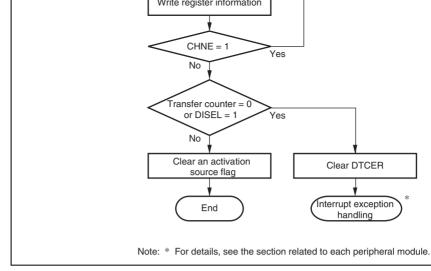


Figure 8.5 Flowchart of DTC Operation

8.5.1 Normal Mode

In normal mode, one operation transfers one byte or one word of data.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have completed, a CPU interrupt can be requested.

Table 8.3 lists the register function in normal mode. Figure 8.6 shows the memory mapp normal mode.

Renesas

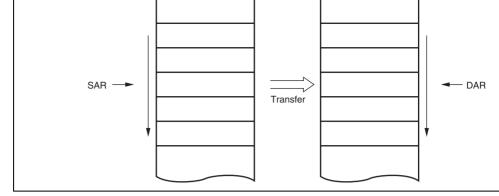


Figure 8.6 Memory Mapping in Normal Mode

8.5.2 Repeat Mode

In repeat mode, one operation transfers one byte or one word of data.

From 1 to 256 transfers can be specified. Once the specified number of transfers have end initial state of the transfer counter and the address register specified as the repeat area is r and transfer is repeated. In repeat mode, the transfer counter value does not reach H'00, a therefore CPU interrupts cannot be requested when DISEL = 0.

Table 8.4 lists the register function in repeat mode. Figure 8.7 shows the memory mappin repeat mode.

Rev. 6.00 Sep. 24, 2009 Page 182 of 928 REJ09B0099-0600

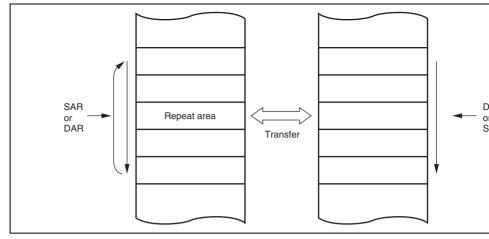


Figure 8.7 Memory Mapping in Repeat Mode

8.5.3 Block Transfer Mode

In block transfer mode, one operation transfers one block of data. Either the transfer sou transfer destination is designated as a block area.

The block size can be between 1 to 256. When the transfer of one block ends, the initial the block size counter and the address register specified as the block area is restored. Th address register is then incremented, decremented, or left fixed depending on its register information.

From 1 to 65,536 transfers can be specified. Once the specified numbers of transfers hav completed, a CPU interrupt is requested.

RENESAS

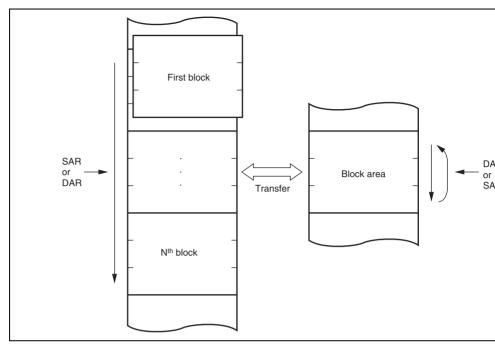
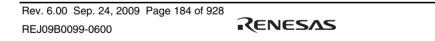



Figure 8.8 Memory Mapping in Block Transfer Mode

bit is cleared to 0.

In the case of transfer with CHNE set to 1, an interrupt request to the CPU is not general end of the specified number of transfers or by setting of the DISEL bit to 1, and the interrequest flag for the activation source is not affected.

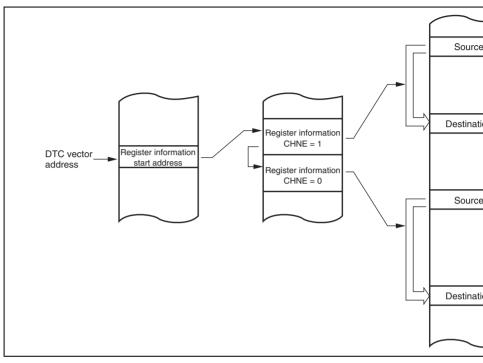


Figure 8.9 Chain Transfer Operation

generated after the end of data transfer. The interrupt handling routine will then clear the bit to 0.

When the DTC is activated by software, an SWDTEND interrupt is not generated during transfer wait or during data transfer even if the SWDTE bit is set to 1.

8.5.6 Operation Timing

Figures 8.10 to 8.12 show the DTC operation timing.

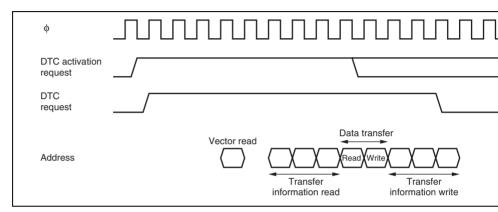
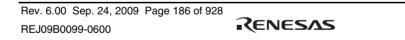



Figure 8.10 DTC Operation Timing (Example in Normal Mode or Repeat Mo

intonnation white

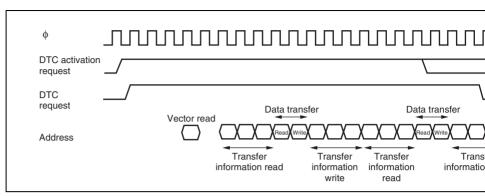


Figure 8.12 DTC Operation Timing (Example of Chain Transfer)

8.5.7 Number of DTC Execution States

Table 8.6 lists execution status for a single DTC data transfer, and table 8.7 lists the num states required for each execution status.

				Inte	ernal I/O F	Regist	ers			
Object to I	be Accessed	On- Chip RAM	On- Chip ROM	IEB* ¹	HCAN* ²	Othe than and I	IEB	Exte	rnal Devi	ices
Bus width		32	16	8	16	8	16	8	8	16
Access sta	1	1	4	5	2	2	2	3	2	
Execution	Vector read S ₁	_	1	_	_	_	_	4	6 + 2m	2
Status	Register information read/write S _J	1		_	_		_	_		—
	Byte data read S_{κ}	1	1	4	5	2	2	2	3 + m	2
	Word data read $S_{\!\scriptscriptstyle K}$	1	1	_	5	4	2	4	6 + 2m	2
	Byte data write S_{L}	1	1	4	5	2	2	2	3 + m	2
	Word data write S_{L}	1	1	_	5	4	2	4	6 + 2m	2
	Internal operation S_{M}	1	1	1	1	1	1	1	1	1

Table 8.7 Number of States Required for Each Execution Status

Legend:

m: The number of wait states for accessing external devices.

Notes: 1. H8S/2552 Group only.

2. H8S/2556 Group only.

The number of execution states is calculated from using the formula below. Note that Σ is of all transfers activated by one activation source (the number in which the CHNE bit is s plus 1).

Number of execution states = $I \cdot S_1 + \Sigma (J \cdot S_1 + K \cdot S_K + L \cdot S_L) + M \cdot S_M$

Rev. 6.00 Sep. 24, 2009 Page 188 of 928 REJ09B0099-0600

RENESAS

- 1. Set the hird i, hirdb, shird, brind, ere i, the ereb register information in on empire
- 2. Set the start address of the register information in the DTC vector address.
- 3. Set the corresponding bit in DTCER to 1.
- 4. Set the enable bits for the interrupt sources to be used as the activation sources to 1. is activated when an interrupt used as an activation source is generated.
- 5. After one data transfer has been completed, or after the specified number of data trabeen completed, the DTCE bit is cleared to 0 and a CPU interrupt is requested. If the to continue transferring data, set the DTCE bit to 1.

8.6.2 Activation by Software

The procedure for using the DTC with software activation is as follows:

- 1. Set the MRA, MRB, SAR, DAR, CRA, and CRB register information in on-chip R.
- 2. Set the start address of the register information in the DTC vector address.
- 3. Check that the SWDTE bit is 0.
- 4. Write 1 to SWDTE bit and the vector number to DTVECR.
- 5. Check the vector number written to DTVECR.
- 6. After one data transfer has been completed, if the DISEL bit is 0 and a CPU interrup requested, the SWDTE bit is cleared to 0. If the DTC is to continue transferring data SWDTE bit to 1. When the DISEL bit is 1, or after the specified number of data transferred to the SWDTE bit is held at 1 and a CPU interrupt is requested.

- be received in, and CRA sets 128 (H 0080). CRB can be set to any value.
- 2. Set the start address of the register information in the DTC vector address.
- 3. Set the corresponding bit in DTCER to 1.
- 4. Set the SCI to the appropriate receive mode. Set the RIE bit in SCR to 1 to enable the reception complete (RXI) interrupt. Since the generation of a receive error during the reception operation will disable subsequent reception, the CPU should be enabled to receive error interrupts.
- 5. Each time the reception of one byte of data has been completed on the SCI, the RDR SSR is set to 1, an RXI interrupt is generated, and the DTC is activated. The receive transferred from RDR to RAM by the DTC. DAR is incremented and CRA is decrem The RDRF flag is automatically cleared to 0.
- 6. When CRA becomes 0 after the 128 data transfers have been completed, the RDRF f held at 1, the DTCE bit is cleared to 0, and an RXI interrupt request is sent to the CP interrupt handling routine will perform wrap-up processing.

8.7.2 Software Activation

An example is shown in which the DTC is used to transfer a block of 128 bytes of data by of software activation. The transfer source address is H'1000 and the transfer destination H'2000. The vector number is H'60, so the vector address is H'04C0.

- MRA sets the source address increment (SM1 = 1, SM0 = 0), destination address inc (DM1 = 1, DM0 = 0), block transfer mode (MD1 = 1, MD0 = 0), and byte size (Sz = DTS bit can be set to any value. MRB performs one block transfer by one interrupt (0). SAR sets the transfer source address (H'1000), DAR sets the transfer destination a (H'2000), and CRA sets 128 (H'8080). CRB sets 1 (H'0001).
- 2. Set the start address of the register information at the DTC vector address (H'04C0).

Rev. 6.00 Sep. 24, 2009 Page 190 of 928 REJ09B0099-0600

the SWDTE bit to 0 and perform other wrap-up processing.

8.8 Usage Notes

8.8.1 Module Stop Mode Setting

The DTC operation can be disabled or enabled using the module stop control register. T setting is for the DTC operation to be enabled. Register access is disabled by setting mo mode. Module stop mode cannot be set during the DTC operation. For details, see section Power-Down Modes.

8.8.2 On-Chip RAM

The MRA, MRB, SAR, DAR, CRA, and CRB registers are all located in on-chip RAM. DTC is used, the RAME bit in SYSCR should not be cleared to 0.

8.8.3 DTCE Bit Setting

For DTCE bit setting, use bit manipulation instructions such as BSET and BCLR for rea writing. When multiple activation sources are to be set at one time, only at the initial set writing data is enabled after executing a dummy read on the relevant register with all the being masked.

Rev. 6.00 Sep. 24, 2009 Page 192 of 928 REJ09B0099-0600

Ports 3 and A include an open-drain control register (ODR) that controls the on/off state output buffer PMOS.

All the I/O ports can drive a single TTL load and a 30 pF capacitive load.

The P34 and P35 pins on port 3 are NMOS push pull outputs.

The \overline{IRQ} pin is a schmitt trigger input.

		PTI/HOCB0		
_		P10/TIOCA0		
Port 2	General I/O port	P27/TIOCB5		
	also functioning as TPU I/O pins	P26/TIOCA5		
		P25/TIOCB4		
		P24/TIOCA4		
		P23/TIOCD3		
		P22/TIOCC3		
		P21/TIOCB3		
		P20/TIOCA3		
Port 3	General I/O port	P37/TxD4		Open dra
	also functioning as I ² C bus	P36/RxD4		enabled
	interface 2 I/O	P35/SCK1/SCK4/SCL0/IRQ5		Schmitt t
pii	pins, SCI I/O	P34/RxD1/SDA0		input (IRQ5, IF NMOS pi output (P SCK1, Si
	pins, and interrupt input pins	P33/TxD1/SCL1		
		P32/SCK0/SDA1/IRQ4		
		P31/RxD0		
		P30/TxD0		

Rev. 6.00 Sep. 24, 2009 Page 194 of 928 REJ09B0099-0600

Port 5	General I/O port also functioning as SCI I/O pins	P51/RxD2	
		P50/TxD2	
Port 7	General I/O port	P77/TxD3	
	also functioning as SCI I/O pins,	P76/RxD3	
	TMR I/O pins,	P75/TMO3/SCK3	
	bus control	P74/TMO2/MRES	
	output pins, and manual reset	P73/TMO1/CS7	P73/TMO1
	input pins	P72/TMO0/CS6	P72/TMO0
		P71/TMRI23/TMCI23/CS5	P71/TMRI23/TMCI23
		P70/TMRI01/TMCI01/CS4	P70/TMRI0/TMCI01
Port 9	General input	P97/AN15/DA1	
	port also functioning as	P96/AN14/DA0	
	A/D converter	P95/AN13	
	analog input	P94/AN12	
	and D/A converter	P93/AN11	
	analog output	P92/AN10	
	pins	P91/AN9	
		P90/AN8	

RENESAS

Port B	General I/O port	PB7/A15	PB7	Built-in ir
	also functioning as address	PB6/A14	PB6	up MOS
	output pins	PB5/A13	PB5	
		PB4/A12	PB4	
		PB3/A11	PB3	
		PB2/A10	PB2	
		PB1/A9	PB1	
		PB0/A8	PB0	
Port C	General I/O port	PC7/A7	PC7	Built-in ir
	also functioning	PC6/A6	PC6	up MOS
	as address output pins	PC5/A5	PC5	
		PC4/A4	PC4	
		PC3/A3	PC3	
		PC2/A2	PC2	
		PC1/A1	PC1	
		PC0/A0	PC0	
Port D	General I/O port	D15	PD7	Built-in ir
	also functioning	D14	PD6	up MOS
	as data I/O pins	D13	PD5	
		D12	PD4	
		D11	PD3	
		D10	PD2	
		D9	PD1	
		D8	PD0	

Rev. 6.00 Sep. 24, 2009 Page 196 of 928

REJ09B0099-0600

RENESAS

Port F	General I/O port	PF7/¢	PF7/¢	Schmitt
	also functioning as system clock output pins,	ĀS	PF6	input (IRQ3, I
		RD	PF5	(11020, 1
	interrupt input	HWR	PF4	
	pins, bus control I/O pins, A/D	PF3/LWR/ADTRG/IRQ3	PF3/ADTRG/IRQ3	
	converter input	PF2/WAIT	PF2	
	pins, and BUZZ	PF1/BACK/BUZZ	PF1/BUZZ	
	output pins	PF0/BREQ/IRQ2	PF0/IRQ2	
Port G	General I/O port	PG4/CS0	PG4	Schmitt
	also functioning	PG3/Rx*1/CS1*2	PG3/Rx ^{*1*2}	input
	as bus control output pins,	PG2/Tx*1/CS2*2	PG2/Tx ^{*1*2}	(IRQ7, I
	interrupt input	PG1/CS3/IRQ7	PG1/IRQ7	
	pins, and IEB I/O pins*1	PG0/IRQ6	PG0/IRQ6	
Port H	General I/O port	PH7		
		PH6		
		PH5		
		PH4		
		PH3		
		PH2		
		PH1		
		PH0		

Notes: 1. The \overline{Rx} and \overline{Tx} of IEB are valid only in the H8S/2552 Group.

2. The PG3/Rx/CS1 and PG2/Tx/CS2 pins are not available in the H8S/2556 Gro

Rev. 6.00 Sep. 24, 2009 Page 198 of 928 REJ09B0099-0600

PIDDR specifies input or output of the port 1 pins using the individual bits. PIDDR car read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	P17DDR	0	W	When a pin is specified as a general purpo
6	P16DDR	0	W	port, setting this bit to 1 makes the corresp port 1 pin an output pin. Clearing this bit to
5	P15DDR	0	W	the pin an input pin.
4	P14DDR	0	W	
3	P13DDR	0	W	
2	P12DDR	0	W	
1	P11DDR	0	W	
0	P10DDR	0	W	

RENESAS

2	P12DR	0	R/W	
1	P11DR	0	R/W	
0	P10DR	0	R/W	

9.1.3 Port 1 Register (PORT1)

PORT1 shows port 1 pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P17	*	R	If a port 1 read is performed while P1DDR
6	P16	*	R	set to 1, the P1DR values are read. If a por is performed while P1DDR bits are cleared
5	P15	*	R	pin states are read.
4	P14	*	R	
3	P13	*	R	
2	P12	*	R	
1	P11	*	R	
0	P10	*	R	

Note: * Determined by the states of pins P17 to P10.

9.1.4 Pin Functions

Port 1 pins also function as TPU I/O pins and interrupt input pins. Port 1 pin functions are below.

Rev. 6.00 Sep. 24, 2009 Page 200 of 928 REJ09B0099-0600

RENESAS

- This pin functions as TIOCB2 input when TPU channel 2 timer operating moc normal operation or phase counting mode and IOB3 in TIOR_2 is set to 1.
- This pin functions as TCLKD input when TPSC2 to TPSC0 in TCR_0 or TCR to 111. This pin also functions as TCLKD input when channel 2 or 4 is set to counting mode.

• P16/TIOCA2/IRQ1

The pin function is switched as shown below according to the combination of the TF 2 setting and the P16DDR bit.

TPU Channel 2 Setting* ¹	Output	Input or Initial Value		
P16DDR	_	0	1	
Pin function	TIOCA2 output	P16 input	P16 o	
		TIOCA2	TIOCA2 input* ²	
		IRQ1 input*3		

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (

- 2. This pin functions as TIOCA2 input when TPU channel 2 timer operating moc normal operation or phase counting mode and IOA3 in TIOR_2 is set to 1.
- 3. When this pin is used as an external interrupt pin, do not specify other function

- Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (TI
 - 2. This pin functions as TIOCB1 input when TPU channel 1 timer operating mode normal operation or phase counting mode and IOB3 to IOB0 in TIOR_1 are se
 - This pin functions as TCLKC input when TPSC2 to TPSC0 in TCR_0 or TCR_1 to 110, or when TPSC2 to TPSC0 in TCR_4 or TCR_5 are set to 101. This pin functions as TCLKC input when channel 2 or 4 is set to phase counting mode.
- P14/TIOCA1/IRQ0

The pin function is switched as shown below according to the combination of the TPU 1 setting and the P14DDR bit.

TPU Channel 1 Setting*1	Output	Input or Initial Value		
P14DDR	—	0	1	
Pin function	TIOCA1 output	P14 input	P14 ou	
		TIOCA	TIOCA1 input* ²	
		IRQ0 input*3		

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (TI

- 2. This pin functions as TIOCA1 input when TPU channel 1 timer operating mode normal operation or phase counting mode and IOA3 to IOA0 in TIOR_1 are se
- 3. When this pin is used as an external interrupt pin, do not specify other function

Rev. 6.00 Sep. 24, 2009 Page 202 of 928 REJ09B0099-0600

- This pin functions as TIOCD0 input when TPU channel 0 timer operating more normal operation and IOD3 to IOD0 in TIORL_0 are set to 10xx.
- This pin functions as TCLKB input when TPSC2 to TPSC0 are set to 101 in a TCR_0, TCR_1, and TCR_2. This pin also functions as TCLKB input when cl 5 is set to phase counting mode.

• P12/TIOCC0/TCLKA

The pin function is switched as shown below according to the combination of the TH 0 setting, the TPSC2 to TPSC0 bits in TCR_0, TCR_1, TCR_2, TCR_3, TCR_4, or and the P12DDR bit.

TPU Channel 0 Setting* ¹	Output	Input or Initial Value	
P12DDR	—	0	1
Pin function	TIOCC0 output	P12 input	P12 c
		TIOCC0 input* ²	
		TCLKA input*3	

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (

- 2. This pin functions as TIOCC0 input when TPU channel 0 timer operating more normal operation and IOC3 to IOC0 in TIORL_0 are set to 10xx.
- This pin functions as TCLKA input when TPSC2 to TPSC0 are set to 100 in a TCR_0, TCR_1, TCR_2, TCR_3, TCR_4, and TCR_5. This pin also functions TCLKA input when channel 1 or 5 is set to phase counting mode.

• P10/TIOCA0

The pin function is switched as shown below according to the combination of the TPU 0 setting and the P10DDR bit.

TPU Channel 0 Setting*1	Output	Input or Initial Valu	
P10DDR		0	1
Pin function	TIOCA0 output	P10 input	P10 ou
		TIOCA0 input* ²	

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (TI

2. This pin functions as TIOCA0 input when TPU channel 0 timer operating mode normal operation and IOA3 to IOA0 in TIORH_0 are set to 10xx.

Rev. 6.00 Sep. 24, 2009 Page 204 of 928 REJ09B0099-0600

P2DDR specifies input or output of the port 2 pins using the individual bits. P2DDR car read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	P27DDR	0	W	When a pin is specified as a general purpo
6	P26DDR	0	W	port, setting this bit to 1 makes the corresp port 2 pin an output pin. Clearing this bit to
5	P25DDR	0	W	the pin an input pin.
4	P24DDR	0	W	
3	P23DDR	0	W	
2	P22DDR	0	W	
1	P21DDR	0	W	
0	P20DDR	0	W	

RENESAS

2	P22DR	0	R/W	
1	P21DR	0	R/W	
0	P20DR	0	R/W	

9.2.3 Port 2 Register (PORT2)

PORT2 shows port 2 pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P27	*	R	If a port 2 read is performed while P2DDR b
6	P26	*	R	set to 1, the P2DR values are read. If a port performed while P2DDR bits are cleared to
5	P25	*	R	states are read.
4	P24	*	R	
3	P23	*	R	
2	P22	*	R	
1	P21	*	R	
0	P20	*	R	

Note: * Determined by the states of pins P27 to P20.

Rev. 6.00 Sep. 24, 2009 Page 206 of 928 REJ09B0099-0600

Finitunciion	TIOCBS output	FZ7 Input	F2/0
		TIOCB	5 input*2

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (

- 2. This pin functions as TIOCB5 input when TPU channel 5 timer operating more normal operation or phase counting mode and IOB3 in TIOR_5 is set to 1.
- P26/TIOCA5

The pin function is switched as shown below according to the combination of the TF 5 setting and the P26DDR bit.

TPU Channel 5 Setting* ¹	Output	Input or In	itial Value
P26DDR		0	1
Pin function	TIOCA5 output	P26 input	P26 c
		TIOCAS	5 input*2

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (

2. This pin functions as TIOCA5 input when TPU channel 5 timer operating moc normal operation or phase counting mode and IOA3 in TIOR_5 is set to 1.

• P24/TIOCA4

The pin function is switched as shown below according to the combination of the TPU 4 setting and the P24DDR bit.

TPU Channel 4 Setting* ¹	Output	Input or In	itial Value
P24DDR		0	1
Pin function	TIOCA4 output	P24 input	P24 ou
		TIOCA4	input* ²

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (TI

2. This pin functions as TIOCA4 input when TPU channel 4 timer operating mode normal operation or phase counting mode and IOA3 to IOA0 in TIOR_4 are se

• P23/TIOCD3

The pin function is switched as shown below according to the combination of the TPU 3 setting and the P23DDR bit.

TPU Channel 3 Setting*1	Output	Input or In	itial Value
P23DDR		0	1
Pin function	TIOCD3 output	P23 input	P23 ou
		TIOCDS	3 input* ²

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (The

 This pin functions as TIOCD3 input when TPU channel 3 timer operating mode normal operation and IOD3 to IOD0 in TIORL_3 are set to 10xx.

Rev. 6.00 Sep. 24, 2009 Page 208 of 928 REJ09B0099-0600

RENESAS

• P21/TIOCB3

The pin function is switched as shown below according to the combination of the TF 3 setting and the P21DDR bit.

TPU Channel 3 Setting*1	Output	Input or Ir	nitial Value
P21DDR		0	1
Pin function	TIOCB3 output	P21 input	P21 c
		TIOCB	3 input* ²

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (

2. This pin functions as TIOCB3 input when TPU channel 3 timer operating moc normal operation and IOB3 to IOB0 in TIORH_3 are set to 10xx.

• P20/TIOCA3

The pin function is switched as shown below according to the combination of the TH 3 setting and the P20DDR bit.

TPU Channel 3 Setting*1	Output	Input or Initial Value		
P20DDR	_	0	1	
Pin function	TIOCA3 output	P20 input	P20 o	
		TIOCAS	3 input* ²	

Notes: 1. For the setting of the TPU channel, see section 10, 16-Bit Timer Pulse Unit (7

2. This pin functions as TIOCA3 input when TPU channel 3 timer operating moc normal operation and IOA3 to IOA0 in TIORH_3 are set to 10xx.

RENESAS

9.3.1 Port 3 Data Direction Register (P3DDR)

P3DDR specifies input or output of the port 3 pins using the individual bits. P3DDR cam read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access Me Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	P37DDR	0	W	When a pin is specified as a general purpos
6	P36DDR	0	W	port, setting this bit to 1 makes the correspo port 3 pin an output port. Clearing this bit to
5	P35DDR	0	W	the pin an input port. Cleaning this bit to
4	P34DDR	0	W	
3	P33DDR	0	W	
2	P32DDR	0	W	
1	P31DDR	0	W	
0	P30DDR	0	W	

Rev. 6.00 Sep. 24, 2009 Page 210 of 928 REJ09B0099-0600

2	P32DR	0	R/W	
1	P31DR	0	R/W	
0	P30DR	0	R/W	

9.3.3 Port 3 Register (PORT3)

PORT3 shows port 3 pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P37	*	R	If a port 3 read is performed while P3DDR
6	P36	*	R	set to 1, the P3DR values are read. If a po performed while P3DDR bits are cleared to
5	P35	*	R	states are read.
4	P34	*	R	
3	P33	*	R	
2	P32	*	R	
1	P31	*	R	
0	P30	*	R	

Note: * Determined by the states of pins P37 to P30.

Renesas

2	P32ODR	0	R/W	NMOS open drain outputs. When cleared to
1	P310DR	0	R/W	corresponding pins function as NMOS push
0	P30ODR	0	R/W	outputs.

9.3.5 Pin Functions

The port 3 pins also function as SCI I/O pins, I2C bus interface 2 I/O pins, and interrupt i pins.

As shown in figure 9.1, when the pin P34, P35, SCK1, SCK4, SCL0, or SDA0 type open output is used, a bus line is not affected even if the power supply for this LSI fails. Use (a open drain output when using a bus line having a state in which the power is not supplied LSI.

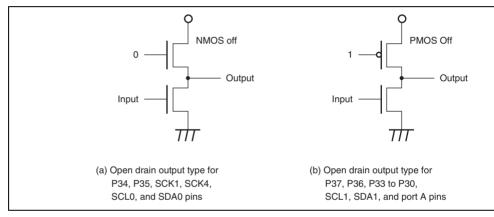
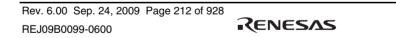



Figure 9.1 Types of Open Drain Outputs

the specification in table 24.3, Permissible Output Currents.

• P37/TxD4

The pin function is switched as shown below according to the combination of the TH SCR_4 of SCI_4 and the P37DDR bit.

TE	(0	1
P37DDR	0	1	
Pin function	P37 input	P37 output*	TxD4 oเ

Note: * When P37ODR is set to 1, this pin functions as NMOS open drain output.

• P36/RxD4

The pin function is switched as shown below according to the combination of the RE SCR_4 of SCI_4 and the P36DDR bit.

RE	(1	
P36DDR	0	1	
Pin function	P36 input	P36 output*	RxD4 i

Note: * When P36ODR is set to 1, this pin functions as NMOS open drain output.

RENESAS

P35DDR	0	1				
Pin function	P35 input	P35 output*1	SCK1/ SCK4 output* ¹	SCK1/ SCK4 output* ¹	SCK1/SCK4 input	SC
	IRQ5 input* ²					

Notes: 1. When P35ODR is set to 1, this pin functions as NMOS open drain output. Whe to 0, this pin functions as NMOS push pull output.

2. When this pin is used as an external interrupt pin, do not specify other function

• P34/RxD1/SDA0

The pin function is switched as shown below according to the combination of the ICE ICCR1_0 of IIC2_0, the RE bit in SCR_1 of SCI_1, and the P34DDR bit.

ICE		0		1
RE	0		1	
P34DDR	0	1		
Pin function	P34 input	P34 output*	RxD1 input	SDA0 inpu

Note: * When P34ODR is set to 1, this pin functions as NMOS open drain output. Whe to 0, this pin functions as NMOS push pull output.

Rev. 6.00 Sep. 24, 2009 Page 214 of 928 REJ09B0099-0600

P32/SCK0/SDA1/IRQ4

The pin function is switched as shown below according to the combination of the IC ICCR1_1 of IIC2_1, the C/A bit in SMR_0 of SCI_0, the CKE0 and CKE1 bits in S the P32DDR bit.

ICE		0				
CKE1		0				
C/A		0		1		
CKE0	0		1	_		
P32DDR	0	1	—	—		
Pin function	P32 input	P32 output* ¹	SCK0 output* ¹	SCK0 output* ¹	SCK0 input	SI
IRQ4 Input* ²						

Notes: 1. When P32ODR is set to 1, this pin functions as NMOS open drain output.

2. When this pin is used as an external interrupt pin, do not specify other function

• P31/RxD0

The pin function is switched as shown below according to the combination of the RE SCR_0 of SCI_0 and the P31DDR bit.

RE	(1	
P31DDR	0	1	—
Pin function	P31 input	P31 output*	RxD0 ir

Note: * When P31ODR is set to 1, this pin functions as NMOS open drain output.

RENESAS

Port 4 is an 8-bit input-only port and has the following register.

• Port 4 register (PORT4)

9.4.1 Port 4 Register (PORT4)

PORT4 shows port 4 pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P47	*	R	The pin states are always read when a port
6	P46	*	R	performed.
5	P45	*	R	
4	P44	*	R	
3	P43	*	R	
2	P42	*	R	
1	P41	*	R	
0	P40	*	R	

Note: * Determined by the states of pins P47 to P40.

9.4.2 Pin Functions

Port 4 pins also function as A/D converter analog input pins (AN0 to AN7).

Rev. 6.00 Sep. 24, 2009 Page 216 of 928 REJ09B0099-0600

read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	_	Undefined	—	Reserved
				These bits are always read as undefined v cannot be modified.
2	P52DDR	0	W	When a pin is specified as a general purpo
1	P51DDR	0	W	port, setting this bit to 1 makes the corresp port 5 pin an output pin. Clearing this bit to
0	P50DDR	0	W	the pin an input pin.

9.5.2 Port 5 Data Register (P5DR)

P5DR stores output data for port 5 pins.

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	—	Undefined		Reserved
				These bits are always read as undefined v cannot be modified.
2	P52DR	0	R/W	Output data for a pin is stored when the pi
1	P51DR	0	R/W	specified as a general purpose output por
0	P50DR	0	R/W	

RENESAS

0	1 50	 pin states are read.

Note: * Determined by the states of pins P52 to P50.

9.5.4 Pin Functions

Port 5 pins also function as SCI I/O pins. Port 5 pin functions are shown below.

• P52/SCK2

The pin function is switched as shown below according to the combination of the C/\overline{A} SMR_2 of SCI_2, the CKE0 and CKE1 bits in SCR_2, and the P52DDR bit.

CKE1	0					
C/Ā		0		1		
CKE0		0	1	—		
P52DDR	0	1	—	—		
Pin function	P52 input	P52 output	SCK2 output	SCK2 output	SCI	

• P51/RxD2

The pin function is switched as shown below according to the combination of the RE SCR_2 of SCI_2 and the P51DDR bit.

RE	(1	
P51DDR	0		
Pin function	P51 input	P51 output	RxD2 inp

Rev. 6.00 Sep. 24, 2009 Page 218 of 928 REJ09B0099-0600

Port 7 is an 8-bit I/O port and has the following registers.

- Port 7 data direction register (P7DDR)
- Port 7 data register (P7DR)
- Port 7 register (PORT7)

9.6.1 Port 7 Data Direction Register (P7DDR)

P7DDR specifies input or output of the port 7 pins using the individual bits. P7DDR car read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	P77DDR	0	W	When a pin is specified as a general purpo
6	P76DDR	0	W	setting this bit to 1 makes the correspondir an output pin. Clearing this bit to 0 makes t
5	P75DDR	0	W	input pin.
4	P74DDR	0	W	
3	P73DDR	0	W	
2	P72DDR	0	W	
1	P71DDR	0	W	
0	P70DDR	0	W	

RENESAS

2	P72DR	0	R/W	
1	P71DR	0	R/W	
0	P70DR	0	R/W	

9.6.3 Port 7 Register (PORT7)

PORT7 shows port 7 pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	P77	*	R	If a port 7 read is performed while P7DDR b
6	P76	*	R	set to 1, the P7DR values are read. If a port performed while P7DDR bits are cleared to
5	P75	*	R	states are read.
4	P74	*	R	
3	P73	*	R	
2	P72	*	R	
1	P71	*	R	
0	P70	*	R	

Note: * Determined by the states of pins P77 to P70.

Rev. 6.00 Sep. 24, 2009 Page 220 of 928 REJ09B0099-0600

	•	•	
Pin function	P77 input	P77 output	TxD3 ou

• P76/RxD3

The pin function is switched as shown below according to the combination of the RI SCR_3 of SCI_3 and the P76DDR bit.

RE	(1	
P76DDR	0		
Pin function	P76 input	P76 output	RxD3 ir

• P75/TMO3/SCK3

The pin function is switched as shown below according to the combination of the OS bits in TCSR_3 of TMR_3, the CKE1 and CKE0 bits in SCR_3 of SCI_3, the C/\overline{A} b SMR_3, and the P75DDR bit.

OS3 to OS0		All bits are 0				
CKE1		0				
C/Ā	0 1			—		
CKE0	0		1	—	—	
P75DDR	0	1	—	—	—	
Pin function	P75 input	P75 output	SCK3 output	SCK3 output	SCK3 input	TN

RENESAS

The pin function is switched as shown below according to the combination of the ope mode, the OS3 to OS0 bits in TCSR_1 of TMR_1, and the P73DDR bit.

Operating mode		Mode 6		Mode 7			
OS3 to OS0	All bits	s are 0	Any bit is 1	All bits	s are 0	An	
P73DDR	0	1		0	1		
Pin function	P73 input	CS7 output	TMO1 output	P73 input	P73 output	ТМ	

P72/TMO0/CS6

The pin function is switched as shown below according to the combination of the ope mode, the OS3 to OS0 bits in TCSR_0 of TMR_0, and the P72DDR bit.

Operating mode	Mode 6				Mode 7	
OS3 to OS0	All bits are 0		Any bit is 1	All bits are 0		An
P72DDR	0	1	—	0	1	
Pin function	P72 input	CS6 output	TMO0 output	P72 input	P72 output	ТМ

Rev. 6.00 Sep. 24, 2009 Page 222 of 928 REJ09B0099-0600

The pin function is switched as shown below according to the combination of the op mode and the P70DDR bit.

Operating mode	Mod	Mode 7			
P70DDR	0	1	0		
Pin function	P70 input	CS4 output	P70 input	P70	
	TMRI01/TMCI01 input				

7	P97	*	R	The pin states are always read when a port
6	P96	*	R	performed.
5	P95	*	R	
4	P94	*	R	
3	P93	*	R	
2	P92	*	R	
1	P91	*	R	
0	P90	*	R	

Note: * Determined by the states of pins P97 and P90.

9.7.2 Pin Functions

Port 9 pins also function as A/D converter analog input pins (AN15 and AN8) and D/A c analog output pins (DA0 and DA1).

• P97/AN15/DA1

The pin function is switched as shown below according to the combination of the DA the DAOE1 bit in DACR of D/A converter.

DAOE1	(1		
DAE	0	1		
Pin function	P97 input	DA1 output	DA1 outp	
	AN15 input			

Rev. 6.00 Sep. 24, 2009 Page 224 of 928	
REJ09B0099-0600	Î

Pin function	P95, P94, P93, P92, P91, P90 input pin
	AN13, AN12, AN11, AN10, AN9, AN8 input

9.8.1 Port A Data Direction Register (PADDR)

PADDR specifies input or output the port A pins using the individual bits. PADDR cannor read; if it is, the read value is undefined. Since this register is a write-only register, bit-manipulation instructions should not be used when writing. See section 2.9.4, Access Me Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PA7DDR	0	W	When a pin is specified as a general purpos
6	PA6DDR	0	W	port, setting this bit to 1 makes the correspo port A pin an output pin. Clearing this bit to
5	PA5DDR	0	W	the pin an input pin.
4	PA4DDR	0	W	
3	PA3DDR	0	W	
2	PA2DDR	0	W	
1	PA1DDR	0	W	
0	PA0DDR	0	W	

Rev. 6.00 Sep. 24, 2009 Page 226 of 928 REJ09B0099-0600

2	PA2DR	0	R/W	
1	PA1DR	0	R/W	
0	PA0DR	0	R/W	

9.8.3 Port A Register (PORTA)

PORTA shows port A pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PA7	*	R	If a port A read is performed while PADDR
6	PA6	*	R	set to 1, the PADR values are read. If a po is performed while PADDR bits are cleared
5	PA5	*	R	pin states are read.
4	PA4	*	R	
3	PA3	*	R	
2	PA2	*	R	
1	PA1	*	R	
0	PA0	*	R	

Note: * Determined by the states of pins PA7 to PA0.

Renesas

2	PA2PCR	0	R/W	
1	PA1PCR	0	R/W	
0	PA0PCR	0	R/W	

9.8.5 Port A Open Drain Control Register (PAODR)

PAODR selects the output type for port A pins.

Bit	Bit Name	Initial Value	R/W	Description
7	PA7ODR	0	R/W	When these bits are set to 1, the correspond
6	PA6ODR	0	R/W	function as NMOS open drain outputs. Whe to 0, the corresponding pins function as CM
5	PA5ODR	0	R/W	outputs.
4	PA4ODR	0	R/W	
3	PA3ODR	0	R/W	
2	PA2ODR	0	R/W	
1	PA10DR	0	R/W	
0	PA0ODR	0	R/W	

Rev. 6.00 Sep. 24, 2009 Page 228 of 928 REJ09B0099-0600

FAIDDR		0	I	0	
Pin function	A23 output	PA7 input	PA7 output*	PA7 input	PA

Note: * When PA7ODR in PAODR is set to 1, this pin functions as NMOS open drain

• PA6/A22

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PA6DDR bit.

Operating mode		Мос	de 7		
AE3 to AE0	B'1111	Other tha	-	-	
PA6DDR		0	1	0	
Pin function	A22 output	PA6 input	PA6 output*	PA6 input	PA

Note: * When PA6ODR in PAODR is set to 1, this pin functions as NMOS open drain

• PA5/A21

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PA5DDR bit.

Operating mode		Mod	de 7		
AE3 to AE0	B'111x	Other tha	-	_	
PA5DDR		0	1	0	
Pin function	A21 output	PA5 input	PA5 output*	PA5 input	PA
		-		-	-

Legend:

x: Don't care

Note: * When PA5ODR in PAODR is set to 1, this pin functions as NMOS open drain

RENESAS

• PA3/A19

The pin function is switched as shown below according to the combination of the ope mode, the AE3 to AE0 bits in PFCR, and the PA3DDR bit.

Operating mode		Mode 7			
AE3 to AE0	B'11xx	Other tha	_	_	
PA3DDR		0	1	0	
Pin function	A19 output	PA3 input	PA3 output*	PA3 input	PA3

Legend:

x: Don't care

Note: * When PA3ODR in PAODR is set to 1, this pin functions as NMOS open drain of

• PA2/A18

The pin function is switched as shown below according to the combination of the ope mode, the AE3 to AE0 bits in PFCR, and the PA2DDR bit.

Operating mode	Mode 6			Mode 7	
AE3 to AE0	B'1011 or B'11xx	Other than B'1	1011 or B'11xx		_
PA2DDR		0	1	0	
Pin function	A18 output	PA2 input	PA2 output*	PA2 input	PA2

Legend:

x: Don't care

Note: * When PA2ODR in PAODR is set to 1, this pin functions as NMOS open drain

Rev. 6.00 Sep. 24, 2009 Page 230 of 928 REJ09B0099-0600

Renesas

X. Dunt care

Note: * When PA10DR in PA0DR is set to 1, this pin functions as NMOS open drain

• PA0/A16

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PA0DDR bit.

Operating mode	Mode 6			Мо	de 7
AE3 to AE0	Other than B'0xxx or B'1000	B'0xxx or B'1000		_	
PA0DDR		0	1	0	
Pin function	A16 output	PA0 input	PA0 output*	PA0 input	PA
			-		

Legend:

x: Don't care

Note: * When PA0ODR in PAODR is set to 1, this pin functions as NMOS open drain

Port input	Port	input
------------	------	-------

Legend:

OFF: Input pull-up MOS is always off.

ON/OFF: On when PADDR = 0 and PAPCR = 1; otherwise off.

9.9 Port B

Port B is an 8-bit I/O port and has the following registers.

- Port B data direction register (PBDDR)
- Port B data register (PBDR)
- Port B register (PORTB)
- Port B pull-up MOS control register (PBPCR)

Rev. 6.00 Sep. 24, 2009 Page 232 of 928 REJ09B0099-0600

5	PB5DDR	0	W	the pin an input pin.
4	PB4DDR	0	W	
3	PB3DDR	0	W	
2	PB2DDR	0	W	
1	PB1DDR	0	W	
0	PB0DDR	0	W	

9.9.2 Port B Data Register (PBDR)

PBDR stores output data for port B pins.

Bit	Bit Name	Initial Value	R/W	Description
7	PB7DR	0	R/W	Output data for a pin is stored when the pir
6	PB6DR	0	R/W	specified as a general purpose output port.
5	PB5DR	0	R/W	
4	PB4DR	0	R/W	
3	PB3DR	0	R/W	
2	PB2DR	0	R/W	
1	PB1DR	0	R/W	
0	PB0DR	0	R/W	

RENESAS

2	PB2	*	R
1	PB1	*	R
0	PB0	*	R

Note: * Determined by the states of pins PB7 to PB0.

9.9.4 Port B Pull-Up MOS Control Register (PBPCR)

PBPCR controls on/off state of the input pull-up MOS for port B pins.

Bit	Bit Name	Initial Value	R/W	Description
7	PB7PCR	0	R/W	When a pin is specified as an input port, set
6	PB6PCR	0	R/W	corresponding bit to 1 turns on the input pull for that pin.
5	PB5PCR	0	R/W	ior mat pm.
4	PB4PCR	0	R/W	
3	PB3PCR	0	R/W	
2	PB2PCR	0	R/W	
1	PB1PCR	0	R/W	
0	PB0PCR	0	R/W	

Rev. 6.00 Sep. 24, 2009 Page 234 of 928 REJ09B0099-0600

Pin function A	A15 output	PB7 input	PB7 output	PB7 input	PB7

Legend:

x: Don't care

• PB6/A14

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PB6DDR bit.

Operating mode	Mode 6			Мо	de 7
AE3 to AE0	B'0111 or B'1xxx	Other than B'	—		
PB6DDR		0	1	0	
Pin function	A14 output	PB6 input	PB6 output	PB6 input	PE

Legend:

x: Don't care

• PB4/A12

The pin function is switched as shown below according to the combination of the ope mode, the AE3 to AE0 bits in PFCR, and the PB4DDR bit.

Operating mode	Mode 6			Mod	le 7
AE3 to AE0	Other than B'0100 or B'00xx	B'0100 or B'00xx		—	
PB4DDR		0	1	0	1
Pin function	A12 output	PB4 input	PB4 output	PB4 input	PB

Legend:

x: Don't care

• PB3/A11

The pin function is switched as shown below according to the combination of the ope mode, the AE3 to AE0 bits in PFCR, and the PB3DDR bit.

Operating mode	Mode 6			Mod	de 7
AE3 to AE0	Other than B'00xx	B'00xx		—	
PB3DDR		0	1	0	1
Pin function	A11 output	PB3 input	PB3 output	PB3 input	PB

Legend:

x: Don't care

Rev. 6.00	Sep. 24, 2009	Page 236 of 928
REJ09B00	99-0600	

X. Dunt care

• PB1/A9

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PB1DDR bit.

Operating mode	Mode 6			Мос	de 7
AE3 to AE0	Other than B'000x	B'000x			
PB1DDR		0	1	0	
Pin function	A9 output	PB1 input	PB1 output	PB1 input	PE

Legend:

x: Don't care

• PB0/A8

The pin function is switched as shown below according to the combination of the op mode, the AE3 to AE0 bits in PFCR, and the PB0DDR bit.

Operating mode	Mode 6			Mode 7		
AE3 to AE0	Other than B'0000	B'0000		B'0000 —		
PB0DDR		0	1	0		
Pin function	n function A8 output		PB0 output	PB0 input	Ρ	

Legend:

x: Don't care

RENESAS

•		
Port input		

ON/OFF

Legend:

OFF: Input pull-up MOS is always off.

ON/OFF: On when PBDDR = 0 and PBPCR = 1; otherwise off.

Rev. 6.00 Sep. 24, 2009 Page 238 of 928 REJ09B0099-0600

PCDDR specifies input or output the port C pins using the individual bits. PCDDR cannifit is, the read value is undefined. Since this register is a write-only register, bit-maniput instructions should not be used when writing. See section 2.9.4, Access Method for Reg Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PC7DDR	0	W	When a pin is specified as a general purpo
6	PC6DDR	0	W	port, setting this bit to 1 makes the corresp port C pin an output pin. Clearing this bit to
5	PC5DDR	0	W	the pin an input pin.
4	PC4DDR	0	W	
3	PC3DDR	0	W	
2	PC2DDR	0	W	
1	PC1DDR	0	W	
0	PC0DDR	0	W	

Renesas

2	PC2DR	0	R/W	
1	PC1DR	0	R/W	
0	PC0DR	0	R/W	

9.10.3 Port C Register (PORTC)

PORTC shows port C pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PC7	*	R	If a port C read is performed while PCDDR I
6	PC6	*	R	set to 1, the PCDR values are read. If a port is performed while PCDDR bits are cleared
5	PC5	*	R	pin states are read.
4	PC4	*	R	
3	PC3	*	R	
2	PC2	*	R	
1	PC1	*	R	
0	PC0	*	R	

Note: * Determined by the states of pins PC7 to PC0.

Rev. 6.00 Sep. 24, 2009 Page 240 of 928 REJ09B0099-0600

2	PC2PCR	0	R/W
1	PC1PCR	0	R/W
0	PC0PCR	0	R/W

9.10.5 Pin Functions

Port C pins also function as address output pins. Port C pin functions are shown below.

• PC7/A7, PC6/A6, PC5/A5, PC4/A4, PC3/A3, PC2/A2, PC1/A1, PC0/A0

The pin function is switched as shown below according to the combination of the op mode and the PCnDDR bit.

Operating mode	Мо	de 6	Мос	de 7
PCnDDR	0	1	0	
Pin function	PCn input	Address output	PCn input	PCr
N	•			

Note: n = 7 to 0

RENESAS

1 1 ()

Port input

Legend:

OFF: Input pull-up MOS is always off.

ON/OFF: On when PCDDR = 0 and PCPCR = 1; otherwise off.

Rev. 6.00 Sep. 24, 2009 Page 242 of 928 REJ09B0099-0600

PDDDR specifies input or output the port D pins using the individual bits. PDDDR cam read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PD7DDR	0	W	When a pin is specified as a general purpo
6	PD6DDR	0	W	port, setting this bit to 1 makes the corresp port D pin an output pin. Clearing this bit to
5	PD5DDR	0	W	the pin an input pin.
4	PD4DDR	0	W	
3	PD3DDR	0	W	
2	PD2DDR	0	W	
1	PD1DDR	0	W	
0	PD0DDR	0	W	

Renesas

2	PD2DR	0	R/W	
1	PD1DR	0	R/W	
0	PD0DR	0	R/W	

9.11.3 Port D Register (PORTD)

PORTD shows port D pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PD7	*	R	If a port D read is performed while PDDDR I
6	PD6	*	R	set to 1, the PDDR values are read. If a port is performed while PDDDR bits are cleared
5	PD5	*	R	pin states are read.
4	PD4	*	R	
3	PD3	*	R	
2	PD2	*	R	
1	PD1	*	R	
0	PD0	*	R	

Note: * Determined by the states of pins PD7 to PD0.

Rev. 6.00 Sep. 24, 2009 Page 244 of 928 REJ09B0099-0600

2	PD2PCR	0	R/W
1	PD1PCR	0	R/W
0	PD0PCR	0	R/W

9.11.5 Pin Functions

Port D pins also function as data I/O pins. Port D pin functions are shown below.

• PD7/D15, PD6/D14, PD5/D13, PD4/D12, PD3/D11, PD2/D10, PD1/D9, PD0/D8

The pin function is switched as shown below according to the combination of the op mode and the PDnDDR bit.

Operating mode	Mode 6	Мос	de 7
PDnDDR		0	1
Pin function	Data input/output	PDn input	PDn o
Noto: n - 7 to 0			

Note: n = 7 to 0

port output (mode 7)	
Port input (mode 7)	ON/OFF
Legend:	

OFF: Input pull-up MOS is always off.

ON/OFF: On when PDDDR = 0 and PDPCR = 1; otherwise off.

Rev. 6.00 Sep. 24, 2009 Page 246 of 928 REJ09B0099-0600

PEDDR specifies input or output the port E pins using the individual bits. PEDDR cannot if it is, the read value is undefined. Since this register is a write-only register, bit-maniput instructions should not be used when writing. See section 2.9.4, Access Method for Reg Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PE7DDR	0	W	When a pin is specified as a general purpo
6	PE6DDR	0	W	port, setting this bit to 1 makes the corresp port E pin an output pin. Clearing this bit to
5	PE5DDR	0	W	the pin an input pin.
4	PE4DDR	0	W	
3	PE3DDR	0	W	
2	PE2DDR	0	W	
1	PE1DDR	0	W	
0	PE0DDR	0	W	

Renesas

2	PE2DR	0	R/W	
1	PE1DR	0	R/W	
0	PE0DR	0	R/W	

9.12.3 Port E Register (PORTE)

PORTE shows port E pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PE7	*	R	If a port E read is performed while PEDDR t
6	PE6	*	R	set to 1, the PEDR values are read. If a port is performed while PEDDR bits are cleared
5	PE5	*	R	pin states are read.
4	PE4	*	R	
3	PE3	*	R	
2	PE2	*	R	
1	PE1	*	R	
0	PE0	*	R	

Note: * Determined by the states of pins PE7 to PE0.

Rev. 6.00 Sep. 24, 2009 Page 248 of 928 REJ09B0099-0600

2	PE2PCR	0	R/W
1	PE1PCR	0	R/W
0	PE0PCR	0	R/W

9.12.5 Pin Functions

Port E pins also function as data I/O pins. Port E pin functions are shown below.

• PE7/D7, PE6/D6, PE5/D5, PE4/D4, PE3/D3, PE2/D2, PE1/D1, PE0/D0

The pin function is switched as shown below according to the combination of the op mode and the PEnDDR bit.

Operating mode		Мо	de 7		
Bus mode	8-bit bi	us mode	16-bit bus mode	-	_
PEnDDR	0 1		—	0	
Pin function	PEn input PEn output		Data input/output	PEn input	Ρ

Note: n = 7 to 0

RENESAS

bus in mode 6, mode 7)

Port input (8-bit bus in mode 6, mode 7)

Legend:

OFF: Input pull-up MOS is always off.

ON/OFF: On when PEDDR = 0 and PEPCR = 1; otherwise off.

Rev. 6.00 Sep. 24, 2009 Page 250 of 928 REJ09B0099-0600

ON/OFF

if it is, the read value is undefined. Since this register is a write-only register, bit-manipu instructions should not be used when writing. See section 2.9.4, Access Method for Reg Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PF7DDR	0/1*	W	When a pin is specified as a general purpo
6	PF6DDR	0	W	port, setting this bit to 1 makes the corresp port F pin an output pin. Clearing this bit to
5	PF5DDR	0	W	the pin an input pin.
4	PF4DDR	0	W	
3	PF3DDR	0	W	
2	PF2DDR	0	W	
1	PF1DDR	0	W	
0	PF0DDR	0	W	
-				

Note: * PF7DDR is initialized to 1 in mode 6 and 0 in mode 7.

Note:	* The val	ue of PF	7DR is not output on pin PI	F7 when the PF7DDR bit is set to 1
0	PF0DR	0	R/W	
1	PF1DR	0	R/W	
2	PF2DR	0	R/W	

 ϕ signal is output.

9.13.3 Port F Register (PORTF)

PORTF shows port F pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PF7	*	R	If a port F read is performed while PFDDR b
6	PF6	*	R	set to 1, the PFDR values are read. If a port
5	PF5	*	R	performed while PFDDR bits are cleared to states are read.
4	PF4	*	R	
3	PF3	*	R	
2	PF2	*	R	
1	PF1	*	R	
0	PF0	*	R	

Note: * Determined by the states of pins PF7 to PF0.

Rev. 6.00 Sep. 24, 2009 Page 252 of 928 REJ09B0099-0600

• $PF6/\overline{AS}$

The pin function is switched as shown below according to the combination of the op mode and the PF6DDR bit.

Operating mode	Mode 6	Мо	de 7
PF6DDR	_	0	1
Pin function	AS output	PF6 input	PF6 c

• PF5/RD

The pin function is switched as shown below according to the combination of the op mode and the PF5DDR bit.

Operating mode	Mode 6	Mode 7		
PF5DDR	_	0	1	
Pin function	RD output	PF5 input	PF5 o	

• PF4/HWR

The pin function is switched as shown below according to the combination of the op mode and the PF4DDR bit.

Operating mode	Mode 6	Мос	de 7
PF4DDR		0	1
Pin function	HWR output	PF4 input	PF4 o

RENESAS

			IRQ3 input* ²
Notes: 1.	When TRO	GS0 = TRGS1 = 1.	port F is used as the ADTRG input pin.

- 2. When this port is used as an external interrupt pin, do not specify other function
- PF2/WAIT

The pin function is switched as shown below according to the combination of the ope mode, the WAITE bit, and the PF2DDR bit.

Operating mode		Мос	de 7		
WAITE	()	1	_	_
PF2DDR	0	1		0	
Pin function	PF2 input	PF2 output	WAIT input	PF2 input	PF

• PF1/BACK/BUZZ

The pin function is switched as shown below according to the combination of the ope mode, the BRLE bit, the BUZZ bit in PFCR, and the PF1DDR bit.

Operating mode	Mode 6					Mode 7
BRLE		0		1		—
BUZZE	0		1	_	0	
PF1DDR	0	1	—	_	0	1
Pin function	PF1 input	PF1 output	BUZZ output	BACK output	PF1 input	PF1 output

Rev. 6.00 Sep. 24, 2009 Page 254 of 928 REJ09B0099-0600

RENESAS

9.14 Port G

Port G is a 5-bit I/O port and has the following registers.

- Port G data direction register (PGDDR)
- Port G data register (PGDR)
- Port G register (PORTG)

9.14.1 Port G Data Direction Register (PGDDR)

PGDDR specifies input or output the port G pins using the individual bits. PGDDR cam read; if it is, the read value is undefined. Since this register is a write-only register, bitmanipulation instructions should not be used when writing. See section 2.9.4, Access M Registers with Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	Undefined		Reserved
				These bits are always read as undefined vacannot be modified.
4	PG4DDR	0	W	When a pin is specified as a general purpo
3	PG3DDR*	0	W	port, setting these bits to 1 makes the corre
2	PG2DDR*	0	W	port G pin an output pin. Clearing this bit to the pin an input pin.
1	PG1DDR	0	W	
0	PG0DDR	0	W	
Note:	* Reconved	in the $H8S/255$	6 Grour	This bit is set to 0

Note: * Reserved in the H8S/2556 Group. This bit is set to 0.

RENESAS

2	PG2DR*	0	R/W
1	PG1DR	0	R/W
0	PG0DR	0	R/W

Note: * Reserved in the H8S/2556 Group. This bit is set to 0.

9.14.3 Port G Register (PORTG)

PORTG shows port G pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	Undefined	—	Reserved
				This bit is always read as undefined value a cannot be modified.
4	PG4	* ¹	R	If these bits are read while the corresponding
3	PG3* ²	* ¹	R	PGDDR bits are set to 1, the PGDR value is these bits are read while PGDDR bits are cl
2	PG2* ²	* ¹	R	0, the pin states are read.
1	PG1	* ¹	R	
0	PG0	* ¹	R	

Notes: 1. Determined by the states of pins PG4 to PG0.

2. Reserved in the H8S/2556 Group. An undefined value will be read.

Rev. 6.00 Sep. 24, 2009 Page 256 of 928 REJ09B0099-0600

	•	•	-	
Pin function	PG4 input	CS0 output	PG4 input	PG4

PG3/Rx/CS1

In the H8S/2552 and H8S/2506 Groups, the pin function is switched as shown below according to the combination of the IEE bit in IECTR of IEB*, the operating mode, PG3DDR bit. This pin is not available in the H8S/2556 Group.

IEE	0				
Operating mode	M	ode 6	Moo	de 7	
PG3DDR	0 1		0	1	
Pin function	PG3 input	CS1 output	PG3 input	PG3 output	

Note: * IEB is supported only by the H8S/2552 Group.

• PG2/Tx/CS2

In the H8S/2552 and H8S/2506 Groups, the pin function is switched as shown below according to the combination of the IEE bit in IECTR of IEB*, the operating mode, PG2DDR bit. This pin is not available in the H8S/2556 Group.

IEE		0					
Operating mode	Мос	de 6	Мос	de 7			
PG2DDR	0	1	0	1			
Pin function	PG2 input	CS2 output	PG2 input	PG2 output	T		

Note: * IEB is supported only by the H8S/2552 Group.

RENESAS

• PG0/IRQ6

The pin function is switched as shown below according to the PG0DDR bit.

PG0DDR	0	1
Pin function	PG0 input	PG0 output
	IRQ6 input*	

Note: * When this port is used as an external interrupt pin, do not specify other function

9.15 Port H

Port H is an 8-bit I/O port and has the following registers.

- Port H data direction register (PHDDR)
- Port H data register (PHDR)
- Port H register (PORTH)

Rev. 6.00 Sep. 24, 2009 Page 258 of 928 REJ09B0099-0600

5	PH5DDR	0	W	the pin an input pin.
4	PH4DDR	0	W	
3	PH3DDR	0	W	
2	PH2DDR	0	W	
1	PH1DDR	0	W	
0	PH0DDR	0	W	

9.15.2 Port H Data Register (PHDR)

PHDR stores output data for port H pins.

Bit	Bit Name	Initial Value	R/W	Description
7	PH7DR	0	R/W	Output data for a pin is stored when the pir
6	PH6DR	0	R/W	specified as a general purpose output port.
5	PH5DR	0	R/W	
4	PH4DR	0	R/W	
3	PH3DR	0	R/W	
2	PH2DR	0	R/W	
1	PH1DR	0	R/W	
0	PH0DR	0	R/W	

RENESAS

2	PH2	*	R
1	PH1	*	R
0	PH0	*	R

Note: * Determined by the states of pins PH7 to PH0.

9.15.4 Pin Functions

Port H pins also function as general purpose I/O pins. Port H pin functions are shown bel

• PH7, PH6, PH5, PH4, PH3, PH2, PH1, PH0

The pin function is switched as shown below according to the PHnDDR bit.

Pin function PHn input PHn output	PHnDDR	0	1
	Pin function	PHn input	PHn output

Note: n = 7 to 0

Rev. 6.00 Sep. 24, 2009 Page 260 of 928 REJ09B0099-0600

PJDDR specifies input or output the port J pins using the individual bits. PJDDR cannot it is, the read value is undefined. Since this register is a write-only register, bit-manipula instructions should not be used when writing. See section 2.9.4, Access Method for Reg Write-only Bits.

Bit	Bit Name	Initial Value	R/W	Description
7	PJ7DDR	0	W	When a pin is specified as a general purpo
6	PJ6DDR	0	W	port, setting this bit to 1 makes the corresp port J pin an output pin. Clearing this bit to
5	PJ5DDR	0	W	the pin an input pin.
4	PJ4DDR	0	W	
3	PJ3DDR	0	W	
2	PJ2DDR	0	W	
1	PJ1DDR	0	W	
0	PJ0DDR	0	W	

RENESAS

2	PJ2DR	0	R/W	
1	PJ1DR	0	R/W	
0	PJ0DR	0	R/W	

9.16.3 Port J Register (PORTJ)

PORTJ shows port J pin states. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7	PJ7	*	R	If a port J read is performed while PJDDR b
6	PJ6	*	R	set to 1, the PJDR values are read. If a port performed while PJDDR bits are cleared to
5	PJ5	*	R	states are read.
4	PJ4	*	R	
3	PJ3	*	R	
2	PJ2	*	R	
1	PJ1	*	R	
0	PJ0	*	R	

Note: * Determined by the states of pins PJ7 to PJ0.

Rev. 6.00 Sep. 24, 2009 Page 262 of 928 REJ09B0099-0600

, 10 1		7410		10001700
				This bit is readable/writable, but the write va should always be 0.
3	BUFGC2	0	R/W	Buffer Gain Control 2
				Controls drivability of output ports of which p supplied by $P2V_{cc}$. This bit should be set acc the voltage of $P2V_{cc}$ when a port is used as port. If the bit setting is not appropriate, it ma malfunction or characteristics described in se Electrical Characteristics cannot be satisfied power supply pin, see table 1.1.
				0: 4.5 V \leq P2V $_{cc}$ \leq 5.5 V
				1: 3.0 V \leq P2V $_{cc}$ \leq 3.6 V
2	BUFGC1	0	R/W	Buffer Gain Control 1
				Controls drivability of output ports of which p supplied by $P1V_{cc}$. This bit should be set acc the voltage of $P1V_{cc}$ when a port is used as a port. If the bit setting is not appropriate, it ma malfunction or characteristics described in se Electrical Characteristics cannot be satisfied power supply pin, see table 1.1.
				0: 4.5 V \leq P1V _{cc} \leq 5.5 V
				1: 3.0 V \leq P1V $_{cc}$ \leq 3.6 V
1, 0	—	All 0	R/W	Reserved
				These bits are readable/writable, but the writ should always be 0.

Rev. 6.00 Sep. 24, 2009 Page 264 of 928 REJ09B0099-0600

RENESAS

Port 2	
Port 3	-
Port 4	Connect each pin to AVcc (pull-up) or to AVss (pull-down) via a resistor.
Port 5	Connect each pin to P1Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port 7	Connect each pin to P2Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port 9	Connect each pin to AVcc (pull-up) or to AVss (pull-down) via a resistor.
Port A	Connect each pin to P1Vcc (pull-up) or to Vss (pull-down) via a resistor.
Port B	
Port C	-
Port D	-
Port E	-
Port F	-
Port G	-
Port H	-
Port J	-

Rev. 6.00 Sep. 24, 2009 Page 266 of 928 REJ09B0099-0600

- Selection of 8 counter input clocks for each channel
- The following operations can be set for each channel:
 - Waveform output at compare match
 - Input capture function
 - Counter clear operation
 - Synchronous operation:

Multiple timer counters (TCNT) can be written to simultaneously

Simultaneous clearing by compare match and input capture is possible

Register simultaneous input/output is possible by synchronous counter operation

- A maximum 15-phase PWM output is possible in combination with synchronous
- Buffer operation settable for channels 0 and 3
- Phase counting mode settable independently for each of channels 1, 2, 4, and 5
- Cascaded operation
- Fast access via internal 16-bit bus
- 26 interrupt sources
- Automatic transfer of register data
- A/D converter conversion start trigger can be generated
- Module stop mode can be set

(TGR)		TGRB_0	TGRB_1	TGRB_2	TGRB_3	TGRB_4	ΤĊ
General re buffer regi		TGRC_0 TGRD_0	—	—	TGRC_3 TGRD_3	—	
I/O pins		TIOCA0 TIOCB0 TIOCC0 TIOCD0	TIOCA1 TIOCB1	TIOCA2 TIOCB2	TIOCA3 TIOCB3 TIOCC3 TIOCD3	TIOCA4 TIOCB4	TI TI
Counter cl function	ear	TGR compare match or input capture	TC co ma inp ca				
Compare	0 output	0	0	0	0	0	0
match output	1 output	0	0	0	0	0	0
output	Toggle output	0	0	0	0	0	0
Input captor function	ure	0	0	0	0	0	0
Synchronous operation		0	0	0	0	0	0
PWM mod	le	0	0	0	0	0	0
Phase counting mode		_	0	0	_	0	0
Buffer ope	ration	0			0		_

Rev. 6.00 Sep. 24, 2009 Page 268 of 928 REJ09B0099-0600

monu	0.0001000		0001000		5001000	0	Jour 000		5001000	
source	 Compare match or input capture 0A 	•	Compare match or input capture 1A	•	Compare match or input capture 2A	•	Compare match or input capture 3A	•	Compare match or input capture 4A	•
	Compare match or input capture 0B	•	Compare match or input capture 1B	•	Compare match or input capture 2B	•	Compare match or input capture 3B	•	Compare match or input capture 4B	•
	 Compare match or input capture 0C Compare match or input capture 0D Overflow 	•	Overflow Underflow	•	Overflow Underflow	•	Compare match or input capture 3C Compare match or input capture 3D Overflow	•	Overflow Underflow	•
Legend										
⊖: Possible										
<u> </u>	Not possible									
•										

Renesas

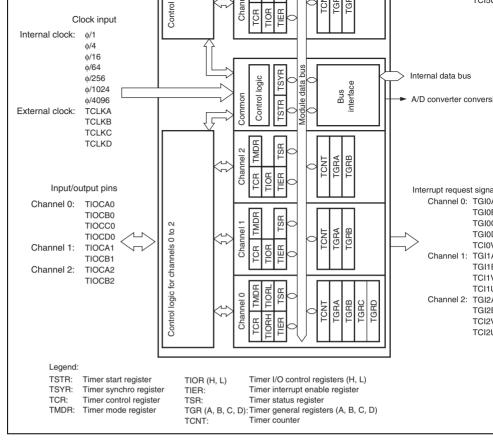


Figure 10.1 Block Diagram of TPU

Rev. 6.00 Sep. 24, 2009 Page 270 of 928 REJ09B0099-0600

RENESAS

TCLKD	Input	External clock D input pin (Channel 2 and 4 phase counting mode B phase input)
TIOCA0	I/O	TGRA_0 input capture input/output compare output/PWM output pin
TIOCB0	I/O	TGRB_0 input capture input/output compare output/PWM output pin
TIOCC0	I/O	TGRC_0 input capture input/output compare output/PWN output pin
TIOCD0	I/O	TGRD_0 input capture input/output compare output/PWN output pin
TIOCA1	I/O	TGRA_1 input capture input/output compare output/PWM output pin
TIOCB1	I/O	TGRB_1 input capture input/output compare output/PWM output pin
TIOCA2	I/O	TGRA_2 input capture input/output compare output/PWM output pin
TIOCB2	I/O	TGRB_2 input capture input/output compare output/PWM output pin
TIOCA3	I/O	TGRA_3 input capture input/output compare output/PWM output pin
TIOCB3	I/O	TGRB_3 input capture input/output compare output/PWM output pin
TIOCC3	I/O	TGRC_3 input capture input/output compare output/PWN output pin
TIOCD3	I/O	TGRD_3 input capture input/output compare output/PWN output pin
	TIOCA0 TIOCB0 TIOCC0 TIOCD0 TIOCA1 TIOCA1 TIOCB1 TIOCA2 TIOCB2 TIOCA3 TIOCB3 TIOCC3	TIOCA0 I/O TIOCB0 I/O TIOCC0 I/O TIOCD0 I/O TIOCD1 I/O TIOCA1 I/O TIOCB1 I/O TIOCB2 I/O TIOCB3 I/O TIOCB3 I/O

Rev. 6.00 Sep. 24, 2009 Page 272 of 928 REJ09B0099-0600

- This mode register_0 (TMDK_0)
- Timer I/O control register H_0 (TIORH_0)
- Timer I/O control register L_0 (TIORL_0)
- Timer interrupt enable register_0 (TIER_0)
- Timer status register_0 (TSR_0)
- Timer counter_0 (TCNT_0)
- Timer general register A_0 (TGRA_0)
- Timer general register B_0 (TGRB_0)
- Timer general register C_0 (TGRC_0)
- Timer general register D_0 (TGRD_0)

Channel 1

- Timer control register_1 (TCR_1)
- Timer mode register_1 (TMDR_1)
- Timer I/O control register _1 (TIOR_1)
- Timer interrupt enable register_1 (TIER_1)
- Timer status register_1 (TSR_1)
- Timer counter_1 (TCNT_1)
- Timer general register A_1 (TGRA_1)
- Timer general register B_1 (TGRB_1)

Channel 3

- Timer control register_3 (TCR_3)
- Timer mode register_3 (TMDR_3)
- Timer I/O control register H_3 (TIORH_3)
- Timer I/O control register L_3 (TIORL_3)
- Timer interrupt enable register_3 (TIER_3)
- Timer status register_3 (TSR_3)
- Timer counter_3 (TCNT_3)
- Timer general register A_3 (TGRA_3)
- Timer general register B_3 (TGRB_3)
- Timer general register C_3 (TGRC_3)
- Timer general register D_3 (TGRD_3)

Channel 4

- Timer control register_4 (TCR_4)
- Timer mode register_4 (TMDR_4)
- Timer I/O control register _4 (TIOR_4)
- Timer interrupt enable register_4 (TIER_4)
- Timer status register_4 (TSR_4)
- Timer counter_4 (TCNT_4)
- Timer general register A_4 (TGRA_4)
- Timer general register B_4 (TGRB_4)

Rev. 6.00 Sep. 24, 2009 Page 274 of 928 REJ09B0099-0600

Common Registers

- Timer start register (TSTR)
- Timer synchro register (TSYR)

Э	COLHU	0	U/ M	
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	clock is cou halved (e.g. counting mo setting is ig has priority. input clock i input clock i channel is s		These bits select the input clock edge. When the clock is counted using both edges, the input clock halved (e.g. $\phi/4$ both edges = $\phi/2$ rising edge). If p counting mode is used on channels 1, 2, 4, and 5 setting is ignored and the phase counting mode s has priority. Internal clock edge selection is valid v input clock is $\phi/4$ or slower. This setting is ignored input clock is $\phi/1$, or when overflow/underflow of a channel is selected. (The clock is counted at the f edge when $\phi/1$ is selected.)
				00: Count at rising edge
				01: Count at falling edge
				1X: Count at both edges
				Legend: X: Don't care
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT counter clock. The clo
0	TPSC0	0	R/W	source can be selected independently for each ch See tables 10.5 to 10.10 for details.

Rev. 6.00 Sep. 24, 2009 Page 276 of 928 REJ09B0099-0600

			synchronous operation*
1	0	0	TCNT clearing disabled
		1	TCNT cleared by TGRC compare mat capture* ²
	1	0	TCNT cleared by TGRD compare mat capture* ²
		1	TCNT cleared by counter clearing for channel performing synchronous clea synchronous operation* ¹

Notes: 1. Synchronous operation is set by setting the SYNC bit in TSYR to 1.

When TGRC or TGRD is used as a buffer register, TCNT is not cleared beca buffer register setting has priority, and compare match/input capture does no

Channel	Bit 7 Reserved* ²	Bit 6 CCLR1	Bit 5 CCLR0	Description
1, 2, 4, 5	0	0	0	TCNT clearing disabled
			1	TCNT cleared by TGRA compare mat capture
		1	0	TCNT cleared by TGRB compare mat capture
			1	TCNT cleared by counter clearing for channel performing synchronous clea synchronous operation* ¹

Table 10.4 CCLR0 to CCLR2 (channels 1, 2, 4, and 5)

Notes: 1. Synchronous operation is selected by setting the SYNC bit in TSYR to 1.

2. Bit 7 is reserved in channels 1, 2, 4, and 5. It is always read as 0 and cannot modified.

RENESAS

1	0	External clock: counts on TCLKC pin in
	1	External clock: counts on TCLKD pin in

Table 10.6	TPSC0 to TPSC2 (channel 1)
-------------------	-----------------------------------

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
1	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLKA pin in
			1	External clock: counts on TCLKB pin in
		1	0	Internal clock: counts on $\phi/256$
			1	Counts on TCNT2 overflow/underflow

Note: This setting is ignored when channel 1 is in phase counting mode.

Rev. 6.00 Sep. 24, 2009 Page 278 of 928 REJ09B0099-0600

1	0	External clock: counts on TCLKC pin i
	1	Internal clock: counts on $\phi/1024$

Note: This setting is ignored when channel 2 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
3	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLKA pin i
			1	Internal clock: counts on $\phi/1024$
		1	0	Internal clock: counts on $\phi/256$
			1	Internal clock: counts on \u00e6/4096

Table 10.8TPSC0 to TPSC2 (channel 3)

Renesas

1	0	Internal clock: counts on $\phi/1024$
	1	Counts on TCNT5 overflow/underflow

Note: This setting is ignored when channel 4 is in phase counting mode.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
5	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on \u00e4/16
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLKA pin in
			1	External clock: counts on TCLKC pin in
		1	0	Internal clock: counts on \u00e4/256
			1	External clock: counts on TCLKD pin in

Table 10.10 TPSC0 to TPSC2 (channel 5)

Note: This setting is ignored when channel 5 is in phase counting mode.

Rev. 6.00 Sep. 24, 2009 Page 280 of 928 REJ09B0099-0600

Э	DFD	0	H/VV	Builer Operation B
				Specifies whether TGRB is to operate in the norr or TGRB and TGRD are to be used together for l operation. When TGRD is used as a buffer regist input capture/output compare is not generated. In channels 1, 2, 4, and 5, which have no TGRD, reserved. It is always read as 0 and cannot be m
				0: TGRB operates normally
_				1: TGRB and TGRD are used together for buffer
4	BFA	0	R/W	Buffer Operation A
				Specifies whether TGRA is to operate in the norm or TGRA and TGRC are to be used together for to operation. When TGRC is used as a buffer regist input capture/output compare is not generated. In channels 1, 2, 4, and 5, which have no TGRC, reserved. It is always read as 0 and cannot be m
				0: TGRA operates normally
				1:TGRA and TGRC are used together for buffer of
3	MD3	0	R/W	Modes 3 to 0
2	MD2	0	R/W	These bits are used to set the timer operating mo
1	MD1	0	R/W	MD3 is a reserved bit. In a write, it should always
0	MD0	0	R/W	written with 0. See table 10.11 for details.

		1	0	Phase counting mode 3
			1	Phase counting mode 4
1	Х	Х	Х	_
Logon	d.			

X: Don't care

Notes: 1. MD3 is a reserved bit. In a write, it should always be written with 0.

2. Phase counting mode cannot be set for channels 0 and 3. In this case, 0 shoul be written to MD2.

10.3.3 Timer I/O Control Register (TIOR)

The TIOR registers control the TGR registers. The TPU has eight TIOR registers, two each channels 0 and 3, and one each for channels 1, 2, 4, and 5. Care is required as TIOR is affect the TMDR setting.

The initial output specified by TIOR is valid when the counter is stopped (the CST bit in cleared to 0). Note also that, in PWM mode 2, the output at the point at which the counter cleared to 0 is specified.

When TGRC or TGRD is designated for buffer operation, this setting is invalid and the reoperates as a buffer register.

Rev. 6.00 Sep. 24, 2009 Page 282 of 928 REJ09B0099-0600

• TIORL_0, TIORL_3

		Initial		
Bit	Bit Name	value	R/W	Description
7	IOD3	0	R/W	I/O Control D3 to D0
6	IOD2	0	R/W	Specify the function of TGRD. See tables 10.13,
5	IOD1	0	R/W for details.	for details.
4	IOD0	0	R/W	
3	IOC3	0	R/W	I/O Control C3 to C0
2	IOC2	0	R/W	Specify the function of TGRC. See tables 10.21,
1	IOC1	0	R/W	for details.
0	IOC0	0	R/W	

RENESAS

					Toggle output at compare match
	1	0	0	-	Output disabled
			1	-	Initial output is 1 0 output at compare match
		1	0	-	Initial output is 1 1 output at compare match
			1	-	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCB0 pin Input capture at rising edge
			1	-	Capture input source is TIOCB0 pin Input capture at falling edge
		1	Х	-	Capture input source is TIOCB0 pin Input capture at both edges
	1	Х	Х	-	Capture input source is channel 1/count Input capture at TCNT_1 count-up/count

X: Don't care

Note: * When the TPSC0 to TPSC2 bits in TCR_1 are set to B'000 and $\phi/1$ is used as TCNT_1 count clock, this setting is invalid and input capture is not generated.

Rev. 6.00 Sep. 24, 2009 Page 284 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	-	Output disabled
			1	-	Initial output is 1 0 output at compare match
		1	0	-	Initial output is 1 1 output at compare match
			1	-	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register*2	Capture input source is TIOCD0 pin Input capture at rising edge
			1	-	Capture input source is TIOCD0 pin Input capture at falling edge
		1	Х	-	Capture input source is TIOCD0 pin Input capture at both edges
	1	Х	Х	-	Capture input source is channel 1/coun Input capture at TCNT_1 count-up/cour

X: Don't care

Notes: 1. When the TPSC0 to TPSC2 bits in TCR_1 are set to B'000 and $\phi/1$ is used a TCNT_1 count clock, this setting is invalid and input capture is not generated

When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer reg setting is invalid and input capture/output compare is not generated.

Renesas

					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCB1 pin Input capture at rising edge
			1		Capture input source is TIOCB1 pin Input capture at falling edge
		1	Х		Capture input source is TIOCB1 pin Input capture at both edges
	1	Х	Х		TGRC_0 compare match/ input capture Input capture at generation of TGRC_0 c match/input capture
Legen	nd:				

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 286 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	-	Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	Х	0	0	Input capture register	Capture input source is TIOCB2 pin Input capture at rising edge
			1	-	Capture input source is TIOCB2 pin Input capture at falling edge
		1	Х		Capture input source is TIOCB2 pin Input capture at both edges

X: Don't care

					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1	_	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCB3 pin Input capture at rising edge
			1		Capture input source is TIOCB3 pin Input capture at falling edge
		1	Х		Capture input source is TIOCB3 pin Input capture at both edges
	1	Х	Х		Capture input source is channel 4/count of Input capture at TCNT_4 count-up/count-

X: Don't care

Note: * When the TPSC0 to TPSC2 bits in TCR_4 are set to B'000 and $\phi/1$ is used as TCNT_4 count clock, this setting is invalid and input capture is not generated.

Rev. 6.00 Sep. 24, 2009 Page 288 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	_	Output disabled
			1	_	Initial output is 1 0 output at compare match
		1	0	_	Initial output is 1 1 output at compare match
			1	-	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register*2	Capture input source is TIOCD3 pin Input capture at rising edge
			1	-	Capture input source is TIOCD3 pin Input capture at falling edge
		1	Х	_	Capture input source is TIOCD3 pin Input capture at both edges
	1	Х	Х	_	Capture input source is channel 4/count Input capture at TCNT_4 count-up/coun

X: Don't care

Notes: 1. When the TPSC0 to TPSC2 bits in TCR_4 are set to B'000 and $\phi/1$ is used a TCNT_4 count clock, this setting is invalid and input capture is not generated

When the BFB bit in TMDR_3 is set to 1 and TGRD_3 is used as a buffer reg setting is invalid and input capture/output compare is not generated.

Renesas

			Toggle output at compare match
0	0		Output disabled
	1		Initial output is 1 0 output at compare match
1	0		Initial output is 1 1 output at compare match
	1		Initial output is 1 Toggle output at compare match
0	0	Input capture register	Capture input source is TIOCB4 pin Input capture at rising edge
	1		Capture input source is TIOCB4 pin Input capture at falling edge
1	Х		Capture input source is TIOCB4 pin Input capture at both edges
х	Х		Capture input source is TGRC_3 compar match/input capture Input capture at generation of TGRC_3 c match/input capture
	0	$\begin{array}{c} 0 \\ 1 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ X \end{array}$	$ \begin{array}{c} 0 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline \end{array} $

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 290 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	·	Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	Х	0	0	Input capture register	Capture input source is TIOCB5 pin Input capture at rising edge
			1	-	Capture input source is TIOCB5 pin Input capture at falling edge
		1	Х		Capture input source is TIOCB5 pin Input capture at both edges

X: Don't care

					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCA0 pin Input capture at rising edge
			1		Capture input source is TIOCA0 pin Input capture at falling edge
		1	Х		Capture input source is TIOCA0 pin Input capture at both edges
	1	Х	Х		Capture input source is channel 1/count of Input capture at TCNT_1 count-up/count-
Lagar	d.				

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 292 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0		Output disabled
			1	_	Initial output is 1 0 output at compare match
		1	0	_	Initial output is 1 1 output at compare match
			1	_	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register*	Capture input source is TIOCC0 pin Input capture at rising edge
			1	_	Capture input source is TIOCC0 pin Input capture at falling edge
		1	х	_	Capture input source is TIOCC0 pin Input capture at both edges
	1	Х	х	_	Capture input source is channel 1/count Input capture at TCNT_1 count-up/coun

X: Don't care

Note: * When the BFA bit in TMDR_0 is set to 1 and TGRC_0 is used as a buffer reg setting is invalid and input capture/output compare is not generated.

Renesas

					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCA1 pin Input capture at rising edge
			1		Capture input source is TIOCA1 pin Input capture at falling edge
		1	Х		Capture input source is TIOCA1 pin Input capture at both edges
	1	Х	Х		Capture input source is TGRA_0 compar match/input capture Input capture at generation of channel 0/ compare match/input capture
	nd				

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 294 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	·	Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	Х	0	0	Input capture register	Capture input source is TIOCA2 pin Input capture at rising edge
			1	-	Capture input source is TIOCA2 pin Input capture at falling edge
		1	Х		Capture input source is TIOCA2 pin Input capture at both edges

X: Don't care

					Toggle output at compare match
	1	0	0		Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register	Capture input source is TIOCA3 pin Input capture at rising edge
			1		Capture input source is TIOCA3 pin Input capture at falling edge
		1	Х		Capture input source is TIOCA3 pin Input capture at both edges
	1	Х	Х		Capture input source is channel 4/count of Input capture at TCNT_4 count-up/count-
Logor	a al i				

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 296 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0		Output disabled
			1	_	Initial output is 1 0 output at compare match
		1	0	_	Initial output is 1 1 output at compare match
			1	_	Initial output is 1 Toggle output at compare match
1	0	0	0	Input capture register*	Capture input source is TIOCC3 pin Input capture at rising edge
			1	_	Capture input source is TIOCC3 pin Input capture at falling edge
		1	х	_	Capture input source is TIOCC3 pin Input capture at both edges
	1	Х	х	_	Capture input source is channel 4/count Input capture at TCNT_4 count-up/coun

X: Don't care

Note: * When the BFA bit in TMDR_3 is set to 1 and TGRC_3 is used as a buffer reg setting is invalid and input capture/output compare is not generated.

Renesas

			Toggle output at compare match
0	0		Output disabled
	1		Initial output is 1 0 output at compare match
1	0		Initial output is 1 1 output at compare match
	1		Initial output is 1 Toggle output at compare match
0	0	Input capture register	Capture input source is TIOCA4 pin Input capture at rising edge
	1		Capture input source is TIOCA4 pin Input capture at falling edge
1	Х		Capture input source is TIOCA4 pin Input capture at both edges
х	Х		Capture input source is TGRA_3 compar match/input capture Input capture at generation of TGRA_3 co match/input capture
	0	$\begin{array}{c} 0 \\ 1 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ X \end{array}$	$ \begin{array}{c} 0 \\ \hline 1 \\ \hline 1 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline 0 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline X \end{array} $

X: Don't care

Rev. 6.00 Sep. 24, 2009 Page 298 of 928 REJ09B0099-0600

					Toggle output at compare match
	1	0	0	·	Output disabled
			1		Initial output is 1 0 output at compare match
		1	0		Initial output is 1 1 output at compare match
			1		Initial output is 1 Toggle output at compare match
1	Х	0	0	Input capture register	Capture input source is TIOCA5 pin Input capture at rising edge
			1	-	Capture input source is TIOCA5 pin Input capture at falling edge
		1	Х		Capture input source is TIOCA5 pin Input capture at both edges

X: Don't care

				1: A/D conversion start request generation enable
6	_	1	—	Reserved
				This bit is always read as 1 and cannot be modifie
5	TCIEU	0	R/W	Underflow Interrupt Enable
				Enables or disables interrupt requests (TCIU) by the flag when the TCFU flag in TSR is set to 1 in chan 4, and 5. In channels 0 and 3, bit 5 is reserved. It is always and cannot be modified.
				0: Interrupt requests (TCIU) by TCFU disabled
				1: Interrupt requests (TCIU) by TCFU enabled
4	TCIEV	0	R/W	Overflow Interrupt Enable
				Enables or disables interrupt requests (TCIV) by the flag when the TCFV flag in TSR is set to 1.
				0: Interrupt requests (TCIV) by TCFV disabled
				1: Interrupt requests (TCIV) by TCFV enabled
3	TGIED	0	R/W	TGR Interrupt Enable D
				Enables or disables interrupt requests (TGID) by t bit when the TGFD bit in TSR is set to 1 in channe 3.
				In channels 1, 2, 4, and 5, bit 3 is reserved. It is al read as 0 and cannot be modified.
				0: Interrupt requests (TGID) by TGFD bit disabled
				1: Interrupt requests (TGID) by TGFD bit enabled

Rev. 6.00 Sep. 24, 2009 Page 300 of 928 REJ09B0099-0600

				Enables or disables interrupt requests (TGIB) by bit when the TGFB bit in TSR is set to 1.
				0: Interrupt requests (TGIB) by TGFB bit disabled
				1: Interrupt requests (TGIB) by TGFB bit enabled
0	TGIEA	0	R/W	TGR Interrupt Enable A
				Enables or disables interrupt requests (TGIA) by bit when the TGFA bit in TSR is set to 1.
				0: Interrupt requests (TGIA) by TGFA bit disabled
				1: Interrupt requests (TGIA) by TGFA bit enabled
-				

				and cannot be modified.
				0: TCNT counts down
				1: TCNT counts up
6	_	1		Reserved
				This bit is always read as 1 and cannot be modifie
5	TCFU	0	R/(W)*	Underflow Flag
				Status flag that indicates that TCNT underflow has occurred when channels 1, 2, 4, and 5 are set to p counting mode. Only 0 can be written, for flag clea In channels 0 and 3, bit 5 is reserved. It is always and cannot be modified.
				[Setting condition]
				When the TCNT value underflows (changes from H'FFFF)
				[Clearing condition]
				When 0 is written to TCFU after reading TCFU = 1
4	TCFV	0	R/(W)*	Overflow Flag
				Status flag that indicates that TCNT overflow has Only 0 can be written, for flag clearing.
				[Setting condition]
				When the TCNT value overflows (changes from H H'0000)
				[Clearing condition]
				When 0 is written to TCFV after reading TCFV = 1

Rev. 6.00 Sep. 24, 2009 Page 302 of 928 REJ09B0099-0600

				capture signal and TGRD is functioning as in capture register
				[Clearing conditions]
				 When DTC is activated by TGID interrupt, the of MRB in DTC is 0 with the transfer counter on 0
				When 0 is written to TGFD after reading TGF
2	TGFC	0	R/(W)*	Input Capture/Output Compare Flag C
				Status flag that indicates the occurrence of TGRO capture or compare match in channels 0 and 3. O be written, for flag clearing. In channels 1, 2, 4, a is reserved. It is always read as 0 and cannot be
				[Setting conditions]
				 When TCNT = TGRC and TGRC is functionin output compare register
				 When TCNT value is transferred to TGRC by capture signal and TGRC is functioning as in capture register
				[Clearing conditions]
				 When DTC is activated by TGIC interrupt, the of MRB in DTC is 0 with the transfer counter o 0
				• When 0 is written to TGFC after reading TGF

				•	re signal and i and is functioning as inp
				•	•
				Clearing	conditions]
				 When 	n DTC is activated by TGIB interrupt, the I
				of MF 0	RB in DTC is 0 with the transfer counter of
				When	0 is written to TGFB after reading TGFB
0	TGFA	0	R/(W)*	nput Cap	oture/Output Compare Flag A
					ng that indicates the occurrence of TGRA or compare match. Only 0 can be written,
				Setting c	conditions]
					n TCNT = TGRA and TGRA is functioning t compare register
				captu	n TCNT value is transferred to TGRA by in re signal and TGRA is functioning as inpute re register
				Clearing	conditions]
					n DTC is activated by TGIA interrupt, the RB in DTC is 0 with the transfer counter o
				When	0 is written to TGFA after reading TGFA
Note:	* Only 0	can be writ	ten to thi	bit to clea	ar the flag.

Rev. 6.00 Sep. 24, 2009 Page 304 of 928 REJ09B0099-0600

The TGR registers are dual function 16-bit readable/writable registers, functioning as eic compare or input capture registers. The TPU has 16 TGR registers, four each for channel and two each for channels 1, 2, 4, and 5. TGRC and TGRD for channels 0 and 3 can also designated for operation as buffer registers. The TGR registers cannot be accessed in 8-t they must always be accessed as a 16-bit unit. TGR buffer register combinations are TG TGRC and TGRB—TGRD.

10.3.8 Timer Start Register (TSTR)

TSTR specifies whether to operate or stop TCNT for channels 0 to 5. When setting the or mode in TMDR or setting the count clock in TCR, first stop the TCNT counter.

		Initial		
Bit	Bit Name	value	R/W	Description
7, 6	_	All 0		Reserved
				Only 0 should be written to these bits.
5	CST5	0	R/W	Counter Start 5 to 0
4	CST4	0	R/W	These bits specify whether to operate or stop TC
3	CST3	0	5 1	If 0 is written to the CST bit during operation with
2	CST2	0	R/W	pin designated for output, the counter stops but to pin output compare output level is retained. If TIQ
1	CST1	0	R/W	written to when the CST bit is cleared to 0, the pi
0	CST0	0	R/W	level will be changed to the set initial output value
				0: TCNT_0 to TCNT_5 count operation is stoppe
				1: TCNT_0 to TCNT_5 performs count operation

RENESAS

4	SYNC4	0	R/W	These bits are used to select the independent or
3	SYNC3	0	R/W	synchronized operation with other channels.
2	SYNC2	0	R/W	When synchronous operation is selected, the TCN synchronous presetting of multiple channels, and
1	SYNC1	0	R/W	synchronous clearing by counter clearing on anoth
0	SYNC0	0	R/W	channel, are possible.
				To set synchronous operation, the SYNC bits for a two channels must be set to 1. To set synchronous clearing, in addition to the SYNC bit, the TCNT cle source must also be set by means of the CCLR0 t bits in TCR.
				0: TCNT_0 to TCNT_5 operates independently (To presetting /clearing is unrelated to other channe
				 TCNT_0 to TCNT_5 performs synchronous ope TCNT synchronous presetting/synchronous clear possible.

Rev. 6.00 Sep. 24, 2009 Page 306 of 928 REJ09B0099-0600

periodic counter, for example.

1. Example of count operation setting procedure

Figure 10.2 shows an example of the count operation setting procedure.

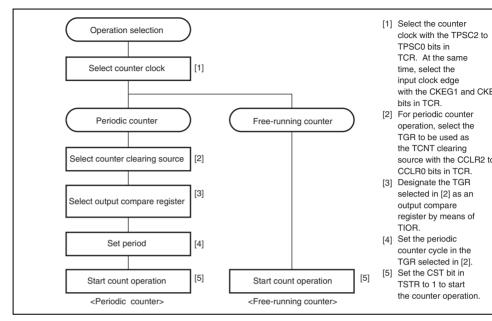


Figure 10.2 Example of Counter Operation Setting Procedure

Rev. 6.00 Sep. 24, 2009 Pag RENESAS REJ09

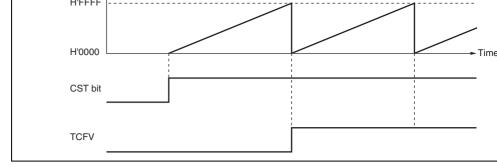


Figure 10.3 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for relevant channel performs periodic count operation. The TGR register for setting the p designated as an output compare register, and counter clearing by compare match is so by means of the CCLR0 to CCLR2 bits in TCR. After the settings have been made, T starts up-count operation as a periodic counter when the corresponding bit in TSTR is When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and T cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 10.4 illustrates periodic counter operation.

Rev. 6.00 Sep. 24, 2009 Page 308 of 928 REJ09B0099-0600

Figure 10.4 Periodic Counter Operation

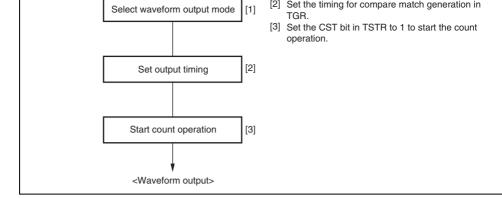


Figure 10.5 Example of Setting Procedure for Waveform Output by Compare I

2. Examples of waveform output operation

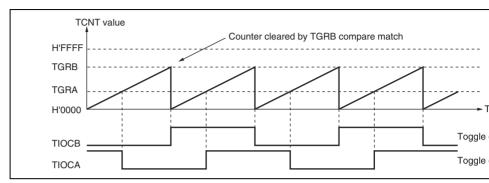
Figure 10.6 shows an example of 0 output/1 output.

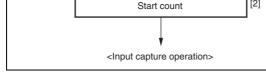
In this example TCNT has been designated as a free-running counter, and settings hav made such that 1 is output by compare match A, and 0 is output by compare match B. the set level and the pin level coincide, the pin level does not change.

Rev. 6.00 Sep. 24, 2009 Page 310 of 928 REJ09B0099-0600

Figure 10.7 shows an example of toggle output.

In this example, TCNT has been designated as a periodic counter (with counter clear compare match B), and settings have been made such that the output is toggled by be compare match A and compare match B.




Figure 10.7 Example of Toggle Output Operation

Input Capture Function: The TCNT value can be transferred to TGR on detection of t pin input edge.

Rising edge, falling edge, or both edges can be selected as the detected edge. For channel and 4, it is also possible to specify another channel's counter input clock or compare may as the input capture source.

Note: When another channel's counter input clock is used as the input capture input fo 0 and 3, $\phi/1$ should not be selected as the counter input clock used for input capture will not be generated if $\phi/1$ is selected.

RENESAS

Figure 10.8 Example of Input Capture Operation Setting Procedure

2. Example of input capture operation

Figure 10.9 shows an example of input capture operation.

In this example both rising and falling edges have been selected as the TIOCA pin inp capture input edge, the falling edge has been selected as the TIOCB pin input capture edge, and counter clearing by TGRB input capture has been designated for TCNT.

Rev. 6.00 Sep. 24, 2009 Page 312 of 928 REJ09B0099-0600

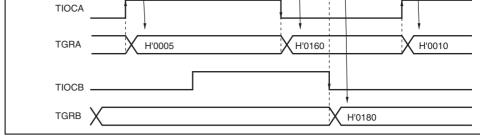


Figure 10.9 Example of Input Capture Operation

10.4.2 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be clear simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time bas

Channels 0 to 5 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure: Figure 10.10 shows an exam synchronous operation setting procedure.

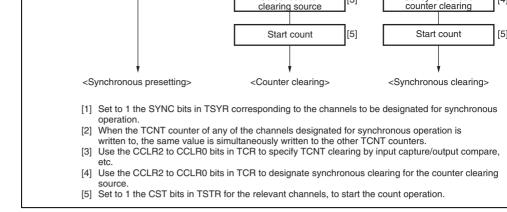


Figure 10.10 Example of Synchronous Operation Setting Procedure

Example of Synchronous Operation: Figure 10.11 shows an example of synchronous o

In this example, synchronous operation and PWM mode 1 have been designated for chan 2, TGRB_0 compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing source.

Three-phase PWM waveforms are output from pins TIOCA0, TIOCA1, and TIOCA2. At time, synchronous presetting, and synchronous clearing by TGRB_0 compare match, are performed for channel 0 to 2 TCNT counters, and the data set in TGRB_0 is used as the F cycle.

For details of PWM modes, see section 10.4.5, PWM Modes.

Rev. 6.00 Sep. 24, 2009 Page 314 of 928 REJ09B0099-0600

Figure 10.11 Example of Synchronous Operation

10.4.3 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used a registers.

Buffer operation differs depending on whether TGR has been designated as an input cap register or as a compare match register.

Table 10.28 shows the register combinations used in buffer operation.

 Table 10.28 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0
3	TGRA_3	TGRC_3
	TGRB_3	TGRD_3

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding transferred to the timer general register.

RENESAS

When input capture occurs, the value in TCNT is transferred to TGR and the value pr held in the timer general register is transferred to the buffer register.

This operation is illustrated in figure 10.13.

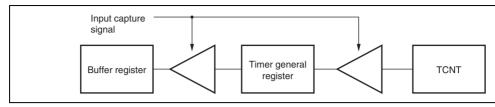


Figure 10.13 Input Capture Buffer Operation

Example of Buffer Operation Setting Procedure: Figure 10.14 shows an example of the operation setting procedure.

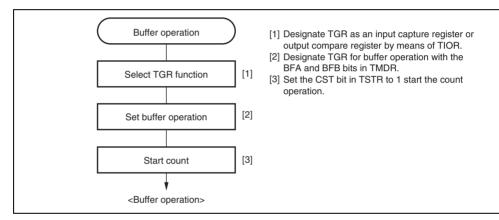
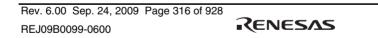



Figure 10.14 Example of Buffer Operation Setting Procedure

For details of PWM modes, see section 10.4.5, PWM Modes.

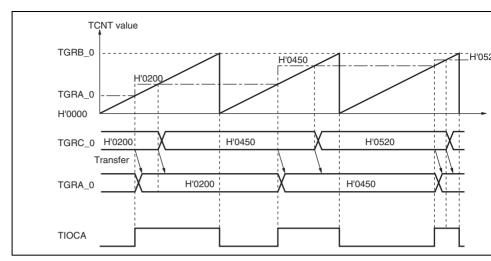


Figure 10.15 Example of Buffer Operation (1)

2. When TGR is an input capture register

Figure 10.16 shows an operation example in which TGRA has been designated as an capture register, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and edges have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon the occurrence of input capture A, the value previously stored in TGRA is simultaneous transferred to TGRC.

RENESAS

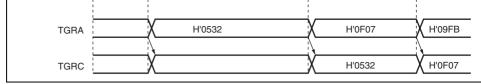


Figure 10.16 Example of Buffer Operation (2)

10.4.4 Cascaded Operation

In cascaded operation, two 16-bit counters for different channels are used together as a 32 counter.

This function works by counting the channel 1 (channel 4) counter clock upon overflow/u of TCNT_2 (TCNT_5) as set in the TPSC0 to TPSC2 bits in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase-counting mode.

Table 10.29 shows the register combinations used in cascaded operation.

Note: When phase counting mode is set for channel 1 or 4, the counter clock setting is i and the counters operates independently in phase counting mode.

Table 10.29 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT_1	TCNT_2
Channels 4 and 5	TCNT_4	TCNT_5

Rev. 6.00 Sep. 24, 2009 F	Page 318 of 928	_
REJ09B0099-0600		RENESAS

Figure 10.17 Cascaded Operation Setting Procedure

Examples of Cascaded Operation: Figure 10.18 illustrates the operation when TCNT_ overflow/underflow counting has been set for TCNT_1, when TGRA_1 and TGRA_2 h designated as input capture registers, and when TIOC pin rising edge has been selected.

When a rising edge is input to the TIOCA1 and TIOCA2 pins simultaneously, the upper the 32-bit data are transferred to TGRA_1, and the lower 16 bits to TGRA_2.

TCNT_1 clock					
TCNT_1	H'03A1	<u>x</u>		H'03A2	
TCNT_2 clock				Г	
			1 10000		 110001
TCNT_2 TIOCA1,	H'FFFF	_^	H'0000	/	H'0001
TIOCA2					
TGRA_1			χ	H'03A2	
TGRA_2			χ	H'0000	

Figure 10.18 Example of Cascaded Operation (1)

Figure 10.19 illustrates the operation when TCNT_2 overflow/underflow counting has b TCNT_1 and phase counting mode has been designated for channel 2.

Rev. 6.00 Sep. 24, 2009 Pag RENESAS

REJ09

10.4.5 PWM Modes

In PWM mode, PWM waveforms are output from the output pins. The output level can b as 0, 1, or toggle output in response to a compare match of each TGR.

TGR registers settings can be used to output a PWM waveform in the range of 0% to 100

Designating TGR compare match as the counter clearing source enables the period to be register. All channels can be designated for PWM mode independently. Synchronous oper also possible.

There are two PWM modes, as described below.

• PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with T TGRC with TGRD. The output specified by the IOA0 to IOA3 bits and IOC0 to IOC3 TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the specified by the IOB0 to IOB3 bits and IOD0 to IOD3 bits in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set of paired TGRs are identical, the output value does not change when a compare matche In PWM mode 1, a maximum 8-phase PWM output is possible.

• PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty in The output specified in TIOR is performed by means of compare matches. Upon cour clearing by a synchronization register compare match, the output value of each pin is value set in TIOR. If the set values of the cycle and duty registers are identical, the out value does not change when a compare match occurs.

Rev. 6.00 Sep. 24, 2009 Page 320 of 928 REJ09B0099-0600

	TGRC_0	TIOCC0	TIOCC0
	TGRD_0		TIOCD0
1	TGRA_1	TIOCA1	TIOCA1
	TGRB_1		TIOCB1
2	TGRA_2	TIOCA2	TIOCA2
	TGRB_2		TIOCB2
3	TGRA_3	TIOCA3	TIOCA3
	TGRB_3		TIOCB3
	TGRC_3	TIOCC3	TIOCC3
	TGRD_3		TIOCD3
4	TGRA_4	TIOCA4	TIOCA4
	TGRB_4		TIOCB4
5	TGRA_5	TIOCA5	TIOCA5
	TGRB_5		TIOCB5

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the pe

Renesas

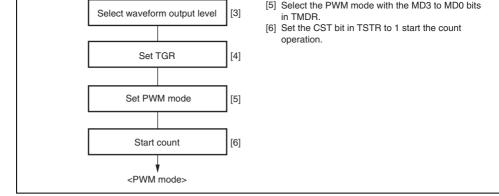


Figure 10.20 Example of PWM Mode Setting Procedure

Examples of PWM Mode Operation: Figure 10.21 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in the TGRB are used as the duty levels.

Rev. 6.00 Sep. 24, 2009 Page 322 of 928 REJ09B0099-0600

rigare 10.22 shows an example of rivitrinoae 2 operation.

In this example, synchronous operation is designated for channels 0 and 1, TGRB_1 cormatch is set as the TCNT clearing source, and 0 is set for the initial output value and 1 f output value of the other TGR registers (TGRA_0 to TGRD_0, TGRA_1), outputting a PWM waveform.

In this case, the value set in TGRB_1 is used as the cycle, and the values set in the other used as the duty levels.

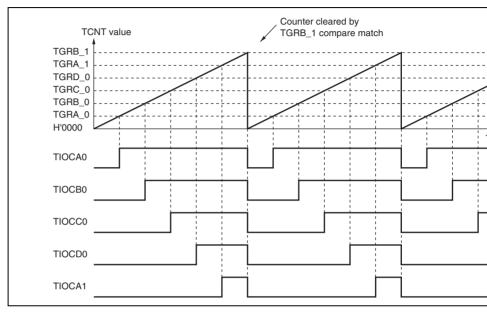


Figure 10.22 Example of PWM Mode Operation (2)

RENESAS

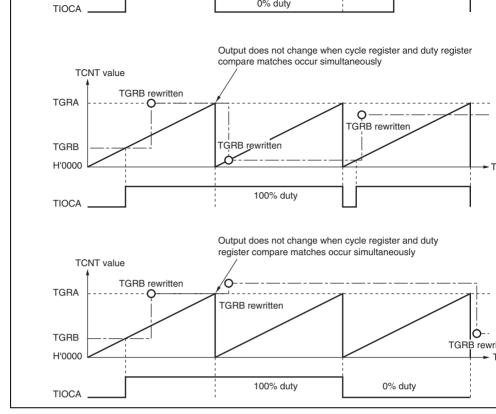
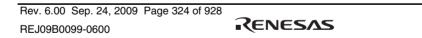



Figure 10.23 Example of PWM Mode Operation (3)

This can be used for two-phase encoder pulse input.

If overflow occurs when TCNT is counting up, the TCFV flag in TSR is set; if underflo when TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag reveals whethe counting up or down.

Table 10.31 shows the correspondence between external clock pins and channels.

Table 10.31 Phase Counting Mode Clock Input Pins

	Exte	rnal Clock Pin
Channels	A-Phase	B-Phase
When channel 1 or 5 is set to phase counting mode	TCLKA	TCLKB
When channel 2 or 4 is set to phase counting mode	TCLKC	TCLKD

Example of Phase Counting Mode Setting Procedure: Figure 10.24 shows an example phase counting mode setting procedure.

Rev. 6.00 Sep. 24, 2009 Page 326 of 928 REJ09B0099-0600

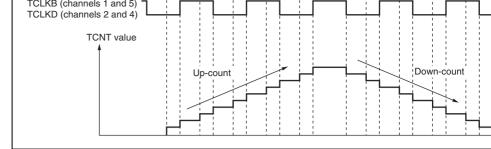


Figure 10.25 Example of Phase Counting Mode 1 Operation

Table 10.32 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	_ _	Up-count
Low level	T.	Up-count
	Low level	Up-count
T_	High level	Up-count
High level	T.	Down-count
Low level		Down-count
	High level	Down-count
7	Low level	Down-count

Legend:

F: Rising edge

L: Falling edge

RENESAS

Figure 10.26 Example of Phase Counting Mode 2 Operation

Table 10.33 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	_F	Don't care
Low level	T_	Don't care
	Low level	Don't care
T_	High level	Up-count
High level	T_	Don't care
Low level	_	Don't care
_ 「	High level	Don't care
	Low level	Down-count

Legend:

F: Rising edge

L: Falling edge

Rev. 6.00 Sep. 24, 2009 Page 328 of 928 REJ09B0099-0600

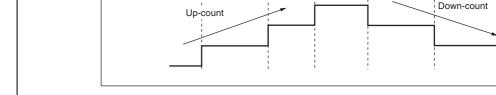


Figure 10.27 Example of Phase Counting Mode 3 Operation

Table 10.34 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level		Don't care
Low level	T_	Don't care
<u> </u>	Low level	Don't care
T_	High level	Up-count
High level	T_	Down-count
Low level		Don't care
_ 「	High level	Don't care
T_	Low level	Don't care
Legend:		

Legend:

F: Rising edge

L: Falling edge

RENESAS

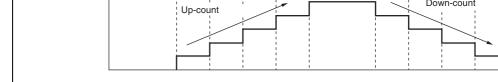


Figure 10.28 Example of Phase Counting Mode 4 Operation

Table 10.35 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channels 1 and 5) TCLKC (Channels 2 and 4)	TCLKB (Channels 1 and 5) TCLKD (Channels 2 and 4)	Operation
High level	_F	Up-count
Low level	T_	Up-count
<u> </u>	Low level	Don't care
T_	High level	Don't care
High level	T	Down-count
Low level	_F	Down-count
_ _	High level	Don't care
T_	Low level	Don't care

Legend:

L: Falling edge

Rev. 6.00 Sep. 24, 2009 Page 330 of 928 REJ09B0099-0600

RENESAS

source, and the pulse widths of 2-phase encoder 4-multiplication pulses are detected.

TGRA_1 and TGRB_1 for channel 1 are designated for input capture, and channel 0 TC TGRC_0 compare matches are selected as the input capture source and store the up/dow values for the control periods.

This procedure enables the accurate detection of position and speed.

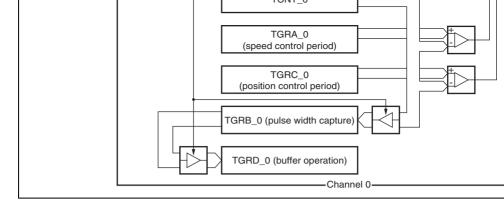


Figure 10.29 Phase Counting Mode Application Example

10.5 Interrupts

There are three kinds of TPU interrupt source; TGR input capture/compare match, TCNT overflow, and TCNT underflow. Each interrupt source has its own status flag and enable/ bit, allowing the generation of interrupt request signals to be enabled or disabled individu

When an interrupt request is generated, the corresponding status flag in TSR is set to 1. If corresponding enable/disable bit in TIER is set to 1 at this time, an interrupt is requested. interrupt request is cleared by clearing the status flag to 0.

Relative channel priorities can be changed by the interrupt controller, however the priorit within a channel is fixed. For details, see section 5, Interrupt Controller.

Rev. 6.00 Sep. 24, 2009 Page 332 of 928 REJ09B0099-0600

1	TGI1A	TGRA_1 input capture/compare match	TGFA_1	Pos
	TGI1B	TGRB_1 input capture/compare match	TGFB_1	Pos
	TCI1V	TCNT_1 overflow	TCFV_1	Not
_	TCI1U	TCNT_1 underflow	TCFU_1	Not
2	TGI2A	TGRA_2 input capture/compare match	TGFA_2	Pos
	TGI2B	TGRB_2 input capture/compare match	TGFB_2	Pos
	TCI2V	TCNT_2 overflow	TCFV_2	Not
	TCI2U	TCNT_2 underflow	TCFU_2	Not
3	TGI3A	TGRA_3 input capture/compare match	TGFA_3	Pos
	TGI3B	TGRB_3 input capture/compare match	TGFB_3	Pos
	TGI3C	TGRC_3 input capture/compare match	TGFC_3	Pos
	TGI3D	TGRD_3 input capture/compare match	TGFD_3	Pos
	TCI3V	TCNT_3 overflow	TCFV_3	Not
4	TGI4A	TGRA_4 input capture/compare match	TGFA_4	Pos
	TGI4B	TGRB_4 input capture/compare match	TGFB_4	Pos
	TCI4V	TCNT_4 overflow	TCFV_4	Not
	TCI4U	TCNT_4 underflow	TCFU_4	Not
5	TGI5A	TGRA_5 input capture/compare match	TGFA_5	Pos
	TGI5B	TGRB_5 input capture/compare match	TGFB_5	Pos
	TCI5V	TCNT_5 overflow	TCFV_5	Not
	TCI5U	TCNT_5 underflow	TCFU_5	Not

Note: This table shows the initial state immediately after a reset. The relative channel p can be changed by the interrupt controller.

RENESAS

TCFU flag in TSR is set to 1 by the occurrence of TCNT underflow on a channel. The introduction request is cleared by clearing the TCFU flag to 0. The TPU has four underflow interrupts each for channels 1, 2, 4, and 5.

10.6 DTC Activation

The DTC can be activated by the TGR input capture/compare match interrupt for a channel details, see section 8, Data Transfer Controller (DTC).

A total of 16 TPU input capture/compare match interrupts can be used as DTC activation four each for channels 0 and 3, and two each for channels 1, 2, 4, and 5.

10.7 A/D Converter Activation

The A/D converter can be activated by the TGRA input capture/compare match for a cha

If the TTGE bit in TIER is set to 1 when the TGFA flag in TSR is set to 1 by the occurren TGRA input capture/compare match on a particular channel, a request to begin A/D conversent to the A/D converter. If the TPU conversion start trigger has been selected on the A/D converter side at this time, A/D conversion is begun.

In the TPU, a total of six TGRA input capture/compare match interrupts can be used as A converter conversion start sources, one for each channel.

Rev. 6.00 Sep. 24, 2009 Page 334 of 928 REJ09B0099-0600

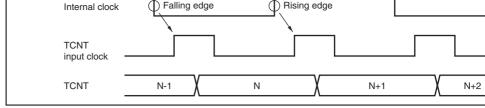


Figure 10.30 Count Timing in Internal Clock Operation

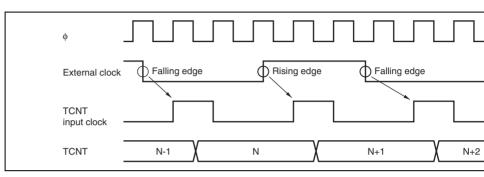


Figure 10.31 Count Timing in External Clock Operation

TCNT input clock		
TCNT	N X N+1	
- TGR	Ν	
Compare		
match signal -		
TIOC pin		

Figure 10.32 Output Compare Output Timing

Input Capture Signal Timing: Figure 10.33 shows input capture signal timing.

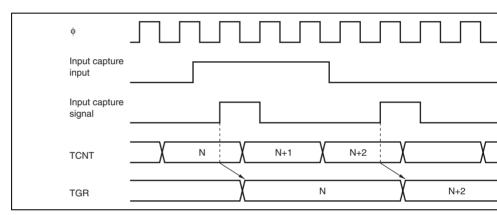


Figure 10.33 Input Capture Input Signal Timing

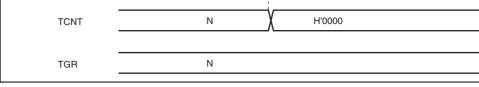


Figure 10.34 Counter Clear Timing (Compare Match)

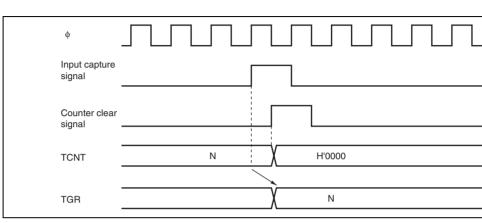


Figure 10.35 Counter Clear Timing (Input Capture)

Figure 10.36 Buffer Operation Timing (Compare Match)

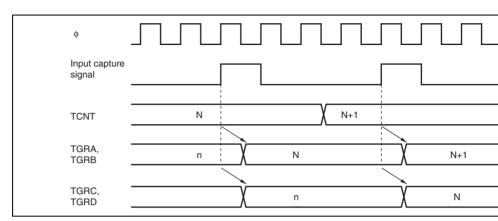


Figure 10.37 Buffer Operation Timing (Input Capture)

Rev. 6.00 Sep. 24, 2009 Page 338 of 928 REJ09B0099-0600

TCNT	 Ν	<u>∖</u>	N+1	
TGR	Ν			
Compare match signal				
materi signal	 			
TGF flag				
TGI interrupt				

Figure 10.38 TGI Interrupt Timing (Compare Match)

TGF Flag Setting Timing in Case of Input Capture: Figure 10.39 shows the timing for of the TGF flag in TSR on input capture, and TGI interrupt request signal timing.

Figure 10.39 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing: Figure 10.40 shows the timing for setting of the flag in TSR on overflow, and TCIV interrupt request signal timing.

Figure 10.41 shows the timing for setting of the TCFU flag in TSR on underflow, and TC interrupt request signal timing.

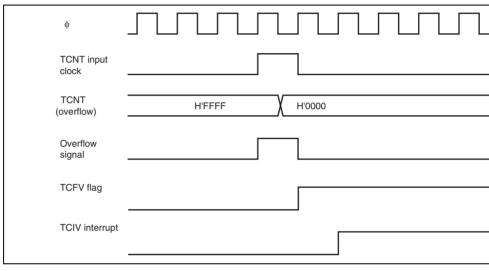


Figure 10.40 TCIV Interrupt Setting Timing

TCIU	interrupt	

Figure 10.41 TCIU Interrupt Setting Timing

Write signal	
	 -
Status flag	
Interrupt	
request signal	

Figure 10.42 Timing for Status Flag Clearing by CPU

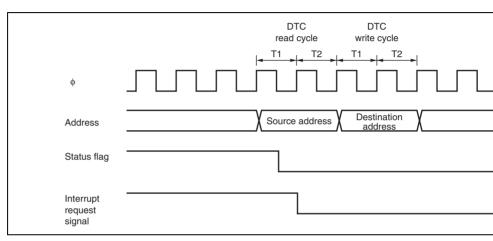


Figure 10.43 Timing for Status Flag Clearing by DTC Activation

least 2.5 states in the case of both-edge detection. The TPU will not operate properly at pulse widths.

In phase counting mode, the phase difference and overlap between the two input clocks least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10.44 shows the ir conditions in phase counting mode.

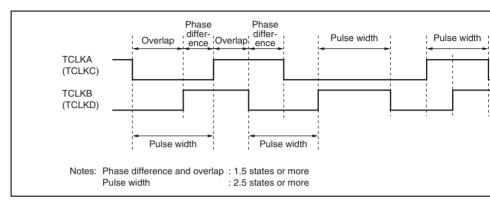


Figure 10.44 Phase Difference, Overlap, and Pulse Width in Phase Counting

N : TGR set value

10.9.4 Contention between TCNT Write and Clear Operations

If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clear precedence and the TCNT write is not performed.

Figure 10.45 shows the timing in this case.

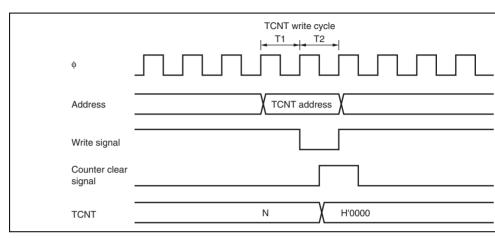
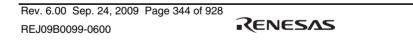



Figure 10.45 Contention between TCNT Write and Clear Operations

Address	TCNT address
Write signal	
TCNT input clock	
TCNT	N X M
	TCNT write data

Figure 10.46 Contention between TCNT Write and Increment Operation

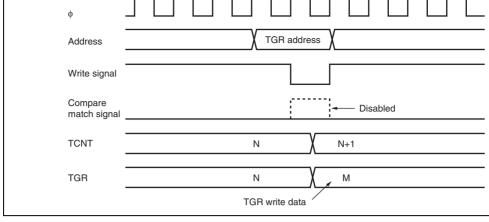


Figure 10.47 Contention between TGR Write and Compare Match

Rev. 6.00 Sep. 24, 2009 Page 346 of 928 REJ09B0099-0600

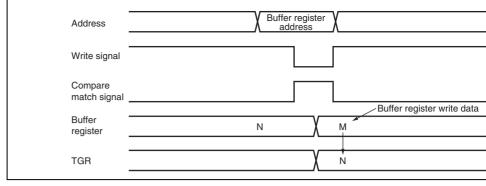


Figure 10.48 Contention between Buffer Register Write and Compare Ma

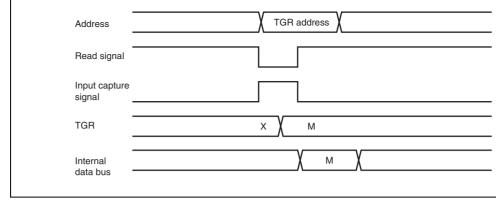


Figure 10.49 Contention between TGR Read and Input Capture

Rev. 6.00 Sep. 24, 2009 Page 348 of 928 REJ09B0099-0600

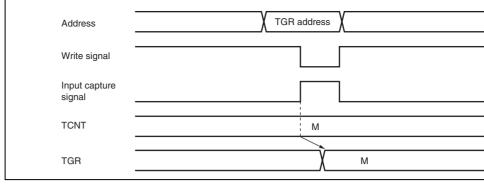


Figure 10.50 Contention between TGR Write and Input Capture

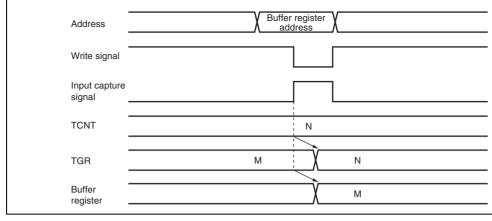


Figure 10.51 Contention between Buffer Register Write and Input Capture

Rev. 6.00 Sep. 24, 2009 Page 350 of 928 REJ09B0099-0600

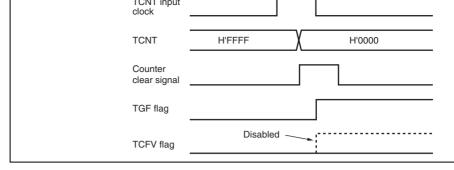
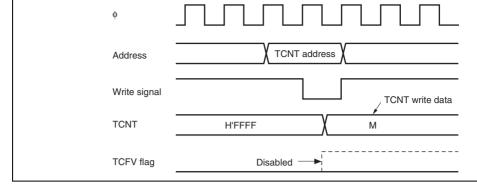
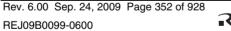


Figure 10.52 Contention between Overflow and Counter Clearing




Figure 10.53 Contention between TCNT Write and Overflow

10.9.13 Multiplexing of I/O Pins

In this LSI, the TCLKA input pin is multiplexed with the TIOCC0 I/O pin, the TCLKB in with the TIOCD0 I/O pin, the TCLKC input pin with the TIOCB1 I/O pin, and the TCLK pin with the TIOCB2 I/O pin. When an external clock is input, compare match output she be performed from a multiplexed pin.

10.9.14 Interrupts in Module Stop Mode

If module stop mode is entered when an interrupt has been requested, it will not be possible clear the CPU interrupt source or the DTC activation source. Interrupts should therefore be disabled before entering module stop mode.

- Selected from three internal clocks ($\phi/8$, $\phi/64$, and $\phi/8192$) and an external clock
- Selection of three ways to clear the counters

The counters can be cleared on compare-match A or B, or by an external reset signal

• Timer output controlled by two compare-match signals

The timer output signal in each channel is controlled by two independent compare-m signals, enabling the timer to be used for various applications, such as the generation output or PWM output with an arbitrary duty cycle

• Cascading of the two channels

(Cascading of TMR_0, TMR_1)

The module can operate as a 16-bit timer using TMR_0 as the upper half and TMR_ lower half (16-bit count mode)

TMR_1 can be used to count TMR_0 compare-match occurrences (compare-match o mode)

(Cascading of TMR_2, TMR_3)

The module can operate as a 16-bit timer using TMR_2 as the upper half and TMR_ lower half (16-bit count mode)

TMR_3 can be used to count TMR_2 compare-match occurrences (compare-match or mode)

• Multiple interrupt sources for each channel

Two compare-match interrupts and one overflow interrupt can be requested independent

• Generation of A/D converter conversion start trigger

Channel 0 compare-match signal can be used as the A/D converter conversion start t

• Module stop mode can be set

As the initial setting, the 8-bit timer operation is halted. Register access is enabled by canceling the module stop mode.

RENESAS

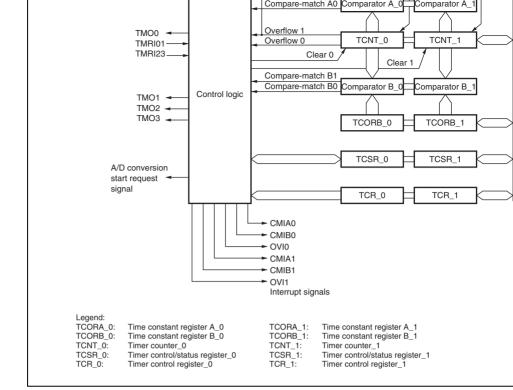


Figure 11.1 Block Diagram of 8-Bit Timer Module

Rev. 6.00 Sep. 24, 2009 Page 354 of 928 REJ09B0099-0600

RENESAS

	rimer reset input	INFIO	input	External reset input for the
2	Timer output	TMO2	Output	Output controlled by comp
3	Timer output	TMO3	Output	Output controlled by comp
Common	Timer clock input	TMCI23	Input	External clock input for the
to 2 and 3	Timer reset input	TMRI23	Input	External reset input for the

11.3 Register Descriptions

The 8-bit timer has the following registers. For details on the module stop register, see s 22.1.2, Module Stop Control Registers A to C (MSTPCRA to MSTPCRC).

Channel 0

- Timer counter_0 (TCNT_0)
- Time constant register A_0 (TCORA_0)
- Time constant register B_0 (TCORB_0)
- Timer control register_0 (TCR_0)
- Timer control/status register_0 (TCSR_0)

Channel 1

- Timer counter_1 (TCNT_1)
- Time constant register A_1 (TCORA_1)
- Time constant register B_1 (TCORB_1)
- Timer control register_1 (TCR_1)
- Timer control/status register_1 (TCSR_1)

Renesas

- Time constant register B_3 (TCORB_3)
- Timer control register_3 (TCR_3)
- Timer control/status register_3 (TCSR_3)

11.3.1 Timer Counter (TCNT)

Each TCNT is an 8-bit up-counter. TCNT_0 and TCNT_1 (or TCNT_2 and TCNT_3) co single 16-bit register, so they can be accessed together by word access.

This clock source is selected by the clock select bits, CKS2 to CKS0, in TCR. TCNT can cleared by an external reset input signal or compare-match signals A and B. The CCLR1 CCLR0 bits in TCR select the method of TCNT clearing.

When TCNT overflows from H'FF to H'00, the overflow flag (OVF) in TCSR is set to 1. initial value of TCNT is H'00.

11.3.2 Time Constant Register A (TCORA)

TCORA is an 8-bit readable/writable register. TCORA_0 and TCORA_1 (or TCORA_2 = TCORA_3) comprise a single 16-bit register, so they can be accessed together by word at

TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding compare-match flag A (CMFA) in TCSR is set. Note, however, that comp disabled during the T_2 state of a TCORA write cycle.

The timer output from the TMO pin can be freely controlled by the compare-match signa the settings of the output select bits, OS1 and OS0, in TCSR.

The initial value of TCORA is H'FF.

Rev. 6.00 Sep. 24, 2009 Page 356 of 928 REJ09B0099-0600

The initial value of TCORB is H'FF.

11.3.4 Timer Control Register (TCR)

TCR selects the TCNT clock source and the time at which TCNT is cleared, and control requests.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CMIEB	0	R/W	Compare-Match Interrupt Enable B
				Selects whether the CMFB interrupt request (CM enabled or disabled when the CMFB flag in TCSI 1.
				0: CMFB interrupt request (CMIB) is disabled
				1: CMFB interrupt request (CMIB) is enabled
6	CMIEA	0	R/W	Compare-Match Interrupt Enable A
				Selects whether the CMFA interrupt request (CM enabled or disabled when the CMFA flag in TCSI 1.
				0: CMFA interrupt request (CMIA) is disabled
				1: CMFA interrupt request (CMIA) is enabled
5	OVIE	0	R/W	Timer Overflow Interrupt Enable
				Selects whether the OVF interrupt request (OVI) or disabled when the OVF flag in TCSR is set to
				0: OVF interrupt request (OVI) is disabled
				1: OVF interrupt request (OVI) is enabled

RENESAS

0	Ck	(S0	0	R/W	sele	the system clock (ϕ). When use of an externative three types of count can be selected: at e, the falling edge, and both rising and falling e
					000:	Clock input disabled
					001:	$\phi\!/8$ internal clock source, counted on the falling
					010:	$\phi\!/64$ internal clock source, counted on the fall
					011:	$\boldsymbol{\phi}/8192$ internal clock source, counted on the edge
					100:	For channel 0: Counted on TCNT1 overflow s
						For channel 1: Counted on TCNT0 compare- signal*
						For channel 2: Counted on TCNT3 overflow s
						For channel 3: Counted on TCNT2 compare- signal*
					101:	External clock source, counted at rising edge
					110:	External clock source, counted at falling edge
					111:	External clock source, counted at both rising falling edges
Note:	*	that of	channel 1	(channel	3) is tl	hannel 2) is the TCNT1 (TCNT3) overflow sign he TCNT0 (TCNT2) compare-match signal, no ated. Do not use this setting.

Rev. 6.00 Sep. 24, 2009 Page 358 of 928 REJ09B0099-0600

				[Clearing conditions]
				• Read CMFB when CMFB = 1, then write 0 in
				• When DTC is activated by CMIB interrupt, the bit in MRB of DTC is 0 with the transfer count than 0.
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When TCNT = TCORA
				[Clearing conditions]
				• Read CMFA when CMFA = 1, then write 0 in
				• When DTC is activated by CMIA interrupt, th bit in MRB of DTC is 0 with the transfer coun than 0.
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when $OVF = 1$, then write 0 in OVF
4	ADTE	0	R/W	A/D Trigger Enable
				Enables or disables A/D converter start requests compare-match A.
				0: A/D converter start requests by compare-mate disabled
				1: A/D converter start requests by compare-mate enabled

1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the timer output level changed by a compare-match A of TCORA a TCNT.
				00: No change when compare-match A occu
				01: 0 is output when compare-match A occur
				10: 1 is output when compare-match A occur
				11: Output is inverted when compare-match (toggle output)

Note: * Only 0 can be written to this bit, to clear the flag.

Rev. 6.00 Sep. 24, 2009 Page 360 of 928 REJ09B0099-0600

				than 0.
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When TCNT = TCORA
				[Clearing conditions]
				• Read CMFA when CMFA = 1, then write 0 in
				 When DTC is activated by CMIA interrupt, the bit in MRB of DTC is 0 with the transfer count than 0.
5	OVF	0	R/(W)*	Timer Overflow Flag
				[Setting condition]
				When TCNT overflows from H'FF to H'00
				[Clearing condition]
				Read OVF when $OVF = 1$, then write 0 in OVF
4	_	1		Reserved
				This bit is always read as 1 and cannot be modifi
3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the timer output level is to changed by a compare-match B of TCORB and
				00: No change when compare-match B occurs
				01: 0 is output when compare-match B occurs
				10: 1 is output when compare-match B occurs
				11: Output is inverted when compare-match B oc (toggle output)

Note: * Only 0 can be written to this bit, to clear the flag.

• TCSR_2

Bit	Bit Name	Initial Value	R/W	Description
7	CMFB	0	R/(W)*	Compare-Match Flag B
				[Setting condition]
				When TCNT = TCORB
				[Clearing conditions]
				• Read CMFB when CMFB = 1, then write 0 in C
				• When DTC is activated by CMIB interrupt, the
				bit in MRB of DTC is 0 with the transfer counte
				than 0.
6	CMFA	0	R/(W)*	Compare-Match Flag A
				[Setting condition]
				When TCNT = TCORA
				[Clearing conditions]
				• Read CMFA when CMFA = 1, then write 0 in C
				• When DTC is activated by CMIA interrupt, the
				bit in MRB of DTC is 0 with the transfer counte than 0.

Rev. 6.00 Sep. 24, 2009 Page 362 of 928 REJ09B0099-0600

3	OS3	0	R/W	Output Select 3 and 2
2	OS2	0	R/W	These bits specify how the timer output level is to changed by a compare-match B of TCORB and ⁻
				00: No change when compare-match B occurs
				01: 0 is output when compare-match B occurs
				10: 1 is output when compare-match B occurs
				 Output is inverted when compare-match B or (toggle output)
1	OS1	0	R/W	Output Select 1 and 0
0	OS0	0	R/W	These bits specify how the timer output level is to changed by a compare-match A of TCORA and
				00: No change when compare-match A occurs
				01: 0 is output when compare-match A occurs
				10: 1 is output when compare-match A occurs
				 Output is inverted when compare-match A or (toggle output)
Note	· * Only	0 can be	writton to th	is bit to clear the flag

Note: * Only 0 can be written to this bit, to clear the flag.

RENESAS

By the above settings, waveforms with the cycle of TCORA and the pulse width of TCOI be output without software intervention.

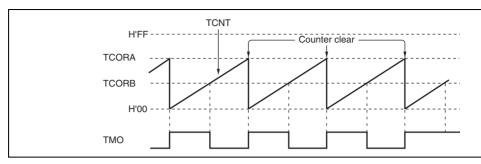


Figure 11.2 Example of Pulse Output

Rev. 6.00 Sep. 24, 2009 Page 364 of 928 REJ09B0099-0600

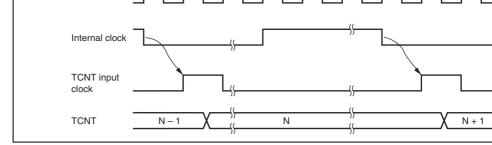


Figure 11.3 Count Timing for Internal Clock Input



Figure 11.4 Count Timing for External Clock Input

Renesas

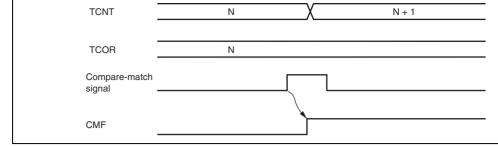


Figure 11.5 Timing of CMF Flag Setting

11.5.3 Timing of Timer Output When a Compare-Match Occurs

When a compare-match occurs, the timer output changes as specified by the output select OS3 to OS0, in TCSR. Figure 11.6 shows the timing when the output is set to toggle at comatch A.

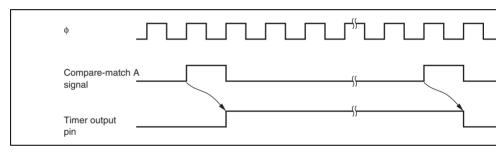


Figure 11.6 Timing of Timer Output

TCNT	N	(H'00

Figure 11.7 Timing of Compare-Match Clear

11.5.5 TCNT External Reset Timing

TCNT is cleared at the rising edge of an external reset input, depending on the settings of CCLR1 and CCLR0 bits in TCR. The width of the clearing pulse must be at least 1.5 sta 11.8 shows the timing of this operation.

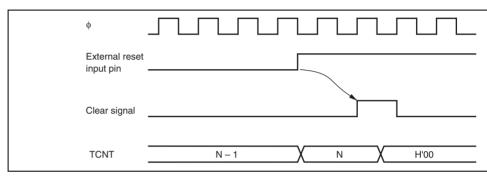


Figure 11.8 Timing of Clearing by External Reset Input

Figure 11.9 Timing of OVF Setting

Rev. 6.00 Sep. 24, 2009 Page 368 of 928 REJ09B0099-0600

timer with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits

- Setting of compare-match flags
 - The CMF flag in TCSR_0 is set to 1 when a 16-bit compare-match occurs.
 - The CMF flag in TCSR_1 is set to 1 when a lower 8-bit compare-match occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR_0 have been set for counter clear at comp the 16-bit counter (TCNT_0 and TCNT_1 together) is cleared when a 16-bit com match occurs. The 16-bit counter (TCNT_0 and TCNT_1 together) is cleared eve counter clear by the TMRI01 pin has also been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR_1 are ignored. The lower 8 be cleared independently.
- Pin output
 - Control of output from the TMO0 pin by the OS3 to OS0 bits in TCSR_0 is in ac with the 16-bit compare-match conditions.
 - Control of output from the TMO1 pin by the OS3 to OS0 bits in TCSR_1 is in ac with the lower 8-bit compare-match conditions.

11.6.2 Compare-Match Count Mode

When the CKS2 to CKS0 bits in TCR_1 are B'100, TCNT_1 counts compare-match A f 0. Channels 0 and 1 are controlled independently. Conditions such as setting of the CMI generation of interrupts, output from the TMO pin, and counter clearing are in accordance settings for each channel.

RENESAS

Interrupt source	Description	Flag	DTC Activation*	Interrup Priority
CMIA0	TCORA_0 compare-match	CMFA	Possible	High
CMIB0	TCORB_0 compare-match	CMFB	Possible	_ ▲
OVI0	TCNT_0 overflow	OVF	Not possible	_
CMIA1	TCORA_1 compare-match	CMFA	Possible	_
CMIB1	TCORB_1 compare-match	CMFB	Possible	_
OVI1	TCNT_1 overflow	OVF	Not possible	_
CMIA2	TCORA_2 compare-match	CMFA	Possible	_
CMIB2	TCORB_2 compare-match	CMFB	Possible	_
OVI2	TCNT_2 overflow	OVF	Not possible	
CMIA3	TCORA_3 compare-match	CMFA	Possible	
CMIB3	TCORB_3 compare-match	CMFB	Possible	•
OVI3	TCNT_3 overflow	OVF	Not possible	Low

Note: This list shows the initial state directly after the reset. Relative channel priorities ca changed by the interrupt controller.

11.7.2 A/D Converter Activation

The A/D converter can be activated only by channel 0 compare match A.

If the ADTE bit in TCSR0 is set to 1 when the CMFA flag is set to 1 by the occurrence o 0 compare match A, a request to start A/D conversion is sent to the A/D converter. If the timer conversion start trigger has been selected on the A/D converter side at this time, A/conversion is started.

Rev. 6.00 Sep. 24, 2009 Page 370 of 928 REJ09B0099-0600

takes priority, so that the counter is cleared and the write is not performed. Figure 11.10 this operation.

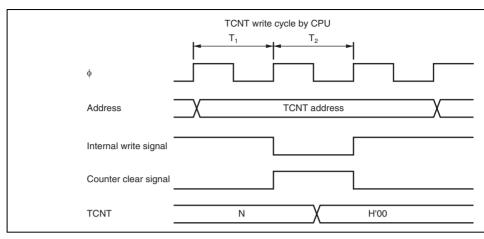


Figure 11.10 Contention between TCNT Write and Clear

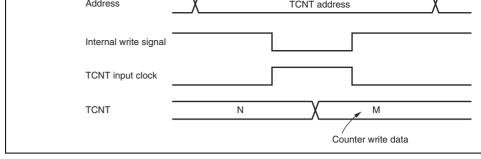


Figure 11.11 Contention between TCNT Write and Increment

Rev. 6.00 Sep. 24, 2009 Page 372 of 928 REJ09B0099-0600

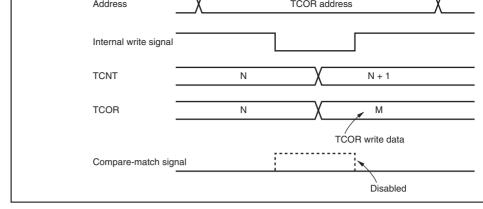


Figure 11.12 Contention between TCOR Write and Compare-Match

11.8.5 Contention between Compare-Matches A and B

If compare-matches A and B occur at the same time, the 8-bit timer operates in accordant the priorities for the output states set for compare-match A and compare-match B, as she table 11.3.

Table 11.3 Timer Output Priorities

Output Setting	Prio
Toggle output	High
1 output	↑
0 output	
No change	Low

	Rev. 6.00	Sep. 24,	2009	Pag
RENESAS			R	EJ09

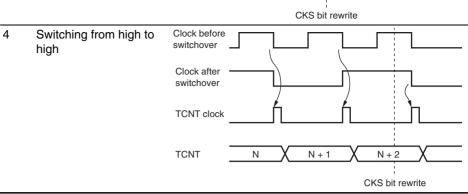

Enoneous incrementation can also happen when switching between internal and external

Table 11.4 Switching of Internal Clock and TCNT Operation

No.	Timing of Switchover by Means of CKS1 and CKS0 Bits	TCNT Clock Operation
1	Switching from low to low* ¹	Clock before switchover
		Clock after switchover
		TCNT N X N + 1 X
		CKS bit rewrite
2	Switching from low to high* ²	Clock before switchover
		Clock after switchover
		TCNT N N + 1 N + 2 X
		CKS bit rewrite

Rev. 6.00 Sep. 24, 2009 Page 374 of 928 REJ09B0099-0600

- Notes: 1. Includes switching from low to stop, and from stop to low.
 - 2. Includes switching from stop to high.
 - 3. Includes switching from high to stop.
 - 4. Generated on the assumption that the switchover is a falling edge; TCNT is incremented.

operating. This mode should not be set.

Rev. 6.00 Sep. 24, 2009 Page 376 of 928 REJ09B0099-0600

12.1 Features

- Selectable from eight counter input clocks for WDT_0 Selectable from 16 counter input clocks for WDT_1
- Switchable between watchdog timer mode and interval timer mode

Watchdog timer mode

- If the counter in WDT_0 overflows, it is possible to select whether this LSI is internation or not
- Power-on reset and manual reset are selectable for internal reset
- If the counter in WDT_1 overflows, it is possible to select whether this LSI is intern at a power-on timing or the internal NMI interrupt is generated

Interval timer mode

- If the counter overflows, the WDT generates an interval timer interrupt (WOVI)
- Selected clock can be output from BUZZ output pin (WDT_1)

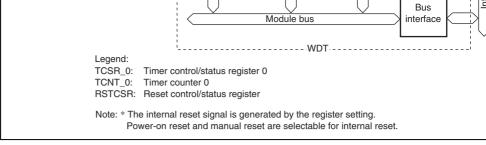


Figure 12.1 Block Diagram of WDT_0 (1)

Rev. 6.00 Sep. 24, 2009 Page 378 of 928 REJ09B0099-0600

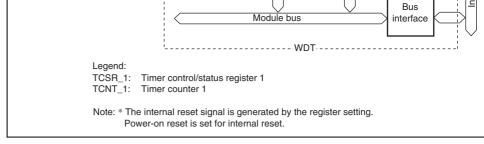


Figure 12.1 Block Diagram of WDT_1 (2)

12.2 Input/Output Pin

Table 12.1 shows the WDT pin.

Table 12.1 Pin Configuration

Name	Symbol	Input/Output	Function
Buzz output	BUZZ	Output	Clock output selected at WD

RENESAS

• Reset control/status register (RSTCSR)

12.3.1 Timer Counter (TCNT)

TCNT is an 8-bit readable/writable up-counter. TCNT is initialized to H'00 when the TM TCSR is cleared to 0.

To initialize TCNT to H'00 during timer operation, write a value of H'00 directly to TCN details, see 12.6.7, Initialization of TCNT by the TME Bit.

12.3.2 Timer Control/Status Register

TCSR_0

٠

TCSR functions include selecting the clock source to be input to TCNT and the timer mo

Initial Bit Value R/W Description Bit Name 7 R/(W)*1 OVF 0 **Overflow Flag** Indicates that TCNT has overflowed. Only a 0 can written to this bit, to clear the flag. [Setting condition] When TCNT overflows (changes from H'FF to H'0 However, when internal reset request generation i selected in watchdog timer mode, OVF is cleared automatically by the internal reset. [Clearing condition] Cleared by reading TCSR $*^2$ when OVF = 1, then v to OVF

Rev. 6.00 Sep. 24, 2009 Page 380 of 928

REJ09B0099-0600

RENESAS

				H'00.
4, 3		All 1	_	Reserved
				These bits are always read as 1 and cannot be m
2	CKS2	0	R/W	Clock Select 0 to 2
1	CKS1	0	R/W	These bits select the clock source to be input to
0	CKS0	0	R/W	The overflow frequency ^{*3} for $\phi = 20$ MHz is encl parentheses.
				000: Clock φ/2 (frequency: 25.6 μs)
				001: Clock
				010: Clock
				011: Clock
				100: Clock
				101: Clock
				110: Clock
				111: Clock φ/131072 (frequency: 1.68 s)

Notes: 1. Only 0 can be written for flag clearing.

- 2. When the OVF flag is polled with the interval timer interrupt disabled, read the while it is 1 at least twice.
- The overflow period is the time from when TCNT starts counting up from H'00 overflow occurs.

Renesas

				[Clearing condition]
				Cleared by reading TCSR $*^2$ when OVF = 1, then to OVF
6	WT/IT	0	R/W	Timer Mode Select
				Selects whether the WDT is used as a watchdog interval timer.
				0: Interval timer mode (the interval timer interrupt request to the CPU)
				1: Watchdog timer mode (a power-on reset or the interrupt request to the CPU)
5	TME	0	R/W	Timer Enable
				When this bit is set to 1, TCNT starts counting. V bit is cleared, TCNT stops counting and is initiali H'00.

Rev. 6.00 Sep. 24, 2009 Page 382 of 928 REJ09B0099-0600

				when SLEEP Instruction is executed in high mode or medium-speed mode, transition to s mode, software standby mode, or watch mode made.
				Note: * When transition is made to watch mode sure that high-speed mode is set.
3	RST/NMI	0	R/W	Reset or NMI (REST/NMI)
				Selects either a power-on reset or the NMI inte request when TCNT overflows in watchdog time
				0: NMI interrupt is requested.
				1: Power-on reset is requested.

011: Clock
100: Clock
101: Clock
110: Clock
111: Clock
When PSS = 1:
000: Clock ϕ_{SUB} /2 (frequency: 15.6 ms)
001: Clock ϕ_{SUB} /4 (frequency: 31.3 ms)
010: Clock ϕ_{SUB} /8 (frequency: 62.5 ms)
011: Clock ϕ_{SUB} /16 (frequency: 125 ms)
100: Clock ϕ_{SUB} /32 (frequency: 250 ms)
101: Clock ϕ_{SUB} /64 (frequency: 500 ms)
110: Clock ϕ_{SUB} /128 (frequency: 1 s)
111: Clock $\phi_{sub}/256$ (frequency: 2 s)

Notes: 1. Only 0 can be written, for flag clearing.

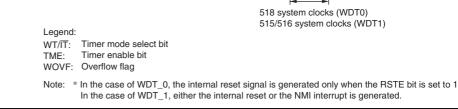
- 2. When the OVF flag is polled with the interval timer interrupt disabled, read the while it is 1 at least twice.
- 3. The overflow period is the time from when TCNT starts counting up from H'00 overflow occurs.

Rev. 6.00 Sep. 24, 2009 Page 384 of 928 REJ09B0099-0600

				only 0 can be written, to clear the flag.
				[Setting condition]
				Set when TCNT overflows (changed from H'F in watchdog timer mode
				[Clearing condition]
				Cleared by reading RSTCSR when WOVF = then writing 0 to WOVF
6	RSTE	0	R/W	Reset Enable
				Specifies whether or not a reset signal is gen the chip if TCNT overflows during watchdog t operation.
				0: Reset signal is not generated even if TCNT overflows. (Though this LSI is not reset, TC TCSR in WDT are reset.)
				1: Reset signal is generated if TCNT overflow
5	RSTS	0	R/W	Reset Select
				Selects the type of internal reset, which is generation overflows during watchdog timer operations of the time operation of time operation of the time operation of the time operation of the time operation of the time operation of time operation of the time operation of time operation operation of time operation of time operation ope
				0: Power-on reset
				1: Manual reset
4 to 0		All 1		Reserved
				These bits are always read as 1 and cannot b modified.

itten, u чy ıy

internal reset signal for this LSI is output for 518 system clocks.


When the RST/ $\overline{\text{NMI}}$ bit in TCSR of WDT_1 is set to 1, and if TCNT overflows, the inter signal is output for 516 system clocks. When the RST/ $\overline{\text{NMI}}$ bit is cleared to 0, if TCNT overflows, an NMI interrupt request is generated (for 515 or 516 system clocks when the source is set to ϕ_{sub} (PSS = 1)).

An internal reset request from the watchdog timer and a reset input from the $\overline{\text{RES}}$ pin are treated as having the same vector. If a WDT internal reset request and the $\overline{\text{RES}}$ pin reset of the same time, the $\overline{\text{RES}}$ pin reset has priority and the WOVF bit in RSTCSR is cleared to

An NMI interrupt request from the watchdog timer and an interrupt request from the NM both treated as having the same vector. So, avoid handling an NMI interrupt request from watchdog timer and an interrupt request from the NMI pin at the same time.

Rev. 6.00 Sep. 24, 2009 Page 386 of 928 REJ09B0099-0600

Figure 12.2 Watchdog Timer Mode Operation

12.4.2 Interval Timer Mode

To use the WDT as an internal timer, set the WT/IT bit in TCSR to 0 and the TME bit to

When the WDT is used as an interval timer, an interval timer interrupt (WOVI) is gener time the TCNT overflows. (The NMI interrupt request is not generated.) Therefore, an in can be generated at specified times.

Figure 12.3 Interval Timer Mode Operation

12.4.3 Timing of Setting Overflow Flag (OVF)

The OVF bit in TCSR is set to 1 if TCNT overflows during interval timer operation. At the time, an interval timer interrupt (WOVI) is requested. This timing is shown in figure 12.4

In the case of WDT_1, when an NMI request is selected in watchdog timer mode, if TCN overflows, the OVF bit in TCSR is set to 1 and an NMI interrupt is requested simultaneous

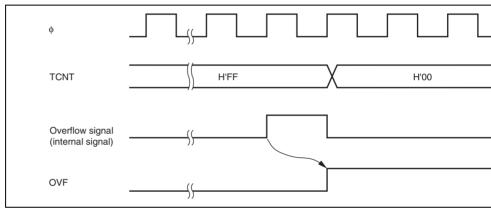


Figure 12.4 Timing of OVF Setting

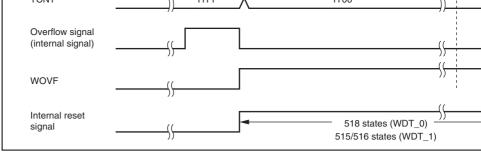


Figure 12.5 Timing of WOVF Setting

12.5 Interrupt Sources

During interval timer mode operation, an overflow generates an interval timer interrupt The interval timer interrupt is requested whenever the OVF flag in TCSR is set to 1. OV cleared to 0 in the interrupt handling routine.

If an NMI request has been chosen in watchdog timer mode, an NMI request is generate TCNT overflow occurs.

Table 12.2 WDT Interrupt Source

Name	Interrupt Source	Interrupt Fla
WOVI	TCNT overflow (interval timer mode)	OVF
NMI	TCNT overflow (watchdog timer mode)	OVF

RENESAS

to TCNT, the upper byte must be H'5A and the lower byte must be data to be written to. Writing to TCSR, the upper byte must be H'A5 and the lower byte must be data to be write Accordingly, the lower byte data is written to TCNT or TCSR.

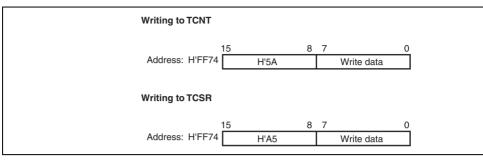


Figure 12.6 Writing to TCNT and TCSR (WDT_0)

Rev. 6.00 Sep. 24, 2009 Page 390 of 928 REJ09B0099-0600

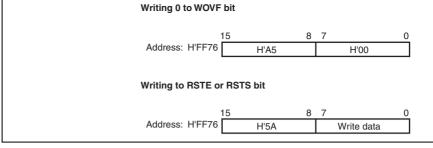
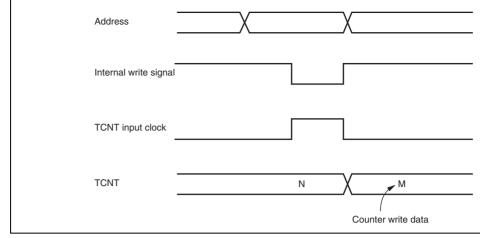
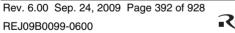


Figure 12.7 Writing to RSTCSR

Reading from TCNT, TCSR and RSTCSR (in the case of WDT_0): These registers at the same way as other registers. The read addresses are allocated in H'FF74 for TCSR, H TCNT, and H'FF77 for RSTCSR.




Figure 12.8 Contention between TCNT Write and Increment

12.6.3 Changing Value of PSS or CKS2 to CKS0

If the PSS or CKS0 to CKS2 bits in TCSR are modified while the WDT is operating, error occur in the incrementation. Software must be used to stop the watchdog timer (by clearing TME bit to 0) before changing the value of the PSS or CKS0 to CKS2 bits.

12.6.4 Switching between Watchdog Timer Mode and Interval Timer Mode

If the mode is switched between watchdog timer mode and interval timer mode while the operating, errors could occur. Software must be used to stop the watchdog timer (by clear TME bit to 0) before switching the timer mode.

When the OVF flag setting conflicts with the OVF flag reading in interval timer mode, we to the OVF flag may not clear the flag even though the OVF flag has been read while it there is a possibility that the OVF flag setting and reading will conflict, such as when the flag is polled with the interval timer interrupt disabled, read the OVF flag while it is 1 at twice before writing 0 to the OVF flag to clear the flag.

12.6.7 Initialization of TCNT by the TME Bit

In high-speed or medium-speed mode, after the counter (TCNT) is initialized by clearin TCSR to 0 while operation is in progress with ϕ SUB (subclock) selected as the dividing (PSS in TCSR set to 1) for the TCNT input clock, TCNT may not initialize properly whonce again set to 1 to activate TCNT operation. To avoid this problem, TCNT by writing of H'00 to it directly.

Rev. 6.00 Sep. 24, 2009 Page 394 of 928 REJ09B0099-0600

13.1 Features

- Choice of asynchronous or clocked synchronous serial communication mode (Because the same pin is used as the clock input/output pin for channel 1 and channel clocks cannot be output at the same time.)
- Full-duplex communication capability

The transmitter and receiver are mutually independent, enabling transmission and re be executed simultaneously.

The double-buffering configuration is adopted in both the transmitter and the receive enabling continuous transmission and continuous reception of serial data.

- On-chip baud rate generator allows any bit rate to be selected External clock can be selected as a transfer clock source (except in Smart Card inter-
- Choice of LSB-first or MSB-first transfer (except in the case of asynchronous mode
- Four interrupt sources

Transmit-end, transmit-data-empty, receive-data-full, and receive error — that can is requests.

The transmit-data-empty and receive-data-full interrupts can be used to activate the transfer controller (DTC).

• Module stop mode can be set

Asynchronous mode

- Data length: 7 or 8 bits
- Stop bit length: 1 or 2 bits
- Parity: Even, odd, or none
- Receive error detection: Parity, overrun, and framing errors

RENESAS

- ratomatic auta retraismission when an error signar is received in transmit mode
- Direct convention and inverse convention both supported

Figure 13.1 shows a block diagram of the SCI.

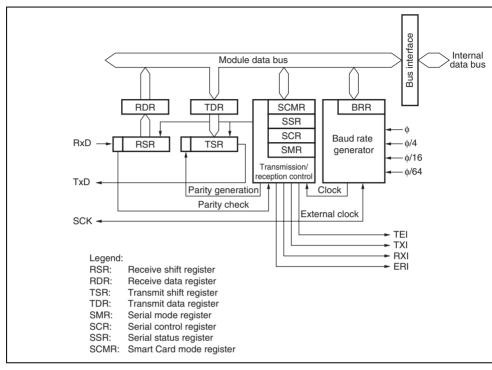


Figure 13.1 Block Diagram of SCI

Rev. 6.00 Sep. 24, 2009 Page 396 of 928 REJ09B0099-0600

I	SCK1* 1/0				
	RxD1	Input	Receive data input in channel 1		
	TxD1	Output	Transmit data output in channel 1		
2	SCK2	I/O	Clock input/output in channel 2		
	RxD2	Input	Receive data input in channel 2		
	TxD2	Output	Transmit data output in channel 2		
3	SCK3	I/O	Clock input/output in channel 3		
	RxD3	Input	Receive data input in channel 3		
	TxD3	Output	Transmit data output in channel 3		
4	SCK4* ²	I/O	Clock input/output in channel 4		
	RxD4	Input	Receive data input in channel 4		
	TxD4	Output	Transmit data output in channel 4		

Notes: 1. Pin names SCK, RxD, and TxD are used in this manual for all channels, omit channel designation.

Because SCK1 and SCK4 are allocated to the same pin, these clocks cannot at the same time.

- Iransmit data register_0 (IDR_0)
- Transmit shift register_0 (TSR_0)
- Serial mode register_0 (SMR_0)
- Serial control register_0 (SCR_0)
- Serial status register_0 (SSR_0)
- Smart Card mode register_0 (SCMR_0)
- Bit rate register_0 (BRR_0)

Channel 1

- Receive shift register_1 (RSR_1)
- Receive data register_1 (RDR_1)
- Transmit data register_1 (TDR_1)
- Transmit shift register_1 (TSR_1)
- Serial mode register_1 (SMR_1)
- Serial control register_1 (SCR_1)
- Serial status register_1 (SSR_1)
- Smart Card mode register_1 (SCMR_1)
- Bit rate register_1 (BRR_1)

Channel 2

- Receive shift register_2 (RSR_2)
- Receive data register_2 (RDR_2)
- Transmit data register_2 (TDR_2)
- Transmit shift register_2 (TSR_2)
- Serial mode register_2 (SMR_2)
- Serial control register_2 (SCR_2)

Rev. 6.00 Sep. 24, 2009 Page 398 of 928 REJ09B0099-0600

- Serial control register_3 (SCR_3)
- Serial status register_3 (SSR_3)
- Smart Card mode register_3 (SCMR_3)
- Bit rate register_3 (BRR_3)

Channel 4

- Receive shift register_4 (RSR_4)
- Receive data register_4 (RDR_4)
- Transmit data register_4 (TDR_4)
- Transmit shift register_4 (TSR_4)
- Serial mode register_4 (SMR_4)
- Serial control register_4 (SCR_4)
- Serial status register_4 (SSR_4)
- Smart Card mode register_4 (SCMR_4)
- Bit rate register_4 (BRR_4)

13.3.1 Receive Shift Register (RSR)

RSR is a shift register that is used to receive serial data input to the RxD pin and conver parallel data. When one byte of data has been received, it is transferred to RDR automat

RSR cannot be directly accessed by the CPU.

13.3.2 Receive Data Register (RDR)

RDR is an 8-bit register that stores receive data. When the SCI has received one byte of data, it transfers the received serial data from RSR to RDR, where it is stored. After this

Renesas

it transfers the transmit data written in TDR to TSR and starts transmission. As TDR and function as a double buffer in this way, continuous transmit operations are possible. Whe transmits one byte of serial data, if the next transmit data has already been written to TDF transfers the written data to TSR to continue transmission. Although TDR can be read or by the CPU at all times, to achieve reliable serial transmission, write transmit data to TDI once after confirming that the TDRE bit in SSR is set to 1.

TDR is initialized to H'FF by a reset, or in standby mode, watch mode, or module stop models and the stop model watch model and the stop models are stop as a standard stop and the stop as a standard stop as a stop as

13.3.4 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data. To perform serial data transmission, the S transfers transmit data from TDR to TSR, and then sends the data to the TxD pin. TSR ca directly accessed by the CPU.

13.3.5 Serial Mode Register (SMR)

SMR is used to set the SCI's serial transfer format and select the baud rate generator cloc

Some bit functions of SMR differ between normal serial communication interface mode a Card interface mode.

• Normal Serial Communication Interface Mode (When SMIF in SCMR Is 0)

Bit	Bit Name	Initial Value	R/W	Description
7	C/A	0	R/W	Communication Mode
				0: Asynchronous mode
				1: Clocked synchronous mode

Rev. 6.00 Sep. 24, 2009 Page 400 of 928 REJ09B0099-0600

RENESAS

				reception. For a multiprocessor format, parity b and checking are not performed regardless of setting.
4	O/E	0	R/W	Parity Mode (enabled only when the PE bit is 1 asynchronous mode)
				0: Selects even parity.
				When even parity is set, parity bit addition is performed in transmission so that the total n bits in the transmit character plus the parity In reception, a check is performed to see if t number of 1 bits in the receive character plu is even.
				1: Selects odd parity.
				When odd parity is set, parity bit addition is in transmission so that the total number of 1 transmit character plus the parity bit is odd. reception, a check is performed to see if the number of 1 bits in the receive character plu parity bit is odd.
3	STOP	0	R/W	Stop Bit Length (enabled only in asynchronous
				Selects the stop bit length in transmission.
				0: 1 stop bit
				1: 2 stop bits
				In reception, only the first stop bit is checked. If second stop bit is 0, it is treated as the start bit next transmit character.

generator. $00: \phi \operatorname{clock} (n = 0)$ $01: \phi/4 \operatorname{clock} (n = 1)$ $10: \phi/16 \operatorname{clock} (n = 2)$ $11: \phi/64 \operatorname{clock} (n = 3)$ For the relationship between the bit rate register and the baud rate, see section 13.3.9, Bit Rate F (BRR). n is the decimal representation of the val bit rate register.

Rev. 6.00 Sep. 24, 2009 Page 402 of 928 REJ09B0099-0600

				 The TEND flag is generated 12.5 etu (11.5 block transfer mode) after the beginning of bit. Clock output on/off control only 1: GSM mode operation in smart card interface The TEND flag is generated 11.0 etu after beginning of the start bit. In addition to clock output on/off control, hi
6	BLK	0	B/W	fixed control is supported (set using SCR).
O	DLN	U	m/ v v	Setting this bit to 1 allows block transfer mode For details, see section 13.7.3, Block Transfer
				0: Normal smart card interface mode operation value)
				 Error signal transmission, detection, and an data retransmission are performed.
				The TXI interrupt is generated by the TENI
				• The TEND flag is set 12.5 etu (11.0 etu in t mode) after transmission starts.
				1: Operation in block transfer mode
				 Error signal transmission, detection, and and data retransmission are not performed.
				The TXI interrupt is generated by the TDR
				• The TEND flag is set 11.5 etu (11.0 etu in t mode) after transmission starts.

				For details on setting this bit in Smart Card internet mode, see section 13.7.2, Data Format (Except Transfer Mode).
3	BCP1	0	R/W	Basic Clock Pulse 1 and 0
2	BCP0	0	R/W	These bits specify the number of basic clock per 1-bit transfer interval on the Smart Card interface
				00: 32 clock (S = 32)
				01: 64 clock (S = 64)
				10: 372 clock (S = 372)
				11: 256 clock (S = 256)
				For details, see section 13.7.4, Receive Data Sa Timing and Reception Margin. S stands for the v in bit rate register.
1	CKS1	0	R/W	Clock Select 1 and 0
0	CKS0	0	R/W	These bits select the clock source for the baud r generator.
				00: φ clock (n = 0)
				01:
				10:
				11: φ/64 clock (n = 3)
				For the relationship between the bit rate register and the baud rate, see section 13.3.9, Bit Rate F (BRR). n is the decimal representation of the val BRR.
Note:	etu: Eleme	ntary time	e unit (time t	for transfer of 1 bit)

Note: etu: Elementary time unit (time for transfer of 1 bit)

Rev. 6.00 Sep. 24, 2009 Page 404 of 928 REJ09B0099-0600

RENESAS

,		0		
				When this bit is set to 1, the TXI interrupt reque enabled.
				TXI interrupt request cancellation can be perfor reading 1 from the TDRE flag in SSR, then cleat 0, or clearing the TIE bit to 0.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt are enabled.
				RXI and ERI interrupt request cancellation can performed by reading 1 from the RDRF, FER, F ORER flag in SSR, then clearing the flag to 0, o the RIE bit to 0.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is enable
				In this state, serial transmission is started when data is written to TDR and the TDRE flag in SS cleared to 0.
				SMR setting must be performed to decide the to format before setting the TE bit to 1. When this cleared to 0, the transmission operation is disal the TDRE flag is fixed at 1.

multiprocessor bit is 0 is skipped, and s RDRF, FER, and ORER status flags in On receiving data in which the multipro- bit is automatically cleared and normal resumed. For details, see section 13.5, Communication Function.When receive data including MPB = 0 is receive data transfer from RSR to RDR detection, and setting of the RERF, FEI flags in SSR, are not performed.When receive data including MPB = 1 is MPB bit in SSR is set to 1, the MPIE bit automatically, and generation of RXI ar (when the TIE and RIE bits in SCR are and ORER flag setting are enabled.2TEIE0R/WTransmit End Interrupt Enable When this bit is set to 1, TEI interrupt re	3	MPIE	0	R/W	Multiprocessor Interrupt Enable (enabled only w MP bit in SMR is 1 in asynchronous mode)
2 TEIE 0 R/W Transmit End Interrupt Enable When this bit is set to 1, TEI interrupt res					When this bit is set to 1, receive data in which th multiprocessor bit is 0 is skipped, and setting of RDRF, FER, and ORER status flags in SSR is p On receiving data in which the multiprocessor bi bit is automatically cleared and normal reception resumed. For details, see section 13.5, Multiproc Communication Function.
MPB bit in SSR is set to 1, the MPIE bit automatically, and generation of RXI are (when the TIE and RIE bits in SCR are and ORER flag setting are enabled. 2 TEIE 0 R/W Transmit End Interrupt Enable When this bit is set to 1, TEI interrupt restrictions					When receive data including MPB = 0 is received receive data transfer from RSR to RDR, received detection, and setting of the RERF, FER, and OI flags in SSR, are not performed.
When this bit is set to 1, TEI interrupt re					When receive data including MPB = 1 is received MPB bit in SSR is set to 1, the MPIE bit is cleared automatically, and generation of RXI and ERI int (when the TIE and RIE bits in SCR are set to 1) and ORER flag setting are enabled.
	2	TEIE	0	R/W	Transmit End Interrupt Enable
TEL cancellation can be performed by r					When this bit is set to 1, TEI interrupt request is
TDRE flag in SSR, then clearing it to 0					TEI cancellation can be performed by reading 1 TDRE flag in SSR, then clearing it to 0 and clear TEND flag to 0, or clearing the TEIE bit to 0.

Rev. 6.00 Sep. 24, 2009 Page 406 of 928 REJ09B0099-0600

Inputs a clock with a frequency 16 times the from the SCK pin. Clocked synchronous mode 0X: Internal clock (SCK pin functions as clock of 1X: External clock (SCK pin functions as clock

Legend:

X: Don't care

				are enabled.
				RXI and ERI interrupt request cancellation can b performed by reading 1 from the RDRF, FER, PI ORER flag in SSR, then clearing the flag to 0, or the RIE bit to 0.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is enabled
				In this state, serial transmission is started when that is written to TDR and the TDRE flag in SSR cleared to 0.
				SMR setting must be performed to decide the tra format before setting the TE bit to 1. When this b cleared to 0, the transmission operation is disable the TDRE flag is fixed at 1.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled.
				Serial reception is started in this state when a sta detected in asynchronous mode or serial clock in detected in clocked synchronous mode.
				SMR setting must be performed to decide the re format before setting the RE bit to 1.
				Clearing the RE bit to 0 does not affect the RDR PER, and ORER flags, which retain their states.

Rev. 6.00 Sep. 24, 2009 Page 408 of 928 REJ09B0099-0600

				and ORER flag setting are enabled.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				Write 0 to this bit in Smart Card interface mode
				TEI cancellation can be performed by reading 1 TDRE flag in SSR, then clearing it to 0 and clea TEND flag to 0, or clearing the TEIE bit to 0.
1	CKE1	0	R/W	Clock Enable 1 and 0
0	CKE0	0	R/W	Enable or disable clock output from the SCK pi clock output can be dynamically switched in GS For details, see section 13.7.8, Clock Output C
				When the GM bit in SMR is 0:
				00: Output disabled (SCK pin can be used as a pin)
				01: Clock output
				1X: Reserved
				When the GM bit in SMR is 1:
				00: Output fixed low
				01: Clock output
				10: Output fixed high
				11: Clock output
Legen	d:			

X: Don't care

Renesas

,	IDHE			Hanomit Bala Hogiotor Empty
				Displays whether TDR contains transmit data.
				[Setting conditions]
				• When the TE bit in SCR is 0
				• When data is transferred from TDR to TSR a can be written to TDR
				[Clearing conditions]
				• When 0 is written to TDRE after reading TDF
				• When the DTC* ² is activated by a TXI interrure request and writes data to TDR
6	RDRF	0	R/(W)*1	Receive Data Register Full
				Indicates that the received data is stored in RDF
				[Setting condition]
				• When serial reception ends normally and rec is transferred from RSR to RDR
				[Clearing conditions]
				• When 0 is written to RDRF after reading RDI
				 When the DTC*² is activated by an RXI inter- transfers data from RDR
				The RDRF flag is not affected and retains their p values when the RE bit in SCR is cleared to 0.
				If reception of the next data is completed while the flag is still set to 1, an overrun error will occur and receive data will be lost.

Rev. 6.00 Sep. 24, 2009 Page 410 of 928 REJ09B0099-0600

				the ORER flag is set to 1. In clocked synchrono serial transmission cannot be continued either.
				[Clearing condition]
				When 0 is written to ORER after reading OF
				The ORER flag is not affected and retains its pastate when the RE bit in SCR is cleared to 0.
4	FER	0	R/(W)*1	Framing Error
				Indicates that a framing error occurred during reasynchronous mode, causing abnormal termina
				[Setting condition]
				• When the stop bit is 0
				In 2 stop bit mode, only the first stop bit is check value to 1; the second stop bit is not checked. I framing error occurs, the receive data is transfer RDR but the RDRF flag is not set. Also, subset serial reception cannot be continued while the I set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
				[Clearing condition]
				When 0 is written to FER after reading FER
				In 2-stop-bit mode, only the first stop bit is chec
				The FER flag is not affected and retains its pre- when the RE bit in SCR is cleared to 0.

				 is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either. [Clearing condition] When 0 is written to PER after reading PER
				The PER flag is not affected and retains its previo when the RE bit in SCR is cleared to 0.
2	TEND	1	R	Transmit End
				Indicates that transmission has been ended.
				[Setting conditions]
				When the TE bit in SCR is 0
				 When TDRE = 1 at transmission of the last b byte serial transmit character
				[Clearing conditions]
				• When 0 is written to TDRE after reading TDF
				 When the DTC*² is activated by a TXI interrurequest and transfers transmit data to TDR
1	MPB	0	R	Multiprocessor Bit
				MPB stores the multiprocessor bit in the receive When the RE bit in SCR is cleared to 0 its previo is retained.
0	MPBT	0	R/W	Multiprocessor Bit Transfer
				MPBT stores the multiprocessor bit to be added transmit data.
Notes:	1. Only a	0 can be v	written to th	nis bit to clear the flag.
	2. This bit	is cleared	by DTC o	nly when DISEL is 0 with the transfer counter othe

3. To clear the flag by using the CPU, write 0 to the flag and then read it once ag

Rev. 6.00 Sep. 24, 2009 Page 412 of 928

REJ09B0099-0600

RENESAS

				• When 0 is written to TDRE after reading TD
				• When the DTC^{*^2} is activated by a TXI interr
				request and writes data to TDR
6	RDRF	0	R/(W)*1	Receive Data Register Full
				Indicates that the received data is stored in RD
				[Setting condition]
				• When serial reception ends normally and re is transferred from RSR to RDR
				[Clearing conditions]
				• When 0 is written to RDRF after reading RD
				 When the DTC*² is activated by an RXI inte transfers data from RDR
				The RDRF flag is not affected and retains their values when the RE bit in SCR is cleared to 0.
				If reception of the next data is completed while flag is still set to 1, an overrun error will occur a receive data will be lost.

				flag is set to 1. In clocked synchronous mode, se transmission cannot be continued, either.
				[Clearing condition]
				• When 0 is written to ORER after reading OR
				The ORER flag is not affected and retains its pre- state when the RE bit in SCR is cleared to 0.
4	ERS	0	R/(W)*1	Error Signal Status
				Indicates that the status of an error, signal 1 returns from the reception side at reception
				[Setting condition]
				• When the low level of the error signal is sam
				[Clearing condition]
				• When 0 is written to ERS after reading ERS
				The ERS flag is not affected and retains its previous when the TE bit in SCR is cleared to 0.

Rev. 6.00 Sep. 24, 2009 Page 414 of 928 REJ09B0099-0600

set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.

[Clearing condition]

• When 0 is written to PER after reading PEF

The PER flag is not affected and retains its pre when the RE bit in SCR is cleared to 0.

			ullu.
			The timing of bit setting differs according to the r setting as follows:
			When GM = 0 and BLK = 0, 12.5 etu after transr starts
			When GM = 0 and BLK = 1, 11.5 etu after transr starts
			When GM = 1 and BLK = 0, 11.0 etu after transn starts
			When GM = 1 and BLK = 1, 11.0 etu after transn starts
			[Clearing conditions]
			When 0 is written to TDRE after reading TDF
			 When the DTC*² is activated by a TXI interru transfers transmit data to TDR
MPB	0	R	Multiprocessor Bit
			This bit is not used in Smart Card interface mod
MPBT	0	R/W	Multiprocessor Bit Transfer
			Write 0 to this bit in Smart Card interface mode.
		-	-

Notes: etu: Elementary time unit (time for transfer of 1 bit)

1. Only 0 can be written to this bit, to clear the flag.

- 2. This bit is cleared by DTC only when DISEL is 0 with the transfer counter othe
- 3. To clear the flag by using the CPU, write 0 to the flag and then read it once ag

Rev. 6.00 Sep. 24, 2009 Page 416 of 928 REJ09B0099-0600

			0: LSB-first in transfer
			1: MSB-first in transfer
			The bit setting is valid only when the transfer dates is 8 bits. For 7-bit data, LSB-first is fixed.
SINV	0	R/W	Smart Card Data Invert
			Specifies inversion of the data logic level. The does not affect the logic level of the parity bit. The parity bit, invert the O/\overline{E} bit in SMR.
			0: TDR contents are transmitted as they are. R data is stored as it is in RDR
			1: TDR contents are inverted before being tran Receive data is stored in inverted form in RE
	1	_	Reserved
			This bit is always read as 1, and cannot be mo
SMIF	0	R/W	Smart Card Interface Mode Select
			This bit is set to 1 to make the SCI operate in S interface mode.
			0: Normal asynchronous mode or clocked sync mode
			1: Smart Card interface mode
		- 1	1

Asynchronous Mode	$B = \frac{\phi \times 10^{6}}{64 \times 2^{2n-1} \times (N+1)}$	Error (%) = { $\frac{\phi \times 10^{6}}{B \times 64 \times 2^{2n-1} \times (N+1)}$ -1
Clocked Synchronous Mode	$B = \frac{\phi \times 10^6}{8 \times 2^{2n-1} \times (N+1)}$	_
Smart Card Interface Mode	$B = \frac{\phi \times 10^{6}}{S \times 2^{2n+1} \times (N+1)}$	Error (%) = { $\frac{\phi \times 10^{6}}{B \times S \times 2^{2n+1} \times (N+1)}$ -1
Legend:		

B: Bit rate (bit/s)

N: BRR setting for baud rate generator ($0 \le N \le 255$)

φ: Operating frequency (MHz)

n and S: Determined by the SMR settings shown in the following tables.

SMF	R Setting	Clock		S	SMR Setting			
CKS1	CKS0			BCP1	BCP0	s		
0	0	φ	0	0	0	32		
0	1	φ/4	1	0	1	64		
1	0	φ /16	2	1	0	372		
1	1	φ/64	3	1	1	256		

Table 13.3 shows sample N settings in BRR in normal asynchronous mode. Table 13.4 sh maximum bit rate for each frequency in normal asynchronous mode. Table 13.6 shows sa settings in BRR in clocked synchronous mode. Table 13.8 shows sample N settings in BF Smart Card interface mode. In Smart Card interface mode, S (the number of basic clock p a 1-bit transfer interval) can be selected. For details, see section 13.7.4, Receive Data Sam Timing and Reception Margin. Tables 13.5 and 13.7 show the maximum bit rates with exclock input.

Rev. 6.00 Sep. 24, 2009 Page 418 of 928 REJ09B0099-0600

RENESAS

1200	0	207	0.16	0	255	0.00	1	64	0.16	1	77	0.16	1	79
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	155	0.16	0	15
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77	0.16	0	79
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38	0.16	0	39
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19	-2.34	0	19
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11	0.00	0	11
38400	_	_	_	0	7	0.00	0	7	1.73	0	9	-2.34	0	9

	Operating Frequency φ (MHz)											
		1	4		14.7456			16			17.:	
Bit Rate (bps)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	
110	2	248	-0.17	3	64	0.70	3	70	0.03	3	75	
150	2	181	0.16	2	191	0.00	2	207	0.16	2	223	
300	2	90	0.16	2	95	0.00	2	103	0.16	2	111	
600	1	181	0.16	1	191	0.00	1	207	0.16	1	223	
1200	1	90	0.16	1	95	0.00	1	103	0.16	1	111	
2400	0	181	0.16	0	191	0.00	0	207	0.16	0	223	
4800	0	90	0.16	0	95	0.00	0	103	0.16	0	111	
9600	0	45	-0.93	0	47	0.00	0	51	0.16	0	55	
19200	0	22	-0.93	0	23	0.00	0	25	0.16	0	27	
31250	0	13	0.00	0	14	-1.70	0	15	0.00	0	16	
38400	—		_	0	11	0.00	0	12	0.16	0	13	

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

RENESAS

2400	0	200	0.10	0	200	0.00	1	04	0.10	1	00
4800	0	116	0.16	0	127	0.00	0	129	0.16	0	162
9600	0	58	-0.69	0	63	0.00	0	64	0.16	0	80
19200	0	28	1.02	0	31	0.00	0	32	-1.36	0	40
31250	0	17	0.00	0	19	-1.70	0	19	0.00	0	24
38400	0	14	-2.34	0	15	0.00	0	15	1.73	0	19

Table 13.4 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

φ (MHz)	Maximum Bit Rate (bit/s)	n	Ν
8	250000	0	0
9.8304	307200	0	0
10	312500	0	0
12	375000	0	0
12.288	384000	0	0
14	437500	0	0
14.7456	460800	0	0
16	500000	0	0
17.2032	537600	0	0
18	562500	0	0
19.6608	614400	0	0
20	625000	0	0
25	781250	0	0

Rev. 6.00 Sep. 24, 2009 Page 420 of 928 REJ09B0099-0600

14.7456	3.6864	230400
16	4.0000	250000
17.2032	4.3008	268800
18	4.5000	281250
19.6608	4.9152	307200
20	5.0000	312500
25	6.2500	390625

10k	0	199	0	249	1	99	1	124	1
25k	0	79	0	99	0	159	0	199	0
50k	0	39	0	49	0	79	0	99	0
100k	0	19	0	24	0	39	0	49	0
250k	0	7	0	9	0	15	0	19	0
500k	0	3	0	4	0	7	0	9	_
1M	0	1			0	3	0	4	_
2.5M			0	0*			0	1	_
5M							0	0*	_

Legend:

Blank: Cannot be set.

-: Can be set, but there will be a degree of error.

*: Continuous transfer is not possible.

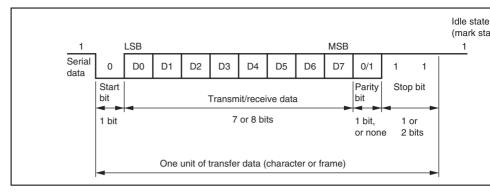
Rev. 6.00 Sep. 24, 2009 Page 422 of 928 REJ09B0099-0600

25	4.1667	4166666.7

Table 13.8Examples of Bit Rate for Various BRR Settings (Smart Card Interface
(When n = 0 and S = 372)

				Operating Fr	equene	cy φ (MHz)		
Bit Rate	10.00			10.7136		13.00	14.	
(bps)	Ν	Error (%)	Ν	Error (%)	Ν	Error (%)	Ν	E
9600	1	30.00	1	25.00	1	8.99	1	(

	Operating Frequency φ (MHz)								
Bit Rate	16.00			18.00		20.00	25		
(bps)	Ν	Error (%)	Ν	Error (%)	Ν	Error (%)	Ν	E	
9600	1	12.01	2	15.99	2	6.66	3	1	


Renesas

20.00	26882	0	0
25.00	33602	0	0

Rev. 6.00 Sep. 24, 2009 Page 424 of 928 REJ09B0099-0600

8th pulse of a clock with a frequency of 16 times the length of one bit, so that the transfe latched at the center of each bit.

Figure 13.2 Data Format in Asynchronous Communication (Example with 8-Bit Data, Parity, Two Stop Bits)

13.4.1 Data Transfer Format

Table 13.10 shows the data transfer formats that can be used in asynchronous mode. An transfer formats can be selected according to the SMR setting. For details on the multipubit, see section 13.5, Multiprocessor Communication Function.

0	1	0	1	S 8-bit data P ST
1	0	0	0	S 7-bit data STOP
1	0	0	1	S 7-bit data STOPSTOP
1	1	0	0	S 7-bit data P STOP
1	1	0	1	S 7-bit data P STOPST
0	_	1	0	S 8-bit data MPB ST
0	_	1	1	S 8-bit data MPBST
1	_	1	0	S 7-bit data MPB STOP
1	_	1	1	S 7-bit data MPB STOPST

Legend:

S: Start bit

STOP: Stop bit

P: Parity bit

MPB: Multiprocessor bit

Rev. 6.00 Sep. 24, 2009 Page 426 of 928 REJ09B0099-0600

... Formula (1)

Where M: Reception margin (%)

- N: Ratio of bit rate to clock (N = 16)
- D: Clock duty (D = 0 to 1.0)
- L: Frame length (L = 9 to 12)
- F: Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0, D (clock duty) = 0.5, (ratio of bit rate to clock) = 16 in formula (1), the reception margin can be given by the f

$$M = \{0.5 - 1/(2 \times 16)\} \times 100 \ [\%] = 46.875\%$$

However, this is only the computed value, and a margin of 20% to 30% should be allow system design.

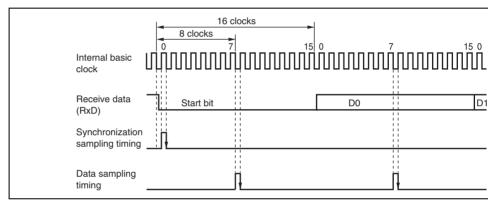


Figure 13.3 Receive Data Sampling Timing in Asynchronous Mode

RENESAS

6

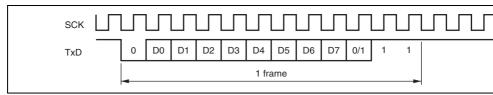


Figure 13.4 Relationship between Output Clock and Transfer Data Phase (Asynchronous Mode)

13.4.4 SCI Initialization (Asynchronous Mode)

Before transmitting and receiving data, you should first clear the TE and RE bits in SCR initialize the SCI as described in figure 13.5. When the operating mode, or transfer forma changed for example, the TE and RE bits must be cleared to 0 before making the change following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that the RE bit to 0 does not initialize the contents of the RDRF, PER, FER, and ORER flags, contents of RDR. When the external clock is used in asynchronous mode, the clock must supplied even during initialization.

Rev. 6.00 Sep. 24, 2009 Page 428 of 928 REJ09B0099-0600

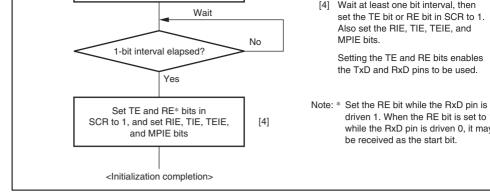


Figure 13.5 Sample SCI Initialization Flowchart

- duisinit duid to TDT before duisinission of the current duid has been compl
- 3. Data is sent from the TxD pin in the following order: start bit, transmit data, parity bit multiprocessor bit (may be omitted depending on the format), and stop bit.
- 4. The SCI checks the TDRE flag at the timing for sending the stop bit.
- 5. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, an serial transmission of the next frame is started.
- 6. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then t state" is entered, in which 1 is output. If the TEIE bit in SCR is set to 1 at this time, a interrupt request is generated.

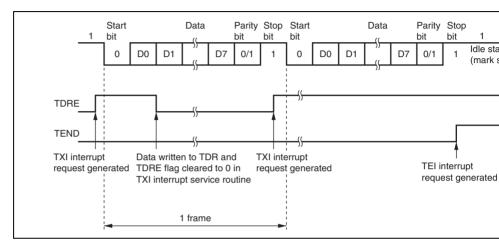
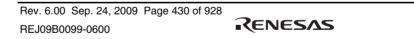



Figure 13.6 Example of Operation in Transmission in Asynchronous Mode (Example with 8-Bit Data, Parity, One Stop Bit)

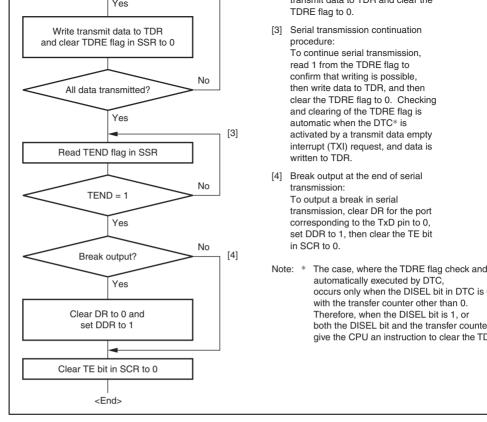


Figure 13.7 Sample Serial Transmission Flowchart

RENESAS

- Temamb to be bet to 1.
- 3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferr RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrupt request is generated at the set of the RIE bit in SCR is set to 1 at this time.
- 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and data is transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an ERI interrur request is generated.
- 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive da transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt requ generated. Continuous reception is possible because the RXI interrupt routine reads th data transferred to RDR before reception of the next receive data has been completed.

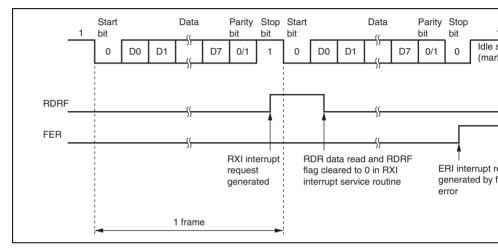
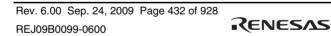



Figure 13.8 Example of SCI Operation in Reception (Example with 8-Bit Data, Parity, One Stop Bit)

1	1	1	1	Lost	Overrun error + frami parity error
0	0	1	1	Transferred to RDR	Framing error + parity
1	1	0	1	Lost	Overrun error + parity
1	1	1	0	Lost	Overrun error + frami
0	0	0	1	Transferred to RDR	Parity error
0	0	1	0	Transferred to RDR	Framing error

Note: * The RDRF flag retains the state it had before data reception.

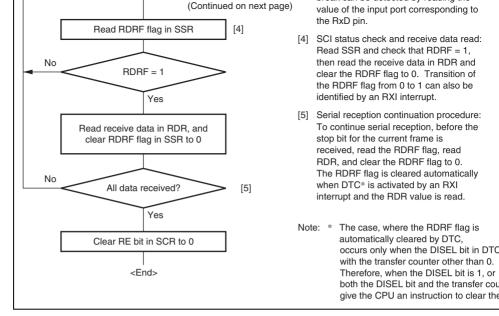


Figure 13.9 Sample Serial Reception Data Flowchart (1)

Rev. 6.00 Sep. 24, 2009 Page 434 of 928 REJ09B0099-0600

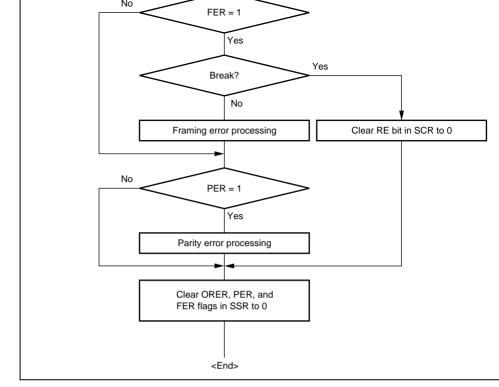


Figure 13.9 Sample Serial Reception Data Flowchart (2)

communication using the multiprocessor format. The transmitting station first sends the I of the receiving station with which it wants to perform serial communication as data with multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit ad with a 1 multiprocessor bit is received, the receiving station compares that dat own ID. The station whose ID matches then receives the data sent next. Stations whose II match continue to skip data until data with a 1 multiprocessor bit is again received.

The SCI uses the MPIE bit in SCR to implement this function. When the MPIE bit is set transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status RDRF, FER, and ORER to 1, are inhibited until data with a 1 multiprocessor bit is receive reception of a receive character with a 1 multiprocessor bit, the MPB bit in SSR is set to MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCI at this time, an RXI interrupt is generated.

When the multiprocessor format is selected, the parity bit setting is rendered invalid. All settings are the same as those in normal asynchronous mode. The clock used for multiprocommunication is the same as that in normal asynchronous mode.

Rev. 6.00 Sep. 24, 2009 Page 436 of 928 REJ09B0099-0600

	specification	receiving station specified by iD
Legend: MPB: Multiproces	ssor bit	

Figure 13.10 Example of Communication Using Multiprocessor Format (Transmission of Data H'AA to Receiving Station A)

Rev. 6.00 Sep. 24, 2009 Page 438 of 928 REJ09B0099-0600

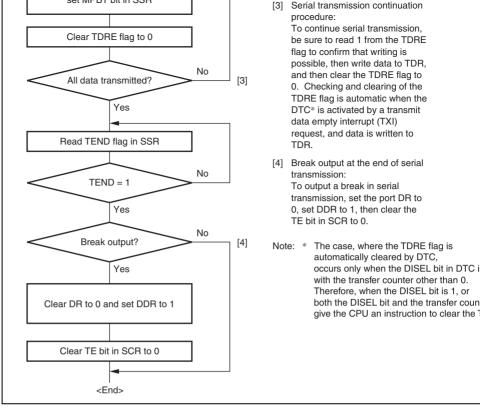


Figure 13.11 Sample Multiprocessor Serial Transmission Flowchart

Renesas

Rev. 6.00 Sep. 24, 2009 Page 440 of 928 REJ09B0099-0600

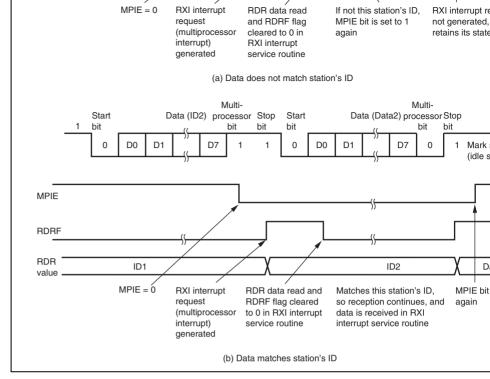
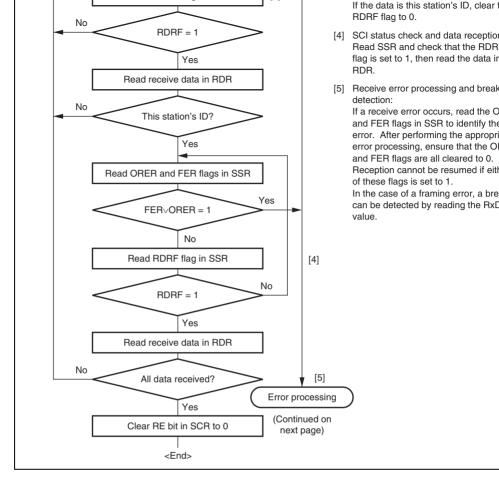
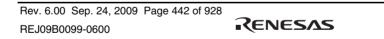




Figure 13.12 Example of SCI Operation in Reception (Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)

Rev. 6.00

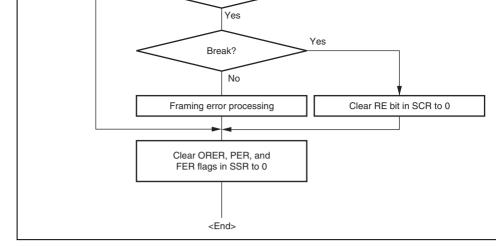


Figure 13.13 Sample Multiprocessor Serial Reception Flowchart (2)

transfer.

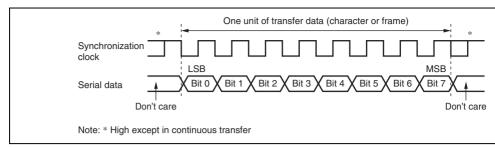


Figure 13.14 Data Format in Clocked Synchronous Communication (For LSB-

13.6.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCK pin can be selected, according to the setting of Cl CKE1 bits in SCR. When the SCI is operated on an internal clock, the serial clock is output the SCK pin. Eight serial clock pulses are output in the transfer of one character, and whe transfer is performed the clock is fixed high.

Rev. 6.00 Sep. 24, 2009 Page 444 of 928 REJ09B0099-0600

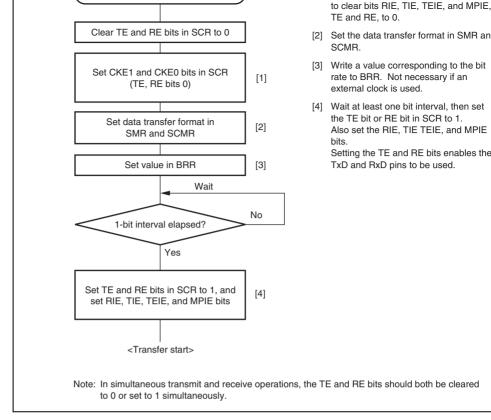


Figure 13.15 Sample SCI Initialization Flowchart

- next duissint duit to TER before duissinssion of the current duitsint duit has been e
- 3. 8-bit data is sent from the TxD pin synchronized with the output clock when output comode has been specified, and synchronized with the input clock when use of an extern has been specified.
- 4. The SCI checks the TDRE flag at the timing for sending the MSB (bit 7).
- 5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial trans of the next frame is started.
- 6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag mai output state of the last bit. If the TEIE bit in SCR is set to 1 at this time, a TEI interrup is generated. The SCK pin is fixed high.

Rev. 6.00 Sep. 24, 2009 Page 446 of 928 REJ09B0099-0600

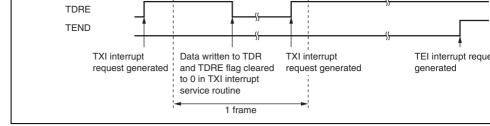
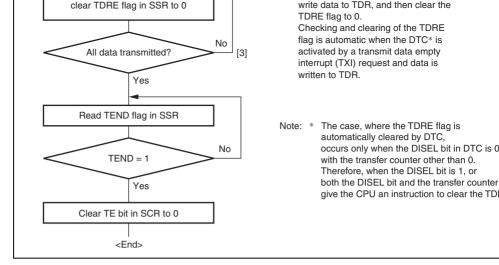



Figure 13.16 Sample SCI Transmission Operation in Clocked Synchronous I

Rev. 6.00 Sep. 24, 2009 Page 448 of 928 REJ09B0099-0600

- Refig hug femalis to be set to 1.
- 3. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive c transferred to RDR. If the RIE bit in SCR is set to 1 at this time, an RXI interrupt rec generated. Continuous reception is possible because the RXI interrupt routine reads data transferred to RDR before reception of the next receive data has finished.

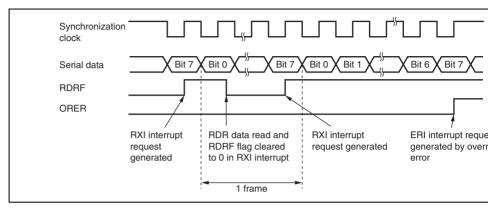
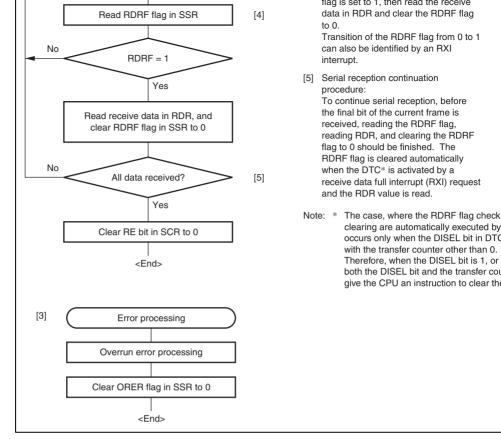


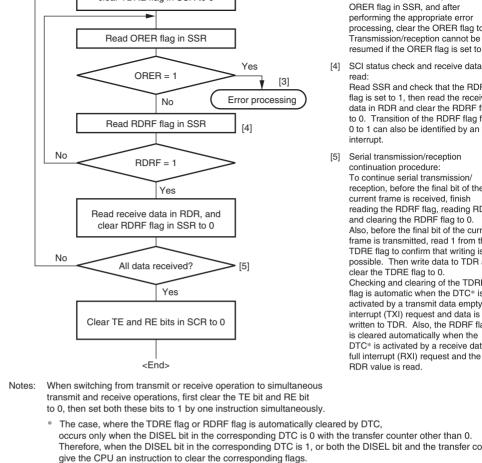
Figure 13.18 Example of SCI Operation in Reception

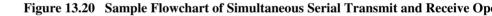
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear th FER, PER, and RDRF bits to 0 before resuming reception. Figure 13.19 shows a sample chart for serial data reception.

An overrun error occurs or synchronous clocks are output until the RE bit is cleared to 0 internal clock is selected and only receive operation is possible. When a transmission an reception will be carried out in a unit of one frame, be sure to carry out a dummy transm with only one frame by the simultaneous transmit and receive operations at the same tim

RENESAS




Figure 13.19 Sample Serial Reception Flowchart


Rev. 6.00 Sep. 24, 2009 Page 450 of 928 REJ09B0099-0600

RENESAS

and PER) are cleared to 0, simultaneously set TE and RE to T with a single instruction.

Rev. 6.00 Sep. 24, 2009 Page 452 of 928 REJ09B0099-0600

ORER flag in SSR, and after performing the appropriate error processing, clear the ORER flag to Transmission/reception cannot be resumed if the ORER flag is set to

[4] SCI status check and receive data read:

Read SSR and check that the RDF flag is set to 1, then read the receiv data in RDR and clear the RDRF f to 0. Transition of the RDRF flag f 0 to 1 can also be identified by an interrupt.

[5] Serial transmission/reception continuation procedure: To continue serial transmission/ reception, before the final bit of the current frame is received, finish reading the RDRF flag, reading RI and clearing the RDRF flag to 0. Also, before the final bit of the curr frame is transmitted, read 1 from the TDRE flag to confirm that writing is possible. Then write data to TDR clear the TDRE flag to 0. Checking and clearing of the TDRI flag is automatic when the DTC* is activated by a transmit data empty interrupt (TXI) request and data is written to TDR. Also, the RDRF fla is cleared automatically when the DTC* is activated by a receive dat full interrupt (RXI) request and the RDR value is read.

pin and RxD pin should be connected to the LSI pin. The data transmission line should lup to the power supply (other than channel 2: P2Vcc, channel 2: P1Vcc) with a resistor. card is not connected, and the TE and RE bits are both set to 1, closed transmission/rece possible, enabling self-diagnosis to be carried out. When the clock generated on the SCI supplied to an IC card, the SCK pin output is input to the CLK pin of the IC card. When internal clock is used in an IC card, this connection is not necessary. This LSI port output as the reset signal. Adding to these connections, connection of pins with power supply a is necessary.

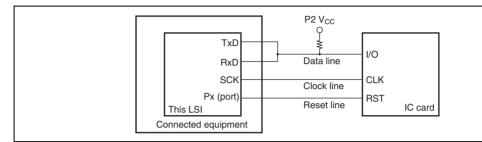


Figure 13.21 (1) Schematic Diagram of Smart Card Interface Pin Connecti (Channels 0, 1, 3, and 4)

13.7.2 Data Format (Except for Block Transfer Mode)

Figure 13.22 shows the transfer data format in Smart Card interface mode.

- One frame consists of 8-bit data plus a parity bit in asynchronous mode.
- In transmission, a guard time of at least 2 etu (Elementary time unit: the time for trans one bit) is left between the end of the parity bit and the start of the next frame.
- If a parity error is detected during reception, a low error signal level is output for one period, 10.5 etu after the start bit.
- If an error signal is sampled during transmission, the same data is retransmitted autom after a delay of 2 etu or longer.

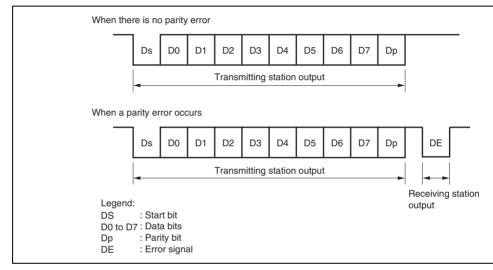
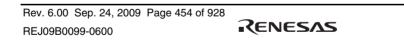



Figure 13.22 Normal Smart Card Interface Data Format

bits in SCMR to 0. According to Smart Card regulations, clear the O/E bit in SMR to 0 t even parity mode.

	Z Z								(Z) State
Ds	D7 D6	D5	D4	D3	D2	D1	D0	Dp	

Figure 13.24 Inverse Convention (SDIR = SINV = $O/\overline{E} = 1$)

With the inverse convention type, the logic 1 level corresponds to state A and the logic 0 state Z, and transfer is performed in MSB-first order. The start character data for the abort H'3F. For the inverse convention type, set the SDIR and SINV bits in SCMR to 1. Acco Smart Card regulations, even parity mode is the logic 0 level of the parity bit, and correst state Z. In this LSI, the SINV bit inverts only data bits D0 to D7. Therefore, set the O/\overline{E} SMR to 1 to invert the parity bit for both transmission and reception.

13.7.3 Block Transfer Mode

Operation in block transfer mode is the same as that in the normal Smart Card interface except for the following points.

- In reception, though the parity check is performed, no error signal is output even if a detected. However, the PER bit in SSR is set to 1 and must be cleared before receivi parity bit of the next frame.
- In transmission, a guard time of at least 1 etu is left between the end of the parity bit start of the next frame.
- In transmission, because retransmission is not performed, the TEND flag is set to 1, after transmission start.

RENESAS

in figure 13.25, by sampling receive data at the rising-edge of the 16th, 32nd, 186th, or 12 pulse of the basic clock, data can be latched at the middle of the bit. The reception margin by the following formula.

$$M = \left| (0.5 - \frac{1}{2N}) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

Where M: Reception margin (%)

N: Ratio of bit rate to clock (N = 32, 64, 372, and 256)

D: Clock duty (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock frequency deviation

Assuming values of F = 0, D = 0.5 and N = 372 in the above formula, the reception marg formula is as follows.

Rev. 6.00 Sep. 24, 2009 Page 456 of 928 REJ09B0099-0600

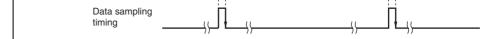


Figure 13.25 Receive Data Sampling Timing in Smart Card Interface Mo (Using Clock of 372 Times the Transfer Rate)

13.7.5 Initialization

Before transmitting and receiving data, initialize the SCI as described below. Initializati necessary when switching from transmit mode to receive mode, or vice versa.

- 1. Clear the TE and RE bits in SCR to 0.
- 2. Clear the error flags ERS, PER, and ORER in SSR to 0.
- 3. Set the GM, BLK, O/\overline{E} , BCP0, BCP1, CKS0, and CKS1 bits in SMR. Set the PE bit
- Set the SMIF, SDIR, and SINV bits in SCMR.
 When the SMIF bit is set to 1, the TxD and RxD pins are both switched from ports t and are placed in the high-impedance state.
- 5. Set the value corresponding to the bit rate in BRR.
- 6. Set the CKE0 and CKE1 bits in SCR. Clear the TIE, RIE, TE, RE, MPIE, and TEIE If the CKE0 bit is set to 1, the clock is output from the SCK pin.
- 7. Wait at least one bit interval, then set the TIE, RIE, TE, and RE bits in SCR. Do not bit and RE bit at the same time, except for self-diagnosis.

To switch from receive mode to transmit mode, after checking that the SCI has finished initialize the SCI, and set RE to 0 and TE to 1. Whether SCI has finished reception or no checked with the RDRF, PER, or ORER flags. To switch from transmit mode to receive after checking that the SCI has finished transmission, initialize the SCI, and set TE to 0 1. Whether SCI has finished transmission or not can be checked with the TEND flag.

Renesas

- 2. The TEND bit in SSR is not set for a frame in which an error signal indicating an abn is received. Data is retransferred from TDR to TSR, and retransmitted automatically.
- 3. If an error signal is not sent back from the receiving end, the ERS bit in SSR is not se Transmission of one frame, including a retransfer, is judged to have been completed, a TEND bit in SSR is set to 1. If the TIE bit in SCR is enabled at this time, a TXI interr request is generated. Writing transmit data to TDR transfers the next transmit data.

Figure 13.28 shows a flowchart for transmission. A sequence of transmit operations can be performed automatically by specifying the DTC to be activated with a TXI interrupt sour transmit operation, the TDRE flag is set to 1 at the same time as the TEND flag in SSR is a TXI interrupt will be generated if the TIE bit in SCR has been set to 1. If the TXI reque designated beforehand as a DTC activation source, the DTC will be activated by the TXI and transfer of the transmit data will be carried out. At this moment, when the DISEL bit is 0 and the transfer counter is other than 0, the TDRE and TEND flags are automatically to 0 when data is transferred by the DTC. When the DISEL bit in the corresponding DTC both the DISEL bit and the transfer counter are 0, flags are not cleared although the trans written to TDR by DTC. Consequently, give the CPU an instruction of flag clear process addition, in the event of an error, the SCI retransmits the same data automatically. During period, the TEND flag remains cleared to 0 and the DTC is not activated. Therefore, the DTC will automatically transmit the specified number of bytes in the event of an error, in retransmission. However, the ERS flag is not cleared automatically when an error occurs the RIE bit should be set to 1 beforehand so that an ERI request will be generated in the e an error, and the ERS flag will be cleared.

When performing transfer using the DTC, it is essential to set and enable the DTC before out SCI setting. For details on the DTC setting procedures, see section 8, Data Transfer C (DTC).

Rev. 6.00 Sep. 24, 2009 Page 458 of 928 REJ09B0099-0600

The timing for setting the TEND flag depends on the value of the GM bit in SMR. The set timing is shown in figure 13.27.

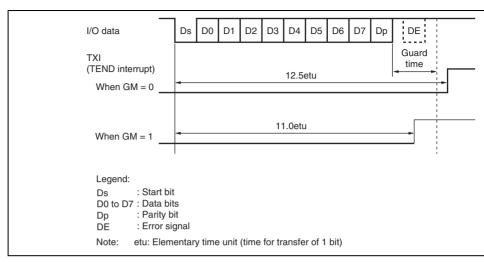


Figure 13.27 TEND Flag Generation Timing in Transmission Operation

Figure 13.28 Example of Transmission Processing Flow

Rev. 6.00 Sep. 24, 2009 Page 460 of 928 REJ09B0099-0600

the receive operation is judged to have been completed normally, and the RDRF flag automatically set to 1. If the RIE bit in SCR is enabled at this time, an RXI interrupt generated.

Figure 13.30 shows a flowchart for reception. A sequence of receive operations can be p automatically by specifying the DTC to be activated with an RXI interrupt source. In a r operation, an RXI interrupt request is generated when the RDRF flag in SSR is set to 1. request is designated beforehand as a DTC activation source, the DTC will be activated RXI request, and the receive data will be transferred. The RDRF flag is cleared to 0 auto when the DISEL bit in DTC is 0 and the transfer counter is other than 0. When the DISE DTC is 1, or both the DISEL bit and the transfer counter are 0, flags are not cleared alth receive data is transferred by DTC. Consequently, give the CPU an instruction of flag cl processing. If an error occurs in receive mode and the ORER or PER flag is set to 1, a tr error interrupt (ERI) request will be generated. Hence, so the error flag must be cleared event of an error, the DTC is not activated and receive data is skipped. Therefore, receive transferred for only the specified number of bytes in the event of an error. Even when a error occurs in receive mode and the PER flag is set to 1, the data that has been received transferred to RDR and can be read from there.

Note: For details on receive operations in block transfer mode, see section 13.4, Opera Asynchronous Mode.

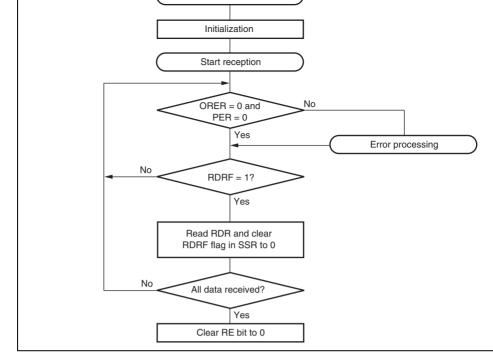


Figure 13.30 Example of Reception Processing Flow

13.7.8 Clock Output Control

When the GM bit in SMR is set to 1, the clock output level can be fixed with bits CKE0 a CKE1 in SCR. At this time, the minimum clock pulse width can be made the specified w Figure 13.31 shows the timing for fixing the clock output level. In this example, GM is so CKE1 is cleared to 0, and the CKE0 bit is controlled.

Rev. 6.00 Sep. 24, 2009 Page 462 of 928 REJ09B0099-0600

standby mode, the following procedures should be followed in order to maintain the clo

Powering On: To secure clock duty from power-on, the following switching procedure followed.

- 1. The initial state is port input and high impedance. Use a pull-up resistor or pull-d resistor to fix the potential.
- 2. Fix the SCK pin to the specified output level with the CKE1 bit in SCR.
- 3. Set SMR and SCMR, and switch to smart card mode operation.
- 4. Set the CKE0 bit in SCR to 1 to start clock output.

When Changing from Smart Card Interface Mode to Software Standby Mode:

- 1. Set the data register (DR) and data direction register (DDR) corresponding to the to the value for the fixed output state in software standby mode.
- 2. Write 0 to the TE bit and RE bit in the serial control register (SCR) to halt transmoperation. At the same time, set the CKE1 bit to the value for the fixed output stars oftware standby mode.
- 3. Write 0 to the CKE0 bit in SCR to halt the clock.
- 4. Wait for one serial clock period.

During this interval, clock output is fixed at the specified level, with the duty pre

5. Make the transition to the software standby state.

When Returning to Smart Card Interface Mode from Software Standby Mode:

- 1. Exit the software standby state.
- Write 1 to the CKE0 bit in SCR and output the clock. Signal generation is started normal duty.

RENESAS

13.8.1 Interrupts in Normal Serial Communication Interface Mode

Table 13.12 shows the interrupt sources in normal serial communication interface mode. different interrupt vector is assigned to each interrupt source, and individual interrupt source be enabled or disabled using the enable bits in SCR.

When the TDRE flag in SSR is set to 1, a TXI interrupt request is generated. When the T in SSR is set to 1, a TEI interrupt request is generated. A TXI interrupt can activate the D perform data transfer. The TDRE flag is cleared to 0 automatically when data is transferred DTC*.

When the RDRF flag in SSR is set to 1, an RXI interrupt request is generated. When the PER, or FER flag in SSR is set to 1, an ERI interrupt request is generated. An RXI interrupt request can activate the DTC to transfer data. The RDRF flag is cleared to 0 automatically data is transferred by the DTC*.

A TEI interrupt is requested when the TEND flag is set to 1 and the TEIE bit is set to 1. I interrupt and a TXI interrupt are requested simultaneously, the TXI interrupt has priority acceptance. However, if the TDRE and TEND flags are cleared simultaneously by the TX interrupt routine, the SCI cannot branch to the TEI interrupt routine later.

Note: * Flags are cleared only when the DISEL bit in DTC is 0 with the transfer coute than 0.

Rev. 6.00 Sep. 24, 2009 Page 464 of 928 REJ09B0099-0600

TEI1	Transmission End	TEND	Not possible
ERI2	Receive Error	ORER, FER, PER	Not possible
RXI2	Receive Data Full	RDRF	Possible
TXI2	Transmit Data Empty	TDRE	Possible
TEI2	Transmission End	TEND	Not possible
ERI3	Receive Error	ORER, FER, PER	Not possible
RXI3	Receive Data Full	RDRF	Possible
TXI3	Transmit Data Empty	TDRE	Possible
TEI3	Transmission End	TEND	Not possible
ERI4	Receive Error	ORER, FER, PER	Not possible
RXI4	Receive Data Full	RDRF	Possible
TXI4	Transmit Data Empty	TDRE	Possible
TEI4	Transmission End	TEND	Not possible
	ERI2 RXI2 TXI2 TEI2 ERI3 RXI3 TXI3 TEI3 ERI4 RXI4 TXI4	ERI2Receive ErrorRXI2Receive Data FullTXI2Transmit Data EmptyTEI2Transmission EndERI3Receive ErrorRXI3Receive Data FullTXI3Transmit Data EmptyTEI3Transmission EndERI4Receive ErrorRXI4Receive Data FullTXI4Transmit Data Empty	ERI2Receive ErrorORER, FER, PERRXI2Receive Data FullRDRFTXI2Transmit Data EmptyTDRETEI2Transmission EndTENDERI3Receive ErrorORER, FER, PERRXI3Receive Data FullRDRFTXI3Transmit Data EmptyTDRETEI3Transmission EndTENDERI4Receive ErrorORER, FER, PERRXI4Receive Data FullRDRFTXI4Transmit Data EmptyTDRE

Note: * Indicates the initial state immediately after a reset. Priorities in channels can l changed by the interrupt controller.

RENESAS

onannoi	Hanne	interrupt course	interrupt i lug		
0	ERI0	Receive Error, detection	ORER, PER, ERS	Not possible	Hi
	RXI0	Receive Data Full	RDRF	Possible	_
	TXI0	Transmit Data Empty	TEND	Possible	_
1	ERI1	Receive Error, detection	ORER, PER, ERS	Not possible	_
	RXI1	Receive Data Full	RDRF	Possible	
	TXI1	Transmit Data Empty	TEND	Possible	_
2	ERI2	Receive Error, detection	ORER, PER, ERS	Not possible	_
	RXI2	Receive Data Full	RDRF	Possible	_
	TXI2	Transmit Data Empty	TEND	Possible	_
3	ERI3	Receive Error, detection	ORER, PER, ERS	Not possible	_
	RXI3	Receive Data Full	RDRF	Possible	_
	TXI3	Transmit Data Empty	TEND	Possible	_
4	ERI4	Receive Error, detection	ORER, PER, ERS	Not possible	_
	RXI4	Receive Data Full	RDRF	Possible	_
	TXI4	Transmit Data Empty	TEND	Possible	L

Note: * Indicates the initial state immediately after a reset. Priorities in channels can be changed by the interrupt controller.

Rev. 6.00 Sep. 24, 2009 Page 466 of 928 REJ09B0099-0600

When framing error (FER) detection is performed, a break can be detected by reading the value directly. In a break, the input from the RxD pin becomes all 0s, setting the FER flap possibly the PER flag. Note that as the SCI continues the receive operation after receiving even if the FER flag is cleared to 0, it will be set to 1 again.

13.9.3 Mark State and Break Detection (Asynchronous Mode Only)

When TE is 0, the TxD pin is used as an I/O port whose direction (input or output) and I determined by DDR. This can be used to set the TxD pin to mark state (high level) or set during serial data transmission. To maintain the communication line at mark state until 7, set both DDR and DR to 1. As TE is cleared to 0 at this point, the TxD pin becomes a and 1 is output from the TxD pin. To send a break during serial transmission, first set PI and DR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialize regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is o the TxD pin.

13.9.4 Receive Error Flags and Transmit Operations (Clocked Synchronous Mo

Transmission cannot be started when a receive error flag (ORER, PER, or FER) is set to the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit to 0.

13.9.5 Restrictions on Use of DTC

When an external clock source is used as the serial clock, the transmit clock should a input until at least 5 φ clock cycles after TDR is updated by the DTC. Incorrect oper occur if the transmit clock is input within 4 φ clocks after TDR is updated. (Figure 1

Renesas

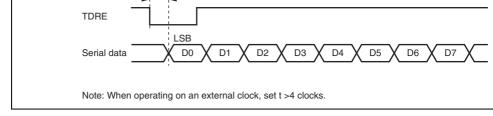


Figure 13.33 Example of Clocked Synchronous Transmission by DTC

13.9.6 Operation in Case of Mode Transition

• Transmission

Operation should be stopped (by clearing TE, TIE, and TEIE bits to 0) before making module stop mode, software standby mode, or watch mode transition. TSR, TDR, and reset. The output pin states in module stop mode, software standby mode, or watch m depend on the port settings, and become high-level output after the relevant mode is c a transition is made during transmission, the data being transmitted will be undefined. transmitting without changing the transmit mode after the relevant mode is cleared, transmission can be started by setting TE to 1 again, and performing the following set SSR read -> TDR write -> TDRE clearance. To transmit with a different transmit mode clearing the relevant mode, the procedure must be started again from initialization. Fi 13.34 shows a sample flowchart for mode transition during transmission. Port pin stat shown in figures 13.35 and 13.36.

Operation should also be stopped (by clearing TE, TIE, and TEIE bits to 0) before matransition from transmission by DTC transfer to module stop mode, software standby watch mode. To perform transmission with the DTC after the relevant mode is cleared the TE and TIE bits to 1 will set the TXI flag and start DTC transmission.

Rev. 6.00 Sep. 24, 2009 Page 468 of 928 REJ09B0099-0600

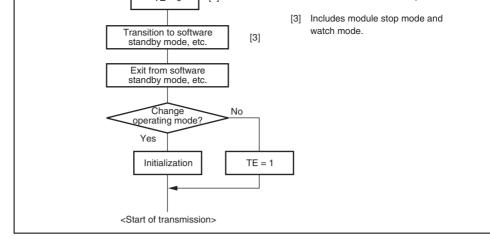


Figure 13.34 Sample Flowchart for Mode Transition during Transmission

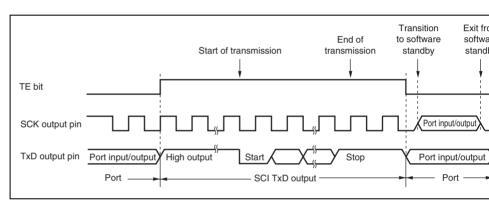


Figure 13.35 Asynchronous Transmission Using Internal Clock

Rev. 6.00 Sep. 24, 2009 Pag RENESAS REJ09

Note. Initialized by software standby.

Figure 13.36 Clocked Synchronous Transmission Using Internal Clock

• Reception

Receive operation should be stopped (by clearing RE to 0) before making a module st software standby mode, or watch mode transition. RSR, RDR, and SSR are reset. If a transition is made without stopping operation, the data being received will be invalid. To continue receiving without changing the reception mode after the relevant mode is set RE to 1 before starting reception. To receive with a different receive mode, the promust be started again from initialization.

Figure 13.37 shows a sample flowchart for mode transition during reception.

Rev. 6.00 Sep. 24, 2009 Page 470 of 928 REJ09B0099-0600

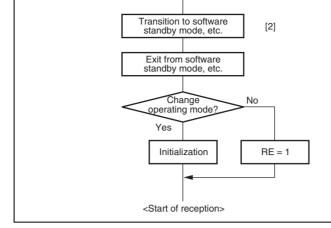


Figure 13.37 Sample Flowchart for Mode Transition during Reception

13.9.7 Notes when Switching from SCK Pin to Port Pin

 Problem in Operation: When DDR and DR are set to 1, SCI clock output is used in a synchronous mode, and the SCK pin is changed to the port pin while transmission is port output is enabled after low-level output occurs for one half-cycle.

When switching the SCK pin to the port pin by making the following settings while DR = 1, $C/\overline{A} = 1$, CKE1 = 0, CKE0 = 0, and TE = 1, low-level output occurs for one cycle.

- 1. End of serial data transmission
- 2. TE bit = 0
- 3. C/\overline{A} bit = 0 ... switchover to port output
- 4. Occurrence of low-level output (see figure 13.38)

RENESAS

CKE0

Figure 13.38 Operation when Switching from SCK Pin to Port Pin

• Usage Note: To prevent low-level output occurred when switching the SCK pin to po follow the procedure described below.

As this sample procedure temporarily places the SCK pin in the input state, the SCK/ should be pulled up beforehand with an external circuit.

With DDR = 1, DR = 1, C/\overline{A} = 1, CKE1 = 0, CKE0 = 0, and TE = 1, make the follow settings in the order shown.

- 1. End of serial data transmission
- 2. TE bit = 0
- 3. CKE1 bit = 1
- 4. C/\overline{A} bit = 0 ... switchover to port output
- 5. CKE1 bit = 0

Rev. 6.00 Sep. 24, 2009 Page 472 of 928 REJ09B0099-0600

CKEO	i	
GREU		

Figure 13.39 Operation when Switching from SCK Pin to Port Pin (Example of Preventing Low-Level Output)

Rev. 6.00 Sep. 24, 2009 Page 474 of 928 REJ09B0099-0600

Figure 14.2 shows an example of I/O pin connections to external circuits.

14.1 Features

- Selection of I²C format or clocked synchronous serial format
- Continuous transmission/reception

Since the shift register, transmit data register, and receive data register are independed each other, the continuous transmission/reception can be performed.

• Module stop mode can be set.

 I^2C bus format

- Start and stop conditions generated automatically in master mode
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Bit synchronization/wait function

In master mode, the state of SCL is monitored per bit, and the timing is synchronized automatically.

If transmission/reception is not yet possible, set the SCL to low until preparations ar completed.

• Six interrupt sources

Transmit data empty (including slave-address match), transmit end, receive data full slave-address match), arbitration lost, NACK detection, and stop condition detection

Renesas

voltages in excess of the power supply (P2Vcc) voltage for this LSI. The maximum volta not exceed 0.3 V + this LSI's power supply voltage (P2Vcc). Since the I/O pins for chann driven only by NMOS transistors, so in terms of appearance they carry out the same oper an NMOS open drain. However, the voltage which can be applied to the I/O pins depends voltage of the power supply (P2Vcc) of this LSI.

Rev. 6.00 Sep. 24, 2009 Page 476 of 928 REJ09B0099-0600

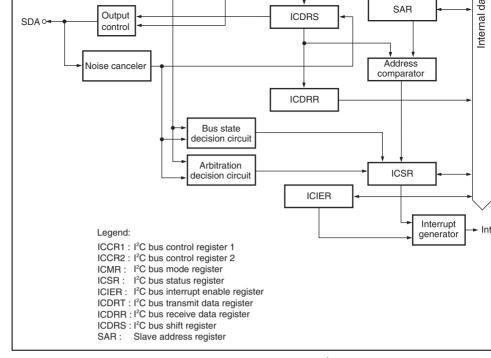


Figure 14.1 Block Diagram of I²C Bus Interface 2

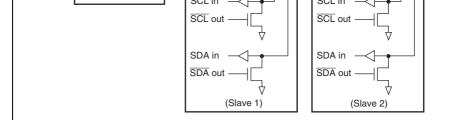


Figure 14.2 External Circuit Connections of I/O Pins

14.2 Input/Output Pins

Table 14.1 summarizes the input/output pins used by the I^2C bus interface 2.

Table 14.1 I²C Bus Interface Pins

Channel	Abbreviation	I/O	Description
0	SCL0	I/O	Serial clock input/output for channel 0
	SDA0	I/O	Serial data input/output for channel 0
1	SCL1	I/O	Serial clock input/output for channel 1
	SDA1	I/O	Serial data input/output for channel 1

Note: * In the text, the channel subscript is omitted, and only SCL and SDA are used.

Rev. 6.00 Sep. 24, 2009 Page 478 of 928 REJ09B0099-0600

- I C bus status register_0 (ICSK_0)
- I²C bus slave address register_0 (SAR_0)
- I²C bus transmit data register_0 (ICDRT_0)
- I²C bus receive data register_0 (ICDRR_0)
- I²C bus shift register_0 (ICDRS_0)

Channel 1

- I²C bus control register 1_1 (ICCR1_1)
- I²C bus control register 2_1 (ICCR2_1)
- I²C bus mode register_1 (ICMR_1)
- I²C bus interrupt enable register_1 (ICIER_1)
- I²C bus status register_1 (ICSR_1)
- I²C bus slave address register_1 (SAR_1)
- I²C bus transmit data register_1 (ICDRT_1)
- I²C bus receive data register_1 (ICDRR_1)
- I²C bus shift register_1 (ICDRS_1)

14.3.1 I²C Bus Control Register 1 (ICCR1)

ICCR1 enables or disables the I²C bus interface 2, controls transmission or reception, an master or slave mode, transmission or reception, and transfer clock frequency in master

				0: Enables next reception
				1: Disables next reception
5	MST	0	R/W	Master/Slave Select
4	TRS	0	R/W	Transmit/Receive Select
				In master mode with the I ² C bus format, when arbit lost, MST and TRS are both reset by hardware, catransition to slave receive mode. Modification of the bit should be made between transfer frames.
				After data receive has been started in slave receive when the first seven bits of the receive data agree slave address that is set to SAR and the eighth bit TRS is automatically set to 1. If an overrun error o master mode with the clock synchronous serial for MST is cleared to 0 and slave receive mode is ent
				Operating modes are described below according t and TRS combination. When clocked synchronous format is selected and MST is 1, clock is output.
				00: Slave receive mode
				01: Slave transmit mode
				10: Master receive mode
				11: Master transmit mode
3	CKS3	0	R/W	Transfer Clock Select 3 to 0
2	CKS2	0	R/W	Set these bits according to the necessary transfer
1	CKS1	0	R/W	master mode (see table 14.2). During slave mode
0	CKS0	0	R/W	bits are specified to ensure enough time for data s transmit mode. When CKS3 is 0, the time is 10 tcy CKS3 is 1, 20 tcyc.

Rev. 6.00 Sep. 24, 2009 Page 480 of 928 REJ09B0099-0600

RENESAS

		1	0	φ/112	71.4 kHz	89.3 kHz	143 kHz	179 kHz
			1	φ /12 8	62.5 kHz	78.1 kHz	125 kHz	156 kHz
1	0	0	0	φ/56	143 kHz	179 kHz	286 kHz	357 kHz
		_	1	φ/80	100 kHz	125 kHz	200 kHz	250 kHz
		1	0	φ/96	83.3 kHz	104 kHz	167 kHz	208 kHz
			1	φ/128	62.5 kHz	78.1 kHz	125 kHz	156 kHz
	1	0	0	ф/ 3 36	23.8 kHz	29.8 kHz	47.6 kHz	59.5 kHz
			1	φ/200	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz
		1	0	ф/224	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz
_			1	φ/256	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz

				has no meaning. With the I ² C bus format, this bit is when the SDA level changes from high to low und condition of SCL = high, assuming that the start co has been issued. This bit is cleared to 0 when the level changes from low to high under the condition = high, assuming that the stop condition has been Write 1 to BBSY and 0 to SCP to issue a start con Follow this procedure when also re-transmitting a condition. Write 0 in BBSY and 0 in SCP to issue a condition. To issue start/stop conditions, use the N instruction.
6	SCP	1	R/W	Start/Stop Issue Condition Disable
				The SCP bit controls the issue of start/stop conditi master mode.
				To issue a start condition, write 1 in BBSY and 0 ir retransmit start condition is issued in the same wa issue a stop condition, write 0 in BBSY and 0 in So bit is always read as 1. If 1 is written, the data is n
5	SDAO	1	R/W	SDA Output Value Control
				This bit is used with SDAOP when modifying outport SDA. This bit should not be manipulated during tra
				0: When reading, SDA pin outputs low. When writing, SDA pin is changed to output low
				1: When reading, SDA pin outputs high.
				When writing, SDA pin is changed to output Hi-2 (outputs high by external pull-up resistance).

Rev. 6.00 Sep. 24, 2009 Page 482 of 928 REJ09B0099-0600

				This bit is always read as 1, and cannot be modif
1	IICRST	0	R/W	IIC Control Part Reset
				This bit resets the control part except for I ² C2 reg this bit is set to 1 when hang-up occurs because communication failure during I ² C2 operation, I ² C2 part can be reset without setting ports and initializ registers.
0		1	_	Reserved
				This bit is always read as 1, and cannot be modif

14.3.3 I²C Bus Mode Register (ICMR)

ICMR selects whether the MSB or LSB is transferred first, performs master mode wait of and selects the transfer bit count.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the I^2C bus format is used.

RENESAS

				,
5, 4	_	All 1		Reserved
				These bits are always read as 1, and cannot be m
3	BCWP	1	R/W	BC Write Protect
				This bit controls the BC2 to BC0 modifications. We modifying BC2 to BC0, this bit should be cleared t use the MOV instruction. In clock synchronous see mode, BC should not be modified.
				0: When writing, values of BC2 to BC0 are set.
				 When reading, 1 is always read. When writing, settings of BC2 to BC0 are inval

Rev. 6.00 Sep. 24, 2009 Page 484 of 928 REJ09B0099-0600

serial format, these bits should not be modified			
I ² C Bi	us Format	Clock	Synchronous Serial F
000:	9 bits	000:	8 bits
001:	2 bits	001:	1 bits
010:	3 bits	010:	2 bits
011:	4 bits	011:	3 bits
100:	5 bits	100:	4 bits
101:	6 bits	101:	5 bits
110:	7 bits	110:	6 bits
111:	8 bits	111:	7 bits

RENESAS

				o. Hanonini data ompty intorrapt roquoot (174) io a
_				1: Transmit data empty interrupt request (TXI) is e
6	TEIE	0	R/W	Transmit End Interrupt Enable
				This bit enables or disables the transmit end interr at the rising of the ninth clock while the TDRE bit i is 1. TEI can be canceled by clearing the TEND bi TEIE bit to 0.
				0: Transmit end interrupt request (TEI) is disabled
_				1: Transmit end interrupt request (TEI) is enabled.
5	RIE	0	R/W	Receive Interrupt Enable
				This bit enables or disables the receive data full in request (RXI) and the overrun error interrupt reque with the clocked synchronous format, when a rece is transferred from ICDRS to ICDRR and the RDR ICSR is set to 1. RXI can be canceled by clearing RDRF or RIE bit to 0.
				 Receive data full interrupt request (RXI) and over error interrupt request (ERI) with the clocked synchronous format are disabled.
				1: Receive data full interrupt request (RXI) and over error interrupt request (ERI) with the clocked synchronous format are enabled.

Rev. 6.00 Sep. 24, 2009 Page 486 of 928 REJ09B0099-0600

3	STIE	0	R/W	Stop Condition Detection Interrupt Enable
				0: Stop condition detection interrupt request (STF disabled.
				1: Stop condition detection interrupt request (STF enabled.
2	ACKE	0	R/W	Acknowledge Bit Judgement Select
				0: The value of the receive acknowledge bit is igr continuous transfer is performed.
				1: If the receive acknowledge bit is 1, continuous halted.
1	ACKBR	0	R	Receive Acknowledge
				In transmit mode, this bit stores the acknowledge are returned by the receive device. This bit cannor modified.
				0: Receive acknowledge = 0
				1: Receive acknowledge = 1
0	ACKBT	0	R/W	Transmit Acknowledge
				In receive mode, this bit specifies the bit to be se acknowledge timing.
				0: 0 is sent at the acknowledge timing.
				1: 1 is sent at the acknowledge timing.

				When TRS is set
				 When a start condition (including re-transfer) h issued
				When transmit mode is entered from receive n slave mode
				[Clearing conditions]
				When 0 is written in TDRE after reading TDRE
				When data is written to ICDRT with an instruct
6	TEND	0	R/W	Transmit End
				[Setting conditions]
				 When the ninth clock of SCL rises with the l²C format while the TDRE flag is 1
				 When the final bit of transmit frame is sent with clock synchronous serial format
				[Clearing conditions]
				When 0 is written in TEND after reading TEND
				When data is written to ICDRT with an instruct
5	RDRF	0	R/W	Receive Data Register Full
				[Setting condition]
				 When a receive data is transferred from ICDRS ICDRR
				[Clearing conditions]
				• When 0 is written in RDRF after reading RDRF
				When ICDRR is read with an instruction

Rev. 6.00 Sep. 24, 2009 Page 488 of 928 REJ09B0099-0600

				 In master mode, when a stop condition is determined frame transfer
				 In slave mode, when a stop condition is detective the general call address or the first byte slave next to detection of start condition, accords w address set in SAR
				[Clearing condition]
				When 0 is written in STOP after reading STO
2	AL/OVE	0	R/W	Arbitration Lost Flag/Overrun Error Flag
				This flag indicates that arbitration was lost in mas with the I^2C bus format and that the final bit has b received while RDRF = 1 with the clocked synch format.
				When two or more master devices attempt to sei at nearly the same time, if the I ² C bus interface d data differing from the data it sent, it sets AL to 1 indicate that the bus has been taken by another
				[Setting conditions]
				 If the internal SDA and SDA pin disagree at the SCL in master transmit mode
				 When the SDA pin outputs high in master mo start condition is detected
				 When the final bit is received with the clocked synchronous format while RDRF = 1
				[Clearing condition]
				When 0 is written in AL/OVE after reading AL

				[Clearing condition]
				When 0 is written in AAS after reading AAS=1
0	ADZ	0	R/W	General Call Address Recognition Flag
				This bit is valid in I ² C bus format slave receive mo
				[Setting condition]
				• When the general call address is detected in s receive mode
				[Clearing condition]
				• When 0 is written in ADZ after reading ADZ=1

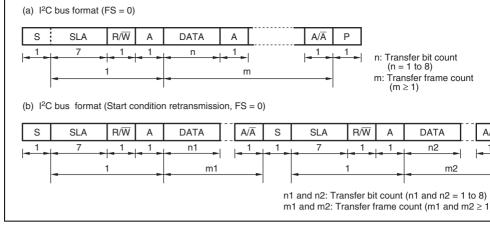
14.3.6 Slave Address Register (SAR)

SAR selects the communication format and sets the slave address. When the chip is in slaw the I^2C bus format, if the upper 7 bits of SAR match the upper 7 bits of the first frame received after a start condition, the chip operates as the slave device.

Rev. 6.00 Sep. 24, 2009 Page 490 of 928 REJ09B0099-0600

14.3.7 I²C Bus Transmit Data Register (ICDRT)

ICDRT is an 8-bit readable/writable register that stores the transmit data. When ICDRT space in the shift register (ICDRS), it transfers the transmit data which is written in ICD ICDRS and starts transferring data. If the next transfer data is written to ICDRT during transferring data of ICDRS, continuous transfer is possible. If the MLS bit of ICMR is s when the data is written to ICDRT, the MSB/LSB inverted data is read. The initial value ICDRT is H'FF.


14.3.8 I²C Bus Receive Data Register (ICDRR)

ICDRR is an 8-bit register that stores the receive data. When data of one byte is received transfers the receive data from ICDRS to ICDRR and the next data can be received. ICD receive-only register, therefore the CPU cannot write to this register. The initial value of H'FF.

14.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferr ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred ICDRS to ICDRR after data of one byte is received. This register cannot be read directly CPU.

RENESAS

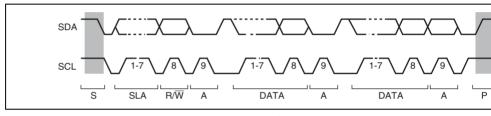
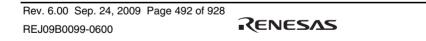



Figure 14.4 I²C Bus Timing

In master transmit mode, the master device outputs the transmit clock and transmit data, slave device returns an acknowledge signal. For master transmit mode operation timing, figures 14.5 and 14.6. The transmission procedure and operations in master transmit mode described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 t bits in ICCR1 to 1. (Initial setting)
- 2. Read the BBSY flag in ICCR2 to confirm that the bus is free. Set the MST and TRS ICCR1 to select master transmit mode. Then, write 1 to BBSY and 0 to SCP using M instruction. (Start condition issued) This generates the start condition.
- 3. After confirming that TDRE in ICSR has been set, write the transmit data (the first b show the slave address and R/\overline{W}) to ICDRT. At this time, TDRE is automatically clear and data is transferred from ICDRT to ICDRS. TDRE is set again.
- 4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR is at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confir slave device has been selected. Then, write second byte data to ICDRT. When ACK the slave device has not been acknowledged, so issue the stop condition. To issue the condition, write 0 to BBSY and SCP using MOV instruction. SCL is fixed low until transmit data is prepared or the stop condition is issued.
- 5. The transmit data after the second byte is written to ICDRT every time TDRE is set.
- 6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the e byte data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1) receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TE NACKF.
- 7. When the STOP bit in ICSR is set to 1, the operation returns to the slave receive mod

RENESAS

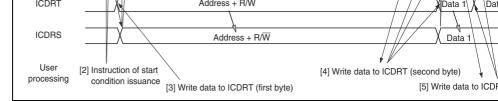


Figure 14.5 Master Transmit Mode Operation Timing (1)

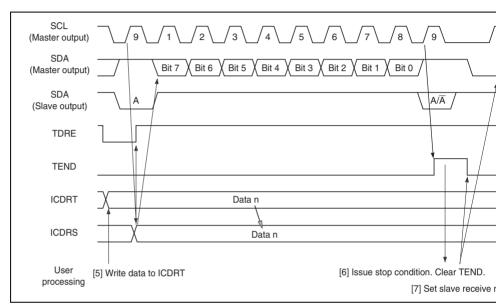


Figure 14.6 Master Transmit Mode Operation Timing (2)

Rev. 6.00 Sep. 24, 2009 Page 494 of 928 REJ09B0099-0600

RENESAS

- level specifica of ficility in folling to obtri, at the still feeling effective effective effective effective
- 3. After the reception of first frame data is completed, the RDRF bit in ICST is set to 1 of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, a is cleared to 0.
- 4. The continuous reception is performed by reading ICDRR every time RDRF is set. I RDRF is set to 1, the reading of ICDRR is delayed by other processing and does not the falling edge of the 8th clock pulse, set RCVD to 1 and perform one-byte data transport.
- 5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading This enables the issuance of the stop condition after the next reception.
- 6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage c
- 7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.
- 8. The operation returns to the slave receive mode.

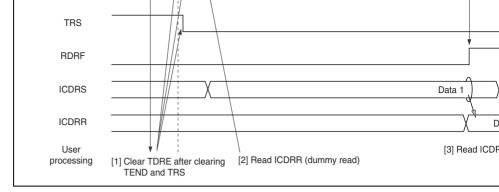


Figure 14.7 Master Receive Mode Operation Timing (1)

Rev. 6.00 Sep. 24, 2009 Page 496 of 928 REJ09B0099-0600

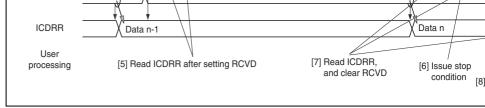


Figure 14.8 Master Receive Mode Operation Timing (2)

14.4.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data, while the master devi the receive clock and returns an acknowledge signal. For slave transmit mode operation see figures 14.9 and 14.10.

The transmission procedure and operations in slave transmit mode are described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 t bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slav mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start conthe slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise clock pulse. At this time, if the 8th bit data (R/\overline{W}) is 1, the TRS and ICSR bits in ICC set to 1, and the mode changes to slave transmit mode automatically. The continuous transmission is performed by writing transmit data to ICDRT every time TDRE is set
- 3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR is with TDRE = 1. When TEND is set, clear TEND.
- 4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is free.
- 5. Clear TDRE.

RENESAS

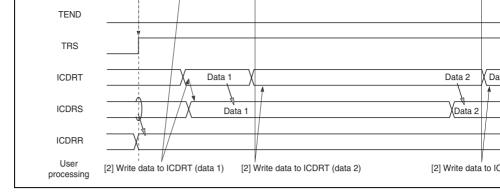


Figure 14.9 Slave Transmit Mode Operation Timing (1)

Rev. 6.00 Sep. 24, 2009 Page 498 of 928 REJ09B0099-0600

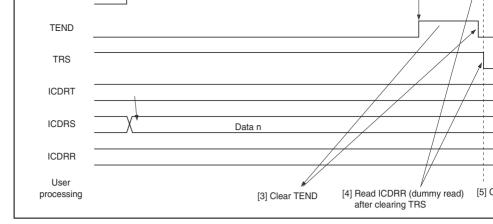


Figure 14.10 Slave Transmit Mode Operation Timing (2)

14.4.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and transmit data, and slave device returns an acknowledge signal. For slave receive mode operation timing, see 14.11 and 14.12. Since a flag may be set according to the port state, initialization should performed after all bits in ICSR have been cleared. The reception procedure and operation slave receive mode are described below.

- Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 t bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slav mode, and wait until the slave address matches.
- 2. When the slave address matches in the first frame following detection of the start conthe slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise

Renesas

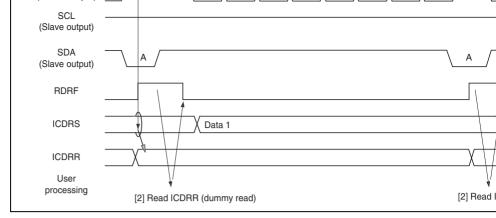


Figure 14.11 Slave Receive Mode Operation Timing (1)

Rev. 6.00 Sep. 24, 2009 Page 500 of 928 REJ09B0099-0600

Figure 14.12 Slave Receive Mode Operation Timing (2)

14.4.6 Clocked Synchronous Serial Format

This module can be operated with the clocked synchronous serial format, by setting the SAR to 1. When the MST bit in ICCR1 is 1, the transfer clock output from SCL is selec MST is 0, the external clock input is selected.

Data Transfer Format: Figure 14.13 shows the clocked synchronous serial transfer for

The transfer data is output from the rise to the fall of the SCL clock, and the data at the n of the SCL clock is guaranteed. The MLS bit in ICMR sets the order of data transfer, in MSB first or LSB first. The output level of SDA can be changed during the transfer wai SDAO bit in ICCR2.

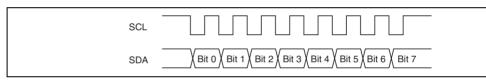


Figure 14.13 Clocked Synchronous Serial Transfer Format

Transmit Operation: In transmit mode, transmit data is output from SDA, in synchron with the fall of the transfer clock. The transfer clock is output when MST in ICCR1 is 1

RENESAS

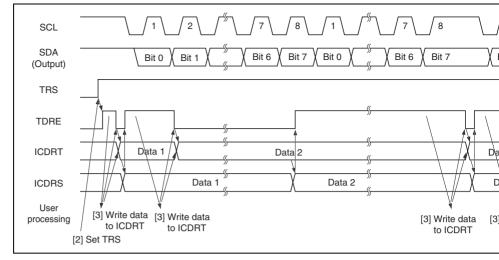


Figure 14.14 Transmit Mode Operation Timing

Receive Operation: In receive mode, data is latched at the rise of the transfer clock. The clock is output when MST in ICCR1 is 1, and is input when MST is 0. For receive mode timing, see figure 14.15. The reception procedure and operations in receive mode are desceeded.

- Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (I setting)
- 2. When the transfer clock is output, set MST to 1 to start outputting the receive clock.
- 3. When the receive operation is completed, data is transferred from ICDRS to ICDRR a RDRF in ICSR is set. When MST = 1, the next byte can be received, so the clock is continually output. The continuous reception is performed by reading ICDRR every the set of the

Rev. 6.00 Sep. 24, 2009 Page 502 of 928 REJ09B0099-0600

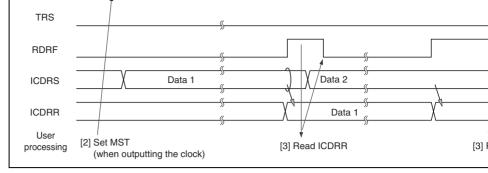
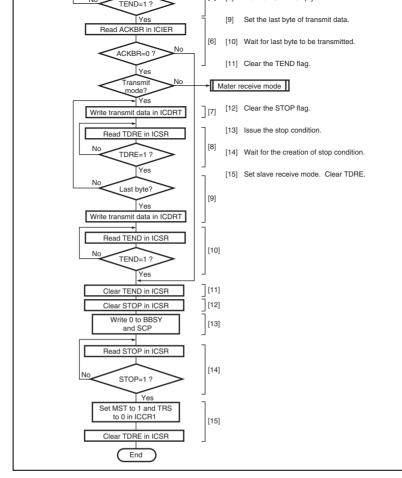


Figure 14.15 Receive Mode Operation Timing

14.4.7 Noise Canceler

The logic levels at the SCL and SDA pins are routed through noise cancelers before bein internally. Figure 14.16 shows a block diagram of the noise canceler circuit.

The noise canceler consists of two cascaded latches and a match detector. The SCL (or S input signal is sampled on the system clock, but is not passed forward to the next circuit outputs of both latches agree. If they do not agree, the previous value is held.


Figure 14.16 Block Diagram of Noise Canceler

14.4.8 Example of Use

Flowcharts in respective modes that use the I²C bus interface are shown in figures 14.17 t

Rev. 6.00 Sep. 24, 2009 Page 504 of 928 REJ09B0099-0600

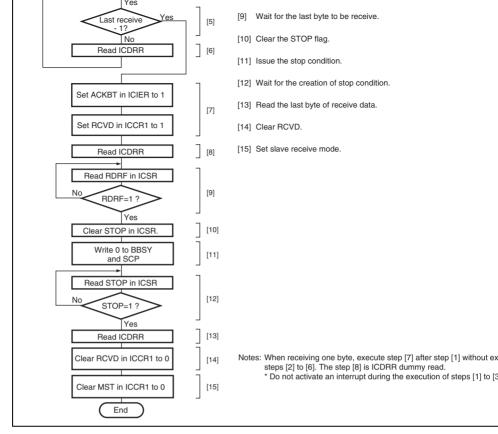


Figure 14.18 Sample Flowchart for Master Receive Mode

Rev. 6.00 Sep. 24, 2009 Page 506 of 928 REJ09B0099-0600

RENESAS

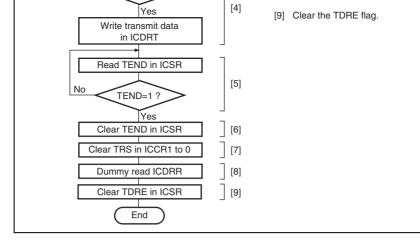


Figure 14.19 Sample Flowchart for Slave Transmit Mode

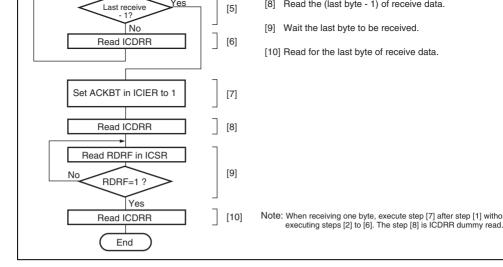
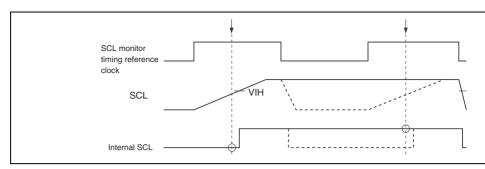


Figure 14.20 Sample Flowchart for Slave Receive Mode

Rev. 6.00 Sep. 24, 2009 Page 508 of 928 REJ09B0099-0600



I ransmit data empty	IXI	$(IDRE=1) \cdot (IIE=1)$	0	0
Transmit end	TEI	(TEND=1) • (TEIE=1)	0	0
Receive data full	RXI	(RDRF=1) • (RIE=1)	0	0
STOP recognition	STPI	(STOP=1) • (STIE=1)	0	Х
NACK receive	NAKI	{(NACKF=1)+(AL=1)} •	0	Х
Arbitration lost/overrun Error		(NAKIE=1)	0	0

When interrupt conditions described in table 14.3 are 1 and the I bit in CCR is 0, the CP executes an interrupt exception processing. Interrupt sources should be cleared in the ex processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 agai same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an data of one byte may be transmitted.

Figure 14.21 shows the timing of the bit synchronous circuit and table 14.4 shows the tim SCL output changes from low to Hi-Z then SCL is monitored.

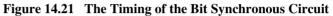


Table 14.4 Time for Monitoring SCL

CKS3	CKS2	Time for Monitoring SCL	
0	0	7.5 tcyc	
	1	19.5 tcyc	
1	0	14.5 tcyc	
	1	41.5 tcyc	

Rev. 6.00 Sep. 24, 2009 Page 510 of 928 REJ09B0099-0600

Confirm the ninth falling edge of the clock before issuing a stop or a repeated start cond

The ninth falling edge can be confirmed by monitoring the SCLO bit in the I^2C bus cont 2 (ICCR2).

If a stop or a repeated start condition is issued at a certain timing in either of the following the stop or repeated start condition may be issued incorrectly.

- The rising time of the SCL signal exceeds the time given in section 14.6, Bit Synchr Circuit, because of the load on the SCL bus.
- The bit synchronous circuit is activated because a slave device holds the SCL bus lo the eighth clock.

14.7.3 WAIT Bit in I²C Bus Mode Register (ICMR)

The WAIT bit in the I^2C bus mode register (ICMR) must be held 0.

If the WAIT bit is set to 1, when a slave device holds the SCL signal low more than one clock cycle during the eights clock, the high level period of the ninth clock may be short given period.

• Set RCVD to 1 in master receive mode and perform communication in units of one by

14.7.5 Restriction on Setting of Transfer Rate in Use of Multi-Master

In multi-master usage when the IIC transfer rate setting of this LSI is lower than those of masters, unexpected length of SCL may occasionally be output. To avoid this, the specifi must be greater than or equal to the value produced by multiplying the fastest transfer rate the other masters by 1/1.8. For example, when the transfer rate of the fastest bus master a other bus masters is 400 kbps, the transfer rate of the IIC of this LSI must be set to at leas kbps (= 400/1.8).

14.7.6 Restriction on Use of Bit Manipulation Instructions to Set MST and TRS v Multi-Master Is Used

When master transmission is selected by consecutively manipulating the MST and TRS be multi-master usage, an arbitration loss during execution of the bit-manipulation instruction TRS leads to the contradictory situation where AL in ICSR is 1 in master transmit mode (1, TRS = 1).

Ways to avoid this effect are listed below.

- Use the MOV instruction to set MST and TRS in multi-master usage.
- When arbitration is lost, confirm that MST = 0 and TRS = 0. If the setting of MST = 0 TRS = 0 is not confirmed, set MST = 0 and TRS = 0 again.

Rev. 6.00 Sep. 24, 2009 Page 512 of 928 REJ09B0099-0600

- Conversion time: 13.3 µs per channel (at 20-MHz operation), 10.1 µs per channel (at operation)
- Two operating modes
 Single mode: Single-channel A/D conversion
 Scan mode: Continuous A/D conversion on 1 to 4 channels
- Four data registers Conversion results are held in a 16-bit data register for each channel
- Sample and hold function
- Three methods conversion start Software
 16-bit timer pulse unit (TPU or TMR) conversion start trigger External trigger signal
- Interrupt request An A/D conversion end interrupt request (ADI) can be generated
- Module stop mode can be set
- Selectable range of voltages of analog inputs

The range of voltages of analog inputs to be converted can be specified using the Vra as the analog reference voltage.

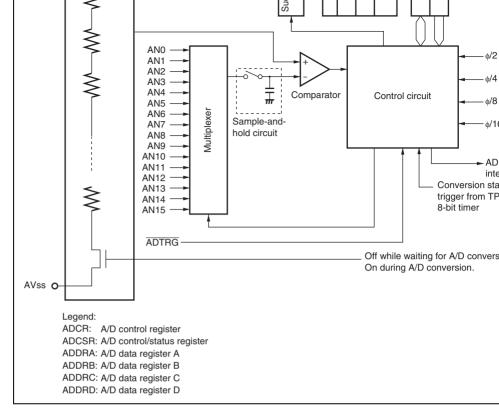


Figure 15.1 Block Diagram of A/D Converter

Rev. 6.00 Sep. 24, 2009 Page 514 of 928 REJ09B0099-0600

RENESAS

Pin Name	Symbol	I/O	Function
Analog power supply pin	AV_{cc}	Input	Analog block power supply pin
Analog ground pin	AV_{ss}	Input	Analog block ground and referenc
Reference voltage pin	Vref	Input	Reference voltage for A/D converse
Analog input pin 0	AN0	Input	Channel set 0 (CH3 = 0), group 0
Analog input pin 1	AN1	Input	— input pins
Analog input pin 2	AN2	Input	
Analog input pin 3	AN3	Input	
Analog input pin 4	AN4	Input	Channel set 0 (CH3 = 0), group 1
Analog input pin 5	AN5	Input	— input pins
Analog input pin 6	AN6	Input	
Analog input pin 7	AN7	Input	
Analog input pin 8	AN8	Input	Channel set 1 (CH3 = 1), group 0
Analog input pin 9	AN9	Input	input pins
Analog input pin 10	AN10	Input	
Analog input pin 11	AN11	Input	
Analog input pin 12	AN12	Input	Channel set 1 (CH3 = 1), group 1
Analog input pin 13	AN13	Input	— input pins
Analog input pin 14	AN14	Input	
Analog input pin 15	AN15	Input	
A/D external trigger input	ADTRG	Input	External trigger input pin for startir conversion

e

RENESAS

• A/D control register (ADCR)

15.3.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the r A/D conversion. The ADDR registers, which store a conversion result for each analog inj channel, are shown in table 15.2.

The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.

The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be directly from the CPU, however the lower byte should be read via a temporary register. T when reading ADDR, read only the upper byte, or read in word unit.

	Analog Input Channel						
Channel	Set 0 (CH3 = 0)	Channel Set	1 (CH3 = 1)	A/D Data Registe			
Group 0 (CH2 = 0)	Group 1 (CH2 = 1)	Group 0 (CH2 = 0)	Group 1 (CH2 = 1)	Stored Results o Conversion			
AN0	AN4	AN8	AN12	ADDRA			
AN1	AN5	AN9	AN13	ADDRB			
AN2	AN6	AN10	AN14	ADDRC			
AN3	AN7	AN11	AN15	ADDRD			

Table 15.2 Analog Input Channels and Corresponding ADDR Registers

Rev. 6.00 Sep. 24, 2009 Page 516 of 928 REJ09B0099-0600

				 When A/D conversion ends on all specified cl scan mode [Clearing conditions] When 0 is written after reading ADF = 1 When the DTC is activated by an ADI interrup DISEL bit in DTC is 0 with the transfer counter than 0
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt (ADI) request enabl is set
5	ADST	0	R/W	A/D Start
				Clearing this bit to 0 stops A/D conversion, and the converter enters the wait state.
				Setting this bit to 1 starts A/D conversion. In sing this bit is cleared to 0 automatically when conver- the specified channel is complete. In scan mode, conversion continues sequentially on the specifie channels until this bit is cleared to 0 by software, a transition to software standby mode, hardware mode, or module stop mode.
				The ADST bit can be set to 1 by software, a time conversion start trigger, or the A/D external trigge (ADTRG).

Switches the	analog channel	allocated t	o group 0
group 1.			
	Group 0	Gro	un 1

	Group 0	Group 1
0: Channel set 0	AN0 to AN3	AN4 to AN7
1: Channel set 1	AN 8 to AN11	AN12 to AN15

Rev. 6.00 Sep. 24, 2009 Page 518 of 928 REJ09B0099-0600

	100: AN4	100: AN4
	101: AN5	101: AN4, AN5
	110: AN6	110: AN4 to AN6
	111: AN7	111: AN4 to AN7
	Channel set 1 (CH3 = 1)	
	000: AN8	000: AN8
	001: AN9	001: AN8, AN9
	010: AN10	010: AN8 to AN10
	011: AN11	011: AN8 to AN11
	100: AN12	100: AN12
	101: AN13	101: AN12, AN13
	110: AN14	110: AN12 to AN14
	111: AN15	111: AN12 to AN15
Note: * Only 0 can be written to cle	or this flog	

Note: * Only 0 can be written to clear this flag.

Renesas

				01: A/D conversion start by TPU conversion start enabled
				10: A/D conversion start by 8-bit timer conversion trigger is enabled
				11: A/D conversion start by external trigger pin (A enabled
5, 4		All 1		Reserved
				These bits are always read as 1 and cannot be me
3	CKS1	0	R/W	Clock Select 0 and 1
2	CKS0	0	R/W	These bits specify the A/D conversion time. The conversion time should be changed only when the conversion stops (ADST = 0).
				The conversion time setting should exceed the co time shown in section 24.5, A/D Converter Charac
				00: Conversion time = 530 states (max.)
				01: Conversion time = 266 states (max.)
				10: Conversion time = 134 states (max.)
				11: Conversion time = 68 states (max.)
1, 0		All 1		Reserved
				These bits are always read as 1 and cannot be me

Rev. 6.00 Sep. 24, 2009 Page 520 of 928 REJ09B0099-0600

order. When only the upper-byte data is read, the data is guaranteed. However, when on lower-byte data is read, the data is not guaranteed.

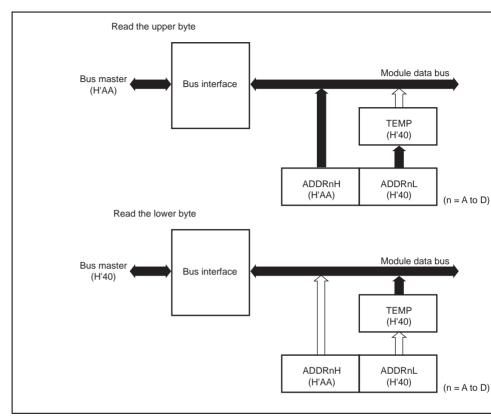


Figure 15.2 shows data flow when accessing to ADDR.

Figure 15.2 Access to ADDR (When Reading H'AA40)

operations are as follows.

- 1. A/D conversion is started when the ADST bit is set to 1, according to software, timer conversion start trigger, or external trigger input.
- 2. When A/D conversion is completed, the result is transferred to the corresponding A/D register to the channel.
- 3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is set this time, an ADI interrupt request is generated.
- 4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, t bit is automatically cleared to 0 and the A/D converter enters the wait state.

Rev. 6.00 Sep. 24, 2009 Page 522 of 928 REJ09B0099-0600

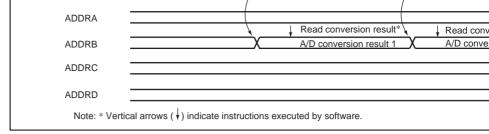


Figure 15.3 A/D Conversion Timing (Single-Chip Mode, Channel 1 Selector

15.5.2 Scan Mode

In scan mode, A/D conversion is to be performed sequentially on the specified channels channels maximum). The operations are as follows.

- When the ADST bit is set to 1 by software, timer conversion start trigger, or external input, A/D conversion starts on the first channel in the group (AN0 when CH3 = 0 at 0, AN4 when CH3 = 0 and CH2 = 1, AN8 when CH3 = 1 and CH2 = 0, or AN12 when 1 and CH2 = 1).
- 2. When A/D conversion for each channel is completed, the result is sequentially transfit the A/D data register corresponding to each channel.
- 3. When conversion of all the selected channels is completed, the ADF flag is set to 1. ADIE bit is set to 1 at this time, an ADI interrupt is requested after A/D conversion of Conversion of the first channel in the group starts again.
- 4. Steps 2 to 3 are repeated as long as the ADST bit remains set to 1. When the ADST cleared to 0, A/D conversion stops and the A/D converter enters the wait state. After when the ADST bit is set to 1, conversion of the first channel in the group starts again

RENESAS

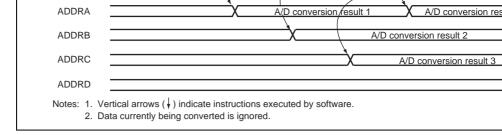
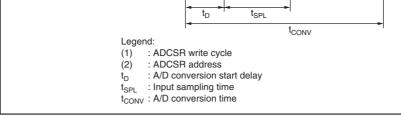


Figure 15.4 A/D Conversion Timing (Scan Mode, Channels AN0 to AN2 Selec

15.5.3 Input Sampling and A/D Conversion Time


The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the input when the A/D conversion start delay time (t_D) has passed after the ADST bit is set to starts conversion. Figure 15.5 shows the A/D conversion timing. Table 15.3 shows the A/D conversion time.

As indicated in figure 15.5, the A/D conversion time (t_{CONV}) includes t_D and the input samp (t_{SPL}) . The length of t_D varies depending on the timing of the write access to ADCSR. The conversion time therefore varies within the ranges indicated in table 15.3. Specify the cort time by setting bits CKS0 and CKS1 in ADCR with ADST cleared to 0. Note that the spec conversion time should be longer than the value described in section 24.5 A/D Conversion Characteristics.

In scan mode, the values given in table 15.3 apply to the first conversion time. The values table 15.4 apply to the second and subsequent conversions.

Rev. 6.00 Sep. 24, 2009 Page 524 of 928 REJ09B0099-0600

Figure 15.5 A/D Conversion Timing

 Table 15.3
 A/D Conversion Time (Single Mode)

			CKS1 = 0						CKS1		
		C	CKS0 =	: 0	C	:KS0 =	= 1	C	CKS0 =	= 0	Cł
Item	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.
A/D conversion start delay time	t _D	18	_	33	10	_	17	6	_	9	4
Input sampling time	t _{spl}		127			63		_	31		
A/D conversion time	t _{conv}	515	—	530	259		266	131	_	134	67

Note: All values represent the number of states.

RENESAS

A/D conversion can be externally triggered. When the TRGS0 and TRGS1 bits are set to ADCR, external trigger input is enabled at the $\overline{\text{ADTRG}}$ pin. A falling edge at the $\overline{\text{ADTRC}}$ the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single a modes, are the same as when the bit ADST has been set to 1 by software. Figure 15.6 sho timing.

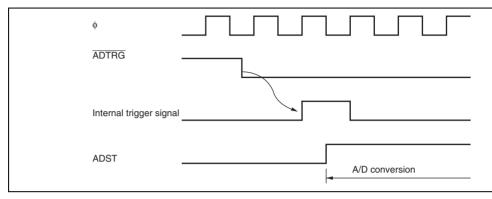


Figure 15.6 External Trigger Input Timing

Rev. 6.00 Sep. 24, 2009 Page 526 of 928 REJ09B0099-0600

15.7 A/D Conversion Accuracy Definitions

This LSI's A/D conversion accuracy definitions are given below.

• Resolution

The number of A/D converter digital output codes

• Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 15.7).

Offset error

The deviation of the analog input voltage value from the ideal A/D conversion chara when the digital output changes from the minimum voltage value B'0000000000 (H' B'0000000001 (H'001) (see figure 15.8).

• Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion chara when the digital output changes from B'111111110 (H'3FE) to B'1111111111 (H'3FE) figure 15.8).

• Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between zero voltag scale voltage. Does not include offset error, full-scale error, or quantization error (se 15.8).

• Absolute accuracy

The deviation between the digital value and the analog input value. Includes offset e scale error, quantization error, and nonlinearity error.

RENESAS

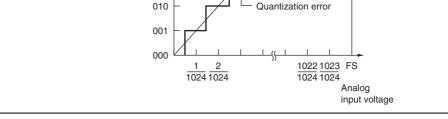


Figure 15.7 A/D Conversion Accuracy Definitions

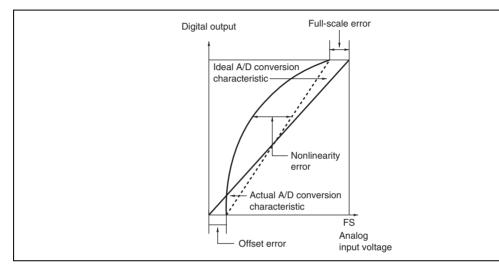
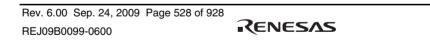



Figure 15.8 A/D Conversion Accuracy Definitions

This LST's analog input is designed such that conversion accuracy is guaranteed for an infor which the signal source impedance is 5 k Ω or less. This specification is provided to A/D converter's sample-and-hold circuit input capacitance to be charged within the sam if the sensor output impedance exceeds 5 k Ω , charging may be insufficient and it may n possible to guarantee A/D conversion accuracy. However, for A/D conversion in single a large capacitance provided externally, the input load will essentially comprise only the input resistance of 10 k Ω , and the signal source impedance is ignored. However, as a log filter effect is obtained in this case, it may not be possible to follow an analog signal with differential coefficient (e.g., 5 mV/µs or greater) (see figure 15.9). When converting a h analog signal, a low-impedance buffer should be inserted.

15.8.3 Influences on Absolute Accuracy

Adding capacitance results in coupling with GND, and therefore noise in GND may adv affect absolute accuracy. Be sure to make the connection to an electrically stable GND s AVss.

Care is also required to insure that filter circuits do not communicate with digital signals mounting board (i.e., acting as antennas).

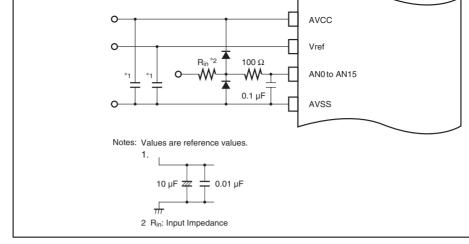
15.8.4 Range of Analog Power Supply and Other Pin Settings

If the conditions below are not met, the reliability of the device may be adversely affected

- Analog input voltage range The voltage applied to analog input pin ANn during A/D conversion should be in the AVss ≤ ANn ≤ AVcc.
- Relationship between AVcc, AVss and Vcc, Vss
 Set AVss = Vss as the relationship between AVcc, AVss and Vcc, Vss. If the A/D connot used, the AVcc and AVss pins must not be left open.
- Vref range

The reference voltage input from the Vref pin should be set to AVcc or less.

15.8.5 Notes on Board Design


In board design, digital circuitry and analog circuitry should be as mutually isolated as port and layout in which digital circuit signal lines and analog circuit signal lines cross or are a proximity should be avoided as far as possible. Failure to do so may result in incorrect op of the analog circuitry due to inductance, adversely affecting A/D conversion values. Also circuitry must be isolated from the analog input signals (AN0 to AN15), and analog power (AVcc) by the analog ground (AVss). Also, the analog ground (AVss) should be connected point to a stable digital ground (Vss) on the board.

15.8.6 Notes on Noise Countermeasures

A protection circuit should be connected in order to prevent damage due to abnormal volt as an excessive surge at the analog input pins (AN0 to AN15), between AVcc and AVss,

Rev. 6.00 Sep. 24, 2009 Page 530 of 928 REJ09B0099-0600

Table 15.6 Analog Pin Specifications

Item	Min.	Max.	Unit
Analog input capacitance	_	20	pF
Permissible signal source impedance	—	5	kΩ

Rev. 6.00 Sep. 24, 2009 Page 532 of 928 REJ09B0099-0600

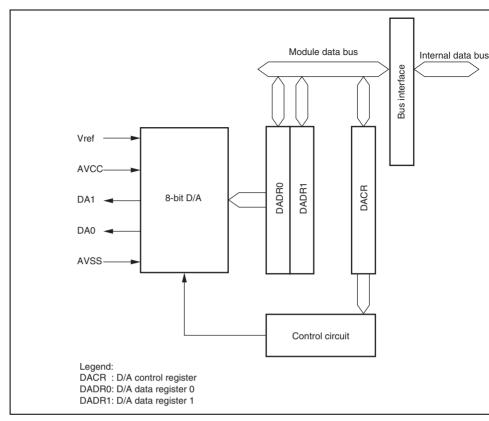


Figure 16.1 Block Diagram of D/A Converter

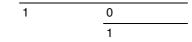
REVESAS

Analog output pin 1	DAT	Output	Channel T analog output pin
Reference voltage pin	Vref	Input	Analog block reference voltage

16.3 Register Descriptions

The D/A converter has the following registers. For details on the module stop control reg section 22.1.2, Module Stop Control Registers A to C (MSTPCRA to MSTPCRC).

- D/A data register 0 (DADR0)
- D/A data register 1 (DADR1)
- D/A control register (DACR)


16.3.1 D/A Data Registers 0, 1 (DADR0, DADR1)

DADR0 and DADR1 are 8-bit readable/writable registers that store data for D/A convers When analog output is permitted, D/A data register contents are converted and output to a output pins.

Rev. 6.00 Sep. 24, 2009 Page 534 of 928 REJ09B0099-0600

				are enabled
6	DAOE0	0	R/W	D/A Output Enable 0
				Controls D/A conversion and analog output
				0: Analog output DA0 is disabled
				1: D/A conversion for channel 0 and analog our are enabled
5	DAE	0	R/W	D/A Enable
				Controls D/A conversion in conjunction with the and DAOE1 bits. When the DAE bit is cleared to conversion for channels 0 and 1 are controlled individually. When DAE is set to 1, D/A conversion channels 0 and 1 are controlled as one. Conver- result output is controlled by the DAOE0 and D bits. For details, see table 16.2.
4 to 0	_	All 1		Reserved
				These bits are always read as 1 and cannot be

16.4 Operation

Two channels of the D/A converter can perform conversion individually.

When the DAOE bit in DACR is set to 1, D/A conversion is enabled and the conversion routput.

An example of D/A conversion of channel 0 is shown below. The operation timing is sho figure 16.2.

- 1. Write conversion data to DADR0.
- 2. When the DAOE0 bit in DACR is set to 1, D/A conversion starts. After the interval o the conversion results are output from the analog output pin DA0. The conversion res output continuously until DADR0 is modified or DAOE0 bit is cleared to 0. The outp is calculated by the following formula:

 $(DADR contents)/256 \times Vref$

- 3. Conversion starts immediately after DADR0 is modified. After the interval of t_{DCONV} , conversion results are output.
- 4. When the DAOE bit is cleared to 0, analog output is disabled.

Rev. 6.00 Sep. 24, 2009 Page 536 of 928 REJ09B0099-0600

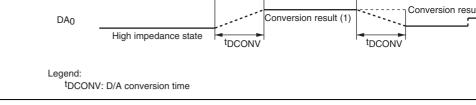


Figure 16.2 D/A Converter Operation Example

16.5 Usage Notes

16.5.1 Analog Power Supply Current in Power-Down Mode

If this LSI enters a power-down mode such as software standby, watch, and module stop while D/A conversion is enabled, the D/A cannot retain analog outputs within the given absolute accuracy although it retains digital values. The analog power supply current is approximately the same as that during D/A conversion. To reduce analog power supply power-down mode, clear the DAOE0, DAOE1 and DAE bits to 0 to disable D/A output entering the mode.

16.5.2 Setting for Module Stop Mode

It is possible to enable/disable the D/A converter operation using the module stop control the D/A converter does not operate by the initial value of the register. The register can be by releasing the module stop mode. For more details, see section 22, Power-Down Mod

Rev. 6.00 Sep. 24, 2009 Page 538 of 928 REJ09B0099-0600

17.1 Features

- IEBus protocol control (layer 2) supported
 - Half duplex asynchronous communications
 - Multi-master system
 - Broadcast communications function
 - Selectable mode (three types) with different transfer speeds
- Data transfer by the data transfer controller (DTC)
 - Transfer buffer: 1 byte
 - Reception buffer: 1 byte
 - Up to 128 bytes of consecutive transfer/reception (maximum number of transfer mode 2)
- Operating frequency
 - 12 MHz, 12.58 MHz (IEB uses 1/2 divided external clock.)
 - 18 MHz, 18.87 MHz (IEB uses 1/3 divided external clock.)
 - 24 MHz, 25.16 MHz (IEB uses 1/4 divided external clock.)
- Note: When selected communications mode 0 or mode 1 (\pm 1.5 %) When selected communications mode 2 (\pm 0.5 %)
- Noise resistance is improved by mounting the IEBus driver/receiver (layer 1) extern
- Module stop mode can be set.

Renesas



Figure 17.1 Block Diagram of IEB

Rev. 6.00 Sep. 24, 2009 Page 540 of 928 REJ09B0099-0600

• Mode is selectable (three modes with different transfer speeds).

Mode	φ = 12, 18, 24 MHz	φ = 12.58, 18.87, 25.16 MHz	Maximum Number Transfer Bytes (byt
0	About 3.9 kbps	About 4.1 kbps	16
1	About 17 kbps	About 18 kbps	32
2	About 26 kbps	About 27 kbps	128

- Access control: CSMA/CD (Carrier Sense Multiple Access with Collision Detection Priority of bus mastership is as follows.
 - Broadcast communications (one-to-many communications) have priority rather the normal communications (one-to-one communications).
 - Smaller master address has priority.
- Communications scale
 - Number of units: Up to 50
 - Cable length: Up to 150 m (when using a twisted pair cable)
- Note: The communications scale of the actual system depends on the externally mound driver/receiver characteristics and the characteristics of the cable to be used.

(1) Determination of Bus Mastership (Arbitration)

A unit connected to the IEBus performs an operation for getting the bus to control other This operation is called arbitration. In arbitration, when the multiple units start transfer simultaneously, the bus mastership is given to one unit among them.

RENESAS

priority, and a drift with fiff f has the lowest priority.

Note: When a unit loses arbitration, the unit can automatically enter retransfer mode retransfer times can be selected by bits RN2 to RN0 in IEMCR).

(2) Communications Mode

The IEBus has three communications modes with different transfer speeds. Table 17.2 sh transfer speed in each communications mode and the maximum number of transfer bytes communications frame.

Table 17.2 Transfer speed and Maximum Number of Transfer Bytes in Each Communications Mode

	Maximum Number	Effective Transfer Speed*1 (kbps)		
Communications Mode	of Transfer Bytes (byte/frame)	φ = 12, 18, 24 MHz* ²	φ = 12.58, 18.87, 25.	
0	16	About 3.9	About 4.1	
1	32	About 17	About 18	
2	128	About 26	About 27	

Notes: Each unit connected to the IEBus should select a communications mode prior performing communications. Note that correct communications is not guarantee master and slave units do not adopt the same communications mode.

In the case of communications between a unit with $\phi = 12$ MHz and a unit with 12.58 MHz, correct communications is not possible even if the same communi mode is adopted. This is similar to the case of communications between a unit 24 MHz and a unit with $\phi = 25.16$ MHz, or between a unit with $\phi = 18$ MHz and with $\phi = 18.87$ MHz. Communications must be performed at the same oscillation frequency.

- 1. An effective transfer speed when the maximum number of transfer bytes is transfer
- 2. Oscillation frequency when this LSI is used

Rev. 6.00 Sep. 24, 2009 Page 542 of 928 REJ09B0099-0600

RENESAS

communicates with multiple slave units. Since there are multiple slave units, acknowled not returned from the slave units during communications.

A broadcast bit decides whether broadcast or normal communications is performed. (Fo the broadcast bit, see section 17.1.2 (1) (b), Broadcast Bit.

There are two types of broadcast communications.

(a) Group broadcast communications

Broadcast communications is performed to units with the same group number, mean those units have the same upper four bits of the communications address.

(b) General broadcast communications

Broadcast communications is performed to all units regardless of the group number. Group broadcast and general broadcast communications are identified by a slave add details on the slave address, see section 17.1.2 (3), Slave Address Field.)

17.1.2 Communications Protocol

Figure 17.2 shows an IEBus transfer signal format.

Communications data is transferred as a series of signals referred to as a communication. The number of data which can be transmitted in a single communications frame and the speed differ according to communications mode.


```
P: Parity bit (1 bit)
A: Acknowledge bit (1 bit)
When A = 0: ACK
When A = 1: NAK
N: Number of bytes
Note: The value of acknowledge bit is ignored in broadcast communications.
```

Figure 17.2 Transfer Signal Format

(1) Header

Header is comprised of a start bit and a broadcast bit.

(a) Start Bit

The start bit is a signal for informing a start of data transfer to other units. A unit, whi attempts to start data transfer, outputs a low-level signal (start bit) for a specified perithen outputs the broadcast bit.

If another unit is already outputting a start bit when a unit attempts to output a start bi waits for completion of output of the start bit from the other unit without outputting the bit, and then outputs the broadcast bit synchronized with the completion timing.

Other units enter the receive state after detecting the start bit.

(b) Broadcast Bit

The broadcast bit is a bit to identify the type of communications: broadcast or normal When this bit is cleared to 0, it indicates the broadcast communications. When it is see indicates the normal communications. Broadcast communications includes group broad and general broadcast, which are identified by a value of the slave address. (For detail slave address, see section 17.1.2 (3), Slave Address Field.)

Since there are multiple slave units, which are communications destination units, in the broadcast communications, the acknowledge bit is not returned from each field descriand below.

Rev. 6.00 Sep. 24, 2009 Page 544 of 928 REJ09B0099-0600

In the master address field, self-output data and data on the bus are compared for every transfer. If the self-output master address and data on the bus are different, the unit that arbitration, stops transfer, and enters the receive state.

Since the IEBus is configured with wired AND, a unit having the smallest master address units in arbitration (arbitration master) wins in arbitration.

Finally, only a single unit remains in the transfer state as a master unit after outputting 1 master address.

Next, this master unit outputs a parity bit*, defines the master address to other units, and enters the slave address field output state.

Note: Since even parity is used, when the number of one bits in the master address is o parity bit is 1.

(3) Slave Address Field

The slave address field is a field to transmit an address (slave address) of a unit (slave un which a master transmit data. The slave address field is comprised of slave address bits, bit, and an acknowledge bit.

The slave address has 12 bits and is output MSB first. The parity bit is output after the 1 address is transmitted in order to avoid receiving the slave address accidentally. The mat then detects the acknowledgement from the slave unit in order to confirm that the slave on the bus. When the acknowledgement is detected, the master unit enters the control field state. However, the master unit enters the control field output state without detecting the acknowledgement in broadcast communications.

RENESAS

Note: The group number is the upper 4-bit value of the slave address in group broadcas communications.

(4) Control Field

The control field is a field for transmitting the type and direction of the following data fie control field is comprised of control bits, a parity bit, and an acknowledge bit.

The control bits include four bits and are output MSB first.

The parity bit is output following the control bits. When the parity is correct, and the slave can implement the function required from the master unit, the slave unit returns the acknowledgement and enters the message length field output state. However, if the slave cannot implement the requirements from the master unit even though the parity is correct parity is not correct, the slave unit does not return the acknowledgement, and returns to the waiting (monitor) state.

The master unit enters the subsequent message length field output state after confirming t acknowledgement.

When the acknowledgement is not confirmed, the master unit enters the waiting (monitor and communications end. However, in the case of broadcast communications, the master enters the following message length field output state without confirming the acknowledg For details of the contents of the control bit, see table 17.4.

(5) Message Length Field

The message length field is a field for specifying the number of transfer bytes. The messa field is comprised of message length bits, a parity bit, and an acknowledge bit.

Rev. 6.00 Sep. 24, 2009 Page 546 of 928 REJ09B0099-0600

H'00		256 bytes
Note:	*	If a number greater than the maximum number of transfer bytes in one frame specified, communications are performed in multiple frames depending on the communications mode. In this case, the message length bits indicate the nun remaining communications data after the first transfer. In this LSI, after the fir the message length bits must be specified to the number of remaining comm data by a program, since these bits are not automatically specified by the har

This field operation differs depending on the value of bit 3 in the control field: master transmission (bit 3 in the control bits is 1) or master reception (bit 3 in the control bits is

(a) Master Transmission

The master unit outputs the message length bits and parity bit. When the parity is conslave unit returns the acknowledgement and enters the following data field. Note that unit does not return the acknowledgement in broadcast communications.

In addition, when the parity is not correct, the slave unit decides that the message ler is not correctly received, does not return the acknowledgement, and returns to the wa (monitor) state. In this case, the master unit also returns to the waiting state, and communications end.

(b) Master Reception

The slave unit outputs the message length bits and parity bit. When the parity is correspondent to the acknowledgement.

When the parity is not correct, the master unit decides that the message length bits at correctly received, does not return the acknowledgement, and returns to the waiting state, this case, the slave unit also returns to the waiting state, and communications end.

RENESAS

the acknowledge bit is ignored. Operations in master transmission and master reception a described below.

(a) Master Transmission

The master unit transmits the data bits and parity bit to the slave unit to write data from master unit to the slave unit. The slave unit receives the data bits and parity bit, and reacknowledgement if the parity bit is correct and the receive buffer is empty. If the parinot correct or the receive buffer is not empty, the slave unit rejects acceptance of corresponding data and does not return the acknowledgement.

When the slave unit does not return the acknowledgement, the master unit retransmits data. This operation is repeated until either the acknowledgement from the slave unit detected or the maximum number of data transfer bytes is exceeded.

When the parity is correct and the acknowledgement is output from the slave unit, the unit transmits the subsequent data if data remains and the maximum number of transf is not exceeded.

In the case of broadcast communications, the slave unit does not return the acknowled and the master unit transfers data byte by byte.

(b) Master Reception

The master unit outputs synchronous signals corresponding to all data bits to be read a slave unit.

The slave unit outputs the data bits and parity bit on the bus in accordance with the synchronous signals from the master unit.

Rev. 6.00 Sep. 24, 2009 Page 548 of 928 REJ09B0099-0600

The parity bit is added to respective data of the master address, slave address, control, m length, and data bits.

The even parity is used. When the number of one bits in data is odd, the parity bit is 1. V number of one bits in data is even, the parity bit is 0.

(8) Acknowledge bit

In normal communications (a single unit to a single unit communications), the acknowle added to the following position in order to confirm that data is correctly accepted.

- At the end of the slave address field
- At the end of the control field
- At the end of the message length field
- At the end of the data field

The acknowledge bit is defined below.

- 0: indicates that the transfer data is acknowledged. (ACK)
- 1: indicates that the transfer data is not acknowledged. (NAK)

Note that the acknowledge bit is ignored in the case of broadcast communications.

(a) Acknowledge bit at the End of the Slave Address Field

The acknowledge bit at the end of the slave address field becomes NAK in the follow and transfer is stopped.

- When the parity of the master address or slave address bits is incorrect
- When a timing error (an error in bit format) occurs
- When there is no slave unit

RENESAS

- When the control bits are the locked address read (H'4, H'5) although the unit is no
- When a timing error occurs
- When the control bits are undefined

Note: See section 17.1.3 (1), Slave Status Read (Control Bits: H'0, H'6).

(c) Acknowledge Bit at the End of the Message Length Field

The acknowledge bit at the end of the message length field becomes NAK in the follo cases and transfer is stopped.

- When the parity of the message length bits is incorrect
- When a timing error occurs
- (d) Acknowledge Bit at the End of the Data Field

The acknowledge bit at the end of the data field becomes NAK in the following cases transfer is stopped.

- When the parity of the data bits is incorrect*
- When a timing error occurs after the previous transfer of the acknowledge bit
- When the receive buffer becomes full and cannot accept further data
- Note: In this case, data field is transferred repeatedly until the number of data reaches the maximum number of transfer bytes if the number of data does not exceed the maximum error of transfer bytes in one frame.

Rev. 6.00 Sep. 24, 2009 Page 550 of 928 REJ09B0099-0600

					01
H'3	0	0	1	1	Reads data and locks
H'4	0	1	0	0	Reads locked address (lower 8 bits)
H'5	0	1	0	1	Reads locked address (upper 4 bits)
H'6	0	1	1	0	Reads slave status (SSR) and unlocks
H'7	0	1	1	1	Reads data
H'8	1	0	0	0	Undefined. Setting prohibited.
H'9	1	0	0	1	Undefined. Setting prohibited.
H'A	1	0	1	0	Writes command and locks
H'B	1	0	1	1	Writes data and locks
H'C	1	1	0	0	Undefined. Setting prohibited.
H'D	1	1	0	1	Undefined. Setting prohibited.
H'E	1	1	1	0	Writes command
H'F	1	1	1	1	Writes data

Notes: 1. According to the value of bit 3 (MSB), the transfer directions of the message in the following message length field and data in the data field vary.
 When bit 3 is 1: Data is transferred from the master unit to the slave unit.
 When bit 3 is 0: Data is transferred from the slave unit to the master unit.

 H'3, H'6, H'A, and H'B are control bits to specify lock setting and cancellation. When the undefined values of H'1, H'2, H'8, H'9, H'C, and H'D are transmitted acknowledge bit is not returned.

When the control bits received from another unit which locked are not included in table slave unit which has been locked by the master unit rejects acceptance of the control bits not return the acknowledge bit.

RENESAS

by reading the slave status (H'0, H'6). The slave status indicates the result of the last communications that the slave unit performs. All slave units can provide slave status info Figure 17.3 shows bit configuration of the slave status.

Rev. 6.00 Sep. 24, 2009 Page 552 of 928 REJ09B0099-0600

Bit 2	0	Unit is unlocked	
	1	Unit is locked	
Bit 1* ³	0	Slave receive buffer is empty	
	1	Slave receive buffer is not empty	
Bit 0*4	0	Slave transmit buffer is empty	
	1	Slave transmit buffer is not empty	
 The value of bit 4 can b The slave receive buffe (control bits: H'8, H'A, H In this LSI, the slave rea and bit 2 is the value of The slave transmit buffd (control bits: H'3, H'7). In this LSI, the slave tra when SRQ = 1 in the IE 	e selec r is a bi d'B, H'E ceive bi the Rx er is a b unsmit b Bus ge	to mode 2, bits 6 and 7 are fixed to 10. ted by the STE bit in the IEBus master unit addre- uffer which is accessed during data write ;, H'F). uffer corresponds to the IEBus receive buffer regi RDY flag in the IEBus receive status register (IEF puffer which is accessed during data read puffer corresponds to the IEBus transmit buffer re- neral flag register (IEFLG); and bit 1 is a value w mit/runaway status register (IETSR).	ister (IERBR); RSR). gister (IETBR)

Figure 17.3 Bit Configuration of Slave Status (SSR)

(2) Data Command Transfer (Control Bits: Read (H'3, H'7), Write (H'A, H'B, H

In the case of data read (H'3, H'7), data in the data buffer of the slave unit is read in the unit. In the case of data write (H'B or H'F) or command write (H'A or H'E), data receive slave unit is processed in accordance with the operation specification of the slave unit.

Notes: 1. The user can select data and commands freely in accordance with the system

2. H'3, H'A, or H'B may lock depending on the communications condition and a

(3) Locked Address Read (Control Bits: H'4, H'5)

In the case of the locked address read (H'4 or H'5), the address (12 bits) of the master un issues lock instruction is configured in bytes shown in figure 17.4.

Renesas

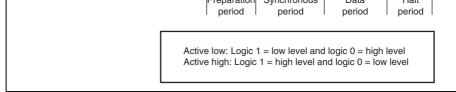
Locking and unlocking are described below.

Locking

When the acknowledge bit of 0 in the message length field is transmitted/received with control bits indicating the lock operation, and then the communications frame is completion of data transmission/reception for the number of bytes specified by message length bits, the slave unit is locked by the master unit. In this case, the bit (bit relevant to lock in the byte data indicating the slave status is set to 1.

Lock is set only when the number of data exceeds the maximum number of transfer b one frame. Lock is not set by other error termination.

Unlocking


When the control bits indicate the lock (H'3, H'A, or H'B) or unlock (H'6) operation a byte data for the number of bytes specified by the message length bits are transmitted in a single communications frame, the slave unit is unlocked by the master unit. In this bit (bit 2) relevant to lock in the byte indicating the slave status is cleared to 0.

Note that locking and unlocking are not performed in broadcast communications.

- Note: * There are three methods to unlock by a locked unit itself.
 - Perform hardware reset
 - Enter module stop mode
 - Issue unlock command by the IEBus command register (IECMR)

Rev. 6.00 Sep. 24, 2009 Page 554 of 928 REJ09B0099-0600

Figure 17.5 IEBus Bit Format (Conceptual Diagram)

Each period of bit format for use of active high signals is described below.

- Preparation period: first logic 1 period (high level)
- Synchronous period: subsequent logic 0 period (low level)
- Data period: period indicating bit value (logic 1: high level, logic 0: low level)
- Halt period: last logic 1 cycle (high level)

For use of active low signals, levels are reversed from the active high signals.

The synchronous and data periods have approximately the same length.

The IEBus is synchronized bit by bit. The specifications for the time of all bits and the p allocated to the bits differ depending on the type of transfer bits and the unit (master or s

17.3 Register Descriptions

The IEB has the following registers. For the module stop control register, see section 22. Module Stop Control Registers A to C (MSTPCRA to MSTPCRC).

- IEBus control register (IECTR)
- IEBUS command register (IECMR)
- IEBus master control register (IEMCR)
- IEBus master unit address register 1 (IEAR1)
- IEBus master unit address register 2 (IEAR2)
- IEBus slave address setting register 1 (IESA1)
- IEBus slave address setting register 2 (IESA2)
- IEBus transmit message length register (IETBFL)
- IEBus transmit buffer register (IETBR)
- IEBus reception master address register 1 (IEMA1)
- IEBus reception master address register 2 (IEMA2)
- IEBus receive control field register (IERCTL)
- IEBus receive message length register (IERBFL)
- IEBus receive buffer register (IERBR)
- IEBus lock address register 1 (IELA1)
- IEBus lock address register 2 (IELA2)
- IEBus general flag register (IEFLG)
- IEBus transmit/runaway status register (IETSR)
- IEBus transmit/runaway interrupt enable register (IEIET)
- IEBus transmit error flag register (IETEF)
- IEBus receive status register (IERSR)

Rev. 6.00 Sep. 24, 2009 Page 556 of 928 REJ09B0099-0600

RENESAS

Switches IEB pi	n and port functions.
-----------------	-----------------------

				entence in pir and port fanotione.
				0: The PG3/Rx/CS1 and PG2/Tx/CS2 pins function PG3/CS1 and PG2/CS2 pins.
				1: The PG3/ $\overline{Rx}/\overline{CS1}$ and PG2/ $\overline{Tx}/\overline{CS2}$ pins function \overline{Tx} and \overline{Rx} pins.
6	IOL	0	R/W	Input/Output Level
				Selects input/output pin level (polarity) for the \overline{Rx} pins.
				0: Pin input/output is set to active low. (Logic 1 is and logic 0 is high level.)
				1: Pin input/output is set to active high. (Logic 1 is level and logic 0 is low level.)

				time, the master address is stored in IEMA1 and II The receive data is not stored in IERCTL.
				While this bit is 0, a reception error interrupt does when the receive buffer is not in the receive enabl and the reception stops and enters the wait state. master address is not saved.
				0: A broadcast receive error is not generated up to control field.
				1: A broadcast receive error is generated up to the field.
4	CKS1	0	R/W	Input Clock Select
				Selects clock used by the IEB. See table 17.7.
3	RE	0	R/W	Receive Enable
				Enables/disables IEB reception. This bit must be s initial setting before frame reception. Changing this before receiving the control field is valid, however, changing this bit after receiving the control field is and the value before the change is validated.
				0: Reception is disabled.
				1: Reception is enabled.

Rev. 6.00 Sep. 24, 2009 Page 558 of 928 REJ09B0099-0600

				transmission. When the DTC is not used, set this generate an underrun error at the last byte transr
				0: An underrun error does not occur at the last by transmission (when using the DTC)
				1: An underrun error does not occur at the last by transmission (when not using the DTC)
1	CKS0	0	R/W	Input Clock Select
				Selects clock used by the IEB. See table 17.7.
0	_	0		Reserved
				This bit is always read as 0 and cannot be modifi

Table 17.7 List of System Clock Division Ratio

Bit 4	Bit 1	
CKS1	CKS0	Function
0	0	1/4 system clock is used (ϕ = 24MHz, 25.16 MHz)
0	1	1/3 system clock is used (ϕ = 18MHz, 18.87 MHz)
1	0	1/2 system clock is used (ϕ = 12MHz, 12.58 MHz)
1	1	Setting prohibited

RENESAS

 the command issuance, the command is indicate execution. When the CMX flag becomes 0, the orstate is entered. The read value is undefined. Do a bit manipulation instruction that causes malfund 000: No operation. Operation is not affected. 001: Unlock (required from other units)*¹ 010: Requires communications as the master 011: Stops master communications*² 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 					These bits cannot be modified.
 CMD0 0 W communications. When the CMX flag in IEFLG is the command issuance, the command is indicate execution. When the CMX flag becomes 0, the orstate is entered. The read value is undefined. Dot a bit manipulation instruction that causes malfund 000: No operation. Operation is not affected. 001: Unlock (required from other units)*1 010: Requires communications as the master 011: Stops master communications*² 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 111: Undefined bits. Operation is not affected by 	2	CMD2	0	W	Command Bits
 the command issuance, the command is indicated execution. When the CMX flag becomes 0, the original state is entered. The read value is undefined. Dot a bit manipulation instruction that causes malfund 000: No operation. Operation is not affected. 001: Unlock (required from other units)*¹ 010: Requires communications as the master 011: Stops master communications*² 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 111: Undefined bits. Operation is not affected by 	1	CMD1	0	W	These bits issue a command to control IEB
 001: Unlock (required from other units)*1 010: Requires communications as the master 011: Stops master communications*2 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*3. 111: Undefined bits. Operation is not affected by 	0	CMD0	0	W	communications. When the CMX flag in IEFLG is the command issuance, the command is indicate execution. When the CMX flag becomes 0, the o state is entered. The read value is undefined. Do a bit manipulation instruction that causes malfund
 010: Requires communications as the master 011: Stops master communications*² 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 111: Undefined bits. Operation is not affected by 					000: No operation. Operation is not affected.
 011: Stops master communications*² 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 111: Undefined bits. Operation is not affected by 					001: Unlock (required from other units)*1
 100: Undefined bits. Operation is not affected by command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave*³. 111: Undefined bits. Operation is not affected by 					010: Requires communications as the master
command. 101: Requires data transfer from the slave. 110: Stops data transfer from the slave* ³ . 111: Undefined bits. Operation is not affected by					011: Stops master communications* ²
110: Stops data transfer from the slave* ³ . 111: Undefined bits. Operation is not affected by					
111: Undefined bits. Operation is not affected by					101: Requires data transfer from the slave.
					110: Stops data transfer from the slave* ³ .
command.					111: Undefined bits. Operation is not affected by
					command.

- Notes: 1. Do not execute this command in slave communications. Execute this comman slave communications ends or in master communications. If this command is i slave communications, this command is ignored.
 - This command is valid during master communications (MRQ = 1). In other state command issuance is ignored. If this command is issued in master communications communications controller immediately enters the wait state. At this time, the is master transmission request ends (MRQ = 0).

Rev. 6.00 Sep. 24, 2009 Page 560 of 928 REJ09B0099-0600

Bit	Bit Name	Initial Value	B/W	Description
		value		Description
7	SS	1	R/W	Broadcast/Normal Communications Select
				Selects broadcast or normal communications for communications.
				0: Broadcast communications
				1: Normal communications
6	RN2	0	R/W	Retransmission Counts
5	RN1	0	R/W	Set the number of times retransmission is perforr
4	RNO	0	R/W	arbitration is lost in master communications. If ar lost for a specified number of times, the AL flag ir and the TxE bit in IETSR is set and transmission a transmit error. If arbitration is won during retran the retransmission count is automatically restored initial setting after master address transfer.
				000: 0
				001: 1
				010: 2
				011: 3
				100: 4
				101: 5
				110: 6
				111: 7

	0101: Reads locked address (upper 4 bits)
	0110: Reads slave status and unlocks* ²
	0111: Reads data
	1000: Undefined. Setting prohibited.
	1001: Undefined. Setting prohibited.
	1010: Writes command and locks* ²
	1011: Writes data and locks* ²
	1100: Undefined. Setting prohibited.
	1101: Undefined. Setting prohibited.
	1110: Writes command
	1111: Writes data
Notes: 1.	CTL3 decides the data transfer direction of the message length bits in the mess length field and data bits in the data field:
	CTL3 = 1: Transfer is performed from master unit to slave unit

CTL3 = 0: Transfer is performed from slave unit to master unit

2. Control bits to lock and unlock

Rev. 6.00 Sep. 24, 2009 Page 562 of 928 REJ09B0099-0600

э		0	n/ v v	
4	IAR0	0	R/W	
3	IMD1	0	R/W	IEBus Communications Mode
2	IMD0	0	R/W	Set IEBus communications mode.
				00: Communications mode 0
				01: Communications mode 1
				10: Communications mode 2
				11: Setting prohibited
1	—	0	—	Reserved
				This bit is always read as 0 and cannot be modifi
0	STE	0	R/W	Slave Transmission Setting
				Sets bit 4 in the slave status register. Transmittin slave status register informs the master unit that transmission enabled state is entered by setting t 1. Note that this bit only sets the slave status reg and does not affect slave transmission directly.
				0: Bit 4 in the slave status register is 0 (slave tran stop state)
				1: Bit 4 in the slave status register is 1 (slave tran enabled state)

4	IAR8	0	R/W	
3	IAR7	0	R/W	
2	IAR6	0	R/W	
1	IAR5	0	R/W	
0	IAR4	0	R/W	

17.3.6 IEBus Slave Address Setting Register 1 (IESA1)

IESA1 sets the lower 4 bits of the communications destination slave unit address. For slav communications, it is not necessary to set this register.

Bit	Bit Name	Initial Value	R/W	Description
7	ISA3	0	R/W	Lower 4 Bits of IEBus Slave Address
6	ISA2	0	R/W	These bits set the lower 4 bits of the
5	ISA1	0	R/W	communications destination slave unit ac
4	ISA0	0	R/W	
3 to 0		All 0	_	Reserved
				These bits are always read as 0 and can modified.

Rev. 6.00 Sep. 24, 2009 Page 564 of 928 REJ09B0099-0600

3	ISA7	0	R/W
2	ISA6	0	R/W
1	ISA5	0	R/W
0	ISA4	0	R/W

17.3.8 IEBus Transmit Message Length Register (IETBFL)

IETBFL sets the message length for master or slave transmission.

Bit	Bit Name	Initial Value	R/W	Description
7	TBFL7	0	R/W	Transmit Message Length
6	TBFL6	0	R/W	Set the message length for master or sla
5	TBFL5	0	R/W	transmission.
4	TBFL4	0	R/W	If a value exceeding the maximum transr for one frame is set in IETBFL, communi
3	TBFL3	0	R/W	are performed with two or more frames in
2	TBFL2	0	R/W	communications modes. In this case, in o
1	TBFL1	0	R/W	second frame, the message length value be the number of bytes of the remaining
0	TBFL0	0	R/W	communications data, however, the initia setting remains unchanged. Therefore, for second frame or after, re-set the number of the remaining communications data.

Renesas

6 TBR6 0 R/W buffer. 5 TBR5 0 R/W 4 TBR4 0 R/W 3 TBR3 0 R/W 2 TBR2 0 R/W 1 TBR1 0 R/W 0 TBR0 0 R/W	7	TBR7	0	R/W	Data to be transmitted is written to this 1-b
4 TBR4 0 R/W 3 TBR3 0 R/W 2 TBR2 0 R/W 1 TBR1 0 R/W	6	TBR6	0	R/W	buffer.
3 TBR3 0 R/W 2 TBR2 0 R/W 1 TBR1 0 R/W	5	TBR5	0	R/W	
2 TBR2 0 R/W 1 TBR1 0 R/W	4	TBR4	0	R/W	
1 TBR1 0 R/W	3	TBR3	0	R/W	
	2	TBR2	0	R/W	
0 TBR0 0 R/W	1	TBR1	0	R/W	
	0	TBR0	0	R/W	

Rev. 6.00 Sep. 24, 2009 Page 566 of 928 REJ09B0099-0600

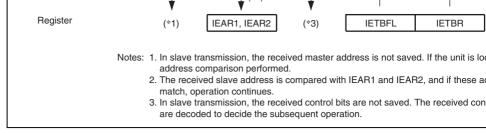


Figure 17.6 Transmission Signal Format and Registers in Data Transfer

17.3.10 IEBus Reception Master Address Register 1 (IEMA1)

IEMA1 indicates the lower four bits of the communications destination master unit addr slave/broadcast reception. This register is enabled when slave/broadcast reception starts, contents are changed at the timing of setting the RxS flag in IERSR.

If a broadcast receive error interrupt is selected by the DEE bit in IECTR and the receive not in the receive enabled state on control field reception, a receive error interrupt is gen the lower 4 bits of the master address are stored in IEMA1. This register cannot be modi

Bit	Bit Name	Initial Value	R/W	Description
7	IMA3	0	R	Lower 4 Bits of IEBus Reception Master
6	IMA2	0	R	Indicates the lower 4 bits of the communi
5	IMA1	0	R	destination master unit address in slave/t
4	IMA0	0	R	reception.
3 to 0		All 0	R	Reserved
				These bits are always read as 0.

RENESAS

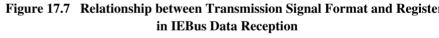
Dit	Dit Name		11/10	Description
7	IMA11	0	R	Upper 8 Bits of IEBus Reception Master A
6	IMA10	0	R	Indicates the upper 8 bits of the communic
5	IMA9	0	R	destination master unit address in slave/b
4	IMA8	0	R	reception.
3	IMA7	0	R	
2	IMA6	0	R	
1	IMA5	0	R	
0	IMA4	0	R	

17.3.12 IEBus Receive Control Field Register (IERCTL)

IERCTL indicates the control field value in slave/broadcast reception. This register is ena when slave/broadcast receive starts, and the contents are changed at the timing of setting flag in IERSR.

This register cannot be modified.

7 to 4 All 0 R Reserved These bits are always read as 0. These bits are always read as 0. 3 RCTL3 0 R IEBus Receive Control Field 2 RCTL2 0 R Indicates the control field value in slave 1 RCTL1 0 R reception. 0 RCTL0 0 R	Bit	Bit Name	Initial Value	R/W	Description
3 RCTL3 0 R IEBus Receive Control Field 2 RCTL2 0 R Indicates the control field value in slave 1 RCTL1 0 R reception.	7 to 4	_	All 0	R	Reserved
2RCTL20RIndicates the control field value in slave1RCTL10Rreception.					These bits are always read as 0.
1 RCTL1 0 R reception.	3	RCTL3	0	R	IEBus Receive Control Field
	2	RCTL2	0	R	Indicates the control field value in slave/b
0 RCTL0 0 R	1	RCTL1	0	R	reception.
	0	RCTL0	0	R	


Rev. 6.00 Sep. 24, 2009 Page 568 of 928 REJ09B0099-0600

5	RBFL5	0	R	slave/broadcast reception.
4	RBFL4	0	R	
3	RBFL3	0	R	
2	RBFL2	0	R	
1	RBFL1	0	R	
0	RBFL0	0	R	

6	RBR6	0	R	received in master or slave reception
5	RBR5	0	R	
4	RBR4	0	R	
3	RBR3	0	R	
2	RBR2	0	R	
1	RBR1	0	R	
0	RBR0	0	R	

[In slave reception]					
Communications frame	Master address	Slave address	Control bits	Message length bits	Data bits
	↓ ↓	(*)	Ļ	↓ ▼	Ļ
Register	IEMA1, IEMA2	IEAR1, IEAR2	IERCTL	IERBFL	IERBR
	the followi	ng operations are	e performed.		
[In master reception]	the followi	ng operations are	performed.		
[In master reception] Communications frame			e performed. Control bits	Message length bits	Data bits
					Data bits
					Data bits

3	ILAS	0	n
2	ILA2	0	R
1	ILA1	0	R
0	ILA0	0	R

17.3.16 IEBus Lock Address Register 2 (IELA2)

IELA2 is an 8-bit read-only register that specifies the upper 4 bits of a locked address w is locked. Data in this register is valid when the LCK flag in IEFLG is set to 1. This register cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
7 to 4 —		All 0	R	Reserved
				These bits are always read as 0.
3	ILA11	0	R	Upper 4 Bits of IEBus Locked Address
2	ILA10	0	R	Stores the upper 4 bits of the master unit
1	ILA9	0	R	when a unit is locked.
0	ILA8	0	R	

RENESAS

				[Setting condition]
				 When a master communications request or sla transmit request command is issued while the SRQ, or SRE flag is set to 1
				0: A command execution is completed
				[Clearing condition]
				When a command execution has been comple
6	MRQ	0	R	Master Communications Request
				Indicates whether or not the unit is in communicati request state as a master unit.
				1: The unit is in communications request state as a unit
				[Setting condition]
				 When the CMX flag is cleared to 0 after the ma communications request command is issued
				0: The unit is not in communications request statu master unit
				[Clearing condition]
				When the master communications have been completed

Rev. 6.00 Sep. 24, 2009 Page 572 of 928 REJ09B0099-0600

				[Clearing condition]
				When a slave transmission has been completed
4	SRE	0	R	Slave Receive Status
				Indicates the execution status in slave/broadcast
				1: Slave/broadcast reception is being executed
				[Setting condition]
				 When the slave/broadcast reception is started RE bit in IECTR is set to 1.
				0: Slave/broadcast reception is not being execute
				[Clearing condition]
				When the slave/broadcast reception has been completed.

				 unit make the unit looked are received from the unit. (The LCK flag is set to 1 only when the m length exceeds the maximum number of transf in one frame. This flag is not set by completion errors.) 0: A unit is unlocked [Clearing condition] When an unlock condition is satisfied or when unlock command is issued.
2	_	0	R	Reserved
				This bit is always read as 0.
1	RSS	0	R	Receive Broadcast Bit Status
				Indicates the received broadcast bit value. This fla when the slave/broadcast reception is started. (Th changed at the timing of setting the RxS flag in IEI
				The previous value remains unchanged until the n slave/broadcast reception is started.

Rev. 6.00 Sep. 24, 2009 Page 574 of 928 REJ09B0099-0600

[Setting condition]

 When H'FFF is acknowledged in the slave fie broadcast reception

[Clearing conditions]

- A unit is in slave reception
- When H'FFF is not acknowledged in slave fie broadcast reception

Renesas

				DTC* data transfer. When data is transmitted by this flag must be cleared by software. This flag is by writing 0 after reading a 1 from this flag.
				[Setting conditions]
				Immediately after reset
				When data can be written to IETBR (when IE loaded data from IETBR to the transmit shift is the transmit shift in the transmit shift is the transmit s
				[Clearing conditions]
				• When writing 0 after reading TxRDY = 1
				• When data is written to TBR by the DTC by a request.
				Note: This flag is not cleared on the end byte of transfer.
6 to 4		All 0		Reserved
				These bits are always read as 0 and cannot be n
3	IRA	0	R/W	IEBus Runaway State
				Indicates that the on-chip microprogram for IEBu is in the runaway states. This flag is set to 1 whe runaway occurs during either IEBus transmission reception. (This flag is not a transfer specific flag also set for a reception runaway.)
				[Setting condition]
				When the on-chip microprogram is in the runa states
				[Clearing condition]
				• When writing 0 after reading IRA = 1

Rev. 6.00 Sep. 24, 2009 Page 576 of 928 REJ09B0099-0600

				that data transfer is requested
				[Clearing condition]
				• When writing 0 after reading TxS = 1
1	TxF	0	R/W	Transmit Normal Completion
				Indicates that data for the number of bytes specif message length bits has been transmitted with ne
				[Setting condition]
				 When data for the number of bytes specified message length bits has been transmitted no [Clearing condition]
				• When writing 0 after reading TxF = 1

or NAK reception) generated after a master communications command is issued before maste reception starts will be detected as a transmit erro

[Setting condition]

 When the data for the number of bytes specifie message length bits is not completed and whe transmission is terminated

[Clearing condition]

• When writing 0 after reading TxE = 1

Rev. 6.00 Sep. 24, 2009 Page 578 of 928 REJ09B0099-0600

				1: Enables a transmit data ready (TxRDY) inter
6 to 4	—	All 0		Reserved
				These bits are always read as 0 and cannot be
3	IRAE	0	R/W	IEBus Runaway State Interrupt Enable
				Enables/disables an IEBus runaway state interr
				0: Disables an IEBus runaway state interrupt (IF
				1: Enables an IEBus runaway state interrupt (IR
2	TxSE	0	R/W	Transmit Start Interrupt Enable
				Enables/disables a transmit start (TxS) interrupt
				0: Disables a transmit start (TxS) interrupt
				1: Enables a transmit start (TxS) interrupt
1	TxFE	0	R/W	Transmit Normal Completion Interrupt Enable
				Enables/disables a transmit normal completion interrupt.
				0: Disables a transmit normal completion (TxF)
				1: Enables a transmit normal completion (TxF) i
0	TxEE	0	R/W	Transmit Error Termination Interrupt Enable
				Enables/disables a transmit error termination (T interrupt.
				0: Disables a transmit error termination (TxE) in
				1: Enables a transmit error termination (TxE) int
-				

4	AL	0	Fi/ VV	Arbitration Loss
				The IEB retransmits from the start bit for the num times specified by bits RN2 to Rn0 in IEMCR if th arbitration has been lost in master communication arbitration has been lost for the specified number the AL and TxE flags are set to enter the wait sta arbitration has been won within retransmit for the specified number of times, this flag is not set to 1 flag is set only when the arbitration has been lost wait state is entered.
				[Setting condition]
				 When the arbitration has been lost during dat transmission and the transmission has been terminated
				[Clearing condition]
				• When writing 0 after reading AL = 1

Rev. 6.00 Sep. 24, 2009 Page 580 of 928 REJ09B0099-0600

				[Setting condition]
				• When the IEB loads data from IETBR to the shift register while the TxRDY flag is set to 1
				[Clearing condition]
				 When writing 0 after reading UE = 1
2	TTME	0	R/W	Timing Error
				Set to 1 if data is not transmitted at the timing sp the IEBus protocol during data transmission. Th the TxE flag and enters the wait state.
				[Setting condition]
				• When a timing error occurs during data trans
				[Clearing condition]
				• When writing 0 after reading TTME = 1

				 When the transmit has not been completed alther maximum number of bytes defined by communi mode have been transmitted [Clearing condition]
				• When writing 0 after reading RO = 1
0	ACK	0	R/W	Acknowledge bit Status
				Indicates the data received in the acknowledge bit on data field.
				Acknowledge bit other than in the data field
				The IEB terminates the transmission and enters state if a NAK is received. In this case, this bit a TxE flag are set to 1.
				Acknowledge bit in the data field
				The IEB retransmits data up to the maximum nubytes defined by communications mode until an received from the receive unit if a NAK is receive the receive unit during data field transmission. In case, when an ACK is received from the receive during retransmission, this flag is not set and transmission will be continued. When transmiss terminated without receiving an ACK, this flag is
				Note: This flag is invalid in broadcast communicati
				[Setting condition]
				• When the acknowledge bit of 1 (NAK) is detected [Clearing condition]
				• When writing 0 after reading ACK = 1

Rev. 6.00 Sep. 24, 2009 Page 582 of 928 REJ09B0099-0600

				cleared by DTC* data transfer. When data is tra by the CPU, this flag must be cleared by softwa
				[Setting condition]
				 When data reception has been completed n and receive data has been loaded to IERBF [Clearing conditions]
				• When writing 0 after reading RxRDY = 1
				• When IERBR data is read by the DTC by a request.
				Note: This flag cannot be cleared on the end b DTC transfer.
6 to 3	_	All 0	_	Reserved
				These bits are always read as 0 and cannot be
2	RxS	0	R/W	Receive Start Detection
				Indicates that the IEB starts reception.
				[Setting conditions]
				 Master reception: When the message length been received from the slave unit correctly a arbitration is won and the control field transport completed
				• Slave reception: When the message length been received from the master unit correctly
				[Clearing condition]
				• When writing 0 after reading RxS = 1

RENESAS

0	RxE	0	R/W	Receive Error Completion
				Indicates that data for the number of bytes specific message length bits is not completed and that the reception is terminated. The source of this error ca checked by the contents of IEREF. This flag is set timing that an error indicated by IEREF occurs. Th flag can be cleared even when the error source fla IEREF is set to 1 because the RxE flag is not logic ORed with the flags in IEREF.
				[Setting condition]
				 When the data for the number of bytes specific message length bits is not completed and whe reception is terminated.
				[Clearing condition]
				• When writing 0 after reading RxE = 1

Rev. 6.00 Sep. 24, 2009 Page 584 of 928 REJ09B0099-0600

				1: Enables a receive data ready (RxRDY) interru
6 to 3 —		All 0	—	Reserved
				These bits are always read as 0 and cannot be n
2	RxSE	0	R/W	Receive Start Interrupt Enable
				Enables/disables a receive start (RxS) interrupt.
				0: Disables a receive start (RxS) interrupt
				1: Enables a receive start (RxS) interrupt
1	RxFE	0	R/W	Receive Normal Completion Enable
				Enables or disables a receive normal completion interrupt.
				0: Disables a receive normal completion (RxF) in
				1: Enables a receive normal completion (RxF) in
0	RxEE	0	R/W	Receive Error Termination Interrupt Enable
				Enables or disables a receive error termination (I interrupt.
				0: Disables a receive error termination (RxE) inte
				1: Enables a receive error termination (RxE) inte
-				

7 to 4	_	All 0	_	Reserved
				These bits are always read as 0 and cannot be m
3	OVE	0	R/W	Overrun Control Flag
				Used to control the overrun during data reception sets the OVE and RxE flags when the IEB receiv next byte data while the receive data has not bee (the RxRDY flag is not cleared) and when the par reception has been started. If this flag remains se acknowledge bit transfer, the IEB assumes that a overrun error has occurred and returns a NAK to communications destination unit.
				The communications destination unit retransmits to the maximum number of transmit bytes. The IE however, returns a NAK when this flag remains s because the IEB assumes that the overrun error been cleared.
				If this flag is cleared to 0, the IEB decides that the error has been cleared, returns an ACK, and rece next data.
				In broadcast reception, if this flag is set during acknowledge bit transmission, the IEB immediate the wait state.
				[Setting condition]
				• When the next byte data is received while the flag is not cleared and when the parity bit of the received.
				[Clearing condition]
				• When writing 0 after reading OVE = 1

Rev. 6.00 Sep. 24, 2009 Page 586 of 928 REJ09B0099-0600

1	DLE	0	R/W	Overflow of Maximum Number of Receive Bytes Frame
				Indicates that the maximum number of bytes def communications mode have been received beca parity error or overrun error occurred, or that the has not be completed because the message len exceeds the maximum number of receive bytes frame. The IEB sets the RxE flag and enters the state.
				[Setting condition]
				 When the reception has not been completed the maximum number of bytes defined by communications mode have been received.
				[Clearing condition]
				• When writing 0 after reading DLE = 1

destination unit continues retransfer up to the max number of receive bytes in one frame and if the re has been completed normally by clearing the parit the PE flag is not set. If the parity error is not clear the reception is terminated before receiving data for number of bytes specified by the message length, flag is set.

In broadcast reception, if a parity error occurs duri field reception, the IEB enters the wait state immer after setting the PE flag.

[Setting condition]

 When the parity bit of last data of the data field correct after the maximum number of receive b been received

[Clearing condition]

• When writing 0 after reading PE = 1

Rev. 6.00 Sep. 24, 2009 Page 588 of 928 REJ09B0099-0600

- the LOBE of to 0 since the transfer is performed by the DTC.
- (b) Setting the IEBus Master Unit Address Registers 1 and 2 (IEAR1 and IEAR2) Specify the master unit address and specify the communications mode in IEAR1.
- (c) Setting the IEBus Slave Address Setting Registers 1 and 2 (IESA1 and IESA2) Specify the communications destination slave unit address.
- (d) Setting the IEBus Master Control register (IEMCR)Select broadcast/normal communications, specify the number of retransfer counts at loss, and specify the control bits.
- (e) Setting the IEBus Transmit Message Length Register (IETBFL) Specify the message length bits.
- (f) Setting the IEBus Transmit/Runaway Interrupt Enable Register (IEIET) Enable TxRDY (IETxI), TxS, TxF, and TxE (IETSI) interrupts.

The above registers can be specified in any order. (The register specification order does the IEB operation.)

(2) DTC Initialization

- Set the start address of the RAM which stores the register information necessary for transfer in the vector address (H'000004D4) to be accessed when a DTC transfer req generated.
- 2. Set the following data from the start address of the RAM.
 - Transfer source address (SAR): Start address of the RAM which stores data to be transmitted in the data field.
 - Transfer destination address (DAR): Address (H'FFF808) of the IEBus transmit register (IETBR)
 - Transfer count (CRA): The same value as the IETBFL contents

Renesas

- issued from IECMR. During slave reception, the command execution status flag (CM IEFLG is set and the master communications request will not be issued.
- 2. When the slave reception has been completed, the CMX flag is cleared, the master communications command is executed, and the MRQ flag is set.
- 3. The transmit start detection flag (TxS) in IETSR is set when arbitration is won and the address has been transmitted. In this case, one of the transmit status interrupts (IETSI requested to the CPU, and the TxS flag is cleared in the interrupt handling routine.
- 4. The IEB loads data to be transmitted in the data field from IETBR when the control a message length fields have been transmitted and an ACK is received in each field. Af the TxRDY flag is set. A DTC transfer request is generated by IETxI and the second I written to the transmit buffer.
- 5. Similarly, the data field load and transmission are repeated.
- 6. The DTC completes the data transfer for the number of specified bytes when data to be transmitted in the last byte is written to. At this time, the DTC does not clear the TxRI It, however, clears bit DTCEG5 in the DTC enable register G (DTCERG) so as not to more DTC transfer request.
- 7. A TxRDY interrupt (IETxI) is issued to the CPU when the DTC transfer is completed interrupt handling routine, the TxRDY flag can be cleared. However, since a TxRDY will be generated again after the last byte transfer, the TxRDY flag remains set. (Note LUEE bit must be cleared to 0 because an underrun error occurs to terminate the trans LUEE bit in IECTR is set to 1.) Note, however, that the TxRDY interrupt must be dis because the TxRDY interrupt is always generated.
- 8. A transmit normal completion (TxF) interrupt (IETSI) occurs after the last data transf completed. In this case, the CPU clears the TxF flag and completes the normal compl interrupt and clears the MRQ flag to 0.
- Note: As a transmit status interrupt (IETSI), the transmit error termination (TxE) interru well as the transfer start detection (TxS) and transmit normal completion (TxF) in

Rev. 6.00 Sep. 24, 2009 Page 590 of 928 REJ09B0099-0600

CMX		(2)						
MRQ	(2)							
SRQ		 	1 1 1					
SRE			+					
IETSR			DTC trans of 2nd by	/te	of 3rd byte	DTC tra of nth I		
TxRDY	Cleared to 0 byt DTC transf	er of 1st byte	(4)	- (5)	(6)			
TxS		(3)	Π					
TxF							(8)	
Interrupt		1						
IETxI (TxR (TO DTC)	DY)		(4)	- (5)	(6)			
(TO DTC) IETxl (TxR	DY)				(⁷⁾ □		•
(TO CPU)		(3)					(8)	
IETSI (TO CPU)		(0)	۱-۱				(-)	•

Figure 17.8 Master Transmit Operation Timing

17.4.2 Slave Receive Operation

This section describes an example of performing a slave reception using the DTC.

(1) IEB Initialization

(a) Setting the IEBus Control Register (IECTR)

Enable the IEBus pins, select the signal polarity, and select a clock supplied to the IB RE bit to 1 to perform reception. The LUEE bit does not need to be specified.

(b) Setting the IEBus Master Unit Address Registers 1 and 2 (IEAR1 and IEAR2)

RENESAS

- generated.
- 2. Specify the following from the start address of the RAM.
 - Transfer source address (SAR): Address (H'FFF80D) of the IEBus receive buffer (IERBR).
 - Transfer destination address (DAR): Start address of the RAM which stores data r from the data field.
 - Transfer count (CRA): Maximum number of transfer bytes in one frame in the tran mode.
- 3. Set DTCEG6 in the DTC enabler register G (DTCERG) to enable the RxRDY interru (IETxI).

Because the above settings are performed before the frame reception, the length of data to received cannot be decided. Accordingly, the maximum number of transfer bytes in one f specified as the DTC transfer count.

If the DTC is specified after reception starts, the above settings are performed in the rece (RxS) interrupt handling routine. In this case, the transfer count must be the same value a contents of the IEBus receive message length register (IERBFL).

(3) Slave Reception Flow

Figure 17.9 shows the slave reception flow. Numbers in the following description corresp the number in Figure 17.9. In this example, the DTC is specified when the frame reception

After the broadcast reception has been completed, the slave reception is performed. T receive broadcast bit status flag (RSS) in IEFLG retains the previous frame information 1) until the receive start detection flag (RxS) is set to 1. If the RSS flag changes at the of header reception, the interrupt handling of the broadcast reception completion must be an experiment.

Rev. 6.00 Sep. 24, 2009 Page 592 of 928 REJ09B0099-0600

- RxRDY flag. It, however, clears the DTC enable register G (DTCEG). Accordingly, no transfer request will be issued to the DTC.
- 6. When the DTC transfer has been completed, an RxRDY interrupt (IERxI) is issued t CPU. In this interrupt handling routine, the RxRDY flag is cleared.
- 7. When the last data is received, a receive normal completion (RxF) interrupt (IERSI) this case, the CPU clears the RxF flag in order to complete the normal completion in The SRE flag is cleared to 0.
- Notes: 1. As a receive status interrupt (IERSI), the receive error termination (RxE) into well as the receive start detection (RxS) and receive normal completion (RxE interrupts must be enabled. If an error termination interrupt is disabled, no in generated even if the reception is terminated by an error.
 - 2. The interrupt occurs after the DTC transfer has been completed. Accordingly interrupt described in item 6 actually occurs after item 7 above.

in ite			 						—	
SRQ			 					, , , , ,		
SRE		1	 					(5)	(7) -	
IERSR RxRDY			 	DTC tra of 1st t (3)	nsfer DTC	transfe -2)th by (4)	er DTC te of (n-	transfer	DTC of n	trans
RxS			 (2)		- L	· · · ·		└ - └	!	
RxF			 					(7)		
Interrupt						_				
IERxI (RxF (TO DTC)	RDY)		 	(3)	<u> </u>	(4)		(5)	ļ	
IERxI (RxF (TO CPU)		 	 I I					((6)	
IERSI (TO CPU)		 	 (2)					(7)	<u>h</u>	

Figure 17.9 Slave Reception Operation Timing

Rev. 6.00 Sep. 24, 2009 Page 594 of 928 REJ09B0099-0600

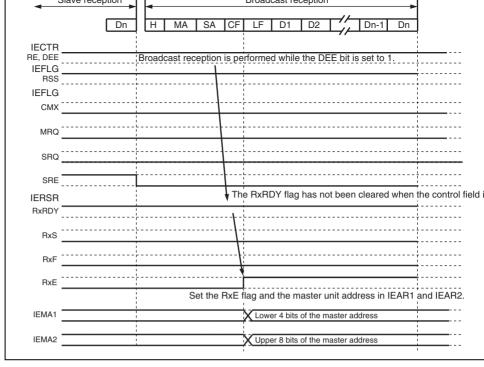


Figure 17.10 Error Occurrence in the Broadcast Reception (DEE = 1)

RENESAS

- Specify the master unit address and specify the communications mode in IEAR1. Cor with the slave address in the communications frame and receive the frame if matched
- (c) Setting the IEBus Slave Address Setting Registers 1 and 2 (IESA1 and IESA2) Specify the communications destination slave unit address.
- (d) Setting the IEBus Master Control Register (IEMCR)Select broadcast/normal communications, specify the number of retransfer counts at a loss, and specify the control bits.
- (e) Setting the IEBus Receive Interrupt Enable Register (IEIER) Enable the RxRDY (IERxI), RxS, RxF, and RxE (IERSI) interrupts.

The above registers can be specified in any order. (The register specification order does n the IEB operation.)

(2) DTC Initialization

- Set the start address of the RAM which stores the register information necessary for t transfer in the vector address (H'000004D2) to be accessed when a DTC transfer requ generated.
- 2. Set the following data from the start address of the RAM.
 - Transfer source address (SAR): Address (H'FFF80D) of the IEBus receive buffer (IERBR).
 - Transfer destination address (DAR): Start address of the RAM which stores data t received from the data field.
 - Transfer count (CRA): Maximum number of transfer bytes in one frame in the tran mode.
- 3. Set bit DTCEG6 in the DTC enabler register G (DTCERG), and enable the RxRDY in (IERxI).

Rev. 6.00 Sep. 24, 2009 Page 596 of 928 REJ09B0099-0600

are number in ingare 17711, in and enample, are 210 is specified when are mane recept

- 1. After the IEB has been initialized, a master communications request command is iss IECMR. During slave reception, the command execution status flag (CMX) in IEFL and the master communications request will not be issued.
- 2. The CMX flag is cleared when the slave reception is completed, the master commun command is executed, and the MRQ flag is set.
- 3. If the arbitration is won, the master address, slave address, and control field will be transmitted. An error generated before the control field transmission will be handled transmission error. In this case, the TxE flag is set and the error contents will be refle IETEF.
- 4. The message length field is received from the slave unit. If no parity error is detected reception is performed correctly, the receive start detection flag (RxS) is set to 1. If a error occurs, it is handled as a receive error. A receive start detection (RxS) interrupt status interrupt (IERSI)) occurs and the DTC initialization described in (2) is perform DTC initialization, the RxS flag is cleared to 0.
- 5. When the first data is received, the RxRDY flag is set to 1. A DTC transfer request be occurs and the DTC loads data from the IEBus receive buffer register (IERBR) and RxRDY flag.
- 6. Similarly, the above data field receive and load operations are repeated.
- 7. When the last data is received, the DTC completes the data transfer for the specified bytes after loading the receive data to the RAM. In this case, the DTC does not clear RxRDY flag. It, however, clears the DTC enable register G (DTCEG). Accordingly, no transfer request will be issued to the DTC.
- 8. When the DTC transfer has been completed, an RxRDY interrupt (IERxI) is issued t CPU. In this interrupt handling routine, the RxRDY flag is cleared.

RENESAS

Slave	ave reception Master reception									i			
	Г	Dn	H	MA	SA	CF	LF	D1	D2	<i>\</i> /_	Dn-1	Dn	ł
	L		<u> </u>	INA		(3)			02		-		ł
IECTR						(3)							į
RE IECMR												 	ŧ
	X Master	recept	tion rec	uest				1			-	1 1 1	÷
IEFLG	(1)		(2)										Ī
CMX	· ·												÷
		(2)											Ĩ
MRQ		(2)						¦				¦	1
SRQ								¦					÷
													÷
SRE													Ì
IERSR								DTC tra	nsferDT ovte of (C transfe n-2)th by	er DTC te of (n-1	transfer 1)th byte	ł
RxRDY								(5)	Ĺ	(6)		(7)	ſ
							(4)						į
RxS							(4)	Į.L					÷
RxF								+				(9)	έ
laterrupt —											1		1
Interrupt								(-)		(0)	<u></u>		i
IERxI (RxRD (TO DTC)	PY)							(5)		(6)			Į.
IERxI (RxRD													; (8
(TO CPU)	/1)							:			:	<u>.</u>	÷
IERSI							(4)	<u>i</u>			;	(9)	Ē

Figure 17.11 Master Receive Operation Timing

Rev. 6.00 Sep. 24, 2009 Page 598 of 928 REJ09B0099-0600

RENESAS

Specify the master unit address and specify the communications mode in IEAR1. Co with the slave address in the communications frame and receive the frame if matched

- (c) Setting the IEBus Transmit Message Length Register (IETBFL) Specify the message length bits.
- (d) Setting the IEBus Transmit/Runaway Interrupt Enable Register (IEIET) Enable the TxRDY (IETxI), TxS, and TxE (IETSI) interrupts.

The above registers can be specified in any order. (The register specification order does the IEB operation.)

(2) DTC Initialization

- Set the start address of the RAM which stores the register information necessary for transfer in the vector address (H'000004D4) to be accessed a DTC transfer request is generated.
- 2. Set the following data from the start address of the RAM.
 - Transfer source address (SAR): Start address of the RAM which stores data to be transmitted from the data field.
 - Transfer destination address (DAR): Address (H'FFF808) of the IEBus transmit register (IETBR)
 - Transfer count (CRA): The same value as IETBFL
- 3. Set bit DTCEG5 in the DTC enabler register G (DTCERG), and enable the TxRDY (IETxI).

Because the TxRDY flag is retained after reset, the DTC transfer is executed when the enabled and the first data field data is written to IETBR. The DTC negates the TxRE and the DTC transfer of the first byte is completed.

RENESAS

- is H'3 or H'7, the transmit start detection flag (TxS) in IETSR register is set to 1. In the TxS flag is cleared in the TxS interrupt handling routine.
- 4. The slave then transmits the message length field, and the IEB loads the transmit data data field from IETBR when the ACK is received. Then the TxRDY flag is set to 1. A transfer request by IETxI is generated and the second byte data is written to the transmuter buffer.
- 5. Similarly, the above data field load and transmission operations are repeated.
- 6. The DTC completes the data transfer for the number of specified bytes when data to be transmitted in the last byte is written to. At this time, the DTC does not clear the TxRI It, however, clears bit DTCEG5 in the DTC enable register G (DTCERG) not to gene DTC transfer request.
- 7. A TxRDY interrupt (IETxI) is issued to the CPU when the DTC transfer is completed interrupt handling routine, the TxRDY flag can be cleared. However, since the TxRD interrupt will be generated again after the last byte transfer, the TxRDY flag remains a that the LUEE bit should be cleared to 0 because an underrun error occurs to terminat transfer if the LUEE bit in IECTR is set to 1.) Note, however, that the TxRDY interrup be disabled because the TxRDY interrupt is always generated.
- 8. After the last data transfer has been completed, a transmit normal completion (TxF) in occurs. In this case, the CPU clears the TxF flag and completes the normal completion interrupt and clears the SRQ flag to 0.
- Notes: 1. As a transmit status interrupt (IETSI), a transmit error termination (TxE) inter well as the transmit start detection (TxS) and transmit normal completion (Txl interrupts must be enabled. If a transmit error completion interrupt is disabled interrupt is generated even if the transfer is terminated by an error.
 - 2. If the control bits sent from the master unit is H'0, H'4, H'5, or H'6 in slave transmission, the IEB automatically performs processing and the TxS and TxI not set.

Rev. 6.00 Sep. 24, 2009 Page 600 of 928 REJ09B0099-0600

RENESAS

SRQ	(2)						'
-		1					
SRE							
IETSR			DTC tra of 2nd	bvte	of 3rd byte	DTC tra of nth	
TxRDY	Cleared to 0 byt DTC transf	er of 1st byte	(4)	(5)	(6)		
TxS		(3)					
TxF							(8)
Interrupt							
IETxI (TxF	RDY)		(4)	- (5)	(6)		
(TO DTC)				-			
IETxI (TxF					(⁷⁾ П.	L
(TO CPU)							(0)
IETSI		(3)					(8)
(TO CPU)							
l		1					

Figure 17.12 Slave Transmit Operation Timing

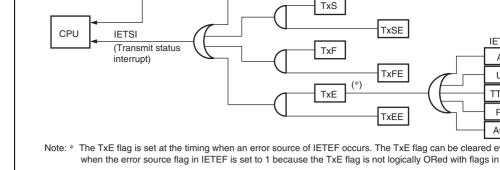


Figure 17.13 Relationships among Transfer Interrupt Sources

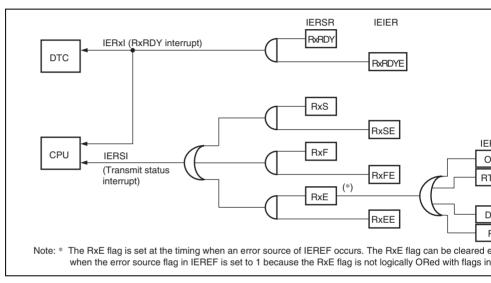


Figure 17.14 Relationships among Receive Interrupt Sources

Rev. 6.00 Sep. 24, 2009 Page 602 of 928 REJ09B0099-0600

- TxRDY flag. Meanwhile, the TxRDY flag must be cleared by software since writing by the CPU does not clear the TxRDY flag.
- 2. If the CPU fails to write to IETBR by the timing of the frame transmission or if the r transfer words is less than the length specified by the message length bits, an underro occurs.
- 3. The IEB decides that an underrun error occurred when the data is loaded from IETB transmit shift register while the TxRDY flag is set to 1. In this case, the IEB sets the in IETSR and enters the wait state. The UE flag in IETEF is also set to 1.
- 4. On the receive side, the unit decides that a timing error has occurred because the communications are terminated.
- 5. In data transfer using the DTC, the TxRDY flag in IETSR is not cleared after the last is transferred to IETBR and a CPU interrupt caused by the DTC interrupt will occur. If the TxRDY flag is not cleared in this CPU interrupt handling routine, an underrun occur when the last byte data is loaded from IETBR to the transmit shift register. In if the LUEE bit is cleared to 0 (initial value), no underrun error occurs and the last by data field is transmitted correctly. (if the LUEE bit is set to 1, an underrun error occur
- 6. Although the DTC is used as described in item 5, if the number of DTC transfer wor than the length specified by the message length bits, the LUEE bit setting is invalid. LUEE bit is valid only when data is transmitted for the number of bytes specified by message length bits has been transmitted.) In this case, an underrun error occurs, dat transmitted for one byte less than the DTC transfer words, and the transfer is termina transmit error.

Renesas

- shift register.
- 4. On the transmit side, the unit continues retransfer until an ACK is received because it a NAK.
- 5. If the OVE flag is cleared without loading the receive data from IERBR in the RxE in handling routine caused when the OVE flag is set to 1, the IEB decides that the overrule has been cleared and sends an ACK to other units. In this case, the transmit unit comp communications correctly. However, no receive data is loaded from the IERBR and the unit continues reception. Accordingly, in an interrupt handling routine caused by the of flag, receive data must be loaded from IERBR, the RxRDY flag must be cleared. The thus, should be ready to receive the next byte, and then the OVE flag must be cleared.
- 6. Item 5 above will not occur when the DTC transfer words is specified as the IERBFL

17.6.4 Error Flag s in the IETEF

(1) AL Flag

The AL Flag is set to 1 when arbitration is lost even if retransfer is performed for the num times specified by IEMCR after arbitration has been lost. The AL flag is not set when arb is won during retransfer. If the AL flag is set to 1, the TxE flag is set and the wait state is

(2) UE Flag

If the UE flag is set to 1, the TxE flag is set and the wait state is entered. For details, see s 17.6.2, TxRDY Flag and Underrun Error.

(3) TTME Flag

If a timing error occurs during data transfer, the TTME and TxE flags are set, and the wat entered.

Rev. 6.00 Sep. 24, 2009 Page 604 of 928 REJ09B0099-0600

(5) ACK Flag

- If a NAK is received in an acknowledge bit before the message length field transmis ACK flag is set, the TxE flag is set, and then the wait state is entered.
- If a NAK is received in an acknowledge bit of the data field, data is automatically retransmitted up to the maximum number of transfer bytes defined by the protocol. I is received in an acknowledge bit during retransfer and the following data is transmit correctly, the ACK flag is not set. If a NAK is received in the last data transfer durin retransfer for the maximum number of transfer bytes, the ACK flag is set to 1 and th state is entered.
- Note: Even if a NAK is received from the receive side during the data field transmissi retransfer is performed up to the maximum number of transfer bytes defined by protocol, and the number of transferred bytes is less than that of bytes specified message length bits, an ACK may be received in the acknowledge bit in the last transfer. In this case, the ACK flag is not set although the RO flag is set.

17.6.5 Error Flags in IEREF

(1) OVE Flag

When the OVE flag is set, the RxE flag is also set. If an overrun error is cleared and the is also cleared, the IEBus receive operation is continued. For details, see section 17.6.3, Flag and Overrun Error.

(2) RTME Flag

If a timing error occurs during data reception after reception starts (the RxS flag is set to RTME flag is set to 1, RxE flag is set to 1, and the wait state is entered. When a timing occurs before reception starts, this flag is not set and the reception frame is discarded.

(4) PE Flag

If a parity error occurs after reception starts (the RxS flag is set to 1), a NAK is sent to per reception.

If a parity error is not cleared when the maximum number of transfer bytes specified by t protocol is received, the PE flag is set to 1, the RxE flag is set to 1 and the wait state is er a parity error is cleared during the rereception and if the following data is received correct PE flag is not set.

- Notes: 1. If the reception is performed up to the maximum number of transfer bytes defined the protocol because of a parity or an overrun error during data field reception number of receive bytes is less than that of bytes specified by the message len no parity error or overrun error may occur at the last byte reception. In this case DLE flag is set. However, the OVE and PE flags are not set.
 - 2. The flags in IEREF are set after reception starts. Accordingly, the RxE flag is set after the RxS flag has been set. If an error occurs before reception starts, th is discarded and no interrupt occurs.

17.6.6 Notes on Slave Transmission

When the slave unit transmits the slave status and upper and lower locked addresses, a part overrun error occurs in the master reception side and the data cannot be received. Accord even if a NAK is returned, the slave unit is not capable of retransfer.

In this case, the master unit must discard the frame in which an error occurred and reques above operation in the master reception to receive the correct frame.

Rev. 6.00 Sep. 24, 2009 Page 606 of 928 REJ09B0099-0600

already transferred to the transmit buffer by the DTC and the TxRDY flag that is the DT initiation source is already cleared to 0 (2).

In this case, if retransfer is performed, data remained in the transmit buffer (previous fra is transmitted as the first byte data of the data field (3).

To avoid this error, in master transmission, the first byte data in the data field should be the transmit buffer by software instead of using the DTC. After that, data can be transfer DTC. In this case, the SAR (transfer source address) and CRA (transfer counter) should specified as follows.

• An address of the on-chip memory that stores the second byte data \rightarrow SAR

• The number of bytes specified by message length $-1 \rightarrow CRA$

Figure 17.15 Error Processing in Transfer

17.6.11 Notes on Register Access

The IEB registers can be accessed in bytes. The IEB registers must not be accessed in wo longwords.

Rev. 6.00 Sep. 24, 2009 Page 608 of 928 REJ09B0099-0600

- CAN version: Conforming to Bosch 2.0B active
 Communication systems: NRZ (Non-Return to Zero) system (with bit-stuffing funct: Broadcast communication system
 Transmission path: Bidirectional 2-wire serial communication
 Communication speed: Max. 1 Mbps
 Data length: 0 to 8 bytes
- Number of channels: 1
- Data buffers: 16 (one receive-only buffer and 15 buffers settable for transmission/rec
- Data transmission: Two methods Mailbox (buffer) number order (low-to-high) Message priority (identifier) reverse-order (high-to-low)
- Data reception: Two methods Message identifier match (transmit/receive-setting buffers) Reception with message identifier masked (receive-only)
- CPU interrupts: 12 Error interrupt Reset processing interrupt

Message reception interrupt

Message transmission interrupt

- HCAN operating modes
- Support for various modes
 Hardware reset
 Software reset

Normal status (error-active, error-passive)

RENESAS

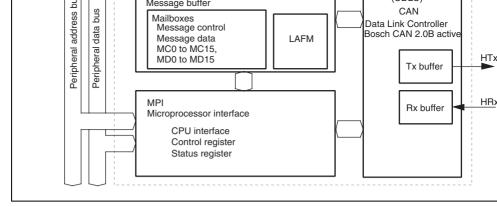


Figure 18.1 HCAN Block Diagram

• Message Buffer Interface (MBI)

The MBI, consisting of mailboxes and a local acceptance filter mask (LAFM), stores transmit/receive messages (identifiers, data, etc.) Transmit messages are written by the For receive messages, the data received by the CDLC is stored automatically.

• Microprocessor Interface (MPI)

The MPI, consisting of a bus interface, control register, status register, etc., controls I internal data, status, and so forth.

• CAN Data Link Controller (CDLC)

The CDLC transmits and receives of messages conforming to the Bosch CAN Ver. 2. standard (data frames, remote frames, error frames, overload frames, inter-frame spac well as CRC checking, bus arbitration, and other functions.

Rev. 6.00 Sep. 24, 2009 Page 610 of 928 REJ09B0099-0600

HCAN receive data pin	HRxD	Input	CAN bus reception
-----------------------	------	-------	-------------------

A bus driver is necessary for the interface between the pins and the CAN bus. A Philips PCA82C250 compatible model is recommended.

RENESAS

18.3 Register Descriptions

The HCAN has the following registers.

- Master control register (MCR)
- General status register (GSR)
- Bit configuration register (BCR)
- Mailbox configuration register (MBCR)
- Transmit wait register (TXPR)
- Transmit wait cancel register (TXCR)
- Transmit acknowledge register (TXACK)
- Abort acknowledge register (ABACK)
- Receive complete register (RXPR)
- Remote request register (RFPR)
- Interrupt register (IRR)
- Mailbox interrupt mask register (MBIMR)
- Interrupt mask register (IMR)
- Receive error counter (REC)
- Transmit error counter (TEC)
- Unread message status register (UMSR)
- Local acceptance filter mask H (LAFMH)

	-		·····
			When this bit is set to 1, the HCAN automatically e HCAN sleep mode on detection of CAN bus opera
—	0	R	Reserved
			This bit is always read as 0. The write value shoul be 0.
MCR5	0	R/W	HCAN Sleep Mode
			When this bit is set to 1, the HCAN transits to HCA mode. When this bit is cleared to 0, HCAN sleep r released.
_	All 0	R	Reserved
			These bits are always read as 0. The write value s always be 0.
MCR2	0	R/W	Message Transmission Method
			0: Transmission order determined by message ide priority
			1: Transmission order determined by mailbox num priority (TXPR1 > TXPR15)
MCR1	0	R/W	Halt Request
			When this bit is set to 1, the HCAN transits to HCA mode. When this bit is cleared to 0, HCAN HALT released.
	 MCR2	MCR5 0 — All 0 MCR2 0	MCR5 0 R/W — All 0 R MCR2 0 R/W

Rev. 6.00 Sep. 24, 2009 Page 612 of 928 REJ09B0099-0600

Module stop mode
1-write (software reset)
[Clearing condition]
When 0 is written to this bit while the GSR3 b is 1

18.3.2 General Status Register (GSR)

GSR indicates the status of the HCAN.

Bit Name	Initial Value	R/W	Description
	All 0	R	Reserved
			These bits are always read as 0. The write value always be 0.
GSR3	1	R	Reset Status Bit
			Indicates whether the HCAN module is in the nor operating state or the reset state. This bit cannot modified.
			[Setting conditions]
			• When entering configuration mode after the H internal reset has finished
			Sleep mode
			[Clearing condition]
			• When entering normal operation mode after t bit in MCR is cleared to 0 (Note that there is a between clearing of the MCR0 bit and the GS
	_	— All O	— All 0 R

Renesas

				This bit cannot be modified.		
				[Setting condition]		
				When TEC \geq 96 or REC \geq 96		
				[Clearing conditions]		
				• When TEC < 96 and REC < 96		
				• When TEC \geq 256 (bus off state)		
0	GSR0	0	R	Bus Off Flag		
				This bit cannot be modified.		
				[Setting condition]		
				• When TEC \geq 256 (bus off state)		
				[Clearing condition]		
				Recovery from bus off state		

Rev. 6.00 Sep. 24, 2009 Page 614 of 928 REJ09B0099-0600

				01: 2 time quanta
				10: 3 time quanta
				11: 4 time quanta
13	BCR5	0	R/W	Baud Rate Prescaler (BRP)
12	BCR4	0	R/W	Set the length of time quantum.
11	BCR3	0	R/W	000000: 2 × system clock
10	BCR2	0	R/W	000001: 4 × system clock
9	BCR1	0	R/W	000010: 6 × system clock
8	BCR0	0	R/W	:
				111111: 128 × system clock
7	BCR15	0	R/W	Bit Sample Point (BSP)
				Sets the point at which data is sampled.
				0: Bit sampling at one point (end of time segment (TSEG1))
				1: Bit sampling at three points (end of TSEG1 an preceding and following one time quantum)

			110: 7 time quanta
			111: 8 time quanta
BCR11	0	R/W	Time Segment 1 (TSEG1)
BCR10	0	R/W	Set the TSEG1 (PRSEG + PHSEG1) width to betw
BCR9	0	R/W	and 16 time quanta.
BCR8	0	R/W	0000: Setting prohibited
			0001: Setting prohibited
			0010: Setting prohibited
			0011: 4 time quanta
			0100: 5 time quanta
			0101: 6 time quanta
			0110: 7 time quanta
			0111: 8 time quanta
			1000: 9 time quanta
			1001: 10 time quanta
			1010: 11 time quanta
			1011: 12 time quanta
			1100: 13 time quanta
			1101: 14 time quanta
			1110: 15 time quanta
			1111: 16 time quanta
	BCR10 BCR9	BCR10 0 BCR9 0	BCR10 0 R/W BCR9 0 R/W

Rev. 6.00 Sep. 24, 2009 Page 616 of 928 REJ09B0099-0600

10	MBCR2	0	R/W	Bit 8 is reserved. This bit is always read a
9	MBCR1	0	R/W	the write value should always be 1.
8	—	1	R	
7	MBCR15	0	R/W	
6	MBCR14	0	R/W	
5	MBCR13	0	R/W	
4	MBCR12	0	R/W	
3	MBCR11	0	R/W	
2	MBCR10	0	R/W	
1	MBCR9	0	R/W	
0	MBCR8	0	R/W	

Renesas

11	TXPR3	0	R/W	Completion of message transmission
10	TXPR2	0	R/W	 Completion of transmission cancellation
9	TXPR1	0	R/W	Bit 8 is reserved. This bit is always read as
8		0	R	the write value should always be 0.
7	TXPR15	0	R/W	
6	TXPR14	0	R/W	
5	TXPR13	0	R/W	
4	TXPR12	0	R/W	
3	TXPR11	0	R/W	
2	TXPR10	0	R/W	
1	TXPR9	0	R/W	
0	TXPR8	0	R/W	

Rev. 6.00 Sep. 24, 2009 Page 618 of 928 REJ09B0099-0600

10	TXCR2	0	R/W	message is canceled normally
9	TXCR1	0	R/W	Bit 8 is reserved. This bit is always read a
8	_	0	R	the write value should always be 0.
7	TXCR15	0	R/W	
6	TXCR14	0	R/W	
5	TXCR13	0	R/W	
4	TXCR12	0	R/W	
3	TXCR11	0	R/W	
2	TXCR10	0	R/W	
1	TXCR9	0	R/W	
0	TXCR8	0	R/W	

Renesas

11	TXACK3	0	R/(W)*	[Setting condition]
10	TXACK2	0	R/(W)*	Completion of message transmission for
9	TXACK1	0	R/(W)*	corresponding mailbox
8	_	0	R	[Clearing condition]
7	TXACK15	0	R/(W)*	Writing 1
6	TXACK14	0	R/(W)*	Bit 8 is reserved. This bit is always read as
5	TXACK13	0	R/(W)*	the write value should always be 0.
4	TXACK12	0	R/(W)*	
3	TXACK11	0	R/(W)*	
2	TXACK10	0	R/(W)*	
1	TXACK9	0	R/(W)*	
0	TXACK8	0	R/(W)*	

Rev. 6.00 Sep. 24, 2009 Page 620 of 928 REJ09B0099-0600

11	ABACK3	0	R/(W)*	[Setting condition]
10	ABACK2	0	R/(W)*	Completion of transmit message canc
9	ABACK1	0	R/(W)*	corresponding mailbox
8	_	0	R	[Clearing condition]
7	ABACK15	0	R/(W)*	Writing 1
6	ABACK14	0	R/(W)*	Bit 8 is reserved. This bit is always read a
5	ABACK13	0	R/(W)*	write value should always be 0.
4	ABACK12	0	R/(W)*	
3	ABACK11	0	R/(W)*	
2	ABACK10	0	R/(W)*	
1	ABACK9	0	R/(W)*	
0	ABACK8	0	R/(W)*	

12	RXPR4	0	R/(W)*	Completion of message (data frame or
11	RXPR3	0	R/(W)*	frame) reception in corresponding mail
10	RXPR2	0	R/(W)*	[Clearing condition]
9	RXPR1	0	R/(W)*	Writing 1
8	RXPR0	0	R/(W)*	
7	RXPR15	0	R/(W)*	
6	RXPR14	0	R/(W)*	
5	RXPR13	0	R/(W)*	
4	RXPR12	0	R/(W)*	
3	RXPR11	0	R/(W)*	
2	RXPR10	0	R/(W)*	
1	RXPR9	0	R/(W)*	
0	RXPR8	0	R/(W)*	
Nata		la		u al a suive suite a fila su

Rev. 6.00 Sep. 24, 2009 Page 622 of 928 REJ09B0099-0600

12	RFPR4	0	R/(W)*	· Completion of remote from a recontion
11	RFPR3	0	R/(W)*	 Completion of remote frame reception corresponding mailbox
10	RFPR2	0	R/(W)*	[Clearing condition]
9	RFPR1	0	R/(W)*	Writing 1
8	RFPR0	0	R/(W)*	
7	RFPR15	0	R/(W)*	
6	RFPR14	0	R/(W)*	
5	RFPR13	0	R/(W)*	
4	RFPR12	0	R/(W)*	
3	RFPR11	0	R/(W)*	
2	RFPR10	0	R/(W)*	
1	RFPR9	0	R/(W)*	
0	RFPR8	0	R/(W)*	

RENESAS

				[Clearing condition]	
				Writing 1	
14	IRR6	0	R/(W)*	Bus Off Interrupt Flag	
				Status flag indicating the bus off state caused by t transmit error counter.	
				[Setting condition]	
				• When TEC \geq 256	
				[Clearing condition]	
				Writing 1	
13	IRR5	0	R/(W)*	Error Passive Interrupt Flag	
				Status flag indicating the error passive state cause transmit/receive error counter.	
				[Setting condition]	
				• When TEC \geq 128 or REC \geq 128	
				[Clearing condition]	
				Writing 1	
12	IRR4	0	R/(W)*	Receive Overload Warning Interrupt Flag	
				Status flag indicating the error warning state cause receive error counter.	
				[Setting condition]	
				• When $REC \ge 96$	
				[Clearing condition]	
				Writing 1	

Rev. 6.00 Sep. 24, 2009 Page 624 of 928 REJ09B0099-0600

				Status flag indicating that a remote frame has be received in a mailbox when MBIMR = 0.
				[Setting condition]
				 When remote frame reception is completed, v corresponding MBIMR = 0
				[Clearing condition]
				Clearing of all bits in RFPR (remote request r
9	IRR1	0	R	Receive Message Interrupt Flag
				Status flag indicating that a mailbox receive mest been received normally when MBIMR = 0.
				[Setting condition]
				 When data frame or remote frame reception i completed, when corresponding MBIMR = 0
				[Clearing condition]
				Clearing of all bits in RXPR (receive complete

				 When the reset operation has finished after en power-on reset or software standby mode, wat or module stop mode. [Clearing condition]
				Writing 1
7 to 5	5 —	All 0		Reserved
				These bits are always read as 0. The write value s always be 0.
4	IRR12	0	R/(W)*	Bus Operation Interrupt Flag
				Status flag indicating detection of a dominant bit d operation when the HCAN module is in HCAN slee
				[Setting condition]
				Bus operation (dominant bit) detection in HCA mode
				[Clearing condition]
				Writing 1
3, 2		All 0		Reserved
				These bits are always read as 0. The write value s always be 0.

Rev. 6.00 Sep. 24, 2009 Page 626 of 928 REJ09B0099-0600

0	IRR8	0	R/(W)*	Mailbox Empty Interrupt Flag
				Status flag indicating that the next transmit mess be stored in the mailbox.
				[Setting condition]
				 When TXPR (transmit wait register) is cleared completion of transmission or completion of transmission abort
				[Clearing condition]
				Writing 1

10	MBIMR2	1	R/W	transmission cancellation. The interrupt sou
9	MBIMR1	1	R/W	receive mailbox is RXPR setting on recepti
8	MBIMR0	1	R/W	
7	MBIMR15	1	R/W	
6	MBIMR14	1	R/W	
5	MBIMR13	1	R/W	
4	MBIMR12	1	R/W	
3	MBIMR11	1	R/W	
2	MBIMR10	1	R/W	
1	MBIMR9	1	R/W	
0	MBIMR8	1	R/W	

18.3.13 Interrupt Mask Register (IMR)

IMR enables or disables requests by individual interrupt sources of IRR. The interrupt flabe masked.

		Initial		
Bit	Bit Name	Value	R/W	Description
15	IMR7	1	R/W	Overload Frame Recovery Interrupt Mask
				When this bit is cleared to 0, OVR0 (interrupt requ IRR7) is enabled. When set to 1, OVR0 is masked
14	IMR6	1	R/W	Bus Off Interrupt Mask
				When this bit is cleared to 0, ERS0 (interrupt requ IRR6) is enabled. When set to 1, ERS0 is masked

Rev. 6.00 Sep. 24, 2009 Page 628 of 928 REJ09B0099-0600

RENESAS

10	IMR2	1	R/W	Remote Frame Request Interrupt Mask
				When this bit is cleared to 0, OVR0 (interrupt req IRR2) is enabled. When set to 1, OVR0 is maske
9	IMR1	1	R/W	Receive Message Interrupt Mask
				When this bit is cleared to 0, RM1 (interrupt requ IRR1) is enabled. When set to 1, RMI is masked.
8	_	0	R	Reserved
				This bit is always read as 0. The write value shouble 0.
7 to 5	_	All 1	R	Reserved
				These bits are always read as 1. The write value always be 1.
4	IMR12	1	R/W	Bus Operation Interrupt Mask
				When this bit is cleared to 0, OVR0 (interrupt req IRR12) is enabled. When set to 1, OVR0 is mask
3, 2	_	All 1	R	Reserved
				These bits are always read as 1. The write value always be 1.
1	IMR9	1	R/W	Unread Interrupt Mask
				When this bit is cleared to 0, OVR0 (interrupt req IRR9) is enabled. When set to 1, OVR0 is maske
0	IMR8	1	R/W	Mailbox Empty Interrupt Mask
				When this bit is cleared to 0, SLE0 (interrupt requ IRR8) is enabled. When set to 1, SLE0 is masked

18.3.16 Unread Message Status Register (UMSR)

UMSR is a status register that indicates, for individual mailboxes, that a received message been overwritten by a new receive message before being read. When overwritten by a new message, data in the unread receive message is lost.

		Initial		
Bit	Bit Name	Value	R/W	Description
15	UMSR7	0	R/(W)*	Indicates that a received massage has been overv
14	UMSR6	0	R/(W)*	a new message before being read.
13	UMSR5	0	R/(W)*	[Setting condition]
12	UMSR4	0	R/(W)*	When a new message is received before RXPR is
11	UMSR3	0	R/(W)*	[Clearing condition]
10	UMSR2	0	R/(W)*	Writing 1
9	UMSR1	0	R/(W)*	
8	UMSR0	0	R/(W)*	
7	UMSR15	0	R/(W)*	
6	UMSR14	0	R/(W)*	
5	UMSR13	0	R/(W)*	
4	UMSR12	0	R/(W)*	
3	UMSR11	0	R/(W)*	
2	UMSR10	0	R/(W)*	
1	UMSR9	0	R/(W)*	
0	UMSR8	0	R/(W)*	
Nata	* Only 1			a hit far alaaring tha flag

Note: * Only 1 can be written to this bit for clearing the flag.

Rev. 6.00 Sep. 24, 2009 Page 630 of 928 REJ09B0099-0600

RENESAS

14	LAFIVILO	0		identifier is not compared.
13	LAFML5	0	R/W	When this bit is set to 1, ID-5 of the receive identifier is not compared.
12	LAFML4	0	R/W	When this bit is set to 1, ID-4 of the receive identifier is not compared.
11	LAFML3	0	R/W	When this bit is set to 1, ID-3 of the receive identifier is not compared.
10	LAFML2	0	R/W	When this bit is set to 1, ID-2 of the receive identifier is not compared.
9	LAFML1	0	R/W	When this bit is set to 1, ID-1 of the receive identifier is not compared.
8	LAFML0	0	R/W	When this bit is set to 1, ID-0 of the receive identifier is not compared.
7	LAFML15	0	R/W	When this bit is set to 1, ID-15 of the receiv message identifier is not compared.
6	LAFML14	0	R/W	When this bit is set to 1, ID-14 of the receiv message identifier is not compared.
5	LAFML13	0	R/W	When this bit is set to 1, ID-13 of the receiv message identifier is not compared.
4	LAFML12	0	R/W	When this bit is set to 1, ID-12 of the receiv message identifier is not compared.

RENESAS

• LAF	• LAFMH							
Bit	Bit Name	Initial Value	R/W	Description				
15	LAFMH7	0	R/W	When this bit is set to 1, ID-20 of the receiv message identifier is not compared.				
14	LAFMH6	0	R/W	When this bit is set to 1, ID-19 of the receive message identifier is not compared.				
13	LAFMH5	0	R/W	When this bit is set to 1, ID-18 of the receiv message identifier is not compared.				
12 to 10	_	All 0	R	Reserved				
				These bits are always read as 0. The write should always be 0.				
9	LAFMH1	0	R/W	When this bit is set to 1, ID-17 of the receiv message identifier is not compared.				
8	LAFMH0	0	R/W	When this bit is set to 1, ID-16 of the receiv message identifier is not compared.				
7	LAFMH15	0	R/W	When this bit is set to 1, ID-28 of the receiv message identifier is not compared.				
6	LAFMH14	0	R/W	When this bit is set to 1, ID-27 of the receiv message identifier is not compared.				
5	LAFMH13	0	R/W	When this bit is set to 1, ID-26 of the receiv message identifier is not compared.				
4	LAFMH12	0	R/W	When this bit is set to 1, ID-25 of the receiv message identifier is not compared.				
3	LAFMH11	0	R/W	When this bit is set to 1, ID-24 of the receiv message identifier is not compared.				

Rev. 6.00 Sep. 24, 2009 Page 632 of 928 REJ09B0099-0600

			- [-]		- [-]	- 1-1		- 1 -
Mail box 3	MC3[1]	MC3[2]	MC3[3]	MC3[4]	MC3[5]	MC3[6]	MC3[7]	MC3[8
				1 	1 	1 	1 	
Mail box 15	MC15[1]	MC15[2]	MC15[3]	MC15[4]	MC15[5]	MC15[6]	MC15[7]	MC15[8

Figure 18.2 Message Control Register Configuration

The setting of message control registers are shown in the following. Figures 18.3 and 18. the correspondence between the identifiers and register bit names.

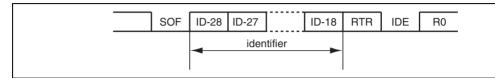


Figure 18.3 Standard Format

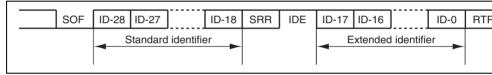
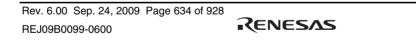



Figure 18.4 Extended Format

				0100: 4 bytes 0101: 5 bytes 0110: 6 bytes 0111: 7 bytes 1000: 8 bytes		
				:		
				1111: 8 bytes		
MCx[2]	7 to 0		R/W	The initial value of these bits is undefined		
MCx[3]	7 to 0	—	R/W	must be initialized (by writing 0 or 1).		
MCx[4]	7 to 0		R/W			
MCx[5]	7 to 5	ID-20 to ID-18	R/W	Sets ID-20 to ID-18 in the identifier.		
	4	RTR	R/W	Remote Transmission Request		
				Used to distinguish between data frame remote frames.		
				0: Data frame		
				1: Remote frame		
	3	IDE	R/W	Identifier Extension		
				Used to distinguish between the standard and extended format of data frames and frames.		
				0: Standard format		
				1: Extended format		
	2	_	R/W	The initial value of this bit is undefined. I initialized by writing 0 or 1.		
	1,0	ID-17 to ID-16	R/W	Sets ID-17 and ID-16 in the identifier.		

Rev. 6.00 Sep. 24, 2009 Pag

sets of these registers. Because message data registers are in RAM, their initial values aft on are undefined. Be sure to initialize them by writing 0 or 1. Figure 18.5 shows the regis names for each mailbox.

Mail box 0	MD0[1]	MD0[2]	MD0[3]	MD0[4]	MD0[5]	MD0[6]	MD0[7]	MD0[8
Mail box 1	MD1[1]	MD1[2]	MD1[3]	MD1[4]	MD1[5]	MD1[6]	MD1[7]	MD1[8
Mail box 2	MD2[1]	MD2[2]	MD2[3]	MD2[4]	MD2[5]	MD2[6]	MD2[7]	MD2[8
Mail box 3	MD3[1]	MD3[2]	MD3[3]	MD3[4]	MD3[5]	MD3[6]	MD3[7]	MD3[8
	1				1			
Mail box 15	MD15[1]	MD15[2]	MD15[3]	MD15[4]	MD15[5]	MD15[6]	MD15[7]	MD15[8

Figure 18.5 Message Data Configuration

Rev. 6.00 Sep. 24, 2009 Page 636 of 928 REJ09B0099-0600

registers, except for message control and message data registers, are initialized by a reset.

Software Reset

The HCAN can be reset by setting the MCR reset request bit (MCR0) in MCR via so a software reset, the error counters (TEC and REC) are initialized, however other reg not. If the MCR0 bit is set while the CAN controller is performing a communication (transmission or reception), the initialization state is not entered until message transf been completed. The reset status bit (GSR3) in GSR is set on completion of initialization

18.4.2 Initialization after Hardware Reset

After a hardware reset, the following initialization processing should be carried out:

- 1. Clearing of IRR0 bit in the interrupt register (IRR)
- 2. Bit rate setting
- 3. Mailbox transmit/receive settings
- 4. Mailbox (RAM) initialization
- 5. Message transmission method setting

These initial settings must be made while the HCAN is in bit configuration mode. Confi mode is a state in which the GSR3 bit in GSR is set to 1 by a reset. Configuration mode by clearing the MCR0 bit in MCR to 0; when the MCR0 bit is cleared to 0, the HCAN automatically clears the GSR3 bit in GSR. There is a delay between clearing the MCR0 clearing the GSR3 bit because the HCAN needs time to be internally reset, there is a del between clearing of the MCR0 bit and GSR3 bit. After the HCAN exits configuration m power-up sequence begins, and communication with the CAN bus is possible as soon as consecutive recessive bits have been detected.

RENESAS

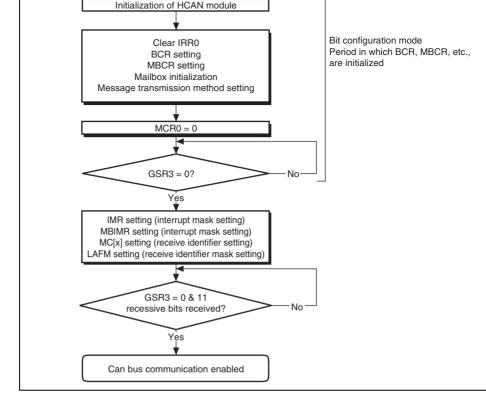
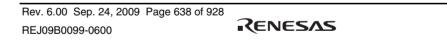



Figure 18.6 Hardware Reset Flowchart

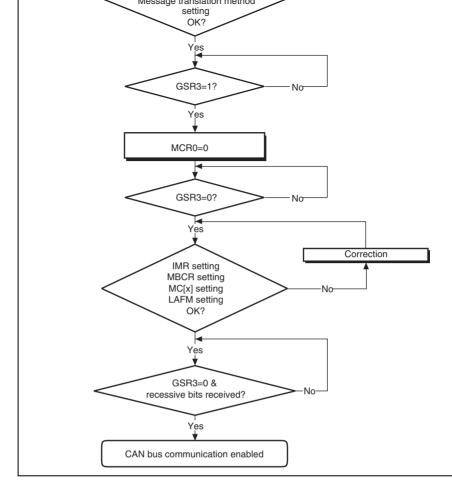


Figure 18.7 Software Reset Flowchart

Figure 18.8 Detailed Description of One Bit

SYNC_SEG is a segment for establishing the synchronization of nodes on the CAN bus. bit edge transitions occur in this segment. PRSEG is a segment for compensating for the p delay between networks. PHSEG1 is a buffer segment for correcting phase drift (positive segment is extended when synchronization (resynchronization) is established. PHSEG2 is segment for correcting phase drift (negative). This segment is shortened when synchroniz (resynchronization) is established. Limits on the settable value (TSEG1, TSEG2, BRP, B SJW) are shown in table 18.2.

Table 18.2 Limits for Settable Value

Name	Abbreviation	Min. Value	Max. Va
Time segment 1	TSEG1	B'0011* ³	B'1111
Time segment 2	TSEG2	B'001* ²	B'111
Baud rate prescaler	BRP	B'000000	B'11111
Bit sample point	BSP	B'0	B'1
Re-synchronization jump width	SJW* ¹	B'00	B'11

Notes: 1. SJW is stipulated in the CAN specifications: $3 \ge SJW \ge 0$

- 2. The minimum value of TSEG2 is stipulated in the CAN specifications: TSEG2 \geq SJW
- 3. The minimum value of TSEG1 is stipulated in the CAN specifications: TSEG1 > TSEG2

Rev. 6.00 Sep. 24, 2009 Page 640 of 928 REJ09B0099-0600

- Note: $I_{CLK} = \phi$ (system clock) BCR value is used for BRP, TSEG1, and TSEG2.
- Example: With a system clock of 20 MHz, a BRP setting of B'000000, a TSEG1 setting B'0100, and a TSEG2 setting of B'011:

Bit rate = $20/\{2 \times (0+1) \times (3+4+3)\} = 1$ Mbps

1000	Yes*	Yes	Yes	Yes	Yes	Yes
1001	Yes*	Yes	Yes	Yes	Yes	Yes
1010	Yes*	Yes	Yes	Yes	Yes	Yes
1011	Yes*	Yes	Yes	Yes	Yes	Yes
1100	Yes*	Yes	Yes	Yes	Yes	Yes
1101	Yes*	Yes	Yes	Yes	Yes	Yes
1110	Yes*	Yes	Yes	Yes	Yes	Yes
1111	Yes*	Yes	Yes	Yes	Yes	Yes

Note: The time quantum value for TSEG1 and TSEG2 is the TSEG value + 1.

 When baud rate prescaler (BRP), BCR[13:8], is not B'000000 (2 × system cloc can be set.

Mailbox Transmit/Receive Settings: The HCAN has 16 mailboxes. Mailbox 0 is receiv while mailboxes 1 to 15 can be set for transmission or reception. The Initial status of mai to 15 is for transmission. Mailbox transmit/receive settings are not initialized by a software settings.

Clearing a bit to 0 in the mailbox configuration register (MBCR) designates the correspondent mailbox for transmission use, whereas a setting of 1 in MBCR designates the correspondent mailbox for reception use. When setting mailboxes for reception, in order to improve measure reception efficiency, high-priority messages should be set in low-to-high mailbox order.

Mailbox (Message Control/Data) Initial Settings: Message control/data are held in RA so their initial values are undefined after power is supplied. Initial values must therefore b all the mailboxes (by writing 0s or 1s).

Setting the Message Transmission Method: The following two kinds of message transmethods are available.

Rev. 6.00 Sep. 24, 2009 Page 642 of 928 REJ09B0099-0600

When messages are set to be transmitted according to the mailbox number priority, if se messages are designated as waiting for transmission (TXPR = 1), messages are stored in transmit buffer in low-to-high mailbox order. CAN bus arbitration is then carried out for message stored in the transmit buffer, and the message is transmitted when the transmiss is acquired.

18.4.3 Message Transmission

Messages are transmitted using mailboxes 1 to 15. The transmission procedure after init is described below, and a transmission flowchart is shown in figure 18.9.

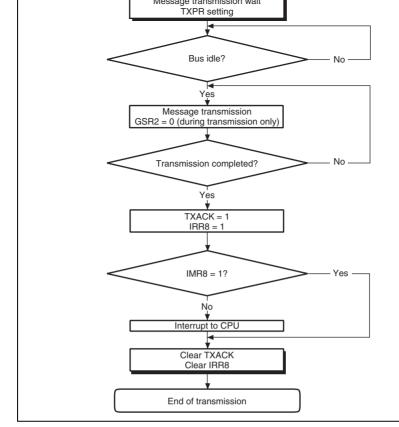


Figure 18.9 Transmission Flowchart

CPU Interrupt Source Settings: The CPU interrupt source is set by the interrupt mask r (IMR) and mailbox interrupt mask register (MBIMR). Transmission acknowledge and transmission abort acknowledge interrupts can be generated for individual mailboxes in the set of the set

Rev. 6.00 Sep. 24, 2009 Page 644 of 928 REJ09B0099-0600

Data Field Setting: In the data field, the data to be transmitted is set within the range zet eight. The registers to be set are the message data registers MDx[1] to MDx[8]. The byte the data to be transmitted is determined by the data length code in the control field. Even exceeding the value set in the control field is set in the data field, up to the byte length second control field will actually be transmitted.

Message Transmission: If the corresponding mailbox transmit wait bit (TXPR1 to TXI the transmit wait register (TXPR) is set to 1 after message control and message data reg been set, the message enters transmit wait state. If the message is transmitted error-free, corresponding acknowledge bit (TXACK1 to TXACK15) in the transmit acknowledge r (TXACK) is set to 1, and the corresponding transmit wait bit (TXPR1 to TXPR15) in the wait register (TXPR) is automatically cleared to 0. Also, if the corresponding bit (MBIN MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty int (IRR8) in the interrupt mask register (IMR) are both simultaneously set to enable interrupt interrupts may be sent to the CPU.

If transmission of a transmit message is aborted in the following cases, the message is retransmitted automatically:

- CAN bus arbitration failure (failure to acquire the bus)
- Error during transmission (bit error, stuff error, CRC error, frame error, or ACK error

Message Transmission Cancellation: Transmission cancellation can be specified for a stored in a mailbox as a transmit wait message. A transmit wait message is canceled by bit for the corresponding mailbox (TXCR1 to TXCR15) to 1 in the transmit cancel regis (TXCR). Clearing the transmit wait register (TXPR) does not cancel transmission. When cancellation is executed, the transmit wait register (TXPR) is automatically reset, and th corresponding bit is set to 1 in the abort acknowledge register (ABACK). An interrupt to can be requested, and if the mailbox empty interrupt (IRR8) is enabled for the bits (MBI

Renesas

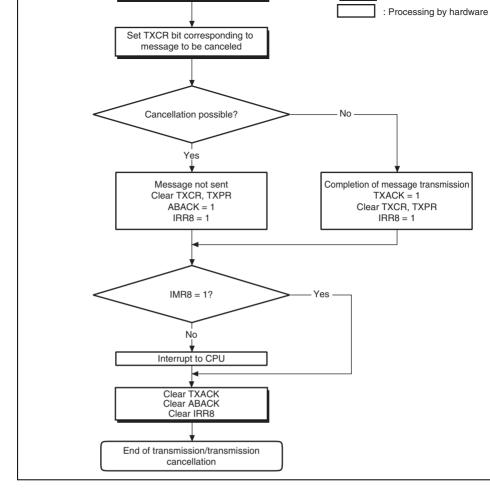


Figure 18.10 Transmit Message Cancellation Flowchart

Rev. 6.00 Sep. 24, 2009 Page 646 of 928 REJ09B0099-0600

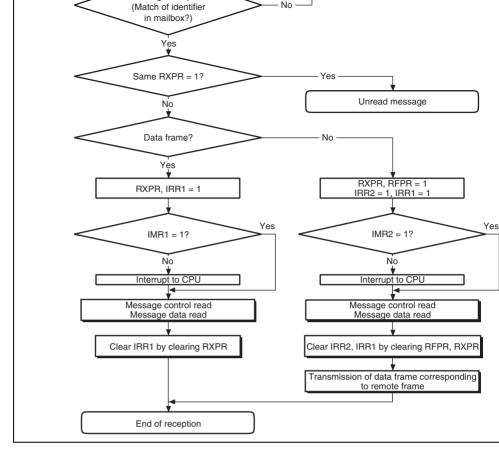


Figure 18.11 Reception Flowchart

be made. The LAFM setting can be made only for mailbox 0. By making the Don't Care for all the bits in the receive message identifier, messages of multiple identifiers can be

Examples:

- When the identifier of mailbox 1 is 010_1010_1010 (standard format), only one kind message identifier can be received by mailbox 1: Identifier 1: 010 1010 1010
- When the identifier of mailbox 0 is 010_1010_1010 (standard format) and the LAFN 000_0000_0011 (0: Care, 1: Don't Care), a total of four kinds of message identifiers received by mailbox 0:

Identifier 1:	010_1010_1000
Identifier 2:	010_1010_1001
Identifier 3:	010_1010_1010
Identifier 4:	010_1010_1011

Message Reception: When a message is received, a CRC check is performed automatic result of the CRC check is normal, ACK is transmitted in the ACK field irrespective of the message can be received or not.

• Data frame reception

If the received message is confirmed to be error-free by the CRC check, the identified mailbox (and also LAFM in the case of mailbox 0 only) and the identifier of the received message, are compared. If a complete match is found, the message is stored in the more The message identifier comparison is carried out on each mailbox in turn, starting we mailbox 0 and ending with mailbox 15. If a complete match is found, the comparison that point, the message is stored in the matching mailbox, and the corresponding received to mailbox to RXPR15) is set in the receive complete register (RXPR). He when a mailbox 0 LAFM comparison is carried out, even if the identifier matches, the matches is completed by the comparison is carried out, even if the identifier matches, the matches is carried out, even if the identifier matche

data france mast de stored in the data fengui code (DEC) in the control freta.

When a remote frame (RTR = recessive) is received, the corresponding bit is set in the request wait register (RFPR). If the corresponding bit (MBIMR0 to MBIMR15) in the interrupt mask register (MBIMR) and the remote frame request interrupt mask (IRR2) interrupt mask register (IMR) are set to the interrupt enable value at this time, an inter be sent to the CPU.

Unread Message Overwrite: If the receive message identifier matches the mailbox iden receive message is stored in the mailbox regardless of whether the mailbox contains an unmessage or not. If a message overwrite occurs, the corresponding bit (UMSR0 to UMSR) in the unread message register (UMSR). In overwriting an unread message, when a new r is received before the corresponding bit in the receive complete register (RXPR) has been the unread message register (UMSR) is set. If the unread interrupt flag (IRR9) in the intermask register (IMR) is set to the interrupt enable value at this time, an interrupt can be se CPU. Figure 18.12 shows a flowchart for unread message overwriting.

Rev. 6.00 Sep. 24, 2009 Page 650 of 928 REJ09B0099-0600

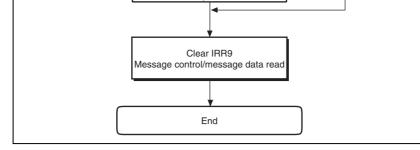


Figure 18.12 Unread Message Overwrite Flowchart

18.4.5 HCAN Sleep Mode

The HCAN is provided with an HCAN sleep mode that places the HCAN module in the state in order to reduce current dissipation. Figure 18.13 shows a flowchart of the HCAN mode.

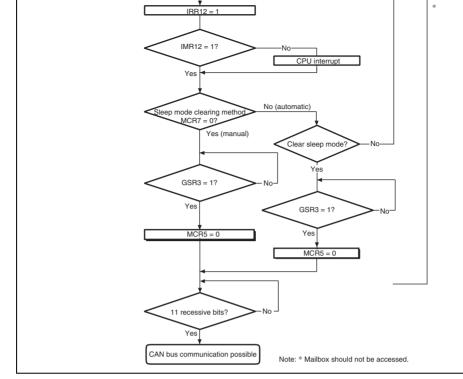


Figure 18.13 HCAN Sleep Mode Flowchart

HCAN sleep mode is entered by setting the HCAN sleep mode bit (MCR5) to 1 in the ma control register (MCR). If the CAN bus is operating, the transition to HCAN sleep mode delayed until the bus becomes idle.

Either of the following methods of clearing HCAN sleep mode can be selected:

on the CAN bus in HCAN sleep mode, the bus operation interrupt flag (IRR12) is set in interrupt register (IRR). If the bus interrupt mask (IMR12) in the interrupt mask register set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

18.4.6 HCAN Halt Mode

The HCAN halt mode is provided to enable mailbox settings to be changed without perf HCAN hardware or software reset. Figure 18.14 shows a flowchart of the HCAN halt m

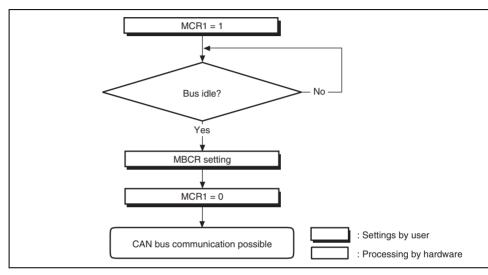


Figure 18.14 HCAN Halt Mode Flowchart

interrupt source, see section 5, Interrupt Controller.

Name	Description	Interrupt Flag	DT(Act
ERS0/OVR0	Error passive interrupt (TEC \ge 128 or REC \ge 128)	IRR5	Not
	Bus off interrupt (TEC \ge 256)	IRR6	_
	Reset process interrupt by power-on reset	IRR0	_
	Remote frame reception interrupt	IRR2	_
	Error warning interrupt (TEC \ge 96)	IRR3	_
	Error warning interrupt (REC \ge 96)	IRR4	
	Overload frame transmission interrupt	IRR7	
	Unread message overwrite interrupt	IRR9	
	CAN bus operation in HCAN sleep mode interrupt	IRR12	_
RM0	Mailbox 0 message reception interrupt	IRR1	Pos
RM1	Mailbox 1 to 15 message reception interrupt	IRR1	Not
SLE0	Message transmission/cancellation interrupt	IRR8	_

Table 18.4 HCAN Interrupt Sources

Rev. 6.00 Sep. 24, 2009 Page 654 of 928 REJ09B0099-0600

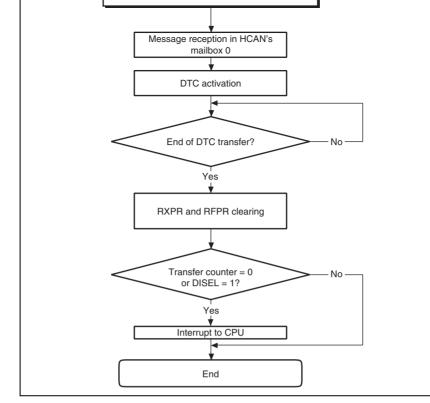


Figure 18.15 DTC Transfer Flowchart

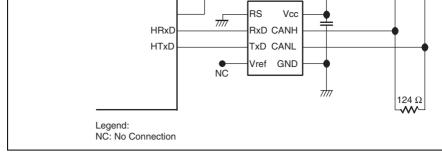


Figure 18.16 High-Speed Interface Using PCA82C250

18.8 Usage Notes

18.8.1 Module Stop Mode Setting

HCAN operation can be disabled or enabled using the module stop control register. The is setting is for HCAN operation to be halted. Register access is enabled by clearing module mode. For details, see section 22, Power-Down Modes.

18.8.2 Reset

The HCAN is reset by a power-on reset or in hardware standby mode, software standby r watch mode, or module stop mode. All the registers are initialized in a reset, however ma (message control (MCx[x])/message data (MDx[x])) are not. After power-on, mailboxes control (MCx[x])/message data (MDx[x])) are initialized, and their values are undefined. Therefore, mailbox initialization must always be carried out after a power-on reset or recercise from hardware standby mode, software standby mode, watch mode, or module stop mode reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software

Rev. 6.00 Sep. 24, 2009 Page 656 of 928 REJ09B0099-0600

1

18.8.4 Interrupts

When the mailbox interrupt mask register (MBIMR) is set, the interrupt register (IRR8, set by reception completion, transmission completion, or transmission cancellation for the mailboxes.

18.8.5 Error Counters

In the case of error active and error passive, REC and TEC normally count up and down bus-off state, 11-bit recessive sequences are counted (REC + 1) using REC. If REC reac during the count, IRR4 and GSR1 are set.

18.8.6 Register Access

Byte or word access can be used on all HCAN registers. Longword access cannot be use

18.8.7 HCAN Medium-Speed Mode

In medium-speed mode, neither read nor write is possible for the HCAN registers.

18.8.8 Register Hold in Standby Modes and Watch Mode

All HCAN registers except the message control and message data are initialized in hardstandby mode, software standby mode, watch mode, or module stop mode.

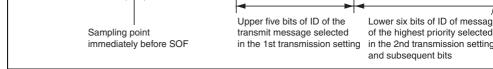
Renesas

- The HRxD pin is stacked to 1 because of a CAN bus error, etc.
- There is at least one mailbox waiting for transmission or being transmitted.
- The message transmission in a mailbox being transmitted is canceled by TXCR. If this occurs, transmission is canceled. However, since TXPR and TXCR states are in wrongly that a message is being cancelled, transmission cannot be restarted even if th state of the HRxD pin is canceled and the CAN bus recovers the normal state. If there least two transmission messages, a message which is not being transmitted is canceled message being transmitted retains its state.

To avoid this, one of the following countermeasures must be executed.

- Transmission must not be canceled by TXCR. When transmission is normally complet the CAN bus has recovered, TXPR is cleared and the HCAN recovers the normal state
- To cancel transmission, the corresponding bit to TXCR must be written to 1 continuous the bit becomes 0. TXPR and TXCR are cleared and the HCAN recovers the normal set.
- 2. When the bus-off state is entered while TXPR is set and the transmit wait state is entered internal state machine does not operate even if TXCR is set during the bus-off state. The transmission cannot be canceled. The message can be canceled when one message is transmitted or a transmission error occurs after the bus-off state is recovered. To clear message after the bus-off state is recovered, the following countermeasure must be experimental state is entered.
- A transmit wait message must be cleared by resetting the HCAN during the bus-off per To reset the HCAN, the module stop bit (MSTPC2 in MSTPCRC) must be set or clear this case, the HCAN is entirely reset. Therefore the initial settings must be made again

Rev. 6.00 Sep. 24, 2009 Page 658 of 928 REJ09B0099-0600



is cancelled (TXPR and TXCR are set), and then transmitting a message of the higher is cancelled in the first transmission setting.

When TXPR and another TXPR are set, or TXPR and TXCR are set under the all above conditions, the message ID of the highest priority, which is selected in the second transmission setting or the set transmission cancellation, is damaged. That is, upper five bits of the m which is selected in the first transmission, is set in the upper five bits of the ID. After the five bits of the transmit message ID selected in the first transmission setting is transmitte CAN bus, the lower six bits of the transmit message ID selected in the second transmiss or the set transmission cancellation and transmit data (maximum eight bytes) are output CAN bus. The CRC error is not occurred, since CRC transmits reconstructed transmit m with ID.

Note that after the damaged transmit message is transmitted, the transmit message of the highest priority, which is selected in the second transmission setting or the set transmiss cancellation, is output. The message of the highest priority, which is selected in the second transmission setting or the set transmission cancellation, is not output.

Figure 18.17 HCAN Transmit Procedure

When the interval between two transmissions, or between transmission and transmission cancellation is same or shorter than following, condition 2 described in above is satisfied consequently error may occur.

Table 18.5 Interval Limitation between TXPR and TXPR or between TXPR and T

Baud Rate (bps)	Set Interval (μs)		
1 M	50		
500 k	50		
250 k	50		

Interval (which is for preventing error) is changed depending on the following conditions

- The number of buffers (HCAN has 16 buffers)
- Data transmission: Mailbox (hereafter MB) number order, ID priority order
- HCAN operating clock
- CAN bus baud rate
- Bit timing (TSEG1, TSEG2)
- The number of MBs transmitted to the first TXPR and second TXPR
- The number of CPU accesses to MB in words or bytes after TXPR or TXCR set

Rev. 6.00 Sep. 24, 2009 Page 660 of 928 REJ09B0099-0600

When canceling an HCAN software reset or HCAN sleep mode (MCR0 = 0 or MCR5 = confirm that the reset status bit (GSR3) is set to 1.

18.8.13 Accessing Mailboxes in HCAN Sleep Mode

Mailboxes should not be accessed in HCAN sleep mode. If mailboxes are accessed in H sleep mode, the CPU may halt. When registers are accessed in HCAN sleep mode, the CPU not halt. Also, when mailboxes are accessed not in HCAN sleep mode, the CPU does not halt.

Rev. 6.00 Sep. 24, 2009 Page 662 of 928 REJ09B0099-0600

RAM16K1A_000020020300

Rev. 6.00 Sep. 24, 2009 Page 664 of 928 REJ09B0099-0600

MAT is initiated first. The MAT can be switched by using the bank-switching methor initiation.

- The user memory MAT is initiated at a power-on reset in user mode:
 - 512 kbytes (H8S/2556, H8S/2552, and H8S/2506)
 - 384 kbytes (H8S/2551 and H8S/2505)
- The user boot memory MAT is initiated at a power-on reset in user boot mode: 8
- Three on-board programming modes and one off-board programming mode
 - Boot mode

This mode is a program mode that uses an on-chip SCI interface. The user MAT boot MAT can be programmed. This mode can automatically adjust the bit rate b host and this LSI.

— User program mode

The user MAT can be programmed by using the optional interface.

— User boot mode

The user boot program of the optional interface can be made and the user MAT c programmed.

- One off-board programming mode
 - Programmer mode

This mode uses the PROM programmer. The user MAT and user boot MAT can programmed.

• Programming/erasing interface by the download of on-chip program

This LSI has a dedicated programming/erasing program. After downloading this pro the on-chip RAM, programming/erasing can be performed by setting the argument p The user branch is also supported.

RENESAS

Software protect by register setting is provided to set the protect status of programmir flash memory

When an error is detected, the mode is changed to error protect mode to abort programming/erasing processing.

• Programming/erasing time

The flash memory programming time is 3 ms (typ) in 128-byte simultaneous program $25 \ \mu s$ per byte. The erasing time is 1000 ms (typ) per 64-kbyte block.

• Number of programming

The number of flash memory programming can be minimum 100 times.

Rev. 6.00 Sep. 24, 2009 Page 666 of 928 REJ09B0099-0600

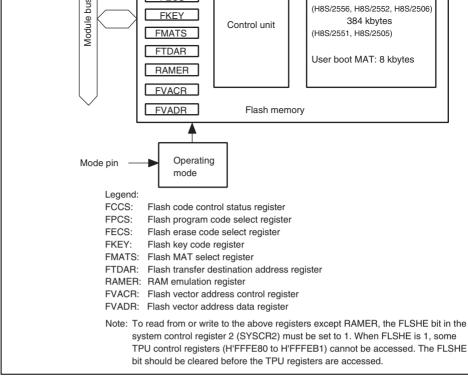


Figure 20.1 Block Diagram of Flash Memory

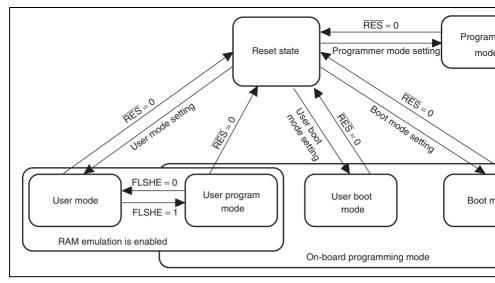


Figure 20.2 Mode Transition of Flash Memory

Rev. 6.00 Sep. 24, 2009 Page 668 of 928 REJ09B0099-0600

- In case of On-chip ROM valid mode, User program mode and Boot mode, wh MD0 pin sets to 0, the mode will be Expanded mode, otherwise, when the pir the mode will be Single chip mode. However, in case of User boot mode, the Expanded mode.

Programming/ erasing enable MAT	User MAT User boot MAT	User MAT	User MAT	User MA User boo
All erasure	\odot (Automatic)	0	0	○ (Autorr
Block division erasure	○ * ¹	0	0	×
Program data transfer	From host via SCI	From optional device via RAM	From optional device via RAM	Via progr
User branch	×	×	X	×
RAM emulation	×	0	×	×
Reset initiation MAT	Embedded program storage MAT	User MAT	User boot MAT* ²	
Transition to user mode	Changing mode setting and reset	Changing FLSHE setting	Changing mode setting and reset	

Notes: 1. All-erasure is performed. After that, the specified block can be erased.

 Firstly, the reset vector is fetched from the embedded program storage MAT. A flash memory related registers are checked, the reset vector is fetched from th boot MAT.

- The user boot MAT can be programmed or erased only in boot mode and programmer
- The user MAT and user boot MAT are erased in boot mode. Then, the user MAT and MAT can be programmed by means of the command method. However, the contents MAT cannot be read until this state.

Only user boot MAT is programmed and the user MAT is programmed in user boot n only user MAT is programmed because user boot mode is not used.

• The boot operation of the optional interface can be performed by the mode pin setting from user program mode in user boot mode.

Rev. 6.00 Sep. 24, 2009 Page 670 of 928 REJ09B0099-0600

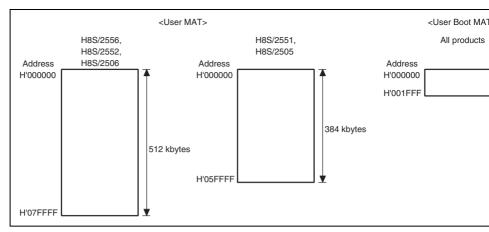


Figure 20.3 Flash Memory Configuration

The size of the user MAT is different from that of the user boot MAT. An address which the size of the 8-kbyte user boot MAT should not be accessed. If the attempt is made, dat as undefined value.

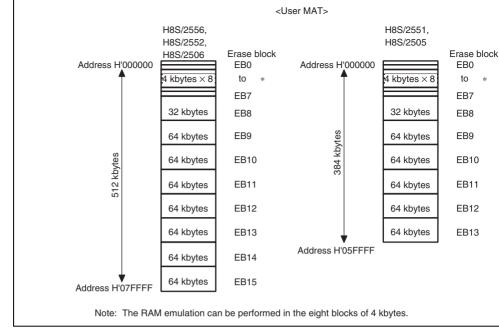


Figure 20.4 Block Division of User MAT

Rev. 6.00 Sep. 24, 2009 Page 672 of 928 REJ09B0099-0600

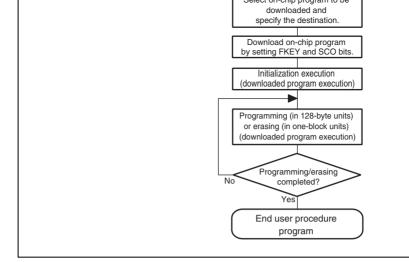


Figure 20.5 Overview of User Procedure Program

1. Selection of on-chip program to be downloaded

This LSI has programming/erasing programs which can be downloaded to the on-ch The on-chip program to be downloaded is selected by setting the corresponding bits programming/erasing interface register. The address of the programming destination specified by the FTDAR.

2. Download of on-chip program

The on-chip program is automatically downloaded by setting the SCO bit in the flash register (FKEY) and the flash control register (FCCS) of the programming/erasing in register.

The flash memory is replaced to the embedded program storage area when download the flash memory cannot be read when programming/erasing, the procedure program

4. Programming/erasing execution

To execute programming/erasing, it is necessary to enter user program mode by settin FLSHE bit in SYSCR2 to 1.

The program data/programming destination address is specified in 128-byte units who programming.

The block to be erased is specified in erase-block units when erasing.

These specifications are set by using the programming/erasing interface parameter and chip program is initiated. The on-chip program is executed by using the JSR or BSR instruction and performing the subroutine call of the specified address in the on-chip I. The execution result is returned to the programming/erasing interface parameter.

The area to be programmed must be erased in advance when programming flash mem however, impossible to download at the same time the erasing program and the program program. Therefore, execute the above procedures of 1 to 4 in the order of erasing first programming next.

All interrupts are prohibited during programming and erasing. Interrupts must be mas within the user system.

Access in the flash memory space during programming/erasing is not guaranteed. Acc when the interrupt vector or the interrupt handler is in the flash memory, interrupt pro is not guaranteed. When NMI interrupt is inevitable during overprogramming/erasing such as in system error processing, set FVACR and FVADR to set the interrupt vector interrupt processing routine in the on-chip RAM or the external space.

Rev. 6.00 Sep. 24, 2009 Page 674 of 928 REJ09B0099-0600

Table 20.5 shows the flash memory pin configuration.

Table 20.3 Pin Configuration

Pin Name	Abbreviation	Input/Output	Function
Reset	RES	Input	Reset
Mode 2	MD2	Input	Sets operating mode of this LSI
Mode 1	MD1	Input	Sets operating mode of this LSI
Mode 0	MD0	Input	Sets operating mode of this LSI
Transmit data	TxD0	Output	Serial transmit data output (used in t mode)
Receive data	RxD0	Input	Serial receive data input (used in bo

Note: For the pin configuration in programmer mode, see section 20.9, Programmer Mo

Renesas

- Flash clase coue select register (FLCS)
- Flash key code register (FKEY)
- Flash MAT select register (FMATS)
- Flash transfer destination address register (FTDAR)
- System control register 2 (SYSCR2)
- Flash pass and fail result (FPFR)
- Download pass and fail result (DPFR)
- Flash multipurpose address area (FMPAR)
- Flash multipurpose data destination area (FMPDR)
- Flash erase Block select (FEBS)
- Flash program and erase frequency control (FPEFEQ)
- Flash user branch address set parameter (FUBRA)
- RAM emulation register (RAMER)
- Flash vector address control register (FVACR)
- Flash vector address data register R (FVADRR)
- Flash vector address data register E (FVADRE)
- Flash vector address data register H (FVADRH)
- Flash vector address data register L (FVADRL)

There are several operating modes for accessing flash memory, for example, read mode/p mode.

There are two memory MATs: user MAT and user boot MAT. The dedicated registers/pa are allocated for each operating mode and MAT selection. The correspondence of operati and registers/parameters for use is shown in table 20.4.

Rev. 6.00 Sep. 24, 2009 Page 676 of 928 REJ09B0099-0600

DPFR	0	—	—	—	—	
FPFR	_	0	0	0	_	
FPEFEQ	—	0		—	_	
FUBRA		0		_		
FMPAR		_	0		_	
FMPDR		_	0	_	_	
FEBS	—	_	_	0	—	_
	FPFR FPEFEQ FUBRA FMPAR FMPDR	FPFRFPEFEQFUBRAFMPARFMPDR	FPFROFPEFEQOFUBRAOFMPARFMPDR	FPFR — O O FPEFEQ — O — FUBRA — O — FMPAR — — O FMPDR — — O	FPFR — O O O FPEFEQ — O — — FUBRA — O — — FMPAR — O — — FMPDR — — O —	FPFR O O FPEFEQ O FUBRA O FMPAR O FMPDR O

Notes: 1. The setting is required when programming or erasing user MAT in user boot

2. The setting may be required according to the combination of initiation mode target MAT.

20.3.1 Programming/Erasing Interface Register

The programming/erasing interface registers are as described below. They are all 8-bit r that can be accessed in byte. Except for the FLER bit in FCCS, these registers are initial power-on reset, in hardware standby mode, in software standby mode, or in watch mode FLER bit is not initialized in software standby mode or in watch mode.

Flash Code Control and Status Register (FCCS): FCCS is configured by bits which r monitor of error occurrence during programming or erasing flash memory and the down on-chip program.

			the error protection state. This bit is initialized at tr to a power-on reset or hardware standby mode.
			When FLER is set to 1, high voltage is applied to t internal flash memory. To reduce the damage to fl memory, the reset must be released after the reset of 100 μ s which is longer than normal.
			 Flash memory operates normally Programming/erasing protection for flash memory protection) is invalid.
			[Clearing condition] At a power-on reset or in hard standby mode
			 Indicates an error occurs during programming/e flash memory. Programming/erasing protection for flash memory protection) is valid.
			[Setting condition] See section 20.5.3, Error Protection
3 to 1 —	All 0	R	Reserved
			These bits are always read as 0. The write value s always be 0.

Rev. 6.00 Sep. 24, 2009 Page 678 of 928 REJ09B0099-0600

Four NOP instructions must be executed immedi setting this bit to 1.

Since this bit is cleared to 0 when download is co this bit cannot be read as 1.

0: Download of the on-chip programming/erasing to the on-chip RAM is not executed

[Clear condition] When download is completed

1: Request that the on-chip programming/erasing is downloaded to the on-chip RAM is occurred

[Set conditions] When all of the following condition satisfied and 1 is written to this bit

- H'A5 is written to FKEY
- During execution in the on-chip RAM
- Not in RAM emulation mode (RAMS in RAME

[Clear condition] When transfer is completed 1: On-chip programming program is selected

Flash Erase Code Select Register (FECS): FECS selects download of the on-chip erasis program.

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value s always be 0.
0	EPVB	0	R/W	Erase Pulse Verify Block
				Selects the erasing program.
				0: On-chip erasing program is not selected
				[Clear condition] When transfer is completed
				1: On-chip erasing program is selected

Rev. 6.00 Sep. 24, 2009 Page 680 of 928 REJ09B0099-0600

•		-		the on-chip hain cannot be executed.
3	K3	0	R/W	Only when H'5A is written, programming/erasing
2	K2	0	R/W	executed. Even if the on-chip programming/erasi
1	K1	0	R/W	program is executed, the flash memory cannot be programmed or erased when the value other that
0	K0	0	R/W	written to FKEY.
				H'A5: Writing to the SCO bit is enabled (The SCO cannot be set by the value other than H'A5
				H'5A: Programming/erasing is enabled (The valu than H'5A is in software protection state.)
				H'00: Initial value

2	M52	0	R/W	between User MAT and User Boot MAT. (The use
1	MS1	0/1*	R/W	MAT cannot be programmed in user program mod
0	MS0	0	R/W	boot MAT is selected by FMATS. The user boot N be programmed in boot mode or in programmer m
				H'AA: The user boot MAT is selected (in user-MA ⁻ selection state when the value of these bits than H'AA)
				Initial value when these bits are initiated in a mode.
				H'00: Initial value when these bits are initiated in a except for user boot mode (in user-MAT sel state)
				[Programmable condition] These bits are in the ex state in the on-chip RAM.
	a			

Note: Set to 1 when in user boot mode, otherwise set to 0.

Flash Transfer Destination Address Register (FTDAR): FTDAR is a register that spec address to download an on-chip program. This register must be specified before setting the bit in FCCS to 1.

Rev. 6.00 Sep. 24, 2009 Page 682 of 928 REJ09B0099-0600

				0: The value specified by bits TDA6 to TDA0 is w range.
				1: The value specified by is TDA6 to TDA0 is ove range (H'08 to H'FF) and the download is stop
6	TDA6	0	R/W	Transfer Destination Address
5	TDA5	0	R/W	Specifies the start address to download an on-ch
4	TDA4	0	R/W	program. H'00 to H'07 can be specified meaning
3	TDA3	0	R/W	start address in the on-chip RAM space can be s units of 4 kbytes.
2	TDA2	0	R/W	H'00: H'FF9000 is specified as a start address to
1	TDA1	0	R/W	an on-chip program.
0	TDA0	0	R/W	H'01: H'FFA000 is specified as a start address to an on-chip program.
				H'02: H'FFB000 is specified as a start address to an on-chip program.
				H'03: H'FFC000 is specified as a start address to an on-chip program.
				H'04: H'FFD000 is specified as a start address to an on-chip program.
				H'05: H'FFE000 is specified as a start address to an on-chip program.
				H'06: H'FF8000 is specified as a start address to an on-chip program.
				H'07: H'FF7000 is specified as a start address to an on-chip program.

H'08 to H'FF: Setting prohibited. Specifying this v the TDRE bit to 1 and stops the do

Rev. 6.0

				control register is not selected. In this case, the of the flash memory control register is retained.
				0: Flash control logic unit which controls H'FFFF H'FFFFAF is disabled.
				1: Flash control logic unit which controls H'FFFF H'FFFFAF is enabled.
2	_	Undefined		Reserved
				The write value should always be 0.
1, 0	_	All 0	R/W	Reserved
				The write value should always be 0.

20.3.2 Programming/Erasing Interface Parameter

The programming/erasing interface parameter specifies the operating frequency, user brack destination address, storage place for program data, programming destination address, and block and exchanges the processing result for the downloaded on-chip program. This para uses the general registers of the CPU (ER0 and ER1) or the on-chip RAM area. The initial undefined at a power-on reset or in hardware standby mode.

When download, initialization, or on-chip program is executed, registers of the CPU exce R0L are stored. The return value of the processing result is written in R0L. Since the stac used for storing the registers except for R0L, the stack area must be saved at the processin (A maximum size of a stack area to be used is 128 bytes.)

The programming/erasing interface parameter is used in the following four items.

- 1. Download control
- 2. Initialization before programming or erasing

Rev. 6.00 Sep. 24, 2009 Page 684 of 928 REJ09B0099-0600

and fail result							
Flash pass and fail result	FPFR	_	0	0	0	R/W	Undefined
Flash programming/ erasing frequency control	FPEFEQ	—	0	—	—	R/W	Undefined
Flash user branch address set parameter	FUBRA	_	0			R/W	Undefined
Flash multi- purpose address area	FMPAR	—		0		R/W	Undefined
Flash multi- purpose data destination area	FMPDR			0		R/W	Undefined
Flash erase block select	FEBS	_	_		0	R/W	Undefined

Note: A single byte of the start address to download an on-chip program, which is speci FTDAR.

(1) Download Control

The on-chip program is automatically downloaded by setting the SCO bit to 1. The on-c area to be downloaded is the 2-kbyte area starting from the address specified by FTDAR address map of the on-chip RAM, see figure 20.10.

Download control is set by the programming/erasing interface registers, and the DPFR p indicates the return value.

RENESAS

7 to	3 —		_	Reserved
				Return 0
2	SS	_	R/W	Source Select Error Detect
				Only one type for the on-chip program which can be downloaded can be specified. When more than tw of the program are selected, the program is not se or the program is selected without mapping, error occurred.
				0: Download program can be selected normally
				 Download error is occurred (multi-selection or p which is not mapped is selected)
1	FK	_	R/W	Flash Key Register Error Detect (FK)
				Returns the check result whether the value of FKE register is set to H'A5.
				0: FKEY setting is normal (FKEY = H'A5)
				1: Setting value of FKEY becomes error (FKEY = other than H'A5)
0	SF		R/W	Success/Fail
				Returns the result whether download is ended nor not. The determination result whether program tha downloaded to the on-chip RAM is read back and transferred to the on-chip RAM is returned.
				0: Downloading on-chip program is ended normall error)
				1: Downloading on-chip program is ended abnorm (error occurs)

Rev. 6.00 Sep. 24, 2009 Page 686 of 928 REJ09B0099-0600

This parameter sets the operating frequency of the CPU.

For the settable range of operating frequency in this LSI, see section 24.4.2, Clock Timi

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 16	F31 to F16		R/W	Reserved
				These bit should be cleared to 0.
15 to 0	F15 to F0		R/W	Frequency Set
				Set the operating frequency of the CPU. The set value must be calculated as the following methods
				• The operating frequency which is shown in must be rounded in a number to three decir and be shown in a number of two decimal p
				 The value multiplied by 100 is converted to digit and is written to the FPEFEQ parameter register ER0).
				For example, when the operating frequency of 25.000 MHz, the value is as follows.
				• The number to three decimal places of 25.0 rounded and the value is thus 25.00.
				• The formula that $25.00 \times 100 = 2500$ is con
				the binary digit and B'0000,1001,1100,0100
				is set to ER0.

RENESAS

area without execution codes, or runaway or des of the on-chip program area or the stack area is In case of runaway, the value of flash memory is guaranteed.

During the processing in the user branch destina not download or initialize the on-chip program or programming/erasing program. Programming/er the return from the user branch destination is no guaranteed. In addition, do not modify the data p to be programmed. Also during the processing in branch destination, do not modify the programming/erasing interface register or make to RAM emulation mode. After the user branch processing has completed, use the RTS instruct return to programming/erasing program.

Rev. 6.00 Sep. 24, 2009 Page 688 of 928 REJ09B0099-0600

				downloaded programming/erasing-related prog
				0: Setting of user branch address is normal
				1: Setting of user branch address is abnormal
1	FQ		R/W	Frequency Error Detect
				Returns the check result whether the specified frequency of the CPU is in the range of the sup operating frequency.
				0: Setting of operating frequency is normal
				1: Setting of operating frequency is abnormal
0	SF	_	R/W	Success/Fail
				Indicates whether initialization is completed nor
				0: Initialization is ended normally (no error)
				1: Initialization is ended abnormally (error occu

of the CPU and in other than the flash memory space.

When data to be programmed does not satisfy 128 bytes, the 128-byte program data n prepared by filling with the dummy code H'FF.

The start address of the area in which the prepared program data is stored must be stored general register ER0. This parameter is called as FMPDR (flash multipurpose data de area parameter).

For details on the program processing procedure, see section 20.4.2, User Program Mode

(a) Flash multipurpose address area parameter (FMPAR: general register ER1 of CPU)

This parameter stores the start address of the programming destination on the user MAT.

When the address in the area other than flash memory space is set, an error occurs.

The start address of the programming destination must be at the 128-byte boundary. If this boundary condition is not satisfied, an error occurs. The error occurrence is indicated by the bit in FPFR.

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 0	MOA31 to MOA0		R/W	Store the start address of the programming dest on the user MAT. The consecutive 128-byte programming is executed starting from the speci address of the user MAT. Therefore, the specifie programming start address becomes a 128-byte boundary and MOA6 to MOA0 are always 0.

Rev. 6.00 Sep. 24, 2009 Page 690 of 928 REJ09B0099-0600 (c) Flash pass/fail parameter (FPFR: general register R0L of CPU)

Initial Bit **Bit Name** Value R/W Description 7 Reserved ____ ____ ____ Return 0. 6 MD R/W Programming Mode Related Setting Error Dete Returns the check result that the error protection not entered. For conditions to enter the error pr state, see section 20.5.3, Error Protection. 0: FLER setting is normal (FLER = 0) 1: Programming cannot be performed (FLER =

This parameter indicates the return value of the program processing result.

RENESAS

			mode.
			0: Programming has ended normally
		 	1: Programming has ended abnormally (program result is not guaranteed)
4	FK	 R/W	Flash Key Register Error Detect
			Returns the check result of the value of FKEY be start of the programming processing.
			0: FKEY setting is normal (FKEY = H'5A)
			1: FKEY setting is error (FKEY = value other that
3		 	Reserved
			Returns 0.
2	WD	 R/W	Write Data Address Detect
			When the following address is specified as the s address of the storage destination of the prograr an error occurs.
			The address in the on-chip RAM where programming/erasing program is downloade
			• The address in the flash memory area
			0: Setting of write data address is normal
			1: Setting of write data address is abnormal

Rev. 6.00 Sep. 24, 2009 Page 692 of 928 REJ09B0099-0600

				abnormal
0	SF	—	R/W	Success/Fail
				Indicates whether the program processing is er normally or not.
				0: Programming is ended normally (no error)
				1: Programming is ended abnormally (error occ

(4) Erasure Execution

When flash memory is erased, the erase-block number on the user MAT must be passed erasing program which is downloaded. This is set to the FEBS parameter (general regist

One block is specified from the block number 0 to 15.

For details on the erasing processing procedure, see section 20.4.2, User Program Mode

4	EB4		R/W	EB15 block. An error occurs when the number o 0 to 15 is set.
3	EB3	_	R/W	0 10 15 15 Set.
2	EB2	—	R/W	
1	EB1	_	R/W	
0	EB0	_	R/W	

(b) Flash pass/fail parameter (FPFR: general register R0L of CPU)

This parameter returns value of the erasing processing result.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	_	—	_	Reserved
				Return 0.
6	MD	_		Erasure Mode Related Setting Error Detect
				Returns the check result of whether the error prostate is entered. For conditions to enter the error protection state, see section 20.5.3, Error Protection
				0: FLER setting is normal (FLER = 0)
				1: FLER = 1 and erasure cannot be performed

Rev. 6.00 Sep. 24, 2009 Page 694 of 928 REJ09B0099-0600

				0: Erasure has ended normally
				1: Erasure has ended abnormally (erasure resu guaranteed)
4	FK	_	R/W	Flash Key Register Error Detect
				Returns the check result of FKEY value before the erasing processing.
				0: FKEY setting is normal (FKEY = H'5A)
				1: FKEY setting is error (FKEY = value other th
3	EB	_	R/W	Erase Block Select Error Detect
				Returns the check result whether the specified block number is in the block range of the user N
				0: Setting of erase-block number is normal
				1: Setting of erase-block number is abnormal
2, 1				Reserved
				Return 0.
0	SF	_	R/W	Success/Fail
				Indicates whether the erasing processing is end normally or not.
				0: Erasure is ended normally (no error)
				1: Erasure is ended abnormally (error occurs)

Innuar				
Bit	Bit Name	Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
4	_	0	R/W	Reserved
				The write value should always be 0.
3	RAMS		R/W	RAM Select
				Sets whether the user MAT is emulated or not. W RAMS = 1, all blocks of the user boot MAT are in programming/erasing protection state.
				0: RAM emulation function is invalid
				All blocks of the user MAT are not in the programming/erasing protection state
				1: RAM emulation function is valid
				All blocks of the user MAT are in the programming/erasing protection state
2	RAM2	0	R/W	User MAT Area Select
1	RAM1	0	R/W	These bits are used with bit 3 and select the use
0	RAM0	0	R/W	area to be overlapped with the on-chip RAM. (Se 20.6.)

Rev. 6.00 Sep. 24, 2009 Page 696 of 928 REJ09B0099-0600

H'006000 to H'006FFF	EB6 (4 kbytes)	1	1	1	0
H'007000 to H'007FFF	EB7 (4 kbytes)	1	1	1	1
Legend:					

*: Don't care

20.3.4 Flash Vector Address Control Register (FVACR)

FVACR modifies the space from which the vector table data of the NMI interrupts is real Normally the vector table data is read from the address spaces from H'00001C to H'0000 However, the vector table can be read from the internal I/O register (FVADRR to FVAI) the FVACR setting. FVACR is initialized to H'00 at a power-on reset or in hardware stat mode.

All interrupts including NMI must be prohibited in the programming/erasing processing downloading on-chip program. When the NMI interrupt is necessary such as in the syste processing, FVACR and FVADRR to FVADRL must be set and the interrupt exception processing routine must be set in the on-chip RAM space or in the external space.

Bit	Bit Name	Initial Value	R/W	Description
7	FVCHGE	0	R/W	Vector Switch Function Valid
				Selects whether the function for modifying the sp which the vector table data is read is valid or inva FVCHGE = 1, the vector table data can be read f internal I/O register (FVADRR to FVADRL).
				0: Function for modifying the space from which the table data is read is invalid (Initial value)
				1: Function for modifying the space from which the table data is read is valid

RENESAS

consists of four 8-bit registers: FVADRR, FVADRE, FVADRH, and FVADRL. This reg initialized to H'00000000 at a power-on reset or in hardware standby mode.

• FVA	• FVADRR						
Bit	Bit Name	Initial Value	R/W	Description			
31 to 24		All 0	R/W	Set the vector address.			
• FVA	DRE						
Bit	Bit Name	Initial Value	R/W	Description			
23 to 16	_	All 0	R/W	Set the vector address.			
• FVA	DRH						
Bit	Bit Name	Initial Value	R/W	Description			
15 to 8	_	All 0	R/W	Set the vector address.			
• FVADRL							
Bit	Bit Name	Initial Value	R/W	Description			
-							

Rev. 6.00 Sep. 24, 2009 Page 698 of 928 REJ09B0099-0600

20.4.1 Doot Mode

Boot mode executes programming/erasing user MAT and user boot MAT by means of the command and program data transmitted from the host using the on-chip SCI. The tool for transmitting the control command and program data must be prepared in the host. The S communication mode is set to asynchronous mode. When reset start is executed after the pin is set in boot mode, the boot program in the microcomputer is initiated. After the SC is automatically adjusted, the communication with the host is executed by means of the command method.

The system configuration diagram in boot mode is shown in figure 20.6. For details on t setting in boot mode, see table 20.1. The NMI and other interrupts are ignored in boot m However, the NMI and other interrupts should be disabled in the user system.

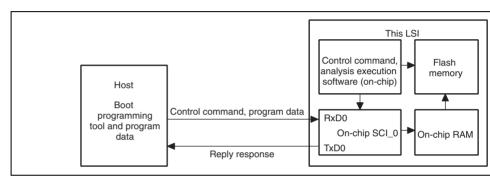


Figure 20.6 System Configuration in Boot Mode

set to 9,600 bps or 19,200 bps.

The system clock frequency, which can automatically adjust the transfer bit rate of the ho the bit rate of this LSI, is shown in table 20.7. Boot mode must be initiated in the range of system clock.

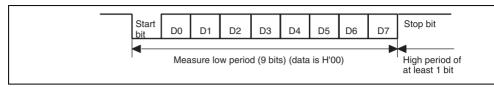


Figure 20.7 Automatic-Bit-Rate Adjustment Operation of SCI

Table 20.7 System Clock Frequency for Automatic-Bit-Rate Adjustment by This L

Bit Rate of Host	System Clock Frequency		
9,600 bps	10 to 26 MHz		
19,200 bps	16 to 26 MHz		

(2) State Transition Diagram

The overview of the state transition diagram after boot mode is initiated is shown in figur

1. Bit rate adjustment

After boot mode is initiated, the bit rate of the SCI interface is adjusted with that of th

- Waiting for inquiry set command For inquiries about user-MAT size and configuration, MAT start address, and support the required information is transmitted to the host.
- 3. Automatic erasure of all user MAT and user boot MAT

Rev. 6.00 Sep. 24, 2009 Page 700 of 928 REJ09B0099-0600

- programming/erasing command. The erasure must be used when the specified ble programmed without a reset start after programming is executed in boot mode. W programming can be executed by only one operation, all blocks are erased before for waiting programming/erasing/other command is entered. The erasing operation required.
- There are many commands other than programming/erasing. Examples are sum of blank check (erasure check), and memory read of the user MAT/user boot MAT acquisition of current status information.

Note that memory read of the user MAT/user boot MAT can only read the programmed all user MAT/user boot MAT has automatically been erased.

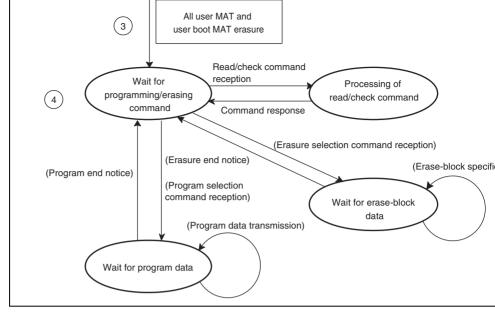


Figure 20.8 Overview of Boot Mode State Transition Diagram

Rev. 6.00 Sep. 24, 2009 Page 702 of 928 REJ09B0099-0600

reset input period of 100 μ s, which is longer than usual.

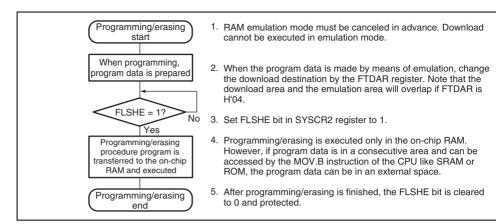


Figure 20.9 Programming/Erasing Overview Flow

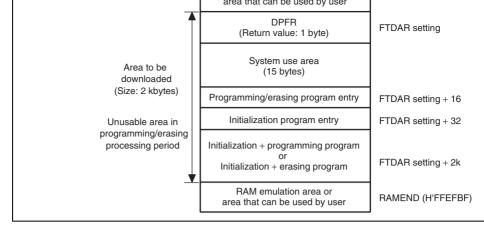


Figure 20.10 RAM Map when Programming/Erasing Is Executed

Rev. 6.00 Sep. 24, 2009 Page 704 of 928 REJ09B0099-0600

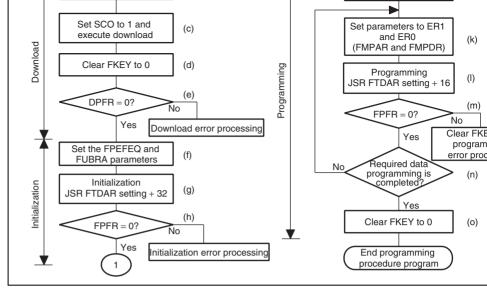


Figure 20.11 Programming Procedure

The procedure program must be executed in an area other than the flash memory to be programmed. Especially the part where the SCO bit in FCCS is set to 1 for downloading executed in the on-chip RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM MAT, and external space) is shown in section 20.4.4, Procedure Program and Storable A Programming Data.

The following description assumes the area to be programmed on the user MAT is erase program data is prepared in the consecutive area. When erasing is not executed, erasing executed before writing.

RENESAS

download is not performed and a download error is returned to the SS bit in DPFR. The address of a download destination is specified by FTDAR.

(b) Program H'A5 in FKEY

If H'A5 is not written to FKEY for protection, 1 cannot be written to the SCO bit for or request.

(c) 1 is written to the SCO bit of FCCS and then download is executed.

To write 1 to the SCO bit, the following conditions must be satisfied.

- RAM emulation mode is canceled.
- H'A5 is written to FKEY.
- The SCO bit writing is executed in the on-chip RAM.

When the SCO bit is set to 1, download is started automatically. When the program exprocessing returned to the user procedure program, the SCO is cleared to 0. Therefore SCO bit cannot be confirmed to be 1 in the user procedure program.

The download result can be confirmed only by the return value of DPFR. Before the S is set to 1, incorrect determination must be prevented by setting the one byte of the sta address (to be used as DPFR) specified by FTDAR to a value other than the return val (H'FF).

When download is executed, particular interrupt processing, which is accompanied by switch as described below, is performed as an internal microcomputer processing. For instructions are executed immediately after the instructions that set the SCO bit to 1.

- The user-MAT space is switched to the on-chip program storage area.
- After the selection condition of the download program and the FTDAR setting are the transfer processing to the on-chip RAM specified by FTDAR is executed.
- FPCS, FECS, and the SCO bit in FCCS are cleared to 0.
- The return value is set to the DPFR parameter.

Rev. 6.00 Sep. 24, 2009 Page 706 of 928 REJ09B0099-0600

- Θ
 - Since a stack area of a maximum 128-byte is used, the area must be allocated bef the SCO bit to 1.
 - If a flash memory access by the DTC is requested during downloading, the opera cannot be guaranteed. Therefore, an access request by the DTC must not be gene
- (d) FKEY is cleared to H'00 for protection.
- (e) The value of the DPFR parameter must be checked and the download result must be confirmed.
 - Check the value of the DPFR parameter (one byte of start address of the download destination specified by FTDAR). If the value is H'00, download has been perfor normally. If the value is not H'00, the source that caused download to fail can be investigated by the description below.
 - If the value of the DPFR parameter is the same as before downloading (e.g. H'FF address setting of the download destination in FTDAR may be abnormal. In this confirm the setting of the TDER bit (bit 7) in FTDAR.
 - If the value of the DPFR parameter is different from before downloading, check and the FK bit in the DPFR parameter to ensure that the download program selec FKEY setting were normal, respectively.
- (f) The operating frequency and user branch destination are set to the FPEFEQ and FUE parameters for initialization.
 - The current frequency of the CPU clock is set to the FPEFEQ parameter (general ER0).

RENESAS

- branch address setting parameter (FUBRA: General register ER1 of CPU).
- (g) Initialization

When a programming program is downloaded, the initialization program is also down the on-chip RAM. There is an entry point of the initialization program in the area from start address specified by FTDAR + 32 bytes of the on-chip RAM. The subroutine is of and initialization is executed by using the following steps.

MOV.L	#DLTOP+32,ER2	; Set entry address to ER2
JSR	@ER2	; Call initialization routine
NOP		

- The general registers other than R0L are held in the initialization program.
- R0L is a return value of the FPFR parameter.
- Since the stack area is used in the initialization program, a stack area of a maximu bytes must be allocated in RAM.
- Interrupts can be accepted during the execution of the initialization program. The storage area and stack area in the on-chip RAM and register values must not be de
- (h) The return value in the initialization program, FPFR (general register R0L) is determined
- (i) All interrupts and the use of a bus master other than the CPU are prohibited.

The specified voltage is applied for the specified time when programming or erasing. interrupts occur or the bus mastership is moved to other than the CPU during this time voltage for more than the specified time will be applied and flash memory may be dar. Therefore, interrupts and movement of bus mastership other than the CPU are prohibit. To prohibit the interrupt, bit 7 (I) in the condition code register (CCR) of the CPU shows set to B'1 in interrupt control mode 0. Then interrupts other than NMI are held and are executed.

Rev. 6.00 Sep. 24, 2009 Page 708 of 928 REJ09B0099-0600

(k) The parameter which is required for programming is set.

The start address of the programming destination of the user MAT (FMPAR) is set t register ER1. The start address of the program data area (FMPDR) is set to general r ER0.

- Example of the FMPAR setting

FMPAR specifies the programming destination address. When an address other t the user MAT area is specified, even if the programming program is executed, programming is not executed and an error is returned to the return value paramet Since the unit is 128 bytes, the lower eight bits (A7 to A0) must be H'00 or H'80 boundary of 128 bytes.

- Example of the FMPDR setting

When the storage destination of the program data is flash memory, even if the preexecution routine is executed, programming is not executed and an error is return FPFR parameter. In this case, the program data must be transferred to the on-chip and then programming must be executed.

(1) Programming

There is an entry point of the programming program in the area from the start address by FTDAR + 16 bytes of the on-chip RAM. The subroutine is called and programmine executed by using the following steps.

MOV.L	#DLTOP+16,ER2	; Set entry address to ER2
JSR	@ER2	; Call programming routine
NOP		

- The general registers other than ROL are held in the programming program.

- R0L is a return value of the FPFR parameter.

RENESAS

- (o) After programming finishes, clear FKEY and specify software protection.
 - If this LSI is restarted by a power-on reset immediately after user MAT programming finished, secure a reset period (period of $\overline{\text{RES}} = 0$) of 100 µs or longer, which is longe usual.

(3) Erasing Procedure in User Program Mode

The procedures for download, initialization, and erasing are shown in figure 20.12.

Rev. 6.00 Sep. 24, 2009 Page 710 of 928 REJ09B0099-0600

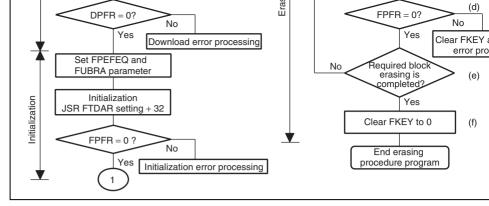


Figure 20.12 Erasing Procedure

The procedure program must be executed in an area other than the user MAT to be erase Especially the part where the SCO bit in FCCS is set to 1 for downloading must be exec on-chip RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM MAT, and external space) is shown in section 20.4.4, Procedure Program and Storable A Programming Data.

For the downloaded on-chip program area, see the RAM map for programming/erasing 20.10.

A single divided block is erased by one erasing processing. For block divisions, see figure To erase two or more blocks, update the erase block number and perform the erasing profor each block.

RENESAS

The procedures after setting parameters for crusing programs are as follows.

(b) Set the FEBS parameter necessary for erasure

Set the erase block number of the user MAT in the flash erase block select parameter (general register ER0). If a value other than an erase block number of the user MAT i block is erased even though the erasing program is executed, and an error is returned return value parameter FPFR.

(c) Erasure

Similar to as in programming, there is an entry point of the erasing program in the are the start address of a download destination specified by FTDAR + 16 bytes of on-chip The subroutine is called and erasing is executed by using the following steps.

- The general registers other than R0L are held in the erasing program.
- R0L is a return value of the FPFR parameter.
- Since the stack area is used in the erasing program, a stack area of maximum 128 must be allocated in RAM
- (d) The return value in the erasing program, FPFR (general register R0L) is determined.

(e) Determine whether erasure of the necessary blocks has completed.

If more than one block is to be erased, update the FEBS parameter and repeat steps (b Blocks that have already been erased can be erased again.

Rev. 6.00 Sep. 24, 2009 Page 712 of 928 REJ09B0099-0600

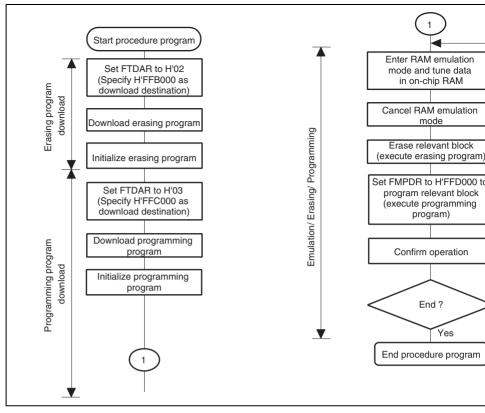


Figure 20.13 Sample Procedure of Repeating RAM Emulation, Erasing, and Prog (Overview)

In the above example, the erasing program and programming program are downloaded t excluding the 4 kbytes (H'FFD000 to H'FFDFFF) in the on-chip RAM. Download and

example) and (download start address for programming program) + 32 bytes (H'F) this example).

20.4.3 User Boot Mode

This LSI has user boot mode which is initiated with different mode pin settings than thos program mode or boot mode. User boot mode is a user-arbitrary boot mode, unlike boot n uses the on-chip SCI.

Only the user MAT can be programmed/erased in user boot mode. Programming/erasing user boot MAT is only enabled in boot mode or programmer mode.

(1) User Boot Mode Initiation

For the mode pin settings to start up user boot mode, see table 20.1.

When the reset start is executed in user boot mode, the built-in check routine runs. The us and user boot MAT states are checked by this check routine.

While the check routine is running, NMI and all other interrupts cannot be accepted.

Next, processing starts from the execution start address of the reset vector in the user boo At this point, H'AA is set to FMATS because the execution MAT is the user boot MAT.

(2) User MAT Programming in User Boot Mode

For programming the user MAT in user boot mode, additional processing made by setting are required: switching from user-boot-MAT selection state to user-MAT selection state, switching back to user-boot-MAT selection state after programming completes.

Figure 20.14 shows the procedure for programming the user MAT in user boot mode.

Rev. 6.00 Sep. 24, 2009 Page 714 of 928 REJ09B0099-0600

Figure 20.14 Procedure for Programming User MAT in User Boot Mod

The difference between the programming procedures in user program mode and user bo whether the MAT is switched or not as shown in figure 20.14.

In user boot mode, the user boot MAT can be seen in the flash memory space with the u hidden in the background. The user MAT and user boot MAT are switched only while the MAT is being programmed. Because the user boot MAT is hidden while the user MAT programmed, the procedure program must be located in an area other than flash memory programming completes, switch the MATs again to return to the first state.

MAT switching is enabled by writing a specific value to FMATS. However note that we MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not all MAT switching is completed, and if an interrupt occurs, from which MAT the interrupt

switching back to user-boot-MAT selection state after erasing completes.

Figure 20.15 shows the procedure for erasing the user MAT in user boot mode.

Rev. 6.00 Sep. 24, 2009 Page 716 of 928 REJ09B0099-0600

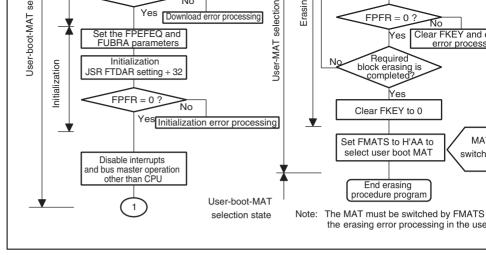


Figure 20.15 Procedure for Erasing User MAT in User Boot Mode

The difference between the erasing procedures in user program mode and user boot mod on whether the MAT is switched or not as shown in figure 20.15.

MAT switching is enabled by writing a specific value to FMATS. However note that we MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not all MAT switching is completed, and if an interrupt occurs, from which MAT the interrupt read is undetermined. Perform MAT switching in accordance with the description in sec Switching between User MAT and User Boot MAT.

Except for MAT switching, the erasing procedure is the same as that in user program me

The area that can be executed in the steps of the user procedure program (on-chip RAM MAT) is shown in section 20.4.4, Procedure Program and Storable Area for Programming

Renesas

- 2. The on-chip programming/erasing program will use 128 bytes as a stack. So, make su this area is secured.
- 3. Download by setting the SCO bit to 1 will lead to switching of the MAT. If, therefore operation is used, it should be executed from the on-chip RAM.
- 4. The flash memory is accessible until the start of programming or erasing, that is, until result of downloading has been determined. When in single-chip mode in which the e address space is not accessible, the required procedure programs, NMI handling vector handler, and user branch program should be transferred to the on-chip RAM before programming/erasing of the flash memory starts.
- 5. The flash memory is not accessible during programming/erasing operations, therefore operation program is downloaded to the on-chip RAM to be executed. The NMI-hand vector and programs such as that which activate the operation program, and NMI han should thus be stored in on-chip memory other than flash memory or the external add space.
- 6. After programming/erasing, the flash memory should be inhibited until FKEY is clear. The reset state ($\overline{\text{RES}} = 0$) must be in place for more than 100 µs when the LSI mode is to reset on completion of a programming/erasing operation.

Transitions to the reset state, and hardware standby mode are inhibited during programming/erasing. When the reset signal is accidentally input to the chip, a longer the reset state than usual $(100 \ \mu s)$ is needed before the reset signal is released.

- 7. Switching of the MATs by FMATS should be needed when programming/erasing of the MAT is operated in user-boot mode. The program which switches the MATs should be executed from the on-chip RAM. See section 20.7, Switching between User MAT and Boot MAT. Please make sure you know which MAT is selected when switching between them.
- 8. When the data storable area indicated by programming parameter FMPDR is within the memory area, an error will occur even when the data stored is normal. Therefore, the

Rev. 6.00 Sep. 24, 2009 Page 718 of 928 REJ09B0099-0600

Programming	Table 20.9 (1)	Table 20.9 (3)
Erasing	Table 20.9 (2)	Table 20.9 (4)

Note: * Programming/Erasing is possible to user MATs.

Table 20.9 (1) Useable Area for Programming in User Program Mode

		Selected I			
Item	On-Chip RAM	Target Flash Memory	External Space (Expanded Mode)	User MAT	Emb Prog Stor
Storage Area for Program Data	0	×*	0		
Operation for Selection of On-chip Program to be Downloaded	0	0	0	0	
Operation for Writing H'A5 to FKEY	0	0	0	0	
Execution of Writing SCO = 1 to FCCS (Download)	0	×	x		
Operation for FKEY Clear	0	0	0	0	

RENESAS

Initialization				
Determination of Initialization Result	0	0	0	0
Operation for Initialization Error	0	0	0	0
NMI Handling Routine	0	×	0	0
Operation for Inhibit of Interrupt	0	0	0	0
Operation for Writing H'5A to FKEY	0	0	0	0
Operation for Settings of Program Parameter	0	×	0	0
Execution of Programming	0	×	×	0
Determination of Program Result	0	×	0	0
Operation for Program Error	0	×	0	0
Operation for FKEY Clear	0	×	0	0

Note: Transferring the data to the on-chip RAM enables this area to be used.

Rev. 6.00 Sep. 24, 2009 Page 720 of 928 REJ09B0099-0600

Execution of Writing SCO = 1 to FCCS (Download)	0	×	×	
Operation for FKEY Clear	0	0	0	0
Determination of Download Result	0	0	0	0
Operation for Download Error	0	0	0	0
Operation for Settings of Initial Parameter	0	0	0	0
Execution of Initialization	0	×	×	0
Determination of Initialization Result	0	0	0	0
Operation for Initialization Error	0	0	0	0
NMI Handling Routine	0	×	0	0
Operation for Inhibit of Interrupt	0	0	0	0
Operation for Writing H'5A to FKEY	0	0	0	0
Operation for Settings of Erasure Parameter	0	×	0	0

		8 8	,		
	Stor	able/Executab	le Area	Sel	ected MA
Item	On-Chip RAM	User Boot MAT	User MAT	User Boot MAT	Embedd Program Storage
Storage Area for Program Data	0	×* ¹	—	—	I
Operation for Selection of On-chip Program to be Downloaded	0	0		0	
Operation for Writing H'A5 to FKEY	0	0		0	
Execution of Writing SCO = 1 to FCCS (Download)	0	×			C
Operation for FKEY Clear	0	0		0	
Determination of Download Result	0	0		0	
Operation for Download Error	0	0		0	
Operation for Settings of Initial Parameter	0	0		0	

Table 20.9 (3) Useable Area for Programming in User Boot Mode

Rev. 6.00 Sep. 24, 2009 Page 722 of 928 REJ09B0099-0600

3					
Operation for Interrupt Inhibit	0	0		0	
Switching MATs by FMATS	0	x	0		
Operation for Writing H'5A to FKEY	0	x	0		
Operation for Settings of Program Parameter	0	х	0		
Execution of Programming	0	х	0		
Determination of Program Result	0	х	0		
Operation for Program Error	0	×* ²	0		
Operation for FKEY Clear	0	х	0		
Switching MATs by FMATS	0	х		0	

Notes: 1. Transferring the data to the on-chip RAM enables this area to be used.

2. Switching FMATS by a program in the on-chip RAM enables this area to be u

RENESAS

Execution of Writing SCO = 1 to FCCS (Download)	0	×			
Operation for FKEY Clear	0	0		0	
Determination of Download Result	0	0		0	
Operation for Download Error	0	0		0	
Operation for Settings of Initial Parameter	0	0		0	
Execution of Initialization	0	×		0	
Determination of Initialization Result	0	0		0	
Operation for Initialization Error	0	0		0	
NMI Handling Routine	0	×		0	
Operation for Interrupt Inhibit	0	0		0	
Switching MATs by FMATS	0	×	0		
Operation for Writing H'5A to FKEY	0	×	0		

Rev. 6.00 Sep. 24, 2009 Page 724 of 928 REJ09B0099-0600

Erasure Error					
Operation for FKEY Clear	0	×	0		
Switching MATs by FMATS	0	×		0	

- - -

Note: Switching FMATS by a program in the on-chip RAM enables this area to be used

Table 20.10 Hardware Protection

	Function	to Be Pro
Description	Download	Program
 The program/erase interface registers are initialized in the power-on reset state (including a power-on reset by the WDT) and standby mode and the program/erase-protected state is entered. The reset state will not be entered by a reset using the RES pin unless the RES pin is held low until oscillation has stabilized after power is initially supplied. In the case of a reset during 		0
program again.		
	 The program/erase interface registers are initialized in the power-on reset state (including a power-on reset by the WDT) and standby mode and the program/erase-protected state is entered. The reset state will not be entered by a reset using the RES pin unless the RES pin is held low until oscillation has stabilized after power is initially supplied. In the case of a reset during operation, hold the RES pin low for the RES pulse width that is specified in the section on AC characteristics section. If a reset is input during programming or erasure, data values in the flash memory are not guaranteed. In this case, after holding the RES pin low for 100 µs or longer, execute erasure and then execute 	DescriptionDownload• The program/erase interface registers are initialized in the power-on reset state (including a power-on reset by the WDT) and standby mode and the program/erase-protected state is entered.○• The reset state will not be entered by a reset using the RES pin unless the RES pin is held low until oscillation has stabilized after power is initially supplied. In the case of a reset during operation, hold the RES pin low for the RES pulse width that is specified in the section on AC characteristics section. If a reset is input during programming or erasure, data values in the flash memory are not guaranteed. In this case, after holding the RES pin low for 100 µs or longer, execute erasure and then execute

Rev. 6.00 Sep. 24, 2009 Page 726 of 928 REJ09B0099-0600

SCOBI	entered by clearing the SCO bit in			
	FCCS which disables the downloading	g		
	of the programming/erasing programs	.		
Protection by the	Downloading and	0	0	
FKEY register	programming/erasing are disabled			
	unless the required key code is written	n		
	in FKEY. Different key codes are used	b		
	for downloading and for			
	programming/erasing.			
Emulation protection	The program/erase-protected state is	0	0	
	entered by setting the RAMS bit in the	9		
	RAM emulation register (RAMER).			

20.5.3 Error Protection

Error protection is a mechanism for aborting programming or erasure when an error occ form of the microcomputer entering runaway during programming/erasing of the flash n operations that are not according to the established procedures for programming/erasing programming or erasure in such cases prevents damage to the flash memory due to exce programming or erasing.

If the microcomputer malfunctions during programming/erasing of the flash memory, the bit in the FCCS register is set to 1 and the error-protection state is entered, and this abore programming or erasure.

RENESAS

reset should only be released after providing a reset input period of 100 μ s, which is long usual. Since high voltages are applied during programming/erasing of the flash memory, voltage may remain after the error-protection state has been entered. For this reason, it is necessary to reduce the risk of damage to the flash memory by extending the reset period the charge is released.

The state-transition diagram in figure 20.16 shows transitions to and from the error-protect state.

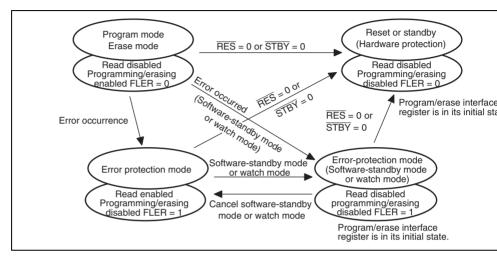
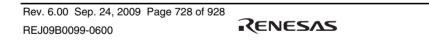



Figure 20.16 Transitions to Error-Protection State

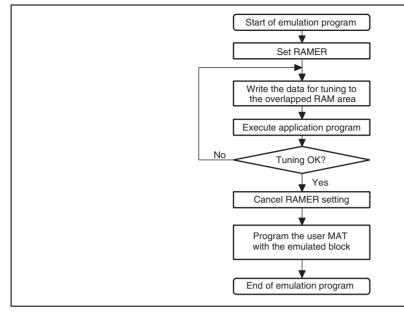


Figure 20.17 Emulation of Flash Memory in RAM

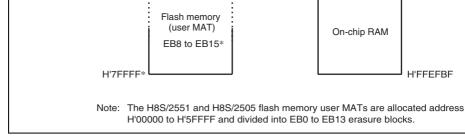


Figure 20.18 Example of a RAM-Overlap Operation

Figure 20.18 shows an example of an overlap on block area EB0 of the flash memory.

Emulation is possible for a single area selected from among the eight areas, from EB0 to user MAT bank 0. The area is selected by the setting of the RAM2 to RAM0 bits in the R

- 1. To overlap a part of the RAM on area EB0, to allow real-time programming of the da area, set the RAMS bit in RAMER to 1, and each of the RAM2 to RAM0 bits to 0.
- 2. Real-time programming is carried out using the overlapped area of RAM.

In programming or erasing the user MAT, it is necessary to run a program that implement of procedural steps, including the downloading of an on-chip program. In this process, the RAM area and the area where the on-chip program is to be downloaded overlap. Therefore data that is to be programmed must be saved beforehand in an area that is not used by the

Figure 20.19 shows an example of programming of the data, after emulation has been conto the EB0 area in the user MAT.

Rev. 6.00 Sep. 24, 2009 Page 730 of 928 REJ09B0099-0600

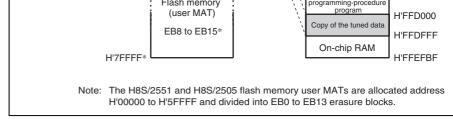


Figure 20.19 Programming of the Data after Tuning

- 1. After the data to be programmed has fixed values, clear the RAMS bit to cancel the RAM.
- 2. Move the fixed programmed data in the overlap area in the RAM to the area to whic programming/erasing program created by the user is transferred and outside the area on-chip programs are downloaded.
- 3. Transfer the user-created programming/erasing-procedure program to the RAM.
- 4. Run the programming/erasing-procedure program on the RAM and download the on programming/erasing program.
- 5. When the EB0 area of the user MAT has not been erased, the programming program downloaded after erasing. Set the parameters FMPAR and FMPDR in the data to be programmed so that the tuned data that has been saved is designated, and execute programming.
- Note: Setting the RAMS bit to 1 puts all the blocks in the flash MAT into a program/e protected state regardless of the values of the RAM2 to RAM0 bits (emulation p In this state, downloading of the on-chip programs is also disabled, so clear the before actual programming or erasure.

RENESAS

- access to the mash memory during with the switching).
- 3. If an interrupt has occurred during switching, there is no guarantee of which memory being accessed. Always mask the maskable interrupts before switching between MAT addition, configure the system so that NMI interrupts do not occur during MAT switc
- 4. After the MATs have been switched, take care because the interrupt vector table will been switched. If interrupt processing is to be the same before and after MAT switchi transfer the interrupt-processing routines to the on-chip RAM, and use the settings of and FVADR to place the interrupt-vector table in the on-chip RAM.
- Memory sizes of the user MAT and user boot MAT are different. When accessing the boot MAT, do not access addresses above the top of its 8-kbyte memory space. If acc beyond the 8-kbyte space, the values read are undefined.

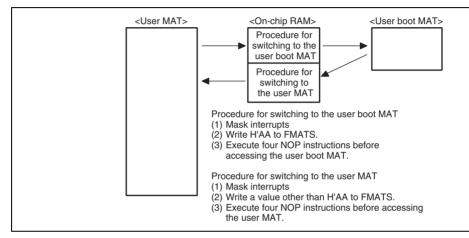
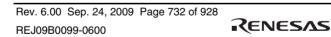



Figure 20.20 Switching between the User MAT and User Boot MAT

downloaded and damage RAM or a MAT switchover may occur and the CPU may g control. Do not use DTC to program FLASH-related registers.

3. Compatibility with programming/erasing program of conventional F-ZTAT H8S microcomputer

A programming/erasing program for flash memory used in the conventional F-ZTA' microcomputer which does not support download of the on-chip program by an SCC request cannot run in this LSI. Be sure to download the on-chip program to execute programming/erasing of flash memory in this LSI.

4. Monitoring runaway by WDT

Unlike the conventional F-ZTAT H8S microcomputer, no countermeasures are avail runaway by WDT during programming/erasing by the downloaded on-chip program countermeasures (e.g. use of the user branch routine or the periodic timer interrupts) while taking the programming/erasing time into consideration as required.

MHz input-clock signal.

20.9.1 Pin Arrangement of Socket Adapter

Figure 20.21 and figure 20.22 show on-chip ROM memory map and socket adapter corre map respectively. Attach the socket adapter to the LSI in the way shown in figure 20.22. result, conversion to 40 pins is allowed.

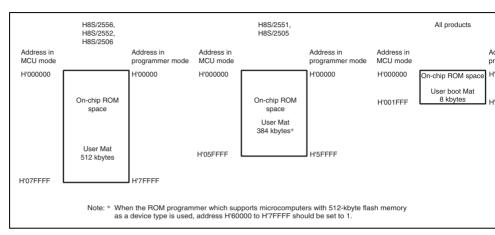
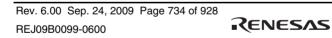



Figure 20.21 On-Chip Flash Memory Map

24	K2	A10		32	A10
25	L3	A11		33	A11
26	L1	A12		34	A12
27	L2	A13		35	A13
28	L4	A14		36	A14
29	M1	A15		37	A15
30	M2	A16		38	A16
31	M3	A17		39	A17
32	N1	A18		10	A18
4	C2	D0		19	I/O0
5	D3	D1		18	I/O1
6	C1	D2		17	I/O2
7	D2	D3		16	I/O3
8	E4	D4		15	I/O4
9	D1	D5		14	I/O5
10	E3	D6		13	I/O6
11	E2	D7		12	I/07
3	B1	CE		2	CE
1	A1	ŌĒ		20	ŌĒ
2	C3	WE		3	WE
14, 72, 73, 77, 80,	C9, C10, D9, D10, E14, F3, F14, G3,			4	FWE
84, 91, 96, 99, 118,	G4, H3, H4, H12, K12, M12, M15,	vcc		1, 40	VCC
143	N13, N15, P13, P14, R13, R14, R15, A2			11, 30	V _{SS}
140		├ ───'		5, 6, 7	NC
12, 54, 67, 86, 87,	A10, A11, A12, A13, A14, B2, B10, C12, C13, E1, E12, E15, F1, F2,	'		8	A20
90, 92, 94, 97, 98,	F12, F13, G1, G2, G12, G13, G14,	VSS		9	A19
110, 112, 117, 144	H13, H14, H15, J12, J14, K14, K15, P7, P8, R6, R7, R11, R12	'			
100	E13	RES	Power-on reset circuit	Legend:	
93	G15	XTAL		FWE:	Flash write
95	F15	EXTAL	Oscillator circuit	I/O 7 to I/O0: A18 to A0:	Data I/O Address in
88	J13	VCL		CE:	Chip enabl
'	Other than above	NC (OPEN)	Capacitor	OE: WE:	Output ena Write enab

Figure 20.22 Pin arrangement of Socket Adapter

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

- and user boot MAT. Status polling is used to confirm the completion of automatic er
- Status-read mode: Status polling is used with automatic programming/automatic eras Normal completion can be confirmed by reading the signal on the I/O 6. In status-rea error information is output when an error has occurred.

			Pin Na	me	
Mode	CE	ŌĒ	WE	I/O 7 to 0	A 1
Read	L	L	Н	Data output	Ain
Output disable	L	Н	Н	Hi-Z	Х
Command write	L	Н	L	Data output	Ain
Chip disable	Н	Х	Х	Hi-Z	Х

Table 20.12 Setting Procedure of each Operation Mode of Programmer Mode

Notes: Chip disable mode is not a standby state; internally, operating state.

* Ain indicates that address may be input in auto-program mode.

Rev. 6.00 Sep. 24, 2009 Page 736 of 928 REJ09B0099-0600

Auto-erase	2	User MAT	write	Х	H'20	write	Х
mode		User boot MAT	write	х	H'25		
Status-read mode	2	Common to both MAT	write	х	H'71	write	Х
Notes: 1. In	automatic	programming n	node, 12	9 cycles o	f command	program	ming are

Notes: 1. In automatic programming mode, 129 cycles of command programming are because of simultaneous 128-byte programming.

2. In memory-read mode, the number of cycles varies according to the number address writing cycles (n).

20.9.3 Memory-Read Mode

- On completion of an automatic program, automatic erase, or status read, the LSI encommand waiting state. To read the contents of memory after these operations, issu command to change the mode to memory-read mode before reading from the memory.
- 2. In memory-read mode, command programming can be performed as in the case of o waiting state.
- 3. Continuous read can be performed after the transition to memory-read mode is mad
- Transition to the memory-read mode is made after power has been supplied. For the AC characteristics in memory-read mode, see section 20.11, AC Characteris Timing in Programmer Mode.

RENESAS

- the thru eyele of fater.
- 5. Do not write commands while programming is in progress.
- 6. One time automatic programming should be performed for each 128-byte block of ac Additional programming of the block to the address where already programmed is no possible.
- 7. To confirm the end of automatic programming, check the signal on I/O6 pin. Confirm status-read mode is also possible. (Status polling of the I/O7 pin is used to check the status of automatic programming.)
- 8. Information on the pins I/O6 and I/O7 is retained until the next command is written. as no command is written, the information can be read by enabling the \overline{CE} and \overline{OE} .

For details on the AC characteristics in auto-program mode, see section 20.11, AC Chara and Timing in Programmer Mode.

20.9.5 Auto-Erase Mode

- 1. In auto-erase mode, only erasing the entire memory is supported.
- 2. Command writing should not be preformed during automatic erasing.
- 3. To confirm the end of automatic erasing, check the signal on the I/O6 pin. Confirmat status read mode is also possible. (Status polling of the I/O7 pin is used to check the status of automatic erasure.)
- 4. Information on the pins I/O6 and I/O7 is retained until the next command is written. as other command is written, the information can be read by enabling the \overline{CE} and \overline{OE}

For details on AC characteristics in auto-erase mode, see section 20.11, AC Characteristic Timing in Programmer Mode.

Rev. 6.00 Sep. 24, 2009 Page 738 of 928 REJ09B0099-0600

Pin Name	I/07	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1
Attribute	Normal end indicator	Command error	Program- ming error	Erase error			Programming or erasure count exceed
Initial value	0	0	0	0	0	0	0
Descrip- tion	Normal end: 0 Abnormal end: 1	Command error: 1 Other: 0	Program- ming error: 1 Other: 0	Erase error: 1 Other: 0	_		Count exceeded: 1 Other: 0

Table 20.14 Return Codes in Status-Read Mode

Note: I/O2 and I/O3 are undefined.

20.9.7 Status Polling

- 1. The I/O7 status-polling output is a flag that indicates the operating status in auto-pr auto-erase mode.
- 2. The I/O6 status-polling output is a flag that indicates normal/abnormal end in autoauto-erase mode.

Table 20.15 True Value Table of Status Polling Output

Pin Name	In Progress	Abnormal End	—	Normal
I/O7	0	1	0	1
I/O6	0	0	1	1
I/O0 to I/O5	0	0	0	0

Rev. 6.00 Sep. 24, 2009 Pag RENESAS REJ09

- programming mode with a programmer, it is recommended performing automatic programming after automatic erase.
- 3. Do not remove the chip from the PROM programmer nor input a reset signal during programming/erasing. As a high voltage is applied to the flash memory during programming/erasing, doing so may damage flash memory permanently. If a reset is accidentally, the reset must be released after a reset period of 100 µs, which is longer usual.
- The initial state of a Renesas Technology product at shipment is the erased state. For product whose history of erasing is undefined, automatic erasure for checking the init (erased state) and compensating is recommended.
- 5. In this LSI, production identification mode such as multipurpose EPROM is not supp device name can not be automatically set to PROM writer.
- 6. For the PROM programmer suitable for programmer mode in this LSI and its progra version, refer to the instruction manual of the socket adapter.

Rev. 6.00 Sep. 24, 2009 Page 740 of 928 REJ09B0099-0600

mode enables starting of the boot program and entry to the bit-rate-adjustment state. program receives the command from the host to adjust the bit rate. After adjusting the the program enters the inquiry/selection state.

2. Inquiry/Selection State

In this state, the boot program responds to inquiry commands from the host. The dev clock mode, and bit rate are selected. After selection of these settings, the program is enter the programming/erasing state by the command for a transition to the programming/erasing state. The program transfers the libraries required for erasure t RAM and erases the user MATs and user boot MATs before the transition.

3. Programming/erasing state

Programming and erasure by the boot program take place in this state. The boot program take place in this state. The boot program to transfer the programming/erasing programs to the RAM by commands from Sum checks and blank checks are executed by sending these commands from the host program take place in this state.

These boot program states are shown in figure 20.23.

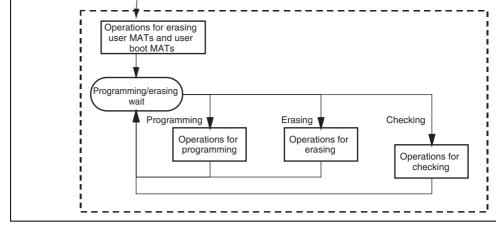


Figure 20.23 Boot Program States

(2) Bit-Rate-Adjustment State

The bit rate is calculated by measuring the period of transfer of a low-level byte (H'00) fr host. The bit rate can be changed by the command for a new bit rate selection. After the b has been adjusted, the boot program enters the inquiry and selection state. The bit-rate-ad sequence is shown in figure 20.24.

Rev. 6.00 Sep. 24, 2009 Page 742 of 928 REJ09B0099-0600

(3) Communications Protocol

After adjustment of the bit rate, the protocol for communications between the host and t program is as shown below.

1. One-byte commands and one-byte responses

These commands and responses are comprised of a single byte. These are consists of inquiries and the ACK for successful completion.

2. n-byte commands or n-byte responses

These commands and responses are comprised of n bytes of data. These are selection responses to inquiries.

The amount of programming data is not included under this heading because it is det in another command.

3. Error response

The error response is a response to inquiries that consists of an error response and an code. The response comes in two bytes.

4. Programming of 128 bytes

The size is not specified in commands. The size of n is indicated in response to the programming unit inquiry.

5. Memory read response

This response consists of four bytes of data.

	128-byte programming	Ad	ddress	Data (n bytes)	
	- , , , , , , , , , , , , , , , , , , ,		Command		Check
Memory read	Siz	ze	Data		
response	response		Response		Check

Figure 20.25 Communication Protocol Format

- Command (one byte): Commands including inquiries, selection, programming, erasin checking
- Response (one byte): Response to an inquiry
- Size (one byte): The amount of data for transmission excluding the command, amoun and checksum
- Checksum (one byte): The checksum is calculated so that the total of all values from t command byte to the SUM byte becomes H'00.
- Data (n bytes): Detailed data of a command or response
- Error response (one byte): Error response to a command
- Error code (one byte): Type of the error
- Address (four bytes): Address for programming
- Data (n bytes): Data to be programmed (the size is indicated in the response to the programming unit inquiry.)
- Size (four bytes): Four-byte response to a memory read

(4) Inquiry and Selection States

The boot program returns information from the flash memory in response to the host's incommands and sets the device code, clock mode, and bit rate in response to the host's sel command.

Rev. 6.00 Sep. 24, 2009 Page 744 of 928 REJ09B0099-0600

		multiplied clock types, the number of mult ratios, and the values of each multiple
H'23	Operating Clock Frequency Inquiry	Inquiry regarding the maximum and minin values of the main clock and peripheral cl
H'24	User Boot MAT Information Inquiry	Inquiry regarding the number of user boot and the start and last addresses of each N
H'25	User MAT Information Inquiry	Inquiry regarding the a number of user Mathematical the start and last addresses of each MAT
H'26	Block for Erasing Information Inquiry	Inquiry regarding the number of blocks an and last addresses of each block
H'27	Programming Unit Inquiry	Inquiry regarding the unit of programming
H'3F	New Bit Rate Selection	Selection of new bit rate
H'40	Transition to Programming/Erasing State	Erasing of user MAT and user boot MAT, to programming/erasing state
H'4F	Boot Program Status Inquiry	Inquiry into the operated status of the boo

The selection commands, which are device selection (H'10), clock mode selection (H'11 bit rate selection (H'3F), should be sent from the host in that order. These commands wi be needed. When two or more selection commands are sent at once, the last command v valid.

All of these commands, except for the boot program status inquiry command (H'4F), wi until the boot program receives the programming/erasing transition (H'40). The host can the needed commands out of the commands and inquiries listed above. The boot program inquiry command (H'4F) is valid after the boot program has received the programming/e transition command (H'40).

RENESAS

SUM	

- Response, H'30, (one byte): Response to the supported device inquiry
- Size (one byte): Number of bytes to be transmitted, excluding the command, size, and checksum, that is, the amount of data contributes by the number of devices, characters codes and product names
- Number of devices (one byte): The number of device types supported by the boot pro-
- Number of characters (one byte): The number of characters in the device codes and be program's name
- Device code (four bytes): ASCII code of the supporting product
- Product name (n bytes): Type name of the boot program in ASCII-coded characters
- SUM (one byte): Checksum

The checksum is calculated so that the total number of all values from the command be the SUM byte becomes H'00.

(b) Device Selection

The boot program will set the supported device to the specified device code. The program return the selected device code in response to the inquiry after this setting has been made

Command H'	10 S	Size	Device code	SUM
------------	------	------	-------------	-----

- Command, H'10, (one byte): Device selection
- Size (one byte): Amount of device-code data This is fixed at 4
- Device code (four bytes): Device code (ASCII code) returned in response to the support device inquiry

Rev. 6.00 Sep. 24, 2009 Page 746 of 928 REJ09B0099-0600

1121. Device code enor, that is, the device code does not materi

(c) Clock Mode Inquiry

The boot program will return the supported clock modes in response to the clock mode it

Command H'21

• Command, H'21, (one byte): Inquiry regarding clock mode

Response H'31	Size	Number of modes	Mode	•••	SUM
---------------	------	-----------------	------	-----	-----

- Response, H'31, (one byte): Response to the clock-mode inquiry
- Size (one byte): Amount of data that represents the number of modes and modes
- Number of clock modes (one byte): The number of supported clock modes H'00 indicates no clock mode or the device allows to read the clock mode.
- Mode (one byte): Values of the supported clock modes (i.e. H'01 means clock mode
- SUM (one byte): Checksum
- (d) Clock Mode Selection

The boot program will set the specified clock mode. The program will return the selecte mode information after this setting has been made.

The clock-mode selection command should be sent after the device-selection commands

Command H'11 Size Mode SUM

- Command, H'11, (one byte): Selection of clock mode
- Size (one byte): Amount of data that represents the modes
- Mode (one byte): A clock mode returned in reply to the supported clock mode inquin
- SUM (one byte): Checksum

Renesas

be selected using these respective values.

(e) Multiplication Ratio Inquiry

The boot program will return the supported multiplication and division ratios.

Command H'22

• Command, H'22, (one byte): Inquiry regarding multiplication ratio

Response	H'32		Number of types		
		Multiplica- tion ratio			
	SUM				

- Response, H'32, (one byte): Response to the multiplication ratio inquiry
- Size (one byte): The amount of data that represents the number of clock sources and multiplication ratios and the multiplication ratios
- Number of types (one byte): The number of supported multiplied clock types (e.g. when there are two multiplied clock types, which are the main and peripheral cloc number of types will be H'02.)
- Number of multiplication ratios (one byte): The number of multiplication ratios for ea (e.g. the number of multiplication ratios to which the main clock can be set and the per clock can be set.)
- Multiplication ratio (one byte)

Multiplication ratio: The value of the multiplication ratio (e.g. when the clock-frequer multiplier is four, the value of multiplication ratio will be H'04.)

Rev. 6.00 Sep. 24, 2009 Page 748 of 928 REJ09B0099-0600

RENESAS

Command H²3

• Command, H'23, (one byte): Inquiry regarding operating clock frequencies

	H'33	Size	Number of operating clock frequencies		
			Maximum value of operating clock frequency		
	•••				
	SUM				

- Response, H'33, (one byte): Response to operating clock frequency inquiry
- Size (one byte): The number of bytes that represents the minimum values, maximum and the number of frequencies.
- Number of operating clock frequencies (one byte): The number of supported operati frequency types

(e.g. when there are two operating clock frequency types, which are the main and per clocks, the number of types will be H'02.)

• Minimum value of operating clock frequency (two bytes): The minimum value of th multiplied or divided clock frequency.

The minimum and maximum values represent the values in MHz, valid to the hundred of MHz, and multiplied by 100. (e.g. when the value is 20.00 MHz, it will be D'2000 H'07D0.)

- Maximum value (two bytes): Maximum value of the multiplied or divided clock free. There are as many pairs of minimum and maximum values as there are operating cloc frequencies.
- SUM (one byte): Checksum

RENESAS

- Response, H'34, (one byte): Response to user boot MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start at and area-last address
- Number of Areas (one byte): The number of consecutive user boot MAT areas When user boot MAT areas are consecutive, the number of areas returned is H'01.
- Area-start address (four bytes): Start address of the area
- Area-last address (four bytes): Last address of the area There are as many groups of data representing the start and last addresses as there are
- SUM (one byte): Checksum
- (h) User MAT Information Inquiry

The boot program will return the number of user MATs and their addresses.

Command H'25

• Command, H'25, (one byte): Inquiry regarding user MAT information

Response	oonse H'35 Size Number of areas		Number of areas	
	Start ad	dress are	a	Last address area
	SUM			

- Response, H'35, (one byte): Response to the user MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start at and area-last address
- Number of areas (one byte): The number of consecutive user MAT areas When the user MAT areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area

Rev. 6.00 Sep. 24, 2009 Page 750 of 928 REJ09B0099-0600

looponoo	1100	0120		
	Block s	tart add	Iress	Block last address
	SUM			

- Response, H'36, (one byte): Response to the number of erased blocks and addresses
- Size (two bytes): The number of bytes that represents the number of blocks, block-st addresses, and block-last addresses.
- Number of blocks (one byte): The number of erased blocks
- Block start address (four bytes): Start address of a block
- Block last Address (four bytes): Last address of a block There are as many groups of data representing the start and last addresses as there ar
- SUM (one byte): Checksum
- (j) Programming Unit Inquiry

The boot program will return the programming unit used to program data.

Command H'27

• Command, H'27, (one byte): Inquiry regarding programming unit

Response	H'37	Size	Programming unit	SUM	
----------	------	------	------------------	-----	--

- Response, H'37, (one byte): Response to programming unit inquiry
- Size (one byte): The number of bytes that indicate the programming unit, which is fi
- Programming unit (two bytes): A unit for programming This is the unit for reception of programming.
- SUM (one byte): Checksum

RENESAS

- Size (one byte): The number of bytes that represents the bit rate, input frequency, nur multiplication ratios, and multiplication ratio
- Bit rate (two bytes): New bit rate One hundredth of the value (e.g. when the value is 19200 bps, the bit rate is H'00C0, D'192.)
- Input frequency (two bytes): Frequency of the clock input to the boot program This is valid to the hundredths place and represents the value in MHz multiplied by 10 when the value is 20.00 MHz, the input frequency is H'07D0 (= D'2000).)
- Number of multiplication ratios (one byte): The number of multiplication ratios to whe device can be set. Normally, 2 is set because multiplication ratios for the main-operate peripheral frequencies are set. (In this LSI, set H'01.)
- Multiplication ratio 1 (one byte): The value of multiplication or division ratios for the operating frequency
 Multiplication ratio (one byte): The value of the multiplication ratio (e.g. when the clof frequency is multiplied by four, the multiplication ratio will be H'04. In this LSI, set F Division ratio: The inverse of the division ratio, as a negative number (e.g. when the clof frequency is divided by two, the value of division ratio will be H'FE. H'FE = D'-2. In set H'01.)
- Multiplication ratio 2 (one byte): The value of multiplication or division ratios for the peripheral frequency

Multiplication ratio (one byte): The value of the multiplication ratio (e.g. when the clo frequency is multiplied by four, the multiplication ratio will be H'04. In this LSI, this not need to be set.)

(Division ratio: The inverse of the division ratio, as a negative number (E.g. when the divided by two, the value of division ratio will be H'FE. H'FE = D'-2 In this LSI, set H

• SUM (one byte): Checksum

Rev. 6.00 Sep. 24, 2009 Page 752 of 928 REJ09B0099-0600

- This input frequency is not within the specified range.
- H'26: Multiplication-ratio error The ratio does not match an available ratio.
- H'27: Operating frequency error The frequency is not within the specified range.

(5) Received Data Check

The methods for checking of received data are listed below.

1. Input frequency

The received value of the input frequency is checked to ensure that it is within the raminimum to maximum frequencies which matches the clock modes of the specified. When the value is out of this range, an input-frequency error is generated.

2. Multiplication ratio

The received value of the multiplication ratio or division ratio is checked to ensure the matches the clock modes of the specified device. If the value does not match the multiplication ratio or division ratio, it is the multiplication ratio error.

3. Operating frequency error

Operating frequency is calculated from the received value of the input frequency and multiplication or division ratio. The input frequency is input to the LSI and the LSI is at the operating frequency. The expression is given below.

Operating frequency = Input frequency × Multiplication ratio, or

Operating frequency = Input frequency ÷ Division ratio

The calculated operating frequency should be checked to ensure that it is within the minimum to maximum frequencies which are available with the clock modes of the device. When it is out of this range, an operating frequency error is generated.

RENESAS

response. The host will send an ACK with the new bit rate for confirmation and the boot will response with that rate.

Confirmation H'06

• Confirmation, H'06, (one byte): Confirmation of a new bit rate

Response H'06

• Response, H'06, (one byte): Response to confirmation of a new bit rate

The sequence of new bit-rate selection is shown in figure 20.26.

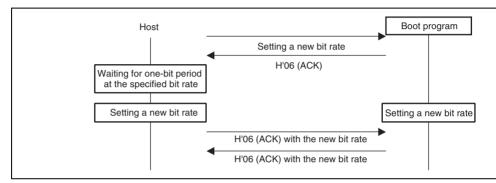
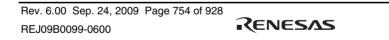



Figure 20.26 New Bit-Rate Selection Sequence

(6) Transition to Programming/Erasing State

The boot program will transfer the erasing program, and erase the user MATs and user bo in that order. On completion of this erasure, ACK will be returned and will enter the programming/erasing state.

by the transferred erasing program.

Error Response H'C0 H'51

- Error response, H'C0, (one byte): Error response for user boot MAT blank check
- Error code, H'51, (one byte): Erasing error An error occurred and erasure was not completed.

(7) Command Error

A command error will occur when a command is undefined, the order of commands is is or a command is unacceptable. Issuing a clock-mode selection command before a devic or an inquiry command after the transition to programming/erasing state command, are

Error Response H'80 H'xx

- Error response, H'80, (one byte): Command error
- Command, H'xx, (one byte): Received command

(8) Command Order

The order for commands in the inquiry selection state is shown below.

- 1. A supported device inquiry (H'20) should be made to inquire about the supported de
- 2. The device should be selected from among those described by the returned informativity with a device-selection (H'10) command.
- 3. A clock-mode inquiry (H'21) should be made to inquire about the supported clock m
- 4. The clock mode should be selected from among those described by the returned info and set.

RENESAS

programming/erasing state command (1140). The boot program will then enter the programming/erasing state.

(9) Programming/Erasing State

A programming selection command makes the boot program select the programming met 128-byte programming command makes it program the memory with data, and an erasing selection command and block erasing command make it erase the block. The programming/erasing commands are listed below.

Command	Command Name	Description
H'42	User boot MAT programming selection	Transfers the user boot MAT programm program
H'43	User MAT programming selection	Transfers the user MAT programming p
H'50	128-byte programming	Programs 128 bytes of data
H'48	Erasing selection	Transfers the erasing program
H'58	Block erasing	Erases a block of data
H'52	Memory read	Reads the contents of memory
H'4A	User boot MAT sum check	Checks the checksum of the user boot
H'4B	User MAT sum check	Checks the checksum of the user MAT
H'4C	User boot MAT blank check	Checks whether the contents of the use MAT are blank
H'4D	User MAT blank check	Checks whether the contents of the use are blank
H'4F	Boot program status inquiry	Inquires into the boot program's status

Table 20.17 Programming/Erasing Command

Rev. 6.00 Sep. 24, 2009 Page 756 of 928 REJ09B0099-0600

After issuing the programming selection command, the host should send the 128-byte programming command. The 128-byte programming command that follows the selectio command represents the data programmed according to the method specified by the selector command. When more than 128-byte data is programmed, 128-byte commands should r be executed. Sending a 128-byte programming command with H'FFFFFFFF as the address top the programming. On completion of programming, the boot program will wait for s programming or erasing.

Where the sequence of programming operations that is executed includes programming another method or of another MAT, the procedure must be repeated from the programm selection command.

The sequence for programming-selection and 128-byte programming commands is show figure 20.27.

Figure 20.27 Programming Sequence

(a) User boot MAT programming selection

The boot program will transfer a programming program. The data is programmed to the u MATs by the transferred programming program.

Command H'42

• Command, H'42, (one byte): User boot-program programming selection

Response H'06

- Response, H'06, (one byte): Response to user boot-program programming selection When the programming program has been transferred, the boot program will return A Error Response H'C2 ERROR
- Error response : H'C2 (1 byte): Error response to user boot MAT programming select
- ERROR : (1 byte): Error code

H'54: Selection processing error (transfer error occurs and processing is not complete

(b) User-program programming selection

The boot program will transfer a program for programming. The data is programmed to the MATs by the transferred program for programming.

Command H'43

• Command, H'43, (one byte): User-program programming selection

Rev. 6.00 Sep. 24, 2009 Page 758 of 928 REJ09B0099-0600

program the user boot MATs or user MATs in response to 128-byte programming.

Command	H'50	Addres	Address				
	Data						
	SUM						

- Command, H'50, (one byte): 128-byte programming
- Programming Address (four bytes): Start address for programming Multiple of the size specified in response to the programming unit inquiry (i.e. H'00, H'01, H'00, H'00 : H'00010000)
- Programming Data (128 bytes): Data to be programmed The size is specified in the response to the programming unit inquiry.
- SUM (one byte): Checksum

Response H'	06
-------------	----

• Response, H'06, (one byte): Response to 128-byte programming On completion of programming, the boot program will return ACK.

Error Response H'D0 ERROR

- Error response, H'D0, (one byte): Error response for 128-byte programming
- ERROR: (one byte): Error code
 - H'11: Checksum Error
 - H'28: Address error

Address is not in the specified MAT.

H'53: Programming error

A programming error has occurred and programming cannot be continued.

- Programming Address (four bytes): End code is H'FF, H'FF, H'FF, H'FF.
- SUM (one byte): Checksum

Response H'06

• Response, H'06, (one byte): Response to 128-byte programming On completion of programming, the boot program will return ACK.

Error Response H'D0 ERROR

- Error Response, H'D0, (one byte): Error response for 128-byte programming
- ERROR: (one byte): Error code
 - H'11: Sum check error
 - H'53: Programming error

An error has occurred in programming and programming cannot be continued

(11) Erasure

Erasure is performed with the erasure selection and block erasure command.

Firstly, erasure is selected by the erasure selection command and the boot program then e specified block. The command should be repeatedly executed if two or more blocks are to erased. Sending a block-erasure command from the host with the block number H'FF will erasure operating. On completion of erasing, the boot program will wait for selection of programming or erasing.

The sequences of the issuing of erasure selection commands and the erasure of data are sl figure 20.28.

Rev. 6.00 Sep. 24, 2009 Page 760 of 928 REJ09B0099-0600

ACK	

Figure 20.28 Erasure Sequence

(a) Erasure Selection

The boot program will transfer the erasure program. User MAT data is erased by the tra erasure program.

Command H'48

• Command, H'48, (one byte): Erasure selection

Response H'06

• Response, H'06, (one byte): Response for erasure selection After the erasure program has been transferred, the boot program will return ACK.

Error Response H'C8 ERROR

- Error Response, H'C8, (one byte): Error response to erasure selection
- ERROR: (one byte): Error code
 H'54: Selection processing error (transfer error occurs and processing is not complete
- (b) Block Erasure

The boot program will erase the contents of the specified block.

Command H'58 Size Block number SUM

- Command, H'58, (one byte): Erasure
- Size (one byte): The number of bytes that represents the erasure block number This is fixed to 1.
- Block number (one byte): Number of the block to be erased

RENESAS

Block number is incorrect.

H'51: Erasure error

An error has occurred during erasure.

On receiving block number H'FF, the boot program will stop erasure and wait for a select command.

Command	H'58	Size	Block number	SUM

- Command, H'58, (one byte): Erasure
- Size, (one byte): The number of bytes that represents the block number This is fixed to 1.
- Block number (one byte): H'FF Stop code for erasure
- SUM (one byte): Checksum

Response H'06

Response, H'06, (one byte): Response to end of erasure (ACK)
 When erasure is to be performed after the block number H'FF has been sent, the processhould be executed from the erasure selection command.

(12) Memory read

The boot program will return the data in the specified address.

Command	H'52	Size	Area	Read ad	dress	
	Read siz	ze			SUM	

- Command: H'52 (1 byte): Memory read
- Size (1 byte): Amount of data that represents the area, read address, and read size (fix

Rev. 6.00 Sep. 24, 2009 Page 762 of 928 REJ09B0099-0600

- Response: H'52 (1 byte): Response to memory read
- Read size (4 bytes): Size of data to be read
- Data (n bytes): Data for the read size from the read address
- SUM (1 byte): Checksum

Error Response H'D2 ERROR

- Error response: H'D2 (1 byte): Error response to memory read
- ERROR: (1 byte): Error code
 - H'11: Sum check error
 - H'2A: Address error

The read address is not in the MAT.

H'2B: Size error

The read size exceeds the MAT.

(13) User-Boot Program Sum Check

The boot program will return the byte-by-byte total of the contents of the bytes of the us program, as a four-byte value.

Command H'4A

• Command, H'4A, (one byte): Sum check for user-boot program

Response H'5A Size Checksum of user boot program SUM

- Response, H'5A, (one byte): Response to the sum check of user-boot program
- Size (one byte): The number of bytes that represents the checksum This is fixed to 4.
- Checksum of user boot program (four bytes): Checksum of user boot MATs The total of the data is obtained in byte units.

Renesas

- Response, 115D, (one byte). Response to the sum check of the user program
- Size (one byte): The number of bytes that represents the checksum This is fixed to 4.
- Checksum of user boot program (four bytes): Checksum of user MATs The total of the data is obtained in byte units.
- SUM (one byte): Sum check for data being transmitted

(15) User Boot MAT Blank Check

The boot program will check whether or not all user boot MATs are blank and return the

Command H'4C

• Command, H'4C, (one byte): Blank check for user boot MAT

Response H'06

• Response, H'06, (one byte): Response to the blank check of user boot MAT If all user MATs are blank (H'FF), the boot program will return ACK.

Error Response H'CC H'52

- Error Response, H'CC, (one byte): Response to blank check for user boot MAT
- Error Code, H'52, (one byte): Erasure has not been completed.

(16) User MAT Blank Check

The boot program will check whether or not all user MATs are blank and return the resul

Command H'4D

• Command, H'4D, (one byte): Blank check for user MATs

Rev. 6.00 Sep. 24, 2009 Page 764 of 928 REJ09B0099-0600

be made in the inquiry/selection state or the programming/erasing state.

Command H'4F

• Command, H'4F, (one byte): Inquiry regarding boot program's state

Response H'5F Size Status ERROR SUM

- Response, H'5F, (one byte): Response to boot program state inquiry
- Size (one byte): The number of bytes. This is fixed to 2.
- Status (one byte): State of the boot program
- ERROR (one byte): Error state

ERROR = 0 indicates normal operation. ERROR other than 0 indicates abnormal.

• SUM (one byte): Checksum This command can be accepted during programming/erasing operation, however, restime will be longer.

Table 20.19 Error Code

Code	Description
H'00	No Error
H'11	Sum Check Error
H'12	Program Size Error
H'21	Device Code Mismatch Error
H'22	Clock Mode Mismatch Error
H'24	Bit Rate Selection Error
H'25	Input Frequency Error
H'26	Multiplication Ratio Error
H'27	Operating Frequency Error
H'29	Block Number Error
H'2A	Address Error
H'2B	Data Length Error
H'51	Erasure Error
H'52	Erasure Incomplete Error
H'53	Programming Error
H'54	Selection Processing Error
H'80	Command Error
H'FF	Bit-Rate-Adjustment Confirmation Error

Rev. 6.00 Sep. 24, 2009 Page 766 of 928 REJ09B0099-0600

Data setup time	t _{ds}	50	_	ns
Programming pulse width	t _{wep}	70	_	ns
WE rising time	t,		30	ns
WE falling time	t,		30	ns

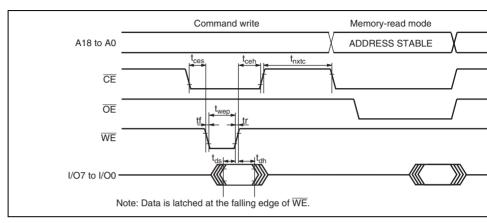


Figure 20.29 Memory Read Timing after Command Programming

Programming pulse width	L _{wep}	70		ns
WE rising time	t,		30	ns
WE falling time	t _r	_	30	ns

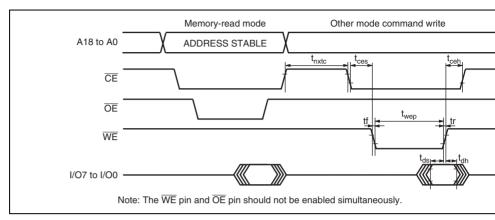


Figure 20.30 Waveform of Transition from Memory-Read Mode to Other Me

Rev. 6.00 Sep. 24, 2009 Page 768 of 928 REJ09B0099-0600

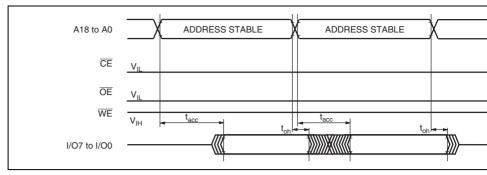


Figure 20.31 Waveform of CE, OE Enable State Read

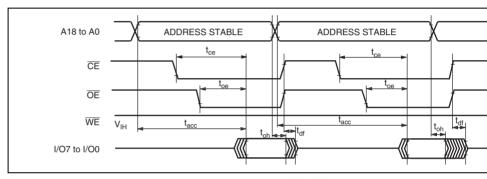


Figure 20.32 Waveform of CE, OE Clock System Read

Rev. 6.00 Sep. 24, 2009 Pag RENESAS

REJ09

Programming pulse width	l wep	70		ns
Status polling start time	t _{wsts}	1		ms
Status polling access time	t _{spa}		150	ns
Address setup time	t _{as}	0		ns
Address hold time	t _{ah}	60		ns
Memory programming time	t _{write}	1	3000	ms
WE rising time	t,		30	ns
WE falling time	t _f	_	30	ns

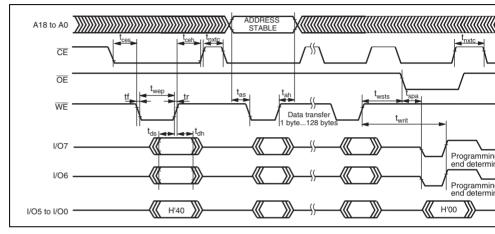


Figure 20.33 Waveform of Automatic Programming Mode

Rev. 6.00 Sep. 24, 2009 Page 770 of 928 REJ09B0099-0600

Programming pulse width	L wep	70		ns
Status polling start time	T _{ests}	1		ms
Status polling access time	t _{spa}	—	150	ns
Memory erasing time	t _{erase}	100	40000	ms
WE rising time	t,	—	30	ns
WE falling time	t,		30	ns

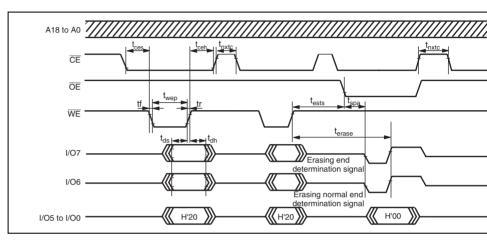


Figure 20.34 Waveform in Auto-Erase Mode

RENESAS

Programming pulse width	l wep	70		ns
OE output delay time	t _{oe}	—	150	ns
Disable delay time	t _{df}	—	100	ns
CE output delay time	t _{ce}	—	150	ns
WE rising time	t,	—	30	ns
WE falling time	t,	—	30	ns

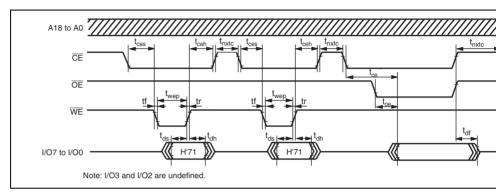
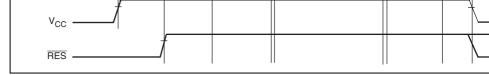
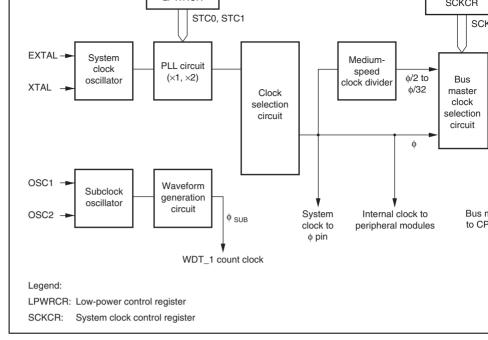
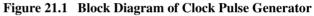


Figure 20.35 Waveform in Status-Read Mode

Rev. 6.00 Sep. 24, 2009 Page 772 of 928 REJ09B0099-0600


Figure 20.36 Oscillation Stabilized Time, Programmer Mode Setup Time and Falling Sequence

Rev. 6.00 Sep. 24, 2009 Page 774 of 928 REJ09B0099-0600

Frequency changes are performed by software by settings in the low-power control regist (LPWRCR) and system clock control register (SCKCR).

of the FLL circuit, and medium-speed mode control.

Bit	Bit Name	Initial Value	R/W	Description
7	PSTOP	0	R/W	
		-		Controls ϕ output.
				High-speed, medium-speed, and sleep modes
				0:
				1: Fixed to high
				Software standby and watch modes
				0: Fixed to high
				1: Fixed to high
				Hardware standby mode
				0: High impedance
				1: High impedance
6	_	0	R/W	Reserved
				This is a readable/writable bit, but the write value s always be 0.
5, 4		All 0		Reserved
				These bits are always read as 0 and cannot be mo

Rev. 6.00 Sep. 24, 2009 Page 776 of 928 REJ09B0099-0600

	00111	0	11/11		
0	SCK0	0	R/W	000: High-speed mode	
				001: Medium-speed clock is $\phi/2$	
				010: Medium-speed clock is $\phi/4$	
				011: Medium-speed clock is φ/8	
				100: Medium-speed clock is $\phi/16$	
				101: Medium-speed clock is φ/32	
				11X: Setting prohibited	
Logo	nd				

Legend:

X: Don't care

21.1.2 Low-Power Control Register (LPWRCR)

LPWRCR controls power-down mode, selects sampling frequency for eliminating noise a subclock oscillator, and specifies multiplication ratio.

Bit	Bit Name	Initial Value	R/W	Description
7	DTON	0	R/W	Direct Transfer On Flag
				0: When the SLEEP instruction is executed in hig mode or medium-speed mode, operation shifts mode, software standby mode, or watch mode
				1: Setting prohibited

RENESAS

				0: Sampling using
				1: Setting prohibited
4	SUBSTP	0	R/W	Subclock Oscillator Control
				Enables/disables a subclock oscillator. This bit she set to 1 when a subclock is not used.
				0: Enables subclock oscillator
				1: Disables subclock oscillator
3	RFCUT	0	R/W	On-Chip Feedback Resistor Control
				Selects whether or not on-chip feedback resistor of system clock generator is used when an external input. Do not access when the crystal resonator is
				After setting this bit in the external clock input stat software standby mode or watch mode. When sof standby mode or watch mode is entered, this bit s whether or not on-chip feedback resistor is used.
				0: On-chip feedback resistor of the system clock g used
				1: On-chip feedback resistor of the system clock g not used
2	_	0	R/W	Reserved
				This is a readable/writable bit, but the write value a always be 0.

Rev. 6.00 Sep. 24, 2009 Page 778 of 928 REJ09B0099-0600

Note: * When watch mode is entered, high-speed mode must be set.

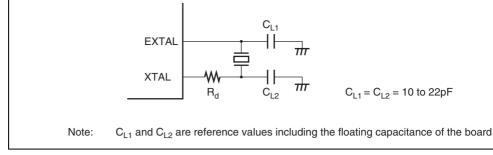


Figure 21.2 Connection of Crystal Resonator (Example)

Table 21.1 Damping Resistance Value

Frequency (MHz)	8	10	12	16	20	25
R _d (Ω)	200	100	0	0	0	0

Figure 21.3 shows the equivalent circuit of the crystal resonator. Use a crystal resonator t the characteristics shown in table 21.2.

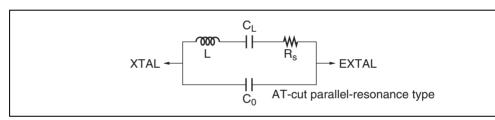
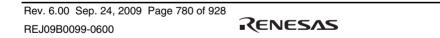



Figure 21.3 Crystal Resonator Equivalent Circuit

to the EXTAL pin, wait for longer than clock oscillator settling time to keep enough tim settling before power is supplied or standby mode is canceled.

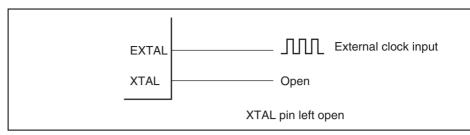


Figure 21.4 External Clock Input (Examples)

multiplicatior	l					
External clock input low pulse width	t_{EXL}	0.4	0.6	0.4	0.6	t _{EXcyc}
External clock input high pulse width	t _{exh}	0.4	0.6	0.4	0.6	$t_{_{EXcyc}}$
External clock rise time	$\mathbf{t}_{_{EXr}}$	_	5	—	5	ns
External clock fall time	$\mathbf{t}_{_{EXf}}$		5	_	5	ns

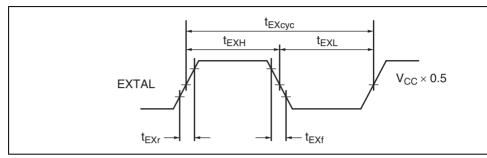


Figure 21.5 External Clock Input Timing

Rev. 6.00 Sep. 24, 2009 Page 782 of 928 REJ09B0099-0600

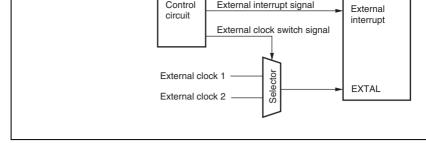


Figure 21.6 External Clock Switching Circuit (Examples)

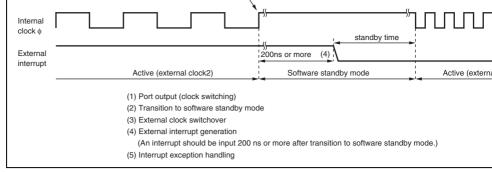


Figure 21.7 External Clock Switching Timing (Examples)

21.3 PLL Circuit

The PLL circuit multiplies the frequency from the clock pulse generator by one or two. T multiplication ratio is set by the STC1 and STC0 bits in LPWRCR. At the setting, the pharising edge of an internal clock is controlled to match that of the rising edge of the EXTA

When changing the multiplication ratio of the PLL circuit, the operation differs according setting of the STCS bit in SCKCR.

When the STCS bit is 0, the changed multiplication ratio is valid after software standby r watch mode is entered. The transition time is set by the STS2 to STS0 bits in the standby register (SBYCR). For details on SBYCR, see section 22.1.1, Standby Control Register (

- 1. In the initial state, the multiplication ratio of the PLL circuit is 1.
- 2. The transition time is set by the STS2 to STS0 bits.
- 3. The multiplication ratio is set by the STC1 and STC0 bits, and software standby mode watch mode is entered.

Rev. 6.00 Sep. 24, 2009 Page 784 of 928 REJ09B0099-0600

The medium-speed clock divider divides the system clock to generate $\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, $\phi/32$.

21.5 Bus Master Clock Selection Circuit

The bus master clock selection circuit selects the clock supplied to the bus master by set SCK2 to SCK0 bits in SCKCR. The bus master clock can be selected from system clock medium-speed clocks ($\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, and $\phi/32$).

21.6 System Clock with IEBus

When using the IEBus^{*1}, the system clock should be set with one of 12 MHz, 12.58 MH 18 MHz, 18.87 MHz, 24 MHz, or 25.16 MHz.

When the IEBus*¹ is not used, any system clock frequency between 8 MHz and 26 MHz used.

Notes: 1. The IEBus is supported only by the H8S/2552 Group.

2. System clock frequency up to 20 MHz is supported by the H8S/2556 Group.

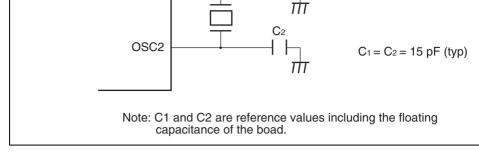


Figure 21.8 Connection Example of 32.768-kHz Crystal Resonator

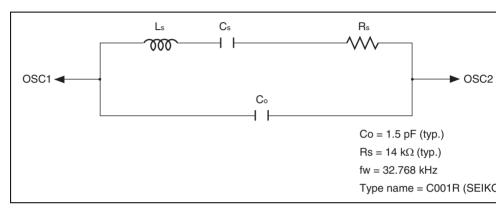


Figure 21.9 Equivalent Circuit for 32.768-kHz Crystal Resonator

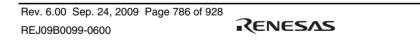


Figure 21.10 Pin Handling when Subclock Is Not Used

21.8 Subclock Waveform Generation Circuit

To eliminate noise from the subclock input from the OSC1 pin, the subclock is sampled dividing clock ϕ . The sampling frequency is set using the NESEL bit in LPWRCR. For section 21.1.2, Low-Power Control Register (LPWRCR).

No sampling is performed in watch mode.

21.9.2 Note on Board Design

When designing the board, place the crystal resonator and its load capacitors as close as r to the XTAL, EXTAL, OSC1, and OSC2 pins. Make wires as short as possible. Other sig should be routed away from the oscillator circuit, as shown in figure 21.11. This is to pre induction from interfering with correct oscillation.

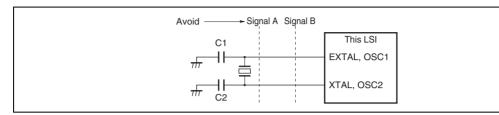


Figure 21.11 Note on Board Design of Oscillator Circuit

Figure 21.12 shows the recommended connection circuit between the power supply pins pin. The CB which is a capacitor for stabilization should be inserted near the pin between power supply pins (V_{cc} , V_{cL} , $P1V_{cc}$, and $P2V_{cc}$) and Vss pin. Two CBs should be placed $P1V_{cc}$ line. Other signal lines should not be crossed.

 $CB = 0.47 \ \mu F$ (recommended value) Note: The CB is a laminated ceramic.

Figure 21.12 Recommended Connection Circuit between Power Supply Pins and

Renesas

Rev. 6.00 Sep. 24, 2009 Page 790 of 928 REJ09B0099-0600

- (2) Medium spece mode
- (3) Sleep mode
- (4) Watch mode
- (5) Module stop mode
- (6) Software standby mode
- (7) Hardware standby mode

Of these, (2) to (7) are power-down modes. Sleep mode is a CPU state, medium-speed n CPU and bus master states, and module stop mode is an on-chip peripheral function (inc masters other than the CPU) state.

After a reset, the LSI is in high-speed mode.

Table 22.1 shows the internal state of the LSI in the respective modes. Table 22.2 shows conditions for shifting between power-down modes.

Figure 22.1 is a mode transition diagram.

Table 22.1 LSI Internal States in Each Mode

Function	High- Speed	Medium- Speed	Sleep	Module Stop	Watch	Software Standby
System clock pulse generator	Functioning	Functioning	Functioning	Functioning	Halted	Halted
Subclock pulse generator	Functioning /halted	Functioning /halted	Functioning /halted	Functioning /halted	Function-ing	Functioning /halted

RENESAS

	INQII							
Peripheral functions	PBC	Functioning	Medium- speed operation	Functioning	Functioning/ halted (retained)	Halted (retained)	Halted (retained)	H (r
	DTC	Functioning	Medium- speed operation	Functioning	Functioning/ halted (retained)	Halted (retained)	Halted (retained)	H (r
	WDT_1	Functioning	Functioning	Functioning	Functioning	Subclock operation	Halted (retained)	H (r
	WDT_0	Functioning	Functioning	Functioning	Functioning	Halted (retained)	Halted (retained)	H (r
	TMR	Functioning	Functioning	Functioning	Functioning/ halted (retained)	Halted (retained)	Halted (retained)	H (r
	TPU	Functioning	Functioning	Functioning	Functioning/ halted	Halted (retained)	Halted (retained)	H (r
	SCI	_			(retained)	(,	(,	
	l ² C2				Halted* ³ (reset/ retained)	Halted* ³ (reset/ retained)	Halted* ³ (reset/ retained)	
	D/A				Functioning/ halted (retained) * ⁴	Halted (retained) *4	Halted (retained) * ⁴	

Rev. 6.00 Sep. 24, 2009 Page 792 of 928 REJ09B0099-0600

- 2. Supported only by the H8S/2556 Group.
- 3. BC2 to BC0 are halted (reset) and other registers are halted (retained).
 - "Halted (retained)" means that internal register values are retained. For analo the given D/A absolute accuracy is not satisfied because the internal state is suspended."

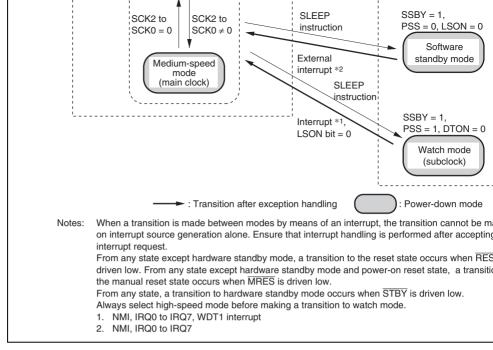


Figure 22.1 Mode Transition Diagram

Rev. 6.00 Sep. 24, 2009 Page 794 of 928 REJ09B0099-0600

1	0	1	Х	—	_
1	1	0	0	Watch	High-speed
1	1	1	Х	—	_
1	1	0	1	—	_

Legend:

X: Don't care

—: Do not set.

22.1 Register Descriptions

The following registers relate to the power-down modes. For details on the system clock register (SCKCR), refer to section 21.1.1, System Clock Control Register (SCKCR). Fo on the low power control register (LPWRCR), refer to section 21.1.2, Low-Power Control Register (LPWRCR). For details on the timer control/status register (TCSR_1), refer to 11.3.5, Timer Control/Status Register (TCSR).

- Standby control register (SBYCR)
- Module stop control register A (MSTPCRA)
- Module stop control register B (MSTPCRB)
- Module stop control register C (MSTPCRC)
- Low power control register (LPWRCR)
- System clock control register (SCKCR)
- Timer control/status register (TCSR_1)

RENESAS

				 Shifts to software standby mode or watch mode the SLEEP instruction is executed in high-speed or medium-speed mode.
				Note that the value of the SSBY bit does not chan when software standby mode is canceled and mal normal operation mode transition by executing an interrupt. To clear this bit, 0 should be written to.
6	STS2	0	R/W	Standby Timer Select 2 to 0
5	STS1	0	R/W	These bits select the MCU wait time for clock settl
4	STS0	0	R/W	cancel software standby mode or watch mode by an external interrupt.
				With a crystal resonator (see tables 22.3 and 24.6 a wait time of 8 ms (oscillation settling time) or mo depending on the operating frequency.
				000: Standby time = 8192 states
				001: Standby time = 16384 states
				010: Standby time = 32768 states
				011: Standby time = 65536 states
				100: Standby time = 131072 states
				101: Standby time = 262144 states
				110: Reserved
				111: Reserved

Rev. 6.00 Sep. 24, 2009 Page 796 of 928 REJ09B0099-0600

Note: * The $\overline{CS1}$ and $\overline{CS2}$ signals are not supported by the H8S/2556 Group.

22.1.2 Module Stop Control Registers A to C (MSTPCRA to MSTPCRC)

MSTPCR performs module stop mode control. When bits in MSTPCR are set to 1, mod mode is set. When cleared to 0, module stop mode is cleared.

• MSTPCRA

Bit	Bit Name	Initial Value	R/W	Target Module
7	MSTPA7*1	0	R/W	
6	MSTPA6	0	R/W	Data transfer controller (DTC)
5	MSTPA5	1	R/W	16-bit timer pulse unit (TPU)
4	MSTPA4	1	R/W	8-bit timer (TMR_0, TMR_1)
3	MSTPA3*1	1	R/W	
2	MSTPA2*1	1	R/W	
1	MSTPA1	1	R/W	A/D converter
0	MSTPA0	1	R/W	8-bit timer (TMR_2, TMR_3)

Renesas

0	MSTPB0* ¹ 1	R/W

• MSTPCRC

Bit Name	Initial Value	R/W	Target Module
MSTPC7	1	R/W	Serial communication interface 3 (SCI_3)
MSTPC6	1	R/W	Serial communication interface 4 (SCI_4)
MSTPC5	1	R/W	D/A converter
MSTPC4	1	R/W	PC break controller (PBC)
MSTPC3	1	R/W	IEBus [™] controller (IEB)* ²
MSTPC2	1	R/W	Controller area network (HCAN)*3
MSTPC1*1	1	R/W	
MSTPC0*1	1	R/W	
	MSTPC7 MSTPC6 MSTPC5 MSTPC4 MSTPC3 MSTPC2 MSTPC1* ¹	Bit Name Value MSTPC7 1 MSTPC6 1 MSTPC5 1 MSTPC4 1 MSTPC3 1 MSTPC2 1 MSTPC1* ¹ 1	Bit Name Value R/W MSTPC7 1 R/W MSTPC6 1 R/W MSTPC5 1 R/W MSTPC4 1 R/W MSTPC3 1 R/W MSTPC2 1 R/W MSTPC3 1 R/W MSTPC1* ¹ 1 R/W

Notes: 1. The MSTPA7 bit can be read from or written to. This bit is initialized to 0. The value should always be 0. The MSTPA3, MSTPA2, MSTPB2 to MSTPB0, MST and MSTPC0 bits can be read from or written to. These bits are initialized to 1. write value should always be 1.

- 2. Supported only by the H8S/2552 Group.
- 3. Supported only by the H8S/2556 Group.

Rev. 6.00 Sep. 24, 2009 Page 798 of 928 REJ09B0099-0600

memory is accessed in 4 states, and internal 1/0 registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition i high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR and the LSON bit in I are cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an ir medium-speed mode is restored.

When the SLEEP instruction is executed with the SSBY bit = 1, LSON bit = 0, and PSS TCSR_1 (WDT_1) = 0, operation shifts to the software standby mode. When software s mode is cleared by an external interrupt, medium-speed mode is restored.

When the $\overline{\text{RES}}$ pin is set low and medium-speed mode is cancelled, operation shifts to the state. The same applies in the case of a reset caused by overflow of the watchdog timer.

When the $\overline{\text{STBY}}$ pin is driven low, a transition is made to hardware standby mode.

Figure 22.2 shows the timing for transition to and clearance of medium-speed mode.

Figure 22.2 Medium-Speed Mode Transition and Clearance Timing

22.3 Sleep Mode

22.3.1 Transition to Sleep Mode

When the SLEEP instruction is executed while the SSBY bit in SBYCR = 0 and the LSO LPWRCR = 0, the CPU enters sleep mode. In sleep mode, CPU operation stops but the c the CPU's internal registers are retained. Other peripheral modules do not stop.

22.3.2 Clearing Sleep Mode

Sleep mode is cleared by any interrupt, or signals at the $\overline{\text{RES}}$, $\overline{\text{MRES}}$, or $\overline{\text{STBY}}$ pin.

• Clearing with an interrupt

When an interrupt occurs, sleep mode is cleared and interrupt exception processing st Sleep mode is not cleared if the interrupt is disabled, or interrupts other than NMI are by the CPU.

- Clearing with the RES pin or MRES pin
 Setting the RES pin or the MRES pin level low selects the reset state. After the stipula input duration, driving the RES pin or MRES pin high starts the CPU performing rese exception processing.
- Clearing with the STBY Pin
 When the STBY pin is driven low, a transition is made to hardware standby mode.

Rev. 6.00 Sep. 24, 2009 Page 800 of 928 REJ09B0099-0600

tonsamption is significantly readered.

- Notes: 1. Supported only by the H8S/2556 Group.
 - 2. Supported only by the H8S/2552 Group.

22.4.2 Clearing Software Standby Mode

Software standby mode is cleared by an external interrupt (NMI pin, or pins $\overline{IRQ0}$ to \overline{IR} means of the \overline{RES} pin, \overline{MRES} pin, or \overline{STBY} pin.

• Clearing with an interrupt

When an NMI or IRQ0 to IRQ7 interrupt request signal is input, clock oscillation sta after the elapse of the time set in bits STS2 to STS0 in SBYCR, stable clocks are sup the entire chip, software standby mode is cleared, and interrupt exception handling is When clearing software standby mode with an IRQ0 to IRQ7 interrupt, set the corres enable bit/pin function switching bit to 1 and ensure that no interrupt with a higher p than interrupts IRQ0 to IRQ7 is generated. Software standby mode cannot be cleared interrupt has been masked on the CPU side or has been designated as a DTC activate

Clearing with the RES pin or MRES pin
 When the RES pin or MRES pin is driven low, clock oscillation is started. At the sar clock oscillation starts, clocks are supplied to the entire chip. Note that the RES pin a pin must be held low until clock oscillation settles. When the RES pin or MRES pin the CPU begins reset exception handling.

Clearing with the STBY pin
 When the STBY pin is driven low, a transition is made to hardware standby mode.

RENESAS

	1	0	32768 states	1.3	1.6	2.0	2.5	3.3	4.1
		1	65536 states	2.6	3.3	4.1	5.0	6.6	8.2
1	0	0	131072 states	5.2	6.6	8.2	10.1	13.1	16.4
		1	262144 states	10.5	13.1	16.4	20.2	26.2	32.8
	1	Х	Reserved	_	_	_	_		

Shading: Recommended time setting Legend:

X: Don't care

Note: * The H8S/2556 Group supports the operating frequencies up to 20 MHz.

22.4.4 Software Standby Mode Application Example

Figure 22.3 shows an example in which a transition is made to software standby mode at falling edge on the NMI pin, and software standby mode is cleared at the rising edge on t pin.

In this example, an NMI interrupt is accepted with the NMIEG bit in SYSCR cleared to 0 edge specification), then the NMIEG bit is set to 1 (rising edge specification), the SSBY to 1, and a SLEEP instruction is executed, causing a transition to software standby mode.

Software standby mode is then cleared at the rising edge on the NMI pin.

Rev. 6.00 Sep. 24, 2009 Page 802 of 928 REJ09B0099-0600

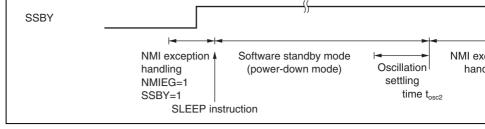


Figure 22.3 Software Standby Mode Application Example

b o not enange and state of the mode pins (1912 contra o) during nare standof mode.

22.5.2 Clearing Hardware Standby Mode

Hardware standby mode is cleared by means of the $\overline{\text{STBY}}$ pin and the $\overline{\text{RES}}$ pin. When the pin is driven high while the $\overline{\text{RES}}$ pin is low, the reset state is set and clock oscillation is st Ensure that the $\overline{\text{RES}}$ pin is held low until the clock oscillator settles (at least t_{oscl} ms). When $\overline{\text{RES}}$ pin is subsequently driven high, a transition is made to the program execution state v reset exception handling state.

22.5.3 Hardware Standby Mode Timing

Figure 22.4 shows an example of hardware standby mode timing.

When the $\overline{\text{STBY}}$ pin is driven low after the $\overline{\text{RES}}$ pin has been driven low, a transition is n hardware standby mode. Hardware standby mode is cleared by driving the $\overline{\text{STBY}}$ pin high waiting for the oscillation settling time, then changing the $\overline{\text{RES}}$ pin from low to high.

Rev. 6.00 Sep. 24, 2009 Page 804 of 928 REJ09B0099-0600

Oscillation	Reset
settling	exceptio
time t _{osc1}	handlin

Figure 22.4 Hardware Standby Mode Timing

22.6 Module Stop Mode

Module stop mode can be set for individual on-chip peripheral modules.

When the corresponding MSTP bit in MSTPCR is set to 1, module operation stops at the bus cycle and a transition is made to module stop mode. The CPU continues operation independently.

When the corresponding MSTP bit is cleared to 0, module stop mode is cleared and the starts operating at the end of the bus cycle. In module stop mode, the internal states of n other than the A/D converter are retained.

After reset clearance, all modules other than the DTC are in module stop mode.

When an on-chip peripheral module is in module stop mode, read/write access to its reg disabled.

Since the operations of the bus controller and I/O port are stopped when sleep mode is e the all-module stop state (MSTPCR=H'FFFFFFF), power consumption can further be a

Renesas

functions) and I/O ports are retained. To make a transition to watch mode, bits SCK2 to S SCKCR must be set to 0.

Notes: 1. Supported only by the H8S/2556 Group.

2. Supported only by the H8S/2552 Group.

22.7.2 Clearing Watch Mode

Watch mode is cleared by any interrupt (WOVI1 interrupt, NMI pin, or $\overline{IRQ0}$ to $\overline{IRQ7}$), or at the \overline{RES} , \overline{MRES} , or \overline{STBY} pin.

• Clearing with an interrupt

When an interrupt occurs, watch mode is cleared and a transition is made to high-speed or medium-speed mode. When a transition is made to high-speed mode, a stable clock supplied to all LSI circuits and interrupt exception processing starts after the time set STS2 to STS0 bits in SBYCR has elapsed. In the case of IRQ0 to IRQ7 interrupts, no transition is made from watch mode if the corresponding enable bit/pin function switce has been cleared to 0, and, in the case of interrupts from the internal peripheral modul interrupt enable register has been set to disable the reception of that interrupt, or is ma the CPU.

See section 22.4.3, Oscillation Settling Time after Clearing Software Standby Mode, it to set the oscillation settling time when making a transition from watch mode to high-mode.

• Clearing with the $\overline{\text{RES}}$ pin or $\overline{\text{MRES}}$ pin

For clearing watch mode by the $\overline{\text{RES}}$ pin or $\overline{\text{MRES}}$ pin, see section 22.4.2, Clearing S Standby Mode.

Clearing with the STBY pin
 When the STBY pin is driven low, a transition is made to hardware standby mode.

Rev. 6.00 Sep. 24, 2009 Page 806 of 928 REJ09B0099-0600

P310P		0	I
Hardware standby mode	High impedance	High impedance	High impeda
Software standby mode, watch mode	High impedance	Fixed to high	Fixed to high
Sleep mode	High impedance	φ output	Fixed to high
High-speed mode, medium-speed mode	High impedance	φ output	Fixed to high

22.9.3 DTC Module Stop

Depending on the operating status of the DTC, the MSTPA6 bit may not be set to 1. Setti DTC module stop mode should be carried out only when the respective module is not act

For details, refer to section 8, Data Transfer Controller (DTC).

22.9.4 On-Chip Peripheral Module Interrupt

• Module stop mode

Relevant interrupt operations cannot be performed in module stop mode. Consequent module stop mode is entered when an interrupt has been requested, it will not be poss clear the CPU interrupt source or the DTC activation source.

Interrupts should therefore be disabled before entering module stop mode.

• Watch mode

On-chip peripheral modules (DTC, TPU, and IIC2) that stop operation in watch mode clear interrupt sources of the CPU after they make a transition to watch mode while a interrupt is being requested.

Interrupts should therefore be disabled before executing the SLEEP instruction and er watch mode.

22.9.5 Writing to MSTPCR

MSTPCR should only be written to by the CPU.

Rev. 6.00 Sep. 24, 2009 Page 808 of 928 REJ09B0099-0600

RENESAS

Rev. 6.00 Sep. 24, 2009 Page 810 of 928 REJ09B0099-0600

- 2. Register Bits
- Bit configurations of the registers are described in the same order as the Register Ad (by functional module, in ascending order of addresses).
- Reserved bits are indicated by in the bit name.
- No entry in the bit-name column indicates that the whole register is allocated as a co for holding data.
- 3. Register States in Each Operating Mode
- Register states are described in the same order as the Register Addresses (by function module, in ascending order of addresses).
- The register states described are for the basic operating modes. If there is a specific r on-chip module, refer to the section on that on-chip module.

DTC source address register	SAR	24		DTC	16/32* ²
DTC mode register B	MRB	8		DTC	16/32* ²
DTC destination address register	DAR	24	_	DTC	16/32* ²
DTC transfer count register A	CRA	16	_	DTC	16/32* ²
DTC transfer count register B	CRB	16		DTC	16/32* ²
IEBus control register	IECTR	8	H'F800	IEB	8
IEBus command register	IECMR	8	H'F801	IEB	8
IEBus master control register	IEMCR	8	H'F802	IEB	8
IEBus master unit address register 1	IEAR1	8	H'F803	IEB	8
IEBus master unit address register 2	IEAR2	8	H'F804	IEB	8
IEBus slave address setting register 1	IESA1	8	H'F805	IEB	8
IEBus slave address setting register 2	IESA2	8	H'F806	IEB	8
IEBus transmit frame length register	IETBFL	8	H'F807	IEB	8
IEBus transmit buffer register	IETBR	8	H'F808	IEB	8
IEBus reception master address register 1	IEMA1	8	H'F809	IEB	8
IEBus reception master address register 2	IEMA2	8	H'F80A	IEB	8
IEBus receive control field register	IERCTL	8	H'F80B	IEB	8
IEBus receive frame length register	IERBFL	8	H'F80C	IEB	8
IEBus receive buffer register	IERBR	8	H'F80D	IEB	8
IEBus lock address register 1	IELA1	8	H'F80E	IEB	8
IEBus lock address register 2	IELA2	8	H'F80F	IEB	8

Rev. 6.00 Sep. 24, 2009 Page 812 of 928 REJ09B0099-0600

RENESAS

	IEIER	8	HF815	IEB	8
IEBus receive error flag register	IEREF	8	H'F816	IEB	8
Port H data direction register	PHDDR	8	H'FA10	PORT	8
Port J data direction register	PJDDR	8	H'FA11	PORT	8
Port H data register	PHDR	8	H'FA12	PORT	8
Port J data register	PJDR	8	H'FA13	PORT	8
Port H register	PORTH	8	H'FA14	PORT	8
Port J register	PORTJ	8	H'FA15	PORT	8
IIC bus control register 1_0	ICCR1_0	8	H'FA20	IIC2_0	8
IIC bus control register 2_0	ICCR2_0	8	H'FA21	IIC2_0	8
IIC bus mode register_0	ICMR_0	8	H'FA22	IIC2_0	8
IIC bus interrupt enable register_0	ICIER_0	8	H'FA23	IIC2_0	8
IIC bus status register_0	ICSR_0	8	H'FA24	IIC2_0	8
Slave address register_0	SAR_0	8	H'FA25	IIC2_0	8
IIC bus transmit data register_0	ICDRT_0	8	H'FA26	IIC2_0	8
IIC bus receive data register_0	ICDRR_0	8	H'FA27	IIC2_0	8
IIC bus control register 1_1	ICCR1_1	8	H'FA28	IIC2_1	8
IIC bus control register 2_1	ICCR2_1	8	H'FA29	IIC2_1	8
IIC bus mode register_1	ICMR_1	8	H'FA2A	IIC2_1	8
IIC bus interrupt enable register_1	ICIER_1	8	H'FA2B	IIC2_1	8
IIC bus status register_1	ICSR_1	8	H'FA2C	IIC2_1	8
Slave address register_1	SAR_1	8	H'FA2D	IIC2_1	8
IIC bus transmit data register_1	ICDRT_1	8	H'FA2E	IIC2_1	8

Renesas

Transmit wait cancel register	TXCR	16	H'FB08	HCAN	16
Transmit acknowledge register	TXACK	16	H'FB0A	HCAN	16
Abort acknowledge register	ABACK	16	H'FB0C	HCAN	16
Receive complete register	RXPR	16	H'FB0E	HCAN	16
Remote request register	RFPR	16	H'FB10	HCAN	16
Interrupt register	IRR	16	H'FB12	HCAN	16
Mailbox interrupt mask register	MBIMR	16	H'FB14	HCAN	16
Interrupt mask register	IMR	16	H'FB16	HCAN	16
Receive error counter	REC	8	H'FB18	HCAN	16
Transmit error counter	TEC	8	H'FB19	HCAN	16
Unread message status register	UMSR	16	H'FB1A	HCAN	16
Local acceptance filter mask L	LAFML	16	H'FB1C	HCAN	16
Local acceptance filter mask H	LAFMH	16	H'FB1E	HCAN	16
Message control 0[1]	MC0[1]	8	H'FB20	HCAN	16
Message control 0[2]	MC0[2]	8	H'FB21	HCAN	16
Message control 0[3]	MC0[3]	8	H'FB22	HCAN	16
Message control 0[4]	MC0[4]	8	H'FB23	HCAN	16
Message control 0[5]	MC0[5]	8	H'FB24	HCAN	16
Message control 0[6]	MC0[6]	8	H'FB25	HCAN	16
Message control 0[7]	MC0[7]	8	H'FB26	HCAN	16
Message control 0[8]	MC0[8]	8	H'FB27	HCAN	16
Message control 1[1]	MC1[1]	8	H'FB28	HCAN	16
Message control 1[2]	MC1[2]	8	H'FB29	HCAN	16

Rev. 6.00 Sep. 24, 2009 Page 814 of 928 REJ09B0099-0600

Message control 2[1]	MC2[1]	8	H'FB30	HCAN	16
Message control 2[2]	MC2[2]	8	H'FB31	HCAN	16
Message control 2[3]	MC2[3]	8	H'FB32	HCAN	16
Message control 2[4]	MC2[4]	8	H'FB33	HCAN	16
Message control 2[5]	MC2[5]	8	H'FB34	HCAN	16
Message control 2[6]	MC2[6]	8	H'FB35	HCAN	16
Message control 2[8]	MC2[8]	8	H'FB37	HCAN	16
Message control 3[1]	MC3[1]	8	H'FB38	HCAN	16
Message control 3[2]	MC3[2]	8	H'FB39	HCAN	16
Message control 3[3]	MC3[3]	8	H'FB3A	HCAN	16
Message control 3[4]	MC3[4]	8	H'FB3B	HCAN	16
Message control 3[5]	MC3[5]	8	H'FB3C	HCAN	16
Message control 3[6]	MC3[6]	8	H'FB3D	HCAN	16
Message control 3[7]	MC3[7]	8	H'FB3E	HCAN	16
Message control 3[8]	MC3[8]	8	H'FB3F	HCAN	16
Message control 4[1]	MC4[1]	8	H'FB40	HCAN	16
Message control 4[2]	MC4[2]	8	H'FB41	HCAN	16
Message control 4[3]	MC4[3]	8	H'FB42	HCAN	16
Message control 4[4]	MC4[4]	8	H'FB43	HCAN	16
Message control 4[5]	MC4[5]	8	H'FB44	HCAN	16
Message control 4[6]	MC4[6]	8	H'FB45	HCAN	16
Message control 4[7]	MC4[7]	8	H'FB46	HCAN	16
Message control 4[8]	MC4[8]	8	H'FB47	HCAN	16

Message control 5[7]	MC5[7]	8	H'FB4E	HCAN	16
Message control 5[8]	MC5[8]	8	H'FB4F	HCAN	16
Message control 6[1]	MC6[1]	8	H'FB50	HCAN	16
Message control 6[2]	MC6[2]	8	H'FB51	HCAN	16
Message control 6[3]	MC6[3]	8	H'FB52	HCAN	16
Message control 6[4]	MC6[4]	8	H'FB53	HCAN	16
Message control 6[5]	MC6[5]	8	H'FB54	HCAN	16
Message control 6[6]	MC6[6]	8	H'FB55	HCAN	16
Message control 6[7]	MC6[7]	8	H'FB56	HCAN	16
Message control 6[8]	MC6[8]	8	H'FB57	HCAN	16
Message control 7[1]	MC7[1]	8	H'FB58	HCAN	16
Message control 7[2]	MC7[2]	8	H'FB59	HCAN	16
Message control 7[3]	MC7[3]	8	H'FB5A	HCAN	16
Message control 7[4]	MC7[4]	8	H'FB5B	HCAN	16
Message control 7[5]	MC7[5]	8	H'FB5C	HCAN	16
Message control 7[6]	MC7[6]	8	H'FB5D	HCAN	16
Message control 7[7]	MC7[7]	8	H'FB5E	HCAN	16
Message control 7[8]	MC7[8]	8	H'FB5F	HCAN	16
Message control 8[1]	MC8[1]	8	H'FB60	HCAN	16
Message control 8[2]	MC8[2]	8	H'FB61	HCAN	16
Message control 8[3]	MC8[3]	8	H'FB62	HCAN	16
Message control 8[4]	MC8[4]	8	H'FB63	HCAN	16
Message control 8[5]	MC8[5]	8	H'FB64	HCAN	16

Rev. 6.00 Sep. 24, 2009 Page 816 of 928 REJ09B0099-0600

RENESAS

Message control 9[4]	MC9[4]	8	H'FB6B	HCAN	16
Message control 9[5]	MC9[5]	8	H'FB6C	HCAN	16
Message control 9[6]	MC9[6]	8	H'FB6D	HCAN	16
Message control 9[7]	MC9[7]	8	H'FB6E	HCAN	16
Message control 9[8]	MC9[8]	8	H'FB6F	HCAN	16
Message control 10[1]	MC10[1]	8	H'FB70	HCAN	16
Message control 10[2]	MC10[2]	8	H'FB71	HCAN	16
Message control 10[3]	MC10[3]	8	H'FB72	HCAN	16
Message control 10[4]	MC10[4]	8	H'FB73	HCAN	16
Message control 10[5]	MC10[5]	8	H'FB74	HCAN	16
Message control 10[6]	MC10[6]	8	H'FB75	HCAN	16
Message control 10[7]	MC10[7]	8	H'FB76	HCAN	16
Message control 10[8]	MC10[8]	8	H'FB77	HCAN	16
Message control 11[1]	MC11[1]	8	H'FB78	HCAN	16
Message control 11[2]	MC11[2]	8	H'FB79	HCAN	16
Message control 11[3]	MC11[3]	8	H'FB7A	HCAN	16
Message control 11[4]	MC11[4]	8	H'FB7B	HCAN	16
Message control 11[5]	MC11[5]	8	H'FB7C	HCAN	16
Message control 11[6]	MC11[6]	8	H'FB7D	HCAN	16
Message control 11[7]	MC11[7]	8	H'FB7E	HCAN	16
Message control 11[8]	MC11[8]	8	H'FB7F	HCAN	16
Message control 12[1]	MC12[1]	8	H'FB80	HCAN	16
Message control 12[2]	MC12[2]	8	H'FB81	HCAN	16

Renesas

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

Message control 13[1]	MC13[1]	8	H'FB88	HCAN	16
Message control 13[2]	MC13[2]	8	H'FB89	HCAN	16
Message control 13[3]	MC13[3]	8	H'FB8A	HCAN	16
Message control 13[4]	MC13[4]	8	H'FB8B	HCAN	16
Message control 13[5]	MC13[5]	8	H'FB8C	HCAN	16
Message control 13[6]	MC13[6]	8	H'FB8D	HCAN	16
Message control 13[7]	MC13[7]	8	H'FB8E	HCAN	16
Message control 13[8]	MC13[8]	8	H'FB8F	HCAN	16
Message control 14[1]	MC14[1]	8	H'FB90	HCAN	16
Message control 14[2]	MC14[2]	8	H'FB91	HCAN	16
Message control 14[3]	MC14[3]	8	H'FB92	HCAN	16
Message control 14[4]	MC14[4]	8	H'FB93	HCAN	16
Message control 14[5]	MC14[5]	8	H'FB94	HCAN	16
Message control 14[6]	MC14[6]	8	H'FB95	HCAN	16
Message control 14[7]	MC14[7]	8	H'FB96	HCAN	16
Message control 14[8]	MC14[8]	8	H'FB97	HCAN	16
Message control 15[1]	MC15[1]	8	H'FB98	HCAN	16
Message control 15[2]	MC15[2]	8	H'FB99	HCAN	16
Message control 15[3]	MC15[3]	8	H'FB9A	HCAN	16
Message control 15[4]	MC15[4]	8	H'FB9B	HCAN	16
Message control 15[5]	MC15[5]	8	H'FB9C	HCAN	16
Message control 15[6]	MC15[6]	8	H'FB9D	HCAN	16
Message control 15[7]	MC15[7]	8	H'FB9E	HCAN	16

Rev. 6.00 Sep. 24, 2009 Page 818 of 928 REJ09B0099-0600

Message data 0[6]	MD0[6]	8	H'FBB5	HCAN	16
Message data 0[7]	MD0[7]	8	H'FBB6	HCAN	16
Message data 0[8]	MD0[8]	8	H'FBB7	HCAN	16
Message data 1[1]	MD1[1]	8	H'FBB8	HCAN	16
Message data 1[2]	MD1[2]	8	H'FBB9	HCAN	16
Message data 1[3]	MD1[3]	8	H'FBBA	HCAN	16
Message data 1[4]	MD1[4]	8	H'FBBB	HCAN	16
Message data 1[5]	MD1[5]	8	H'FBBC	HCAN	16
Message data 1[6]	MD1[6]	8	H'FBBD	HCAN	16
Message data 1[7]	MD1[7]	8	H'FBBE	HCAN	16
Message data 1[8]	MD1[8]	8	H'FBBF	HCAN	16
Message data 2[1]	MD2[1]	8	H'FBC0	HCAN	16
Message data 2[2]	MD2[2]	8	H'FBC1	HCAN	16
Message data 2[3]	MD2[3]	8	H'FBC2	HCAN	16
Message data 2[4]	MD2[4]	8	H'FBC3	HCAN	16
Message data 2[5]	MD2[5]	8	H'FBC4	HCAN	16
Message data 2[6]	MD2[6]	8	H'FBC5	HCAN	16
Message data 2[7]	MD2[7]	8	H'FBC6	HCAN	16
Message data 2[8]	MD2[8]	8	H'FBC7	HCAN	16
Message data 3[1]	MD3[1]	8	H'FBC8	HCAN	16
Message data 3[2]	MD3[2]	8	H'FBC9	HCAN	16
Message data 3[3]	MD3[3]	8	H'FBCA	HCAN	16
Message data 3[4]	MD3[4]	8	H'FBCB	HCAN	16

Message data 4[3]	MD4[3]	8	H'FBD2	HCAN	16
Message data 4[4]	MD4[4]	8	H'FBD3	HCAN	16
Message data 4[5]	MD4[5]	8	H'FBD4	HCAN	16
Message data 4[6]	MD4[6]	8	H'FBD5	HCAN	16
Message data 4[7]	MD4[7]	8	H'FBD6	HCAN	16
Message data 4[8]	MD4[8]	8	H'FBD7	HCAN	16
Message data 5[1]	MD5[1]	8	H'FBD8	HCAN	16
Message data 5[2]	MD5[2]	8	H'FBD9	HCAN	16
Message data 5[3]	MD5[3]	8	H'FBDA	HCAN	16
Message data 5[4]	MD5[4]	8	H'FBDB	HCAN	16
Message data 5[5]	MD5[5]	8	H'FBDC	HCAN	16
Message data 5[6]	MD5[6]	8	H'FBDD	HCAN	16
Message data 5[7]	MD5[7]	8	H'FBDE	HCAN	16
Message data 5[8]	MD5[8]	8	H'FBDF	HCAN	16
Message data 6[1]	MD6[1]	8	H'FBE0	HCAN	16
Message data 6[2]	MD6[2]	8	H'FBE1	HCAN	16
Message data 6[3]	MD6[3]	8	H'FBE2	HCAN	16
Message data 6[4]	MD6[4]	8	H'FBE3	HCAN	16
Message data 6[5]	MD6[5]	8	H'FBE4	HCAN	16
Message data 6[6]	MD6[6]	8	H'FBE5	HCAN	16
Message data 6[7]	MD6[7]	8	H'FBE6	HCAN	16
Message data 6[8]	MD6[8]	8	H'FBE7	HCAN	16
Message data 7[1]	MD7[1]	8	H'FBE8	HCAN	16

Rev. 6.00 Sep. 24, 2009 Page 820 of 928 REJ09B0099-0600

Message data 7[8]	MD7[8]	8	H'FBEF	HCAN	16
Message data 8[1]	MD8[1]	8	H'FBF0	HCAN	16
Message data 8[2]	MD8[2]	8	H'FBF1	HCAN	16
Message data 8[3]	MD8[3]	8	H'FBF2	HCAN	16
Message data 8[4]	MD8[4]	8	H'FBF3	HCAN	16
Message data 8[5]	MD8[5]	8	H'FBF4	HCAN	16
Message data 8[6]	MD8[6]	8	H'FBF5	HCAN	16
Message data 8[7]	MD8[7]	8	H'FBF6	HCAN	16
Message data 8[8]	MD8[8]	8	H'FBF7	HCAN	16
Message data 9[1]	MD9[1]	8	H'FBF8	HCAN	16
Message data 9[2]	MD9[2]	8	H'FBF9	HCAN	16
Message data 9[3]	MD9[3]	8	H'FBFA	HCAN	16
Message data 9[4]	MD9[4]	8	H'FBFB	HCAN	16
Message data 9[5]	MD9[5]	8	H'FBFC	HCAN	16
Message data 9[6]	MD9[6]	8	H'FBFD	HCAN	16
Message data 9[7]	MD9[7]	8	H'FBFE	HCAN	16
Message data 9[8]	MD9[8]	8	H'FBFF	HCAN	16
Message data 10[1]	MD10[1]	8	H'FC00	HCAN	16
Message data 10[2]	MD10[2]	8	H'FC01	HCAN	16
Message data 10[3]	MD10[3]	8	H'FC02	HCAN	16
Message data 10[4]	MD10[4]	8	H'FC03	HCAN	16
Message data 10[5]	MD10[5]	8	H'FC04	HCAN	16
Message data 10[6]	MD10[6]	8	H'FC05	HCAN	16

Renesas

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

Message data 11[5]	MD11[5]	8	H'FC0C	HCAN	16
Message data 11[6]	MD11[6]	8	H'FC0D	HCAN	16
Message data 11[7]	MD11[7]	8	H'FC0E	HCAN	16
Message data 11[8]	MD11[8]	8	H'FC0F	HCAN	16
Message data 12[1]	MD12[1]	8	H'FC10	HCAN	16
Message data 12[2]	MD12[2]	8	H'FC11	HCAN	16
Message data 12[3]	MD12[3]	8	H'FC12	HCAN	16
Message data 12[4]	MD12[4]	8	H'FC13	HCAN	16
Message data 12[5]	MD12[5]	8	H'FC14	HCAN	16
Message data 12[6]	MD12[6]	8	H'FC15	HCAN	16
Message data 12[7]	MD12[7]	8	H'FC16	HCAN	16
Message data 12[8]	MD12[8]	8	H'FC17	HCAN	16
Message data 13[1]	MD13[1]	8	H'FC18	HCAN	16
Message data 13[2]	MD13[2]	8	H'FC19	HCAN	16
Message data 13[3]	MD13[3]	8	H'FC1A	HCAN	16
Message data 13[4]	MD13[4]	8	H'FC1B	HCAN	16
Message data 13[5]	MD13[5]	8	H'FC1C	HCAN	16
Message data 13[6]	MD13[6]	8	H'FC1D	HCAN	16
Message data 13[7]	MD13[7]	8	H'FC1E	HCAN	16
Message data 13[8]	MD13[8]	8	H'FC1F	HCAN	16
Message data 14[1]	MD14[1]	8	H'FC20	HCAN	16
Message data 14[2]	MD14[2]	8	H'FC21	HCAN	16
Message data 14[3]	MD14[3]	8	H'FC22	HCAN	16

Rev. 6.00 Sep. 24, 2009 Page 822 of 928 REJ09B0099-0600

Message data 15[3]MD15[3]8H'FC2AHCAN16Message data 15[4]MD15[4]8H'FC2BHCAN16Message data 15[5]MD15[5]8H'FC2CHCAN16Message data 15[6]MD15[6]8H'FC2DHCAN16Message data 15[7]MD15[7]8H'FC2EHCAN16Message data 15[8]MD15[8]8H'FC2FHCAN16Message data 15[8]MD15[8]8H'FC2FHCAN16D/A data register 0DADR08H'FDACD/A converter8D/A data register 1DADR18H'FDAED/A converter8D/A control register 2TCR_28H'FDC0TMR_28/16Timer control register_2TCR_28H'FDC2TMR_38/16Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register A_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC9TMR_38/16Timer control_3SMR_38H'FDC9TMR_38/16 <th>Message data 15[2]</th> <th>MD15[2]</th> <th>8</th> <th>H'FC29</th> <th>HCAN</th> <th>16</th>	Message data 15[2]	MD15[2]	8	H'FC29	HCAN	16
Message data 15[5]MD15[5]8H'FC2CHCAN16Message data 15[6]MD15[6]8H'FC2DHCAN16Message data 15[7]MD15[7]8H'FC2EHCAN16Message data 15[8]MD15[8]8H'FC2FHCAN16D/A data register 0DADR08H'FDACD/A8D/A data register 1DADR18H'FDADD/A8D/A control register 1DACR8H'FDAED/A8ConverterDACR8H'FDC0TMR_28/16Timer control register_2TCR_28H'FDC1TMR_38/16Timer control/status register_3TCSR_38H'FDC3TMR_28/16Time constant register A_2TCORA_28H'FDC5TMR_38/16Time constant register B_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time counter_2TCNT_28H'FDC8TMR_28/16Time counter_3TCNT_38H'FDC9TMR_38/16	Message data 15[3]	MD15[3]	8	H'FC2A	HCAN	16
Message data 15[6]MD15[6]8H'FC2DHCAN16Message data 15[7]MD15[7]8H'FC2EHCAN16Message data 15[8]MD15[8]8H'FC2FHCAN16D/A data register 0DADR08H'FDACD/A8D/A data register 1DADR18H'FDADD/A8D/A control registerDACR8H'FDAED/A8ConverterDACR8H'FDC0TMR_28/16Timer control register_2TCR_28H'FDC1TMR_38/16Timer control/status register_3TCSR_28H'FDC2TMR_28/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register B_2TCORA_38H'FDC5TMR_38/16Time constant register B_3TCORA_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time counter_2TCNT_28H'FDC8TMR_28/16Time counter_3TCNT_38H'FDC9TMR_38/16	Message data 15[4]	MD15[4]	8	H'FC2B	HCAN	16
Message data 15[7]MD15[7]8H'FC2EHCAN16Message data 15[8]MD15[8]8H'FC2FHCAN16D/A data register 0DADR08H'FDACD/A8D/A data register 1DADR18H'FDADD/A8D/A control register 1DADR18H'FDAED/A8ConverterDACR8H'FDAED/A8ConverterDACR8H'FDC0TMR_28/16Timer control register_2TCR_28H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC3TMR_28/16Time constant register A_2TCORA_28H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Time counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Message data 15[5]	MD15[5]	8	H'FC2C	HCAN	16
Message data 15[8]MD15[8]8H'FC2FHCAN16D/A data register 0DADR08H'FDACD/A converter8 converter8 converter8 converter8 converter16D/A data register 1DADR18H'FDADD/A converter8 converter8 converter8 converter8 converter8 converter16D/A control registerDACR8 converterH'FDAED/A converter8 converter8 converter8 converter8 converter16Timer control register_2TCR_28 TCR_3H'FDC1TMR_38/16Timer control/status register_2TCSR_28 H'FDC3H'FDC3TMR_28/16Time constant register A_2TCORA_28 H'FDC4H'R_28/16Time constant register A_3TCORA_38 H'FDC6TMR_28/16Time constant register B_3TCORB_28 H'FDC7TMR_38/16Time constant register B_3TCORB_38 H'FDC8TMR_28/16Time counter_2TCNT_28 H'FDC8TMR_28/16Timer counter_3TCNT_38 H'FDC9TMR_38/16	Message data 15[6]	MD15[6]	8	H'FC2D	HCAN	16
D/A data register 0DADR08H'FDACD/A8 converterD/A data register 1DADR18H'FDADD/A8 converterD/A control register 1DACR8H'FDAED/A8 converterD/A control register 2TCR_28H'FDC0TMR_28/16Timer control register_3TCR_38H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register B_2TCORB_28H'FDC6TMR_38/16Time constant register B_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time constant register B_3TCORB_38H'FDC8TMR_28/16Timer counter_2TCNT_28H'FDC9TMR_38/16	Message data 15[7]	MD15[7]	8	H'FC2E	HCAN	16
D/A data register 1DADR18H'FDADD/A converter8 converterD/A control registerDACR8H'FDAED/A converter8Timer control register_2TCR_28H'FDC0TMR_28/16Timer control register_3TCR_38H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC2TMR_28/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register B_2TCORB_28H'FDC5TMR_38/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Message data 15[8]	MD15[8]	8	H'FC2F	HCAN	16
D/A control registerDACR8H'FDAED/A converter8Timer control register_2TCR_28H'FDC0TMR_28/16Timer control register_3TCR_38H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC2TMR_28/16Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register B_2TCORB_28H'FDC5TMR_38/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Time counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	D/A data register 0	DADR0	8	H'FDAC		8
Timer control register_2TCR_28H'FDC0TMR_28/16Timer control register_3TCR_38H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC2TMR_28/16Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register B_2TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	D/A data register 1	DADR1	8	H'FDAD		8
Timer control register_3TCR_38H'FDC1TMR_38/16Timer control/status register_2TCSR_28H'FDC2TMR_28/16Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register A_3TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	D/A control register	DACR	8	H'FDAE		8
Timer control/status register_2TCSR_28H'FDC2TMR_28/16Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register A_3TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16	Timer control register_2	TCR_2	8	H'FDC0	TMR_2	8/16
Timer control/status register_3TCSR_38H'FDC3TMR_38/16Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register A_3TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Timer control register_3	TCR_3	8	H'FDC1	TMR_3	8/16
Time constant register A_2TCORA_28H'FDC4TMR_28/16Time constant register A_3TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Timer control/status register_2	TCSR_2	8	H'FDC2	TMR_2	8/16
Time constant register A_3TCORA_38H'FDC5TMR_38/16Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Timer control/status register_3	TCSR_3	8	H'FDC3	TMR_3	8/16
Time constant register B_2TCORB_28H'FDC6TMR_28/16Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Time constant register A_2	TCORA_2	8	H'FDC4	TMR_2	8/16
Time constant register B_3TCORB_38H'FDC7TMR_38/16Timer counter_2TCNT_28H'FDC8TMR_28/16Timer counter_3TCNT_38H'FDC9TMR_38/16	Time constant register A_3	TCORA_3	8	H'FDC5	TMR_3	8/16
Timer counter_2 TCNT_2 8 H'FDC8 TMR_2 8/16 Timer counter_3 TCNT_3 8 H'FDC9 TMR_3 8/16	Time constant register B_2	TCORB_2	8	H'FDC6	TMR_2	8/16
Timer counter_3TCNT_38H'FDC9TMR_38/16	Time constant register B_3	TCORB_3	8	H'FDC7	TMR_3	8/16
	Timer counter_2	TCNT_2	8	H'FDC8	TMR_2	8/16
Serial mode register_3 SMR_3 8 H'FDD0 SCI_3 8	Timer counter_3	TCNT_3	8	H'FDC9	TMR_3	8/16
	Serial mode register_3	SMR_3	8	H'FDD0	SCI_3	8

Serial mode register_4	SMR_4	8	H'FDD8	SCI_4	8
Bit rate register_4	BRR_4	8	H'FDD9	SCI_4	8
Serial control register_4	SCR_4	8	H'FDDA	SCI_4	8
Transmit data register_4	TDR_4	8	H'FDDB	SCI_4	8
Serial status register_4	SSR_4	8	H'FDDC	SCI_4	8
Receive data register_4	RDR_4	8	H'FDDD	SCI_4	8
Smart card mode register_4	SCMR_4	8	H'FDDE	SCI_4	8
IC power control register	ICPCR	8	H'FDE1	PORT	8
System control register 2	SYSCR2	8	H'FDE2	FLASH	8
Standby control register	SBYCR	8	H'FDE4	SYSTEM	8
System control register	SYSCR	8	H'FDE5	SYSTEM	8
System clock control register	SCKCR	8	H'FDE6	SYSTEM	8
Mode control register	MDCR	8	H'FDE7	SYSTEM	8
Module stop control register A	MSTPCRA	8	H'FDE8	SYSTEM	8
Module stop control register B	MSTPCRB	8	H'FDE9	SYSTEM	8
Module stop control register C	MSTPCRC	8	H'FDEA	SYSTEM	8
Pin function control register	PFCR	8	H'FDEB	BSC	8
Low power control register	LPWRCR	8	H'FDEC	SYSTEM	8
Break address register A	BARA	32	H'FE00	PBC	8/16
Break address register B	BARB	32	H'FE04	PBC	8/16
Break control register A	BCRA	8	H'FE08	PBC	8/16
Break control register B	BCRB	8	H'FE09	PBC	8/16
IRQ sense control register H	ISCRH	8	H'FE12	INT	8

Rev. 6.00 Sep. 24, 2009 Page 824 of 928 REJ09B0099-0600

RENESAS

DTC enable register D	DTCERD	8	H'FE19	DTC	8
DTC enable register E	DTCERE	8	H'FE1A	DTC	8
DTC enable register F	DTCERF	8	H'FE1B	DTC	8
DTC enable register G	DTCERG	8	H'FE1C	DTC	8
DTC enable register I	DTCERI	8	H'FE1E	DTC	8
DTC vector register	DTVECR	8	H'FE1F	DTC	8
Port 1 data direction register	P1DDR	8	H'FE30	PORT	8
Port 2 data direction register	P2DDR	8	H'FE31	PORT	8
Port 3 data direction register	P3DDR	8	H'FE32	PORT	8
Port 5 data direction register	P5DDR	8	H'FE34	PORT	8
Port 7 data direction register	P7DDR	8	H'FE36	PORT	8
Port A data direction register	PADDR	8	H'FE39	PORT	8
Port B data direction register	PBDDR	8	H'FE3A	PORT	8
Port C data direction register	PCDDR	8	H'FE3B	PORT	8
Port D data direction register	PDDDR	8	H'FE3C	PORT	8
Port E data direction register	PEDDR	8	H'FE3D	PORT	8
Port F data direction register	PFDDR	8	H'FE3E	PORT	8
Port G data direction register	PGDDR	8	H'FE3F	PORT	8
Port A pull-up MOS control register	PAPCR	8	H'FE40	PORT	8
Port B pull-up MOS control register	PBPCR	8	H'FE41	PORT	8
Port C pull-up MOS control register	PCPCR	8	H'FE42	PORT	8
Port D pull-up MOS control register	PDPCR	8	H'FE43	PORT	8
Port E pull-up MOS control register	PEPCR	8	H'FE44	PORT	8

Timer interrupt enable register _3	TIER_3	8	H'FE84	TPU_3	8/16
Timer status register_3	TSR_3	8	H'FE85	TPU_3	8/16
Timer counter_3	TCNT_3	16	H'FE86	TPU_3	16
Timer general register A_3	TGRA_3	16	H'FE88	TPU_3	16
Timer general register B_3	TGRB_3	16	H'FE8A	TPU_3	16
Timer general register C_3	TGRC_3	16	H'FE8C	TPU_3	16
Timer general register D_3	TGRD_3	16	H'FE8E	TPU_3	16
Timer control register_4	TCR_4	8	H'FE90	TPU_4	8/16
Timer mode register_4	TMDR_4	8	H'FE91	TPU_4	8/16
Timer I/O control register_4	TIOR_4	8	H'FE92	TPU_4	8/16
Timer interrupt enable register_4	TIER_4	8	H'FE94	TPU_4	8/16
Timer status register_4	TSR_4	8	H'FE95	TPU_4	8/16
Timer counter_4	TCNT_4	16	H'FE96	TPU_4	16
Timer general register A_4	TGRA_4	16	H'FE98	TPU_4	16
Timer general register B_4	TGRB_4	16	H'FE9A	TPU_4	16
Timer control register_5	TCR_5	8	H'FEA0	TPU_5	8/16
Timer mode register_5	TMDR_5	8	H'FEA1	TPU_5	8/16
Timer I/O control register_5	TIOR_5	8	H'FEA2	TPU_5	8/16
Timer interrupt enable register_5	TIER_5	8	H'FEA4	TPU_5	8/16
Timer status register_5	TSR_5	8	H'FEA5	TPU_5	8/16
Timer counter_5	TCNT_5	16	H'FEA6	TPU_5	16
Timer general register A_5	TGRA_5	16	H'FEA8	TPU_5	16
Timer general register B_5	TGRB_5	16	H'FEAA	TPU_5	16

Rev. 6.00 Sep. 24, 2009 Page 826 of 928 REJ09B0099-0600

Interrupt priority register E	IPRE	8	H'FEC4	INT	8
Interrupt priority register F	IPRF	8	H'FEC5	INT	8
Interrupt priority register G	IPRG	8	H'FEC6	INT	8
Interrupt priority register H	IPRH	8	H'FEC7	INT	8
Interrupt priority register I	IPRI	8	H'FEC8	INT	8
Interrupt priority register J	IPRJ	8	H'FEC9	INT	8
Interrupt priority register K	IPRK	8	H'FECA	INT	8
Interrupt priority register L	IPRL	8	H'FECB	INT	8
Interrupt priority register M	IPRM	8	H'FECC	INT	8
Interrupt priority register O	IPRO	8	H'FECE	INT	8
Bus width control register	ABWCR	8	H'FED0	BSC	8
Access state control register	ASTCR	8	H'FED1	BSC	8
Wait control register H	WCRH	8	H'FED2	BSC	8
Wait control register L	WCRL	8	H'FED3	BSC	8
Bus control register H	BCRH	8	H'FED4	BSC	8
Bus control register L	BCRL	8	H'FED5	BSC	8
RAM emulation register	RAMER	8	H'FEDB	FLASH	8
Port 1 data register	P1DR	8	H'FF00	PORT	8
Port 2 data register	P2DR	8	H'FF01	PORT	8
Port 3 data register	P3DR	8	H'FF02	PORT	8
Port 5 data register	P5DR	8	H'FF04	PORT	8
Port 7 data register	P7DR	8	H'FF06	PORT	8
Port A data register	PADR	8	H'FF09	PORT	8

Timer control register_0	TCR_0	8	H'FF10	TPU_0	8/16
Timer mode register_0	TMDR_0	8	H'FF11	TPU_0	8/16
Timer I/O control register H_0	TIORH_0	8	H'FF12	TPU_0	8/16
Timer I/O control register L_0	TIORL_0	8	H'FF13	TPU_0	8/16
Timer interrupt enable register_0	TIER_0	8	H'FF14	TPU_0	8/16
Timer status register_0	TSR_0	8	H'FF15	TPU_0	8/16
Timer counter_0	TCNT_0	16	H'FF16	TPU_0	16
Timer general register A_0	TGRA_0	16	H'FF18	TPU_0	16
Timer general register B_0	TGRB_0	16	H'FF1A	TPU_0	16
Timer general register C_0	TGRC_0	16	H'FF1C	TPU_0	16
Timer general register D_0	TGRD_0	16	H'FF1E	TPU_0	16
Timer control register_1	TCR_1	8	H'FF20	TPU_1	8/16
Timer mode register_1	TMDR_1	8	H'FF21	TPU_1	8/16
Timer I/O control register_1	TIOR_1	8	H'FF22	TPU_1	8/16
Timer interrupt enable register_1	TIER_1	8	H'FF24	TPU_1	8/16
Timer status register_1	TSR_1	8	H'FF25	TPU_1	8/16
Timer counter_1	TCNT_1	16	H'FF26	TPU_1	16
Timer general register A_1	TGRA_1	16	H'FF28	TPU_1	16
Timer general register B_1	TGRB_1	16	H'FF2A	TPU_1	16
Timer control register_2	TCR_2	8	H'FF30	TPU_2	8/16
Timer mode register_2	TMDR_2	8	H'FF31	TPU_2	8/16
Timer I/O control register_2	TIOR_2	8	H'FF32	TPU_2	8/16
Timer interrupt enable register_2	TIER_2	8	H'FF34	TPU_2	8/16

Rev. 6.00 Sep. 24, 2009 Page 828 of 928 REJ09B0099-0600

Timer control/status register_0	TCSR_0	8	H'FF6A	TMR_0	8/16
Timer control/status register_1	TCSR_1	8	H'FF6B	TMR_1	8/16
Timer constant register A_0	TCORA_0	8	H'FF6C	TMR_0	8/16
Timer constant register A_1	TCORA_1	8	H'FF6D	TMR_1	8/16
Timer constant register B_0	TCORB_0	8	H'FF6E	TMR_0	8/16
Timer constant register B_1	TCORB_1	8	H'FF6F	TMR_1	8/16
Timer counter_0	TCNT_0	8	H'FF70	TMR_0	8/16
Timer counter_1	TCNT_1	8	H'FF71	TMR_1	8/16
Timer control/status register_0	TCSR_0	8	H'FF74	WDT_0	16
Timer counter_0	TCNT_0	8	H'FF74 (write)	WDT_0	16
Timer counter_0	TCNT_0	8	H'FF75 (read)	WDT_0	16
Reset control/status register	RSTCSR	8	H'FF76 (write)	WDT_0	16
Reset control/status register	RSTCSR	8	H'FF77 (read)	WDT_0	16
Serial mode register_0	SMR_0	8	H'FF78	SCI_0	8
Bit rate register_0	BRR_0	8	H'FF79	SCI_0	8
Serial control register_0	SCR_0	8	H'FF7A	SCI_0	8
Transmit data register_0	TDR_0	8	H'FF7B	SCI_0	8
Serial status register_0	SSR_0	8	H'FF7C	SCI_0	8
Receive data register_0	RDR_0	8	H'FF7D	SCI_0	8
Smart card mode register_0	SCMR 0	8	H'FF7E	SCI_0	8

Smart card mode register_1	SCMR_1	8	H'FF86	SCI_1	8
Serial mode register_2	SMR_2	8	H'FF88	SCI_2	8
Bit rate register_2	BRR_2	8	H'FF89	SCI_2	8
Serial control register_2	SCR_2	8	H'FF8A	SCI_2	8
Transmit data register_2	TDR_2	8	H'FF8B	SCI_2	8
Serial status register_2	SSR_2	8	H'FF8C	SCI_2	8
Receive data register_2	RDR_2	8	H'FF8D	SCI_2	8
Smart card mode register_2	SCMR_2	8	H'FF8E	SCI_2	8
A/D data register AH	ADDRAH	8	H'FF90	A/D	8
A/D data register AL	ADDRAL	8	H'FF91	A/D	8
A/D data register BH	ADDRBH	8	H'FF92	A/D	8
A/D data register BL	ADDRBL	8	H'FF93	A/D	8
A/D data register CH	ADDRCH	8	H'FF94	A/D	8
A/D data register CL	ADDRCL	8	H'FF95	A/D	8
A/D data register DH	ADDRDH	8	H'FF96	A/D	8
A/D data register DL	ADDRDL	8	H'FF97	A/D	8
A/D control/status register	ADCSR	8	H'FF98	A/D	8
A/D control register	ADCR	8	H'FF99	A/D	8
Timer control/status register_1	TCSR_1	8	H'FFA2	WDT_1	16
Timer counter_1	TCNT_1	8	H'FFA2 (write)	WDT_1	16
Timer counter_1	TCNT_1	8	H'FFA3 (read)	WDT_1	16
Flash code control status register	FCCS	8	H'FFA4	FLASH	8
· · · · · · · · · · · · · · · · · · ·					

Rev. 6.00 Sep. 24, 2009 Page 830 of 928 REJ09B0099-0600

register	FVACR	8	HFFAB	FLASH	8
Flash vector address data register R	FVADRR	8	H'FFAC	FLASH	8
Flash vector address data register E	FVADRE	8	H'FFAD	FLASH	8
Flash vector address data register H	FVADRH	8	H'FFAE	FLASH	8
Flash vector address data register L	FVADRL	8	H'FFAF	FLASH	8
Port 1 register	PORT1	8	H'FFB0	PORT	8
Port 2 register	PORT2	8	H'FFB1	PORT	8
Port 3 register	PORT3	8	H'FFB2	PORT	8
Port 4 register	PORT4	8	H'FFB3	PORT	8
Port 5 register	PORT5	8	H'FFB4	PORT	8
Port 7 register	PORT7	8	H'FFB6	PORT	8
Port 9 register	PORT9	8	H'FFB8	PORT	8
Port A register	PORTA	8	H'FFB9	PORT	8
Port B register	PORTB	8	H'FFBA	PORT	8
Port C register	PORTC	8	H'FFBB	PORT	8
Port D register	PORTD	8	H'FFBC	PORT	8
Port E register	PORTE	8	H'FFBD	PORT	8
Port F register	PORTF	8	H'FFBE	PORT	8
Port G register	PORTG	8	H'FFBF	PORT	8
				·	

Notes: 1. Lower 16 bits of the address.

 Allocated on the on-chip RAM. 32-bit bus when DTC accesses as register inf and 16-bit in other cases.

RENESAS

	Ditto	DRIT	ыно	DITL	DITT	Dirio	Dito	Dito	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MRB	CHNE	DISEL							
DAR	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16	_
	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
CRA	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
CRB	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
IECTR	IEE	IOL	DEE	CKS1	RE	LUEE	CKS0	_	IEI
IECMR	_	_	_	_	_	CMD2	CMD1	CMD0	_
IEMCR	SS	RN2	RN1	RN0	CTL3	CTL2	CTL1	CTL0	_
IEAR1	IAR3	IAR2	IAR1	IAR0	IMD1	IMD0	_	STE	_
IEAR2	IAR11	IAR10	IAR9	IAR8	IAR7	IAR6	IAR5	IAR4	_
IESA1	ISA3	ISA2	ISA1	ISA0	_	_	_	_	_
IESA2	ISA11	ISA10	ISA9	ISA8	ISA7	ISA6	ISA5	ISA4	_
IETBFL	TBFL7	TBFL6	TBFL5	TBFL4	TBFL3	TBFL2	TBFL1	TBFL0	-
IETBR	TBR7	TBR6	TBR5	TBR4	TBR3	TBR2	TBR1	TBR0	_
IEMA1	IMA3	IMA2	IMA1	IMA0	_	_	_	_	_
IEMA2	IMA11	IMA10	IMA9	IMA8	IMA7	IMA6	IMA5	IMA4	_
IERCTL		_	_	_	RCTL3	RCTL2	RCTL1	RCTL0	-
IERBFL	RBFL7	RBFL6	RBFL5	RBFL4	RBFL3	RBFL2	RBFL1	RBFL0	-
IERBR	RBR7	RBR6	RBR5	RBR4	RBR3	RBR2	RBR1	RBR0	-

Rev. 6.00 Sep. 24, 2009 Page 832 of 928 REJ09B0099-0600

						HAOL		
IEREF			_		OVE	RTME	DLE	PE
PHDDR	PH7DDR	PH6DDR	PH5DDR	PH4DDR	PH3DDR	PH2DDR	PH1DDR	PH0DDR
PJDDR	PJ7DDR	PJ6DDR	PJ5DDR	PJ4DDR	PJ3DDR	PJ2DDR	PJ1DDR	PJ0DDR
PHDR	PH7DR	PH6DR	PH5DR	PH4DR	PH3DR	PH2DR	PH1DR	PH0DR
PJDR	PJ7DR	PJ6DR	PJ5DR	PJ4DR	PJ3DR	PJ2DR	PJ1DR	PJ0DR
PORTH	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0
PORTJ	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
ICCR1_0	ICE	RCVD	MST	TRS	CKS3	CKS2	CKS1	CKS0
ICCR2_0	BBSY	SCP	SDAO	SDAOP	SCLO	_	IICRST	_
ICMR_0	MLS	WAIT	_	_	BCWP	BC2	BC1	BC0
ICIER_0	TIE	TEIE	RIE	NAKIE	STIE	ACKE	ACKBR	ACKBT
ICSR_0	TDRE	TEND	RDRF	NACKF	STOP	AL/OVE	AAS	ADZ
SAR_0	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICDRT_0	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
ICDRR_0	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0
ICCR1_1	ICE	RCVD	MST	TRS	CKS3	CKS2	CKS1	CKS0
ICCR2_1	BBSY	SCP	SDAO	SDAOP	SCLO	_	IICRST	_
ICMR_1	MLS	WAIT	_	_	BCWP	BC2	BC1	BC0
ICIER_1	TIE	TEIE	RIE	NAKIE	STIE	ACKE	ACKBR	ACKBT
ICSR_1	TDRE	TEND	RDRF	NACKF	STOP	AL/OVE	AAS	ADZ
SAR_1	SVA6	SVA5	SVA4	SVA3	SVA2	SVA1	SVA0	FS
ICDRT_1	ICDRT7	ICDRT6	ICDRT5	ICDRT4	ICDRT3	ICDRT2	ICDRT1	ICDRT0
ICDRR_1	ICDRR7	ICDRR6	ICDRR5	ICDRR4	ICDRR3	ICDRR2	ICDRR1	ICDRR0

TXCR	TXCR7	TXCR6	TXCR5	TXCR4	TXCR3	TXCR2	TXCR1	_
	TXCR15	TXCR14	TXCR13	TXCR12	TXCR11	TXCR10	TXCR9	TXCR8
TXACK	TXACK7	TXACK6	TXACK5	TXACK4	ТХАСКЗ	TXACK2	TXACK1	_
	TXACK15	TXACK14	TXACK13	TXACK12	TXACK11	TXACK10	TXACK9	TXACK8
ABACK	ABACK7	ABACK6	ABACK5	ABACK4	ABACK3	ABACK2	ABACK1	_
	ABACK15	ABACK14	ABACK13	ABACK12	ABACK11	ABACK10	ABACK9	ABACK8
RXPR	RXPR7	RXPR6	RXPR5	RXPR4	RXPR3	RXPR2	RXPR1	RXPR0
	RXPR15	RXPR14	RXPR13	RXPR12	RXPR11	RXPR10	RXPR9	RXPR8
RFPR	RFPR7	RFPR6	RFPR5	RFPR4	RFPR3	RFPR2	RFPR1	RFPR0
	RFPR15	RFPR14	RFPR13	RFPR12	RFPR11	RFPR10	RFPR9	RFPR8
IRR	IRR7	IRR6	IRR5	IRR4	IRR3	IRR2	IRR1	IRR0
	_	_	_	IRR12	_	_	IRR9	IRR8
MBIMR	MBIMR7	MBIMR6	MBIMR5	MBIMR4	MBIMR3	MBIMR2	MBIMR1	MBIMR0
	MBIMR15	MBIMR14	MBIMR13	MBIMR12	MBIMR11	MBIMR10	MBIMR9	MBIMR8
IMR	IMR7	IMR6	IMR5	IMR4	IMR3	IMR2	IMR1	_
	_	_	_	IMR12	_	_	IMR9	IMR8
REC	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TEC	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
UMSR	UMSR7	UMSR6	UMSR5	UMSR4	UMSR3	UMSR2	UMSR1	UMSR0
	UMSR15	UMSR14	UMSR13	UMSR12	UMSR11	UMSR10	UMSR9	UMSR8
LAFML	LAFML7	LAFML6	LAFML5	LAFML4	LAFML3	LAFML2	LAFML1	LAFML0
	LAFML15	LAFML14	LAFML13	LAFML12	LAFML11	LAFML10	LAFML9	LAFML8

Rev. 6.00 Sep. 24, 2009 Page 834 of 928 REJ09B0099-0600

	10 20		10-20	10-20		10-20		10-21
MC0[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC0[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC1[1]					DLC3	DLC2	DLC1	DLC0
MC1[2]							_	_
MC1[3]								_
MC1[4]								_
MC1[5]	ID-20	ID-19	ID-18	RTR	IDE		ID-17	ID-16
MC1[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC1[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC1[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC2[1]				_	DLC3	DLC2	DLC1	DLC0
MC2[2]							_	
MC2[3]							_	_
MC2[4]							_	
MC2[5]	ID-20	ID-19	ID-18	RTR	IDE		ID-17	ID-16
MC2[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC2[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC2[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC3[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC3[2]	_	_	_	_	_	_	_	
MC3[3]	_	_	_	_	_	_	_	
MC3[4]	_	_	_	_	_	_	_	
MC3[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16

REJ09

Renesas

	10-20	10-10	10-10					
MC4[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC4[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC4[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC5[1]					DLC3	DLC2	DLC1	DLC0
MC5[2]					_		_	
MC5[3]					_		_	
MC5[4]								
MC5[5]	ID-20	ID-19	ID-18	RTR	IDE		ID-17	ID-16
MC5[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC5[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC5[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC6[1]					DLC3	DLC2	DLC1	DLC0
MC6[2]								
MC6[3]					_		_	
MC6[4]								
MC6[5]	ID-20	ID-19	ID-18	RTR	IDE		ID-17	ID-16
MC6[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC6[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC6[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC7[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC7[2]		_	_	_	_	_	_	_
MC7[3]	_	_	_	_	_	_	_	_
MC7[4]	_	_	_	_	_	_	_	_

Rev. 6.00 Sep. 24, 2009 Page 836 of 928 REJ09B0099-0600

MC8[5]	ID-20	ID-19	ID-18	RTR	IDE		ID-17	ID-16
MC8[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC8[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC8[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC9[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC9[2]	_	_	_	_	_	_	_	_
MC9[3]	_	—	_	_	_	_	_	_
MC9[4]	_	_	_	_	_	_	_	_
MC9[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16
MC9[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC9[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC9[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC10[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC10[2]	_	_	_	_	_	_	_	_
MC10[3]	_	_	_	_	_	_	_	_
MC10[4]	_	_	_	_	_	_	_	_
MC10[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16
MC10[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC10[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC10[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC11[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC11[2]	_	_	_	_	_	_	_	_
MC11[3]	_	_	_	_	_	_	_	_

Renesas

REJ09

MC12[4]	_	_	_	_	_	_	_	_
MC12[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16
MC12[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC12[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC12[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC13[1]					DLC3	DLC2	DLC1	DLC0
MC13[2]						_	_	
MC13[3]	_	_	_	_	_	_	_	
MC13[4]								_
MC13[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16
MC13[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC13[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC13[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC14[1]			_		DLC3	DLC2	DLC1	DLC0
MC14[2]								_
MC14[3]								_
MC14[4]			_			_	_	_
MC14[5]	ID-20	ID-19	ID-18	RTR	IDE	_	ID-17	ID-16
MC14[6]	ID-28	ID-27	ID-26	ID-25	ID-24	ID-23	ID-22	ID-21
MC14[7]	ID-7	ID-6	ID-5	ID-4	ID-3	ID-2	ID-1	ID-0
MC14[8]	ID-15	ID-14	ID-13	ID-12	ID-11	ID-10	ID-9	ID-8
MC15[1]	_	_	_	_	DLC3	DLC2	DLC1	DLC0
MC15[2]	_	_	_	_	_	_	_	_

Rev. 6.00 Sep. 24, 2009 Page 838 of 928 REJ09B0099-0600

WD0[2]	Diti	ыю	Біі		ыю		DICI	Dito
MD0[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD0[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD0[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD0[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD0[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD0[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD1[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD2[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD3[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Renesas

MD4[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 </th <th></th> <th>Ditt</th> <th>Dito</th> <th>Dito</th> <th></th> <th>Dito</th> <th></th> <th>DIT</th> <th>Dito</th>		Ditt	Dito	Dito		Dito		DIT	Dito
MD4[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 </td <td>MD4[2]</td> <td>Bit7</td> <td>Bit6</td> <td>Bit5</td> <td>Bit4</td> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td>	MD4[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD4[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD4[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD4[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD4[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD4[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD4[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD4[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 </td <td>MD4[4]</td> <td>Bit7</td> <td>Bit6</td> <td>Bit5</td> <td>Bit4</td> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td>	MD4[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD4[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD4[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[1] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[2] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[3] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[4] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[5] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[6] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 MD5[7] Bit7 Bit6 </td <td>MD4[5]</td> <td>Bit7</td> <td>Bit6</td> <td>Bit5</td> <td>Bit4</td> <td>Bit3</td> <td>Bit2</td> <td>Bit1</td> <td>Bit0</td>	MD4[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD4[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD4[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD4[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD4[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD5[8]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[1]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[2]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD5[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[3]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD6[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[4]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD6[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[5]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD6[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[6]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0MD6[7]Bit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0	MD6[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[7] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0	MD6[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	MD6[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD6[8] Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0	MD6[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	MD6[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Rev. 6.00 Sep. 24, 2009 Page 840 of 928 REJ09B0099-0600

	Diti	Dito	Біі		ыю	DILL	Diti	Dito
MD8[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD8[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD9[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD10[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Renesas

	Diti	Dito	Dito	DILT	Dito		Ditt	Dito
MD11[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD12[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD13[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[1]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[2]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[3]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[4]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[5]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MD14[6]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Rev. 6.00 Sep. 24, 2009 Page 842 of 928 REJ09B0099-0600

	Diti	Dito	Dito		Бло		Diti	Dito	
MD15[7]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
MD15[8]	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
DADR0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	C
DADR1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	с
DACR	DAOE1	DAOE0	DAE	_					
TCR_2	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	Т
TCR_3	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	Т
TCSR_2	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	Т
TCSR_3	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	Т
TCORA_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
TCORA_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
TCORB_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
TCORB_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
TCNT_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
TCNT_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Т
SMR_3*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/Ē (O/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	S
BRR_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SCR_3	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	
TDR_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_3*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	-
RDR_3	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

RDR_4	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SCMR_4	_	_	_	_	SDIR	SINV	_	SMIF	-
ICPCR	_	_	_	_	BUFGC 2	BUFGC 1	_	_	PC
SYSCR2	_	_	_	_	FLSHE	_	_	_	FL
SBYCR	SSBY	STS2	STS1	STS0	OPE	_	_	_	SY
SYSCR		_	INTM1	INTM0	NMIEG	MRESE	_	RAME	-
SCKCR	PSTOP	_	_	_	STCS	SCK2	SCK1	SCK0	-
MDCR	_	_	_	_	_	MDS2	MDS1	MDS0	-
MSTPCRA	MSTPA7	MSTPA6	MSTPA5	MSTPA4	MSTPA3	MSTPA2	MSTPA1	MSTPA0	-
MSTPCRB	MSTPB7	MSTPB6	MSTPB5	MSTPB4	MSTPB3	MSTPB2	MSTPB1	MSTPB0	-
MSTPCRC	MSTPC7	MSTPC6	MSTPC5	MSTPC4	MSTPC3	MSTPC2	MSTPC1	MSTPC0	-
PFCR	_	_	BUZZE	_	AE3	AE2	AE1	AE0	BS
LPWRCR	DTON	LSON	NESEL	SUBSTP	RFCUT	_	STC1	STC0	SY
BARA	_	_	_	_	_	_	_	_	PB
	BAA23	BAA22	BAA21	BAA20	BAA19	BAA18	BAA17	BAA16	-
	BAA15	BAA14	BAA13	BAA12	BAA11	BAA10	BAA9	BAA8	-
	BAA7	BAA6	BAA5	BAA4	BAA3	BAA2	BAA1	BAA0	-
BARB	_	_	_	_	_	_	_	_	-
	BAB23	BAB22	BAB21	BAB20	BAB19	BAB18	BAB17	BAB16	-
	BAB15	BAB14	BAB13	BAB12	BAB11	BAB10	BAB9	BAB8	-
	BAB7	BAB6	BAB5	BAB4	BAB3	BAB2	BAB1	BAB0	-
BCRA	CMFA	CDA	BAMRA2	BAMRA1	BAMRA0	CSELA1	CSELA0	BIEA	-
BCRB	CMFB	CDB	BAMRB2	BAMRB1	BAMRB0	CSELB1	CSELB0	BIEB	-

Rev. 6.00 Sep. 24, 2009 Page 844 of 928 REJ09B0099-0600

DIOLID			DIOLDS	DIOLD	DIOLDO	DIOLDZ	DIOLDI	DIOLDO
DTCERE					DTCEE3	DTCEE2	DTCEE1	DTCEE0
DTCERF	DTCEF7	DTCEF6	DTCEF5	DTCEF4	DTCEF3	DTCEF2	DTCEF1	DTCEF0
DTCERG	_	DTCEG6	DTCEG5	_	DTCEG3	DTCEG2	_	_
DTCERI	DTCEI7	DTCEI6	DTCEI5	DTCEI4	_	_	_	_
DTVECR	SWDTE	DTVEC6	DTVEC5	DTVEC4	DTVEC3	DTVEC2	DTVEC1	DTVEC0
P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR P
P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
P5DDR	_	_	_	_	_	P52DDR	P51DDR	P50DDR
P7DDR	P77DDR	P76DDR	P75DDR	P74DDR	P73DDR	P72DDR	P71DDR	P70DDR
PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR
PBDDR	PB7DDR	PB6DDR	PB5DDR	PB4DDR	PB3DDR	PB2DDR	PB1DDR	PB0DDR
PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR
PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR
PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR
PFDDR	PF7DDR	PF6DDR	PF5DDR	PF4DDR	PF3DDR* ²	PF2DDR* ²	PF1DDR	PF0DDR
PGDDR	_	_	_	PG4DDR	PG3DDR	PG2DDR	PG1DDR	PG0DDR
PAPCR	PA7PCR	PA6PCR	PA5PCR	PA4PCR	PA3PCR	PA2PCR	PA1PCR	PA0PCR
PBPCR	PB7PCR	PB6PCR	PB5PCR	PB4PCR	PB3PCR	PB2PCR	PB1PCR	PB0PCR
PCPCR	PC7PCR	PC6PCR	PC5PCR	PC4PCR	PC3PCR	PC2PCR	PC1PCR	PC0PCR
PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR
PEPCR	PE7PCR	PE6PCR	PE5PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR
P3ODR	P370DR	P36ODR	P35ODR	P340DR	P33ODR	P32ODR	P310DR	P30ODR

	Ditto		Ditto	DITIZ	DITT	Ditto	Dito	Dito	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRA_3	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRB_3	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRC_3	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRD_3	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TCR_4	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TP
TMDR_4	_	_			MD3	MD2	MD1	MD0	-
TIOR_4	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_
TIER_4	TTGE	—	TCIEU	TCIEV	_	_	TGIEB	TGIEA	_
TSR_4	TCFD	_	TCFU	TCFV	_		TGFB	TGFA	_
TCNT_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRA_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRB_4	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TCR_5	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TP
TMDR_5	_	_	_	_	MD3	MD2	MD1	MD0	
TIOR_5	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	-
-									

Rev. 6.00 Sep. 24, 2009 Page 846 of 928 REJ09B0099-0600

	Diti	ыю	Бло		БКО		DICI	Dito	
TSTR			CST5	CST4	CST3	CST2	CST1	CST0	Т
TSYR			SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	
IPRA		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	11
IPRB		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_
IPRC		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_
IPRD		IPR6	IPR5	IPR4					_
IPRE		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_
IPRF		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	
IPRG		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	
IPRH	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	_
IPRI		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_
IPRJ						IPR2	IPR1	IPR0	_
IPRK	_	IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	-
IPRL		IPR6	IPR5	IPR4		IPR2	IPR1	IPR0	_
IPRM		IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	
IPRO	_	IPR6	IPR5	IPR4	_	IPR2	IPR1	IPR0	
ABWCR	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	В
ASTCR	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	_
WCRH	W71	W70	W61	W60	W51	W50	W41	W40	_
WCRL	W31	W30	W21	W20	W11	W10	W01	W00	_
BCRH	ICIS1	ICIS0	BRSTRM	BRSTS1	BRSTS0	_	_	_	_
BCRL	BRLE			_	_	_	_	WAITE	
RAMER	_	_	_	_	RAMS	RAM2	RAM1	RAM0	F

RENESAS

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

	10/01	100011	103011		100011	102011		10001	_
PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	_
PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	_
PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	_
PGDR		_	_	PG4DR	PG3DR* ²	PG2DR* ²	PG1DR	PG0DR	
TCR_0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TF
TMDR_0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TIORH_0	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
TIORL_0	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
TIER_0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	
TSR_0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	
TCNT_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRA_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TGRB_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TGRC_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
TGRD_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TCR_1	_	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TF
TMDR_1	_	_	_	_	MD3	MD2	MD1	MD0	_
TIOR_1	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	_

Rev. 6.00 Sep. 24, 2009 Page 848 of 928 REJ09B0099-0600

	Diti	ыю	ыю		Бло		Ditt	ыю
TCR_2		CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0 T
TMDR_2	_				MD3	MD2	MD1	MD0
TIOR_2	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0
TIER_2	TTGE		TCIEU	TCIEV		_	TGIEB	TGIEA
TSR_2	TCFD		TCFU	TCFV			TGFB	TGFA
TCNT_2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TGRA_2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TGRB_2	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
TCR_0	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0 T
TCR_1	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0 T
TCSR_0	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0 T
TCSR_1	CMFB	CMFA	OVF		OS3	OS2	OS1	OS0 T
TCORA_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T
TCORA_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T
TCORB_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T
TCORB_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T
TCNT_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T
TCNT_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 T

Renesas

SSR_0*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	_
RDR_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
SCMR_0		_	_	_	SDIR	SINV	_	SMIF	_
SMR_1*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/Ē (O/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SC
BRR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCR_1	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_1*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	
RDR_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCMR_1	_	_	_	_	SDIR	SINV	_	SMIF	-
SMR_2*1	C/Ā (GM)	CHR (BLK)	PE (PE)	O/Ē (O/Ē)	STOP (BCP1)	MP (BCP0)	CKS1 (CKS1)	CKS0 (CKS0)	SC
BRR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCR_2	TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0	-
TDR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SSR_2*1	TDRE (TDRE)	RDRF (RDRF)	ORER (ORER)	FER (ERS)	PER (PER)	TEND (TEND)	MPB (MPB)	MPBT (MPBT)	
RDR_2	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
SCMR_2	_	—	_	—	SDIR	SINV		SMIF	

Rev. 6.00 Sep. 24, 2009 Page 850 of 928 REJ09B0099-0600

ADDRDL	AD I	AD0						
ADCSR	ADF	ADIE	ADST	SCAN	СНЗ	CH2	CH1	CH0
ADCR	TRGS1	TRGS0	_		CKS1	CKS0		_
TCSR_1	OVF	WT/ĪT	TME	PSS	RST/NMI	CKS2	CKS1	CKS0
TCNT_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FCCS		_	_	FLER	_	_	_	SCO
FPCS		_	_	_	_	_	_	PPVS
FECS		_	_	_	_	_	_	EPVB
FKEY	K7	K6	K5	K4	K3	K2	K1	K0
FMATS	MS7	MS6	MS5	MS4	MS3	MS2	MS1	MS0
FTDAR	TDER	TDA6	TDA5	TDA4	TDA3	TDA2	TDA1	TDA0
FVACR	FVCHGE	i —	_	_	_	_	_	_
FVADRR	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
FVADRE	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
FVADRH	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
FVADRL	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PORT1	P17	P16	P15	P14	P13	P12	P11	P10
PORT2	P27	P26	P25	P24	P23	P22	P21	P20
PORT3	P37	P36	P35	P34	P33	P32	P31	P30
PORT4	P47	P46	P45	P44	P43	P42	P41	P40
PORT5		_	_	_	_	P52	P51	P50
PORT7	P77	P76	P75	P74	P73	P72	P71	P70
PORT9	P97	P96	P95	P94	P93	P92	P91	P90
PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0

2. Reserved in the H8S/2556 Group.

Rev. 6.00 Sep. 24, 2009 Page 852 of 928 REJ09B0099-0600

IECTR	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
IECMR	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
IEMCR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEAR1	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEAR2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IESA1	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IESA2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IETBFL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IETBR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEMA1	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEMA2	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
IERCTL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IERBFL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IERBR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IELA1	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IELA2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEFLG	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IETSR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEIET	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IETEF	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IERSR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEIER	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
IEREF	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
-								

ICMR_0	Initialized	_	_	_	_	_	_	Initialized
ICIER_0	Initialized	_	_	_	_	_	_	Initialized
ICSR_0	Initialized	_	_	_	_	_	_	Initialized
SAR_0	Initialized	_	_	_	_	_	_	Initialized
ICDRT_0	Initialized	_	_	_	_	_	_	Initialized
ICDRR_0	Initialized	_	_	_	_	_	_	Initialized
ICCR1_1	Initialized	_	_	_	_	_	_	Initialized
ICCR2_1	Initialized	_	_	_	_	_	_	Initialized
ICMR_1	Initialized	_	_	_	_	_	_	Initialized
ICIER_1	Initialized	_	_	_	_	_	_	Initialized
ICSR_1	Initialized	_	_	_	_	_	_	Initialized
SAR_1	Initialized	_	_	_	_	_	_	Initialized
ICDRT_1	Initialized	_	_	_	_	_	_	Initialized
ICDRR_1	Initialized	_	_	_	_	_	_	Initialized
MCR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized H
GSR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
BCR	Initialized				Initialized	Initialized	Initialized	Initialized
MBCR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
TXPR	Initialized				Initialized	Initialized	Initialized	Initialized
TXCR	Initialized				Initialized	Initialized	Initialized	Initialized
TXACK	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ABACK	Initialized				Initialized	Initialized	Initialized	Initialized
RXPR	Initialized		_	_	Initialized	Initialized	Initialized	Initialized
RFPR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Page 854 of 928 REJ09B0099-0600

MC0[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC0[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC1[7]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC1[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC2[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Renesas

MC4[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC4[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC4[3]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC4[4]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC4[5]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC4[6]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC4[7]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC4[8]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC5[1]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC5[2]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC5[3]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC5[4]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC5[5]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC5[6]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC5[7]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC5[8]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MC6[1]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC6[2]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC6[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC6[4]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC6[5]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MC6[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC6[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC6[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Page 856 of 928 REJ09B0099-0600

MC8[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC8[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC9[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC10[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Pag

Renesas

REJ09

MC12[1]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC12[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC12[3]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC12[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC12[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC12[6]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC12[7]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MC12[8]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MC13[1]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC13[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC13[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC13[4]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC13[5]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MC13[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC13[7]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MC13[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[2]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MC14[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MC14[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Page 858 of 928 REJ09B0099-0600

MD0[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD0[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD0[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD0[4]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD0[5]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD0[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD0[7]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD0[8]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD1[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD1[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD1[3]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD1[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD1[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD1[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD1[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD1[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD2[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD2[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Renesas

MD4[1]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD4[2]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD4[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD4[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD4[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD4[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD4[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD4[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD5[1]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD5[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD5[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD5[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD5[5]	Initialized		_	_	Initialized	Initialized	Initialized	Initialized
MD5[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD5[7]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD5[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[4]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MD6[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD6[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Page 860 of 928 REJ09B0099-0600

-								
MD8[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD8[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD8[3]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD8[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD8[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD8[6]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD8[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD8[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[1]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD9[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[4]	Initialized	_	_	—	Initialized	Initialized	Initialized	Initialized
MD9[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD9[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[1]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[2]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[5]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[6]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[7]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD10[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Renesas

MD12[1] Initialized - - Initialized Initialized <thinitialized< th=""> Initialized<th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thinitialized<>									
MD12[3] Initialized Initialized Initialized Initialized Initialized MD12[4] Initialized Initialized Initialized Initialized Initialized MD12[5] Initialized Initialized	MD12[1]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD12[4] Initialized - - Initialized Initialized Initialized MD12[5] Initialized - - Initialized Initialized Initialized Initialized MD12[6] Initialized - - Initialized Initialized Initialized Initialized Initialized MD12[7] Initialized - - - Initialized Initialized Initialized Initialized MD12[8] Initialized - - - Initialized Initialized Initialized Initialized MD13[1] Initialized - - - Initialized Initialized Initialized MD13[2] Initialized - - - Initialized Initialized Initialized MD13[3] Initialized - - - Initialized Initialized Initialized MD13[4] Initialized - - Initialized Initialized Initialized MD13[5] Initialized - - Initialized Initialized I	MD12[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD12[5] Initialized - - Initialized Initialized Initialized MD12[6] Initialized - - - Initialized Initialized Initialized MD12[6] Initialized - - - Initialized Initialized Initialized Initialized MD12[7] Initialized - - - Initialized Initialized Initialized Initialized MD12[8] Initialized - - - Initialized Initialized Initialized MD13[1] Initialized - - - Initialized Initialized Initialized MD13[2] Initialized - - - Initialized Initialized Initialized MD13[2] Initialized - - - Initialized Initialized Initialized MD13[3] Initialized - - - Initialized Initialized Initialized MD13[6] Initialized - - - Initialized Initialized Initialized <td>MD12[3]</td> <td>Initialized</td> <td>_</td> <td>—</td> <td>—</td> <td>Initialized</td> <td>Initialized</td> <td>Initialized</td> <td>Initialized</td>	MD12[3]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD12[6] Initialized — — Initialized Initialized Initialized Initialized MD12[7] Initialized — — — Initialized In	MD12[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
MD 12[7] Initialized Initialized Initialized Initialized Initialized MD 12[8] Initialized Initialized Initialized Initialized Initialized MD 13[1] Initialized Initialized Initialized Initialized Initialized MD 13[1] Initialized Initialized Initialized Initialized MD 13[2] Initialized Initialized Initialized Initialized MD 13[2] Initialized Initialized Initialized Initialized MD 13[2] Initialized Initialized Initialized Initialized MD 13[3] Initialized Initialized Initialized Initialized MD 13[6] Initialized Initialized Initialized Initialized MD 13[7] Initialized Initialized Initialized Initialized	MD12[5]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD12[8] Initialized — — Initialized Initialized Initialized Initialized MD13[1] Initialized — — — Initialized Initialized Initialized MD13[2] Initialized — — — Initialized Initialized Initialized MD13[3] Initialized — — — Initialized Initialized Initialized MD13[4] Initialized — — — Initialized Initialized Initialized MD13[5] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized	MD12[6]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD13[1] Initialized — — Initialized Initialized Initialized Initialized MD13[2] Initialized — — — Initialized Initialized Initialized MD13[3] Initialized — — — Initialized Initialized Initialized MD13[3] Initialized — — — Initialized Initialized Initialized MD13[4] Initialized — — — Initialized Initialized Initialized MD13[5] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized	MD12[7]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD13[2] Initialized — — Initialized Initialized Initialized Initialized MD13[3] Initialized — — — Initialized Initialized Initialized MD13[3] Initialized — — — Initialized Initialized Initialized MD13[4] Initialized — — — Initialized Initialized Initialized MD13[5] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized	MD12[8]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD13[3] Initialized — — Initialized Initialized Initialized MD13[4] Initialized — — — Initialized Initialized Initialized MD13[5] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] <td< td=""><td>MD13[1]</td><td>Initialized</td><td>—</td><td>_</td><td>—</td><td>Initialized</td><td>Initialized</td><td>Initialized</td><td>Initialized</td></td<>	MD13[1]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MD13[4] Initialized — — Initialized Initialized Initialized Initialized MD13[5] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized	MD13[2]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD13[5] Initialized — — Initialized Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[6] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized	MD13[3]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD13[6] Initialized — — Initialized Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[7] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized	MD13[4]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD13[7] Initialized — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD13[8] Initialized — — — Initialized Initialized Initialized MD14[1] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[5] Initialized — — — Initialized Initialized Initialized MD14[5] <td< td=""><td>MD13[5]</td><td>Initialized</td><td>_</td><td>—</td><td>_</td><td>Initialized</td><td>Initialized</td><td>Initialized</td><td>Initialized</td></td<>	MD13[5]	Initialized	_	—	_	Initialized	Initialized	Initialized	Initialized
MD13[8] Initialized - - Initialized Initialized Initialized Initialized MD14[1] Initialized - - Initialized Initialized Initialized Initialized MD14[2] Initialized - - Initialized Initialized Initialized Initialized MD14[2] Initialized - - - Initialized Initialized Initialized MD14[3] Initialized - - - Initialized Initialized Initialized MD14[4] Initialized - - - Initialized Initialized Initialized MD14[4] Initialized - - - Initialized Initialized Initialized MD14[4] Initialized - - - Initialized Initialized Initialized MD14[5] Initialized - - - Initialized Initialized Initialized	MD13[6]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD14[1] Initialized — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[2] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[5] Initialized — — — Initialized Initialized Initialized	MD13[7]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MD14[2] Initialized — — Initialized Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[3] Initialized — — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[5] Initialized — — — Initialized Initialized Initialized	MD13[8]	Initialized	_	—	—	Initialized	Initialized	Initialized	Initialized
MD14[3] Initialized — — Initialized Initialized Initialized MD14[4] Initialized — — — Initialized Initialized Initialized MD14[5] Initialized — — — Initialized Initialized Initialized	MD14[1]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MD14[4] Initialized — — Initialized Initialized Initialized MD14[5] Initialized — — — Initialized Initialized Initialized	MD14[2]	Initialized	—	_	—	Initialized	Initialized	Initialized	Initialized
MD14[5] Initialized — — Initialized Initialized Initialized Initialized	MD14[3]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
	MD14[4]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
	MD14[5]	Initialized	_	_	-	Initialized	Initialized	Initialized	Initialized
MD14[6] Initialized — — Initialized Initialized Initialized Initialized	MD14[6]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MD14[7] Initialized — — Initialized Initialized Initialized Initialized	MD14[7]	Initialized	—	_	_	Initialized	Initialized	Initialized	Initialized
MD14[8] Initialized — — Initialized Initialized Initialized Initialized	MD14[8]	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized

Rev. 6.00 Sep. 24, 2009 Page 862 of 928 REJ09B0099-0600

DADR0	Initialized							Initialized
DADR1	Initialized	_	_					Initialized
DACR	Initialized	_	_		_	_		Initialized
TCR_2	Initialized	_		_	_	_		Initialized
TCR_3	Initialized	_	_	_	_	_	_	Initialized
TCSR_2	Initialized	_	_	_	_	_	_	Initialized
TCSR_3	Initialized	_	_	_	_	_	_	Initialized
TCORA_2	Initialized	_	_	_	_	_	_	Initialized
TCORA_3	Initialized	_	_	_	—	_	_	Initialized
TCORB_2	Initialized	_		_	_			Initialized
TCORB_3	Initialized	_	_	_	_	_	_	Initialized
TCNT_2	Initialized	_	_	_	_	_	_	Initialized
TCNT_3	Initialized	_	_	_	_	_	_	Initialized
SMR_3	Initialized	_	_	_	_	_	_	Initialized
BRR_3	Initialized	_	_	_	—	_	_	Initialized
SCR_3	Initialized	_	_	_	_	_	_	Initialized
TDR_3	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
SSR_3	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
RDR_3	Initialized	_		_	Initialized	Initialized	Initialized	Initialized
SCMR_3	Initialized	_	_	_	_	_	_	Initialized
SMR_4	Initialized	_	_		_	_		Initialized
BRR_4	Initialized	_	_	_	_	_		Initialized
SCR_4	Initialized	_			_	_	_	Initialized
TDR_4	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
	-							

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

Renesas

MDCR	Initialized*	_	_	—	_	_	—	Initialized	_
MSTPCRA	Initialized	_	_	_	_	_	_	Initialized	_
MSTPCRB	Initialized	_	_	_	_	_	_	Initialized	_
MSTPCRC	Initialized	_	_	_	_	_	_	Initialized	
PFCR	Initialized*	_	_	_	_	_	_	Initialized	E
LPWRCR	Initialized*	_	_	_	_	_	_	Initialized	S
BARA	Initialized*	_	_	_	_	_	_	Initialized	F
BARB	Initialized*	_	_	_	_	_	_	Initialized	
BCRA	Initialized*	_	_	_	_	_	_	Initialized	_
BCRB	Initialized*	_	_	_	_	_	_	Initialized	
ISCRH	Initialized	_	_	_	_	_	_	Initialized	I
ISCRL	Initialized	_	_	_	_	_	_	Initialized	
IER	Initialized	_	_	_	_	_	_	Initialized	
ISR	Initialized	_	_	_	_	_	_	Initialized	_
DTCERA	Initialized	_	_	_	_	_	_	Initialized	۵
DTCERB	Initialized	_	_	_	_	_	_	Initialized	_
DTCERC	Initialized	_	_	_	_	_	_	Initialized	_
DTCERD	Initialized	_	_	_	_	_	_	Initialized	_
DTCERE	Initialized	_	_	_	_	_	_	Initialized	
DTCERF	Initialized	_	_	_	_	_	_	Initialized	_
DTCERG	Initialized	_	_	_	_	_	_	Initialized	_
DTCERI	Initialized	_	_	_	_	_	_	Initialized	_
DTVECR	Initialized	_	_	_	_	_	_	Initialized	

Rev. 6.00 Sep. 24, 2009 Page 864 of 928 REJ09B0099-0600

PDDDR	Initialized*	_	_	_	_	_	_	Initialized
PEDDR	Initialized*	_	_	_	_	_	_	Initialized
PFDDR	Initialized*	_	_	_	_	_	_	Initialized
PGDDR	Initialized*	_	_	_	_	_	_	Initialized
PAPCR	Initialized*	_	_	_	_	_	_	Initialized
PBPCR	Initialized*	_	_	_	_	_	_	Initialized
PCPCR	Initialized*	_	_	_	_	_	_	Initialized
PDPCR	Initialized*	_	_	_	_	_	_	Initialized
PEPCR	Initialized*	_	_	_	_	_	_	Initialized
P3ODR	Initialized*	_	_	_	_	_	_	Initialized
PAODR	Initialized*	_	_	_	_	_	_	Initialized
TCR_3	Initialized	_	_	_	_	_	_	Initialized
TMDR_3	Initialized	_	_	_	_	_	_	Initialized
TIORH_3	Initialized	_	_	_	_	_	_	Initialized
TIORL_3	Initialized	_	_	_	_	_	_	Initialized
TIER_3	Initialized	_	_	_	_	_	_	Initialized
TSR_3	Initialized	_	_	_	_	_	_	Initialized
TCNT_3	Initialized	_	_	_	_	_	_	Initialized
TGRA_3	Initialized	_	_	_	_	_	_	Initialized
TGRB_3	Initialized	_	_	_	_	_	_	Initialized
TGRC_3	Initialized	_	_	_	_	_	_	Initialized
TGRD_3	Initialized	_	_	_	_	_	_	Initialized
TCR_4	Initialized	_	_	_	_	_	_	Initialized
TMDR_4	Initialized	_	_	_	_	_	_	Initialized

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

Renesas

TIOR_5	Initialized	_	—	—	_	_	_	Initialized	
TIER_5	Initialized	_	_	_	_	_	_	Initialized	
TSR_5	Initialized	_	_	—	_	_	—	Initialized	
TCNT_5	Initialized	_	_	_	_	_	_	Initialized	
TGRA_5	Initialized	_	_	—	_	_	—	Initialized	
TGRB_5	Initialized	—	_	_	_	_	_	Initialized	
TSTR	Initialized	_	_	_	—	_	—	Initialized	Т
TSYR	Initialized	—	_		_		_	Initialized	
IPRA	Initialized	—	_	_	_	_	_	Initialized	I
IPRB	Initialized	_	_	—	_	_	—	Initialized	
IPRC	Initialized	_	_	_	_	_	—	Initialized	
IPRD	Initialized	—	_	_	_	_	_	Initialized	
IPRE	Initialized	—	_		_		_	Initialized	
IPRF	Initialized	_	_	_	_	_	_	Initialized	
IPRG	Initialized	—	_	_	_	_	_	Initialized	_
IPRH	Initialized	_	_	_	_	_	_	Initialized	
IPRI	Initialized	_	_	_	_	_	_	Initialized	
IPRJ	Initialized	—	_	_	_	_	_	Initialized	_
IPRK	Initialized	_	_	_	_	_	_	Initialized	
IPRL	Initialized	_	_	_	_	_	_	Initialized	_
IPRM	Initialized	_	_	_	_	_	_	Initialized	_
IPRO	Initialized	_	_	_	_	_	_	Initialized	
ABWCR	Initialized*	_	_	_	_	_	_	Initialized	E
ASTCR	Initialized*	_	_	_	_	_	_	Initialized	

Rev. 6.00 Sep. 24, 2009 Page 866 of 928 REJ09B0099-0600

P5DR	Initialized*	_	_	_	_	_	_	Initialized
P7DR	Initialized*	_	_	_	_	_	_	Initialized
PADR	Initialized*	_	_	_	_	_	_	Initialized
PBDR	Initialized*	_	_	_	_	_	_	Initialized
PCDR	Initialized*	_	_	_	_	_	_	Initialized
PDDR	Initialized*	_	_	_	_	_	_	Initialized
PEDR	Initialized*	_	_	_	_	_	_	Initialized
PFDR	Initialized*	_	_	_	_	_	_	Initialized
PGDR	Initialized*	_	_	_	_	_	_	Initialized
TCR_0	Initialized	_	_	_	_	_	_	Initialized
TMDR_0	Initialized	_	_	_	_	_	_	Initialized
TIORH_0	Initialized	_	_	_	_	_	_	Initialized
TIORL_0	Initialized	_	_	_	_	_	_	Initialized
TIER_0	Initialized	_	_	_	_	_	_	Initialized
TSR_0	Initialized	_	_	_	_	_	_	Initialized
TCNT_0	Initialized	_	_	_	_	_	_	Initialized
TGRA_0	Initialized	_	_	_	_	_	_	Initialized
TGRB_0	Initialized	_	_	_	_	_	_	Initialized
TGRC_0	Initialized	_	_	_	_	_	_	Initialized
TGRD_0	Initialized	_			_	_		Initialized
TCR_1	Initialized	_	_	_	_	_	_	Initialized
TMDR_1	Initialized	_			_	_		Initialized
TIOR_1	Initialized	_	_	_	_	_	_	Initialized
TIER_1	Initialized	_	_	_	_	_	_	Initialized

Rev. 6.00 Sep. 24, 2009 Pag

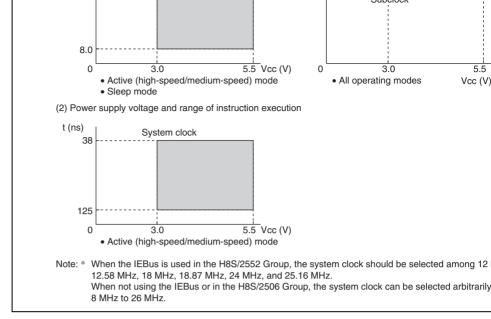
REJ09

Renesas

TSR_2	Initialized	_	_	—	_	_	_	Initialized	
TCNT_2	Initialized	_	_	_	_	_	_	Initialized	
TGRA_2	Initialized	_	_	_	_	_	_	Initialized	
TGRB_2	Initialized	_	_	_	_	_	_	Initialized	Т
TCR_0	Initialized	_	—	—	—	_	_	Initialized	Т
TCR_1	Initialized	_	_	_	—	_	_	Initialized	Т
TCSR_0	Initialized	_	_	_	_	_	_	Initialized	Т
TCSR_1	Initialized	_	—	—	—	_	_	Initialized	Т
TCORA_0	Initialized	_	_	_	—	_	_	Initialized	Т
TCORA_1	Initialized	_	—	—	—	_	_	Initialized	Т
TCORB_0	Initialized	_	_	_	_	_	_	Initialized	Т
TCORB_1	Initialized	_	_	_	—	_	_	Initialized	Т
TCNT_0	Initialized	_	—	—	—	_	_	Initialized	Т
TCNT_1	Initialized	_	_	_	_	_	_	Initialized	Т
TCSR_0	Initialized	_	—	—	—	_	_	Initialized	۷
TCNT_0	Initialized	_	_	_	_	_	_	Initialized	
RSTCSR	Initialized	_	_	_	_	_	_	Initialized	
SMR_0	Initialized	_	_	_	_	_	_	Initialized	S
BRR_0	Initialized	_	_	_	_	_	_	Initialized	
SCR_0	Initialized	_	_	_	_	_	_	Initialized	
TDR_0	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized	
SSR_0	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized	
RDR_0	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized	
SCMR_0	Initialized	_	_	_	_	_	_	Initialized	

Rev. 6.00 Sep. 24, 2009 Page 868 of 928 REJ09B0099-0600

BRR_2	Initialized	_	_	_	_	_	_	Initialized
SCR_2	Initialized	_	_	_	_	_	_	Initialized
TDR_2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
SSR_2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
RDR_2	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
SCMR_2	Initialized	_	_	_	_	_	_	Initialized
ADDRAH	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRAL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRBH	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRBL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRCH	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRCL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRDH	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADDRDL	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADCSR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
ADCR	Initialized	_	_	_	Initialized	Initialized	Initialized	Initialized
TCSR_1	Initialized	_	_	_	_	_	_	Initialized
TCNT_1	Initialized	_	_	_	_	_	_	Initialized
FCCS	Initialized	_	_	_	_	_	Initialized	Initialized
FPCS	Initialized	_	_	_	_	_	Initialized	Initialized
FECS	Initialized	_	_	_	_	_	Initialized	Initialized
FKEY	Initialized	_	_	_	_	_	Initialized	Initialized
FMATS	Initialized	_	_	_	_	_	Initialized	Initialized
FTDAR	Initialized	_	_	_	_	_	Initialized	Initialized


PORT4	_	_	_	_	_	_	_	_	_
PORT5	_	_	_	_	_	_		_	
PORT7	_		_	_	_	_		_	
PORT9	_	_	_	_	_	_		_	
PORTA	_	_	_	_	_	_		_	
PORTB	_	_	_	_	_	_	_	_	
PORTC	_	_	_	_	_	_	_	_	
PORTD	_	_	_	_	_	_	_	_	
PORTE		_	_	_	_	_	_	_	
PORTF	_	_	_	_	_	_		_	
PORTG	_		_	_	_	_		_	_
									-

Notes: — is not initialized.

* Not initialized by a manual reset.

Rev. 6.00 Sep. 24, 2009 Page 870 of 928 REJ09B0099-0600

Figure 24.1 (1) Power Supply Voltage and Operating Ranges (H8S/2552 Group, H8S/2506 Group)

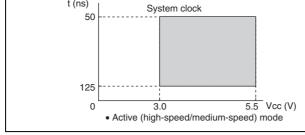


Figure 24.1 (2) Power Supply Voltage and Operating Ranges (H8S/2556 Gro

Rev. 6.00 Sep. 24, 2009 Page 872 of 928 REJ09B0099-0600

input voltage (ports 1, 2, 3, 7)	V _{in}	$-0.3 10 P2V_{cc} +0.3$
Input voltage (ports 5, A to H, J)	V _{in}	–0.3 to P1V _{cc} +0.3
Input voltage (port HRxD)*2	V _{in}	–0.3 to P1V _{cc} +0.3
Input voltage (others)*3	V _{in}	–0.3 to V $_{\rm cc}$ +0.3
Reference voltage	V_{ref}	–0.3 to AV _{cc} +0.3
Analog power supply voltage	AV _{cc}	–0.3 to +6.5
Analog input voltage	V _{AN}	–0.3 to AV _{cc} +0.3
Operating temperature	T _{opr}	Regular specifications: -20 to +75
		Wide-range specifications: -40 to +8
Storage temperature	T _{sta}	-55 to +125

Caution: Permanent damage to the chip may result if absolute maximum rating are exercised

- Notes: 1. Do not apply a power supply voltage to the VCL pin. The capacitor should be to GND externally.
 - HRxD is supported in the H8S/2556 Group only. Do not apply a power supply HTxD because it is an output pin.
 - 3. Do not connect to the OSC1 pin or OSC2 pin without a 32.768-kHz crystal reprint no subclock is required, connect the OSC1 pin to V_{ss} and leave the OSC2 pin

Item		Symbol	Min.	Тур.	Max.	Unit	Test Cor
Schmitt trigger	IRQ0, IRQ1,	VT ⁻	$P2V_{cc} imes 0.2$	_	_	V	
input voltage	IRQ4, IRQ5	VT^{+}	_	_	$\text{P2V}_{\text{cc}} imes 0.8$	V	-
		VT⁺ - VT⁻	$P2V_{cc} imes 0.05$	_	—	V	P2V _{cc} = V
	IRQ2, IRQ3,	VT	$P1V_{cc} imes 0.2$	_		V	
	IRQ6, IRQ7	VT^{+}	_	_	$P1V_{cc} imes 0.8$	V	-
		VT⁺ - VT⁻	$P1V_{cc} imes 0.05$	_	—	V	P1V _{cc} = V
Input high voltage	RES, STBY, NMI, MD2 to MD0	V _{IH}	$V_{cc} \times 0.9$		V _{cc} + 0.3	V	
	EXTAL		$V_{cc} imes 0.8$	_	V _{cc} + 0.3	V	_
	Ports 1 to 3, 7		$P2V_{cc} \times 0.8$	_	$P2V_{cc} + 0.3$	V	_
	Ports 5, A to H, J, HRxD∗⁵		$P1V_{cc} \times 0.8$		P1V _{cc} + 0.3	V	_
	Ports 4, 9		$AV_{cc} imes 0.8$	_	$AV_{cc} + 0.3$	V	-
Input low voltage	RES, STBY, NMI MD2 to MD0	V _{IL}	- 0.3		$V_{cc} imes 0.1$	V	
	EXTAL, TEST		- 0.3	_	$V_{cc} imes 0.2$	V	
	Ports 1 to 3, 7		- 0.3	_	$\text{P2V}_{\text{cc}} \times 0.2$	V	_
	Ports 5, A to H, J, HRxD*⁵		- 0.3		$P1V_{cc} imes 0.2$	V	_
	Ports 4, 9		- 0.3	_	$AV_{cc} \times 0.2$	V	-

Rev. 6.00 Sep. 24, 2009 Page 874 of 928 REJ09B0099-0600

Voltage*6	All output pins* ⁴	V _{ol}	_	_	0.4	V	I _{oL} = 0.8
Input leakage current	RES	I _{in}		_	1.0	μA	V _{in} = 0.2 V
	STBY, NMI, MD2 to MD0, TEST	-	_	_	1.0	μA	V _{in} = 0.2 V
	HRxD*⁵	-		_	1.0	μA	V _{in} = 0.2 - 0.2 V
	Ports 4, 9	-	—	_	1.0	μA	V _{in} = 0.2 - 0.2 V
Three-state leakage	Ports 1 to 3, 7	I _{tsi}		_	1.0	μA	V _{in} = 0.2 - 0.2 V
current (off state)	Ports 5, A to H, J	_	_		1.0	μA	V _{in} = 0.2 - 0.2 V
Input pull-up MOS current	Ports A to E	_P	10	—	300	μA	$V_{in} = 0$ V

Notes: 1. The regular specifications are supported in the H8S/2506 Group only.

- 2. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and A^v open. Apply a voltage 3.0 V to 5.5 V to the AV_{cc} and V_{ref} pins by connecting the for instance. Set V_{ref} \leq AV_{cc}.
- P35/SCK1/SCL0 and P34/SDA0 are NMOS push/pull outputs. To output high level signal, pull-up resistance must be connected externally.
- When ICE = 0. To output low when bus drive function is selected is determine 24.4, Bus Drive Characteristics.
- 5. HRxD and HTxD are supported in the H8S/2556 Group only.
- 6. When $P1V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 in ICPCR is 0), $P1V_{cc} = 3.3 V \pm 0.3 V$ (I in ICPCR is 1), $P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC2 in ICPCR is 0), and $P2V_{cc} = 3 V$ (BUFGC2 in ICPCR is 1).

Renesas

	All input pins except RES, NMI, and P32 to P35		—	_	15	pF	
Current consumption* ³	Normal operation	I _{cc} * ⁴		34 V _{cc} = 5.0 V	50 V _{cc} = 5.5 V	mA	f = 26 MHz
	Sleep mode			26 V _{cc} = 5.0 V	40 V _{cc} = 5.5 V	mA	f = 26 MHz
	All modules stopped		_	20 V _{cc} = 5.0 V		mA	f = 26 MHz (reference
	Medium- speed mode (\phi/32)		_	22 V _{cc} = 5.0 V	_	mA	f = 26 MHz (reference
	Watch mode		_	30 V _{cc} = 5.0 V	150 V _{cc} = 5.5 V	μ A	Using 32.7 crystal reso
	Standby mode		_	22 V _{cc} = 5.0 V	100 V _{cc} = 5.5 V	μA	T _a ≤ 50°C 32.768 kHz
				_	140 V _{cc} = 5.5 V		50°C < T _a 32.768 kHz
Analog power supply current	During A/D conversion, D/A conversion	Al _{cc}		3.0	5.0	mA	
	Waiting for A/D conversion, D/A conversion			2.0	10	μA	

Rev. 6.00 Sep. 24, 2009 Page 876 of 928 REJ09B0099-0600

- Notes: 1. The regular specifications are supported in the H8S/2506 Group only.
 - 2. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and A open. Apply a voltage 3.0 V to 5.5 V to the AV_{cc} and V_{ref} pins by connecting the for instance. Set V_{ref} \leq AV_{cc}.
 - 3. Current consumption values are for $P1V_{cc} = P2V_{cc} = AV_{cc} = V_{cc}$, V_{H} min. = V_{c} V_{IL} max. = 0.2 V with all output pins unloaded and the on-chip pull-up MOS in state.
 - 4. I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max. = –9.49 (mA) + 5.31 (mA/V) \times Vcc + 1.00 (mA/MHz) \times f + 0.03 (mA/(N V_{cc} \times f (normal operation)

 I_{cc} max. = -8.92 (mA) + 5.22 (mA/V) \times Vcc + 0.63 (mA/MHz) \times f + 0.027 (mA/(\times V_{cc} \times f (sleep mode)

	All input pins except RES, NMI, and P32 to P35			_	15	pF	
Current consumption* ²	Normal operation	I _{cc} * ³	_	28 V _{cc} =5.0 V	43 V _{cc} = 5.5 V	mA	f = 20 MHz
	Sleep mode	-	_	22 V _{cc} = 5.0 V	34 V _{cc} = 5.5 V	mA	f = 20 MHz
	All modules stopped	-	_	16 V _{cc} = 5.0 V	_	mA	f = 20 MHz (reference
	Medium- speed mode (\phi/32)	-	_	18 V _{cc} = 5.0 V	_	mA	f = 20 MHz (reference
	Watch mode	-	_	30 V _{cc} = 5.0 V	150 V _{cc} = 5.5 V	μ A	Using 32.7 crystal reso
	Standby mode	-	_	22 V _{cc} = 5.0 V	100 V _{cc} = 5.5 V	μA	T _a ≤ 50°C 32.768 kHz
			_	—	140 V _{cc} = 5.5 V	_	50°C < T _a 32.768 kHz
Analog power supply current	During A/D conversion, D/A conversion	Al _{cc}	—	3.0	5.0	mA	
	Waiting for A/D conversion, D/A conversion	-		2.0	10	μA	

Rev. 6.00 Sep. 24, 2009 Page 878 of 928 REJ09B0099-0600

- Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and Aⁱ open. Apply a voltage 3.0 V to 5.5 V to the AV_{cc} and V_{ref} pins by connecting th for instance. Set $V_{ref} \le AV_{cc}$.
 - 2. Current consumption values are for $P1V_{cc} = P2V_{cc} = AV_{cc} = V_{cc}$, V_{H} min. = V_{c} V_{IL} max. = 0.2 V with all output pins unloaded and the on-chip pull-up MOS in state.
 - 3. I_{cc} depends on V_{cc} and f as follows:

 I_{cc} max. = –9.49 (mA) + 5.31 (mA/V) \times Vcc + 1.00 (mA/MHz) \times f + 0.03 (mA/(MV) $_{cc}$ \times f (normal operation)

 I_{cc} max. = -8.58 (mA) + 5.04 (mA/V) \times Vcc + 0.60 (mA/MHz) \times f + 0.026 (mA/C \times V_{cc} \times f (sleep mode)

current (total)	Total of all output pins	ک I _{oL}	_	_	80	m
Permissible output high current (per pin)	All output pins	—І _{он}	—	—	1.0	m
Permissible output high current (total)	Total of all output pins	$\Sigma - \mathbf{I}_{\mathrm{OH}}$	_	—	40	m

Notes: To protect chip reliability, do not exceed the output current values in table 24.3.

* The regular specifications are supported in the H8S/2506 Group only.

Rev. 6.00 Sep. 24, 2009 Page 880 of 928 REJ09B0099-0600

						V/ 3.3 V ± 0.
	VT⁺- VT ⁻	P2V _{cc} × 0.05	_	_	-	P2V _{cc} = 5 V
Input high voltage	V _{IH}	$P2V_{cc} \times 0.7$	_	P2V _{cc} + 0.5	V	P2V _{cc} = 5 V/ 3.3 V ± 0
Input low voltage	V _{IL}	-0.5	_	P2V _{cc} × 0.25	V	P2V _{cc} = 5 V/ 3.3 V ± 0.
Output low voltage	V _{ol}	_	_	0.5	V	l _{oL} = 8 m/
		_	_	0.4	-	I _{oL} = 3 m/
Input capacitance	C _{IN}	_	_	20	pF	$V_{IN} = 0 V,$ f = 8 MHz T _a =25°C
Three-state leakage current (off state)	_{sti}	_	_	1.0	μA	V _{IN} =0.2 to V

Notes: 1. The regular specifications are supported in the H8S/2506 Group only.

2. If the A/D and D/A converters are not used, do not leave the AV_{cc}, V_{ref}, and A open. Apply a voltage 5.0 V ±0.5 V/3.3 V ±0.3 V to the AV_{cc} and V_{ref} pins by con them to V_{cc}, for instance. Set V_{ref} \leq AV_{cc}

3. Test Conditions are for $P1V_{cc} = P2V_{cc} = AV_{cc} = V_{cc}$.

RENESAS

Figure 24.2 Output Load Circuit

24.4.1 Power-On/Off Timing

Table 24.5 Power-On/Off Timing

Condition A: $V_{cc} = 3.0$ V to 5.5 V, $P1V_{cc} = 3.0$ V to 5.5 V, $P2V_{cc} = 3.0$ V to 5.5 V, AV_{cc} = 3.0 V to 5.5 V, $V_{ref} = 3.0$ V to AV_{cc}, $V_{ss} = AV_{ss} = 0$ V, $T_s = -20^{\circ}$ C to +75°C (regular specifications)*, $T_s = -40^{\circ}$ C to +85°C (wide-range specific

Item	Symbol	Min.	Тур.	Max.	Unit	Test Cond
Time taken to switch $\rm V_{cc}$ on	t _{vccs}	-1		_	ms	Figure 24.
$V_{\rm cc}$ hold time when ${\rm PV}_{\rm cc}$ is switched off	t _{vcch}	-1	—	_	ms	_
V _{cc} start voltage	$V_{\rm ccstart}$	_	0	0.8	V	Figure 24.
$V_{\rm cc}$ rising gradient	$\mathrm{SV}_{\mathrm{cc}}$			20	ms/V	

Note: * The regular specifications are supported in the H8S/2506 Group only.

Rev. 6.00 Sep. 24, 2009 Page 882 of 928 REJ09B0099-0600

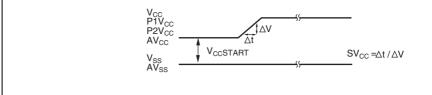


Figure 24.4 Power-On Timing

specifications)

Item	s	Symbol	Min.	Max.	Unit	Test Cond
Clock cycle time	t	сус	38	125	ns	Figure 24.8
Clock high pulse width	t	сн	12	_	ns	
Clock low pulse width	t	CL	12	_	ns	
Clock rise time		Cr	—	5	ns	
Clock fall time	t	Cf	—	5	ns	
EXTAL clock input PLL1 frequency multiplica	f ation	EX	8	26	MHz	Figure 21.8
PLL2 multiplica	ation		8	13		
Clock oscillator settling time (crystal)	at reset t	OSC1	20		ms	Figure 24.6
Clock oscillator settling time (external clock)	at reset		20	—	ms	
Clock oscillator settling time software standby (crystal)	in t	OSC2	8		ms	Figure 22.3
External clock settling delay	time t	DEXT	8	_	ms	Figure 24.6
Subclock oscillator settling ti		OSC3	2	_	s	
Subclock oscillator frequency		SUB		32.768	kHz	
Subclock (ϕ_{SUB}) cycle time		SUB		30.5	μS	

Note: * The regular specifications are supported in the H8S/2506 Group only.

Rev. 6.00 Sep. 24, 2009 Page 884 of 928 REJ09B0099-0600

Clock low pulse width		t _{c∟}	18		ns	
Clock rise time		t _{cr}		5	ns	
Clock fall time		t _{cf}	_	5	ns	
EXTAL clock input frequency	PLL1 multiplication	f_{EX}	8	20	MHz	Figure 21
	PLL2 multiplication	_	8	10		
Clock oscillator settling time at reset (crystal)		t _{osc1}	20		ms	Figure 24
Clock oscillator settling time at reset (external clock)		_	20	_	ms	
Clock oscillator settling time in software standby (crystal)		t _{osc2}	8	_	ms	Figure 22
External clock settling delay time		t _{DEXT}	8		ms	Figure 24
Subclock oscillator settling time		t _{osc3}	2	_	S	
Subclock oscillator frequency		f _{sub}		32.768	kHz	
Subclock (ϕ_{SUB}) cycle time		t _{sub}		30.5	μS	

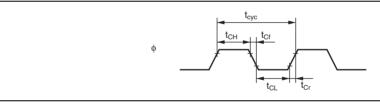


Figure 24.5 System Clock Timing

Renesas

Figure 24.6 Oscillator Settling Timing

24.4.3 Control Signal Timing

Table 24.7 lists the control signal timing.

Table 24.7 Control Signal Timing

Condition A (for H8S/2552 Group, H8S/2506 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ 3.3 V ± 0.3 V (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 26 MHz, $T_a = -20^{\circ}$ C to +75°C (regular specifications)*, $T_a = -40^{\circ}$ C to +85°C (wide-specifications)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ $3.3 V \pm 0.3 V$ (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

Item	Symbol	Min.	Max.	Unit	Test Cond
RES setup time	t _{ress}	250	_	ns	Figure 24.7
RES pulse width	t _{resw}	20	_	t _{cyc}	-
MRES setup time	t _{mress}	250	_	ns	-
MRES pulse width	$\mathbf{t}_{_{\mathrm{MRESW}}}$	20		t _{cyc}	

Rev. 6.00 Sep. 24, 2009 Page 886 of 928 REJ09B0099-0600

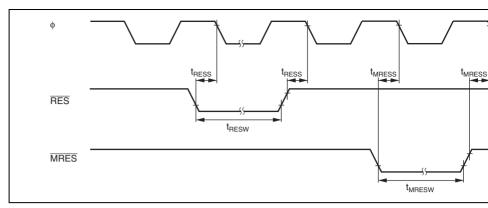


Figure 24.7 Reset Input Timing

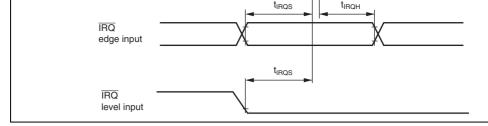


Figure 24.8 Interrupt Input Timing

Rev. 6.00 Sep. 24, 2009 Page 888 of 928 REJ09B0099-0600

specifications)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ 3.3 V \pm 0.3 V (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

		Cond	ition A	Cond	ition B		Te
Item	Symbol	Min.	Max.	Min.	Max.	Unit	Co
Address delay time	t _{AD}	_	30	_	35	ns	Fię
Address setup time	t _{AS}	$0.5 imes t_{cyc}$ -15	_	$0.5 imes t_{cyc}$ -15	_	ns	to
Address hold time	t _{AH}	$0.5 imes t_{ m cyc}$ -8		$0.5 imes t_{ m cyc}$ -8		ns	_
CS delay time	t _{csd}		30	_	35	ns	_
AS delay time	t _{ASD}	_	25	—	25	ns	-
RD delay time 1	t _{RSD1}	_	25	—	25	ns	-
RD delay time 2	t _{RSD2}	_	25	_	25	ns	_
Read data setup time	t _{RDS}	30	_	30	_	ns	-
Read data hold time	t _{RDH}	10	_	10	_	ns	-
Read data access time 2	t _{ACC2}	_	$1.5 imes t_{ m cyc}$ -40		$1.5 imes t_{cyc}$ -40	ns	_
Read data access time 3	t _{ACC3}	_	$2.0 imes t_{cyc}$ -40		$2.0 imes t_{cyc}$ - 50	ns	

RENESAS

WR pulse width 2	t _{wsw2}	1.5 × t _e 15	yc	1.5 × 1 20	сус —	ns	
Write data delay time	$t_{_{WDD}}$	_	25	_	40	ns	
Write data setup time	t _{wDS}	0.5 × t _{ej} 19	yc	0.5 × 1 25		ns	Figu
Write data hold time	$t_{\rm WDH}$	0.5 × t _{cj} 12	yc	0.5 × 1 20		ns	
WAIT setup time	t _{wrs}	25	_	25	_	ns	Figu
WAIT hold time	t _{wrн}	10	_	10	—	ns	
BREQ setup time	t _{BRQS}	25	_	30		ns	Figu
BACK delay time	t _{BACD}		25		40	ns	
Bus floating time	t _{BZD}		38		50	ns	

Note: * The regular specifications are supported in the H8S/2506 Group only.

Rev. 6.00 Sep. 24, 2009 Page 890 of 928 REJ09B0099-0600

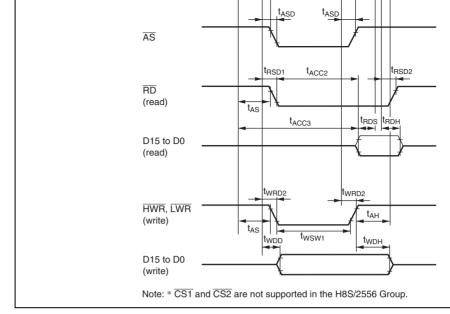


Figure 24.9 Basic Bus Timing: Two-State Access

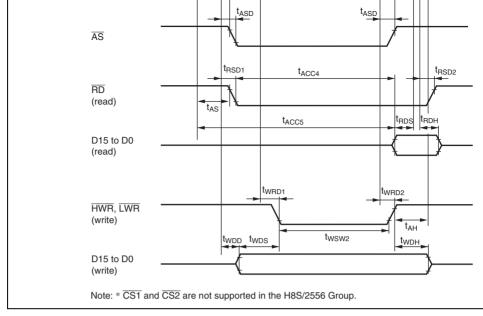


Figure 24.10 Basic Bus Timing: Three-State Access

Rev. 6.00 Sep. 24, 2009 Page 892 of 928 REJ09B0099-0600

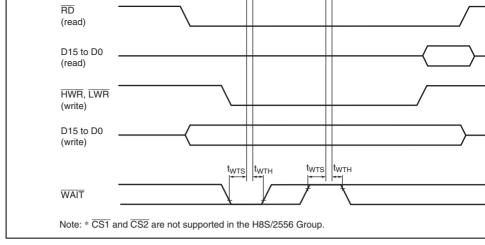
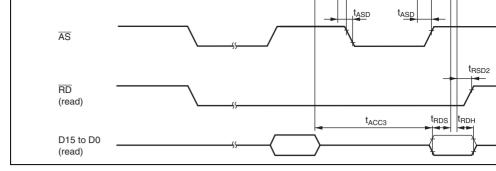
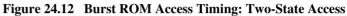




Figure 24.11 Basic Bus Timing: Three-State Access, One Wait

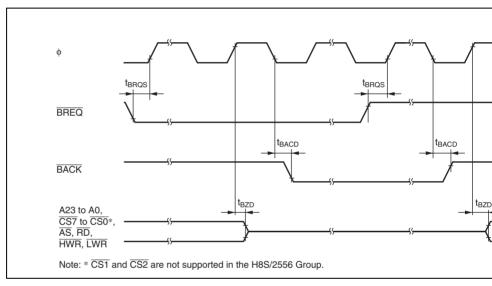


Figure 24.13 External Bus-Released Timing

Rev. 6.00 Sep. 24, 2009 Page 894 of 928 REJ09B0099-0600 opeenie actions)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ $3.3 V \pm 0.3 V$ (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

				Cond	dition A	Cond	lition B		Те
Item			Symbol	Min.	Max.	Min.	Max.	Unit	C
I/O ports	Output data delay	/ time	t _{PWD}	_	38	_	50	ns	Fi
*3	Input data setup	put data setup time			_	30	_	_	
	Input data hold ti	ne	t _{PRH}	28	_	30	_	_	
TPU	Timer output dela	ıy time	t _{TOCD}	_	38	_	50	ns	Fi
	Timer input setup time			28	_	30	_	_	
	Timer clock input setup time		t _{TCKS}	28	_	30	_	ns	Fi
	Timer clock	Single edge	t _{тскwн}	1.5	_	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{TCKWL}	2.5	_	2.5	_	_	
TMR	Timer output dela	ıy time	t _{mod}		38		50	ns	Fi
	Timer reset input	setup time	t _{mrs}	28		30	_	ns	Fi
	Timer clock input	setup time	t _{mcs}	28		30	_	ns	Fi
	Timer clock	Single edge	t _{тмсwн}	1.5	_	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{mcwl}	2.5	_	2.5	_	-	
WDT_1	BUZZ output dela	ay time	t _{BUZD}	—	38	_	50	ns	Fi

RENESAS

	(synchronous)							
	Receive data hold time (synchronous)	t _{exh}	38	_	50	_	ns	
A/D converter	Trigger input setup time	$t_{_{TRGS}}$	28	—	30	—	ns	Fig
HCAN* ²	Transmit data delay time	$t_{\rm HTXD}$			_	50	ns	Fig
	Transmit data setup time	t _{HRXS}	_	_	30	_	ns	
	Transmit data hold time	t _{HRXH}	_	_	30	_	ns	

Notes: 1. The regular specifications are supported in the H8S/2506 Group only.

 (For H8S/2556 Group) The HCAN input signal is asynchronous, but checked a been changed at the φ clock rise (two clock intervals) shown in figure 24.24. The output signal is asynchronous, but it changes at the φ clock rise (two clock intervals) shown in figure 24.24.

3. The P35/SCK1/SCK4 and P34 pins are driven high by NMOS. To output high, up resistor should be connected externally.

Rev. 6.00 Sep. 24, 2009 Page 896 of 928 REJ09B0099-0600

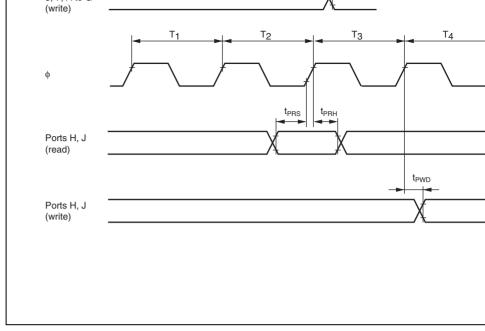


Figure 24.14 I/O Port Input/Output Timing

Renesas

Figure 24.15 TPU Input/Output Timing

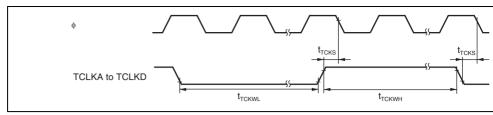


Figure 24.16 TPU Clock Input Timing

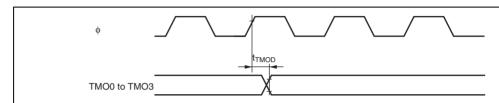


Figure 24.17 8-Bit Timer Output Timing

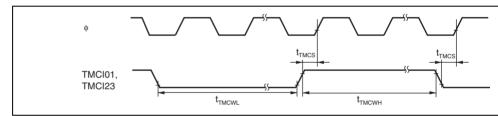


Figure 24.18 8-Bit Timer Clock Input Timing

Figure 24.20 WDT_1 Output Timing

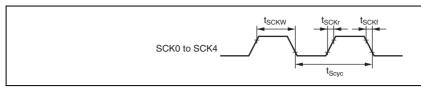


Figure 24.21 SCK Clock Input Timing

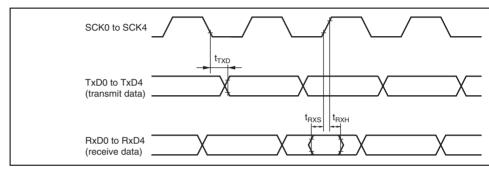


Figure 24.22 SCI Input/Output Timing/Synchronous Mode

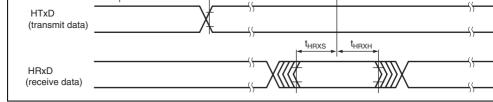


Figure 24.24 HCAN Input/Output Timing

Rev. 6.00 Sep. 24, 2009 Page 900 of 928 REJ09B0099-0600

SCL, SDA input spike pulse elimination time	t _{sp}	_	—	1t _{cyc}	ns
SDA input bus free time	t _{BUF}	5t _{cyc}	_	_	ns
Start condition input hold time	t _{stah}	3t _{cyc}	_	_	ns
Retransmission start condition input setup time	t _{stas}	$\operatorname{St}_{\operatorname{cyc}}$	—	—	ns
Stop condition input setup time	t _{stos}	3t _{cyc}	_	—	ns
Data input setup time	$t_{_{\mathrm{SDAS}}}$	$1t_{cyc} + 20$	_	_	ns
Data input hold time	t _{sdah}	0*	_	_	ns
SCL, SDA load capacitance	C,	0	_	400	pF
SCL, SDA output fall time	t _{sr}	20 + 0.1 Cb)	250	ns

Note: * Configure the system in which the SDA data input hold time (t_{SDAH}) to SCL low $0.25 \times V_{cc}$ should be 0 ns or longer since the SDA is not changed while the S is high.

Note: * S, P, and Sr indicate the following conditions.

S: Start condition

P: Stop condition

Sr: Retransmission start condition

Figure 24.25 I²C Bus Interface 2 Input/Output Timing

Rev. 6.00 Sep. 24, 2009 Page 902 of 928 REJ09B0099-0600

specifications)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ 3.3 V \pm 0.3 V (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

Item	Min.	Тур.	Max.	Uni
Resolution	10	10	10	bits
Conversion time	9.8		_	μs
Analog input capacitance	_	—	20	pF
Permissible signal-source impedance	_	_	5	kΩ
Non-linearity error	_	_	±6.0	LSE
Offset error	_	_	±4.0	LSE
Full-scale error		_	±4.0	LSE
Quantization error	_	_	±0.5	LSE
Absolute accuracy	_	_	±8.0	LSE

Note: * The regular specifications are supported in the H8S/2506 Group only.

RENESAS

specifications)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ $3.3 V \pm 0.3 V$ (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

Item	Min.	Тур.	Max.	Unit	Test Conditions
Resolution	8	8	8	bits	
Conversion time	_	_	10	μs	Load capacitance: 20 pF
Absolute accuracy*2	_	±2.0	±3.0	LSB	Load resistance: 2 $M\Omega$
	_	_	±2.0	LSB	Load resistance: 4 $M\Omega$

Notes: 1. The regular specifications are supported in the H8S/2506 Group only.

2. Except module stop, software standby, and watch modes.

Rev. 6.00 Sep. 24, 2009 Page 904 of 928 REJ09B0099-0600

opeenie actions)

Condition B (for H8S/2556 Group): $V_{cc} = P1V_{cc} = P2V_{cc} = 5.0 V \pm 0.5 V$ (BUFGC1 and BUFGC2 in ICPCR are 0)/ $3.3 V \pm 0.3 V$ (BUFGC1 and BUFGC2 in ICPCR are 1), $AV_{cc} = 3.0 V$ to 5.5 V, $V_{ref} = 3.0 V$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768$ kHz, 8 to 20 MHz, Ta = -40°C to +85°C (wide-range specifications)

Symbo I	Min.	Тур.	Max.	Unit	Tes Con
t _p		3	30	ms/128 bytes	
t _e	_	80	800	ms/4 kbytes	
	_	500	5000	ms/32 kbytes	
		1000	10000	ms/64 kbytes	
\sum_{IP}		7.5	22.5	s/384 kbytes	T _a =
		10	30	s/512 kbytes	0
$\Sigma_{\rm IE}$		7.5	22.5	s/384 kbytes	T _a =
	_	10	30	s/512 kbytes	-
\sum_{ipe}		15	45	s/384 kbytes	T _a =
		20	60	s/512 kbytes	-
N_{wec}	100* ³			Times	
t _{DRP}	10			Year	
	$\frac{\mathbf{t}_{p}}{\mathbf{t}_{E}}$ $\frac{\boldsymbol{\Sigma}_{IP}}{\boldsymbol{\Sigma}_{IE}}$ $\frac{\boldsymbol{\Sigma}_{IPE}}{\mathbf{N}_{WEC}}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c } I & \mbox{Min.} & \mbox{Typ.} & \mbox{Max.} \\ \hline t_{\mbox{\tiny ρ}} & $$ & 3 & 30 \\ \hline t_{\mbox{\tiny ϵ}} & $$ & 80 & 800 \\ \hline$ & 500 & 5000 \\ \hline$ & 1000 & 10000 \\ \hline$ & 1000 & 10000 \\ \hline \\ $	$ \begin{array}{c c c c c c c } I & \mbox{Min.} & \mbox{Typ.} & \mbox{Max.} & \mbox{Unit} \\ \hline t_{\mbox{\tiny p}} & $$ & 3 & 30 & $ms/128$ bytes \\ \hline t_{\mbox{\tiny E}} & $$ & 80 & 800 & $ms/4$ kbytes \\ \hline$ & 500 & 5000 & $ms/32$ kbytes \\ \hline$ & 1000 & 10000 & $ms/64$ kbytes \\ \hline$ & 100 & 10000 & $ms/64$ kbytes \\ \hline$ & 10 & 30 & $s/512$ kbytes \\ \hline$ & 10 & 30 & $s/512$ kbytes \\ \hline$ & 10 & 30 & $s/512$ kbytes \\ \hline$ & 10 & 30 & $s/512$ kbytes \\ \hline$ & 10 & 30 & $s/512$ kbytes \\ \hline$ & 15 & 45 & $s/384$ kbytes \\ \hline$ & 20 & 60 & $s/512$ kbytes \\ \hline N_{\mbox{\tiny WEC}} & 100^{*3} & $$ & $$ Times \\ \hline \end{array} $

Notes: 1. Programming/Erase time depends on the data.

2. Programming/Erase time does not include the data transfer time.

3. The minimum times that all characteristics after reprogramming are guarantee range between 1 and a minimum value is guaranteed.)

 Data hold characteristics are when reprogramming is performed within the ran specifications including a minimum value.

5. The regular specifications are supported in the H8S/2506 Group only.

RENESAS

Rev. 6.00 Sep. 24, 2009 Page 906 of 928 REJ09B0099-0600

Port 3	6, 7	т	keep	Т	keep	keep	I/O
Port 4	6, 7	Т	Т	Т	Т	Т	Inp
Port 5	6, 7	Т	keep	Т	keep	keep	I/O
P77 to P74	6, 7	Т	keep	Т	keep	keep	I/O
P73/TMO1/CS	7 7	Т	keep	Т	keep	keep	I/O
P72/TMO0/CS	6 6	т	keep	Т	$[DDR \bullet OPE = 0]$	Т	[DI
P71/TMRI23/					Т		Inp
TMCI23/CS5					[DDR • OPE = 1]		[D[
P70/TMRI01/ TMCI01/CS4					Н		CS
P97/DA1	6, 7	т	Т	т	[DAOEn = 1]	keep	Inp
P96/DA0					keep		
					[DAOEn = 0]		
_					Т		
P95 to P90	6, 7	т	Т	Т	Т	Т	Inp
Port A	7	Т	Keep	Т	keep	keep	I/O
Address	s 6	т	Keep	т	[OPE = 0]	Т	Ade
output selectio					Т		
with AE					[OPE = 1]		
bit					keep		
Port selectio	6 in	Т	keep	Т	keep	keep	I/O

	election							
Port C		6	Т	keep	т	$[DDR \bullet OPE = 0]$	т	[DDI
						т		Inpu
						[DDR • OPE = 1]		[DDI
						keep		Add
		7	т	keep	Т	keep	keep	I/O p
Port D		6	т	Т	Т	т	Т	Data
		7	т	keep	Т	keep	keep	I/O p
Port E	8-bit bus	6	т	keep	Т	keep	keep	I/O p
	16-bit bus	6	т	т	т	Т	т	Data
		7	Т	keep	Т	keep	keep	I/O p
PF7/ø		6	Clock	[DDR = 0]	Т	[DDR = 0]	[DDR = 0]	[DDI
			output*3	Input port		Input port	Input port	Inpu
				[DDR = 1]		[DDR = 1]	[DDR = 1]	[DDI
				Clock output		Н	Clock output	Cloc
		7	Т	keep	Т	[DDR = 0]	[DDR = 0]	[DDI
						Input port	Input port	Inpu
						[DDR = 1]	[DDR = 1]	[DDI
						н	Clock output	Cloc

Rev. 6.00 Sep. 24, 2009 Page 908 of 928 REJ09B0099-0600

3-bit bus 16-bit		Т	keep	Т	keep	keep	I/O
	~					Ксср	.,0
	6		Н	т	[OPE = 0]	Т	ΓW
ous					т		
					[OPE = 1]		
					н		
	6	т	keep	т	[WAITE = 0]	[WAITE = 0]	[W.
					keep	keep	I/O
					[WAITE = 1]	[WAITE = 1]	[W.
					т	т	WA
	7	т	keep	Т	keep	keep	I/O
κ̄/BUZZ	6	Т	keep	Т	[BRLE = 0]	L	[BF
					keep		I/O
					[BRLE = 1]		[BF
					н		BA
	7	Т	keep	Т	keep	keep	I/O
Q/IRQ2	6	Т	keep	Т	[BRLE = 0]	Т	[BF
					keep		I/O
					[BRLE = 1]		[BF
					Т		BR
	7	Т	keep	Т	keep	keep	I/O
	Ź/BUZZ	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 T 7 T VBUZZ 6 T 7 T 0/IRQ2 6 T	6 T keep 7 T keep 7/BUZZ 6 T keep 7 T keep 7 T keep 7 T keep	6 T keep T 7 T keep T	Image: Particular system of the system of	$\begin{tabular}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$

AD I NG/INQ3

PG3/RX/CS1*	0	1	кеер	I	[DDR • OPE	= 0] 1	וטטן
PG2/TX/CS2*1					Т		Input
PG1/CS3/IRQ7					[DDR • OPE	= 1]	[DDF
					н		CS1
	7	Т	keep	Т	keep	keep	I/O p
PG0/IRQ6	6, 7	Т	keep	Т	keep	keep	I/O p
Port H	6, 7	Т	keep	Т	keep	keep	I/O p
Port J	6, 7	Т	keep	Т	keep	keep	I/O p
THxD* ²	6, 7	H* ³	н	Т	н	keep	THx
HRxD* ²	6, 7	Input	Input	Т	Т	Input	HRxI

Legend:

H: High level

L: Low level

T: High-impedance

Keep: Input port becomes high-impedance, output port retains state

DDR: Data direction register

OPE: Output port enable

WAITE: Wait input enable

BRLE: Bus release enable

Notes: 1. PG3 and PG2 are not supported in the H8S/2556 Group.

PG3/ $\overline{RX}/\overline{CS1}$ and PG2/ $\overline{TX}/\overline{CS2}$ are supported in the H8S/2552 Group. (When 1, \overline{RX} and \overline{TX} are valid.)

PG3/CS1 and PG2/CS2 are supported in the H8S/2506 Group.

- 2. Supported only in the H8S/2556 Group.
- 3. Output pins are in the high-impedance state when the power is supplied.

Rev. 6.00 Sep. 24, 2009 Page 910 of 928 REJ09B0099-0600

H8S/2506	Flash memory version	HD64F2506	HD64F2506FC26	144-pin QFP (FP-144J,
			HD64F2506BR26	176-pin LFBGA (BP-176
H8S/2505	Flash memory version	HD64F2505	HD64F2505FC26	144-pin QFP (FP-144J,
			HD64F2505BR26	176-pin LFBGA (BP-176

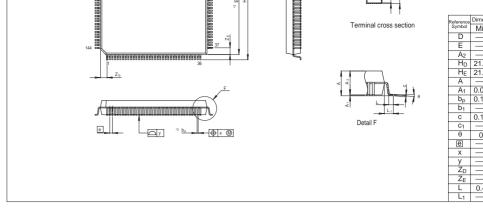


Figure C.1 FP-144J and FP-144JV Package Dimensions

Rev. 6.00 Sep. 24, 2009 Page 912 of 928 REJ09B0099-0600

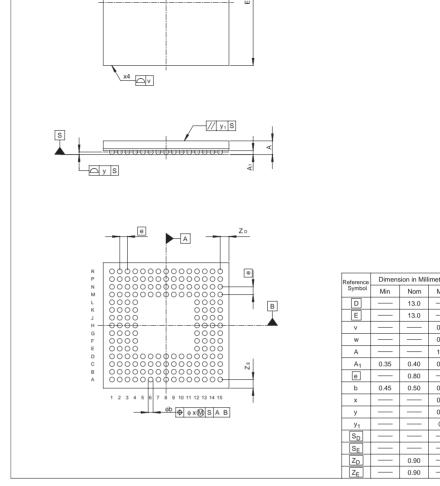


Figure C.2 BP-176V Package Dimensions

Renesas

Rev. 6.00 Sep. 24, 2009 Page 914 of 928 REJ09B0099-0600

		WAII	E		0		1	
		PF2D	DR	0		1	—	0
		Pin fu	nction	PF2 in	out	PF2 output	WAIT input	PF2 input
12.3.1 Timer Counter	380	Des	cription a	added				
(TCNT)			NT is initia red to 0.	alized to	o H'00) when t	he TME bi	t in TCS
		To i	nitialize 7	CNT to	o H'00) during t	timer oper	ation, w
			l'00 direc CNT by t	-		For deta	ils, see 12	2.6.7, Ini
12.6.7 Initialization of TCNT by the TME Bit	393	Nev	vly addec	l				
13.3.7 Serial Status	410	Tah	le ameno	hod and	note	habhe		
Register (SSR)	410			Initial				
 Normal Serial 		Bit	Bit Name	Value	R/W	Description		otu
Communication Interface Mode (When SMIF in SCMR Is 0)				1	R/(W)* ¹	Displays wh [Setting con • When th • When da can be w [Clearing co • When 0 • When th request	te TE bit in SCR ata is transferre written to TDR onditions] is written to TD te DTC* ² is activ and writes data	is 0 d from TDR f RE after read vated by a T2
		6	RDRF	0	H⁄(₩)*	Indicates th [Setting con • When su is transf [Clearing co • When 0 • When th transfers The RDRF values wheu If reception flag is still s	erial reception e erred from RSR	nds normally to RDR RF after rea vated by an f dand retain CR is cleare is complete

Rev. 6.00 Sep. 24, 2009 Pag

REJ09

					The ORER flag is not affected and retains i state when the RE bit in SCR is cleared to
	4	FER	0	R/(W)*1	Framing Error
					Indicates that a framing error occurred duri asynchronous mode, causing abnormal ter
					[Setting condition]
					When the stop bit is 0
					In 2 stop bit mode, only the first stop bit is value to 1; the second stop bit is not check framing error occurs, the receive data is tra RDR but the RDRF flag is not set. Also, su serial reception cannot be continued while set to 1. In clocked synchronous mode, see transmission cannot be continued, either.
					[Clearing condition]
					When 0 is written to FER after reading
					In 2-stop-bit mode, only the first stop bit is
					The FER flag is not affected and retains its when the RE bit in SCR is cleared to 0.
412	Bit	Bit Name	Initial Value	R/W	Description
412	Bit 3	Bit Name PER		R/W R/(W)* ¹	•
412			Value		Parity Error Indicates that a parity error occurred during
412			Value		Parity Error Indicates that a parity error occurred during using parity addition in asynchronous mode
412			Value		Parity Error Indicates that a parity error occurred during using parity addition in asynchronous mode abnormal termination. [Setting condition]
412			Value		Parity Error Indicates that a parity error occurred during using parity addition in asynchronous mode abnormal termination.
412			Value		Parity Error Indicates that a parity error occurred during using parity addition in asynchronous mode abnormal termination. [Setting condition] • When a parity error is detected during m If a parity error occurs, the receive data is the RDR but the RDRF flag is not set. Also, sub serial reception cannot be continued while f is set to 1. In clocked synchronous mode, s transmission cannot be continued, either.
412			Value		Parity Error Indicates that a parity error occurred during using parity addition in asynchronous mode abnormal termination. [Setting condition] • When a parity error is detected during m If a parity error occurs, the receive data is the RDR but the RDRF flag is not set. Also, sub serial reception cannot be continued while the is set to 1. In clocked synchronous mode, s transmission cannot be continued, either. [Clearing condition]

To clear the flag by using the CPU, write 0 to the f then read it once again.

Rev. 6.00 Sep. 24, 2009 Page 916 of 928 REJ09B0099-0600

	6	RDRF	0	H/(W)*	Receive Data Register Full
					Indicates that the received data is stored
					[Setting condition]
					When serial reception ends normally is transferred from RSR to RDR
					[Clearing conditions]
					When 0 is written to RDRF after readi
					 When the DTC*² is activated by an Ri transfers data from RDR
					The RDRF flag is not affected and retains values when the RE bit in SCR is cleared
					If reception of the next data is completed flag is still set to 1, an overrun error will o receive data will be lost.
414			Initial		
414	Bit	Bit Name	Value	R/W	Description
	5	ORER	0	R/(W)*1	Overrun Error
					Indicates that an overrun error occurred o causing abnormal termination.
					[Setting condition]
					When the next serial reception is com RDRF = 1
					The receive data prior to the overrun error RDR, and the data received subsequent! subsequent serial cannot be continued w flag is set to 1. In clocked synchronous m transmission cannot be continued, either.
					[Clearing condition]
					• When 0 is written to ORER after read
					The ORER flag is not affected and retain state when the RE bit in SCR is cleared to
	4	ERS	0	R/(W)*1	Error Signal Status
					Indicates that the status of an error, signation from the reception side at reception
					[Setting condition]
					• When the low level of the error signal
					[Clearing condition]
					-

						RE bit in SCR		
	416	Notes	s:					
		3. Te	o clea	ar the flag by	y using the	CPU, w	rite 0	to the f
		th	ien re	ad it once a	igain.			
20.1.2 Operating Mode	669	Table) ame	ended and n	ote added			
Table 20.1 MD Pin			Reset state	On-chip ROM valid mode* ¹	User program mode* ²	User boot mode		mode r
Setting and Operating Mode		RES	0	1	1	1		1
Mode		MD0* ³ MD1	0/1 0/1	0/1	0/1	1		0/1
		MD1 MD2	0/1	1	1	0		1
		Notes						
					"			
				e of On-chip				
				oot mode, wl				,
				anded mod		,		
				will be Single	•			n case
		_		ode, there is	S NO Expan	ded mot	Je.	
20.4.3 User Boot Mode	716	Descr	riptior	n amended				
		The a	area t ⁱ	hat can be e	executed in	the ster	ps of	the use
		proce	Jdure	program (o	n-chip RAN	/I and us	er M/	AT) i
		in sec	ction ?	20.4.4, Proc	cedure Proç	gram and	d Sto ^r	rable A
		Progr	rammi	ing Data.				
	717	Desc	riptior	n amended				-
		proce in sec	edure ction 2	hat can be e program (or 20.4.4, Proc ing Data.	on-chip RAN	A and us	ser MA	AT)
		1109	annin	ing Data.				

Rev. 6.00 Sep. 24, 2009 Page 918 of 928 REJ09B0099-0600

RENESAS

		Item	RAM	Memory	(Expanded M	ode) User N	IAI
		Execution of Writing SCO = 1 to FCCS (Download)	0	×	×		
Table 20.9 (3) Useable Area for Programming in	722	Table amended		rable/Executa	ble Area	Sel	ecte
User Boot Mode		Item	On-Chip RAM	User Boot MAT		User Boot MAT	Ei Pi St
		Storage Area for Program Data	0	X*1	-	_	
		Operation for Selection of On-chip Program to be Downloaded	0	0		0	
		Operation for Writing H'A5 to FKEY	0	0		0	
		Execution of Writing SCO = 1 to FCCS (Download)	0	×			
		Operation for FKEY Clear	0	0		0	
		Determination of Download Result	0	0		0	
		Operation for Download Error	0	0		0	

Operation for Settings of Initial Parameter

RENESAS

Rev. 6.00 Sep. 24, 2009 Pag REJ09

0

0

Switching MATs by FMATS	0	×	0	
Operation for Writing H'5A to FKEY	0	×	0	
Operation for Settings of Program Parameter	0	×	0	
Execution of Programming	0	×	0	
Determination of Program Result	0	×	0	
Operation for Program Error	0	×*²	0	
Operation for FKEY Clear	0	×	0	
Switching MATs by FMATS	0	×		0

Rev. 6.00 Sep. 24, 2009 Page 920 of 928 REJ09B0099-0600

Clear				
Determination of Download Result	0	0		0
Operation for Download Error	0	0		0
Operation for Settings of Initial Parameter	0	0		0
Execution of Initialization	0	×		0
Determination of Initialization Result	0	0		0
Operation for Initialization Error	0	0		0
NMI Handling Routine	0	×		0
Operation for Interrupt Inhibit	0	0		0
Switching MATs by FMATS	0	×	0	
Operation for Writing H'5A to FKEY	0	×	0	

725 Table amended

	Storable/E	Executable Area	3	Selected MAT		
Item	On-Chip RAM	User Boot MAT	User MAT	User Boot MAT	Embe Stora	
Operation for Settings of Erasure Parameter	0	×	0			
Execution of Erasure	0	×	0			
Determination of Erasure Result	0	×	0			
Operation for Erasure Error	0	×*	0			
Operation for FKEY Clear	0	×	0			
Switching MATs by FMATS	0	×		0		

Rev. 6.00 Sep. 24, 2009 Page 922 of 928 REJ09B0099-0600

A/D converter activation	334
Absolute address	54
Acknowledge	493
Activated by software	186
Address map	72
Address space	32
Addressing modes	52
ADI	527
Analog input channel	516
Arbitration field	649
Arithmetic operations instructions	44
Asynchronous mode	425

В

Bcc	49
Bit Manipulation instructions	47
Bit rate	418, 640
Bit synchronous circuit	510
Block data transfer instructions	51
Block transfer mode	183
Boot mode	699
Branch instructions	49
Break	467
Break address	115, 118
Break condition	117
Buffer operation	315
Buffer segment	640
Bus arbitration	165
Bus cycle	144

СМІА
CMIB
Communications protocol
Compare-match count mode
Condition field
Condition-code register
Configuration mode
Control field
Controller area network (HCAN).
Conversion time

D

D/A converter
Data direction register (DDR)
Data field
Data frame
Data register (DR)
Data transfer controller
Data transfer instructions
Download pass/fail result parame
DTC interface
DTC vector table

Е

Effective address
Effective address extension
Emulation
ERI
Error protection

Flash multipurpose data destination	
parameter	691
Flash pass/fail parameter	694
Flash programming/erasing frequency	
parameter	687
Framing error	432
Free-running count operation	308

G

General register	
------------------	--

Н

Hardware protection	726
Hardware reset	637
Hardware standby mode	804
HCAN halt mode	653
HCAN sleep mode	651

I

I ² C bus format	2
I ² C bus interface 2 (IIC2) 47	5
Immediate 5	4
Input capture function 31	1
Input pull-up MOS function 19	3
Instruction set 4	0
Internal bus master 12	3
Interrupt control modes 10	0
Interrupt controller	5
Interrupt exception handling	0

Rev. 6.00 Sep. 24, 2009 Page 924 of 928 REJ09B0099-0600

Medium-speed mode	
Memory cycle	
Memory indirect	
Message control (MC0 to MC15).	
Message data (MD0 to MD15)	
Message reception	
Message transmission	
Message transmission cancellation	ı
Message transmission method	
Mode comparison	
Module stop mode	
Multiprocessor communication fur	n

Ν

NMI
Noise canceler
Normal mode

0

Off-board programming mode
On-board programming
On-board programming mode
Open-drain control register (ODR)
Operating mode selection
Operation field
Overflow
Overrun error
OVI

Programming/erasing interface register 67	7
Protection72	6
Pulse output	4
PWM modes 32	0

R

Register direct	
Register field	
Register indirect	
Register indirect with displacement	
Register indirect with post-increment 53	
Register indirect with pre-decrement 54	
Register information	
Registers	
ABACK 621, 814, 834, 854	
ABWCR 126, 827, 847, 866	
ADCR 520, 830, 851, 869	
ADCSR 517, 830, 851, 869	
ADDR 516, 830, 851, 869	
ASTCR 126, 827, 847, 866	
BARA 116, 824, 844, 864	
BARB 117, 824, 844, 864	
BCR 615, 814, 834, 854	
BCRA 117, 824, 844, 864	
BCRB 118, 824, 844, 864	
BCRH 130, 827, 847, 867	
BCRL 131, 827, 847, 867	
BRR 418, 829, 850, 868	
CRA 172, 812, 832, 853	

FTDAR	
FVACR	697, 83
FVADR	698, 83
GSR	613, 814
ICCR1	479, 81
ICCR2	482, 81
ICDRR	491, 81.
ICDRS	
ICDRT	491, 81.
ICIER	486, 81
ICMR	483, 81
ICPCR	264, 824
ICSR	488, 81.
IER	90, 82
IMR	
IPR	89, 82
IRR	
ISCR	
ISR	
LAFM	631, 814
LPWRCR	777, 824
MBCR	617, 814
MBIMR	628, 814
MC	634, 814
MCR	612, 814
MD	
MDCR	68, 824
MRA	
MRB	171, 812

Rev. 6.00 Sep. 24, 2009 Pag REJ09

Renesas

P7DR220, 827, 848, 867	PORTH 260, 813,
PADDR226, 825, 845, 865	PORTJ 262, 813,
PADR227, 827, 848, 867	RAMER 696, 827
PAODR228, 826, 846, 865	RDR 399, 829,
PAPCR228, 825, 845, 865	REC 630, 814
PBDDR233, 825, 845, 865	RFPR 623, 814,
PBDR233, 828, 848, 867	RSR
PBPCR234, 825, 845, 865	RSTCSR 385, 829
PCDDR239, 825, 845, 865	RXPR 622, 814,
PCDR240, 828, 848, 867	SAR172, 490,
PCPCR241, 825, 845, 865	
PDDDR243, 825, 845, 865	SBYCR 796, 824,
PDDR244, 828, 848, 867	SCKCR 776, 824,
PDPCR245, 825, 845, 865	SCMR 417, 829,
PEDDR247, 825, 845, 865	SCR 405, 829
PEDR248, 828, 848, 867	SMR 400, 829
PEPCR249, 825, 845, 865	SSR 410, 829
PFCR132, 824, 844, 864	SYSCR 68, 824,
PFDDR251, 825, 845, 865	TCNT 305, 356, 380,
PFDR252, 828, 848, 867	
PGDDR255, 825, 845, 865	TCORA 356, 829
PGDR256, 828, 848, 867	TCORB 357, 829
PHDDR259, 813, 833, 854	TCR 276, 357,
PHDR259, 813, 833, 854	
PJDDR261, 813, 833, 854	TCSR 359, 829, 849,
PJDR262, 813, 833, 854	TDR 400, 829,
PORT1200, 831, 851, 870	TEC 630, 814,
PORT2206, 831, 851, 870	TGR 305, 828,
PORT3211, 831, 851, 870	TIER 300, 828,

Rev. 6.00 Sep. 24, 2009 Page 926 of 928 REJ09B0099-0600

RENESAS

Remote frame	650
Remote transmission request bit	650
Repeat mode	182
Reset	77
Reset exception handling	78
RM0	654
RM1	654
RXI	465

S

Scan mode
Serial communication interface (SCI) 395
Serial communication interface
specification741
Shift instructions
Single mode
Slave address
SLE0
Sleep mode
Smart card
Smart card interface
Software activation 186, 190
Software protection
Software reset
Software standby mode
Stack pointer (SP)
Stack status
Start condition
Stop condition
stop condition

TCI4U
TCI4V
TCI5U
TCI5V
TCNT incrementation timing
TEI
TGI0A
TGI0B
TGI0C
TGI0D
TGI1A
TGI1B
TGI2A
TGI2B
TGI3A
TGI3B
TGI3C
TGI3D
TGI4A
TGI4B
TGI5A
TGI5B
Time quanta (TQ)
Toggle output
Trace exception handling
Transfer rate
Transition to watch mode
Trap instruction
TXI

Rev. 6.00 Sep. 24, 2009 Page 928 of 928 REJ09B0099-0600

Renesas 16-Bit Single-Chip Microcomputer Hardware Manual H8S/2556 Group, H8S/2552 Group, H8S/2506 Group

Publication Date:	1st Edition, March, 2003
	Rev.6.00, September 24, 2009
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, v

BENESAS SALES OFFICES

http://www.re

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: ≺86- (21) 5877-1818, Fax: ≺86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688. Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65- 6213-0200, Fax: <65- 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, M Tel: <603> 7955-9300, Fax: <603> 7955-9510

H8S/2556 Group, H8S/2552 Group, H8S/2506 Group Hardware Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

REJ09B0099-0600

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

M30302FCPFP#U3 MB90F036APMC-GSE1 MB90F428GCPFR-GSE1 MB96F683RBPMC-GSAE1 R5F10MMGDFB#30 R5F111PGGFB#30 R5F117BCGNA#20 DF3026XBL25V DF36014GFTV DF36014GFXV DF36034GFPV R5F11B7EANA#U0 R5F21172DSP#U0 MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F345CAPFR-GSE1 MB90F568PMCR-GE1 MB96F395RSAPMC-GSE2 DF36024GFXV UPD78F1018F1-BA4-A MB96F018RBPMC-GSE1 MB90F867ASPFR-GE1 M30290FCHP#U3A DF2239FA20IV R5F117BCGFP#30 LC88F58B0AU-SQFPH MB90F548GPF-GE1 MB90214PF-GT-310-BND-AE1 MB90F342CESPQC-GSE2 MB90F428GAPF-GSE1 ML620Q504H-NNNTBWBX S912ZVH128F2VLL UPD78F1500AGK-GAK-AX HD64F3337SF16V MB90F428GCPF-GSE1 MB90F342ESPMC-G-JNE1 MB90022PF-GS-358E1 MB96F395RWAPMC-GSE2 MB96395RSAPMC-GS-110E2 MB90F883CSPMC-GE1 S912ZVHY64F1CLL S912ZVHY64F1VLQ ST10F280 MB96F338RSAPMCR-GK5E2 CY90096PF-G-002-BND-ERE1 ML62Q1569-NNNGAZ0AX ML62Q1739-NNNGAZ0AX ML62Q1749-NNNGAZ0AX ML62Q1579-NNNGAZ0AX ML62Q1559-NNNGAZ0AX