Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

32

SH7211 Group

Hardware Manual

Renesas 32-Bit RISC Microcomputer SuperH™ RISC engine Family

> SH7211 R5F72115D160FPV R5F72114D160FPV

document, piedse commit me idlest product imornation, with a nemesas sales office. Also, piedse pay r and careful attention to additional and different information to be disclosed by Renesas such as that disc through our website. (http://www.renesas.com)

(2) surgical implantations

system manufactured by you.

approval from Renesas.

Rev. 3.00 Mar. 04, 2009 Page ii of xxiv

REJ09B0344-0300

damages arising out of such applications.

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas

assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the inform included in this document. When using or otherwise relying on the information in this document, you should evaluate the informatio

information in this document or Renesas products.

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

damages arising out of the use of Renesas products beyond such specified ranges.

products. Renesas shall have no liability for damages arising out of such detachment.

document, Renesas semiconductor products, or if you have any other inquiries.

(4) any other purposes that pose a direct threat to human life

especially high quality and reliability such as safety systems, or equipment or systems for transportation traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea commur transmission. If you are considering the use of our products for such purposes, please contact a Renesa sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth abo Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed (1) artificial life support devices or systems

Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Re Technology Corp., its affiliated companies and their officers, directors, and employees against any and a

9. You should use the products described herein within the range specified by Renesas, especially with res to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunct

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have spec characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical inju injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final produ

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is high. You should implement safety measures so that Renesas products may not be easily detached from

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written

13. Please contact a Renesas sales office if you have any questions regarding the information contained in

RENESAS

light of the total system before deciding about the applicability of such information to the intended applicability of such information to the Renesas makes no representations, warranties or quaranties regarding the suitability of its products for particular application and specifically disclaims any liability arising out of the application and use of the 7. With the exception of products specified by Renesas as suitable for automobile applications. Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which reare in their open states, intermediate levels are induced by noise in the vicinity, through current flows internally, and a malfunction may occur.

3. Processing before Initialization

When power is first supplied, the product's state is undefined.

The states of internal circuits are undefined until full power is supplied through chip and a low level is input on the reset pin. During the period where the states undefined, the register settings and the output state of each pin are also undefine your system so that it does not malfunction because of processing while it is in t undefined state. For those products which have a reset function, reset the LSI in after the power supply has been turned on.

4. Prohibition of Access to Undefined or Reserved Addresses

Access to undefined or reserved addresses is prohibited. The undefined or reserved addresses may be used to expand functions, or test re may have been be allocated to these addresses. Do not access these registers; the operation is not guaranteed if they are accessed.

- **CPU** and System-Control Modules
 - On-Chip Peripheral Modules

The configuration of the functional description of each module differs according t module. However, the generic style includes the following items:

- i) Feature
- ii) Input/Output Pin
- iii) Register Description
- iv) Operation
- v) Usage Note

When designing an application system that includes this LSI, take notes into account. Each includes notes in relation to the descriptions given, and usage notes are given, as required final part of each section.

- 7. List of Registers
- 8. Electrical Characteristics
- 9. Appendix
 - Product Type, Package Dimensions, etc.
- 10. Main Revisions and Additions in this Edition (only for revised versions)

The list of revisions is a summary of points that have been revised or added to earlier ver This does not include all of the revised contents. For details, see the actual locations in th manual.

11. Index

RENESAS

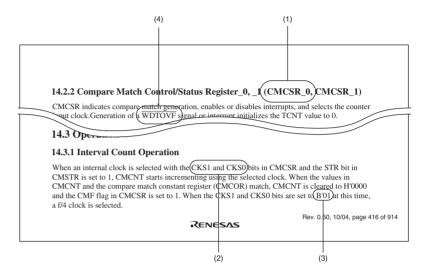
characteristics of this LSI to the target users.

Refer to the SH-2A, SH2A-FPU Software Manual for a detailed description instruction set.

Notes on reading this manual:

- In order to understand the overall functions of the chip
 - Read the manual according to the contents. This manual can be roughly categorized on the CPU, system control functions, peripheral functions and electrical characteris
- In order to understand the details of the CPU's functions
- Read the SH-2A, SH2A-FPU Software Manual.
- In order to understand the details of a register when its name is known Read the index that is the final part of the manual to find the page number of the entiregister. The addresses, bits, and initial values of the registers are summarized in sec List of Registers.

(3) Numbers


Binary numbers are given as B'xxxx, hexadecimal are given as H'xxxx, and decimal are given as xxxx.

Examples: B'11 or 11, H'EFA0, 1234

(4) Symbols

An overbar is added to the names of active-low signals.

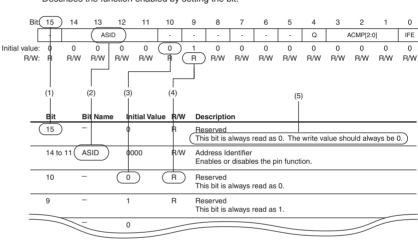
Example: WDTOVF

Note: The bit names and sentences in the above figure are examples, and have nothing to do with the contents of this manual.

Rev. 3.00 Mar. 04, 2009 Page vi of xxiv

REJ09B0344-0300

RENESAS


instead of a bit name, a blank is used for some bits, such as those of timer counters. (3) Initial Value Indicates the value of each bit after a power-on reset, i.e., the initial value. 0: Initial value is 0 1: Initial value is 1 -: Initial value is undefined Indicates whether each bit is readable or writable, or either writing to or reading from the bit is prohibited. The notation is as follows: R/W: Bit or field is readable and writable. R/(W): Bit or field is readable and writable. However, writing is only performed to clear the flag.

R: Bit or field is readable and writable.

However, "R" is indicated for all reserved bits. When writing to the bit is required, write the value stated in the bit table or the initial value. W: Bit or field is readable and writable.

However, only the value in the bit table is guaranteed when reading from the bit.

(5) Description Describes the function enabled by setting the bit.

All trademarks and registered trademarks are the property of their respective owners.

manual

Note: The bit names and sentences in the above figure are examples, and have nothing to do with the contents of this

Rev. 3.00 Mar. 04, 2009 Pa REJ09

Rev. 3.00 Mar. 04, 2009 Page viii of xxiv

REJ09B0344-0300

RENESAS

	2 1 2	Control Desistans
	2.1.2	Control Registers
	2.1.3	System Registers
	2.1.4	Register Banks
	2.1.5	Initial Values of Registers
2.2	Data F	ormats
	2.2.1	Data Format in Registers
	2.2.2	Data Formats in Memory
	2.2.3	Immediate Data Format
2.3	Instruc	tion Features
	2.3.1	RISC-Type Instruction Set
	2.3.2	Addressing Modes
	2.3.3	Instruction Format
2.4	Instruc	tion Set
	2.4.1	Instruction Set by Classification
	2.4.2	Data Transfer Instructions
	2.4.3	Arithmetic Operation Instructions
	2.4.4	Logic Operation Instructions
	2.4.5	Shift Instructions
	2.4.6	Branch Instructions
	2.4.7	System Control Instructions
	2.4.8	Bit Manipulation Instructions
2.5	Proces	sing States
Sect	ion 3 N	ACU Operating Modes
3.1	Selecti	on of Operating Modes
3.2	Input/0	Output Pins
3.3	-	ing Modes

2.1.1

Rev. 3.00 Mar. 04, 2009 Pa

REJ09

Register Configuration.....

General Registers

4.3	Clock Operating Modes		
4.4	Register Descriptions		
	4.4.1 Frequency Control Register (FRQCR)		
	4.4.2 MTU2S Clock Frequency Control Register (MCLKCR)		
	4.4.3 AD Clock Frequency Control Register (ACLKCR)		
4.5	Changing the Frequency		
	4.5.1 Changing the Multiplication Rate		
	4.5.2 Changing the Division Ratio		
4.6	Notes on Board Design		
	4.6.1 Note on Using an External Crystal Resonator		
	4.6.2 Note on Bypass Capacitor		
	4.6.3 Note on Using a PLL Oscillation Circuit		
Sect	tion 5 Exception Handling		
5.1	Overview		
5.1	5.1.1 Types of Exception Handling and Priority		
	5.1.2 Exception Handling Operations		
	5.1.2 Exception Handling Operations 5.1.3 Exception Handling Vector Table		
5.2	Resets		
3.2	5.2.1 Types of Reset		
	5.2.1 Types of Reset		
5.3	5.2.3 Manual Reset		
3.3			
<i>5</i> 1	r		
5.4	Register Bank Errors		
	5.4.1 Register Bank Error Sources.		
	5.4.2 Register Bank Error Exception Handling		
5.5	Interrupts		
Rev.	3.00 Mar. 04, 2009 Page x of xxiv		
	9B0344-0300 RENESAS		

	5.9.3	Address Errors Caused by Stacking of Address Error Exception Handling				
Sect	tion 6 I	nterrupt Controller (INTC)				
6.1	Featur	eatures				
6.2		nput/Output Pins				
6.3	Register Descriptions					
	6.3.1	Interrupt Priority Registers 01, 02, 05 to 15 (IPR01, IPR02, IPR05 to IPR				
	6.3.2	Interrupt Control Register 0 (ICR0)				
	6.3.3	Interrupt Control Register 1 (ICR1)				
	6.3.4	IRQ Interrupt Request Register (IRQRR)				
	6.3.5	Bank Control Register (IBCR)				
	6.3.6	Bank Number Register (IBNR)				
6.4	Interru	pt Sources				
	6.4.1	NMI Interrupt				
	6.4.2	User Break Interrupt				

Usage Notes

Value of Stack Pointer (SP)

Value of Vector Base Register (VBR).....

User Break Interrupt

H-UDI Interrupt

IRQ Interrupts

On-Chip Peripheral Module Interrupts

Interrupt Operation Sequence Stack after Interrupt Exception Handling

Banked Register and Input/Output of Banks

Bank Save and Restore Operations.....

Interrupt Exception Handling Vector Table and Priority.....

Operation

Interrupt Response Time.....

Register Banks

5.9

5.9.1

5.9.2

6.4.3

6.4.4

6.4.5

6.6.1

6.6.2

6.8.1

6.8.2

6.5

6.6

6.7

6.8

Sect	ion 7 U	ser Break Controller (UBC)
7.1	Feature	·s
7.2	Input/C	Output Pin
7.3	Registe	r Descriptions
	7.3.1	Break Address Register_0 (BAR_0)
	7.3.2	Break Address Mask Register_0 (BAMR_0)
	7.3.3	Break Bus Cycle Register_0 (BBR_0)
	7.3.4	Break Address Register_1 (BAR_1)
	7.3.5	Break Address Mask Register_1 (BAMR_1)
	7.3.6	Break Bus Cycle Register_1 (BBR_1)
	7.3.7	Break Address Register_2 (BAR_2)
	7.3.8	Break Address Mask Register_2 (BAMR_2)
	7.3.9	Break Bus Cycle Register_2 (BBR_2)
	7.3.10	Break Address Register_3 (BAR_3)
	7.3.11	Break Address Mask Register_3 (BAMR_3)
	7.3.12	Break Bus Cycle Register_3 (BBR_3)
	7.3.13	Break Control Register (BRCR)
7.4	Operati	on
	7.4.1	Flow of the User Break Operation
	7.4.2	Break on Instruction Fetch Cycle
	7.4.3	Break on Data Access Cycle
	7.4.4	Value of Saved Program Counter
	7.4.5	Usage Examples
7.5	Usage 1	Notes
_		
Sect		us State Controller (BSC)
8.1		·S
8.2	-	Output Pins
8.3	Area O	verview

RENESAS

Rev. 3.00 Mar. 04, 2009 Page xii of xxiv

REJ09B0344-0300

	8.5.5	MPX-I/O Interface	
	8.5.6	SDRAM Interface	
		Burst ROM (Clock Asynchronous) Interface	
	8.5.8	SRAM Interface with Byte Selection	
	8.5.9	Burst ROM (Clock Synchronous) Interface	
	8.5.10	Wait between Access Cycles	
		Bus Arbitration	
	8.5.12	Others	
8.6	Usage	Notes	
	8.6.1	Burst ROM Interface	
Sect	tion 9 D	rirect Memory Access Controller (DMAC)	
9.1	Feature	PS	
9.2	Input/C	Input/Output Pins	
9.3	Registe	er Descriptions	
	9.3.1	DMA Source Address Registers (SAR)	
	9.3.2	DMA Destination Address Registers (DAR)	

8.5.1

8.5.2

8.5.3

8.5.4

9.3.3 9.3.4

9.3.5

9.3.6

9.3.7

9.3.8

9.3.9

9.4

DMA Transfer Count Registers (DMATCR)

DMA Channel Control Registers (CHCR)

DMA Reload Source Address Registers (RSAR).....

DMA Reload Destination Address Registers (RDAR).....

DMA Reload Transfer Count Registers (RDMATCR).....

DMA Operation Register (DMAOR)

Endian/Access Size and Data Alignment.....

Normal Space Interface.....

Access Wait Control CSn Assert Period Expansion.....

REJ09

Rev. 3.00 Mar. 04, 2009 Pa

10.3.3	Timer I/O Control Register (TIOR)
10.3.4	Timer Compare Match Clear Register (TCNTCMPCLR)
10.3.5	Timer Interrupt Enable Register (TIER)
10.3.6	Timer Status Register (TSR)
10.3.7	Timer Buffer Operation Transfer Mode Register (TBTM)
10.3.8	Timer Input Capture Control Register (TICCR)
10.3.9	Timer Synchronous Clear Register (TSYCR)
10.3.10	Timer A/D Converter Start Request Control Register (TADCR)
10.3.11	Timer A/D Converter Start Request Cycle Set Registers
	(TADCORA_4 and TADCORB_4)
10.3.12	Timer A/D Converter Start Request Cycle Set Buffer Registers
	(TADCOBRA_4 and TADCOBRB_4)
10.3.13	Timer Counter (TCNT)
10.3.14	Timer General Register (TGR)
10.3.15	Timer Start Register (TSTR)
10.3.16	Timer Synchronous Register (TSYR)
10.3.17	Timer Counter Synchronous Start Register (TCSYSTR)
10.3.18	Timer Read/Write Enable Register (TRWER)
10.3.19	Timer Output Master Enable Register (TOER)
10.3.20	Timer Output Control Register 1 (TOCR1)
10.3.21	Timer Output Control Register 2 (TOCR2)

Rev. 3.00 Mar. 04, 2009 Page xiv of xxiv

REJ09B0344-0300

10.3.22 Timer Output Level Buffer Register (TOLBR)

10.3.23 Timer Gate Control Register (TGCR)

10.3.24 Timer Subcounter (TCNTS)

10.3.25 Timer Dead Time Data Register (TDDR).

10.3.26 Timer Cycle Data Register (TCDR)

RENESAS

	10.4.10 MTU2–MTU2S Synchronous Operation
	10.4.11 External Pulse Width Measurement
	10.4.12 Dead Time Compensation
	10.4.13 TCNT Capture at Crest and/or Trough in Complementary PWM Operation
10.5	Interrupt Sources
	10.5.1 Interrupt Sources and Priorities
	10.5.2 DMAC Activation
	10.5.3 A/D Converter Activation
10.6	Operation Timing
	10.6.1 Input/Output Timing
	10.6.2 Interrupt Signal Timing
10.7	Usage Notes
	10.7.1 Module Standby Mode Setting
	10.7.2 Input Clock Restrictions
	10.7.3 Caution on Period Setting
	10.7.4 Contention between TCNT Write and Clear Operations
	10.7.5 Contention between TCNT Write and Increment Operations
	10.7.6 Contention between TGR Write and Compare Match
	10.7.7 Contention between Buffer Register Write and Compare Match
	10.7.8 Contention between Buffer Register Write and TCNT Clear
	10.7.9 Contention between TGR Read and Input Capture
	10.7.10 Contention between TGR Write and Input Capture
	10.7.11 Contention between Buffer Register Write and Input Capture
	Rev. 3.00 Mar. 04, 2009 Pa
	REJOS REJOS

10.4.4 Cascaded Operation

10.4.5 PWM Modes

10.4.6 Phase Counting Mode

10.4.7 Reset-Synchronized PWM Mode

10.4.8 Complementary PWM Mode

10.4.9 A/D Converter Start Request Delaying Function

	10.7.22 Simultaneous Capture of TCNT_1 and TCNT_2 in Cascade Connection
10.8	MTU2 Output Pin Initialization
	10.8.1 Operating Modes
	10.8.2 Reset Start Operation
	10.8.3 Operation in Case of Re-Setting Due to Error During Operation, etc
	10.8.4 Overview of Initialization Procedures and Mode Transitions in Case of Er during Operation, etc.
Sect	ion 11 Multi-Function Timer Pulse Unit 2S (MTU2S)
	Input/Output Pins
	Register Descriptions
11.2	Register Descriptions
Sect	ion 12 Port Output Enable 2 (POE2)
12.1	Features
12.2	
12.3	
	12.3.1 Input Level Control/Status Register 1 (ICSR1)
	12.3.2 Output Level Control/Status Register 1 (OCSR1)
	12.3.3 Input Level Control/Status Register 2 (ICSR2)
	· · · · · · · · · · · · · · · · · · ·

10.7.21 Interrupts in Module Standby Mode.....

12.3.4 Output Level Control/Status Register 2 (OCSR2)
12.3.5 Input Level Control/Status Register 3 (ICSR3)
12.3.6 Software Port Output Enable Register (SPOER)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page xvi of xxiv

REJ09B0344-0300

	13.3.2 CMCNT Count Timing	• • • • • • •
13.4	Interrupts	
	13.4.1 Interrupt Sources and DMA Transfer Requests	
	13.4.2 Timing of Compare Match Flag Setting	
	13.4.3 Timing of Compare Match Flag Clearing	
13.5	Usage Notes	
	13.5.1 Conflict between Write and Compare-Match Processes of CMCNT.	
	13.5.2 Conflict between Word-Write and Count-Up Processes of CMCNT.	
	13.5.3 Conflict between Byte-Write and Count-Up Processes of CMCNT	
	13.5.4 Compare Match Between CMCNT and CMCOR	
Sect	ion 14 Watchdog Timer (WDT)	
14.1		
14.1	Features	
	Features Input/Output Pin	
14.1 14.2	Features	
14.1 14.2	Features Input/Output Pin Register Descriptions	
14.1 14.2	Features	
14.1 14.2	Features	
14.1 14.2 14.3	Features Input/Output Pin Register Descriptions 14.3.1 Watchdog Timer Counter (WTCNT) 14.3.2 Watchdog Timer Control/Status Register (WTCSR) 14.3.3 Watchdog Reset Control/Status Register (WRCSR) 14.3.4 Notes on Register Access	
14.1 14.2	Features	
14.1 14.2 14.3	Features	
14.1 14.2 14.3	Features Input/Output Pin Register Descriptions 14.3.1 Watchdog Timer Counter (WTCNT) 14.3.2 Watchdog Timer Control/Status Register (WTCSR) 14.3.3 Watchdog Reset Control/Status Register (WRCSR) 14.3.4 Notes on Register Access WDT Usage 14.4.1 Canceling Software Standby Mode 14.4.2 Changing the Frequency	
14.1 14.2 14.3	Features	

13.3 Operation 13.3.1 Interval Count Operation

14.5 Usage Notes..... 14.5.1 Timer Variation..... 14.5.2 Prohibition against Setting H'FF to WTCNT.....

	15.3.7 Serial Status Register (SCFSR)
	15.3.8 Bit Rate Register (SCBRR)
	15.3.9 FIFO Control Register (SCFCR)
	15.3.10 FIFO Data Count Register (SCFDR)
	15.3.11 Serial Port Register (SCSPTR)
	15.3.12 Line Status Register (SCLSR)
	15.3.13 Serial Extended Mode Register (SCSEMR)
15.4	Operation
	15.4.1 Overview
	15.4.2 Operation in Asynchronous Mode
	15.4.3 Operation in Clocked Synchronous Mode
15.5	SCIF Interrupts
15.6	Usage Notes
	15.6.1 SCFTDR Writing and TDFE Flag
	15.6.2 SCFRDR Reading and RDF Flag
	15.6.3 Restriction on DMAC Usage
	15.6.4 Break Detection and Processing
	15.6.5 Sending a Break Signal
	15.6.6 Receive Data Sampling Timing and Receive Margin (Asynchronous Moo
	15.6.7 FER and PER Flags in the Serial Status Register (SCFSR)
Sect	on 16 I ² C Bus Interface 3 (IIC3)
16.1	Features
16.2	Input/Output Pins
16.2	Register Descriptions
10.5	16.3.1 I ² C Bus Control Register 1 (ICCR1)
	16.3.2 I ² C Bus Control Register 2 (ICCR2)
	10.3.2 1 C Dus Control Register 2 (ICCR2)
Dav. 1	OO Mar OA 2000 Dama will of units
Hev. 3	00 Mar. 04, 2009 Page xviii of xxiv

REJ09B0344-0300

RENESAS

	6.4.6 Clocked Synchronous	Serial Format
	6.4.7 Noise Filter	
16.5	nterrupt Requests	
16.6	Bit Synchronous Circuit	
16.7	Jsage Notes	
	6.7.1 Note on Multiple Ma	ster Usage
	6.7.2 Note on Master Rece	ve Mode
	6.7.3 Note on Master Rece	ve Mode with ACKBT Setting
	6.7.4 Note on MST and TR	S Bit Status When an Arbitration was Lost
Sect	n 17 A/D Converter (AI	OC)
17.1	Features	
17.2	nput/Output Pins	
17.3	Register Descriptions	
	7.3.1 A/D Control Register	(ADCR)
	7.3.2 A/D Status Register (ADSR)
	7.3.3 A/D Start Trigger Sel	ect Register (ADSTRGR)
	7.3.4 A/D Analog Input Ch	annel Select Register (ADANSR)
	7.3.5 A/D Data Registers 0	to 7 (ADDR0 to ADDR7)
17.4	Operation	
	7.4.1 Single-Cycle Scan M	ode
	7.4.2 Continuous Scan Mo	le
	7.4.3 Input Sampling and A	/D Conversion Time
		ation by MTU2 and MTU2S
		t Timing
		-

RENESAS

Rev. 3.00 Mar. 04, 2009 Pa

	18.2	Input/Output Pins			
	18.3	Register Descriptions			
		18.3.1 D/A Data Register	s 0 and 1 (DADR0 and DADR1)		
		18.3.2 D/A Control Regis	ter (DACR)		
	18.4	Operation			
	18.5 Usage Notes				
		18.5.1 Module Standby M	Iode Setting		
		18.5.2 D/A Output Hold	Function in Software Standby Mode		
		18.5.3 Setting Analog Inp	ut Voltage		
	Secti		ntroller (PFC)		
19.1 Register Descriptions					
		19.1.1 Port A I/O Registe	rs H, L (PAIORH, PAIORL)		
		19.1.2 Port A Control Reg			
		(PACRH1 to PAC	RH3, PACRL1 to PACRL4)		
		19.1.3 Port B I/O Registe	rs H, L (PBIORH, PBIORL)		
		19.1.4 Port B Control Reg	gisters H1 to H4, L1 to L4		
		(PBCRH1 to PBC)	RH4, PBCRL1 to PBCRL4)		
		19.1.5 Port D I/O Registe	r (PDIOR)		
			gisters L1 to L4 (PDCRL1 to PDCRL4)		
		19.1.7 Port F Control Reg	sister L1 (PFCRL1)		
		19.1.8 IRQOUT Function	Control Register (IFCR)		
		19.1.9 WAVE Function (Control Registers 1, 2 (WAVECR1, WAVECR2)		

RENESAS

Rev. 3.00 Mar. 04, 2009 Page xx of xxiv

REJ09B0344-0300

		NOIE				
Sect	ion 21 F	Flash Memory				
21.1		S				
21.2	Overview					
		Block Diagram				
		Operating Mode				
	21.2.3	Mode Comparison				
	21.2.4	Flash Memory Configuration				
	21.2.5	Block Division				
	21.2.6	Programming/Erasing Interface				
21.3	Input/O	utput Pins				
21.4	Register	r Descriptions				
	21.4.1	Registers				
	21.4.2	Programming/Erasing Interface Registers				
	21.4.3	Programming/Erasing Interface Parameters				
21.5	On-Boa	rd Programming Mode				
	21.5.1	Boot Mode				
	21.5.2	User Program Mode				
	21.5.3	User Boot Mode				
21.6		on				
	21.6.1	Hardware Protection				

20.4.2 Port F Data Register (PFDR)

Rev. 3.00 Mar. 04, 2009 Pa

REJ09

21.6.2 Software Protection..... 21.6.3 Error Protection. 21.7 Usage Notes 21.7.1 Switching between User MAT and User Boot MAT..... 21.7.2 Interrupts during Programming/Erasing 21.7.3 Other Notes.....

_					
	S				
	Power-Down Modes				
	Reset				
Input/Output Pins					
Registe	r Descriptions				
23.3.1	Standby Control Register (STBCR)				
23.3.2	Standby Control Register 2 (STBCR2)				
23.3.3	Standby Control Register 3 (STBCR3)				
23.3.4	Standby Control Register 4 (STBCR4)				
	System Control Register 1 (SYSCR1)				
	System Control Register 2 (SYSCR2)				
Operati	on				
23.4.1	Sleep Mode				
	Software Standby Mode				
23.4.3	Software Standby Mode Application Example				
	Module Standby Function				
on 24 U	User Debugging Interface (H-UDI)				
Feature	S				
Input/Output Pins					
-					
Registe	-				
_	r Descriptions				
24.3.1	r Descriptions				
24.3.1 24.3.2	r Descriptions Bypass Register (SDBPR) Instruction Register (SDIR)				
24.3.1 24.3.2 Operati	r Descriptions				
24.3.1 24.3.2 Operati 24.4.1	r Descriptions Bypass Register (SDBPR) Instruction Register (SDIR) on TAP Controller				
24.3.1 24.3.2 Operati 24.4.1 24.4.2	r Descriptions				
	23.1.1 23.1.2 Input/O Registe 23.3.1 23.3.2 23.3.3 23.3.4 23.3.5 23.4.1 23.4.2 23.4.3 23.4.4 ion 24 U				

RENESAS

Rev. 3.00 Mar. 04, 2009 Page xxii of xxiv

REJ09B0344-0300

Section 23 Power-Down Modes

Secti	on 27 E	Electrical Characteristics					
27.1	Absolute Maximum Ratings						
27.2	Power-on/Power-off Sequence						
27.3		aracteristics					
27.4		aracteristics					
	27.4.1	Clock Timing					
	27.4.2	Control Signal Timing					
		Bus Timing					
		UBC Trigger Timing					
		DMAC Module Timing					
		MTU2, MTU2S Module Timing					
		POE2 Module Timing					
	27.4.8	Watchdog Timer Timing					
	27.4.9	SCIF Module Timing					
		IIC3 Module Timing					
	27.4.11	A/D Trigger Input Timing					
	27.4.12	I/O Port Timing					
		H-UDI Related Pin Timing					
		AC Characteristics Measurement Conditions					

27.5

27.7

A. B.

C.

Appendix

26.3 Register States in Each Operating Mode.....

Pin States....

Product Lineup.....

Package Dimensions

A/D Converter Characteristics.... 27.6 D/A Converter Characteristics Flash Memory Characteristics

.....

Rev. 3.00 Mar. 04, 2009 Page xxiv of xxiv

REJ09B0344-0300

With this CPU, it has become possible to assemble low-cost, high-performance, and high functioning systems, even for applications that were previously impossible with micropa such as realtime control, which demands high speeds.

In addition, this LSI includes on-chip peripheral functions necessary for system configu such as a large-capacity ROM, a ROM cache, a RAM, a direct memory access controlle (DMAC), multi-function timer pulse units 2 (MTU2 and MTU2S), a serial communication interface with FIFO (SCIF), an A/D converter, a D/A converter, an interrupt controller (I/O ports, and I²C bus interface 3 (IIC3).

This LSI also provides an external memory access support function to enable direct con various memory devices or peripheral LSIs.

These on-chip functions significantly reduce costs of designing and manufacturing appl systems.

The features of this LSI are listed in table 1.1.

	Register bank for high-speed response to interrupts
•	RISC-type instruction set (upward compatible with SH series)
	 Instruction length: 16-bit fixed-length basic instructions for code efficiency and 32-bit instructions for high performanc usability
	 Load/store architecture
	 Delayed branch instructions
	 Instruction set based on C language
•	Superscalar architecture to execute two instructions at one time
•	Instruction execution time: Up to two instructions/cycle
•	Address space: 4 Gbytes
•	Internal multiplier
•	Five-stage pipeline
•	Operating modes
	Extended ROM enabled mode
	Single-chip mode
•	Processing states
	Program execution state
	Exception handling state
	Bus mastership release state
•	Power-down modes
	Sleep mode

Rev. 3.00 Mar. 04, 2009 Page 2 of 1168

Operating modes

REJ09B0344-0300 **₹ENESAS**

Software standby mode Module standby mode

Bus state controller (BSC)	 Address space divided into eight areas (0 to 7), each a maximum Mbytes
	External bus: 8 or 16 bits
	The following features settable for each area independently
	 Supports both big endian and little endian for data acces
	 Bus size (8 or 16 bits): Available sizes depend on the are
	 Number of access wait cycles (different wait cycles can be specified for read and write access cycles in some areas)
	 Idle wait cycle insertion (between same area access cycles)
	 Specifying the memory to be connected to each area en

To priority levels available

processing

Register bank enabling fast register saving and restoring in in

direct connection to SRAM, SRAM with byte selection, Si and burst ROM (clocked synchronous or asynchronous). address/data multiplexed I/O (MPX) interface is also avail—

Outputs a chip select signal (CSO to CS7) according to the area (CS assert or negate timing can be selected by soft

SDRAM burst access

SDRAM refresh

Auto refresh or self refresh mode selectable

Rev. 3.00 Mar. 04, 2009 Pa

		— Bus clock: Maximum 40 MHz— Peripheral clock: Maximum 40 MHz				
		— Timer clock: Maximum 80 MHz				
		 AD clock: Maximum 40 MHz 				
Watchdog timer	•	On-chip one-channel watchdog timer				
(WDT)	•	A counter overflow can reset the LSI				
Power-down modes		Three power-down modes provided to reduce the current con in this LSI				
		— Sleep mode				
		 Software standby mode 				
		 Module standby mode 				

— CPU clock: Maximum 160 MHz

Rev. 3.00 Mar. 04, 2009 Page 4 of 1168

		 Non-overlapping waveforms output for 3-phase inverter of
		 Automatic dead time setting
		— 0% to 100% PWM duty value specifiable
		 A/D conversion delaying function
		 Interrupt skipping at crest or trough
•	•	Reset-synchronized PWM mode
		Three-phase PWM waveforms in positive and negative phase output with a required duty value
•	•	Phase counting mode
		Two-phase encoder pulse counting available
Multi-function timer	•	Subset of MTU2, included in channels 3 to 5
pulse unit 2S (MTU2S)	•	Operating at 80 MHz max.
Port output enable 2	•	High-impedance control of high-current pins at a falling edge
(POE2)		level input on the POE pin
Compare match timer	•	Two-channel 16-bit counters
(CMT)	•	Four types of clock can be selected (P ϕ /8, P ϕ /32, P ϕ /128, ar
•	•	DMA transfer request or interrupt request can be issued whe

compare match occurs

Four channels

supported

(SCIF)

Serial communication

interface with FIFO

Dedicated baud rate generator Separate 16-byte FIFO registers for transmission and recept

Clocked synchronous or asynchronous mode selectable

Simultaneous transmission and reception (full-duplex commu

	I wo output channels
User break controller	Four break channels
(UBC)	Addresses, type of access, and data size can all be set as breathing.
	conditions
User debugging	E10A emulator support
interface (H-UDI)	JTAG-standard pin assignment
	Realtime branch trace
Advanced user	Six output pins
debugger II (AUD- II)	Branch source address/destination address trace
	Window data trace
	Full trace
	All trace data can be output by interrupting CPU operation
	Realtime trace
	Trace data can be output within the range where CPU operation interrupted
WAVE interface (WAVEIF)	 Myway Labs realtime CPU scope "WAVE™" (WAVE1.0 Level supported
On-chip ROM	384/512 Kbytes (See B. Product Lineup)
On-chip RAM	Three/Four pages
	• 24/32 Kbytes (See B. Product Lineup)
Power supply voltage	Vcc: 1.4 to 1.6 V
	 VccQ: 3.0 to 3.6 V
	AVcc: 4.5 to 5.5 V
Packages	• LQFP2020-144 (0.5 pitch)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 6 of 1168

REJ09B0344-0300

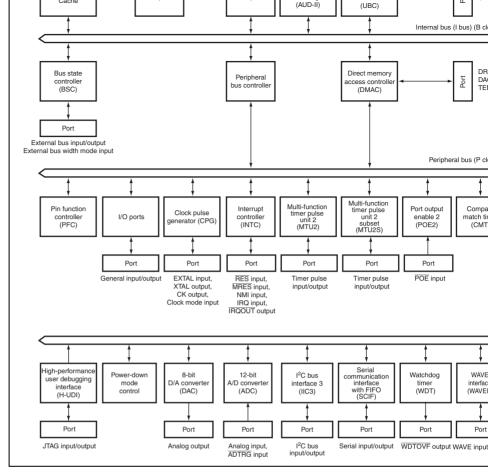


Figure 1.1 Block Diagram

RENESAS

Rev. 3.00 Mar. 04, 2009 Pa

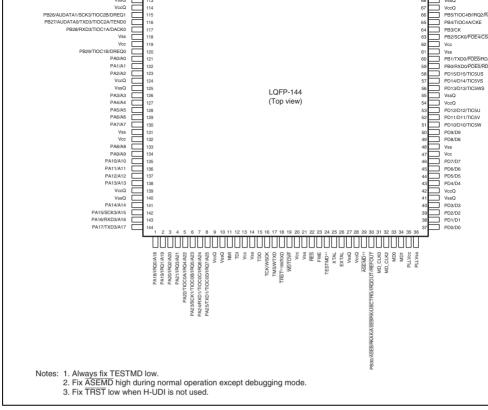


Figure 1.2 Pin Arrangement

Rev. 3.00 Mar. 04, 2009 Page 8 of 1168 REJ09B0344-0300

RENESAS

				· · · · · · · · · · · · · · · · · · ·
	VssQ	I	Ground for I/O circuits	Ground pins for I/O pins. A VssQ pins must be connect system power supply (0 V) does not operate correctly a pin left open.
	PLLVcc	1	Power supply for PLL	Power supply for the on-choscillator.
	PLLVss	1	Ground for PLL	Ground pin for the on-chip oscillator.
Clock	EXTAL	I	External clock	Connected to a crystal res An external clock signal m input to the EXTAL pin.
	XTAL	0	Crystal	Connected to a crystal res
	CK	0	System clock	Supplies the system clock devices.

Vss

VccQ

I

Ground

Power supply for

I/O circuits

REJ09

Ground pins. All the Vss p be connected to the syster supply (0 V). This LSI does operate correctly if there is

Power supply for I/O pins.

VccQ pins must be connect system power supply. This not operate correctly if the

open.

left open.

				Input a high level to operate in normal mode (not in debumode). To operate it in debumode, apply a low level to the user system board.
	TESTMD	I	Test mode	Always fix this input pin low
				Do not input a high level to This may cause malfunction permanent failure of this LS
System control	RES	I	Power-on reset	This LSI enters the power-constate when this signal goes
	MRES	I	Manual reset	This LSI enters the manual state when this signal goes
	WDTOVF	0	Watchdog timer overflow	Outputs an overflow signal WDT.
	BREQ	I	Bus-mastership request	A low level is input to this pi an external device requests release of the bus mastersh
	BACK	0	Bus-mastership request acknowledge	Indicates that the bus master has been released to an exterior device. Reception of the BA signal informs the device whoutput the BREQ signal that acquired the bus.

functions.

Rev. 3.00 Mar. 04, 2009 Page 10 of 1168

Data bus	D15 to D0	I/O	Data bus	Bidirectional data bus.
Bus control	CS7 to CS0	0	Chip select 7 to 0	Chip-select signals for externemory or devices.
	RD	0	Read	Indicates that data is read external device.
	RD/WR	0	Read/write	Read/write signal.
	BS	0	Bus start	Bus-cycle start signal.
	ĀH	0	Address hold	Address hold timing signal device that uses the addre multiplexed bus.
	WAIT	I	Wait	Input signal for inserting a into the bus cycles during the external space.
	WE0	0	Byte select	Indicates a write access to

Address bus

0

0

Address bus

A25 to A0

WE1

Byte select

REJ09

to be informed of an interri occurrence even while the mastership is released.

of data of external memory

Indicates a write access to 8 of data of external memo

Rev. 3.00 Mar. 04, 2009 Pag

device.

device.

Outputs addresses.

DACKS to DAC	(=1110)			- 1	
Multi-function timer pulse unit 2 (MTU2) TCLKB, TCLKC, TCLKD TIOCOA, TIOCOB, TIOCOC, TIOCOD (channel 0) TIOC1A, TIOC1B TIOC2A, TIOC2B TIOC2A, TIOC2B TIOC3A, TIOC3B, TIOC3C, TIOC3C The Tours output/PWM output pins. The TGRA_1 and TGRB_1 capture/output capture input/output compare output/PWM output pins. The TGRA_2 and TGRB_2 capture/output capture input/output compare output/PWM output pins. The TGRA_3 to TGRD_3 in capture/output capture input/output compare output/PWM output pins. The TGRA_3 to TGRD_3 in capture/output capture input/output compare output/PWM output pins. The TGRA_3 to TGRD_3 in capture/output capture input/output compare output/PWM output pins.	(DMAC)		0		Output pins for signals indic acceptance of external requ from external devices.
timer pulse unit 2 (MTU2) TCLKC, TCLKD TIOC0A, I/O MTU2 input capture/output capture input/output compare output/PWM output pins. TIOC1A, TIOC1B TIOC2A, TIOC2B TIOC2B TIOC3A, TIOC3C, T	_	TEND1, TEND0	0		Output pins for DMA transfe
TIOC0B, compare output/PWM output pins. TIOC1A, TIOC1B TIOC2A, TIOC2B TIOC2B TIOC3A, TIOC3A, TIOC3B, TIOC3C, compare (channel 2) TIOC3A, TIOC3B, TIOC3C, compare (channel 2)	timer pulse unit	TCLKB, TCLKC,	I		
TIOC1B capture/output compare output/PWM output pins. (channel 1) TIOC2A, I/O MTU2 input capture input/output compare output/PWM output pins. (channel 2) TIOC3A, I/O MTU2 input capture input/output compare output/PWM output pins. (channel 2) TIOC3A, I/O MTU2 input The TGRA_3 to TGRD_3 in capture/output capture input/output compare output/PWM output pins.		TIOCOB, TIOCOC,	I/O	capture/output compare	The TGRA_0 to TGRD_0 in capture input/output compa output/PWM output pins.
TIOC2B capture/output capture input/output compare output/PWM output pins. (channel 2) TIOC3A, I/O MTU2 input The TGRA_3 to TGRD_3 in capture/output capture input/output compare output/PWM output pins.		,	I/O	capture/output compare	The TGRA_1 and TGRB_1 capture input/output compa output/PWM output pins.
TIOC3B, capture/output capture input/output compart capture output/PWM output pins.			I/O	capture/output compare	The TGRA_2 and TGRB_2 capture input/output compa output/PWM output pins.
		TIOC3B, TIOC3C,	I/O	capture/output compare	The TGRA_3 to TGRD_3 in capture input/output compa output/PWM output pins.

REFOUT

DREQ3 to

Direct memory

access controller DREQ0

0

Т

Refresh request DMA-transfer

request

Request signal for refresh e

Input pins to receive extern

requests for DMA transfer.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 12 of 1168

	TIOC3DS		(channel 3)	
	TIOC4AS, TIOC4BS, TIOC4CS, TIOC4DS	I/O	MTU2S input capture/output compare (channel 4)	The TGRA_4S and TGRE capture input/output compoutput/PWM output pins.
	TIOC5US, TIOC5VS, TIOC5WS	I	MTU2S input capture (channel 5)	The TGRU_5S, TGRV_5S TGRW_5S input capture i time compensation input p
	RTS3	0	Transmit request	Modem control pin.
	CTS3	I	Transmit enable	Modem control pin.
I ² C bus	SCL	I/O	Serial clock pin	Serial clock input/output p
interface 3 (IIC3)	SDA	I/O	Serial data pin	Serial data input/output pi
A/D converter	AN7 to AN0	I	Analog input pins	Analog input pins.
(ADC)	ADTRG	I	A/D conversion trigger input	External trigger input pin f A/D conversion.
	AVcc	1	Analog power supply	Power supply pin for the A converter. Connect this pi system power supply (Vcc the A/D converter is not use
	AVREF	I	Analog reference power supply	Reference voltage pin for converter. Connect this pi system power supply (Vcc the A/D converter is not us

I/O

POE7, POE4

TIOC3AS,

TIOC3BS,

TIOC3CS,

Multi-function

2S (MTU2S)

timer pulse unit

Port output

MTU2S input

compare

capture/output

control

Request signal input to pla MTU2S waveform output

The TGRA_3S to TGRD_:

capture input/output comp

output/PWM output pins.

Rev. 3.00 Mar. 04, 2009 Pag

REJ09

high impedance state.

	TDO
	TRST
Advanced user debugger (AUD)	AUDATA3 AUDATA0
	AUDCK
	AUDSYNC
Emulator interface	ASEBRKA
	ASEBRK
User break controller (UBC)	UBCTRG
WAVE interface	WSCK
(WAVEIF)	WRXD

I/O ports

interface

(H-UDI)

User debugging

PA25 to PA0

PB30 to PB0

PD15 to PD0

PF1. PF0

TCK

TMS

TDI

AUDATA3 to

I/O

I/O

I/O

I

Ī

Ī

ı

0

ı

I/O

General port

General port

General port

General port

Test mode select

Test data input

Test data output

Test clock

Test reset

AUD data

26-bit general input/output

31-bit general input/output

16-bit general input/output

2-bit general input/output p

Test-mode select signal inp

Serial input pin for instruction

Serial output pin for instruc

Initialization-signal input pir low level when not using th

Branch destination/source

Test-clock input pin.

data.

data.

output pin

	AUDCK	I/O	AUD clock	Sync clock output pin		
	AUDSYNC	I/O	AUD sync signal	Data start-position acknowl signal output pin		
	ASEBRKAK	0	Break mode acknowledge	Indicates that the E10A-US emulator has entered its bromode.		
	ASEBRK	I	Break request	E10A-USB emulator break		
3C)	UBCTRG	0	User break trigger output	Trigger output pin for UBC match.		
ace	WSCK O		Clock output	Interface pin to support My		
	WRXD	I	Receive data	realtime CPU scope "WAVE (WAVE1.0 Level C)		
	WTXD	0	Transmit data	(VV/(V L 1.0 Level O)		

Rev. 3.00 Mar. 04, 2009 Page 14 of 1168

The sixteen 32-bit general registers are numbered R0 to R15. General registers are used processing and address calculation. R0 is also used as an index register. Several instruct R0 fixed as their only usable register. R15 is used as the hardware stack pointer (SP). Sa restoring the status register (SR) and program counter (PC) in exception handling is accept to preferencing the stack using R15.

31 (
R0*1
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15, SP (hardware stack pointer)*2

Notes: 1. R0 functions as an index register in the indexed register indirect addressing mode and indexed GBR in addressing mode. In some instructions, R0 functions as a fixed source register or destination register.
2. R15 functions as a hardware stack pointer (SP) during exception processing.

Figure 2.1 General Registers

Rev. 3.00 Mar. 04, 2009 Pag

The jump table base register functions as the base address of the function table area.

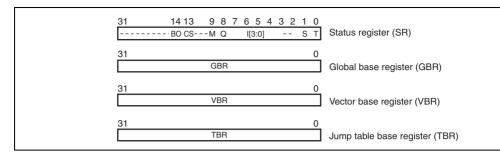


Figure 2.2 Control Registers

(1) Status Register (SR)

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	во	CS	-	-	-	М	Q		1[3	:0]		-	-	
Initial value:	0	0	0	0	0	0	-	-	1	1	1	1	0	0	
R/W:	R	R/W	R/W	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	F

Rev. 3.00 Mar. 04, 2009 Page 16 of 1168

REJ09B0344-0300

				These bits are always read as 0. The write valual always be 0.
9	М	_	R/W	M Bit
8	Q	_	R/W	Q Bit
				Used by the DIV0S, DIV0U, and DIV1 instruction
7 to 4	I[3:0]	1111	R/W	Interrupt Mask Level
3, 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
1	S	_	R/W	S Bit

Reserved

				Specifies a saturation operation for a MAC inst
0	Т	_	R/W	T Bit
				True/false condition or carry/borrow bit
_				

GBR is referenced as the base address in a GBR-referencing MOV instruction.

12 to 10 —

All 0

R

Vector Base Register (VBR)

Global Base Register (GBR)

interrupt.

Jump Table Base Register (TBR)

TBR is referenced as the start address of a function table located in memory in a JSR/N@@(disp8,TBR) table-referencing subroutine call instruction.

VBR is referenced as the branch destination base address in the event of an exception or

31	PR	0	Procedure register (PR): Stores the return address from a subroutine procedure.
31	PC	0	Program counter (PC): Indicates the four bytes ahead of the current instruction.

Figure 2.3 System Registers

(1) Multiply and Accumulate Register High (MACH) and Multiply and Accumulate Register Low (MACL)

MACH and MACL are used as the addition value in a MAC instruction, and store the res MAC or MUL instruction.

(2) Procedure Register (PR)

PR stores the return address of a subroutine call using a BSR, BSRF, or JSR instruction, a referenced by a subroutine return instruction (RTS).

(3) Program Counter (PC)

PC indicates the address of the instruction being executed.

Rev. 3.00 Mar. 04, 2009 Page 18 of 1168

REJ09B0344-0300

2.1.5 Illitial values of Registers

Table 2.1 lists the values of the registers after a reset.

Table 2.1 Initial Values of Registers

Classification	Register	Initial Value
General registers	R0 to R14	Undefined
	R15 (SP)	Value of the stack pointer in the address table
Control registers	SR	Bits I[3:0] are 1111 (H'F), BO an 0, reserved bits are 0, and other undefined
	GBR, TBR	Undefined
	VBR	H'00000000
System registers	MACH, MACL, PR	Undefined
	PC	Value of the program counter in address table

Figure 2.4 Data Format in Registers

2.2.2

Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be ac 8-bit bytes, 16-bit words, or 32-bit longwords. A memory operand of fewer than 32 bits i in a register in sign-extended or zero-extended form.

A word operand should be accessed at a word boundary (an even address of multiple of t address 2n), and a longword operand at a longword boundary (an even address of multipl bytes: address 4n). Otherwise, an address error will occur. A byte operand can be accessed address.

Only big-endian byte order can be selected for the data format.

Data formats in memory are shown in figure 2.5.

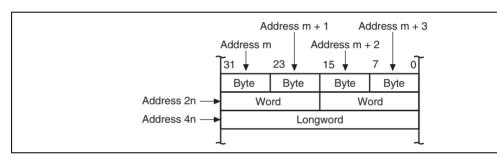


Figure 2.5 Data Formats in Memory

Rev. 3.00 Mar. 04, 2009 Page 20 of 1168

REJ09B0344-0300

in the destination register in sign-extended form.

Word or longword immediate data is not located in the instruction code, but rather is sto memory table. The memory table is accessed by an immediate data transfer instruction (using the PC relative addressing mode with displacement.

See examples given in section 2.3.1 (10), Immediate Data.

Rev. 3.00 Mar. 04, 2009 Pag

The SH-2A additionally features 32-bit fixed-length instructions, improving performance of use.

(3) One Instruction per State

Each basic instruction can be executed in one cycle using the pipeline system.

(4) Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes or longwords. Byte or word data in memory is sign-extended and handled as longword da Immediate data is sign-extended for arithmetic operations or zero-extended for logic oper is also handled as longword data.

Table 2.2 Sign Extension of Word Data

	SH2-A CPU	J	Description	Example of Other O			
		@(disp,PC),R1	Data is sign-extended to 32 bits,	ADD.W	#H'1234,		
	ADD	R1,R0	and R1 becomes H'00001234. It is next operated upon by an ADD				
			instruction.				
	.DATA.W	H'1234					

Note: @(disp, PC) accesses the immediate data.

(5) Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory acc is loaded to the registers and executed (load-store architecture). Instructions such as AND manipulate bits, however, are executed directly in memory.

Rev. 3.00 Mar. 04, 2009 Page 22 of 1168

REJ09B0344-0300

stot, the branch destination address remains as the register contents prior to the change.

Table 2.3 Delayed Branch Instructions

SH-2A CPU		Description	Example of Other CP	
BRA	TRGET	Executes the ADD before	ADD.W	R1,R0
ADD	R1,R0	branching to TRGET.	BRA	TRGET

(7) Unconditional Branch Instructions with No Delay Slot

The SH-2A additionally features unconditional branch instructions in which a delay slot instruction is not executed. This eliminates unnecessary NOP instructions, and so reduce size.

(8) Multiply/Multiply-and-Accumulate Operations

16-bit \times 16-bit \rightarrow 32-bit multiply operations are executed in one to two cycles. 16-bit \times 64-bit \rightarrow 64-bit multiply-and-accumulate operations are executed in two to three cycles 32-bit \rightarrow 64-bit multiply and 32-bit \times 32-bit \rightarrow 64-bit multiply-and-accumulate operations are executed in two to four cycles.

(9) T Bit

The T bit in the status register (SR) changes according to the result of the comparison. Veconditional branch is taken or not taken depends upon the T bit condition (true/false). The of instructions that change the T bit is kept to a minimum to improve the processing specific transfer of the processing specific transfer of the trans

(10) Immediate Data

Byte immediate data is located in an instruction code. Word or longword immediate data located in instruction codes but in a memory table. The memory table is accessed by an indata transfer instruction (MOV) using the PC relative addressing mode with displacemen

With the SH-2A, 17- to 28-bit immediate data can be located in an instruction code. How 21- to 28-bit immediate data, an OR instruction must be executed after the data is transfe register.

Table 2.5 Immediate Data Accessing

Classification	SH-2A CPU		Exampl	e of Other CPU
8-bit immediate	MOV	#H'12,R0	MOV.B	#H'12,R0
16-bit immediate	MOVI20	#H'1234,R0	MOV.W	#H'1234,R0
20-bit immediate	MOVI20	#H'12345,R0	MOV.L	#H'12345,R0
28-bit immediate	MOVI20S	#H'12345,R0	MOV.L	#H'1234567,
	OR	#H'67,R0		
32-bit immediate	MOV.L	@(disp,PC),R0	MOV.L	#H'12345678
	.DATA.L	H'12345678		

Note: @(disp, PC) accesses the immediate data.

Rev. 3.00 Mar. 04, 2009 Page 24 of 1168

REJ09B0344-0300

Table 2.6 Absolute Address Accessing

SH-2A CP	U	Exampl	e of Other CPU
MOVI20	#H'12345,R1	MOV.B	@H'12345,R0
MOV.B	@R1,R0		
MOVI20S	#H'12345,R1	MOV.B	@H'1234567,
OR	#H'67,R1		
MOV.B	@R1,R0		
MOV.L	@(disp,PC),R1	MOV.B	@H'12345678
MOV.B	@R1,R0		
.DATA.L	H'12345678		
	MOVI20 MOV.B MOVI20S OR MOV.B MOV.L MOV.B	MOV.B @R1,R0 MOVI20S #H'12345,R1 OR #H'67,R1 MOV.B @R1,R0 MOV.L @(disp,PC),R1 MOV.B @R1,R0	MOVI20 #H'12345,R1 MOV.B MOV.B @R1,R0

(12) 16-Bit/32-Bit Displacement

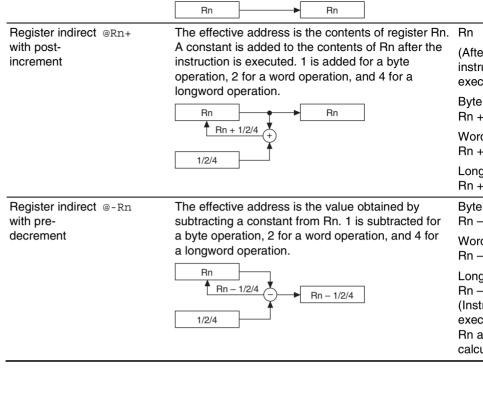
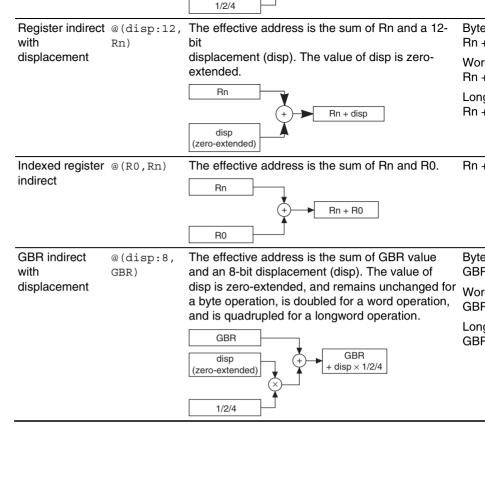
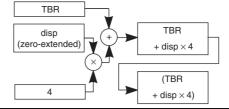

When data is accessed by 16-bit or 32-bit displacement, the displacement value should be a should be a second by 16-bit or 32-bit displacement. in the memory table in advance. That value is transferred to the register by loading the i data during the execution of the instruction, and the data is accessed in the indexed indir register addressing mode.

Table 2.7 Displacement Accessing


Classification	SH-2A CPU		Exampl	e of Other CPU
16-bit displacement	MOV.W	@(disp,PC),R0	MOV.W	@(H'1234,R1)
	W.VOM	@(R0,R1),R2		
	.DATA.W	H'1234		


Rev. 3.00 Mar. 04, 2009 Pag

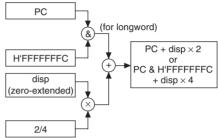
Rev. 3.00 Mar. 04, 2009 Page 26 of 1168

Rev. 3.00 Mar. 04, 2009 Pag

PC indirect with @(disp:8, displacement PC)

The effective address is the sum of PC value and an 8-bit displacement (disp). The value of disp is zero-extended, and is doubled for a word operation, and quadrupled for a longword operation. For a longword operation, the lowest two bits of the PC value are masked.

Word


PC+

Long

PC &

H'FFI

disp >

Rev. 3.00 Mar. 04, 2009 Page 28 of 1168

REJ09B0344-0300

the value that is obtained by doubling the sign-extended 12-bit displacement (disp).

PC

disp
(sign-extended)

PC + disp × 2

Rn

The effective address is the sum of PC value and Rn

Rn.

PC

PC + Rn

PC ·

	Sign-extended	
#imm:8	The 8-bit immediate data (imm) for the TST, AND, OR, and XOR instructions is zero-extended.	_
#imm:8	The 8-bit immediate data (imm) for the MOV, ADD, and CMP/EQ instructions is sign-extended.	_
#imm:8	The 8-bit immediate data (imm) for the TRAPA instruction is zero-extended and then quadrupled.	_
#imm:3	The 3-bit immediate data (imm) for the BAND, BOR, BXOR, BST, BLD, BSET, and BCLR instructions indicates the target bit location.	_

Table 2.9 Instruction Formats

Instruction Formats	Source Operand	Destination Operand	Example
0 format	_	_	NOP
15 0			
n format	_	nnnn: Register direct	MOVT I
xxxx nnnn xxxx xxxx	Control register or system register	nnnn: Register direct	STS I
	R0 (Register direct)	nnnn: Register direct	DIVU I
	Control register or system register	nnnn: Register indirect with pre-decrement	STC.L S
	mmmm: Register direct	R15 (Register indirect with predecrement)	MOVMU.L I
	R15 (Register indirect with post-increment)	nnnn: Register direct	MOVMU.L (
	R0 (Register direct)	nnnn: (Register indirect with post-increment)	MOV.L I

Rev. 3.00 Mar. 04, 2009 Pag

15 0	direct	direct
xxxx nnnn mmmm xxxx	mmmm: Register direct	nnnn: Register indirect
	mmmm: Register indirect with post-increment (multiply-and-accumulate)	MACH, MACL
	nnnn*: Register indirect with post- increment (multiply- and-accumulate)	
	mmmm: Register indirect with post-increment	nnnn: Register direct
	mmmm: Register direct	nnnn: Register indirect with predecrement
	mmmm: Register direct	nnnn: Indexed register indirect
md format 15 0 xxxx xxxx mmmm dddd	mmmmdddd: Register indirect with displacement	R0 (Register direct)

decientent

using Rm

mmmm: PC relative -

mmmm: Register

BRAF

ADD

MOV.L Rm,

MAC.W

MOV.L

MOV.L

MOV.L

MOV.B @(disp,Rm

Rm,@(R0,R

nnnn: Register

Rm

Rm,

@Rı

@R

Rm

REJ09B0344-0300

nm format

Rev. 3.00 Mar. 04, 2009 Page 32 of 1168

32 16 xxxx nnnn mmm xxxx	mmmm: Register direct	indirect with displacement	MOV.L Rm,@(dis
15 0 xxxx dddd dddd dddd	mmmmdddd: Register indirect with displacement	nnnn: Register direct	MOV.L @(disp12
d format 15 0 xxxx xxxx dddd dddd	ddddddd: GBR indirect with displacement	R0 (Register direct)	MOV.L @(disp,G
	R0 (Register direct)	dddddddd: GBR indirect with displacement	MOV.L R0,@(dis
	dddddddd: PC relative with displacement	R0 (Register direct)	MOVA @(disp,P
	dddddddd: TBR duplicate indirect with displacement	_	JSR/N @@(disp8
	ddddddd: PC relative	_	BF 1
d12 format	dddddddddd: PC	_	BRA 1
15 0 xxxx dddd dddd dddd	relative		(label = PC)
nd8 format 0 15 0 xxxx nnnn dddd dddd	dddddddd: PC relative with displacement	nnnn: Register direct	MOV.L @(disp,P

mmmm: Register nnnndddd: Register MOV.L

nmd12 format

REJ09

Rev. 3.00 Mar. 04, 2009 Pag

XXXX XXXX nnnn x iii	_	nnnn: Register direct iii: Immediate	BST	#imn
ni20 format	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	nnnn: Register direct	MOVI20	
32 16 xxxx nnnn iiii xxxx	Immediate		#imm20,	, Rn
15 0				
nid format	nnnndddddddddddd:	_	BLD.B	
32 16 xxxx nnnn xiii xxxx	Register indirect with displacement		#imm3,@)(dis
15 0	iii: Immediate			
xxxxx dddd dddd dddd	_	nnnnddddddddddd: Register indirect with displacement)(dis
		iii: Immediate		

Note: * In multiply-and-accumulate instructions, nnnn is the source register.

Rev. 3.00 Mar. 04, 2009 Page 34 of 1168

	Immediate data transfer
	Peripheral module data transfer
	Structure data transfer
	Reverse stack transfer
MOVA	Effective address transfer
MOVI20	20-bit immediate data transfer
MOVI20S	20-bit immediate data transfer
	8-bit left-shit
MOVML	R0-Rn register save/restore
MOVMU	Rn-R14 and PR register save/restore
MOVRT	T bit inversion and transfer to Rn
MOVT	T bit transfer
MOVU	Unsigned data transfer
NOTT	T bit inversion
PREF	Prefetch to operand cache
SWAP	Swap of upper and lower bytes
XTRCT	Extraction of the middle of registers connected

_
_
_
_
_
_
_
_
_
_

		SHLRn	n-bit logical right shift
Branch	10	BF	Conditional branch, conditional delayed branch (branch when $T=0$)
		ВТ	Conditional branch, conditional delayed branch (branch when $T = 1$)
		BRA	Unconditional delayed branch
		BRAF	Unconditional delayed branch
		BSR	Delayed branch to subroutine procedure
		BSRF	Delayed branch to subroutine procedure
		JMP	Unconditional delayed branch
		JSR	Branch to subroutine procedure
			Delayed branch to subroutine procedure
		RTS	Return from subroutine procedure
			Delayed return from subroutine procedure
		RTV/N	Return from subroutine procedure with Rm \rightarrow R0 transfer

ROTCL

ROTCR

SHAD

SHAL

SHAR SHLD

SHLL

SHLLn

SHLR

One-bit left rotation with T bit

One-bit right rotation with T bit

Dynamic arithmetic shift

Dynamic logical shift

n-bit logical left shift

One-bit logical left shift

One-bit logical right shift

One-bit arithmetic left shift One-bit arithmetic right shift

RENESAS

			RTE	Return from exception handling	
			SETT	T bit set	_
			SLEEP	Transition to power-down mode	_
			STBANK	Register save to specified register bank entry	_
			STC	Store control register data	_
			STS	Store system register data	_
			TRAPA	Trap exception handling	_
	Bit	BCLR BLD BOR BSET BST	BAND	Bit AND	14
	manipulation		BCLR	Bit clear	_
			BLD	Bit load	_
			BOR	Bit OR	
			BSET	Bit set	_
			BST	Bit store	_
			BXOR	Bit exclusive OR	_
			BANDNOT	Bit NOT AND	_
			BORNOT	Bit NOT OR	

Bit NOT load

Rev. 3.00 Mar. 04, 2009 Page 38 of 1168

19

BLDNOT

91

Total:

SRC: Source	0000: R0 0001: R1	M/Q/T: Flag bits in SR			
DEST: Destination		&: Logical AND of each bit			
Rm: Source register	1111: R15	: Logical OR of each bit			
Rn: Destination register	iiii: Immediate data	^: Exclusive logical OR of			
imm: Immediate data	dddd: Displacement	each bit			
disp: Displacement*2		~: Logical NOT of each bit			
		< <n: left="" n-bit="" shift<="" td=""></n:>			

Notes: 1. Instruction execution cycles: The execution cycles shown in the table are min practice, the number of instruction execution states will be increased in cases the following:

- - a. When there is a conflict between an instruction fetch and a data access b. When the destination register of a load instruction (memory \rightarrow register) is

>>n: n-bit right shift

as the register used by the next instruction. 2. Depending on the operand size, displacement is scaled by ×1, ×2, or ×4. For refer to the SH-2A, SH2A-FPU Software Manual.

```
MOV.W
            @Rm.Rn
                                                       (Rm) \rightarrow sign extension \rightarrow Rn
                                0110nnnnmmmm0001
MOV.L
                                0110nnnnmmmm0010 (Rm) \rightarrow Rn
            @Rm,Rn
MOV.B
            Rm,@-Rn
                                0010nnnnmmmm0100 Rn-1 \rightarrow Rn, Rm \rightarrow (Rn)
MOV.W
            Rm,@-Rn
                                0010nnnnmmmm0101 Rn-2 \rightarrow Rn, Rm \rightarrow (Rn)
MOV.L
            Rm,@-Rn
                                0010nnnnmmmm0110 Rn-4 \rightarrow Rn, Rm \rightarrow (Rn)
MOV.B
            @Rm+,Rn
                                0110nnnnmmmm0100 (Rm) \rightarrow sign extension \rightarrow Rn, 1
                                                        Rm + 1 \rightarrow Rm
MOV.W
            @Rm+,Rn
                                                       (Rm) \rightarrow sign extension \rightarrow Rn, 1
                                0110nnnnmmmm0101
                                                        Rm + 2 \rightarrow Rm
                                                       (Rm) \rightarrow Rn, Rm + 4 \rightarrow Rm
MOV.L
            @Rm+,Rn
                                0110nnnnmmmm0110
MOV.B
            R0,@(disp,Rn)
                                1000000nnnndddd R0 \rightarrow (disp + Rn)
MOV.W
                                10000001nnnndddd R0 \rightarrow (disp \times 2 + Rn)
            R0,@(disp,Rn)
MOV.L
            Rm,@(disp,Rn)
                                0001nnnnmmmmdddd Rm \rightarrow (disp \times 4 + Rn)
MOV.B
            @(disp,Rm),R0
                                10000100mmmmdddd
                                                       (disp + Rm) → sign extension
                                                        \rightarrow R0
MOV.W
            @(disp,Rm),R0
                                10000101mmmmdddd (disp \times 2 + Rm) \rightarrow
                                                        sign extension → R0
MOV.L
            @(disp,Rm),Rn
                                0101nnnnmmmmdddd (disp \times 4 + Rm) \rightarrow Rn
MOV.B
            Rm,@(R0,Rn)
                                0000nnnnmmmm0100 Rm \rightarrow (R0 + Rn)
Rev. 3.00 Mar. 04, 2009 Page 40 of 1168
                                                    RENESAS
REJ09B0344-0300
```

MOV.L

MOV

MOV.B

MOV.W

MOV.L

MOV.B

@(alsp,PC),Rn

Rm,Rn

Rm.@Rn

Rm,@Rn

Rm,@Rn

@Rm.Rn

1101nnnnadadadada (disp \times 4 + PC) \rightarrow Kn

 $Rm \rightarrow (Rn)$

 $Rm \rightarrow (Rn)$

 $Rm \rightarrow (Rn)$

 $(Rm) \rightarrow sign extension \rightarrow Rn$

0110nnnnmmmm0011 $Rm \rightarrow Rn$

0010nnnmmmm0000

0010nnnnmmmm0001

0010nnnnmmmm0010

0110nnnnmmmm0000

res

Yes

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

			sign extension → R0		
MOV.L	@(disp,GBR),R0	11000110dddddddd	$(disp \times 4 + GBR) \rightarrow R0$	1	_
MOV.B	R0,@Rn+	0100nnnn10001011	$R0 \rightarrow (Rn), Rn + 1 \rightarrow Rn$	1	_
MOV.W	R0,@Rn+	0100nnnn10011011	$R0 \rightarrow (Rn), Rn + 2 \rightarrow Rn$	1	_
MOV.L	R0,@Rn+	0100nnnn10101011	$R0 \rightarrow Rn)$, $Rn + 4 \rightarrow Rn$	1	_
MOV.B	@-Rm,R0	0100mmmm11001011	$Rm-1 \rightarrow Rm, (Rm) \rightarrow$ sign extension $\rightarrow R0$	1	_
MOV.W	@-Rm,R0	0100mmmm11011011	$Rm-2 \rightarrow Rm, (Rm) \rightarrow$ sign extension $\rightarrow R0$	1	_
MOV.L	@-Rm,R0	0100mmmm11101011	$Rm-4 \rightarrow Rm, (Rm) \rightarrow R0$	1	_
MOV.B	Rm,@(disp12,Rn)	0011nnnnmmmm0001	$Rm \rightarrow (disp + Rn)$	1	_
		0000dddddddddddd			
MOV.W	Rm,@(disp12,Rn)	0011nnnnmmmm0001	$Rm \rightarrow (disp \times 2 + Rn)$	1	_
		0001dddddddddddd			
MOV.L	Rm,@(disp12,Rn)	0011nnnnmmmm0001	$Rm \to (disp \times 4 + Rn)$	1	_
		0010dddddddddddd			
MOV.B	@(disp12,Rm),Rn	0011nnnnmmmm0001	$(disp + Rm) \to$	1	_
		0100dddddddddddd	sign extension \rightarrow Rn		

11000000dddddddd R0 → (disp + GBR)

11000100dddddddd

@(disp,GBR),R0 11000101dddddddd (disp \times 2 + GBR) \rightarrow

11000001dddddddd $R0 \rightarrow (disp \times 2 + GBR)$

11000010dddddddd $R0 \rightarrow (disp \times 4 + GBR)$

 $(disp + GBR) \rightarrow$

sign extension \rightarrow R0

1

1

1

1

1

Yes

Yes

Yes

Yes

Yes

Yes

MOV.B

MOV.W

MOV.L

MOV.B

MOV.W

R0,@(disp,GBR)

R0,@(disp,GBR)

R0,@(disp,GBR)

@(disp,GBR),R0

Rev. 3.00 Mar. 04, 2009 Pag

MOVI20S	#imm20,Rn	0000nnnniiii0001	imm $<< 8 \rightarrow \text{sign extension}$ $\rightarrow \text{Rn}$	1	_
MOVML.L	Rm,@-R15	0100mmm11110001	R15-4 \rightarrow R15, Rm \rightarrow (R15) R15-4 \rightarrow R15, Rm-1 \rightarrow (R15) : R15-4 \rightarrow R15, R0 \rightarrow (R15)	1 to 16	_
			Note: When Rm = R15, read Rm as PR		
MOVML.L	@R15+,Rn	0100nnnn11110101	$(R15) \rightarrow R0, R15 + 4 \rightarrow R15$ $(R15) \rightarrow R1, R15 + 4 \rightarrow R15$: : $(R15) \rightarrow Rn$	1 to 16	_
			Note: When Rn = R15, read Rm as PR		
MOVMU.L	Rm,@-R15	0100mmmm11110000	R15-4 \rightarrow R15, PR \rightarrow (R15) R15-4 \rightarrow R15, R14 \rightarrow (R15) : R15-4 \rightarrow R15, Rm \rightarrow (R15)	1 to 16	_
			Note: When Rm = R15, read Rm as PR		
MOVMU.L	@R15+,Rn	0100nnnn11110100	$(R15) \rightarrow Rn, R15 + 4 \rightarrow R15$ $(R15) \rightarrow Rn + 1, R15 + 4 \rightarrow$ R15 : $(R15) \rightarrow R14, R15 + 4 \rightarrow R15$	1 to 16	_
			$(R15) \rightarrow PR$ Note: When Rn = R15, read		

Rev. 3.00 Mar. 04, 2009 Page 42 of 1168 REJ09B0344-0300

RENESAS

Rm as PR

					result	
PREF	@Rn	0000nnnn10000011	$(Rn) \to operand\ cache$	1	=	,
SWAP.B	Rm,Rn	0110nnnnmmm1000	$Rm \rightarrow swap lower 2 bytes \rightarrow Rn$	1	_	Yes \
SWAP.W	Rm,Rn	0110nnnnmmm1001	$Rm \rightarrow swap \ upper \ and \ lower$ words $\rightarrow Rn$	1	_	Yes \
XTRCT	Rm,Rn	0010nnnnmmm1101	Middle 32 bits of Rm:Rn \rightarrow Rn	1	_	Yes \
•						

ration

OWF/LQ	#!!!!!!, 0	1000100011111111	Otherwise, $0 \rightarrow T$
CMP/EQ	Rm,Rn	0011nnnnmmmm0000	When Rn = Rm, 1 \rightarrow T Otherwise, 0 \rightarrow T
CMP/HS	Rm,Rn	0011nnnnmmmm0010	When Rn \geq Rm (unsigned), 1 \rightarrow T Otherwise, 0 \rightarrow T
CMP/GE	Rm,Rn	0011nnnnmmmm0011	When Rn \geq Rm (signed), 1 \rightarrow T Otherwise, 0 \rightarrow T
CMP/HI	Rm,Rn	0011nnnnmmmm0110	When Rn > Rm (unsigned), $1 \rightarrow T$ Otherwise, $0 \rightarrow T$
CMP/GT	Rm,Rn	0011nnnnmmmm0111	When Rn > Rm (signed), $1 \rightarrow T$ Otherwise, $0 \rightarrow T$
CMP/PL	Rn	0100nnnn00010101	When Rn > 0, 1 \rightarrow T Otherwise, 0 \rightarrow T
CMP/PZ	Rn	0100nnnn00010001	When Rn \geq 0, 1 \rightarrow T Otherwise, 0 \rightarrow T
CMP/STR	Rm,Rn	0010nnnnmmmm1100	When any bytes are equal, $1 \rightarrow T$ Otherwise, $0 \rightarrow T$
Rev. 3.00 REJ09B0		Page 44 of 1168	RENESAS

0011nnnnmmmm1111

10001000iiiiiii

 $Rn + Rm \rightarrow Rn$, overflow $\rightarrow T$ 1

When R0 = imm, $1 \rightarrow T$

Over-

Com-

Com-

Com-

Com-

Com-

Com-

Com-

Com-

Com-

parison result

flow

1

1

1

1

1

1

1

1

1

Yes

ADDV

CMP/EQ

Rm,Rn

#imm,R0

OLII O.VV		01001111111110000101	$(H'0000FFFF) \rightarrow Rn, 1 \rightarrow CS$	•		
DIV1	Rm,Rn	0011nnnnmmm0100	1-step division (Rn ÷ Rm)	1	Calcu- lation result	Yes
DIV0S	Rm,Rn	0010nnnnmmmm0111	MSB of Rn \rightarrow Q, MSB of Rm \rightarrow M, M $^{\wedge}$ Q \rightarrow T	1	Calcu- lation result	Yes
DIV0U		000000000011001	$0 \rightarrow M/Q/T$	1	0	Yes
DIVS	R0,Rn	0100nnnn10010100	Signed operation of Rn \div R0 \rightarrow Rn 32 \div 32 \rightarrow 32 bits	36	_	
DIVU	R0,Rn	0100nnnn10000100	Unsigned operation of Rn \div R0 \rightarrow Rn 32 \div 32 \rightarrow 32 bits	34	_	
DMULS.L	Rm,Rn	0011nnnnmmmm1101	Signed operation of Rn \times Rm \rightarrow MACH, MACL $32 \times 32 \rightarrow 64$ bits	2	_	Yes
DMULU.L	Rm,Rn	0011nnnnmmm0101	Unsigned operation of Rn \times Rm \rightarrow MACH, MACL $32 \times 32 \rightarrow 64$ bits	2	_	Yes
DT	Rn	0100nnnn00010000	$Rn - 1 \rightarrow Rn$ When Rn is 0, 1 \rightarrow T When Rn is not 0, 0 \rightarrow T	1	Compa- rison result	Yes
EXTS.B	Rm,Rn	0110nnnnmmm1110	Byte in Rm is sign-extended \rightarrow Rn	1		Yes
EXTS.W	Rm,Rn	0110nnnnmmm1111	Word in Rm is $sign\text{-}extended \rightarrow Rn$	1		Yes
				.00 M	1ar. 04, 2009	_
		•	SENESAS		F	REJ09

0100nnnn10000001 When Rn > (H'000000FF),

0100nnnn10000101 When Rn > (H'0000FFFF),

 $(H'000000FF) \rightarrow Rn, 1 \rightarrow CS$

CLIPU.B Rn

CLIPU.W Rn

			$16 \times 16 + 64 \rightarrow 64$ bits				
MUL.L	Rm,Rn	0000nnnnmmmm0111	$Rn \times Rm \rightarrow MACL$ $32 \times 32 \rightarrow 32 \text{ bits}$	2	_	Yes	Υ
MULR	R0,Rn	0100nnnn10000000	$R0 \times Rn \rightarrow Rn$ $32 \times 32 \rightarrow 32 \text{ bits}$	2			
MULS.W	Rm,Rn	0010nnnnmmmm1111	Signed operation of Rn \times Rm \rightarrow MACL $16 \times 16 \rightarrow 32$ bits	1	_	Yes	Υ
MULU.W	Rm,Rn	0010nnnnmmmm1110	Unsigned operation of Rn \times Rm \rightarrow MACL 16 \times 16 \rightarrow 32 bits	1	_	Yes	Y
NEG	Rm,Rn	0110nnnnmmmm1011	$0\text{-Rm} \rightarrow \text{Rn}$	1	_	Yes	Υ
NEGC	Rm,Rn	0110nnnnmmmm1010	$0\text{-Rm-T} \rightarrow \text{Rn, borrow} \rightarrow \text{T}$	1	Borrow	Yes	Υ
SUB	Rm,Rn	0011nnnnmmmm1000	$Rn-Rm \rightarrow Rn$	1	_	Yes	Υ
SUBC	Rm,Rn	0011nnnnmmmm1010	$Rn-Rm-T \rightarrow Rn$, borrow $\rightarrow T$	1	Borrow	Yes	Υ
SUBV	Rm,Rn	0011nnnnmmmm1011	$Rn-Rm \rightarrow Rn$, underflow $\rightarrow T$	1	Over-	Yes	Υ

 $(Rm) + MAC \rightarrow MAC$

flow

RENESAS

TST	#imm,R0	11001000iiiiiiii	R0 & imm $\label{eq:continuous}$ When the result is 0, 1 \rightarrow T $\label{eq:continuous}$ Otherwise, 0 \rightarrow T
TST.B	#imm,@(R0,GBR)	11001100iiiiiiii	(R0 + GBR) & imm $\label{eq:continuous}$ When the result is 0, 1 \rightarrow T $\label{eq:continuous}$ Otherwise, 0 \rightarrow T
XOR	Rm,Rn	0010nnnnmmm1010	$Rn \wedge Rm \rightarrow Rn$
XOR	#imm,R0	11001010iiiiiiii	R0 ^ imm \rightarrow R0
XOR.B	#imm,@(R0,GBR)	11001110iiiiiiii	$(R0 + GBR) \land imm \rightarrow$ (R0 + GBR)

NOT

OR

OR

OR.B

TAS.B

TST

Rm,Rn

Rm,Rn

#imm,R0

@Rn

Rm,Rn

#imm,@(R0,GBR)

RENESAS

(R0 + GBR)

 ${\sim}Rm \to Rn$

 $Rn \mid Rm \rightarrow Rn$

 $R0 \mid imm \rightarrow R0$

(R0 + GBR)

Rn & Rm

 $(R0 + GBR) \mid imm \rightarrow$

When (Rn) is 0, $1 \rightarrow T$

When the result is 0, $1 \rightarrow T$

Otherwise, $0 \rightarrow T$,

 $1 \rightarrow MSB of(Rn)$

Otherwise, $0 \rightarrow T$

0110nnnnmmmm0111

0010nnnnmmmm1011

11001011iiiiiii

11001111111111111

0100nnnn00011011

0010nnnnmmm1000

1

1

1

3

3

1

1

3

1

1

3

Yes

Test

result

Test

result

Test

result

Test

result

Rev. 3.00 Mar. 04, 2009 Pag

SHAL	Rn	0100nnnn00100000	$T \leftarrow Rn \leftarrow 0$
SHAR	Rn	0100nnnn00100001	$MSB \to Rn \to T$
SHLD	Rm,Rn	0100nnnnmmm1101	When Rm \geq 0, Rn $<<$ Rm \rightarrow R When Rm $<$ 0, Rn $>>$ $ Rm \rightarrow$ $[0 \rightarrow Rn]$
SHLL	Rn	0100nnnn00000000	$T \leftarrow Rn \leftarrow 0$
SHLR	Rn	0100nnnn00000001	$0 \to Rn \to T$
SHLL2	Rn	0100nnnn00001000	$Rn \ll 2 \rightarrow Rn$
SHLR2	Rn	0100nnnn00001001	$Rn >> 2 \rightarrow Rn$
SHLL8	Rn	0100nnnn00011000	$Rn \ll 8 \rightarrow Rn$
SHLR8	Rn	0100nnnn00011001	$Rn >> 8 \rightarrow Rn$
SHLL16	Rn	0100nnnn00101000	$Rn \ll 16 \rightarrow Rn$
SHLR16	Rn	0100nnnn00101001	$Rn >> 16 \rightarrow Rn$

0100nnnn00100101

0100nnnnmmmm1100

 $\mathsf{T}\to\mathsf{Rn}\to\mathsf{T}$

 $[MSB \rightarrow Rn]$

When $Rm \ge 0$, $Rn \ll Rm \rightarrow Rn$

When Rm < 0, Rn >> $|Rm| \rightarrow$

1

1

1

1

1

1

1

1

1

1

 $\rightarrow Rn$

LSB

LSB

MSB

LSB

MSB Yes

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Rev. 3.00 Mar. 04, 2009 Page 48 of 1168

ROTCR

SHAD

Rn

Rm,Rn

BT/S label 10001101dddddddd Delayed branch				When T = 0, disp \times 2 + PC \rightarrow PC, When T = 1, nop
$When T = 1, disp \times 2 + PC, \\ When T = 0, nop$ $BRA \qquad label \qquad 1010dddddddddddd \qquad Delayed branch, \\ disp \times 2 + PC \rightarrow PC$ $BRAF \qquad Rm \qquad 0000mmm00100011 \qquad Delayed branch,$	ВТ	label	10001001dddddddd	•
$\frac{\text{disp} \times 2 + PC \rightarrow PC}{\text{BRAF} \text{Rm} \qquad 0000 \text{mmmm} 00100011} \text{Delayed branch,}$	BT/S	label	10001101dddddddd	When T = 1, disp \times 2 + PC \rightarrow PC,
	BRA	label	1010ddddddddddd	•
	BRAF	Rm	0000mmmm00100011	•

1011dddddddddddd

0000mmmm00000011

0100mmmm00101011

0100mmmm00001011

0100mmmm01001011

10000011dddddddd

0000mmmm01111011

 $(\mbox{disp}\times 4 + \mbox{TBR}) \rightarrow \mbox{PC}$ RTS 000000000001011 Delayed branch, PR \rightarrow PC RTS/N 000000001101011 PR \rightarrow PC

BSR

BSRF

JMP

JSR

JSR/N

JSR/N

RTV/N

Note:

label

Rm

@Rm

@Rm

@Rm

Rm

@@(disp8,TBR)

RENESAS

3/1*

2/1*

2

2

2

2

2

2

3

5

2

3

3

Delayed branch, $PC \rightarrow PR$,

Delayed branch, $PC \rightarrow PR$,

Delayed branch, $Rm \rightarrow PC$

Delayed branch, $PC \rightarrow PR$,

 $PC-2 \rightarrow PR, Rm \rightarrow PC$

 $Rm \to R0,\, PR \to PC$

 $\mathsf{disp} \times 2 + \mathsf{PC} \to \mathsf{PC}$

 $Rm + PC \rightarrow PC$

 $\mathsf{Rm} \to \mathsf{PC}$

 $PC-2 \rightarrow PR$

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

REJ09

Rev. 3.00 Mar. 04, 2009 Pag

LDC	Rm,TBR	0100mmmm01001010	$Rm \to TBR$	1	_		
LDC	Rm,GBR	0100mmmm00011110	$Rm \to GBR$	1	_	Yes	Υ
LDC	Rm,VBR	0100mmmm00101110	$Rm \to VBR$	1	_	Yes	Υ
LDC.L	@Rm+,SR	0100mmmm00000111	$(Rm) \rightarrow SR, Rm + 4 \rightarrow Rm$	5	LSB	Yes	Υ
LDC.L	@Rm+,GBR	0100mmmm00010111	$(Rm) \rightarrow GBR, Rm + 4 \rightarrow Rm$	1	_	Yes	Υ
LDC.L	@Rm+,VBR	0100mmmm00100111	$(Rm) \rightarrow VBR, Rm + 4 \rightarrow Rm$	1	_	Yes	Υ
LDS	Rm,MACH	0100mmmm00001010	$Rm \to MACH$	1	_	Yes	Υ
LDS	Rm,MACL	0100mmmm00011010	$Rm \to MACL$	1	_	Yes	Υ
LDS	Rm,PR	0100mmmm00101010	$Rm \to PR$	1	_	Yes	Υ
LDS.L	@Rm+,MACH	0100mmmm00000110	$(Rm) \rightarrow MACH, Rm + 4 \rightarrow Rm$	1		Yes	Υ
LDS.L	@Rm+,MACL	0100mmmm00010110	$(Rm) \rightarrow MACL, Rm + 4 \rightarrow Rm$	1		Yes	Υ
LDS.L	@Rm+,PR	0100mmmm00100110	$(Rm) \rightarrow PR, Rm + 4 \rightarrow Rm$	1	_	Yes	Υ
NOP		000000000001001	No operation	1		Yes	Υ
RESBAN	<	000000001011011	Bank → R0 to R14, GBR, MACH, MACL, PR	9*	_		
RTE		000000000101011	Delayed branch, stack area → PC/SR	6	_	Yes	Y
SETT		000000000011000	1 → T	1	1	Yes	Υ
SLEEP		000000000011011	Sleep	5	_	Yes	Υ
STBANK	R0,@Rn	0100nnnn11100001	R0 → (specified register bank entry)	7	_		
STC	SR,Rn	0000nnnn00000010	$SR \rightarrow Rn$	2	_	Yes	Υ
	TBR,Rn	0000nnnn01001010	$TBR \rightarrow Rn$	1	_		

LDC

Rm,SR

0100mmmm00001110

 $\mathsf{Rm} \to \mathsf{SR}$

3

LSB

Yes

Y

STS	PR,Rn	0000nnnn00101010
STS.L	MACH,@-Rn	0100nnnn00000010
STS.L	MACL,@-Rn	0100nnnn00010010
STS.L	PR,@-Rn	0100nnnn00100010

313

TRAPA

#imm

0100nnnn00100010	$Rn\text{-}4\toRn,PR\to(Rn)$	1	_	Yes	,
11000011iiiiiiii	$PC/SR \rightarrow stack area,$ (imm × 4 + VBR) $\rightarrow PC$	5	_	Yes	,

1

1

1

Yes

Yes

Yes

Notes: 1. Instruction execution cycles: The execution cycles shown in the table are min

 $PR \rightarrow Rn$

 $Rn-4 \rightarrow Rn, MACH \rightarrow (Rn)$

 $Rn-4 \rightarrow Rn, MACL \rightarrow (Rn)$

practice, the number of instruction execution states in cases such as the following a. When there is a conflict between an instruction fetch and a data access b. When the destination register of a load instruction (memory \rightarrow register) is

as the register used by the next instruction. In the event of bank overflow, the number of cycles is 19.

		1100dddddddddddd			ration
		IIIVaadaadaadaadaa			result
BCLR.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	$0 \rightarrow \text{(imm of (disp + Rn))}$	3	_
		0000dddddddddddd			
BCLR	#imm3,Rn	10000110nnnn0iii	$0 \rightarrow imm \ of \ Rn$	1	_
BLD.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	(imm of (disp + Rn)) \rightarrow	3	Ope-
		0011ddddddddddddd			ration result
BLD	#imm3,Rn	10000111nnnnliii	imm of Rn \rightarrow T	1	Ope-
					ration result
BLDNOT.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	~(imm of (disp + Rn))	3	Ope-
		1011ddddddddddddd	\rightarrow T		ration result
BOR.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	(imm of (disp + Rn)) T \rightarrow T	3	Ope-
		0101dddddddddddd			ration result
BORNOT.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	~(imm of (disp + Rn)) T \rightarrow T	3	Ope-
		1101dddddddddddd			ration result
BSET.B	#imm3,@(disp12,Rn)	0011nnnn0iii1001	$1 \rightarrow$ (imm of (disp + Rn))	3	
		0001dddddddddddd			
BSET	#imm3,Rn	10000110nnnn1iii	1 → imm of Rn	1	
BST.B	#imm3,@ (disp12,Rn)	0011nnnn0iii1001	$T \rightarrow (\text{imm of (disp + Rn)})$	3	
		0010dddddddddddd			

Rev. 3.00 Mar. 04, 2009 Page 52 of 1168

#imm3,Rn

BST

REJ09B0344-0300

10000111nnnn0iii $T \rightarrow imm \text{ of } Rn$

1

and power-down. Figure 2.6 shows the transitions between the states.

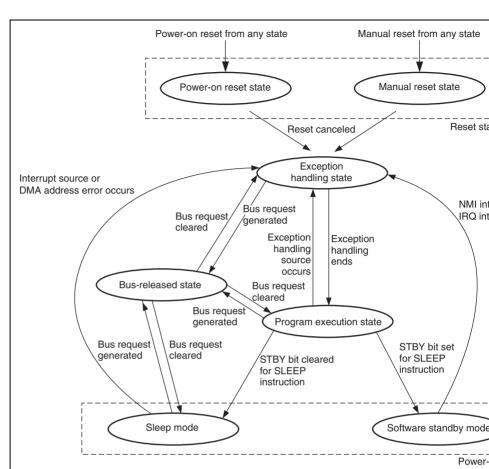


Figure 2.6 Transitions between Processing States

Rev. 3.00 Mar. 04, 2009 Pag REJ09 For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and stat register (SR) are saved to the stack area. The exception service routine start address is fet from the exception handling vector table; the CPU then branches to that address and the patents executing, thereby entering the program execution state.

(3) Program Execution State

In the program execution state, the CPU sequentially executes the program.

(4) Power-Down State

In the power-down state, the CPU stops operating to reduce power consumption. The SL instruction places the CPU in the sleep mode or the software standby mode.

(5) Bus-Released State

In the bus-released state, the CPU releases bus to a device that has requested it.

Rev. 3.00 Mar. 04, 2009 Page 54 of 1168

The MCU operating mode can be selected from MCU extension modes 0 to 2 and single mode. For the on-chip flash memory programming mode, boot mode, user boot mode, a program mode which are on-chip programming modes are available.

Table 3.1 Selection of Operating Modes

		Pin Sett	ing			Bus Width of CS
Mode No.	FWE	MD1	MD0	Mode Name	On-Chip ROM	SH7211F
Mode 0	0	0	0	MCU extension mode 0	Not active	16
Mode 1	0	0	1	MCU extension mode 1	Not active	8
Mode 2	0	1	0	MCU extension mode 2	Active	Set by CS0BCF
Mode 3	0	1	1	Single chip mode	Active	_
Mode 4*	1	0	0	Boot mode	Active	Set by CS0BCF

User boot mode

User program mode

Note: * Flash memory programming mode.

1

0

1

Mode 5*

Mode 6*

1

REJ09

Set by CS0BCR

Set by CS0BCR

Active

Active

Rev. 3.00 Mar. 04, 2009 Page 56 of 1168

3.3.3 Mode 2 (MCU Extension Mode 2)

The on-chip ROM is active and CS0 space can be used in this mode.

3.3.4 Mode 3 (Single Chip Mode)

All ports can be used in this mode, however the external address cannot be used.

Rev. 3.00 Mar. 04, 2009 Pag

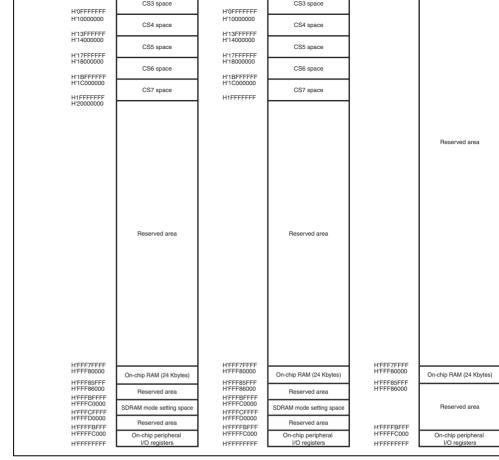
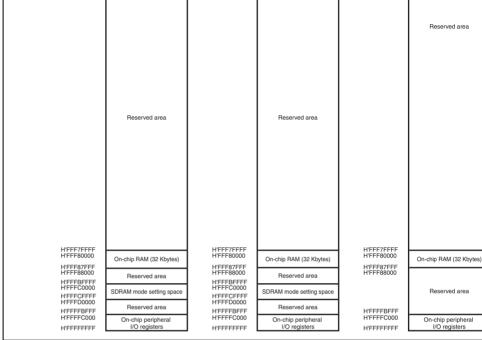



Figure 3.1 Address Map for Each Operating Mode (384-Kbyte On-Chip ROM Version)

Rev. 3.00 Mar. 04, 2009 Page 58 of 1168 REJ09B0344-0300

RENESAS

H'1BFFFFFF

H'1C000000

H1FFFFFFF

CS7 space

H'1BFFFFFF

H'1C000000

H1FFFFFF H'20000000 CS7 space

Figure 3.2 Address Map for Each Operating Mode (512-Kbyte On-Chip ROM Version)

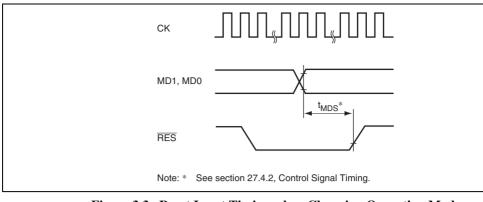


Figure 3.3 Reset Input Timing when Changing Operating Mode

- selected.
- Five clocks generated independently
- An internal clock (Iφ) for the CPU, a peripheral clock (Pφ) for the peripheral module
 - clock (B ϕ = CK) for the external bus interface, an MTU2S clock (M ϕ) for the MTU2 and an AD clock (A ϕ) for the ADC module can be generated independently.
 - Frequency change function
 - Internal and peripheral clock frequencies can be changed independently using the PI locked loop) circuits and divider circuits within the CPG. Frequencies are changed busing frequency control register (FRQCR) settings.
 - Power-down mode control

The clock can be stopped for sleep mode and software standby mode, and specific me be stopped using the module standby function. For details on clock control in the pomodes, see section 23, Power-Down Modes.

Figure 4.1 shows a block diagram of the clock pulse generator.

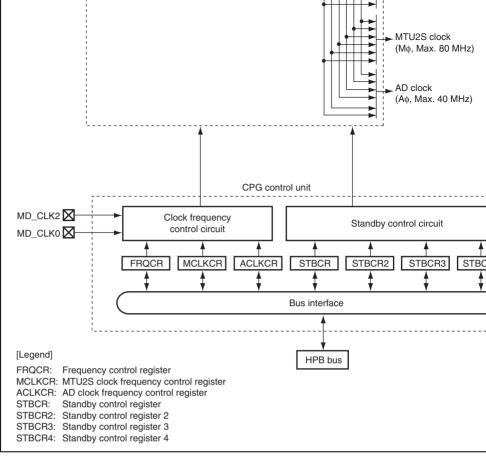


Figure 4.1 Block Diagram of Clock Pulse Generator

Rev. 3.00 Mar. 04, 2009 Page 62 of 1168

The multiplication rate is fixed according to the clock operating mode. The clock operation is specified by the MD_CLK0 and MD_CLK2 pins. For details on the clock operating notable 4.2.

(3) Crystal Oscillator

The crystal oscillator is an oscillation circuit in which a crystal resonator is connected to XTAL pin or EXTAL pin. This can be used according to the clock operating mode.

(4) Divider 1

Divider 1 generates a clock signal at the operating frequency used by the internal clock bus clock (B ϕ), the peripheral clock (P ϕ), the MTU2S clock (M ϕ), or the AD clock (A ϕ operating frequency can be 1, 1/2, 1/4, or 1/8 times the output frequency of PLL circuit However, set the internal clock (I ϕ) so that its frequency is not less than the clock frequency find the peripheral clock (P ϕ) so that its frequency is not more than the clock of the CK pin. The division ratio is set in the frequency control register (FRQCR).

(5) Clock Frequency Control Circuit

The clock frequency control circuit controls the clock frequency using the MD_CLK0 a MD_CLK2 pins and the frequency control register (FRQCR).

(8) MTU2S Clock Frequency Control Register (MCLKCR)

The MTU2S clock frequency control register (MCLKCR) has control bits assigned for the following functions: MTU2S clock (M ϕ) output/non-output and the frequency division ratio

(9) AD Clock Frequency Control Register (ACLKCR)

The AD clock frequency control register (ACLKCR) has control bits assigned for the foll functions: AD clock (A ϕ) output/non-output and the frequency division ratio.

(10) Standby Control Register

The standby control register has bits for controlling the power-down modes. See section 2 Power-Down Modes, for more information.

Rev. 3.00 Mar. 04, 2009 Page 64 of 1168

REJ09B0344-0300

RENESAS

pins)	EXTAL	Input	Connected to the crystal resonator or used to input an clock.
Clock output pin	CK	Output	Clock output pin. This pin can be high impedance.

pins)

Rev. 3.00 Mar. 04, 2009 Pag

• Mode 6

The frequency of the signal received from the EXTAL pin or crystal oscillator is quad by the PLL circuit 2 before it is supplied to the LSI as the clock signal. This allows a with a lower frequency to be used. Either a crystal resonator with a frequency in the r from 8 to 10 MHz or an external signal in the same frequency range input on the EXT can be used. When the CK output is in use, the frequency range is from 32 to 40 MHz an input signal on the EXTAL pin is in use, the XTAL pin should be left open.

Rev. 3.00 Mar. 04, 2009 Page 66 of 1168

	H'1113	On (× 2)	On (×4)	4:4:2	8 to 10	32 to 40	32 to 40	32 to 40
	H'1115	On (× 2)	On (×4)	4:4:1	8 to 10	32 to 40	32 to 40	32 to 40
	H'1303	On (× 4)	On (×4)	16:4:4	8 to 10	32 to 40	128 to 160	32 to 40
	H'1305	On (× 4)	On (×4)	16:4:2	8 to 10	32 to 40	128 to 160	32 to 40
	H'1313	On (× 4)	On (×4)	8:4:4	8 to 10	32 to 40	64 to 80	32 to 40
	H'1315	On (× 4)	On (×4)	8:4:2	8 to 10	32 to 40	64 to 80	32 to 40
	H'1333	On (× 4)	On (×4)	4:4:4	8 to 10	32 to 40	32 to 40	32 to 40
	H'1335	On (× 4)	On (×4)	4:4:2	8 to 10	32 to 40	32 to 40	32 to 40
Notes:	1.	The ratio	of clock f	requencie	s, where the in	put clock fre	equency is ass	umed to be 1.
	2.	The frequ	ency of t	he clock ir	put from the E	XTAL pin or	the frequency	of the crystal
Caution:	1.	The frequ	ency of t	ne interna	l clock (Ιφ) is th	e frequency	of the signal i	input to the CK

Cautio multiplication by the frequency-multiplier of PLL circuit 1 and division by the divider's the frequency of the internal clock to 160 MHz or less but not less than the frequency signal on the CK pin.

H'1103

H'1105

H'1111

On (x 2)

On (x 2)

On (x 2)

On (×4)

On (x4)

On (×4)

8:4:2

8:4:1

4:4:4

8 to 10

8 to 10

8 to 10

32 to 40

32 to 40

32 to 40

64 to 80

64 to 80

32 to 40

32 to 40

32 to 40

32 to 40

REJ09

- 2. The frequency of the peripheral clock $(P\phi)$ is the frequency of the signal input to the
 - multiplication by the frequency-multiplier of PLL circuit 1 and division by the divider's the frequency of the peripheral clock to 40 MHz or less. In addition, do not set a high frequency for the internal clock than the frequency on the CK pin. 3. The frequency multiplier of PLL circuit 1 can be selected as ×1, ×2, or ×4. The divisor divider can be selected as $\times 1$, $\times 1/2$, $\times 1/4$, or $\times 1/8$. The settings are made in the freq

than 160 MHz.

- control register (FRQCR).
- 4. The signal output by PLL circuit 1 is the signal on the CK pin multiplied by the frequency multiplier of PLL circuit 1. Ensure that the frequency of the signal from PLL circuit 1

4.4.1 Frequency Control Register (FRQCR)

FRQCR is a 16-bit readable/writable register used to specify whether a clock is output from CK pin in software standby mode, the frequency multiplication ratio of PLL circuit 1, and frequency division ratio of the internal clock ($I\phi$) and peripheral clock ($P\phi$). Only word as be used on FRQCR.

FRQCR is initialized to H'1003 only by a power-on reset. FRQCR retains its previous valual reset or in software standby mode. The previous value is also retained when an in reset is triggered by an overflow of the WDT.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	-	CKOEN	-	-	STC	[1:0]	-		IFC[2:0]		RNGS		Р
Initial value:	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R/W	R	R	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	

Bit	Bit Name	Initial Value	R/W	Description
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write vishould always be 0.

Rev. 3.00 Mar. 04, 2009 Page 68 of 1168

				·
				 The CK pin is fixed to the low level during standby mode or when exiting software s mode.
				 Clock is output from the CK pin (placed in impedance state during software standby
11, 10	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.
9, 8	STC[1:0]	00	R/W	Frequency multiplication ratio of PLL circuit
				00: × 1 time

prevented.

 $01: \times 2 \text{ times}$

11: × 4 times

always be 0.

Reserved

10: Setting prohibited

This bit is always read as 0. The write value

0

R

7

				Other than above: Setting prohibited
3	RNGS	0	R/W	Set this bit according to the output frequence circuit 1.
				0: High-frequency mode
				1: Low-frequency mode
				Always specify high-frequency mode for this
				Do not set this bit to 1.
2 to 0	PFC[2:0]	011	R/W	Peripheral Clock (Pφ) Frequency Division R
				These bits specify the frequency division ra peripheral clock with respect to the output for of PLL circuit 1.
				If a prohibited value is specified, correct oper cannot be guaranteed.
				000: × 1 time
				001: × 1/2 time
				011: × 1/4 time
				101: × 1/8 time

Other than above: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 70 of 1168

		Initial		
Bit	Bit Name	Value	R/W	Description
7, 6	MSSCS[1:0]	01	R/W	Source Clock Select
				These bits select the source clock.
				00: Clock stop
				01: PLL1 output clock
				10: Reserved (setting prohibited)
				11: Reserved (setting prohibited)
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valued always be 0.
1, 0	MSDIVS[1:0]	11	R/W	Division Ratio Select
				These bits specify the frequency division rates source clock. Set these bits so that the outp 80 MHz or less, and also an integer multiple peripheral clock frequency ($P\phi$).
				00: × 1 time
				01: × 1/2 time
				10: Setting prohibited
				11: × 1/4 time

Bit	Bit Name	Value	R/W	Description
7, 6	ASSCS[1:0]	01	R/W	Source Clock Select
				These bits select the source clock.
				00: Clock stoppage
				01: PLL1 output clock
				10: Reserved (setting prohibited)
				11: Reserved (setting prohibited)
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.
1, 0	ASDIVS[1:0]	11	R/W	Division Ratio Select
				These bits specify the frequency division rational source clock. Set these bits so that the output 40 MHz or less, and also an integer multiple peripheral clock frequency (Pφ).
				00: x 1 time
				01: × 1/2 time
				10: Setting prohibited
				11: × 1/4 time

Initial

Rev. 3.00 Mar. 04, 2009 Page 72 of 1168

multiplication rate is changed, the LSI temporarity stops automatically and the internal timer (WDT) starts counting the settling time. When the count of the WDT overflows, t restarts operating with the set clock frequency. The following shows this setting procedu

- 1. In the initial state, the multiplication rate of PLL circuit 1 is 1 time.
 - 2. Set a value that will become the specified oscillation settling time in the WDT and s

WTCSR.TME = 0: WDT stops

Modes.

WDT. The following must be set:

WTCSR.CKS[2:0]: Division ratio of WDT count clock

WTCNT counter: Initial counter value

For setting of the counter, determine the overflow period with the frequency after the peripheral clock ($P\phi$) setting change. 3. Set the desired value in the STC[1:0] bits. The division ratio can also be set in the IF

- PFC[2:0] bits. 4. This LSI pauses temporarily and the WDT starts incrementing. The internal and peri
- clocks both stop and the WDT is supplied with the clock. The clock will continue to at the CK pin. This state is the same as software standby mode. Whether or not regis initialized depends on the module. For details, see table 23.4 in section 23, Power-D
- 5. Supply of the clock that has been set begins at WDT count overflow, and this LSI be operating again. The WDT stops counting after it overflows.

Note: When executing the SLEEP instruction after the frequency has been changed, be read the frequency control register (FRQCR) three times before executing the SL instruction.

Rev. 3.00 Mar. 04, 2009 Page 74 of 1168

RENESAS

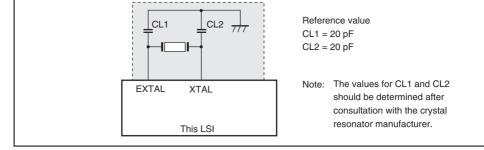


Figure 4.2 Note on Using a Crystal Resonator

4.6.2 Note on Bypass Capacitor

A multilayer ceramic capacitor should be inserted for each pair of Vss and Vcc as a byp capacitor as many as possible. The bypass capacitor must be inserted as close to the pow pins of the LSI as possible. Note that the capacitance and frequency characteristics of th capacitor must be appropriate for the operating frequency of the LSI.

4.6.3 Note on Using a PLL Oscillation Circuit

In the PLLVcc and PLLVss connection pattern for the PLL, signal lines from the board supply pins must be as short as possible and pattern width must be as wide as possible to inductive interference.

Since the analog power supply pins of the PLL are sensitive to the noise, the system may malfunction due to inductive interference at the other power supply pins. To prevent suc malfunction, the analog power supply pin Vcc and digital power supply pin VccQ shoul supply the same resources on the board if at all possible.

Rev. 3.00 Mar. 04, 2009 Pag

Rev. 3.00 Mar. 04, 2009 Page 76 of 1168

Table 5.1 Types of Exception Handling and Priority Order **Type Exception Handling** Reset Power-on reset Manual reset Address CPU address error error DMAC address error

Integer division exception (overflow)

Bank underflow

Bank overflow

User break H-UDI **IRQ**

NMI

Integer division exception (division by zero)

Instruction

Register

Interrupt

bank error

Direct memory access controller (DMAC)
Compare match timer (CMT)
Bus state controller (BSC)
Watchdog timer (WDT)
Multi-function timer pulse unit 2 (MTU2)
Port output enable 2 (POE2): OEI1 and OEI2 interrupts

On-chip peripheral modules

A/D converter (ADC)

branch instruction*¹, instructions that rewrite the PC*², 32-bit instructions*³, RESBANK instruction, DIVS instruction, and DIVU instruction)

Notes: 1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, B BRAF.

- Instructions that rewrite the PC: JMP, JSR, BRA, BSR, RTS, RTE, BT, BF, TR BF/S, BT/S, BSRF, BRAF, JSR/N, RTV/N.
 32-bit instructions: BAND B, BANDNOT B, BCL B, BLD B, BLDNOT B, BCR
 - 32-bit instructions: BAND.B, BANDNOT.B, BCLR.B, BLD.B, BLDNOT.B, BOR BORNOT.B, BSET.B, BST.B, BXOR.B, MOV.B@disp12, MOV.W@disp12, MOV.L@disp12, MOVI20, MOVI20S, MOVU.B, MOVU.W.

Rev. 3.00 Mar. 04, 2009 Page 78 of 1168

Address error		Detected when instruction is decoded and starts whe previous executing instruction finishes executing.
Interrupts		Detected when instruction is decoded and starts whe previous executing instruction finishes executing.
Register bank error	Bank underflow	Starts upon attempted execution of a RESBANK instruments when saving has not been performed to register bank
	Bank overflow	In the state where saving has been performed to all rebank areas, starts when acceptance of register bank exception has been set by the interrupt controller (the in IBNR of the INTC is 1) and an interrupt that uses a bank has occurred and been accepted by the CPU.

Trap instruction

General illegal

instructions

Slot illegal

instructions

Integer division

instructions

Instructions

the WDT overflows.

Starts from the execution of a TRAPA instruction.

Starts from the decoding of undefined code anytime of

immediately after a delayed branch instruction (delay

Starts from the decoding of undefined code placed in after a delayed branch instruction (delay slot), of instruction

that rewrite the PC, of 32-bit instructions, of the RESI instruction, of the DIVS instruction, or of the DIVU ins

Starts when detecting division-by-zero exception or o

exception caused by division of the negative maximu

RENESAS

(H'80000000) by -1.

REJ09

Rev. 3.00 Mar. 04, 2009 Pag

from the PC address retched from the exception handling vector table.

(2) Exception Handling Triggered by Address Errors, Register Bank Errors, Inter and Instructions

SR and PC are saved to the stack indicated by R15. In the case of interrupt exception han

other than NMI or UBC with usage of the register banks enabled, general registers R0 to control register GBR, system registers MACH, MACL, and PR, and the vector number of interrupt exception handling to be executed are saved to the register banks. In the case of exception handling due to an address error, register bank error, NMI interrupt, UBC interfinistruction, saving to a register bank is not performed. When saving is performed to all rebanks, automatic saving to the stack is performed instead of register bank saving. In this interrupt controller setting must have been made so that register bank overflow exception accepted (the BOVE bit in IBNR of the INTC is 0). If a setting to accept register bank overflow exceptions has been made (the BOVE bit in IBNR of the INTC is 1), register bank overflow exception will be generated. In the case of interrupt exception handling, the interrupt price is written to the I3 to I0 bits in SR. In the case of exception handling due to an address error, and the vector number of the register banks of the INTC is 1).

instruction, the I3 to I0 bits are not affected. The start address is then fetched from the ex

handling vector table and the program begins running from that address.

Rev. 3.00 Mar. 04, 2009 Page 80 of 1168

RENESAS

Table 5.3 shows the vector numbers and vector table address offsets. Table 5.4 shows he table addresses are calculated.

Table 5.3 Exception Handling Vector Table

Exception Source	s	Vector Numbers	Vector Table Address Offset
Power-on reset	PC	0	H'00000000 to H'00000003
	SP	1	H'00000004 to H'00000007
Manual reset	PC	2	H'00000008 to H'0000000B
	SP	3	H'000000C to H'000000F
General illegal instr	uction	4	H'00000010 to H'00000013
(Reserved by syste	m)	5	H'0000014 to H'0000017
Slot illegal instruction	on	6	H'00000018 to H'0000001B
(Reserved by system)		7	H'0000001C to H'0000001F
		8	H'00000020 to H'00000023
CPU address error		9	H'00000024 to H'00000027
DMAC address error		10	H'00000028 to H'0000002B
Interrupts	NMI	11	H'0000002C to H'0000002F
	User break	12	H'00000030 to H'00000033
(Reserved by syste	m)	13	H'00000034 to H'00000037
H-UDI		14	H'00000038 to H'0000003B
Bank overflow		15	H'0000003C to H'0000003F
Bank underflow		16	H'00000040 to H'00000043

		63	H'000000FC to H'000000FF
	nterrupts (IRQ),	64	H'00000100 to H'00000103
on-chip peripheral module interrupts*		:	:
		511	H'000007FC to H'000007FF
Note: *			ress offsets for each external interr in table 6.4 in section 6, Interrupt

Table 5.4 Calculating Exception Handling Vector Table Addresses

Exception Source	Vector Table Address Calculation		
Resets	Vector table address = (vector table address offset) = (vector number) \times 4		
Address errors, register bank errors, interrupts, instructions	Vector table address = VBR + (vector table address offs = VBR + (vector number) × 4		

Notes: 1. Vector table address offset: See table 5.3.

2. Vector number: See table 5.3.

Туре	RES or MRES	H-UDI Command	WDT Overflow	CPU	On-Chip Peripheral Modules, I/O Port	WRCS
Power-on	Low	_	_	Initialized	Initialized	Initializ
reset	High	H-UDI reset assert command is set	_	Initialized	Initialized	Initializ
	High	Command other than H-UDI reset assert is set	Power-on reset	Initialized	Initialized	Not init
Manual reset	Low	_	_	Initialized	Not initialized*	Not init
	High	_	Manual	Initialized	Not initialized*	Not init

reset Note: * The BN bit in IBNR of the INTC is initialized.

Conditions for Transition to Reset State

Rev. 3.00 Mar. 04, 2009 Pag

Internal States

In the power-on reset state, power-on reset exception handling starts when the \overline{RES} pin is driven low for a fixed period and then returned to high. The CPU operates as follows:

- The initial value (execution start address) of the program counter (PC) is fetched from exception handling vector table.
 The initial value of the stack pointer (SP) is fetched from the exception handling vector.
- 2. The initial value of the stack pointer (SP) is fetched from the exception handling vect.

 The vector become register (VPP) is closered to H'00000000, the interrupt most level bit.
- 3. The vector base register (VBR) is cleared to H'00000000, the interrupt mask level bits I0) of the status register (SR) are initialized to H'F (B'1111), and the BO and CS bits a initialized. The BN bit in IBNR of the INTC is also initialized to 0.
- The values fetched from the exception handling vector table are set in the PC and SP, program begins executing.
 Be certain to always perform power-on reset processing when turning the system power or

(2) Decree On Decret by Manne of H UDI Decret Accord Commen

(2) Power-On Reset by Means of H-UDI Reset Assert Command

reset by means of an H-UDI reset assert command is equivalent to power-on reset by means of an H-UDI reset negate command cancels the power-on reset state. The required between an H-UDI reset assert command and H-UDI reset negate command is that as the time to keep the RES pin low to initiate a power-on reset. In the power-on reset state generated by an H-UDI reset assert command, setting the H-UDI reset negate command spower-on reset exception handling. The CPU operates in the same way as when a power-on reset exception handling.

When the H-UDI reset assert command is set, this LSI enters the power-on reset state. Po

was caused by the RES pin.

on reset was caused by the \overline{RES} pin.

RENESAS

Rev. 3.00 Mar. 04, 2009 Pag REJ09

- exception handling vector table.
 - The initial value of the stack pointer (SP) is fetched from the exception handling vect
 The vector base register (VBR) is cleared to H'00000000, the interrupt mask level bits
 - 3. The vector base register (VBR) is cleared to H'00000000, the interrupt mask level bits I0) of the status register (SR) are initialized to H'F (B'1111), and the BO and CS bits a initialized. The BN bit in IBNR of the INTC is also initialized to 0.
 - 4. The values fetched from the exception handling vector table are set in the PC and SP, program begins executing.

(2) Manual Reset Initiated by WDT

When a setting is made for a manual reset to be generated in the WDT's watchdog timer and WTCNT of the WDT overflows, this LSI enters the manual reset state.

When manual reset exception processing is started by the WDT, the CPU operates in the way as when a manual reset was caused by the $\overline{\text{MRES}}$ pin.

When a manual reset is generated, the bus cycle is retained, but if a manual reset occurs of bus is released or during DMAC burst transfer, manual reset exception handling will be countil the CPU acquires the bus. However, if the interval from generation of the manual reset end of the bus cycle is equal to or longer than the fixed internal manual reset interval the internal manual reset source is ignored instead of being deferred, and manual reset exhandling is not executed.

		peripheral module space* or H'F0000000 to H'F5FFFFFF in on-chip RAM space*				
		Instruction fetched from on-chip peripheral module space* or H'F0000000 to H'F5FFFFFF in on-chip RAM space*				
		Instruction fetched from external memory space in single-chip mode				
Data	CPU or	Word data accessed from even address				
read/write	DMAC	Word data accessed from odd address				
		Longword data accessed from a longword boundary				
		Longword data accessed from other than a long-word boundary				
		Byte or word data accessed in on-chip peripheral module space*				
		Longword data accessed in 16-bit on-chip peripheral module space*				
		Longword data accessed in 8-bit on-chip peripheral module space*				
		Instruction fetched from external memory space in single-chip mode				
Note: * See section 8, Bus State Controller (BSC), for details of the						

space and on-chip RAM space.

CPU

Instruction

fetch

Instruction fetched from even address

Instruction fetched from odd address

Instruction fetched from other than on-chip

None (norma

Address erro

None (norma

Address erro

Address erro

None (norma

Address erro

None (norma

Address erro

None (norma

None (norma

None (norma

Address erro

Rev. 3.00 Mar. 04, 2009 Pag

4. After jumping to the address fetched from the exception handling vector table, progra execution starts. The jump that occurs is not a delayed branch.

Note: * This is the case in which an address error was caused by data read or write. We address error is caused by an instruction fetch, and if the bus cycle in which the error occurred does not end by step 3 above, the CPU restarts the address error exception handling until the bus cycle ends.

Rev. 3.00 Mar. 04, 2009 Page 88 of 1168

REJ09B0344-0300

(2) Bank Underflow

Bank underflow occurs when an attempt is made to execute a RESBANK instruction whas not been performed to register banks.

5.4.2 Register Bank Error Exception Handling

When a register bank error occurs, register bank error exception handling starts. The CP as follows:

- 1. The exception service routine start address which corresponds to the register bank en occurred is fetched from the exception handling vector table.
- 2. The status register (SR) is saved to the stack.
- 3. The program counter (PC) is saved to the stack. The PC value saved is the start addr instruction to be executed after the last executed instruction for a bank overflow, and address of the executed RESBANK instruction for a bank underflow.

that caused the bank overflow is written to the interrupt mask level bits (I3 to I0) of register (SR).

After jumping to the address fetched from the exception handling vector table, programmer.

To prevent multiple interrupts from occurring at a bank overflow, the interrupt prior

4. After jumping to the address fetched from the exception handling vector table, progressecution starts. The jump that occurs is not a delayed branch.

Rev. 3.00 Mar. 04, 2009 Pag

REJ09

User break	User break controller (UBC)	1
H-UDI	User debugging interface (H-UDI)	1
IRQ	IRQ0 to IRQ7 pins (external input)	8
On-chip peripheral module	A/D converter (ADC)	1
	Direct memory access controller (DMAC)	16
	Compare match timer (CMT)	2
	Bus state controller (BSC)	1
	Watchdog timer (WDT)	1
	Multi-function timer pulse unit 2 (MTU2)	26
	Multi-function timer pulse unit 2S (MTU2S)	13
	Port output enable 2 (POE2)	3
	I ² C bus interface 3 (IIC3)	5
	Serial communication interface with FIFO (SCIF)	16
Each interrupt source is allow	cated a different vector number and vector table offse	et. See ta

NMI pin (external input)

in section 6, Interrupt Controller (INTC), for more information on vector numbers and ve

REJ09B0344-0300

address offsets.

NMI

Rev. 3.00 Mar. 04, 2009 Page 90 of 1168

in table 5.8. The priority levels that can be set are 0 to 15. Level 16 cannot be set. See se 6.3.1, Interrupt Priority Registers 01, 02, 05 to 15 (IPR01, IPR02, IPR05 to IPR15), for IPR01, IPR02, and IPR05 to IPR15.

Table 5.8 Interrupt Priority Order

Туре	Priority Level	Comment	
NMI	16	Fixed priority level. Cannot be masked.	
User break	15	Fixed priority level.	
H-UDI	15	Fixed priority level.	
IRQ	0 to 15	Set with interrupt priority registers 01, to 15 (IPR01, IPR02, and IPR05 to IP	
On-chip peripheral mo	odule		

REJ09

are saved in the register banks. In the case of exception handling due to an address error, interrupt, UBC interrupt, or instruction, saving is not performed to the register banks. If s been performed to all register banks (0 to 14), automatic saving to the stack is performed of register bank saving. In this case, an interrupt controller setting must have been made register bank overflow exceptions are not accepted (the BOVE bit in IBNR of the INTC) setting to accept register bank overflow exceptions has been made (the BOVE bit in IBN INTC is 1), register bank overflow exception occurs. Next, the priority level value of the interrupt is written to the I3 to I0 bits in SR. For NMI, however, the priority level is 16, b value set in the I3 to I0 bits is H'F (level 15). Then, after jumping to the start address fetc the exception handling vector table, program execution starts. The jump that occurs is no delayed branch. See section 6.6, Operation, for further details of interrupt exception hand

MACH, MACL, and PR, and the vector number of the interrupt exception handling to be

32-bit	s that rewrite the PC, uctions, RESBANK DIVS instruction, and BRA, BSR, RTS, RTE, BT, BF, TF BF/S. BT/S. BSRF, BRAF, JSR/N
General illegal Unde	code anywhere

Delayed branch instructions: JMP

BRA, BSR, RTS, RTE, BF/S, BT/S

Rev. 3.00 Mar. 04, 2009 Pag

REJ09

DIVU, DIVS

DIVS

Undefined code placed

besides in a delay slot

Negative maximum value ÷ (-1)

Division by zero

immediately after a delayed

Slot illegal

instructions

instructions Integer division

exceptions

4. After jumping to the address fetched from the exception handling vector table, progra execution starts. The jump that occurs is not a delayed branch.

5.6.3 **Slot Illegal Instructions**

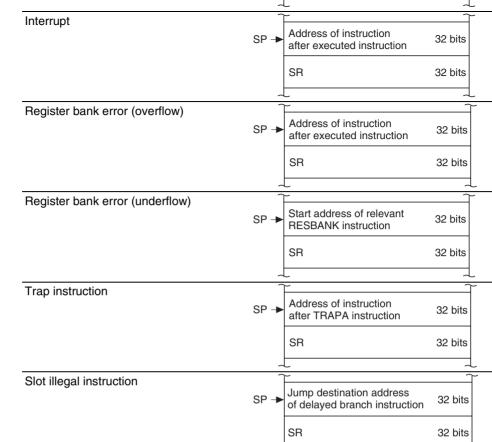
slot. When the instruction placed in the delay slot is undefined code, an instruction that re the PC, a 32-bit instruction, an RESBANK instruction, a DIVS instruction, or a DIVU in slot illegal exception handling starts when such kind of instruction is decoded. The CPU as follows:

An instruction placed immediately after a delayed branch instruction is said to be placed

- 1. The exception service routine start address is fetched from the exception handling vec
- 2. The status register (SR) is saved to the stack.
- delayed branch instruction immediately before the undefined code, the instruction tha the PC, the 32-bit instruction, the RESBANK instruction, the DIVS instruction, or the instruction.

3. The program counter (PC) is saved to the stack. The PC value saved is the jump addre

4. After jumping to the address fetched from the exception handling vector table, progra execution starts. The jump that occurs is not a delayed branch.


when an integer division instruction performs division by zero or the result of integer di overflows, integer division instruction exception handling starts. The instructions that m the source of division-by-zero exception are DIVU and DIVS. The only source instructi overflow exception is DIVS, and overflow exception occurs only when the negative ma value is divided by -1. The CPU operates as follows:

- 1. The exception service routine start address which corresponds to the integer division instruction exception that occurred is fetched from the exception handling vector tab
- 2. The status register (SR) is saved to the stack.
- 3. The program counter (PC) is saved to the stack. The PC value saved is the start addr integer division instruction at which the exception occurred.
- 4. After jumping to the address fetched from the exception handling vector table, progr execution starts. The jump that occurs is not a delayed branch.

REJ09

Point of Occurrence	Address Error	(Overflow)	Interrupt
Immediately after a delayed branch instruction*	Not accepted	Not accepted	Not accep
Note: * Delayed branch	instructions: JMP, JSF	R, BRA, BSR, RTS, RT	E, BF/S, BT/S, B

Rev. 3.00 Mar. 04, 2009 Page 96 of 1168 REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Pag

Rev. 3.00 Mar. 04, 2009 Page 98 of 1168

REJ09B0344-0300

will occur when the stack is accessed during exception handling.

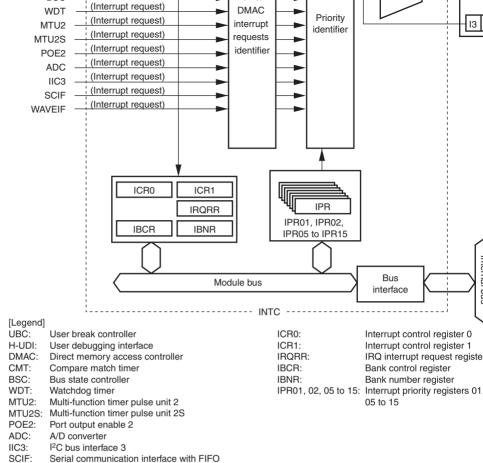
5.9.3 Address Errors Caused by Stacking of Address Error Exception Handlin

When the stack pointer is not a multiple of four, an address error will occur during stack exception handling (interrupts, etc.) and address error exception handling will start up a the first exception handling is ended. Address errors will then also occur in the stacking address error exception handling. To ensure that address error exception handling does in an endless loop, no address errors are accepted at that point. This allows program control shifted to the address error exception service routine and enables error processing.

When an address error occurs during exception handling stacking, the stacking bus cycle executed. During stacking of the status register (SR) and program counter (PC), the SP decremented by 4 for both, so the value of SP will not be a multiple of four after the state either. The address value output during stacking is the SP value, so the address where the occurred is itself output. This means the write data stacked will be undefined.

Rev. 3.00 Mar. 04, 2009 Page 100 of 1168

REJ09B0344-0300


peripheral module interrupts can be selected from 16 levels for request sources.

- NMI noise canceller function
 - An NMI input-level bit indicates the NMI pin state. By reading this bit in the interru exception service routine, the pin state can be checked, enabling it to be used as the canceller function.
- Occurrence of interrupt can be reported externally (IRQOUT pin)

processing to be performed at high speed.

For example, when this LSI has released the bus mastership, this LSI can inform the bus master of occurrence of an on-chip peripheral module interrupt and request for the mastership.

- Register banks
- This LSI has register banks that enable register saving and restoration required in the

Serial communication interface with FIFO

Figure 6.1 Block Diagram of INTC

Rev. 3.00 Mar. 04, 2009 Page 102 of 1168 REJ09B0344-0300

WAVEIF: WAVE interface

Interrupt priority register 09	IPR09	R/W	H'0000	H'FFFE0C06		
Interrupt priority register 10	IPR10	R/W	H'0000	H'FFFE0C08		
Interrupt priority register 11	IPR11	R/W	H'0000	H'FFFE0C0A		
Interrupt priority register 12	IPR12	R/W	H'0000	H'FFFE0C0C		
Interrupt priority register 13	IPR13	R/W	H'0000	H'FFFE0C0E		
Interrupt priority register 14	IPR14	R/W	H'0000	H'FFFE0C10		
Interrupt priority register 15	IPR15	R/W	H'0000	H'FFFE0C12		
Notes: Two access cycles are needed for word access, and four access cycles for longwo						
access.						
1. When the NMI pin is high, becomes H'8000; when low, becomes H'0000.						

IRQ interrupt request register

Bank control register

Bank number register

Interrupt priority register 01

Interrupt priority register 02

Interrupt priority register 05

Interrupt priority register 06

Interrupt priority register 07

Interrupt priority register 08

R/(W)*2

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

IRQRR

IBCR

IBNR

IPR01

IPR02

IPR05

IPR06

IPR07

IPR08

2. Only 0 can be written after reading 1, to clear the flag.

H'0000

H'0000

H'0000

H'0000

H'0000

H'0000

H'0000

H'0000

H'0000

H'FFFE0806

H'FFFE080C

H'FFFE080E

H'FFFE0818

H'FFFE081A

H'FFFE0820

H'FFFE0C00

H'FFFE0C02

H'FFFE0C04

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 104 of 1168

Table 6.3 Interrupt Request Sources and IPR01, IPR02, and IPR05 to IPR15

Bits 11 to 8

(TCIOV, TGIOE,

(TCI2V, TCI2U)

TGI0F)

MTU2

MTU4

(TCI4V)

MTU3S

(TCI3V)

IRQ1

Bits 15 to 12

(TGI0A to TGI0D)

(TGI2A, TGI2B)

(TGI4A to TGI4D)

(TGI3A to TGI3D)

MTU2

MTU4

MTU3S

IRQ0

Register Name

Interrupt priority

register 09

register 10

register 11

register 12

Interrupt priority

Interrupt priority

Interrupt priority

register 01				
Interrupt priority register 02	IRQ4	IRQ5	IRQ6	IRQ7
Interrupt priority register 05	Reserved	Reserved	ADI	Reserv
Interrupt priority register 06	DMAC0	DMAC1	DMAC2	DMAC
Interrupt priority register 07	DMAC4	DMAC5	DMAC6	DMAC
Interrupt priority register 08	CMT0	CMT1	BSC	WDT
Interrupt priority	MTU0	MTU0	MTU1	MTU1

RENESAS

(TGI1A, TGI1B)

(TGI3A to TGI3D)

(TGI5U, TGI5V,

(TGI4A to TGI4D)

MTU3

MTU₅

TGI5W)

MTU4S

Bits 7 to 4

IRQ2

Bits 3

IRQ3

(TCI1V

MTU3

(TCI3V

POE2

(OEI1,

MTU4S

(TCI4V

REJ09

Setting of H'0 means priority level 0 (the lowest level) and H'F means priority level 15 (the highest level).

IPR01, IPR02, and IPR05 to IPR15 are initialized to H'0000 by a power-on reset.

Rev. 3.00 Mar. 04, 2009 Page 106 of 1168 RENESAS

				1: High level is input to NMI pin
14 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
8	NMIE	0	R/W	NMI Edge Select
				Selects whether the falling or rising edge of the interrupt request signal on the NMI pin is determined.
				 Interrupt request is detected on falling edge input
				 Interrupt request is detected on rising edge input
7 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.

Description

NMI Input Level

bit cannot be modified.

0: Low level is input to NMI pin

Sets the level of the signal input at the NMI pi NMI pin level can be obtained by reading this

Initial

Value

R/W

R

Bit Name

NMIL

Bit

15

Bit	Bit Name	Value	R/W	Description
15	IRQ71S	0	R/W	IRQ Sense Select
14	IRQ70S	0	R/W	These bits select whether interrupt signals
13	IRQ61S	0	R/W	[—] corresponding to pins IRQ7 to IRQ0 are detect _— low level, falling edge, rising edge, or both edg
12	IRQ60S	0	R/W	_ 00: Interrupt request is detected on low level of
11	IRQ51S	0	R/W	input
10	IRQ50S	0	R/W	01: Interrupt request is detected on falling edge
9	IRQ41S	0	R/W	input input
8	IRQ40S	0	R/W	 10: Interrupt request is detected on rising edge input
7	IRQ31S	0	R/W	11: Interrupt request is detected on both edges
6	IRQ30S	0	R/W	input
5	IRQ21S	0	R/W	_
4	IRQ20S	0	R/W	_
3	IRQ11S	0	R/W	_
2	IRQ10S	0	R/W	_
1	IRQ01S	0	R/W	_
0	IRQ00S	0	R/W	_

Initial

[Legend]

n = 7 to 0

Rev. 3.00 Mar. 04, 2009 Page 108 of 1168

H/W: R R R R R R R H H/(W)* H/(W)* H/(W)* H/(W)* H/(W)

Note: * Only 0 can be written to clear the flag after 1 is read.

Bit	Bit Name	Initial Value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write vectors should always be 0.

[Setting condition] IRQn input is low Edge detection: 0: IRQn interrupt request is not detected

[Clearing conditions] Cleared by reading IRQnF while IRQnF = writing 0 to IRQnF Cleared by executing IRQn interrupt exce

1: IRQn interrupt request is detected

[Setting condition]

Edge corresponding to IRQn1S or IRQn0 ICR1 has occurred at IRQn pin

[Legend]

n = 7 to 0

Note: * Only 0 can be written to clear the flag after 1 is read.

Rev. 3.00 Mar. 04, 2009 Page 110 of 1168

E14	0	R/W	These bits enable or disable use of register b
E13	0	R/W	─ interrupt priority levels 15 to 1. However, use _ banks is always disabled for the user break ir
E12	0	R/W	_ 0: Use of register banks is disabled
E11	0	R/W	_ 1: Use of register banks is enabled
E10	0	R/W	
E9	0	R/W	_
E8	0	R/W	_
E7	0	R/W	_
E6	0	R/W	_
E5	0	R/W	_
E4	0	R/W	_
E3	0	R/W	
E2	0	R/W	_
E1	0	R/W	_
_	0	R	Reserved
			This bit is always read as 0. The write value salways be 0.

Bit

15

14

13

12 11

Bit Name

E15

value

0

R/W

R/W

Description

Enable

Rev. 3.00 Mar. 04, 2009 Page

Bit	Bit Name	Value	R/W	Description
15, 14	BE[1:0]	00	R/W	Register Bank Enable
				These bits enable or disable use of register ba
				00: Use of register banks is disabled for all inte The setting of IBCR is ignored.
				01: Use of register banks is enabled for all inte except NMI and user break. The setting of ignored.
				10: Reserved (setting prohibited)
				 Use of register banks is controlled by the s IBCR.
13	BOVE	0	R/W	Register Bank Overflow Enable
				Enables of disables register bank overflow exc
				Generation of register bank overflow except disabled
				Generation of register bank overflow except enabled
12 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.

Initial

Rev. 3.00 Mar. 04, 2009 Page

selects whether the fishing edge of failing edge is detected.

Though the priority level of the NMI interrupt is 16, the NMI interrupt exception handlin interrupt mask level bits (I3 to I0) in the status register (SR) to level 15.

6.4.2 User Break Interrupt

A user break interrupt which occurs when a break condition set in the user break controll matches has a priority level of 15. The user break interrupt exception handling sets the I3 in SR to level 15. For user break interrupts, see section 7, User Break Controller (UBC).

6.4.3 H-UDI Interrupt

The user debugging interface (H-UDI) interrupt has a priority level of 15, and occurs at s input of an H-UDI interrupt instruction. H-UDI interrupt requests are edge-detected and runtil they are accepted. The H-UDI interrupt exception handling sets the I3 to I0 bits in S 15. For H-UDI interrupts, see section 24, User Debugging Interface (H-UDI).

checked by reading the IRQ interrupt request bits (IRQ7F to IRQ0F) in the IRQ interrupt register (IRQRR).

IRQ7 to IRQ0 pin states, and an interrupt request signal is sent to the INTC. The result of interrupt request detection is retained until that interrupt request is accepted. Whether IR interrupt requests have been detected or not can be checked by reading the IRQ7F to IR IRQRR. Writing 0 to these bits after reading them as 1 clears the result of IRQ interrupt detection.

When using edge-sensing for IRQ interrupts, an interrupt request is detected due to char

The IRQ interrupt exception handling sets the I3 to I0 bits in SR to the priority level of accepted IRQ interrupt.

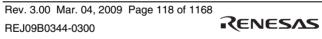
REJ09

- Multi-function timer pulse unit 2S (MTU2S)
 - Port output enable 2 (POE2)
- I²C bus interface 3 (IIC3)
- Serial communication interface with FIFO (SCIF)
- WAVE interface (WAVEIF)

As every source is assigned a different interrupt vector, the source does not need to be ide the exception service routine. A priority level in a range from 0 to 15 can be set for each by interrupt priority registers 05 to 15 (IPR05 to IPR15). The on-chip peripheral module exception handling sets the I3 to I0 bits in SR to the priority level of the accepted on-chip peripheral module interrupt.

Rev. 3.00 Mar. 04, 2009 Page 116 of 1168

The priorities of IRQ interrupts and on-chip peripheral module interrupts can be set free 0 and 15 for each pin or module by setting interrupt priority registers 01, 02, and 05 to 1 IPR02, and IPR05 to IPR15). However, if two or more interrupts specified by the same among IPR05 to IPR15 occur, the priorities are defined as shown in the IPR setting unit priority of table 6.4, and the priorities cannot be changed. A power-on reset assigns prior to IRQ interrupts and on-chip peripheral module interrupts. If the same priority level is a two or more interrupt sources and interrupts from those sources occur simultaneously, the processed by the default priorities indicated in table 6.4.


REJ09

IRQ	IRQ0	64	H'00000100 to H'00000103	0 to 15 (0)	IPR01 (15 to 12)	_
	IRQ1	65	H'00000104 to H'00000107	0 to 15 (0)	IPR01 (11 to 8)	_
	IRQ2	66	H'00000108 to H'0000010B	0 to 15 (0)	IPR01 (7 to 4)	_
	IRQ3	67	H'0000010C to H'0000010F	0 to 15 (0)	IPR01 (3 to 0)	_
	IRQ4	68	H'00000110 to H'00000113	0 to 15 (0)	IPR02 (15 to 12)	_
	IRQ5	69	H'00000114 to H'00000117	0 to 15 (0)	IPR02 (11 to 8)	_
	IRQ6	70	H'00000118 to H'0000011B	0 to 15 (0)	IPR02 (7 to 4)	_
	IRQ7	71	H'0000011C to H'0000011F	0 to 15 (0)	IPR02 (3 to 0)	_
ADC	ADI	92	H'00000170 to	0 to 15 (0)	IPR05 (7 to 4)	_

H'00000173

H'0000003B

REJ09B0344-0300

	HEI3	121	H'000001E4 to H'000001E7	_		2
DMAC4	DEI4	124	H'000001F0 to H'000001F3	0 to 15 (0)	IPR07 (15 to 12)	1
	HEI4	125	H'000001F4 to H'000001F7	_		2
DMAC5	DEI5	128	H'00000200 to H'00000203	0 to 15 (0)	IPR07 (11 to 8)	1
	HEI5	129	H'00000204 to H'00000207	_		2
DMAC6	DEI6	132	H'00000210 to H'00000213	0 to 15 (0)	IPR07 (7 to 4)	1
	HEI6	133	H'00000214 to H'00000217			2
DMAC7	DEI7	136	H'00000220 to H'00000223	0 to 15 (0)	IPR07 (3 to 0)	1
	HEI7	137	H'00000224 to H'00000227	_		2

HEI1

HEI2

DMAC2 DEI2

DMAC3 DEI3

113

116

117

120

H'000001C4 to H'000001C7

H'000001D0 to

H'000001D4 to

H'000001E0 to

H'000001D3

H'000001D7

H'000001E3

0 to 15 (0)

0 to 15 (0)

IPR06 (7 to 4)

IPR06 (3 to 0)

1

2

1

WDT	ITI		152	H'00000260 to H'00000263	0 to 15 (0)	IPR08 (3 to 0)	_
MTU2	MTU0	TGI0A	156	H'00000270 to H'00000273	0 to 15 (0)	IPR09 (15 to 12)	1
		TGI0B	157	H'00000274 to H'00000277	_		2
		TGI0C	158	H'00000278 to H'0000027B	_		3
		TGI0D	159	H'0000027C to H'0000027F	_		4
		TCI0V	160	H'00000280 to H'00000283	0 to 15 (0)	IPR09 (11 to 8)	1
		TGI0E	161	H'00000284 to H'00000287	_		2
		TGI0F	162	H'00000288 to H'0000028B	_		3
	MTU1	TGI1A	164	H'00000290 to H'00000293	0 to 15 (0)	IPR09 (7 to 4)	1
		TGI1B	165	H'00000294 to H'00000297	_		2
		TCI1V	168	H'000002A0 to H'000002A3	0 to 15 (0)	IPR09 (3 to 0)	1
		TCI1U	169	H'000002A4 to	=		2

H'000002A7

Rev. 3.00 Mar. 04, 2009 Page 120 of 1168

				_		
	TGI3B	181	H'000002D4 to H'000002D7	-		2
	TGI3C	182	H'000002D8 to H'000002DB	_		3
	TGI3D	183	H'000002DC to H'000002DF	_		4
	TCI3V	184	H'000002E0 to H'000002E3	0 to 15 (0)	IPR10 (3 to 0)	_
MTU4	TGI4A	188	H'000002F0 to H'000002F3	0 to 15 (0)	IPR11 (15 to 12)	1
	TGI4B	189	H'000002F4 to H'000002F7	_		2
	TGI4C	190	H'000002F8 to H'000002FB	_		3
	TGI4D	191	H'000002FC to H'000002FF	-		4
	TCI4V	192	H'00000300 to H'00000303	0 to 15 (0)	IPR11 (11 to 8)	
MTU5	TGI5U	196	H'00000310 to H'00000313	0 to 15 (0)	IPR11 (7 to 4)	1
	TGI5V	197	H'00000314 to H'00000317	-		2
	TGI5W	198	H'00000318 to	_		3

TCI2U

TGI3A

MTU3

177

180

H'000002C4 to H'000002C7

H'000002D0 to

H'000002D3

0 to 15 (0)

IPR10 (7 to 4)

H'0000031B

		TGI3B	205	H'00000334 to H'00000337			2
		TGI3C	206	H'00000338 to H'0000033B	_		3
		TGI3D	207	H'0000033C to H'0000033F			4
		TCI3V	208	H'00000340 to H'00000343	0 to 15 (0)	IPR12 (11 to 8)	_
	MTU4S	TGI4A	212	H'00000350 to H'00000353	0 to 15 (0)	IPR12 (7 to 4)	1
		TGI4B	213	H'00000354 to H'00000357	_		2
		TGI4C	214	H'00000358 to H'0000035B	_		3
		TGI4D	215	H'0000035C to H'0000035F	_		4
		TCI4V	216	H'00000360 to H'00000363	0 to 15 (0)	IPR12 (3 to 0)	_
	MTU5S	TGI5U	220	H'00000370 to H'00000373	0 to 15 (0)	IPR13 (15 to 12)	1
		TGI5V	221	H'00000374 to H'00000377	_		2
		TGI5W	222	H'00000378 to H'0000037B	_		3
POE2	OEI3		224	H'00000380 to H'00000383	0 to 15 (0)	IPR13 (11 to 8)	_

Rev. 3.00 Mar. 04, 2009 Page 122 of 1168 REJ09B0344-0300

	TXI		231	H'0000039C to H'0000039F			4
	TEI		232	H'000003A0 to H'000003A3	-		5
SCIF	SCIF0	BRI0	240	H'000003C0 to H'000003C3	0 to 15 (0)	IPR14 (15 to 12)	1
		ERI0	241	H'000003C4 to H'000003C7	_		2
		RXI0	242	H'000003C8 to H'000003CB	_		3
		TXI0	243	H'000003CC to H'000003CF	_		4
	SCIF1	BRI1	244	H'000003D0 to H'000003D3	0 to 15 (0)	IPR14 (11 to 8)	1
		ERI1	245	H'000003D4 to H'000003D7	_		2
		RXI1	246	H'000003D8 to H'000003DB	_		3
		TXI1	247	H'000003DC to H'000003DF	_		4
	SCIF2	BRI2	248	H'000003E0 to H'000003E3	0 to 15 (0)	IPR14 (7 to 4)	1
		ERI2	249	H'000003E4 to H'000003E7	_		2
		RXI2	250	H'000003E8 to	_		3

H'000003EB

H'000003EC to H'000003EF

TXI2

251

		TXI3	255	H'000003FC to H'000003FF			4
WAVEIF	ERR		256	H'00000400 to H'00000403	0 to 15 (0)	IPR15 (15 to 12)	1
	WRXI		257	H'00000404 to H'00000407			2
	WTXI		258	H'00000408 to H'0000040B	-		3

Rev. 3.00 Mar. 04, 2009 Page 124 of 1168

REJ09B0344-0300

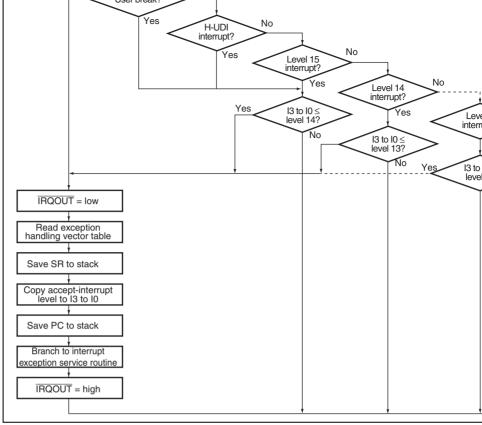
have the same priority level or if multiple interrupts occur within a single IPR, the ir with the highest priority is selected, according to the default priority and IPR setting internal priority shown in table 6.4. 3. The priority level of the interrupt selected by the interrupt controller is compared wi

- interrupt level mask bits (I3 to I0) in the status register (SR) of the CPU. If the interrupt request priority level is equal to or less than the level set in bits I3 to I0, the interrup ignored. If the interrupt request priority level is higher than the level in bits I3 to I0, interrupt controller accepts the interrupt and sends an interrupt request signal to the 4. When the interrupt controller accepts an interrupt, a low level is output from the IRQ
- 5. The CPU detects the interrupt request sent from the interrupt controller when the CP the instruction to be executed. Instead of executing the decoded instruction, the CPU interrupt exception handling (figure 6.4).
 - vector table corresponding to the accepted interrupt. 7. The status register (SR) is saved onto the stack, and the priority level of the accepted is copied to bits I3 to I0 in SR.

6. The interrupt exception service routine start address is fetched from the exception has

- 8. The program counter (PC) is saved onto the stack.
- 9. The CPU jumps to the fetched interrupt exception service routine start address and s

low level.


- executing the program. The jump that occurs is not a delayed branch. 10. A high level is output from the IROOUT pin. However, if the interrupt controller ac interrupt with a higher priority than the interrupt just being accepted, the $\overline{\text{IRQOUT}}$ p

Interrupts held pending due to edge-sensing are cleared by a power-on reset.

Rev. 3.00 Mar. 04, 2009 Page 126 of 1168

REJ09B0344-0300

Figure 6.2 Interrupt Operation Flow

Rev. 3.00 Mar. 04, 2009 Page

Notes: 1. PC: Start address of the next instruction (return destination instruction)

after the executed instruction

2. Always make sure that SP is a multiple of 4.

Figure 6.3 Stack after Interrupt Exception Handling

Rev. 3.00 Mar. 04, 2009 Page 128 of 1168

REJ09B0344-0300

Table 6.5 Interrupt Response Time

Item			NMI	User Break	H-UDI	IRQ	Peripheral Module	Remarks
Time from occurrence of interrupt request until interrupt controller identifies priority, compares it with mask bits in SR, and sends interrupt request signal to CPU			2 lcyc + 2 Bcyc + 1 Pcyc	3 leyc	2 lcyc + 1 Pcyc	2 lcyc + 3 Bcyc + 1 Pcyc	2 lcyc + 1 Bcyc + 1 Pcyc	
Time from	No register	Min.	3 lcyc + m1	+ m2	· <u> </u>			Min. is when
input of banking interrupt request signal to CPU until sequence	Max.	4 lcyc + 2(m	n1 + m2) + m3				wait time is zi Max. is when priority interru occurred duri exception hai	
currently being executed is	Register	Min.	_		3 lcyc + m1	+ m2		Min. is when
completed, interrupt exception handling starts, and first	banking without register bank overflow	Max.	_		12 lcyc + m	ı1 + m2		wait time is z Max. is when request has c execution of t instruction.
instruction in	Register	Min.	_		3 lcyc + m1	+ m2		Min. is when
instruction in interrupt exception service routine is fetched	banking with register bank overflow	Max.	_		3 lcyc + m1	1 + m2 + 19(m4)		wait time is z Max. is when request has d execution of instruction.

Rev. 3.00 Mar. 04, 2009 Page

register					m1 + m2	m1 + m2
bank overflow	Max.	_	-	14 lcyc + 1 Pcyc + m1 + m2	14 lcyc + 3 Bcyc + 1 Pcyc + m1 + m2	14 lcyc + 1 Bcyc + 1 Pcyc + m1 + m2
Register banking with register	Min.	_	_	5 lcyc + 1 Pcyc + m1 + m2	5 lcyc + 3 Bcyc + 1 Pcyc + m1 + m2	5 lcyc + 1 Bcyc + 1 Pcyc + m1 + m2
bank overflow	Max.	_	_	5 lcyc + 1 Pcyc + m1 + m2 + 19(m4)	•	5 lcyc + 1 Bcyc + 1 Pcyc + m1 +

m1 + m2

1 Pcyc +

1 Pcyc +

m2 + 19(m4) m2 + 19(m4)

160-MHz opera 0.106 to 0.163

160-MHz opera 0.050 to 0.106

160-MHz opera 0.169 to 0.225

Notes: m1 to m4 are the number of states needed for the following memory accesses.

- m1: Vector address read (longword read)
- m2: SR save (longword write)
- m3: PC save (longword write)

without

- m4: Banked registers (R0 to R14, GBR, MACH, MACL, and PR) are restored from
 - stack.
- 1. In the case that m1 = m2 = m3 = m4 = 1 lcyc.
- 2. In the case that $(I\phi, B\phi, P\phi) = (160 \text{ MHz}, 40 \text{ MHz}, 40 \text{ MHz})$.

[Legend]m1: Vector address readm2: Saving of SR (stack)

m3: Saving of PC (stack)

F: Instruction fetch. Instruction is fetched from memory in which program is stored.

D: Instruction decoding. Fetched instruction is decoded.

E: Instruction execution. Data operation or address calculation is performed in accordance with the result of

M: Memory access. Memory data access is performed.

Figure 6.4 Example of Pipeline Operation when IRQ Interrupt is Accepte (No Register Banking)

Rev. 3.00 Mar. 04, 2009 Page

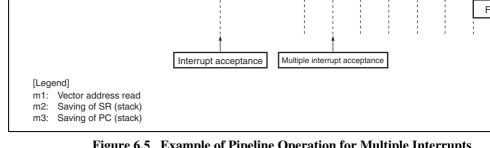


Figure 6.5 Example of Pipeline Operation for Multiple Interrupts (No Register Banking)

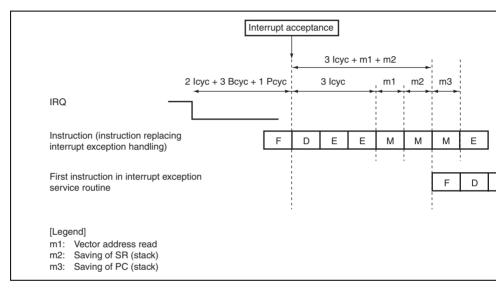


Figure 6.6 Example of Pipeline Operation when IRQ Interrupt is Accepted (Register Banking without Register Bank Overflow)

Rev. 3.00 Mar. 04, 2009 Page 132 of 1168 REJ09B0344-0300

RENESAS

m2: Saving of SR (stack)
m3: Saving of PC (stack)

Figure 6.7 Example of Pipeline Operation when Interrupt is Accepted during RI Instruction Execution (Register Banking without Register Bank Overflow

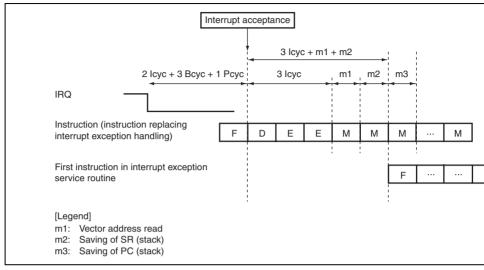


Figure 6.8 Example of Pipeline Operation when IRQ Interrupt is Accepte (Register Banking with Register Bank Overflow)

[Legend] m1: Vector address read m2: Saving of SR (stack)

m3: Saving of PC (stack)

m4: Restoration of banked registers

Figure 6.9 Example of Pipeline Operation when Interrupt is Accepted during RE **Instruction Execution (Register Banking with Register Bank Overflow)**

Rev. 3.00 Mar. 04, 2009 Page 134 of 1168

REJ09B0344-0300

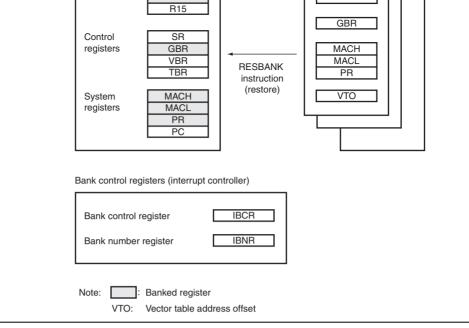


Figure 6.10 Overview of Register Bank Configuration

Rev. 3.00 Mar. 04, 2009 Page

out (FILO) sequence. Saving takes place in order, beginning from bank 0, and restoration place in the reverse order, beginning from the last bank saved to.

6.8.2 Bank Save and Restore Operations

(1) Saving to Bank

Figure 6.11 shows register bank save operations. The following operations are performed interrupt for which usage of register banks is allowed is accepted by the CPU:

- a. Assume that the bank number bit value in the bank number register (IBNR), BN, is it interrupt is generated.
- b. The contents of registers R0 to R14, GBR, MACH, MACL, and PR, and the interrupt table address offset (VTO) of the accepted interrupt are saved in the bank indicated by bank i.
- c. The BN value is incremented by 1.

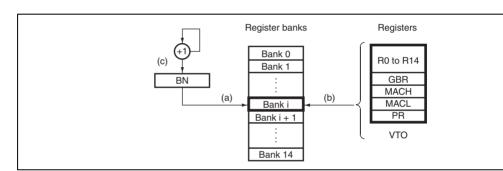


Figure 6.11 Bank Save Operations

Rev. 3.00 Mar. 04, 2009 Page 136 of 1168

REJ09B0344-0300

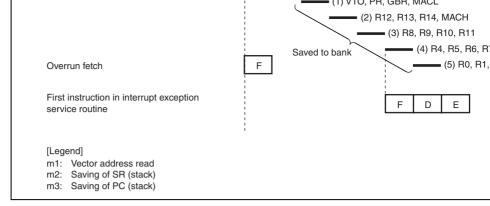


Figure 6.12 Bank Save Timing

(2) Restoration from Bank

The RESBANK (restore from register bank) instruction is used to restore data saved in a bank. After restoring data from the register banks with the RESBANK instruction at the interrupt service routine, execute the RTE instruction to return from the exception handless to the same of the register banks with the RESBANK instruction at the interrupt service routine, execute the RTE instruction to return from the exception handless to the register banks.

Rev. 3.00 Mar. 04, 2009 Page

- 1. The status register (SR) and program counter (PC) are saved to the stack during interresception handling.
- 2. The contents of the banked registers (R0 to R14, GBR, MACH, MACL, and PR) are the stack. The registers are saved to the stack in the order of MACL, MACH, GBR, PR13, ..., R1, and R0.
- 3. The register bank overflow bit (BO) in SR is set to 1.
- 4. The bank number bit (BN) value in the bank number register (IBNR) remains set to the maximum value of 15.

(2) Restoration from Stack

When the RESBANK (restore from register bank) instruction is executed with the register overflow bit (BO) in SR set to 1, the CPU operates as follows:

1. The contents of the banked registers (R0 to R14, GBR, MACH, MACL, and PR) are a

- from the stack. The registers are restored from the stack in the order of R0, R1, ..., R PR, GBR, MACH, and MACL.

 2. The bank number bit (BN) value in the bank number register (IBNR) remains set to the stack in the order of R0, R1, ..., R PR, GBR, MACH, and MACL.
- 2. The bank number bit (BN) value in the bank number register (IBNR) remains set to the maximum value of 15.

Rev. 3.00 Mar. 04, 2009 Page 138 of 1168

bank.

(2) Register Bank Underflow

This exception occurs if the RESBANK (restore from register bank) instruction is executed no data has been saved to the register banks. In this case, the values of R0 to R14, GBR, MACL, and PR do not change. In addition, the bank number bit (BN) value in the bank

register (IBNR) remains set to 0.

6.8.5 Register Bank Error Exception Handling

When a register bank error occurs, register bank error exception handling starts. When thappens, the CPU operates as follows:

- 1. The exception service routine start address which corresponds to the register bank en occurred is fetched from the exception handling vector table.
- 2. The status register (SR) is saved to the stack.
- 3. The program counter (PC) is saved to the stack. The PC value saved is the start addr instruction to be executed after the last executed instruction for a register bank overf the start address of the executed RESBANK instruction for a register bank underflow prevent multiple interrupts from occurring at a register bank overflow, the interrupt level that caused the register bank overflow is written to the interrupt mask level bits of the status register (SR).
- 4. Program execution starts from the exception service routine start address.

Rev. 3.00 Mar. 04, 2009 Page

2009 Page REJ09 Figure 6.13 shows a block diagram of interrupt control.

Here, DME is bit 0 in DMAOR of the DMAC, and DEn (n = 0 to 7) is bit 0 in CHCR0 to of the DMAC. For details, see section 9, Direct Memory Access Controller (DMAC).

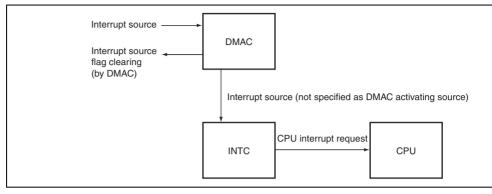


Figure 6.13 Interrupt Control Block Diagram

REJ09B0344-0300

Interrupt

- Select DMAC activating sources and set both the DE and DME bits to 1. This masks interrupt sources regardless of the interrupt priority register settings.
- 2. Activating sources are applied to the DMAC when interrupts occur.
- 3. The DMAC clears the interrupt sources when starting transfer.

6.10 Usage Note

6.10.1 Timing to Clear an Interrupt Source

clearing the interrupt source flag, "time from occurrence of interrupt request until interrupt controller identifies priority, compares it with mask bits in SR, and sends interrupt request to CPU" shown in table 6.5 is required before the interrupt source sent to the CPU is act cancelled. To ensure that an interrupt request that should have been cleared is not inadve accepted again, read the interrupt source flag after it has been cleared, and then execute instruction.

The interrupt source flags should be cleared in the interrupt exception service routine. A

Rev. 3.00 Mar. 04, 2009 Page 142 of 1168

REJ09B0344-0300

7.1 Features

1. The following break comparison conditions can be set.

Number of break channels: four channels (channels 0 to 3)

User break can be requested as the independent condition on channels 0, 1, 2, and 3.

Address

Comparison of the 32-bit address is maskable in 1-bit units.

One of the three address buses (F address bus (FAB), M address bus (MAB), and I a (IAB)) can be selected.

• Bus master when I bus is selected

Selection of CPU cycles or DMAC cycles

Bus cycle

Instruction fetch (only when C bus is selected) or data access

- Read/write
- Operand size

Byte, word, and longword

instruction is executed.

- 2. Exception handling routine for user-specified break conditions can be executed.
- 3. In an instruction fetch cycle, it can be selected whether PC breaks are set before or a
- 4. When a break condition is satisfied, a trigger signal is output from the $\overline{\text{UBCTRG}}$ pin

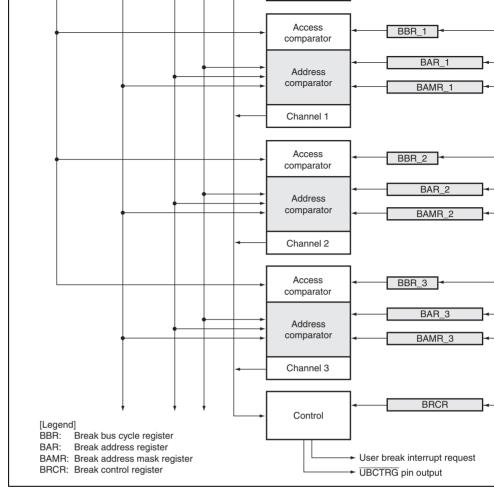


Figure 7.1 Block Diagram of UBC

Rev. 3.00 Mar. 04, 2009 Page 144 of 1168 REJ09B0344-0300

RENESAS

7.3 Register Descriptions

The UBC has the following registers.

Table 7.2 Register Configuration

		ADDIEVIA-			
Channel	Register Name	tion	R/W	Initial Value	Address
0	Break address register_0	BAR_0	R/W	H'00000000	H'FFFC0400
	Break address mask register_0	BAMR_0	R/W	H'00000000	H'FFFC0404
	Break bus cycle register_0	BBR_0	R/W	H'0000	H'FFFC04A(
1	Break address register_1	BAR_1	R/W	H'00000000	H'FFFC0410
	Break address mask register_1	BAMR_1	R/W	H'00000000	H'FFFC0414
	Break bus cycle register_1	BBR_1	R/W	H'0000	H'FFFC04B0
2	Break address register_2	BAR_2	R/W	H'00000000	H'FFFC0420
	Break address mask register_2	BAMR_2	R/W	H'00000000	H'FFFC0424
	Break bus cycle register_2	BBR_2	R/W	H'0000	H'FFFC04A4
3	Break address register_3	BAR_3	R/W	H'00000000	H'FFFC0430
	Break address mask register_3	BAMR_3	R/W	H'00000000	H'FFFC0434
	Break bus cycle register_3	BBR_3	R/W	H'0000	H'FFFC04B4
Common	Break control register	BRCR	R/W	H'00000000	H'FFFC04C0

Abbrevia-

Rev. 3.00 Mar. 04, 2009 Page

		BA0_15	BA0_14	BA0_13	BA0_12	BA0_11	BA0_10	BA0_9	BA0_8	BA0_7	BA0_6	BA0_5	BA0_4	BA0_3	BA0_2	B
Init	tial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
				In	nitial											
Bi	t	Bit N	ame	٧	alue	R/	W	Desc	riptio	n						
31	to 0	BA0_	_31 to	Α	II O	R	W	Breal	k Add	ress ()					

10

12

0 0	DAU_31 10	All U	m/ v v	break Address 0
	BA0_0		Store an address on the CPU address bus (FAMAB) or IAB specifying break conditions of ch	
				When the C bus and instruction fetch cycle ar selected by BBR_0, specify an FAB address i BA0_31 to BA0_0.
				When the C bus and data access cycle are se BBR_0, specify an MAB address in bits BA0_BA0_0.

Note: When setting the instruction fetch cycle as a break condition, clear the LSB in BAF

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 146 of 1168

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BAM0_31 to	All 0	R/W	Break Address Mask 0
	BAM0_0			Specify bits masked in the channel-0 break bits specified by BAR_0 (BA0_31 to BA0_0)
				0: Break address bit BA0_n is included in th condition
				Break address bit BA0_n is masked and included in the break condition

R/W R/W

0

R/W

R/W

0

R/W

R/W

R/W

R/W

0

R/W

BAMO_15 BAMO_14 BAMO_13 BAMO_12 BAMO_11 BAMO_10 BAMO_9 BAMO_8 BAMO_7

R/W R/W

Note: n = 31 to 0

Initial value:

R/W: R/W R/W R/W

Bit	Bit Name	Initial Value	R/W	Description
15, 14	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
13	UBID0	0	R/W	User Break Interrupt Disable 0
				Disables or enables user break interrupt reque when a channel-0 break condition is satisfied.
				0: User break interrupt requests enabled
				1: User break interrupt requests disabled
12 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
9, 8	CP0[1:0]	00	R/W	I-Bus Bus Master Select 0
				Select the bus master when the bus cycle of t channel-0 break condition is the I bus cycle. He when the C bus cycle is selected, this bit is in (only the CPU cycle).
				x1: CPU cycle is included in break conditions
				1x: DMAC cycle is included in break condition

R/W R/W R/W R/W

R/W R/W

R/W:

R/W

				Select the instruction fetch cycle or data according as the bus cycle of the channel-0 break condition the instruction fetch cycle is selected, select cycle.
				00: Condition comparison is not performed
				01: Break condition is the instruction fetch cy
				10: Break condition is the data access cycle
				 Break condition is the instruction fetch cy data access cycle
3, 2	RW0[1:0]	00	R/W	Read/Write Select 0
				Select the read cycle or write cycle as the buthe channel-0 break condition.
				00: Condition comparison is not performed
				01: Break condition is the read cycle
				10: Break condition is the write cycle

R/W

01: Break condition is byte access 10: Break condition is word access 11: Break condition is longword access [Legend]

00

1, 0

x:

SZ0[1:0]

Don't care

11: Break condition is the read cycle or write

Select the operand size of the bus cycle for t

00: Break condition does not include operan-

Operand Size Select 0

channel-0 break condition.

	BA1_15	BA1_14	BA1_13	BA1_12	BA1_11	BA1_10	BA1_9	BA1_8	BA1_7	BA1_6	BA1_5	BA1_4	BA1_3	BA1_2	В
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
			In	itial											
Bit	Bit N	lame		itial alue	R	w	Desc	riptio	n						

10

7

0 0	BA1_0	H/VV	Break Address 1	
			Store an address on the CPU address bus (FAMAB) or IAB specifying break conditions of ch	
				When the C bus and instruction fetch cycle ar selected by BBR_1, specify an FAB address i BA1_31 to BA1_0.
				When the C bus and data access cycle are se BBR_1, specify an MAB address in bits BA1_BA1_0.

Note: When setting the instruction fetch cycle as a break condition, clear the LSB in BAF

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 150 of 1168

Bit: 15 14

13

12

11

Bit	Bit Name	Initial Value	R/W	Description
31 to 0	BAM1_31 to	All 0	R/W	Break Address Mask 1
	BAM1_0			Specify bits masked in the channel-1 break bits specified by BAR_1 (BA1_31 to BA1_0)
				Break address bit BA1_n is included in the condition
				 Break address bit BA1_n is masked and r included in the break condition

R/W R/W

BAM1_15 BAM1_14 BAM1_13 BAM1_12 BAM1_11 BAM1_10 BAM1_9 BAM1_8 BAM1_7

R/W R/W

Note: n = 31 to 0

Initial value:

R/W: R/W R/W R/W

BAM1_3 BAM1_2

R/W

0

R/W

0

R/W

R/W

R/W

0

R/W

R/W

D:+	Dit Name	Initial Value	DW	Decembries
Bit	Bit Name		R/W	Description
15, 14	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
13	UBID1	0	R/W	User Break Interrupt Disable 1
				Disables or enables user break interrupt reque when a channel-1 break condition is satisfied.
				0: User break interrupt requests enabled
				1: User break interrupt requests disabled
12 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
9, 8	CP1[1:0]	00	R/W	I-Bus Bus Master Select 1
				Select the bus master when the bus cycle of t channel-1 break condition is the I bus cycle. He when the C bus cycle is selected, this bit is in (only the CPU cycle).
				x1: CPU cycle is included in break conditions
				1x: DMAC cycle is included in break condition

R/W R/W R/W R/W R/W R/W I

R/W:

R/W

				Select the instruction fetch cycle or data according as the bus cycle of the channel-1 break condithe instruction fetch cycle is selected, select cycle.
				00: Condition comparison is not performed
				01: Break condition is the instruction fetch cy
				10: Break condition is the data access cycle
				 Break condition is the instruction fetch cy data access cycle
3, 2	RW1[1:0]	00	R/W	Read/Write Select 1
				Select the read cycle or write cycle as the buthe channel-1 break condition.
				00: Condition comparison is not performed
				01: Break condition is the read cycle
				10: Break condition is the write cycle

R/W

10: Break condition is word access 11: Break condition is longword access [Legend] Don't care x:

00

1, 0

SZ1[1:0]

Rev. 3.00 Mar. 04, 2009 Page

11: Break condition is the read cycle or write

Select the operand size of the bus cycle for t

00: Break condition does not include operan-

Operand Size Select 1

channel-1 break condition.

01: Break condition is byte access

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	BA2_15	BA2_14	BA2_13	BA2_12	BA2_11	BA2_10	BA2_9	BA2_8	BA2_7	BA2_6	BA2_5	BA2_4	BA2_3	BA2_2	2 B
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
Bit	Bit N	lame		itial alue	R/	/W	Desc	riptic	n						
31 to 0	BA2_	_31 to	Α	II O	R/	/W	Breal	k Add	ress 2	2					
	BA2_	_0					Store	an a	ddres	s on t	he CF	⊃U ad	dress	bus	(F

MAB) or IAB specifying break conditions of ch
When the C bus and instruction fetch cycle ar selected by BBR_2, specify an FAB address i BA2_31 to BA2_0.
When the C bus and data access cycle are se BBR_2, specify an MAB address in bits BA2_BA0_2.

Note: When setting the instruction fetch cycle as a break condition, clear the LSB in BAF

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 154 of 1168

Bit	Bit Name	Initial Value	R/W	Description
31 to 0 BAM2_31 to BAM2_0	All 0	R/W	Break Address Mask 2	
	BAM2_0			Specify bits masked in the channel-2 break bits specified by BAR_2 (BA2_31 to BA2_0)
				0: Break address bit BA2_n is included in th condition
				Break address bit BA2_n is masked and r included in the break condition

R/W R/W

BAM2_6 BAM2_5

R/W

R/W

0

R/W

0

R/W R/W

0

R/W

R/W

BAM2_15 BAM2_14 BAM2_13 BAM2_12 BAM2_11 BAM2_10 BAM2_9 BAM2_8 BAM2_7

R/W: R/W R/W R/W R/W

Note: n = 31 to 0

Initial value:

Bit	Bit Name	Initial Value	R/W	Description
15, 14	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
13	UBID2	0	R/W	User Break Interrupt Disable 2
				Disables or enables user break interrupt reque when a channel-2 break condition is satisfied.
				0: User break interrupt requests enabled
				1: User break interrupt requests disabled
12 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
9, 8	CP2[1:0]	00	R/W	I-Bus Bus Master Select 2
				Select the bus master when the bus cycle of t channel-2 break condition is the I bus cycle. H when the C bus cycle is selected, this bit is in (only the CPU cycle).
				x1: CPU cycle is included in break conditions
				1x: DMAC cycle is included in break condition

R/W R/W R/W R/W R/W R/W

Rev. 3.00 Mar. 04, 2009 Page 156 of 1168

R/W:

R/W

				Select the instruction fetch cycle or data according to the bus cycle of the channel-2 break condition the instruction fetch cycle is selected, select cycle.
				00: Condition comparison is not performed
				01: Break condition is the instruction fetch cy
				10: Break condition is the data access cycle
				 Break condition is the instruction fetch cy data access cycle
3, 2	RW2[1:0]	00	R/W	Read/Write Select 2
				Select the read cycle or write cycle as the buthe channel-2 break condition.
				00: Condition comparison is not performed
				01: Break condition is the read cycle
				10: Break condition is the write cycle

R/W

10: Break condition is word access 11: Break condition is longword access [Legend] Don't care x:

00

1, 0

SZ2[1:0]

11: Break condition is the read cycle or write

Select the operand size of the bus cycle for t

00: Break condition does not include operan-

Operand Size Select 2

channel-2 break condition.

01: Break condition is byte access

		BA3_15	BA3_14	BA3_13	BA3_12	BA3_11	BA3_10	BA3_9	BA3_8	BA3_7	BA3_6	BA3_5	BA3_4	BA3_3	BA3_2	B
Initial v	value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
				In	itial											
Bit		Bit N	lame	٧	alue	R/	W	Desc	riptic	n						
31 to	0	BA3_	_31 to	Α	II O	R	W	Breal	k Add	ress 3	3					

10

8 7

BA3_0	, o	 Diodit / Iddioco o
	Store an address on the CPU address bus (FAMAB) or IAB specifying break conditions of ch	
		When the C bus and instruction fetch cycle ar selected by BBR_3, specify an FAB address i BA3_31 to BA3_0.

Note: When setting the instruction fetch cycle as a break condition, clear the LSB in BAF

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 158 of 1168

Bit: 15 14 13

12

		Initial		
Bit	Bit Name	Initial Value	R/W	Description
31 to 0 BAM3_31 to BAM3_0	All 0	R/W	Break Address Mask 3	
	BAM3_0			Specify bits masked in the channel-3 break bits specified by BAR_3 (BA3_31 to BA3_0)
				0: Break address bit BA3_n is included in th condition
				 Break address bit BA3_n is masked and r included in the break condition

R/W R/W

BAM3_6 BAM3_5

R/W

R/W

0

R/W

0

R/W R/W

0

R/W

R/W

BAM3_15 BAM3_14 BAM3_13 BAM3_12 BAM3_11 BAM3_10 BAM3_9 BAM3_8 BAM3_7

R/W R/W

Note: n = 31 to 0

Initial value:

R/W: R/W R/W R/W

Bit	Bit Name	Initial Value	R/W	Description
15, 14	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
13	UBID3	0	R/W	User Break Interrupt Disable 3
				Disables or enables user break interrupt reque when a channel-3 break condition is satisfied.
				0: User break interrupt requests enabled
				1: User break interrupt requests disabled
12 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
9, 8	CP3[1:0]	00	R/W	I-Bus Bus Master Select 3
				Select the bus master when the bus cycle of t channel-3 break condition is the I bus cycle. He when the C bus cycle is selected, this bit is in (only the CPU cycle).
				x1: CPU cycle is included in break conditions
				1x: DMAC cycle is included in break condition

R/W R/W R/W R/W

R/W R/W

R/W:

R/W

				Select the instruction fetch cycle or data according as the bus cycle of the channel-3 break condithe instruction fetch cycle is selected, select cycle.
				00: Condition comparison is not performed
				01: Break condition is the instruction fetch cy
				10: Break condition is the data access cycle
				 Break condition is the instruction fetch cy data access cycle
3, 2	RW3[1:0]	00	R/W	Read/Write Select 3
				Select the read cycle or write cycle as the buthe channel-3 break condition.
				00: Condition comparison is not performed
				01: Break condition is the read cycle
				10: Break condition is the write cycle

R/W

10: Break condition is word access 11: Break condition is longword access [Legend]

00

SZ3[1:0]

Don't care

1, 0

x:

Rev. 3.00 Mar. 04, 2009 Page

11: Break condition is the read cycle or write

Select the operand size of the bus cycle for t

00: Break condition does not include operan-

Operand Size Select 3

channel-3 break condition.

01: Break condition is byte access

reset, but retains its previous value by a manual reset or in software standby mode or slee

25

Dit.	31	30	29	20	21	20	25	24	23	~~	۷ ا	20	19	10	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initial value: R/W:	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	SCMFC 0	SCMFC 1	SCMFC 2	SCMFC 3	SCMFD 0	SCMFD 1	SCMFD 2	SCMFD 3	РСВ3	PCB2	PCB1	РСВ0	-	-	
Initial value: R/W:	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R	0 R	
Bit	Bit N	lame		nitial alue	R	/W	Desc	riptic	on						
31 to 18	_		Α	II O	R		Rese	rved							_
									are a ays b	•	read	as 0.	The	write v	/8
17, 16	CKS	[1:0]	0	0	R	/W	Clock	(Sele	ect						
									•	•	•	e widt cond			
							00: P	ulse v	width	of UB	CTRO	is or	ne bu	s cloc	k
							01: P	ulse v	width	of UB	CTRO	is tw	o bus	s clocl	K
							10: P	ulse v	width	of UB	CTRO	is fo	ur bu	s cloc	k

Rev. 3.00 Mar. 04, 2009 Page 162 of 1168 REJ09B0344-0300

11: Pulse width of UBCTRG is eight bus clock

13	SCMFC2	0	R/W	C Bus Cycle Condition Match Flag 2
				When the C bus cycle condition in the break set for channel 2 is satisfied, this flag is set to order to clear this flag, write 0 to this bit.
				0: The C bus cycle condition for channel 2 do match
				1: The C bus cycle condition for channel 2 m
12	SCMFC3	0	R/W	C Bus Cycle Condition Match Flag 3
				When the C bus cycle condition in the break set for channel 3 is satisfied, this flag is set to order to clear this flag, write 0 to this bit.
				0: The C bus cycle condition for channel 3 do match
				1: The C bus cycle condition for channel 3 m
11	SCMFD0	0	R/W	I Bus Cycle Condition Match Flag 0
				When the I bus cycle condition in the break of set for channel 0 is satisfied, this flag is set to order to clear this flag, write 0 to this bit.
				0: The I bus cycle condition for channel 0 do

match

match

1: The I bus cycle condition for channel 0 ma

Which the o bas cycle condition in the break set for channel 1 is satisfied, this flag is set to order to clear this flag, write 0 to this bit. 0: The C bus cycle condition for channel 1 de

1: The C bus cycle condition for channel 1 m

				order to clear this flag, write 0 to this bit.
				0: The I bus cycle condition for channel 2 doe match
				1: The I bus cycle condition for channel 2 mat
8	SCMFD3	0	R/W	I Bus Cycle Condition Match Flag 3
				When the I bus cycle condition in the break co set for channel 3 is satisfied, this flag is set to order to clear this flag, write 0 to this bit.
				0: The I bus cycle condition for channel 3 doe match
				1: The I bus cycle condition for channel 3 mat
7	PCB3	0	R/W	PC Break Select 3
				Selects the break timing of the instruction feto for channel 3 as before or after instruction exe
				0: PC break of channel 3 is generated before instruction execution

R/W

set for channel 2 is satisfied, this flag is set to

1: PC break of channel 3 is generated after in

Selects the break timing of the instruction fetor for channel 2 as before or after instruction exe 0: PC break of channel 2 is generated before

1: PC break of channel 2 is generated after in execution

0

RENESAS

execution

PC Break Select 2

instruction execution

6

PCB2

				for channel 0 as before or after instruction ex
				 PC break of channel 0 is generated before instruction execution
				 PC break of channel 0 is generated after in execution
3 to 0	_	All 0	R	Reserved

	should always be 0.	

These bits are always read as 0. The write v

even one of these groups is set to 00. The relevant break control conditions are set in the break control register (BRCR). Make sure to set all registers related to breaks before BBR, and branch after reading from the last written register. The newly written regist become valid from the instruction at the branch destination.

2. In the case where the break conditions are satisfied, the UBC sends a user break inter-

retch/data access select, and read/write select) are each set. No user break will be gen

- request to the CPU, sets the C bus condition match flag (SCMFC) or I bus condition of flag (SCMFD) for the appropriate channel, and outputs a pulse to the UBCTRG pin with set by the CKS1 and CKS0 bits. Setting the UBID bit in BBR to 1 enables extermination of the trigger output without requesting user break interrupts.
- 3. On receiving a user break interrupt request signal, the INTC determines its priority. S user break interrupt has a priority level of 15, it is accepted when the priority level set interrupt mask level bits (I3 to I0) of the status register (SR) is 14 or lower. If the I3 to are set to a priority level of 15, the user break interrupt is not accepted, but the condition checked, and condition match flags are set if the conditions match. For details on asce
- the priority, see section 6, Interrupt Controller (INTC).
 4. Condition match flags (SCMFC and SCMFD) can be used to check which condition I satisfied. They are set when the conditions match, but are not reset. To use these flags write 0 to the corresponding bit of the flags.
 5. It is possible that the breaks set in channels 0 to 3 occur around the same time. In this

there will be only one user break request to the CPU, but these four break channel ma

- may be set at the same time.6. When selecting the I bus as the break condition, note as follows:
- Several bus masters, including the CPU and DMAC, are connected to the I bus. T.
- monitors bus cycles generated by the bus master specified by BBR, and determine

condition match.

- when C bus/msu uction reten/read/word or longword is set in the break bus cycle res (BBR), the break condition is the FAB bus instruction fetch cycle. Whether PC break before or after the execution of the instruction can then be selected with the PCB0 or of the break control register (BRCR) for the appropriate channel. If an instruction fe
- set as a break condition, clear LSB in the break address register (BAR) to 0. A break generated as long as this bit is set to 1. 2. A break for instruction fetch which is set as a break before instruction execution occ is confirmed that the instruction has been fetched and will be executed. This means a
 - does not occur for instructions fetched by overrun (instructions fetched at a branch of an interrupt transition, but not to be executed). When this kind of break is set for the of a delayed branch instruction, the break is not generated until the execution of the instruction at the branch destination.

If a branch does not occur at a delayed branch instruction, the subsequent in not recognized as a delay slot.

- the break condition is executed and then the break is generated prior to execution of instruction. As with pre-execution breaks, a break does not occur with overrun fetch instructions. When this kind of break is set for a delayed branch instruction and its d the break is not generated until the first instruction at the branch destination.
 - 4. When an instruction fetch cycle is set, the break data register (BDR) is ignored. The break data cannot be set for the break of the instruction fetch cycle. 5. If the I bus is set for a break of an instruction fetch cycle, the setting is invalidated.

3. When setting a break condition for break after instruction execution, the instruction

Rev. 3.00 Mar. 04, 2009 Page

REJ09

operand size is listed in table 7.5.

Access Size

Table 7.3 Data Access Cycle Addresses and Operand Size Comparison Condition

Address Compared

Longword	Compares break address register bits 31 to 2 to address bus bits
Word	Compares break address register bits 31 to 1 to address bus bits
Byte	Compares break address register bits 31 to 0 to address bus bits

This means that when address H'00001003 is set in the break address register (BAR), example, the bus cycle in which the break condition is satisfied is as follows (where conditions are met).

Longword access at H'00001000

Word access at H'00001002

Byte access at H'00001003

3. If the data access cycle is selected, the instruction at which the break will occur cannot determined.

Rev. 3.00 Mar. 04, 2009 Page 168 of 1168

instruction that matched the condition is not executed, and the break occurs before it when a delay slot instruction matches the condition, the instruction is executed, and destination address is saved to the stack.

2. When C bus (FAB)/instruction fetch (after instruction execution) is specified as a br condition: The address of the instruction following the instruction that matched the break condi-

saved to the stack. The instruction that matches the condition is executed, and the br before the next instruction is executed. However when a delayed branch instruction slot matches the condition, the instruction is executed, and the branch destination ad saved to the stack.

3. When C bus/data access cycle or I bus/data access cycle is specified as a break cond The address after executing several instructions of the instruction that matched the b condition is saved to the stack.

Bus cycle: C bus/instruction fetch (after instruction execution)/read (operand size is included in the condition)

<Channel 1>

Address: H'00008010, Address mask: H'00000006

Bus cycle: C bus/instruction fetch (before instruction execution)/read (operand size i included in the condition)

A user break occurs after an instruction of address H'00000404 is executed or before instructions of addresses H'00008010 to H'00008016 are executed.

Bus cycle: C bus/instruction fetch (before instruction execution)/write/word

(Example 1-2)

Register specifications

BAR 0 = H'00027128, BAMR 0 = H'00000000, BBR 0 = H'005A, BAR 1 = H'0003

BAMR 1 = H'00000000, BBR 1 = H'0054, BRCR = H'00000000

<Channel 0>

Address: H'00027128, Address mask: H'00000000

<Channel 1>

Address: H'00031415, Address mask: H'00000000

Bus cycle: C bus/instruction fetch (before instruction execution)/read (operand size i

included in the condition)

On channel 0, a user break does not occur since instruction fetch is not a write cycle. channel 1, a user break does not occur since instruction fetch is performed for an ever H'00008010, Address mask: H'00000006

Bus cycle: C bus/instruction fetch (before instruction execution)/read (operand size included in the condition)

A user break occurs after an instruction with addresses H'00008000 to H'00008FFE or before an instruction with addresses H'00008010 to H'00008016 are executed.

Break Condition Specified for C Bus Data Access Cycle

(Example 2-1)

Register specifications

BBR 0 = H'0064, BAR 0 = H'00123456, BAMR 0 = H'00000000, BBR_1 = H'006A, BAR_1 = H'000ABCDE, BAMR_1 = H'000000FF, BRCR = H'0

<Channel 0>

Address: H'00123456, Address mask: H'00000000

Bus cycle: C bus/data access/read (operand size is not included in the condition) <Channel 1>

Address:

H'000ABCDE, Address mask: H'000000FF

Bus cycle: C bus/data access/write/word

On channel 0, a user break occurs with longword read from address H'00123456, wo

from address H'00123456, or byte read from address H'00123456. On channel 1, a u occurs when word is written in addresses H'000ABC00 to H'000ABCFE.

REJ09

Address: H'00055555, Address mask: H'00000000

Bus cycle: I bus/data access/write/byte

On channel 0, the setting of I bus/instruction fetch is ignored.

On channel 1, a user break occurs when the DMAC writes byte data in address H'000 the I bus (write by the CPU does not generate a user break).

RENESAS

table 5.1 in section 5, Exception Handling. If an exception source with higher priorit the user break interrupt request is not received.

4. Note the following when a break occurs in a delay slot.

If a pre-execution break is set at a delay slot instruction, the user break interrupt requ

occurs before instruction execution.

5. User breaks are disabled during UBC module standby mode. Do not read from or with UBC registers during UBC module standby mode; the values are not guaranteed.

received immediately before execution of the branch destination.

- UBC registers during UBC module standby mode; the values are not guaranteed.6. Do not set an address within an interrupt exception handling routine whose interrupt
- level is at least 15 (including user break interrupts) as a break address.

 7. Do not set break after instruction execution for the SLEEP instruction or for the december of t
- 7. Do not set break after instruction execution for the SLEEP instruction or for the delabranch instruction where the SLEEP instruction is placed at its delay slot.
 8. When setting a break for a 32-bit instruction, set the address where the upper 16 bits
- placed. If the address of the lower 16 bits is set and a break before instruction execution as a break condition, the break is handled as a break after instruction execution.

 9. Do not set a user break before instruction execution for the instruction following the
 - DIVS instruction. If a user break before instruction execution is set for the instruction following the DIVU or DIVS instruction and an exception or interrupt occurs during of the DIVU or DIVS instruction, a user break occurs before instruction execution execution of the DIVU or DIVS instruction is halted.
- execution of the DIVU or DIVS instruction is halted.

 10. Do not set a user break both before instruction execution and after instruction executionstruction of the same address. If, for example, a user break before instruction execution and a user break after instruction on channel 1 are set at the instruction of address, the condition match flag for the channel 1 is set even though a user break or

Rev. 3.00 Mar. 04, 2009 Page 174 of 1168

REJ09B0344-0300

- A maximum of 64 Mbytes for each of areas CS0 to CS7.
 Can specify the normal space interface, SRAM interface with byte selection, bur (clock synchronous or asynchronous), MPX-I/O, and SDRAM for each address s
 Can select the data bus width (8 or 16 bits) for each address space.
 Controls insertion of wait cycles for each address space.
 - Controls insertion of wait cycles for each read access and write access.
 - Can set independent idle cycles during the continuous access for five cases: read same space/different spaces), read-read (in same space/different spaces), the first
- write access.

 2. Normal space interface

1. External address space

- Supports the interface that can directly connect to the SRAM.
- 3. Burst ROM interface (clock asynchronous)
- High-speed access to the ROM that has the page mode function.
- 4. MPX-I/O interface
- Can directly connect to a peripheral LSI that needs an address/data multiplexing.
 SDRAM interface
- Can set the SDRAM in up to two areas.
 - Multiplex output for row address/column address.
 - Efficient access by single read/single write.
 - High-speed access in bank-active mode.
 - Supports an auto-refresh and self-refresh.
 - Supports low-frequency and power-down modes.
 - Issues MRS and EMRS commands.
 - Issues WKS and EWKS commands

- Can execute concentrated refresh by specifying the refresh counts (1, 2, 4, 6, or 8) 10. Usage as interval timer for refresh counter
 - - Generates an interrupt request at compare match.

Rev. 3.00 Mar. 04, 2009 Page 176 of 1168 REJ09B0344-0300

RENESAS

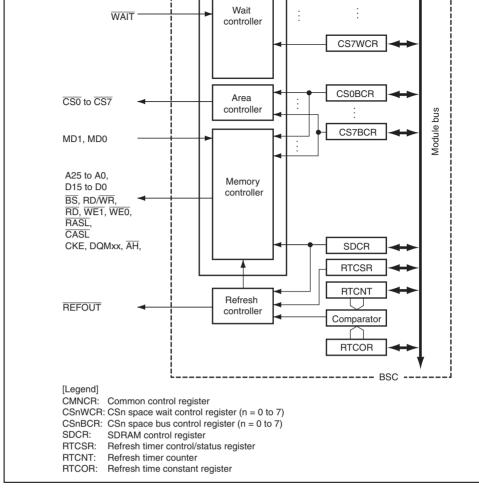


Figure 8.1 Block Diagram of BSC

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

		connected.
RD	Output	Read pulse signal (read data output enable signal)
		Functions as a strobe signal for indicating memory read cycles PCMCIA is used.
ĀH	Output	A signal used to hold an address when MPX-I/O is in use
WE1/DQMLU	Output	Indicates that D15 to D8 are being written to.
		Connected to the byte select signal when a SRAM with byte seconnected.
		Functions as the select signals for D15 to D8 when SDRAM is connected.
WE0/DQMLL	Output	Indicates that D7 to D0 are being written to.
		Connected to the byte select signal when a SRAM with byte seconnected.
		Functions as the select signals for D7 to D0 when SDRAM is c
RASL	Output	Connects to RAS pin when SDRAM is connected.
CASL	Output	Connects to CAS pin when SDRAM is connected.
CKE	Output	Connects to CKE pin when SDRAM is connected.
WAIT	Input	External wait input

Bus request input

Bus enable output

Refresh request output in bus-released state

RENESAS

enabling/disabling of the on-chip ROM.

Select bus width (8 or 16 bits) of area 0 and modes including

Connects to WE pins when SDRAM or SRAM with byte selecti

030 10 037

RD/WR

BREQ

BACK

REFOUT

MD1, MD0

REJ09B0344-0300

Output

Output

Input

Output

Output

Input

Rev. 3.00 Mar. 04, 2009 Page 178 of 1168

Chip select

Read/write

Table 8.2 Address Map in On-Chip ROM-Enabled Mode

Address	Space	Memory to be Connected
H'0000 0000 to H'0007 FFFF	On-chip ROM	On-chip ROM
H'0008 0000 to H'01FF FFFF	Other	Reserved area
H'0200 0000 to H'03FF FFFF	CS0	Normal space, SRAM with byte selection, burst ROM (asynchronous or synchronous)
H'0400 0000 to H'07FF FFFF	CS1	Normal space, SRAM with byte selection
H'0800 0000 to H'0BFF FFFF	CS2	Normal space, SRAM with byte selection, SDRAM
H'0C00 0000 to H'0FFF FFFF	CS3	Normal space, SRAM with byte selection, SDRAM
H'1000 0000 to H'13FF FFFF	CS4	Normal space, SRAM with byte selection, burst ROM (asynchronous)
H'1400 0000 to H'17FF FFFF	CS5	Normal space, SRAM with byte selection, MPX-I/O
H'1800 0000 to H'1BFF FFFF	CS6	Normal space, SRAM with byte selection
H'1C00 0000 to H'1FFF FFFF	CS7	Normal space, SRAM with byte selection
H'2000 0000 to H'FFF7 FFFF	Other	Reserved area
H'FFF8 0000 to H'FFFB FFFF	Other	On-chip RAM, reserved area*
H'FFFC 0000 to H'FFFF FFFF	Other	On-chip peripheral modules, reserved area*

Note: * For the on-chip RAM space, access the addresses shown in section 22, On-C For the on-chip peripheral module space, access the addresses shown in sec

Otherwise, the correct operation cannot be guaranteed.

List of Registers. Do not access addresses which are not described in these

REJ09

		burst ROM (asynchronous)
H'1400 0000 to H'17FF FFFF	CS5	Normal space, SRAM with byte selection, MPX-I/O
H'1800 0000 to H'1BFF FFFF	CS6	Normal space, SRAM with byte selection
H'1C00 0000 to H'1FFF FFFF	CS7	Normal space, SRAM with byte selection
H'2000 0000 to H'FFF7 FFFF	Other	Reserved area
H'FFF8 0000 to H'FFFB FFFF	Other	On-chip RAM, reserved area*
H'FFFC 0000 to H'FFFF FFFF	Other	On-chip peripheral modules, reserved area*

For the on-chip RAM space, access the addresses shown in section 22, On-C For the on-chip I/O register space, access the addresses shown in section 26,

Registers. Do not access addresses which are not described in these sections Otherwise, the correct operation cannot be guaranteed.

8.3.2 Setting Operating Modes

This LSI can set the following modes of operation at the time of power-on reset using the pins.

In single-chip mode, no access is made to the external bus, and the LSI is activated by

Single-Chip Mode

Note:

- chip ROM program upon a power-on reset. The BSC module enters the module stand to reduce power consumption.
- On-Chip ROM-Enabled Mode/On-Chip ROM-Disabled Mode
 - In on-chip ROM-enabled mode, since the first half of area 0 is allocated to the on-chip the LSI can be activated by the on-chip ROM program upon a power-on reset. The sec
 - of area 0 is the external memory space.

Rev. 3.00 Mar. 04, 2009 Page 180 of 1168

In on-chip ROM-disabled mode, the data bus width of area 0 cannot be changed from setting after a power-on reset, but the data bus widths of areas 1 to 7 can be changed register settings in the program. In on-chip ROM-enabled mode, all the data bus wid areas 0 to 7 can be changed by register settings in the program. Note that data bus with the restricted depending on memory types.

• Initial Settings of Endianness

The initial settings of byte-data alignment of areas 0 to 7 can be selected as big endian. In on-chip ROM-disabled mode, the endianness of area 0 cannot be changed initial setting after a power-on reset, but the endianness of areas 1 to 7 can be changed register settings in the program. In on-chip ROM-enabled mode, all the endianness of to 7 can be changed by register settings in the program. Little endian cannot be select 0. Since both 32-bit and 16-bit accesses are included in instruction fetches, no instruction be assigned in little endian area. Accordingly, instructions should be executed in big area.

For details of mode settings, see section 3, MCU Operating Modes.

REJ09

CSn space bus control register	CSURCH	H/W	(in activation with 16-bit bus width)	H'FFFC 0004 to H'FFFC 0020	32
CSn space wait control register	CSnWCR	R/W	H'00000500	H'FFFC0028 to H'FFFC 0044	32
SDRAM control register	SDCR	R/W	H'00000000	H'FFFC004C	32
Refresh timer control/status register	RTCSR	R/W	H'00000000	H'FFFC0050	32
Refresh timer counter	RTCNT	R/W	H'00000000	H'FFFC0054	32
Refresh time constant register	RTCOR	R/W	H'00000000	H'FFFC0058	32

Rev. 3.00 Mar. 04, 2009 Page 182 of 1168 REJ09B0344-0300

				This bit is always read as 1. The write value always be 1.
11	BLOCK	0	R/W	Bus Lock
				Specifies whether or not the $\overline{\text{BREQ}}$ signal is
				0: Receives BREQ.
				1: Does not receive BREQ.
10, 9	DPRTY[1:0]	00	R/W	DMA Burst Transfer Priority
				Specify the priority for a refresh request/bus mastership request during DMA burst transfer
				00: Accepts a refresh request and bus master request during DMA burst transfer.
				01: Accepts a refresh request but does not a bus mastership request during DMA burs
				 Accepts neither a refresh request nor a be mastership request during DMA burst tra
				11: Reserved (setting prohibited)

BLOCK

0

R/W

Initial value:

31 to 13

Bit

12

R/W:

0

R

0

R

Bit Name

0

R

1

R

Initial

Value

All 0

1

DPRTY[1:0]

0

R/W

0

R/W

Description

should always be 0.

Reserved

Reserved

0

R/W

R/W

R

R

Rev. 3.00 Mar. 04, 2009 Page

DMA IWA

0

R/W

These bits are always read as 0. The write v

1

R

0

R

DMAIW[2:0]

0

R/W

0

R/W

HIZ CKIO

0

R/W

			010: 2 idle cycles inserted
			011: 4 idle cycles inserted
			100: 6 idle cycles inserted
			101: 8 idle cycles inserted
			110: 10 idle cycles inserted
			111: 12 idle cycles inserted
DMAIWA	0	R/W	Method of inserting wait states between access when DMA single address transfer is performed
			Specifies the method of inserting the idle cycle specified by the DMAIW[2:0] bit. Clearing this make this LSI insert the idle cycles when anot device, which includes this LSI, drives the dat after an external device with DACK drove it. I when the external device with DACK drives the bus continuously, idle cycles are not inserted. this bit will make this LSI insert the idle cycles access to an external device with DACK, ever the continuous access cycles to an external dwith DACK are performed.
			 Idle cycles inserted when another device dr data bus after an external device with DAC it.

always be 1.

Reserved

1: Idle cycles always inserted after an access

This bit is always read as 1. The write value s

external device with DACK

RENESAS REJ09B0344-0300

1

R

5

4

Rev. 3.00 Mar. 04, 2009 Page 184 of 1168

				Specifies the pin state in standby mode for ABS, CSn, RD/WR, WEn/DQMxx, AH, and Ri released state, these pins are in high-imped regardless of the setting value of the HIZME
				0: High impedance in standby mode.
				1: Driven in standby mode
0	HIZCNT	0	R/W	High-Z Control
				Specifies the state in standby mode and bus state for CKE, $\overline{\text{RASL}}$, and $\overline{\text{CASL}}$.
				0: CKE. RASL, and CASL are in high-imped

R/W

0

HIZMEM

1

state.

High-Z Memory Control

in standby mode and bus-released state. 1: CKE, RASL, and CASL are driven in stand

and bus-released state.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
	-		IWW[2:0]]	IW	/RWD[2:	0]	IV	VRWS[2:	0]	IV	WRRD[2:	0]	IV	۷R
Initial value:	0	0	1	1	0	1	1	0	1	1	0	1	1	0	
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	F
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	TYPE[2:0)]	ENDIAN	BSZ	[1:0]	-	-	-	-	-	-	-	Г
Initial value:	0	0	0	0	0	1*	1*	0	0	0	0	0	0	0	Τ
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R	R	R	R	

Note: * CSnBCR samples the external pins (MD1 and MD0) that specify the bus width at power-on reset.

Bit	Bit Name	Initial Value	R/W	Description
31	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.

Rev. 3.00 Mar. 04, 2009 Page 186 of 1168

REJ09B0344-0300

				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
27 to 25	IWRWD[2:0]	011	R/W	Idle Cycles for Another Space Read-Write
				Specify the number of idle cycles to be inserthe access to a memory that is connected to space. The target access cycle is a read-writ which continuous access cycles switch betweedifferent spaces.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted

011: 4 Idie cycles inserted

111: 12 idle cycles inserted

				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
21 to 19	IWRRD[2:0]	011	R/W	Idle Cycles for Read-Read in Another Space
				Specify the number of idle cycles to be inserted the access to a memory that is connected to the space. The target cycle is a read-read cycle of continuous access cycles switch between difference.
				000: No idle cycle inserted
				001: 1 idle cycle inserted
				010: 2 idle cycles inserted
				011: 4 idle cycles inserted
				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted

Rev. 3.00 Mar. 04, 2009 Page 188 of 1168

RENESAS

				100: 6 idle cycles inserted
				101: 8 idle cycles inserted
				110: 10 idle cycles inserted
				111: 12 idle cycles inserted
15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
14 to 12	TYPE[2:0]	000	R/W	Specify the type of memory connected to a s
				000: Normal space
				001: Burst ROM (clock asynchronous)
				010: MPX-I/O
				011: SRAM with byte selection
				100: SDRAM
				101: Reserved (setting prohibited)
				110: Reserved (setting prohibited)
				111: Burst ROM (clock synchronous)
				For details of memory type in each area, see and 8.3.
11	ENDIAN	0	R/W	Endian Select
				Specifies data alignment in a space.

0: Big endian1: Little endian

width can be specified as 8 bits of by the address according to the in CS5WCR by specifying the BS bits to 11. The fixed bus width ca specified as 8 bits or 16 bits.

- is specified by external pins. In o ROM-disabled mode, writing to t and BSZ0 bits in CS0BCR is ign the bus width settings in CS1BC CS7BCR can be modified. In on-ROM-enabled mode, the bus wid settings in CS0BCR to CS7BCR modified.
- 16 bits only. 4. If area 0 or 4 is specified as cloc

- synchronous burst ROM space, width can be specified as 16 bits

2. The initial data bus width for area

3. If area 2 or area 3 is specified as space, the bus width can be spe-

8 to 0		_	All 0	R	Reserved
					These bits are always read as 0. The write va should always be 0.
Note:	*	CSnBCR sa	mples the	external	pins (MD1 and MD0) that specify the bus width

RENESAS

power-on reset.

Rev. 3.00 Mar. 04, 2009 Page 190 of 1168

• CS0WCR

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18
	-	-	-	-	-	-	-	-	-	-	-	BAS	-	-
Initial value: R/W:	0 R/W													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	SW	1:0]		WR	[3:0]		WM	-	-	-	-
Initial value:	0 R/W	0 R/W	0 R/W	0 R/W	0 B/W	1 R/W	0 B/W	1 R/W	0 R/W	0 R/W	0 B	0 B	0 B	0 B

R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R	R	R
Bit	Bit I	Name		nitial /alue	R	/W	Desc	riptio	on					
31 to 21	*		A	All O	R	/W	Rese	erved						
									are a	•	read	as 0.	The \	vrite v
20	BAS	; *	C)	R	/W	,		ss Se s Use		whe	n SR/	AM wi	th Byte
										En and			•	timing used.
							as				_			write ti e write
							1: As	serts	the W	/En si	gnal d	during	the r	ead/wi

timing.

Rev. 3.00 Mar. 04, 2009 Page

cycle and asserts the RD/WR signal at the

REJ09

				11: 3.5 cycles
10 to 7	WR[3:0]	1010	R/W	Number of Access Wait Cycles
				Specify the number of cycles that are neces read/write access.
				0000: No cycle
				0001: 1 cycle
				0010: 2 cycles
				0011: 3 cycles
				0100: 4 cycles
				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)

10: 2.5 cycles

1, 0	HW[1:0]	00	R/W	Delay Cycles from RD, WEn Negation to Add Negation
				Specify the number of delay cycles from RD negation to address and $\overline{\text{CSO}}$ negation.
				00: 0.5 cycles
				01: 1.5 cycles

Note * To connect the burst ROM to the CS0 space and switch to the burst ROM int after activation in ROM-disabled mode, set the TYPE[2:0] bits in CS0BCR aft the burst number by the bits 20 and 21 and the burst wait cycle number by the and 17. Do not write 1 to the reserved bits other than above bits.

10: 2.5 cycles

Rev. 3.00 Mar. 04, 2009 Page

REJ09

				These bits are always read as 0. The write vashould always be 0.
20	BAS	0	R/W	SRAM with Byte Selection Byte Access Selection
				Specifies the $\overline{\text{WEn}}$ and RD/ $\overline{\text{WR}}$ signal timing SRAM interface with byte selection is used.
				0: Asserts the WEn signal at the read/write tir asserts the RD/WR signal during the write cycle.
				 Asserts the WEn signal during the read/wri cycle and asserts the RD/WR signal at the timing.
19	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
18 to 16	WW[2:0]	000	R/W	Number of Write Access Wait Cycles
				Specify the number of cycles that are necessary write access.
				000: The same cycles as WR[3:0] setting (nur read access wait cycles)
				001: No cycle
				010: 1 cycle
				011: 2 cycles
				100: 3 cycles
				101: 4 cycles
				110: 5 cycles
				111: 6 cycles

R/W Description

Reserved

R

DIL Maine

All 0

31 to 21 —

Rev. 3.00 Mar. 04, 2009 Page 194 of 1168
REJ09B0344-0300

Specify the number of cycles that are necess read access.
0000: No cycle
0001: 1 cycle
0010: 2 cycles
0011: 3 cycles
0100: 4 cycles
0101: 5 cycles
0110: 6 cycles
0111: 8 cycles
1000: 10 cycles
1001: 12 cycles
1010: 14 cycles

R/W

1010

10 to 7

6

WM

0

R/W

WR[3:0]

10: 2.5 cycles 11: 3.5 cycles

Number of Read Access Wait Cycles

1011: 18 cycles 1100: 24 cycles

1101: Reserved (setting prohibited) 1110: Reserved (setting prohibited) 1111: Reserved (setting prohibited)

External Wait Mask Specification

number of access wait cycle is 0. 0: External wait input is valid 1: External wait input is ignored

REJ09

Specifies whether or not the external wait in The specification by this bit is valid even who

10: 2.5 cycles 11: 3.5 cycles

Rev. 3.00 Mar. 04, 2009 Page 196 of 1168

REJ09B0344-0300

Ыt

20

31 to 21

Bit Name

BAS

value

All 0

0

H/W

R/W

R

Description

should always be 0.

These bits are always read as 0. The write v

SRAM with Byte Selection Byte Access Sele

Specifies the WEn and RD/WR signal timing SRAM interface with byte selection is used.

0: Asserts the WEn signal at the read timing

Reserved

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

REJ09

				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait input. The specification by this bit is valid even wher number of access wait cycle is 0.
				0: External wait input is valid
				1: External wait input is ignored
5 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

Rev. 3.00 Mar. 04, 2009 Page 198 of 1168 REJ09B0344-0300

				SRAM interface with byte selection is used.
				 Asserts the WEn signal at the read timing asserts the RD/WR signal during the writ cycle.
				1: Asserts the WEn signal during the read a and asserts the RD/WR signal at the writ
19	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
18 to 16	WW[2:0]	000	R/W	Number of Write Access Wait Cycles
				Specify the number of cycles that are necessivite access.
				000: The same cycles as WR[3:0] setting (r read access wait cycles)
				001: No cycle
				010: 1 cycle
				011: 2 cycles
				100: 3 cycles
				101: 4 cycles
				110: 5 cycles
				111: 6 cycles

Ыί

20

31 to 21

Bit Name

BAS

value

All 0

0

H/W

R/W

R

Description

should always be 0.

These bits are always read as 0. The write v

SRAM with Byte Selection Byte Access Sele Specifies the WEn and RD/WR signal timing

Reserved

Rev. 3.00 Mar. 04, 2009 Page

				11: 3.5 cycles
10 to 7	WR[3:0]	1010	R/W	Number of Read Access Wait Cycles
				Specify the number of cycles that are necestread access.
				0000: No cycle
				0001: 1 cycle
				0010: 2 cycles
				0011: 3 cycles
				0100: 4 cycles
				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)

10: 2.5 cycles

Rev. 3.00 Mar. 04, 2009 Page 200 of 1168

1, 0	HW[1:0]	00	R/W	Delay Cycles from RD, WEn Negation to Add Negation
				Specify the number of delay cycles from RD negation to address and CS4 negation.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles

11: 3.5 cycles

Rev. 3.00 Mar. 04, 2009 Page

REJ09

			should al	ways be 0.		
SZSEL	0	R/W	MPX-I/O	Interface Bus V	Width Specificat	ion
			BSZ[1:0]	of CS5BCR are	select the bus verselect the bus verselect the selection is specified as N	1. This
			0: Select	s the bus width	by address A14	4
			1: Select	s the bus width	by address A2	1
				•	n the SZSEL bi are summarize	
			CZCEL	A 4 4	404	_
			SZSEL	A14	A21	Bus
			0	0	Not affected	
						8 bit
			0		Not affected	8 bit
			0	0	Not affected Not affected	8 bit 16 b 8 bit
			0	0 1 Not affected	Not affected Not affected	8 bit 16 b 8 bit 16 b
			0	0 1 Not affected	Not affected Not affected	8 bit 16 b 8 bit

value

All 0

H/VV

R

Description

These bits are always read as 0. The write va

Reserved

Rev. 3.00 Mar. 04, 2009 Page 202 of 1168

Ыt

21

31 to 22

Bit Name

				 Asserts the WEn signal at the read timing asserts the RD/WR signal during the write cycle.
				Asserts the WEn signal during the read act and asserts the RD/WR signal at the write
19	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
18 to 16	WW[2:0]	000	R/W	Number of Write Access Wait Cycles
				Specify the number of cycles that are necess write access.
				000: The same cycles as WR[3:0] setting (nu read access wait cycles)

Specifies the $\overline{\text{WEn}}$ and RD/ $\overline{\text{WR}}$ signal timing SRAM interface with byte selection is used.

R

All 0

15 to 13

001: No cycle 010: 1 cycle 011: 2 cycles 100: 3 cycles 101: 4 cycles 110: 5 cycles 111: 6 cycles

Reserved

should always be 0.

These bits are always read as 0. The write v

Specify the number of cycles that are necessaread access.

0000: No cycle

0001: 1 cycle

0010: 2 cycles

0011: 3 cycles

0100: 4 cycles

0101: 5 cycles

0110: 6 cycles

0111: 8 cycles

1000: 10 cycles

1001: 12 cycles

1010: 14 cycles

1011: 18 cycles

0: External wait input is valid
1: External wait input is ignored
5 to 2 — All 0 R Reserved

0

R/W

RENESAS

should always be 0.

1101: Reserved (setting prohibited)1110: Reserved (setting prohibited)1111: Reserved (setting prohibited)

External Wait Mask Specification

Specifies whether or not the external wait inpuvalid. The specification by this bit is valid ever the number of access wait cycle is 0.

These bits are always read as 0. The write va

WM

6

Rev. 3.00 Mar. 04, 2009 Page

		_		
				These bits are always read as 0. The write va should always be 0.
20	BAS	0	R/W	SRAM with Byte Selection Byte Access Selec
				Specifies the $\overline{\text{WEn}}$ and RD/ $\overline{\text{WR}}$ signal timing v SRAM interface with byte selection is used.
				 Asserts the WEn signal at the read timing a asserts the RD/WR signal during the write a cycle.
				 Asserts the WEn signal during the read/write cycle and asserts the RD/WR signal at the timing.
19 to 13		All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
12, 11	SW[1:0]	00	R/W	Number of Delay Cycles from Address, CS6 A to RD, WEn Assertion
				Specify the number of delay cycles from addressertion to RD and WEn assertion.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles
				11: 3.5 cycles

Ыť

31 to 21

Bit Name

value

All 0

H/W

R

Description

Reserved

				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WN	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait in The specification of this bit is valid even who number of access wait cycles is 0.
				0: The external wait input is valid
				1: The external wait input is ignored
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
1, 0	HW[1:0]	00	R/W	Number of Delay Cycles from RD, WEn Neg Address, CS6 Negation
				Specify the number of delay cycles from RD negation to address, and CS6 negation.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles

0110: 6 cycles 0111: 8 cycles 1000: 10 cycles 1001: 12 cycles 1010: 14 cycles 1011: 18 cycles 1100: 24 cycles

11: 3.5 cycles

Bit	Bit Name	Initial Value	R/W	Description		
31 to 22	_	All 0	R	Reserved		
				These bits are should always	•	as 0. The write va
21, 20	BST[1:0]	00	R/W	Burst Count S	Specification	
				Specify the but must not be s		6-byte access. Th
				Bus Width	BST[1:0]	Burst count
				8 bits	00	16 burst × one t
					01	4 burst × four tir
				16 bits	00	8 burst × one tir
					01	2 burst × four tir
					10	4-4 or 2-4-2 bur
19, 18	_	All 0	R	Reserved		
				These bits are should always	-	as 0. The write va

				should always be 0.
10 to 7	W[3:0]	1010	R/W	Number of Access Wait Cycles
			Specify the number of wait cycles to be in first access cycle.	
			0000: No cycle	
			0001: 1 cycle	
			0010: 2 cycles	
			0011: 3 cycles	
			0100: 4 cycles	
				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)

REJ09

These bits are always read as 0. The write v

1110: Reserved (setting prohibited)1111: Reserved (setting prohibited)

nodia aimayo bo

Rev. 3.00 Mar. 04, 2009 Page 210 of 1168

REJ09B0344-0300

				Bus Width	BST[1:0]	Burst count
				8 bits	00	16 burst × one
					01	4 burst × four
				16 bits	00	8 burst × one
					01	2 burst × four
					10	4-4 or 2-4-2 b
19, 18	_	All 0	R	Reserved		
				These bits are should always		as 0. The write
17, 16 BW	BW[1:0]	00	R/W	Number of Bu	ırst Wait Cycl	es
					second or sub	cycles to be insessequent access
				00: No cycle		
				01: 1 cycle		
				10: 2 cycles		
				11: 3 cycles		

Ыt

21, 20

31 to 22 —

Bit Name

BST[1:0]

value

All 0

00

H/W

R/W

R

Description Reserved

should always be 0.

Burst Count Specification

must not be set to B'11.

These bits are always read as 0. The write

Specify the burst count for 16-byte access.

				11: 3.5 cycles
10 to 7	W[3:0]	1010	R/W	Number of Access Wait Cycles
				Specify the number of wait cycles to be insefirst access cycle.
				0000: No cycle
				0001: 1 cycle
				0010: 2 cycles
				0011: 3 cycles
				0100: 4 cycles
				0101: 5 cycles
				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)

10: 2.5 cycles

Rev. 3.00 Mar. 04, 2009 Page 212 of 1168

RENESAS

1, 0	HW[1:0]	00	R/W	Delay Cycles from RD, WEn Negation to Ad CS4 Negation
				Specify the number of delay cycles from $\overline{\text{RD}}$ negation to address and $\overline{\text{CS4}}$ negation.
				00: 0.5 cycles
				01: 1.5 cycles
				10: 2.5 cycles

11: 3.5 cycles

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Bit	Bit Name	Initial Value	R/W	Description
31 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
10	_	1	R	Reserved
				This bit is always read as 1. The write value s always be 1.
9	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
8, 7	A2CL[1:0]	10	R/W	CAS Latency for Area 2
				Specify the CAS latency for area 2.
				00: 1 cycle
				01: 2 cycles
				10: 3 cycles
				11: 4 cycles
6 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.

Note: * If only one area is connected to the SDRAM, specify area 3. In this case, special as normal space or SRAM with byte selection.

Rev. 3.00 Mar. 04, 2009 Page 214 of 1168 REJ09B0344-0300

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
31 to 15	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.
14, 13	WTRP[1:0]*	00	R/W	Number of Auto-Precharge Completion Wait
				Specify the number of minimum precharge c wait cycles as shown below.
				 From the start of auto-precharge and issu ACTV command for the same bank
				 From issuing of the PRE/PALL command of the ACTV command for the same bank
				 Till entering power-down mode or deep p down mode
				 From the issuing of PALL command to is command in auto-refresh mode
				 From the issuing of PALL command to is SELF command in self-refresh mode
				The setting for areas 2 and 3 is common.
				00: No cycle
				01: 1 cycle
				10: 2 cycles
				11: 3 cycles

				01: 1 cycle
				10: 2 cycles
				11: 3 cycles
9	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
8, 7	A3CL[1:0]	10	R/W	CAS Latency for Area 3
				Specify the CAS latency for area 3.
				00: 1 cycle
				01: 2 cycles
				10: 3 cycles
				11: 4 cycles
6, 5	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

00: No cycle

Rev. 3.00 Mar. 04, 2009 Page 216 of 1168

in the SDRAM and the auto-precharge at referring to each SDRAM data sheet. An cycle number so as not to exceed the cyc specified by this bit.
 Cycle number from the issuance of the W command until the issuance of the PRE of This is the case when accessing another address in the same bank in bank active
The setting for areas 2 and 3 is common.
00: No cycle
01: 1 cycle
10: 2 cycles

11: 3 cycles

always be 0.

Reserved

are required between the WRITE comma

This bit is always read as 0. The write value

0

R

2

REJ09

00: 2 evolos

00: 2 cycles

01: 3 cycles

10: 5 cycles

11: 8 cycles

Note: * If both areas 2 and 3 are specified as SDRAM, WTRP[1:0], WTRCD[1:0], TRV and WTRC[1:0] bit settings are used in both areas in common.

and WTRC[1:0] bit settings are used in both areas in common.

If only one area is connected to the SDRAM, specify area 3. In this case, spec as normal space or SRAM with byte selection.

Rev. 3.00 Mar. 04, 2009 Page 218 of 1168

REJ09B0344-0300

Bit	Bit Name	Value	R/W	Description
31 to 18	_	All 0	R	Reserved
				These bits are always read as 0. The write v should always be 0.
17, 16	BW[1:0]	00	R/W	Number of Burst Wait Cycles
				Specify the number of wait cycles to be inser- between the second or subsequent access of burst access.
				00: No cycle
				01: 1 cycle
				10: 2 cycles
				11: 3 cycles
15 to 11	_	All 0	R	Reserved
				These bits are always read as 0. The write v should always be 0.

Initial

				0110: 6 cycles
				0111: 8 cycles
				1000: 10 cycles
				1001: 12 cycles
				1010: 14 cycles
				1011: 18 cycles
				1100: 24 cycles
				1101: Reserved (setting prohibited)
				1110: Reserved (setting prohibited)
				1111: Reserved (setting prohibited)
6	WM	0	R/W	External Wait Mask Specification
				Specifies whether or not the external wait inp valid. The specification by this bit is valid even the number of access wait cycle is 0.
				0: External wait input is valid
				1: External wait input is ignored
5 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write v should always be 0.

Rev. 3.00 Mar. 04, 2009 Page 220 of 1168 REJ09B0344-0300

Bit	Bit Name	Initial Value	R/W	Description
31 to 21	_	All 0	R	Reserved
				These bits are always read as 0. The write vishould always be 0.
20, 19	A2ROW[1:0]	00	R/W	Number of Bits of Row Address for Area 2
				Specify the number of bits of row address for
				00: 11 bits
				01: 12 bits
				10: 13 bits
				11: Reserved (setting prohibited)
18	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
17, 16	A2COL[1:0]	00	R/W	Number of Bits of Column Address for Area
				Specify the number of bits of column address area 2.
				00: 8 bits
				01: 9 bits
				10: 10 bits
				11: Reserved (setting prohibited)

Bit:

R/W:

Initial value:

15

0

R

14

0

R

13

DEEP

0

R/W

12

0

R/W

11

R/W

10

SLOW RFSH RMODE PDOWN BACTV

R/W

9

R

8

R/W

7

0

R

6

0

R

5

0

R

A3ROW[1:0]

0

R/W

0

R/W

2

R

				1: Deep power-down mode
12	SLOW	0	R/W	Low-Frequency Mode
				Specifies the output timing of command, addressive data for SDRAM and the latch timing of a from SDRAM. Setting this bit makes the hold command, address, write and read data external cycle (output or read at the falling edge of This mode is suitable for SDRAM with low-freclock.
				0: Command, address, and write data for SDF output at the rising edge of CK. Read data SDRAM is latched at the rising edge of CK.
				 Command, address, and write data for SDF output at the falling edge of CK. Read data SDRAM is latched at the falling edge of CK
11	RFSH	0	R/W	Refresh Control
				Specifies whether or not the refresh operation SDRAM is performed.
				0: No refresh
				1: Refresh

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 222 of 1168

being accessed. 1: The SDRAM enters power-down mode accessed. 8 BACTV 0 R/W Bank Active Mode Specifies to access whether in auto-precha (using READA and WRITA commands) or active mode (using READ and WRIT commode (using READ and WRIT commands) 1: Bank active mode (using READ and WRITA commands) Note: Bank active mode (using READ and WRITA commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mode (using READ and WRITA commands) 7 to 5 — All 0 R Reserved These bits are always read as 0. The write should always be 0.					
accessed. 8 BACTV 0 R/W Bank Active Mode Specifies to access whether in auto-precha (using READA and WRITA commands) or active mode (using READ and WRIT commode) 0: Auto-precharge mode (using READA are commands) 1: Bank active mode (using READ and WRIT commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mode (using READA are commands) 7 to 5 — All 0 R Reserved These bits are always read as 0. The write should always be 0.					The SDRAM does not enter power-down being accessed.
Specifies to access whether in auto-precha (using READA and WRITA commands) or active mode (using READ and WRIT commode (using READ and WRIT commands) 1: Bank active mode (using READ and WRIT commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mand only the specify auto-precharge mand the specific acceptance of the speci					 The SDRAM enters power-down mode at accessed.
(using READA and WRITA commands) or active mode (using READ and WRIT commode (using READA and WRIT commode) 1: Bank active mode (using READ and WRite commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mode of the specific space of the specific space of the specific space of the specific space of the space of	8	BACTV	0	R/W	Bank Active Mode
commands) 1: Bank active mode (using READ and WE commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mands on the specific specifi					Specifies to access whether in auto-prechal (using READA and WRITA commands) or in active mode (using READ and WRIT comm
commands) Note: Bank active mode can be set only and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge mode of the specific spaces. These bits are always read as 0. The write should always be 0.					 Auto-precharge mode (using READA and commands)
and only the 16-bit bus width can be both the CS2 and CS3 spaces are SDRAM, specify auto-precharge model of the control of the cS2 and CS3 spaces are SDRAM, specify auto-precharge model of the control					Bank active mode (using READ and WRI commands)
These bits are always read as 0. The write should always be 0.					Note: Bank active mode can be set only in and only the 16-bit bus width can be both the CS2 and CS3 spaces are s SDRAM, specify auto-precharge model.
should always be 0.	7 to 5	_	All 0	R	Reserved
					These bits are always read as 0. The write should always be 0.
Rev. 3.00 Mar. 04, 2009 Pa					
					Rev. 3.00 Mar. 04, 2009 Pag

9

PDOWN

0

R

Power-Down Mode

down mode.

Specifies whether the SDRAM will enter pow mode after the access to the SDRAM. With t being set to 1, after the SDRAM is accessed signal is driven low and the SDRAM enters p

				This bit is always read as 0. The write value s always be 0.
1, 0	A3COL[1:0]	00	R/W	Number of Bits of Column Address for Area 3
				Specify the number of bits of the column addrarea 3.
				00: 8 bits
				01: 9 bits
				10: 10 bits
				11: Reserved (setting prohibited)

other than B'000.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	CMF	CMIE		CKS[2:0]		F
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
			1.	nitial										
Bit	Ri+ N	lame		niliai /alue	В	/W	Desc	rintic	'n					
БІІ	Diti	vallie		aluc	п	/ VV	Desc	прис	,,,					
31 to 8			^		_									
000			Α.	All O	R		Rese	rved						
0.100	_		F	AII O	R				are a	lways	read	as 0.		
7	CMF	:	0			/W	Thes	e bits	are a Match		read	as 0.		

constant register (RTCOR). This bit is set or

the following conditions. 0: Clearing condition: When 0 is written in CM reading out RTCSR during CMF = 1.

1: Setting condition: When the condition RTC

RTCOR is satisfied.

Rev. 3.00 Mar. 04, 2009 Page REJ09

				000: Stop the counting-up
				001: Bφ/4
				010: Вф/16
				011: Вф/64
				100: Βφ/256
				101: Βφ/1024
				110: Βφ/2048
				111: B ₀ /4096
2 to 0	RRC[2:0]	000	R/W	Refresh Count
				Specify the number of continuous refresh cyc the refresh request occurs after the coinciden values of the refresh timer counter (RTCNT) a refresh time constant register (RTCOR). Thes can make the period of occurrence of refresh
				000: 1 time
				001: 2 times
				010: 4 times
				011: 6 times
				100: 8 times
				101: Reserved (setting prohibited)
				110: Reserved (setting prohibited)

REJ09B0344-0300

111: Reserved (setting prohibited)

Rev. 3.00 Mar. 04, 2009 Page 226 of 1168

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-						
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Bit	Bit N	Name	Initi Val		R	/W	Desc	riptio	on			·	·	
Bit 31 to 8	Bit N	lame		ue	R R			criptio erved	on					
	Bit 1	lame	Val	ue			Rese	erved		ılways	s read	as 0.		

R/W: R R R R R R R R R R R R

section 8.5.6 (9), Relationship between Refresh Requests and Bus Cycles, and section 8.5. Arbitration.

When the CMIE bit in RTCSR is set to 1, an interrupt request is issued by this matching The request continues to be output until the CMF bit in RTCSR is cleared. Clearing the C only affects the interrupt request and does not clear the refresh request. Therefore, a comb of refresh request and interval timer interrupt can be specified so that the number of refre requests are counted by using timer interrupts while refresh is performed periodically.

When RTCOR is written, the upper 16 bits of the write data must be H'A55A to cancel w protection. This register is initialized to H'00000000 by a power-on reset and retains the manual reset and in software standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	-	-	-	-	-	-							
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
D/M.	D	D	D	D	D	D	D	D	DAM	DAM	DAM	D/M	DAM	DAM	- 1

Bit	Bit Name	Initial Value	R/W	Description
31 to 8	_	All 0	R	Reserved
				These bits are always read as 0.
7 to 0		All 0	R/W	8-Bit Register

Rev. 3.00 Mar. 04, 2009 Page 228 of 1168

RENESAS

selection. Only 16-bit data bus width is available for SDRAM. For MPX-I/O, the data be fixed at 8 bits or 16 bits, or 8 bits or 16 bits can be selected by the access address. Data is performed in accordance with the data bus width of the device. This also means that we longword data is read from a byte-width device, the read operation must be done four ting this LSI, data alignment and conversion of data length is performed automatically between respective interfaces.

addresses corresponding to the strobe signals for the 16-bit bus width differ between big and little endian. WE1 indicates the 0 address in big-endian mode, but WE0 indicates the address in little-endian mode.

Tables 8.5 to 8.8 show the relationship between device data width and access unit. Note

Table 8.5 16-Bit External Device Access and Data Alignment in Big-Endian Mod

	Da	Data Bus			
Operation	D15 to D8	D7 to D0	WE1, DQMLU	WE	
Byte access at 0	Data 7 to 0	_	Assert	_	
Byte access at 1	_	Data 7 to 0	_	Asse	
Byte access at 2	Data 7 to 0	_	Assert	_	
Byte access at 3	_	Data 7 to 0	_	Asse	

Data 15 to 8

Data 15 to 8

Data 23 to 16

Data 7 to 0

1st time at 0

2nd time at 2

Word access at 0

Word access at 2

Longword

access at 0

Data 7 to 0

Data 7 to 0

Data 31 to 24

Data 15 to 8

Assert

Assert

Assert

Assert

Asse

Asse

Asse

Asse

Word access at 2	1st time at 2	_
	2nd time at 3	_
Longword	1st time at 0	_
access at 0	2nd time at 2	_
	3rd time at 2	_

4th time at 3 —

Rev. 3.00 Mar. 04, 2009 Page 230 of 1168 RENESAS

Data 15 to 8

Data 7 to 0

Data 31 to 24

Data 23 to 16

Data 15 to 8

Data 7 to 0

Asser

Asser

Asser

Asser

Asser

Asser

Table 8.8 8-Bit Ext	ernal Device Access	and Data Aligni	nent in Little-Endi	an Mo
	Da	ata Bus	Strobe	Signa
Operation	D15 to D8	D7 to D0	WE1, DQMLU	WE
Byte access at 0	_	Data 7 to 0	_	Asse
Byte access at 1	_	Data 7 to 0	_	Asse
Byte access at 2	_	Data 7 to 0	_	Asse

Data 7 to 0

Data 7 to 0

Data 23 to 16

Assert

Assert

Asse

REJ09

Data 15 to 8

Data 31 to 24

1st time at 0

2nd time at 2

Word access at 0	1st time at 0	_	Data 7 to 0
	2nd time at 1	_	Data 15 to 8
Word access at 2	1st time at 2	_	Data 7 to 0
	2nd time at 3	_	Data 15 to 8
Longword	1st time at 0	_	Data 7 to 0
access at 0	2nd time at 2	_	Data 15 to 8
	3rd time at 2	_	Data 23 to 16
	4th time at 3	_	Data 31 to 24

Longword

access at 0

Byte access at 3

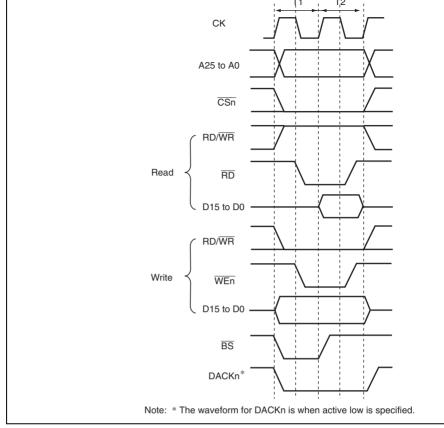


Figure 8.2 Normal Space Basic Access Timing (Access Wait 0)

There is no access size specification when reading. The correct access start address is out least significant bit of the address, but since there is no access size specification, 16 bits a

Rev. 3.00 Mar. 04, 2009 Page 232 of 1168

REJ09B0344-0300

RENESAS

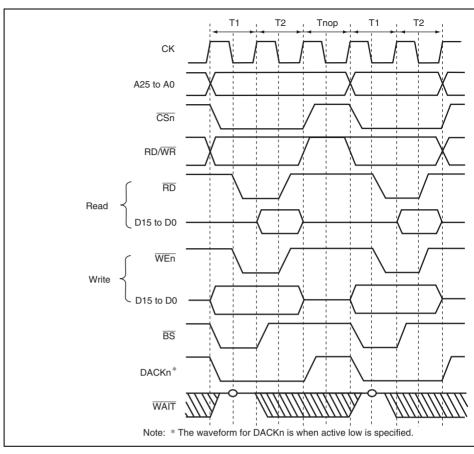


Figure 8.3 Continuous Access for Normal Space 1
Bus Width = 16 Bits, Longword Access, CSnWCR.WM Bit = 0
(Access Wait = 0, Cycle Wait = 0)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

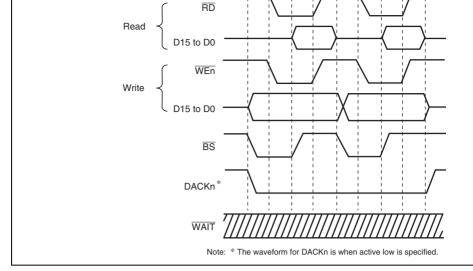


Figure 8.4 Continuous Access for Normal Space 2

Bus Width = 16 Bits, Longword Access, CSnWCR.WM Bit = 1

(Access Wait = 0, Cycle Wait = 0)

Rev. 3.00 Mar. 04, 2009 Page 234 of 1168

Figure 8.5 Example of 16-Bit Data-Width SRAM Connection

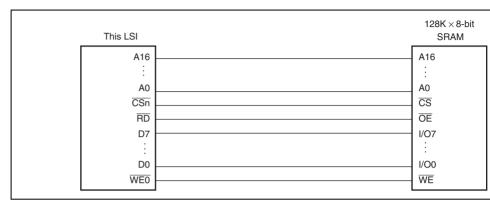


Figure 8.6 Example of 8-Bit Data-Width SRAM Connection

Rev. 3.00 Mar. 04, 2009 Page

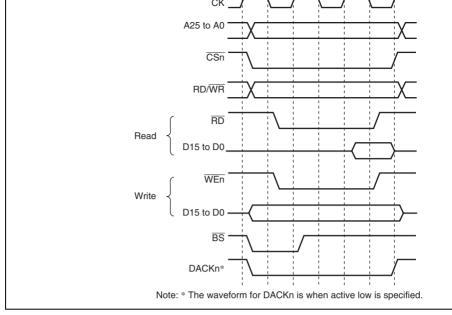


Figure 8.7 Wait Timing for Normal Space Access (Software Wait Only)

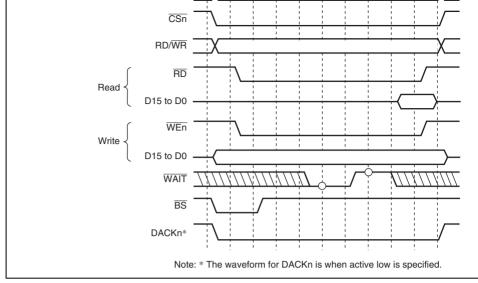


Figure 8.8 Wait Cycle Timing for Normal Space Access (Wait Cycle Insertion Using WAIT Signal)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

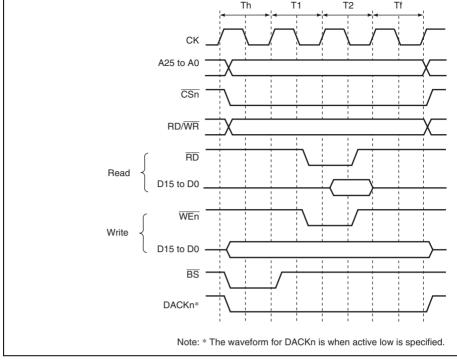


Figure 8.9 CSn Assert Period Expansion

cycles by setting the MPXW bit in CS5WCR to 1.

The RD/ \overline{WR} signal is output at the same time as the $\overline{CS5}$ signal; it is high in the read cy low in the write cycle.

The data cycle is the same as that in a normal space access.

Timing charts are shown in figures 8.10 to 8.12.

Rev. 3.00 Mar. 04, 2009 Page

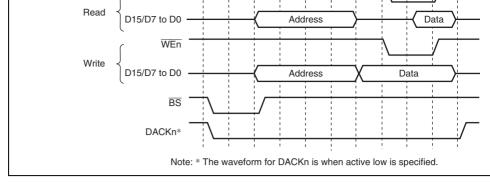


Figure 8.10 Access Timing for MPX Space (Address Cycle No Wait, Data Cycle N

Rev. 3.00 Mar. 04, 2009 Page 240 of 1168

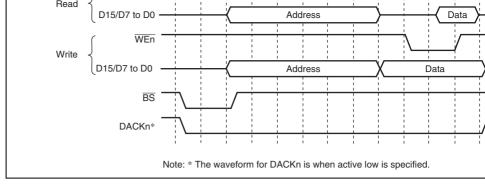


Figure 8.11 Access Timing for MPX Space (Address Cycle Wait 1, Data Cycle N

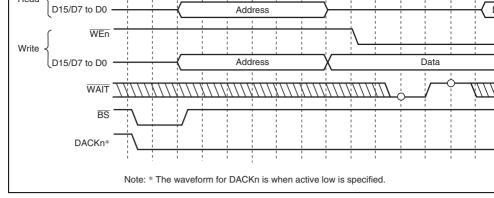


Figure 8.12 Access Timing for MPX Space (Address Cycle Access Wait 1, Data Cycle Wait 1, External Wait 1)

Rev. 3.00 Mar. 04, 2009 Page 242 of 1168

up to 2 spaces. The data bus width of the area that is connected to SDRAM can be set to only.

Burst read/single write (burst length 1) and burst read/burst write (burst length 1) are sugSDRAM operating mode.

Commands for SDRAM can be specified by \overline{RASL} , \overline{CASL} , RD/\overline{WR} , and specific address these commands supports:

- NOP
- Auto-refresh (REF)
- Self-refresh (SELF)
- All banks pre-charge (PALL)
- Specified bank pre-charge (PRE)
- Bank active (ACTV)
- Read (READ)
- Read with pre-charge (READA)
- Write (WRIT)
- Write with pre-charge (WRITA)
- Write mode register (MRS, EMRS)

The byte to be accessed is specified by \overline{DQMUL} and \overline{DQMLL} . Reading or writing is pe for a byte whose corresponding \overline{DQMxx} is low. For details on the relationship between and the byte to be accessed, see section 8.5.1, Endian/Access Size and Data Alignment.

Figure 8.13 shows an example of the connection of the SDRAM with the LSI.

Figure 8.13 Example of 16-Bit Data Width SDRAM Connection (RASU and CASU are Not Used)

(2) Address Multiplexing

multiplexing circuitry according to the setting of bits BSZ[1:0] in CSnBCR, bits A2ROW and A2COL[1:0], A3ROW[1:0], and A3COL[1:0] in SDCR. Tables 8.9 to 8.11 show the relationship between the settings of bits BSZ[1:0], A2ROW[1:0], A2COL[1:0], A3ROW A3COL[1:0] and the bits output at the address pins. Do not specify those bits in the mann than this table, otherwise the operation of this LSI is not guaranteed. A29 to A18 are not multiplexed and the original values of address are always output at these pins.

An address multiplexing is specified so that SDRAM can be connected without external

The A0 pin of SDRAM specifies a word address. Therefore, connect the A0 pin of SDRA A1 pin of the LSI; then connect the A1 pin of SDRAM to the A2 pin of the LSI, and so o

Rev. 3.00 Mar. 04, 2009 Page 244 of 1168 REJ09B0344-0300

	A16	A24	A16
	A15	A23	A15
	A14	A22	A14
A12 (BA1)	A21* ²	A21*2	A13
A11 (BA0)	A20* ²	A20* ²	A12
A10/AP	L/H* ¹	A19	A11
A9	A10	A18	A10
A8	A9	A17	A9
A7	A8	A16	A8
A6	A7	A15	A7
A5	A6	A14	A6
A4	A5	A13	A5
A3	A4	A12	A4
A2	A3	A11	A3
A1	A2	A10	A2
A0	A1	A9	A1
	A0	A8	A0
	A11 (BA0) A10/AP A9 A8 A7 A6 A5 A4 A3 A2 A1	A15 A14 A21*² A12 (BA1) A20*² A11 (BA0) L/H*¹ A10/AP A10 A9 A9 A9 A8 A8 A7 A7 A6 A6 A6 A6 A5 A5 A5 A4 A4 A4 A4 A3 A3 A3 A2 A2 A2 A1 A1 A0	A23 A15 A22 A14 A21*² A21*² A12 (BA1) A20*² A20*² A11 (BA0) A19 L/H*¹ A10/AP A18 A10 A9 A17 A9 A8 A16 A8 A7 A15 A7 A6 A14 A6 A5 A13 A5 A4 A12 A4 A3 A11 A3 A2 A10 A2 A1 A9 A1 A0

16-Mbit product (512 Kwords \times 16 bits \times 2 banks, column 8 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high accord

access mode.

Example of connected memory

2. Bank address specification

A16	A24	A16		
A15	A23	A15		
A14	A22*2	A22*2	A13 (BA1)	Specifies I
A13	A21*2	A21*2	A12 (BA0)	
A12	A20	A12	A11	Address
A11	A19	L/H* ¹	A10/AP	Specifies address/p
A10	A18	A10	A9	Address
A9	A17	A9	A8	
A8	A16	A8	A7	
A7	A15	A7	A6	
A6	A14	A6	A5	
A5	A13	A5	A4	
A4	A12	A4	A3	
A3	A11	A3	A2	
A2	A10	A2	A1	
A1	A9	A1	A0	
A0	A8	A0		Unused

Example of connected memory 64-Mbit product (1 Mword \times 16 bits \times 4 banks, column 8 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at L or H according to

the mode.

2. Bank address specification

Rev. 3.00 Mar. 04, 2009 Page 246 of 1168 RENESAS REJ09B0344-0300

	A16	A25	A16
	A15	A24	A15
A13 (BA1)	A23*2	A23* ²	A14
A12 (BA0)	A22*2	A22*2	A13
A11	A12	A21	A12
A10/AP	L/H* ¹	A20	A11
A9	A10	A19	A10
A8	A9	A18	A9
A7	A8	A17	A8
A6	A7	A16	A7
A5	A6	A15	A6
A4	A5	A14	A5
A3	A4	A13	A4
A2	A3	A12	A3
A1	A2	A11	A2
A0	A1	A10	A1
	A0	A9	A0
	A12 (BA0) A11 A10/AP A9 A8 A7 A6 A5 A4 A3 A2 A1	A15 A23*² A13 (BA1) A22*² A12 (BA0) A12 L/H*¹ A10/AP A10 A9 A9 A8 A8 A7 A7 A6 A6 A6 A5 A5 A4 A4 A4 A3 A3 A2 A2 A1 A1 A0	A24 A15 A23*² A23*² A13 (BA1) A22*² A22*² A12 (BA0) A21 A12 A11 A20 L/H*¹ A10/AP A19 A10 A9 A18 A9 A8 A17 A8 A7 A16 A7 A6 A15 A6 A5 A14 A5 A4 A13 A4 A3 A12 A3 A2 A11 A2 A1 A10 A1 A0

128-Mbit product (2 Mwords \times 16 bits \times 4 banks, column 9 bits product): 1 Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high accord

access mode.

Example of connected memory

2. Bank address specification

A16	A26	A16		
A15	A25	A15		
A14	A24*2	A24* ²	A13 (BA1)	Specifies
A13	A23*2	A23* ²	A12 (BA0)	
A12	A22	A12	A11	Address
A11	A21	L/H* ¹	A10/AP	Specifies address/p
A10	A20	A10	A9	Address
A9	A19	A9	A8	
A8	A18	A8	A7	
A7	A17	A7	A6	
A6	A16	A6	A5	
A5	A15	A 5	A4	
A4	A14	A4	A3	
A3	A13	A3	A2	
A2	A12	A2	A1	
A1	A11	A1	A0	

A0

256-Mbit product (4 Mwords \times 16 bits \times 4 banks, column 10 bits product): 1 Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high accordi

A10

Example of connected memory

access mode.

2. Bank address specification

Rev. 3.00 Mar. 04, 2009 Page 248 of 1168

A0

RENESAS

Unused

116	A25	A16		
15	A24*2	A24* ²	A14 (BA1)	Specifies
\14	A23*2	A23*2	A13 (BA0)	
13	A22	A13	A12	Address
12	A21	A12	A11	
\11	A20	L/H* ¹	A10/AP	Specifies address/
A10	A19	A10	A9	Address
۱9	A18	A9	A8	
\8	A17	A8	A7	
١7	A16	A7	A6	
۸6	A15	A6	A5	
\ 5	A14	A5	A4	
۸4	A13	A4	A3	
\ 3	A12	A3	A2	
\2	A11	A2	A1	
\1	A10	A1	A0	

A0

256-Mbit product (4 Mwords \times 16 bits \times 4 banks, column 9 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high accord

Α9

Example of connected memory

access mode.

Α0

2. Bank address specification

Unused

		A16	A26	A16
Specifies	A14 (BA1)	A25*2	A25*2	A15
	A13 (BA0)	A24*2	A24*2	A14
Address	A12	A13	A23	A13
	A11	A12	A22	A12
Specifies address/p	A10/AP	L/H* ¹	A21	A11
Address	A9	A10	A20	A10
	A8	A9	A19	A9
	A7	A8	A18	A8
	A6	A7	A17	A7
	A 5	A6	A16	A6
	A4	A5	A15	A 5
	A3	A4	A14	A4
	A2	A3	A13	A3
	A1	A2	A12	A2
	A0	A1	A11	A1
Unused		A0	A10	A0

Example of connected memory 512-Mbit product (8 Mwords \times 16 bits \times 4 banks, column 10 bits product): 1

Notes: 1. L/H is a bit used in the command specification; it is fixed at low or high accordi

access mode.

2. Bank address specification

Rev. 3.00 Mar. 04, 2009 Page 250 of 1168 RENESAS

Table 8.12 Relationship between Access Size and Number of Bursts

Bus Width	Access Size	Number of Bursts
16 bits	8 bits	1
	16 bits	1
	32 bits	2
	16 bits	8

Figures 8.14 and 8.15 show a timing chart in burst read. In burst read, an ACTV comma output in the Tr cycle, the READ command is issued in the Tc1, Tc2, and Tc3 cycles, the command is issued in the Tc4 cycle, and the read data is received at the rising edge of the clock (CK) in the Td1 to Td4 cycles. The Tap cycle is used to wait for the completion of precharge induced by the READA command in the SDRAM. In the Tap cycle, a new convince will not be issued to the same bank. However, access to another CS space or another based ame SDRAM space is enabled. The number of Tap cycles is specified by the WTRP1 awtRP0 bits in CS3WCR.

In this LSI, wait cycles can be inserted by specifying each bit in CS3WCR to connect the in variable frequencies. Figure 8.15 shows an example in which wait cycles are inserted number of cycles from the Tr cycle where the ACTV command is output to the Tc1 cycle READ command is output can be specified using the WTRCD1 and WTRCD0 bits CS3WCR. If the WTRCD1 and WTRCD0 bits specify one cycles or more, a Trw cycle NOT command is issued is inserted between the Tr cycle and Tc1 cycle. The number of from the Tc1 cycle where the READ command is output to the Td1 cycle where the reactions are the true of true of true of the true of the true of the true of true

bits in CS2WCR or the A3CL1 and A3CL0 bits in CS3WCR and WTRCD0 bit in CS3W number of cycles from Tc1 to Td1 corresponds to the SDRAM CAS latency. The CAS I the SDRAM is normally defined as up to three cycles. However, the CAS latency in this

latched can be specified for the CS2 and CS3 spaces independently, using the A2CL1 at

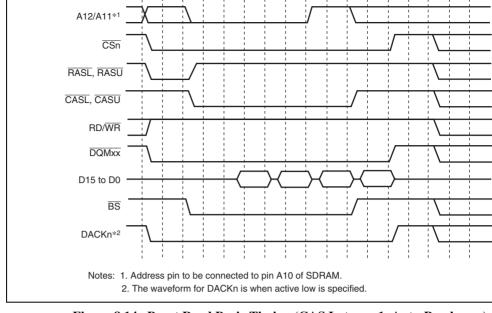


Figure 8.14 Burst Read Basic Timing (CAS Latency 1, Auto-Precharge)

Rev. 3.00 Mar. 04, 2009 Page 252 of 1168

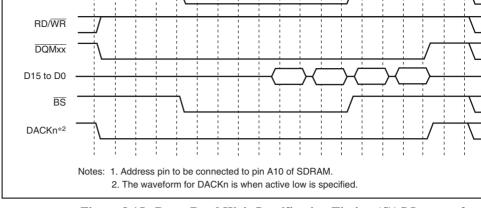


Figure 8.15 Burst Read Wait Specification Timing (CAS Latency 2, WTRCD[1:0] = 1 Cycle, Auto-Precharge)

Rev. 3.00 Mar. 04, 2009 Page

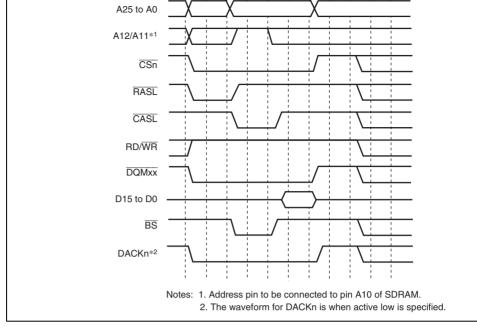


Figure 8.16 Basic Timing for Single Read (CAS Latency 1, Auto-Precharge

Rev. 3.00 Mar. 04, 2009 Page 254 of 1168

Figure 8.17 shows a timing chart for burst writes. In burst write, an ACTV command is the Tr cycle, the WRIT command is issued in the Tc1, Tc2, and Tc3 cycles, and the WR command is issued to execute an auto-precharge in the Tc4 cycle. In the write cycle, the is output simultaneously with the write command. After the write command with the auto-precharge is output, the Trw1 cycle that waits for the auto-precharge initiation is follow. Tap cycle that waits for completion of the auto-precharge induced by the WRITA comm SDRAM. Between the Trw1 and the Tap cycle, a new command will not be issued to the bank. However, access to another CS space or another bank in the same SDRAM space. The number of Trw1 cycles is specified by the TRWL1 and TRWL0 bits in CS3WCR. The number of Tap cycles is specified by the WTRP1 and WTRP0 bits in CS3WCR.

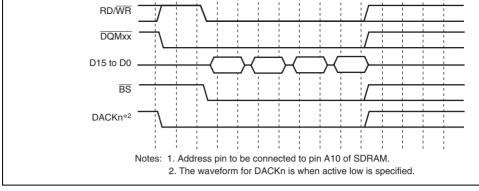


Figure 8.17 Basic Timing for Burst Write (Auto-Precharge)

Rev. 3.00 Mar. 04, 2009 Page 256 of 1168

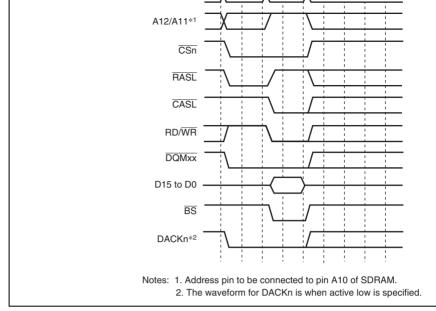


Figure 8.18 Single Write Basic Timing (Auto-Precharge)

accessing the same row address in the same dank, it is possible to issue the KEAD of WK command immediately, without issuing an ACTV command. As SDRAM is internally di into several banks, it is possible to activate one row address in each bank. If the next acce different row address, a PRE command is first issued to precharge the relevant bank, ther precharging is completed, the access is performed by issuing an ACTV command follow READ or WRIT command. If this is followed by an access to a different row address, the time will be longer because of the precharging performed after the access request is issue

number of cycles between issuance of the PRE command and the ACTV command is det

There is a limit on tRAS, the time for placing each bank in the active state. If there is no that there will not be a cache hit and another row address will be accessed within the peri

In a write, when an auto-precharge is performed, a command cannot be issued to the sam for a period of Trwl + Tap cycles after issuance of the WRITA command. When bank ac is used, READ or WRIT commands can be issued successively if the row address is the s number of cycles can thus be reduced by Trwl + Tap cycles for each write.

by the WTRP1 and WTPR0 bits in CS3WCR.

which this value is maintained by program execution, it is necessary to set auto-refresh a refresh cycle to no more than the maximum value of tRAS. A burst read cycle without auto-precharge is shown in figure 8.19, a burst read cycle for row address in figure 8.20, and a burst read cycle for different row addresses in figure 8.2

Similarly, a burst write cycle without auto-precharge is shown in figure 8.22, a burst writ for the same row address in figure 8.23, and a burst write cycle for different row addresse figure 8.24.

In figure 8.20, a Trop cycle in which no operation is performed is inserted before the Tc issues the READ command. The Tnop cycle is inserted to acquire two cycles of CAS late

the DQMxx signal that specifies the read byte in the data read from the SDRAM. If the C

Rev. 3.00 Mar. 04, 2009 Page 258 of 1168

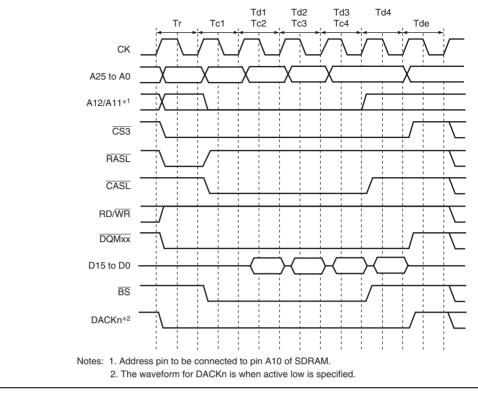


Figure 8.19 Burst Read Timing (Bank Active, Different Bank, CAS Latence

Rev. 3.00 Mar. 04, 2009 Page

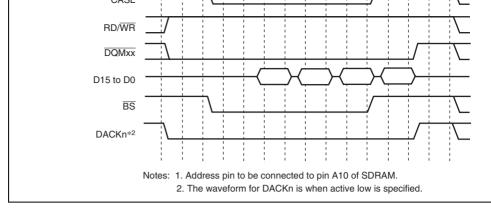


Figure 8.20 Burst Read Timing (Bank Active, Same Row Addresses in the Same Balatency 1)

Rev. 3.00 Mar. 04, 2009 Page 260 of 1168

Figure 8.21 Burst Read Timing (Bank Active, Different Row Addresses in the Sa CAS Latency 1)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

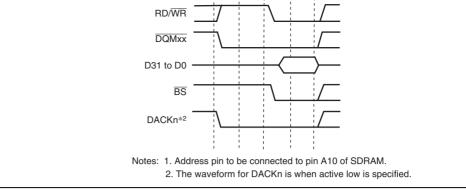


Figure 8.22 Single Write Timing (Bank Active, Different Bank)

Rev. 3.00 Mar. 04, 2009 Page 262 of 1168

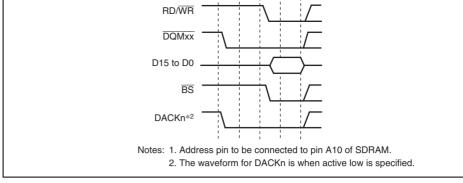


Figure 8.23 Single Write Timing (Bank Active, Same Row Addresses in the San

Rev. 3.00 Mar. 04, 2009 Page

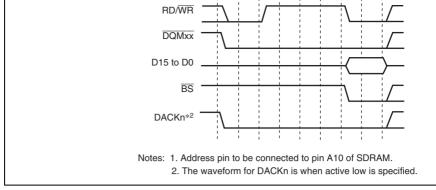


Figure 8.24 Single Write Timing (Bank Active, Different Row Addresses in the San

Rev. 3.00 Mar. 04, 2009 Page 264 of 1168

be set so as to satisfy the refresh interval stipulation for the SDRAM used. First make the for RTCOR, RTCNT, and the RMODE and RFSH bits in SDCR, then make the CKS2 to and RRC2 to RRC0 settings. When the clock is selected by bits CKS2 to CKS0, RTCN counting up from the value at that time. The RTCNT value is constantly compared with RTCOR value, and if the two values are the same, a refresh request is generated and an refresh is performed for the number of times specified by the RRC2 to RRC0. At the sat RTCNT is cleared to zero and the count-up is restarted.

Figure 8.25 shows the auto-refresh cycle timing. After starting, the auto refreshing, PAI

command is issued in the Tp cycle to make all the banks to pre-charged state from activ when some bank is being pre-charged. Then REF command is issued in the Trr cycle af inserting idle cycles of which number is specified by the WTRP1 and WTRP0 bits in CS new command is not issued for the duration of the number of cycles specified by the WTRC0 bits in CS3WCR after the Trr cycle. The WTRC1 and WTRC0 bits must be set satisfy the SDRAM refreshing cycle time stipulation (tRC). An idle cycle is inserted bet Tp cycle and Trr cycle when the setting value of the WTRP1 and WTRP0 bits in CS3W

longer than or equal to 1 cycle.

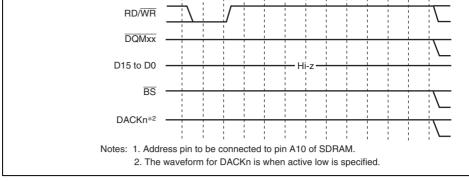


Figure 8.25 Auto-Refresh Timing

Rev. 3.00 Mar. 04, 2009 Page 266 of 1168

Son forest thing is shown in figure 0.20. Settings must be made so that sen ferresh ci data retention are performed correctly, and auto-refreshing is performed at the correct in When self-refreshing is activated from the state in which auto-refreshing is set, or when standby mode other than through a power-on reset, auto-refreshing is restarted if the RF set to 1 and the RMODE bit is cleared to 0 when self-refresh mode is cleared. If the tran

than the RTCOR value will enable refreshing to be started immediately.

After self-refreshing has been set, the self-refresh state continues even if the chip stands entered using the LSI standby function, and is maintained even after recovery from stan due to an interrupt. Note that the necessary signals such as CKE must be driven even in state by setting the HIZCNT bit in CMNCR to 1.

from clearing of self-refresh mode to the start of auto-refreshing takes time, this time sh taken into consideration when setting the initial value of RTCNT. Making the RTCNT value of RTCNT was a setting the initial value of RTCNT.

The self-refresh state is not cleared by a manual reset. In case of a power-on reset, the b controller's registers are initialized, and therefore the self-refresh state is cleared.

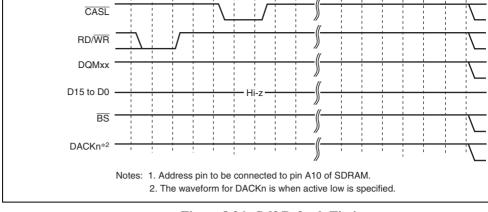


Figure 8.26 Self-Refresh Timing

Rev. 3.00 Mar. 04, 2009 Page 268 of 1168

refresh interval, refresh cannot be executed and the SDRAM contents may be lost.

If a new refresh request occurs while waiting for the previous refresh request, the previous request is deleted. To refresh correctly, a bus cycle longer than the refresh interval or the mastership occupation must be prevented from occurring.

If a bus mastership is requested during self-refresh, the bus will not be released until the completed.

commands, addresses, write data, and read data are not guaranteed. Take the operating from the design into consideration when making the SLOW bit setting.

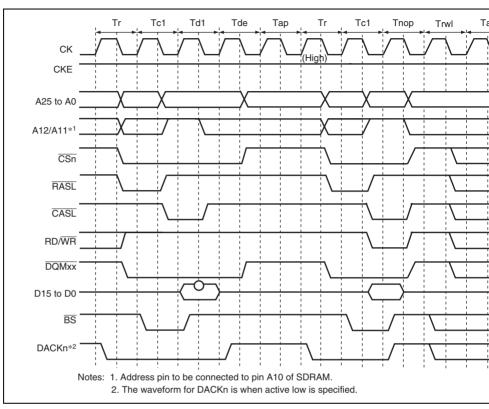


Figure 8.27 Low-Frequency Mode Access Timing

Rev. 3.00 Mar. 04, 2009 Page 270 of 1168

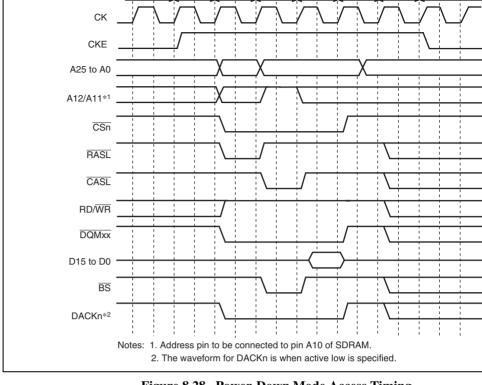


Figure 8.28 Power-Down Mode Access Timing

Rev. 3.00 Mar. 04, 2009 Page

and to address H FFFC3000 + A for area 3 SDRAM. In this operation the data is ignored mode write is performed as a byte-size access. To set burst read/single write, CAS latence wrap type = sequential, and burst length 1 supported by the LSI, arbitrary data is written size access to the addresses shown in table 8.13. In this time 0 is output at the external ad pins of A12 or later.

Table 8.13 Access Address in SDRAM Mode Register Write

• Setting for Area 2 Burst read/single write (burst length 1):

Data Bus Width	CAS Latency	Access Address	External Ad
16 bits	2	H'FFFC4440	H'0000440
	3	H'FFFC4460	H'0000460

Burst read/burst write (burst length 1):

Data Bus Width	CAS Latency	Access Address	External Add
16 bits	2	H'FFFC4040	H'0000040
	3	H'FFFC4060	H'0000060

16 bits	2	H'FFFC5040	H'0000040
	3	H'FFFC5060	H'0000060

Mode register setting timing is shown in figure 8.29. A PALL command (all bank pre-ci

command) is firstly issued. A REF command (auto refresh command) is then issued 8 ti MRS command (mode register write command) is finally issued. Idle cycles, of which respecified by the WTRP1 and WTRP0 bits in CS3WCR, are inserted between the PALL first REF. Idle cycles, of which number is specified by the WTRC1 and WTRC0 bits in are inserted between REF and REF, and between the 8th REF and MRS. Idle cycles, of number is one or more, are inserted between the MRS and a command to be issued next

It is necessary to keep idle time of certain cycles for SDRAM before issuing PALL compower-on. Refer to the manual of the SDRAM for the idle time to be needed. When the width of the reset signal is longer than the idle time, mode register setting can be started immediately after the reset, but care should be taken when the pulse width of the reset shorter than the idle time.

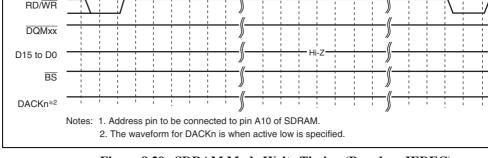


Figure 8.29 SDRAM Mode Write Timing (Based on JEDEC)

Rev. 3.00 Mar. 04, 2009 Page 274 of 1168

The EMRS command is issued according to the conditions specified in table below. For if data H'0YYYYYYY is written to address H'FFFC5XX0 in longword, the commands to the CS3 space in the following sequence: PALL -> REF \times 8 -> MRS -> EMRS. In the MRS and EMRS issue addresses are H'0000XX0 and H'YYYYYYY, respectively. If da H'1YYYYYYY is written to address H'FFFC5XX0 in longword, the commands are issu CS3 space in the following sequence: PALL -> MRS -> EMRS.

Table 8.14 Output Addresses when EMRS Command Is Issued

Command to be Issued	Access Address	Access Data	Write Access Size	MRS Command Issue Address	EMRS Comr Issue
CS2 MRS	H'FFFC4XX0	H'*****	16 bits	H'0000XX0	_
CS3 MRS	H'FFFC5XX0	H'*****	16 bits	H'0000XX0	
CS2 MRS + EMRS	H'FFFC4XX0	H'0YYYYYYY	32 bits	H'0000XX0	H'YY
(with refresh)					
CS3 MRS + EMRS	H'FFFC5XX0	H'0YYYYYYY	32 bits	H'0000XX0	H'YY
(with refresh)					
CS2 MRS + EMRS	H'FFFC4XX0	H'1YYYYYYY	32 bits	H'0000XX0	H'YY
(without refresh)					
CS3 MRS + EMRS	H'FFFC5XX0	H'1YYYYYYY	32 bits	H'0000XX0	H'YY
(without refresh)					

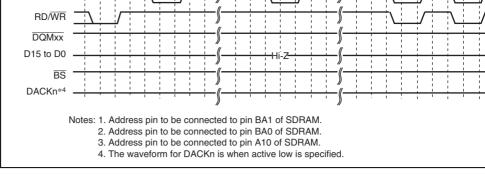


Figure 8.30 EMRS Command Issue Timing

Rev. 3.00 Mar. 04, 2009 Page 276 of 1168

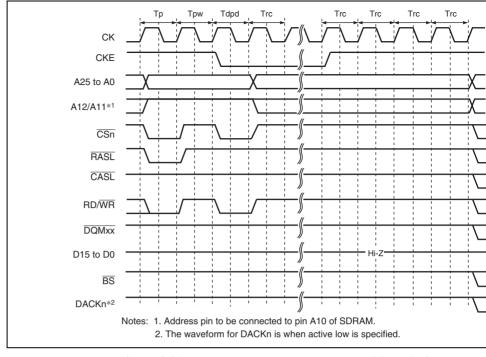


Figure 8.31 Deep Power-Down Mode Transition Timing

Rev. 3.00 Mar. 04, 2009 Page

to W0 bits in CSnWCR is inserted.

In the access to the burst ROM (clock asynchronous), the \overline{BS} signal is asserted only to the access cycle. An external wait input is valid only to the first access cycle.

In the single access or write access that does not perform the burst operation in the burst (clock asynchronous) interface, access timing is same as a normal space. In addition, ther some restrictions on 16-byte write access. For details, see section 8.6, Usage Notes.

Table 8.15 lists a relationship between bus width, access size, and the number of bursts. I 8.32 shows a timing chart.

Table 8.15 Relationship between Bus Width, Access Size, and Number of Bursts

Bus Width	Access Size	CSnWCR. BST[1:0] Bits	Number of Bursts	Access
8 bits	8 bits	Not affected	1	1
	16 bits	Not affected	2	1
	32 bits	Not affected	4	1
	16 bytes	00	16	1
		01	4	4
16 bits	8 bits	Not affected	1	1
	16 bits	Not affected	1	1
	32 bits	Not affected	2	1
	16 bytes	00	8	1
		01	2	4
		10*	4	2
			2, 4, 2	3

Rev. 3.00 Mar. 04, 2009 Page 278 of 1168

RENESAS

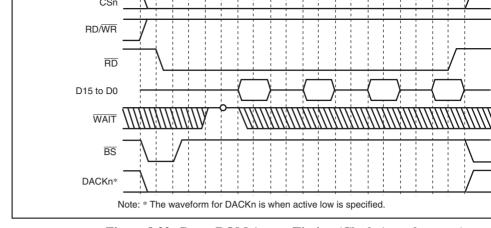


Figure 8.32 Burst ROM Access Timing (Clock Asynchronous)

(Bus Width = 32 Bits, 16-Byte Transfer (Number of Burst 4), Wait Cycles Inserte Access = 2, Wait Cycles Inserted in Second and Subsequent Access Cycles =

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

selection pin (WEn). For details, please refer to the Data Sheet for the corresponding mer

If the BAS bit in CSnWCR is set to 1, the WEn pin and RD/WR pin timings change. Figure shows the basic access timing. In write access, data is written to the memory according to timing of the write enable pin (RD/WR). The data hold timing from RD/WR negation to must be acquired by setting the HW1 and HW0 bits in CSnWCR. Figure 8.35 shows the timing when a software wait is specified.

Rev. 3.00 Mar. 04, 2009 Page 280 of 1168 REJ09B0344-0300

RENESAS

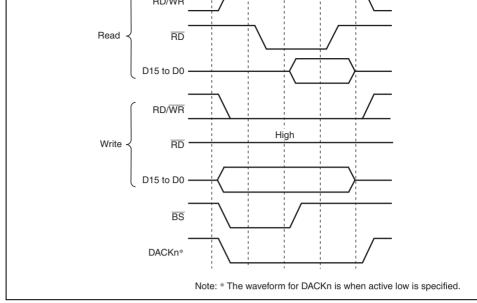


Figure 8.33 Basic Access Timing for SRAM with Byte Selection (BAS = 0

Rev. 3.00 Mar. 04, 2009 Page

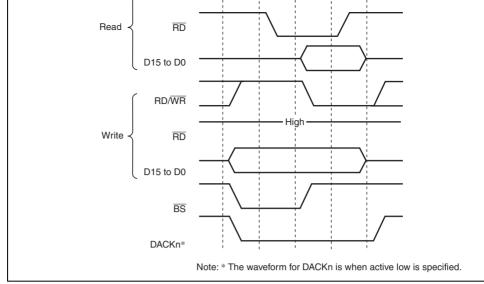


Figure 8.34 Basic Access Timing for SRAM with Byte Selection (BAS = 1)

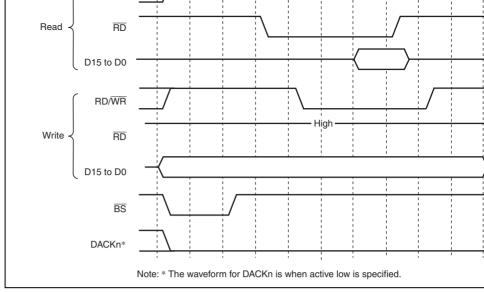


Figure 8.35 Wait Timing for SRAM with Byte Selection (BAS = 1) (SW[1:0] = 01, WR[3:0] = 0001, HW[1:0] = 01)

Rev. 3.00 Mar. 04, 2009 Page

Figure 8.36 Example of Connection with 16-Bit Data-Width SRAM with Byte Se

access cycle and an external wait input is also valid for the first access cycle.

If the bus width is 16 bits, the burst length must be specified as 8. The burst ROM interf not support the 8-bit bus width for the burst ROM.

The burst ROM interface performs burst operations for all read access. For example, in longword access over a 16-bit bus, valid 16-bit data is read two times and invalid 16-bit read six times. These invalid data read cycles increase the memory access time and degraprogram execution speed and DMA transfer speed. To prevent this problem, using 16-bit the DMA is recommended. The burst ROM interface performs write access in the same normal space access.

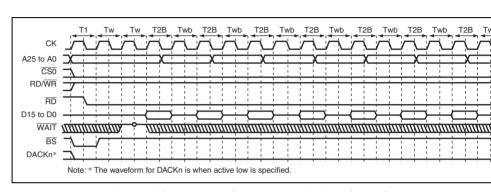


Figure 8.37 Burst ROM Access Timing (Clock Synchronous)
(Burst Length = 8, Wait Cycles Inserted in First Access = 2,
Wait Cycles Inserted in Second and Subsequent Access Cycles = 1)

The conditions for setting the idle cycles between access cycles are shown below.

- 1. Continuous access cycles are write-read or write-write
- 2. Continuous access cycles are read-write for different spaces
- 3. Continuous access cycles are read-write for the same space
- 4. Continuous access cycles are read-read for different spaces
- 5. Continuous access cycles are read-read for the same space
- 6. Data output from an external device caused by DMA single address transfer is follow data output from another device that includes this LSI (DMAIWA = 0)
 7. Data output from an external device caused by DMA single address transfer is follow
- type of access (DMAIWA = 1)

For the specification of the number of idle cycles between access cycles described above the description of each register.

inserted to interface with the internal bus or to obtain the minimum pulse width for a mul pin (WEn). The following gives detailed information about the idle cycles and describes estimate the number of idle cycles.

The number of idle cycles on the external bus from CSn negation to CSn or CSm assertion.

Besides the idle cycles between access cycles specified by the registers, idle cycles must

described below.

There are eight conditions that determine the number of idle cycles on the external bus as in table 8.16. The effects of these conditions are shown in figure 8.38.

(2)	IW***[2:0] in CSnBCR	These bits specify the number of idle cycles for access other than single address transfer. The number of idle cycles can be specified independently for each combination of the previous and next cycles. For example, in the case where reading CS1 space followed by reading other CS space, the bits IWRRD[2:0] in CS1BCR should be set to B'100 to specify six or more idle cycles. This condition is effective only for access cycles other than single address transfer and generates idle cycles after the access is completed.
(3)	SDRAM-related bits in CSnWCR	These bits specify precharge completion and startup wait cycles and idle cycles between commands for SDRAM access. This condition is effective only for SDRAM access

completed. When this bit is set to 1 (disabled), no idle cycle is generated.

(4)

WM in CSnWCR

and generates idle cycles after the

WAIT pin input for the memory types other than SDRAM. When this bit is cleared to 0 (external WAIT enabled), one idle cycle is inserted to check the external WAIT

pin input after the access is

This bit enables or disables external 0 or 1

access is completed

Specify these bits in

accordance with the specification of the

SDRAM.

0 to 3

0 to 12 Do not set 0 for the

idle cycles between types which are not to be accessed suc

	or while a bus other than the external bus is being accessed. This condition is not effective for divided access cycles, which are generated by the BSC when the access size is larger than the external data bus width.	
Write data wait cycles	During write access, a write cycle is executed on the external bus only after the write data becomes ready. This write data wait period generates idle cycles before the write cycle. Note that when the previous cycle is a write cycle and the internal bus idle cycles are shorter than the previous write	0 or 1

Rev. 3.00 Mar. 04, 2009 Page 288 of 1168

different cycles may be inserted before memory types. See t 8.19. memory types access after memory types are switched. For some memory types, idle cycles are inserted even when memory types are not switched.

on the signal-multiplexed pins, idle

cycle, write data can be prepared in

parallel with the previous write cycle

To ensure the minimum pulse width 0 to 2.5

and therefore, no idle cycle is

generated (write buffer effect).

state during internal bus idle cycles

show the relationship

between the clock ra the minimum numbe

internal bus idle cycl

For write → write or

read access cycles,

successive access of without idle cycles a

frequently available

the write buffer effect

described in the left

successive access of

without idle cycles a

allowed, specify the

number of idle cycles

between access cyc

depends on the targe

through CSnBCR. The number of idle of

(7)

(8)

Idle cycles

between

Figure 8.38 Idle Cycle Conditions

Transfer Mode

DMAC Operation	Dual Address	Single Address
Write \rightarrow write	0	2
Write \rightarrow read	0 or 2	0
Read → write	0	0
$Read \rightarrow read$	0	2

Notes: 1. The write → write and read → read columns in dual address transfer indicate t in the divided access cycles.

- 2. For the write → read cycles in dual address transfer, 0 means different channel activated successively and 2 means when the same channel is activated succ
- 3. The write → read and read → write columns in single address transfer indicate when different channels are activated successively. The "write" means transfer device with DACK to external memory and the "read" means transfer from exter memory to a device with DACK.

Rev. 3.00 Mar. 04, 2009 Page 290 of 1168

Byte SRAM (BAS = 1)	1	1	2	1	0	0	1.5	
SDRAM	1	1	2	1	0	0	_	
SDRAM (low-frequency mode)	1.5	1.5	2.5	1.5	0.5	_	1	
Burst ROM (synchronous)	0	0	1	0	1	1	1.5	

0

1

1

1

1.5

0

1

1

1.5

0

Byte SRAM

(BAS = 0)

0

0

Figure 8.39 shows sample estimation of idle cycles between access cycles. In the actual the idle cycles may become shorter than the estimated value due to the write buffer effective become longer due to internal bus idle cycles caused by stalling in the pipeline due to C instruction execution or CPU register conflicts. Please consider these errors when estimately cycles.

[3] or [4]	0	0	0	0	The WM bit is set to 1.
[5]	1	1	0	0	Generated after a read cycle.
[6]	0	2	2	0	See the $I\phi$:B ϕ = 4:1 columns in table 8.17.
[7]	0	1	0	0	No idle cycle is generated for the second time due write buffer effect.
[5] + [6] + [7]	0	4	2	0	
[8]	0	0	0	0	Value for SRAM → SRAM access
Estimated idle cycles	1	4	2	0	Maximum value among conditions [1] or [2], [3] or [5] + [6] + [7], and [8]
Actual idle cycles	1	4	2	1	The estimated value does not match the actual value $W \to R$ cycles because the internal idle cycles condition [6] is estimated as 0 but actually an intercycle is generated due to execution of a loop concleck instruction.

Figure 8.39 Comparison between Estimated Idle Cycles and Actual Value

Note

Rev. 3.00 Mar. 04, 2009 Page 292 of 1168 REJ09B0344-0300

Condition

RENESAS

signal or other bus control signals. The states that do not allow bus mastership release at below.

- 1. Between the read and write cycles of a TAS instruction, or 64-bit transfer cycle of an instruction
- Multiple bus cycles generated when the data bus width is smaller than the access siz example, between bus cycles when longword access is made to a memory with a dat width of 8 bits)
- 3. 16-byte transfer by the DMAC
- 4. Setting the BLOCK bit in CMNCR to 1

can be selected during DMAC burst transfer.

The LSI has the bus mastership until a bus request is received from another device. Upon asknowledging the assertion (low level) of the external bus request signal REFO the LSI.

Moreover, by using DPRTY bit in CMNCR, whether the bus mastership request is received.

acknowledging the assertion (low level) of the external bus request signal \overline{BREQ} , the LS the bus at the completion of the current bus cycle and asserts the \overline{BACK} signal. After the acknowledges the negation (high level) of the \overline{BREQ} signal that indicates the external dereleased the bus, it negates the \overline{BACK} signal and resumes the bus usage.

With the SDRAM interface, all bank pre-charge commands (PALLs) are issued when accepts and the bus is released after completion of a PALL command.

The bus sequence is as follows. The address bus and data bus are placed in a high-imped synchronized with the rising edge of CK. The bus mastership enable signal is asserted 0 after the above timing, synchronized with the falling edge of CK. The bus control signal $\overline{\text{CSn}}$, $\overline{\text{RASL}}$, $\overline{\text{CASL}}$, CKE, $\overline{\text{DQMxx}}$, $\overline{\text{WEn}}$, $\overline{\text{RD}}$, and $\overline{\text{RD/WR}}$) are placed in the high-imp

state at subsequent rising edges of CK. Bus request signals are sampled at the falling ed CKIO. Note that CKE, \overline{RASL} , and \overline{CASL} can continue to be driven at the previous value the bus-released state by setting the HIZCNT bit in CMNCR.

Rev. 3.00 Mar. 04, 2009 Page

mastership is returned from the external device. If the bus mastership is not returned for a refreshing period or longer, the contents of SDRAM cannot be guaranteed because a refrecannot be executed.

While releasing the bus mastership, the SLEEP instruction (to enter sleep mode or standbas well as a manual reset, cannot be executed until the LSI obtains the bus mastership.

The \overline{BREQ} input signal is ignored in standby mode and the \overline{BACK} output signal is placed high impedance state. If the bus mastership request is required in this state, the bus master must be released by pulling down the \overline{BACK} pin to enter standby mode.

The bus mastership release (\overline{BREQ} signal for high level negation) after the bus mastershi (\overline{BREQ} signal for low level assertion) must be performed after the bus usage permission signal for low level assertion). If the \overline{BREQ} signal is negated before the \overline{BACK} signal is an only one cycle of the \overline{BACK} signal is asserted depending on the timing of the \overline{BREQ} signal and this may cause a bus contention between the external device and the LSI.

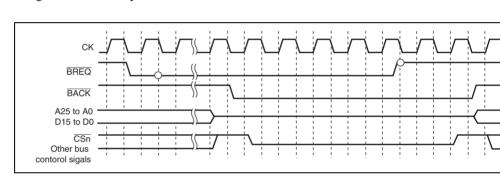


Figure 8.40 Bus Arbitration Timing (Clock Mode 7 or CMNCR.HIZCNT =

(2) Access from the Side of the LSI Internal Bus Master

access via the internal bus before the previous external bus cycle is completed in a write the on-chip module is read or written after the external low-speed memory is written, th module can be accessed before the completion of the external low-speed memory write

Since the bus state controller (BSC) incorporates a one-stage write buffer, the BSC can

In read cycles, the CPU is placed in the wait state until read operation has been completed continue the process after the data write to the device has been completed, perform a du to the same address to check for completion of the write before the next process to be expected.

The write buffer of the BSC functions in the same way for an access by a bus master of the CPU such as the DMAC. Accordingly, to perform dual address DMA transfers, the cycle is initiated before the previous write cycle is completed. Note, however, that if both DMA source and destination addresses exist in external memory space, the next write cycle is initiated until the previous write cycle is completed.

Changing the registers in the BSC while the write buffer is operating may disrupt correct access. Therefore, do not change the registers in the BSC immediately after a write access change becomes necessary, do it after executing a dummy read of the write data.

(3) On-Chip Peripheral Module Access

Access to the on-chip peripheral module registers from the internal bus requires 2 or moderate of the peripheral module clock ($P\phi$). When the CPU writes to an on-chip peripheral register however, the CPU can execute the following instructions without waiting for the register complete.

This section describes the case where the system switches to software standby mode to power consumption as an example. In this case, the code sets the STBCR register STBY

Rev. 3.00 Mar. 04, 2009 Page

peripheral module registers.

Table 8.20 On-Chip Peripheral Module Register Access Cycle Counts

Access Cycles

Write	$(2+n) \times I\phi + (1+m) \times B\phi + 2 \times P\phi$
Read	$(2+n)\times I\varphi + (1+m)\times B\varphi + 2\times P\varphi + (2+I)\times I\varphi$
Noto	These are the numbers of evales when the instruction is evacuted from internal D

Note: These are the numbers of cycles when the instruction is executed from internal RC internal RAM.

When $I\phi: B\phi$ is 1:1; n = 0, I = 0When $I\phi: B\phi$ is 2:1; n = 0 or 1, I = 1

When $I\phi:B\phi$ is 4:1; n = 0 to 3, I = 2When $I\phi:B\phi$ is 8:1; n = 0 to 7, I = 2

When 10:B0 is 8:1; n = 0 to 7, 1 = 0When B0:P0 is 1:1; m = 0

When $B\phi:P\phi$ is 2:1; m = 0 or 1

When $B\phi:P\phi$ is 4:1; m=0 to 3

Rev. 3.00 Mar. 04, 2009 Page 296 of 1168

Note that n and m depend on the internal execution state.

for each of the busses is synchronized with the rising edge of the I ϕ clock for the C bus, t clock for the I bus, and the P ϕ clock for the peripheral bus.

This product adopts synchronized logic and has a hierarchical bus structure. Data input a

Figure 8.41 shows an example of the write timing to the peripheral bus when the relation between the clocks is $I\phi:B\phi:P\phi=4:4:1$. Data is output in synchronization with $I\phi$ to the C which the CPU is connected. When $I\phi:B\phi$ is 1:1, $2 \times I\phi + B\phi$ periods are required for dat transfers from the C bus to the I bus. For transfers from the I bus to the peripheral bus when $I\phi:B\phi$ is I(I) and I(I) is the connected bus I(I).

is 4:1, since there are four clock cycles during a single P ϕ clock period, the timing with w

data is placed on the peripheral bus is as follows: there are four timings for $P\phi \times 1$, and upperiods are required for the $P\phi$ rising edge, which is the timing for transfers from the I but

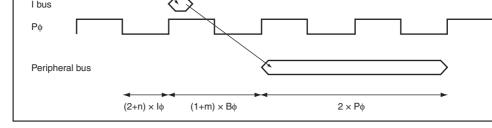


Figure 8.41 Internal Peripheral I/O Register Timing when $I\phi$: $B\phi$: $P\phi = 4:4$

between the clocks is $I\phi:B\phi:P\phi=4:2:1$. Although transfers from the C bus to the peripheral are performed the same way for write, for read, the value read from the peripheral bus n transferred to the CPU. Although the transfers from the peripheral bus to the I bus and f bus to the C bus are all performed on the corresponding bus clock rising edge, since $I\phi: (2+1) \times I\phi$ periods are actually required. In the example in figure 8.42, since $I\phi: (2+1) \times I\phi$ periods are actually required. In the example in figure 8.42, since $I\phi: (2+1) \times I\phi$ periods are actually required. In the example in figure 8.42, since $I\phi: (2+1) \times I\phi$ periods are actually required.

Figure 8.42 shows an example of the write timing to the peripheral bus when the relation

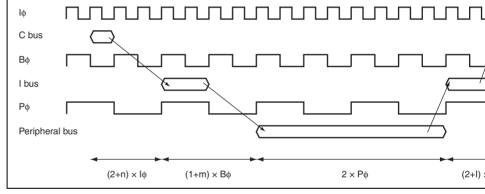


Figure 8.42 Internal Peripheral I/O Register Timing when Iφ:Βφ:Ρφ = 4:2

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

3.	Write-back is performed with operand cache or 16-byte write access is performed wi
	DMAC for the burst ROM interface set as above.

Rev. 3.00 Mar. 04, 2009 Page 298 of 1168 REJ09B0344-0300

- 4-Gbyte physical address space
- Transfer data length is selectable: Byte, word (two bytes), longword (four bytes), an $(longword \times 4)$
- Maximum transfer count: 16,777,216 transfers (24 bits)
 - Address mode: Dual address mode and single address mode are supported.
 - Transfer requests
 - External request
 - On-chip peripheral module request
 - Auto request

The following modules can issue on-chip peripheral module requests.

- Eight SCIF sources, two IIC3 sources, one A/D converter source, five MTU2 sources
- Selectable bus modes

two CMT sources

- Cycle steal mode (normal mode and intermittent mode)
 - Burst mode
- mode and round-robin mode. • Interrupt request: An interrupt request can be sent to the CPU on completion of half-
- data transfer. Through the HE and HIE bits in CHCR, an interrupt is specified to be the CPU when half of the initially specified DMA transfer is completed.

• Selectable channel priority levels: The channel priority levels are selectable between

- External request detection: There are following four types of DREQ input detection.
 - Low level detection High level detection
 - Rising edge detection

 - Falling edge detection

Rev. 3.00 Mar. 04, 2009 Page 300 of 1168

REJ09B0344-0300

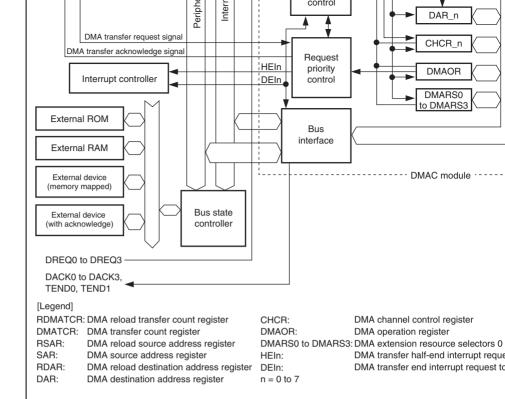


Figure 9.1 Block Diagram of DMAC

	donnowioago		
3	DMA transfer request	DREQ3	I
	DMA transfer request acknowledge	DACK3	0
0	DMA transfer end	TEND0	0
1	DMA transfer end	TEND1	0

DMA transfer request DACK0

DMA transfer request DREQ1

DMA transfer request DACK1

DMA transfer request DREQ2

DMA transfer request DACK2

acknowledge

acknowledge

acknowledge

1

2

RENESAS

0

ı

0

ı

0

device

device

device

device

DMA transfer request acknowle

output from channel 0 to an ext

DMA transfer request input from external device to channel 1

DMA transfer request acknowle

output from channel 1 to an ext

DMA transfer request input from external device to channel 2

DMA transfer request acknowle

output from channel 2 to an extension

DMA transfer request input from external device to channel 3 DMA transfer request acknowle output from channel 3 to an ext

DMA transfer end output for character end outp

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 302 of 1168

	•	DMA channel control register_0	CHCR_0	R/W*1	H'00000000	H'FFFE100C
	•	DMA reload source address register_0	RSAR_0	R/W	H'00000000	H'FFFE1100
	•	DMA reload destination address register_0	RDAR_0	R/W	H'00000000	H'FFFE1104
	•	DMA reload transfer count register_0	RDMATCR_0	R/W	H'00000000	H'FFFE1108
1		DMA source address register_1	SAR_1	R/W	H'00000000	H'FFFE1010
	•	DMA destination address register_1	DAR_1	R/W	H'00000000	H'FFFE1014
	•	DMA transfer count register_1	DMATCR_1	R/W	H'00000000	H'FFFE1018
	•	DMA channel control register_1	CHCR_1	R/W*1	H'00000000	H'FFFE101C
	•	DMA reload source address register_1	RSAR_1	R/W	H'00000000	H'FFFE1110
	•	DMA reload destination address register_1	RDAR_1	R/W	H'00000000	H'FFFE1114
		DMA reload transfer count register_1	RDMATCR_1	R/W	H'00000000	H'FFFE1118
			RENE	SAS		r. 04, 2009 Page REJ09

SAR_0

DAR_0

DMATCR_0

R/W

R/W

R/W

H'00000000

H'00000000

H'00000000

H'FFFE1000

H'FFFE1004

H'FFFE1008

0

DMA source address

DMA destination

address register_0

DMA transfer count

register_0

register_0

	0 =				
	DMA reload destination address register_2	RDAR_2	R/W	H'00000000	H'FFFE1124
	DMA reload transfer count register_2	RDMATCR_2	R/W	H'00000000	H'FFFE1128
3	DMA source address register_3	SAR_3	R/W	H'00000000	H'FFFE1030
	DMA destination address register_3	DAR_3	R/W	H'00000000	H'FFFE1034
	DMA transfer count register_3	DMATCR_3	R/W	H'00000000	H'FFFE1038
	DMA channel control register_3	CHCR_3	R/W*1	H'00000000	H'FFFE103C
	DMA reload source address register_3	RSAR_3	R/W	H'00000000	H'FFFE1130
	DMA reload destination address register_3	RDAR_3	R/W	H'00000000	H'FFFE1134
	DMA reload transfer	RDMATCR_3	R/W	H'00000000	H'FFFE1138

Rev. 3.00 Mar. 04, 2009 Page 304 of 1168

address register_2

count register_3

register_5				
DMA channel control register_5	CHCR_5	R/W*1	H'00000000	H'FFFE105C
DMA reload source address register_5	RSAR_5	R/W	H'00000000	H'FFFE1150
DMA reload destination address register_5	RDAR_5	R/W	H'00000000	H'FFFE1154
DMA reload transfer count register_5	RDMATCR_5	R/W	H'00000000	H'FFFE1158

R/W

R/W

R/W

R/W

RDMATCR_4 R/W

SAR_5

DAR_5

DMATCR_5

H'00000000

H'00000000

H'00000000

H'00000000

H'00000000

H'FFFE1144

H'FFFE1148

H'FFFE1050

H'FFFE1054

H'FFFE1058

address register_4

address register_4

DMA reload transfer

count register_4

register_5

DMA destination

DMA source address

address register_5

DMA transfer count

5

DMA reload destination RDAR_4

	address register_6	_			
•	DMA reload destination address register_6	RDAR_6	R/W	H'00000000	H'FFFE1164
•	DMA reload transfer count register_6	RDMATCR_6	R/W	H'00000000	H'FFFE1168
7	DMA source address register_7	SAR_7	R/W	H'00000000	H'FFFE1070
	DMA destination address register_7	DAR_7	R/W	H'00000000	H'FFFE1074
•	DMA transfer count register_7	DMATCR_7	R/W	H'00000000	H'FFFE1078
•	DMA channel control register_7	CHCR_7	R/W*1	H'00000000	H'FFFE107C
•	DMA reload source address register_7	RSAR_7	R/W	H'00000000	H'FFFE1170
•	DMA reload destination address register_7	RDAR_7	R/W	H'00000000	H'FFFE1174
•	DMA reload transfer	RDMATCR_7	R/W	H'00000000	H'FFFE1178

Rev. 3.00 Mar. 04, 2009 Page 306 of 1168

count register_7

- Notes: 1. For the HE and TE bits in CHCRn, only 0 can be written to clear the flags after read.
 - 2. For the AE and NMIF bits in DMAOR, only 0 can be written to clear the flags read.

9.3.1 DMA Source Address Registers (SAR)

R/W: R/W

The DMA source address registers (SAR) are 32-bit readable/writable registers that spec source address of a DMA transfer. During a DMA transfer, these registers indicate the readdress. When the data of an external device with DACK is transferred in single address SAR is ignored.

To transfer data of 16-bit or 32-bit width, specify the address with 16-bit or 32-bit address boundary respectively. To transfer data in units of 16 bytes, set a value at a 16-byte boundary

SAR is initialized to H'00000000 by a reset and retains the value in software standby module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18
Initial value: R/W:	0 R/W													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
Initial value: R/W:	0 R/W	F													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
Initial value: R/W:	0 R/W	F													

Rev. 3.00 Mar. 04, 2009 Page 308 of 1168

REJ09B0344-0300

and module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18
	-	1	-	-	-	-	-	-						
Initial value: R/W:	0 R	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W							
n/vv.	п	п	п	п	п	п	п	п	I 7 V V	□/ VV	□/ V V	□/ V V	□/ V V	□/ V V
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Rev. 3.00 Mar. 04, 2009 Page

module standby mode.

Bit: __31

R/W:

	TC	-	-	RLD	-	-	-	-	DO	TL	-	-	HE	HIE
Initial value: R/W:	0 R/W	0 R	0 R	0 R/W	0 R	0 R	0 R	0 R	0 R/W	0 R/W	0 R	0 R	0 R/(W)*	0 R/W
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	DM	[1:0]	SM	[1:0]		RS	3:0]		DL	DS	ТВ	TS	[1:0]	ΙE
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0

24

23

21

26

27

Note: * Only 0 can be written to clear the flag after 1 is read.

Bit	Bit Name	Initial Value	R/W	Descriptions
31	TC	0	R/W	Transfer Count Mode
				Specifies whether to transmit data once or for count specified in DMATCR by one transfer re Note that when this bit is set to 0, the TB bit in be set to 1 (burst mode). When the SCIF or II selected for the transfer request source, this be must not be set to 1.
				0: Transmits data once by one transfer reque
				Transmits data for the count specified in DI by one transfer request
30, 29	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

Rev. 3.00 Mar. 04, 2009 Page 310 of 1168

REJ09B0344-0300

				overrun 1. This bit is valid only in CHCR_0 to CHCR_3. This bit is reserved in CHCR_4 an CHCR_7; it is always read as 0 and the write should always be 0.
				0: Detects DREQ by overrun 0
				1: Detects DREQ by overrun 1
22	TL	0	R/W	Transfer End Level
				Specifies the TEND signal output is high active. This bit is valid only in CHCR_0 and 0. This bit is reserved in CHCR_2 to CHCR_7; always read as 0 and the write value should 0.

Reserved

should always be 0.

All 0

R

21, 20

Rev. 3.00 Mar. 04, 2009 Page

REJ09

0: Low-active output from TEND1: High-active output from TEND

These bits are always read as 0. The write v

Selects whether DREQ is detected by overru

				remains set to 1.
				To clear the HE bit, write 0 to it after HE = 1 is
				 DMATCR > (DMATCR set before transfer s during DMA transfer or after DMA transfer i terminated
				[Clearing condition]
				 Writing 0 after reading HE = 1.
				1: DMATCR \leq (DMATCR set before transfer s
18	HIE	0	R/W	Half-End Interrupt Enable
				Specifies whether to issue an interrupt reques CPU when the transfer count reaches half of t DMATCR value that was specified before transtarts.
				When the HIE bit is set to 1, the DMAC reque

= (DMATCR set before transfer starts)/2

DME bit in DMAOR after the HE bit is set to 1

interrupt to the CPU when the HE bit become 0: Disables an interrupt to be issued when DN = (DMATCR set before transfer starts)/2 1: Enables an interrupt to be issued when DM

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 312 of 1168

				1: DACK output in write cycle (dual address
16	AL	0	R/W	Acknowledge Level
				Specifies the DACK (acknowledge) signal ou high active or low active.

This bit is valid only in CHCR_0 to CHCR_3. reserved in CHCR_4 to CHCR_7; it is always 0 and the write value should always be 0.

0: Low-active output from DACK 1: High-active output from DACK

				,
				 Destination address is decremented (-1 ir transfer, -2 in 16-bit transfer, -4 in 32-bit t setting prohibited in 16-byte transfer)
				11: Setting prohibited
13, 12	SM[1:0]	00	R/W	Source Address Mode
				These bits select whether the DMA source ad incremented, decremented, or left fixed. (In si address mode, SM1 and SM0 bits are ignored data is transferred from an external device wit DACK.)
				00: Fixed source address (Setting prohibited i

transier, +2 in 16-bit transier, +4 in 32-bit

01: Source address is incremented (+1 in byte transfer, +2 in word-unit transfer, +4 in lor unit transfer, +16 in 16-byte-unit transfer) 10: Source address is decremented (-1 in byt transfer, -2 in word-unit transfer, -4 in Ion unit transfer, setting prohibited in 16-byte-

+16 in 16-byte transfer)

byte-unit transfer)

transfer) 11: Setting prohibited

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 314 of 1168

0011: External request/single address mode
External device with DACK → External
space
0100: Auto request
0101: Setting prohibited
0110: Setting prohibited
0111, Catting prohibited

0111: Setting prohibited 1000: DMA extension resource selector

1001: Setting prohibited 1010: Setting prohibited 1011: Setting prohibited

1100: Setting prohibited 1101: Setting prohibited

1110: Setting prohibited 1111: Setting prohibited

Note: External request specification is valid CHCR_0 to CHCR_3. If a request sou selected in channels CHCR_4 to CHC operation will be performed.

				101 21 12 G G010010G 1g. 1. 10101
				11: DREQ detected at rising edge
1	TB	0	R/W	Transfer Bus Mode
				Specifies bus mode when DMA transfers data that burst mode must not be selected when To
				0: Cycle steal mode
				1: Burst mode
, 3	TS[1:0]	00	R/W	Transfer Size
				These bits specify the size of data to be trans-
				Select the size of data to be transferred when source or destination is an on-chip peripheral register of which transfer size is specified.
				00: Byte unit
				01: Word unit (two bytes)
				10: Longword unit (four bytes)
				11: 16-byte unit (four longwords)
!	IE	0	R/W	Interrupt Enable
				Specifies whether or not an interrupt request generated to the CPU at the end of the DMA

specification by these bits is ignored. 00: DREQ detected in low level 01: DREQ detected at falling edge 10: DREQ detected in high level

Setting this bit to 1 generates an interrupt requ (DEI) to the CPU when TE bit is set to 1.

0: Disables an interrupt request 1: Enables an interrupt request

Rev. 3.00 Mar. 04, 2009 Page 316 of 1168 RENESAS

5

2

				Even if the DE bit is set to 1 while this bit is transfer is not enabled.
				 During the DMA transfer or DMA transfer terminated
				[Clearing condition]
				 Writing 0 after reading TE = 1
				1: DMA transfer ends by the specified count (DMATCR = 0)
0	DE	0	R/W	DMA Enable
				Enables or disables the DMA transfer. In au mode, DMA transfer starts by setting the DE DME bit in DMAOR to 1. In this case, all of TE, NMIF in DMAOR, and AE must be 0. In external request or peripheral module reque

terminate the DMA transfer. 0: DMA transfer disabled

Note:

Only 0 can be written to clear the flag after 1 is read.

1: DMA transfer enabled

To clear the TE bit, write 0 after reading TE

transfer starts if DMA transfer request is ge the devices or peripheral modules after sett bits DE and DME to 1. In this case, however bits TE, NMIF, and AE must be 0 as in the auto-request mode. Clearing the DE bit to 0 RSAR is initialized to H'00000000 by a reset and retains the value in software standby module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
Initial value: R/W:	0 R/W	F													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
Initial value:	0 B/W	0 R/W	0 B/W	0 B/W	0 B/W	0 B/W	0 R/W	0 R/W	0 B/W	0 B/W	0 B/W	0 B/W	0 R/W	0 B/W	F

Rev. 3.00 Mar. 04, 2009 Page 318 of 1168

REJ09B0344-0300

RDAR is initialized to H'00000000 by a reset and retains the value in software standby module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18
Initial value: R/W:	0 R/W													
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value: R/W:	0 R/W													

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

As in DMATCR, the transfer count is 1 when the setting is H'00000001, 16,777,215 whe H'00FFFFFF is set, and 16,777,216 (the maximum) when H'00000000 is set. To transfer 16 bytes, one 16-byte transfer (128 bits) counts one.

RDMATCR is initialized to H'00000000 by a reset and retains the value in software stand and module standby mode.

Bit:	31	30	29	28	27	26	25	24	23	22	21	20	19	18	
	-	-	-	-	-	-	-	-							Γ
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
R/W:	R	R	R	R	R	R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	F
Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Rev. 3.00 Mar. 04, 2009 Page 320 of 1168 REJ09B0344-0300

RENESAS

Note. * To clear hags, read the register and then write 0 only to the bits that were read as 1. Write 1 to the bits to											
Bit	Bit Name	Initial Value	R/W	Description							
15, 14	_	All 0	R	Reserved							
				These bits are always read as 0. The write should always be 0.							
13, 12	CMS[1:0]	00	R/W	Cycle Steal Mode Select							

These bits select either normal mode or inter mode in cycle steal mode. It is necessary that the bus modes of all char set to cycle steal mode to make intermittent valid. 00: Normal mode 01: Setting prohibited 10: Intermittent mode 16 Executes one DMA transfer for every 16 Bø clock. 11: Intermittent mode 64 Executes one DMA transfer for every 64 B¢ clock. 11, 10 All 0 R Reserved

should always be 0.

These bits are always read as 0. The write v

				11: Round-robin mode (only supported in CH0
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
2	AE	0	R/(W)*	Address Error Flag
				Indicates whether an address error has occur

1. If the bit's value is 0 when read, write 1

• Only write 0 to the AE bit after it has been

writing 0 after reading 1.

0: No DMAC address error

1: DMAC address error occurred

[Clearing condition]

the DMAC. When this bit is set, even if the DE CHCR and the DME bit in DMAOR are set to transfer is not enabled. This bit can only be cl

Rev. 3.00 Mar. 04, 2009 Page 322 of 1168 BEJ09B0344-0300

RENESAS

				 [Clearing condition] Only write 0 to the NMIF bit after it has be as 1. If the bit's value is 0 when read, write
0	DME	0	R/W	DMA Master Enable
				Enables or disables DMA transfer on all char the DME bit and DE bit in CHCR are set to 1 transfer is enabled.

No NMI Interrupt
 NMI interrupt occurred

However, transfer is enabled only when the CHCR of the transfer corresponding channe bit in DMAOR, and the AE bit are all cleared Clearing the DME bit to 0 can terminate the

transfer on all channels.

0: DMA transfer is disabled on all channels

1: DMA transfer is enabled on all channels

* To clear flags, read the register and then write 0 only to the bits that were rea

If the priority mode bits are modified after a DMA transfer, the channel priority is initial fixed mode 2 is specified, the channel priority is specified as CH0 > CH4 > CH1 > CH5 CH6 > CH3 > CH7. If fixed mode 1 is specified, the channel priority is specified as CHCH2 > CH3 > CH4 > CH5 > CH6 > CH7. If round-robin mode is specified, the transfer channel is reset.

Write 1 to the bits that were read as 0.

Note:

Table 9.3 show the priority change in each mode (modes 0 to 2) specified by the priority bits. In each priority mode, the channel priority to accept the next transfer request may cup to three ways according to the transfer end channel.

Table 9.3 Combinations of Priority Mode Bits

	Transfer End	Priority Mode Bits		High	Priority Level at the End of Transfer							
Mode	CH No.	PR[1]	PR[0]	0	1	2	3	4	5	6		
Mode 0 (fixed mode 1)	Any channel	0	0	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		
Mode 1 (fixed mode 2)	Any channel	0	1	CH0	CH4	CH1	CH5	CH2	CH6	CH		
Mode 2	CH0	1	1	CH1	CH2	СНЗ	CH0	CH4	CH5	CH		
(round-robin mode)	CH1	1	1	CH2	СНЗ	CH0	CH1	CH4	CH5	CH		
	CH2	1	1	СНЗ	CH0	CH1	CH2	CH4	CH5	CH		
	СНЗ	1	1	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		
	CH4	1	1	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		
	CH5	1	1	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		
	CH6	1	1	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		
	CH7	1	1	CH0	CH1	CH2	СНЗ	CH4	CH5	CH		

Rev. 3.00 Mar. 04, 2009 Page 324 of 1168 REJ09B0344-0300

module standby mode.

• DMARS0

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
			CH1 M	/IID[5:0]			CH1 R	ID[1:0]			CH0 N	/IID[5:0]			
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

• DMARS1

Bit:	15	14	13	12	11	10	9	8	/	ь	5	4	3	2	
			CH3 M	IID[5:0]			CH3 R	RID[1:0]			CH2 N	/IID[5:0]			
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W·	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

• DMARS2

Dit.	10	14	13	12	11	10	9	0	- /	U	5	4	3	
			CH5 N	IID[5:0]			CH5 R	ID[1:0]			CH4 N	/IID[5:0]		
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

• DMARS3

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
			CH7 M	IID[5:0]			CH7 R	ID[1:0]			CH6 N	/IID[5:0]		
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

SCIF_2 receiver	H'8A	
SCIF_3 transmitter	H'8D	B'100011
SCIF_3 receiver	H'8E	
IIC3 transmitter	H'A1	B'101000
IIC3 receiver	H'A2	
A/D converter	H'B3	B'101100
MTU2_0	H'E3	B'111000

H'E7

H'EB

H'EF

F	l'F3	B'111100	B'11	_
H	l'FB	B'111110	B'11	_
F	l'FF	B'111111	B'11	

B'10

B'01

B'10

B'01

B'10

B'11

B'11

B'11

B'11

B'11

B'111001

B'111010

B'111011

Rece

Tran

Rece

Tran

Rece

When MID or RID other than the values listed in table 9.4 is set, the operation of this LS guaranteed. The transfer request from DMARS is valid only when the resource select bits (RS[3:0]) in CHCR0 to CHCR7 have been set to B'1000. Otherwise, even if DMARS has the transfer request source is not accepted.

Rev. 3.00 Mar. 04, 2009 Page 326 of 1168

MTU2_1

MTU2_2

MTU2_3

MTU2_4 CMT_0 CMT_1

transfer count registers (DMATCR), DMA channel control registers (CHCR), DMA ope register (DMAOR), and DMA extension resource selector (DMARS) are set for the targ conditions, the DMAC transfers data according to the following procedure:

- 1. Checks to see if transfer is enabled (DE = 1, DME = 1, TE = 0, AE = 0, NMIF = 0) 2. When a transfer request comes and transfer is enabled, the DMAC transfers one tran
 - data (depending on the TS0 and TS1 settings). For an auto request, the transfer begin automatically when the DE bit and DME bit are set to 1. The DMATCR value will be decremented by 1 for each transfer. The actual transfer flows vary by address mode mode.
 - 3. When half of the specified transfer count is exceeded (when DMATCR reaches half initial value), an HEI interrupt is sent to the CPU if the HIE bit in CHCR is set to 1.
 - 4. When transfer has been completed for the specified count (when DMATCR reaches transfer ends normally. If the IE bit in CHCR is set to 1 at this time, a DEI interrupt the CPU.
 - 5. When an address error in the DMAC or an NMI interrupt is generated, the transfer is terminated. Transfers are also terminated when the DE bit in CHCR or the DME bit DMAOR is cleared to 0.

Figure 9.2 is a flowchart of this procedure.

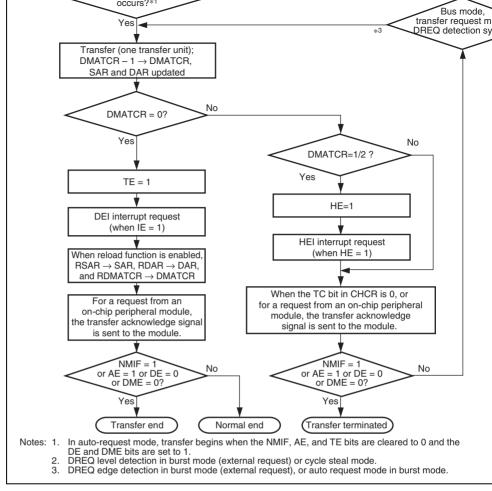


Figure 9.2 DMA Transfer Flowchart

Rev. 3.00 Mar. 04, 2009 Page 328 of 1168

REJ09B0344-0300

When there is no transfer request signal from an external source, as in a memory-to-mer transfer or a transfer between memory and an on-chip peripheral module unable to reque transfer, auto-request mode allows the DMAC to automatically generate a transfer reque internally. When the DE bits in CHCR_0 to CHCR_7 and the DME bit in DMAOR are the transfer begins so long as the TE bits in CHCR_0 to CHCR_7, and the AE and NMI DMAOR are 0.

(2) External Request Mode

In this mode a transfer is performed at the request signals (DREQ0 to DREQ3) of an exploration considering the modes shown in table 9.5 according to the application system DMA transfer is enabled (DE = 1, DME = 1, TE = 0, AE = 0, NMIF = 0), DMA transfer performed upon a request at the DREQ input.

Table 9.5 Selecting External Request Modes with the RS Bits

RS[3]	RS[2]	RS[1]	RS[0]	Address Mode	Transfer Source	Transfer Destination
0	0	0	0	Dual address mode	Any	Any
0	0	1	0	Single address mode	External memory, memory-mapped external device	External de DACK
			1	-	External device with DACK	External memory-ma

Choose to detect DREQ by either the edge or level of the signal input with the DL and I CHCR_0 to CHCR_3 as shown in table 9.6. The source of the transfer request does not the data transfer source or destination.

external de

period). After issuing acknowledge DACK signal for the accepted DREQ, the DREQ pin enters the request accept enabled state.

When DREQ is used by level detection, there are following two cases by the timing to de next DREQ after outputting DACK.

Overrun 0: Transfer is terminated after the same number of transfer has been performed a requests.

Overrun 1: Transfer is terminated after transfers have been performed for (the number of plus 1) times.

The DO bit in CHCR selects this overrun 0 or overrun 1.

Table 9.7 Selecting External Request Detection with DO Bit

CHCD

CHCh						
DO bit	External Request	External Request				
0	Overrun 0					
1	Overrun 1					

performed.

When the transmit data empty from the SCIF is selected, specify the transfer destination corresponding SCIF transmit data register. Likewise, when the receive data full from the selected, specify the transfer source as the corresponding SCIF receive data register. What transfer request is made by the A/D converter, the transfer source must be the A/D data (ADDR). When the IIC3 transmit is selected as the transfer request, the transfer destinate be ICDRT; when the IIC3 reception is selected as the transfer request, the transfer source ICDRR. Any address can be specified for data transfer source and destination when a transfer is sent from the CMT or MTU2.

101100 1	-	C3 receive /D converter	RXI (receive data full) ADI (A/D conversion end)
101100 1	1 A	/D converter	ADI (A/D conversion end)
			TET (7 VE SOTTVETSIOTI CITA)
111000 1	1 M	/ITU2_0	TGI0A
111001 1	1 M	/ITU2_1	TGI1A
111010 1	1 M	/ITU2_2	TGI2A
111011 1	1 M	/ITU2_3	TGI3A
111100 1	1 M	/ITU2_4	TGI4A
111110 1	1 C	CMT_0	Compare match 0
111111 1	1 C	CMT_1	Compare match 1

SCIF_3 receive

IIC3 transmit

SCIF_2 leceive TAI2 (leceive FIFO data idil)

SCIF_3 transmit TXI3 (transmit FIFO data empty)

RXI3 (receive FIFO data full)

TXI (transmit data empty)

SUFFIDE AND

SCFRDR_3 Any

Any

Any

ICDRR

ADDR

Any

Any

Any

Any

Any

Any

Any

SCFTDR_3

ICDRT

Any

Any

Any

Any

Any

Any

Any

Any

Any

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 332 of 1168

100011 01

101000 01

10

Fixed mode 2: CH0 > CH4 > CH1 > CH5 > CH2 > CH6 > CH3 > CH7

These are selected by the PR1 and PR0 bits in the DMA operation register (DMAOR).

Round-Robin Mode

Each time one unit of word, byte, longword, or 16 bytes is transferred on one channel, the order is rotated. The channel on which the transfer was just finished is rotated to the low priority order among the four round-robin channels (channels 0 to 4). The priority of the other than the round-robin channels (channels 0 to 4) does not change even in round-rob The round-robin mode operation is shown in figure 9.3. The priority in round-robin mod > CH1 > CH2 > CH3 > CH4 > CH5 > CH6 > CH7 immediately after a reset.

When round-robin mode has been specified, do not concurrently specify cycle steal mode burst mode as the bus modes of any two or more channels.

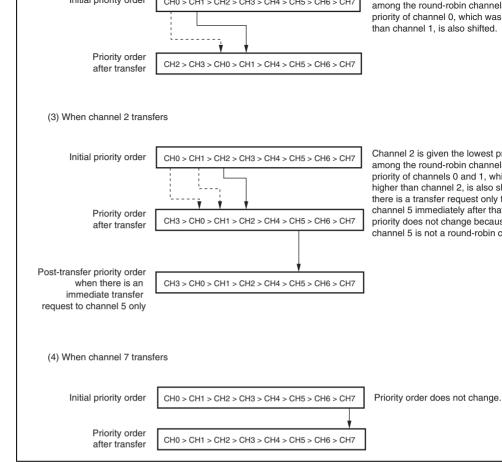


Figure 9.3 Round-Robin Mode

Rev. 3.00 Mar. 04, 2009 Page 334 of 1168 REJ09B0344-0300

- 5. At this point, channel 1 has a higher priority than channel 3, so the channel 1 transfe (channel 3 waits for transfer).
- 6. When the channel 1 transfer ends, channel 1 is given the lowest priority among the r channels.
- 7. The channel 3 transfer begins.
- 8. When the channel 3 transfer ends, channels 3 and 2 are lowered in priority so that channels in the lowest priority among the round-robin channels.

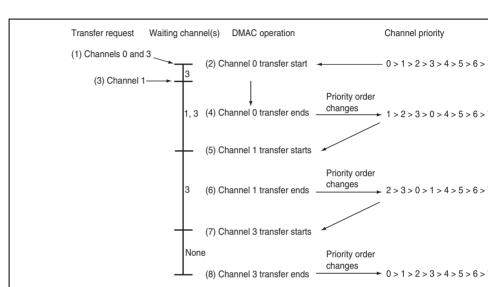


Figure 9.4 Changes in Channel Priority in Round-Robin Mode

External me	External memory Dual, single		Dual	Dual	Dual	Dua
Memory-mapped Dua external device		Dual, single	Dual	Dual	Dual	Dua
On-chip peripheral r	module	Not available	Dual	Dual	Dual	Dua
On-chip me	emory	Not available	Dual	Dual	Dual	Dua
Notes: 1. Dual: Dual address mode 2. Single: Single address mode 3. 16-byte transfer is available only for on-chip peripheral modules that support access.					upport Ic	

Memory

Dual, single Dual, single

External Device

Peripheral Module Me

No

Not available

with DACK

Not available

Transfer Source External device

with DACK

Rev. 3.00 Mar. 04, 2009 Page 336 of 1168

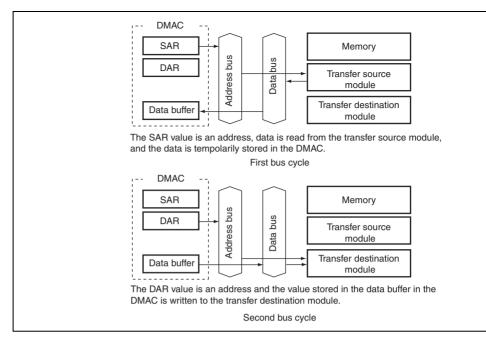


Figure 9.5 Data Flow of Dual Address Mode

Auto request, external request, and on-chip peripheral module request are available for t request. DACK can be output in read cycle or write cycle in dual address mode. The AM channel control register (CHCR) can specify whether the DACK is output in read cycle cycle.

Figure 9.6 shows an example of DMA transfer timing in dual address mode.

Rev. 3.00 Mar. 04, 2009 Page REJ09

RENESAS

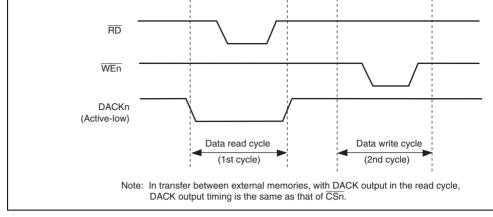


Figure 9.6 Example of DMA Transfer Timing in Dual Mode (Transfer Source: Normal Memory, Transfer Destination: Normal Memory

Rev. 3.00 Mar. 04, 2009 Page 338 of 1168

REJ09B0344-0300

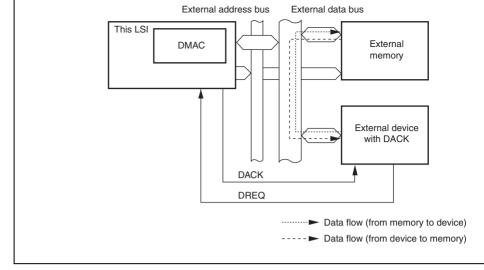


Figure 9.7 Data Flow in Single Address Mode

Two kinds of transfer are possible in single address mode: (1) transfer between an extern with DACK and a memory-mapped external device, and (2) transfer between an externa with DACK and external memory. In both cases, only the external request signal (DREG for transfer requests.

Figure 9.8 shows an example of DMA transfer timing in single address mode.

Rev. 3.00 Mar. 04, 2009 Page

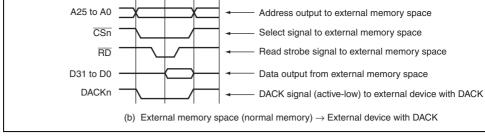


Figure 9.8 Example of DMA Transfer Timing in Single Address Mode

(2) Bus Modes

There are two bus modes; cycle steal and burst. Select the mode by the TB bits in the characteristic control registers (CHCR).

(a) Cycle Steal Mode

Normal mode

In normal mode of cycle steal, the bus mastership is given to another bus master after transfer-unit (byte, word, longword, or 16-byte unit) DMA transfer. When another transfer equest occurs, the bus mastership is obtained from another bus master and a transfer performed for one transfer unit. When that transfer ends, the bus mastership is passed another bus master. This is repeated until the transfer end conditions are satisfied.

The cycle-steal normal mode can be used for any transfer section; transfer request sou transfer source, and transfer destination.

Figure 9.9 shows an example of DMA transfer timing in cycle-steal normal mode. Transfer timing in cycle-steal normal mode. Transfer timing in cycle-steal normal mode.

- Dual address mode
- DREQ low level detection

Rev. 3.00 Mar. 04, 2009 Page 340 of 1168 REJ09B0344-0300

RENESAS

transfer request occurs after that, DMAC obtains the bus mastership from other bus after waiting for 16 or 64 cycles of B\$\phi\$ clock. DMAC then transfers data of one unit the bus mastership to other bus master. These operations are repeated until the transfer condition is satisfied. It is thus possible to make lower the ratio of bus occupation by transfer than normal mode of cycle steal.

The cycle-steal intermittent mode can be used for any transfer section; transfer requestransfer source, and transfer destination. The bus modes, however, must be cycle steal channels.

Figure 9.10 shows an example of DMA transfer timing in cycle-steal intermittent methods.

Figure 9.10 shows an example of DMA transfer timing in cycle-steal intermittent more transfer conditions shown in the figure are;

- Dual address mode
- DREQ low level detection

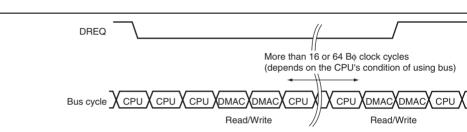


Figure 9.10 Example of DMA Transfer in Cycle-Steal Intermittent Mod
(Dual Address, DREQ Low Level Detection)

Figure 9.11 DMA Transfer Example in Burst Mode (Dual Address, DREQ Low Level Detection)

(3) Relationship between Request Modes and Bus Modes by DMA Transfer Categ

Table 9.10 shows the relationship between request modes and bus modes by DMA transferategory.

Rev. 3.00 Mar. 04, 2009 Page 342 of 1168

REJ09B0344-0300

•	On-chip memory and external memory	All**	B/C	8/16/32/128
Single	External device with DACK and external memory	External	B/C	8/16/32/128
	External device with DACK and memory-mapped external device	External	B/C	8/16/32/128
[Legend]				
B: Burst				
C: Cycle s	teal			
Notes: 1.	External requests, auto requests, and on-ch available. However, along with the exception source, the requesting module must be desi	n of CMT a	nd MTU	l2 as the transf
	transfer destination.	griatod do	ino train	Sici Source or
2.	, 1	J		

All*1

All*1

All*1

All*4

All*4

All*1

B/C*⁵

B/C*5

B/C*5

B/C

B/C

B/C*5

8/16/32/128*2

8/16/32/128*2

8/16/32/128*2

8/16/32/128

8/16/32/128

8/16/32/128*2

External memory and on-chip peripheral module

On-chip peripheral module and on-chip peripheral

On-chip memory and memory-mapped external

On-chip memory and on-chip peripheral module

Memory-mapped external device and

On-chip memory and on-chip memory

MTU2 are only available.

on-chip peripheral module

module

device

 External requests, auto requests, and on-chip peripheral module requests are available. In the case of on-chip peripheral module requests, however, the CI

5. Only cycle steal except for the MTU2 and CMT as the transfer request source

this is shown in figure 9.12.

When multiple channels are in burst mode, data transfer on the channel that has the higher priority is given precedence. When DMA transfer is being performed on multiple channel bus mastership is not released to another bus-master device until all of the competing bur transfers have been completed.

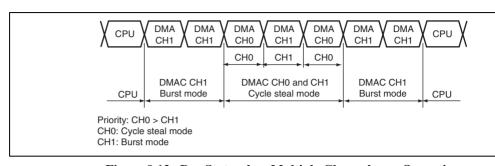


Figure 9.12 Bus State when Multiple Channels are Operating

In round-robin mode, the priority changes as shown in figure 9.3. Note that channels in cand burst modes must not be mixed.

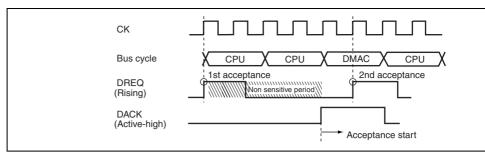


Figure 9.13 Example of DREQ Input Detection in Cycle Steal Mode Edge Det

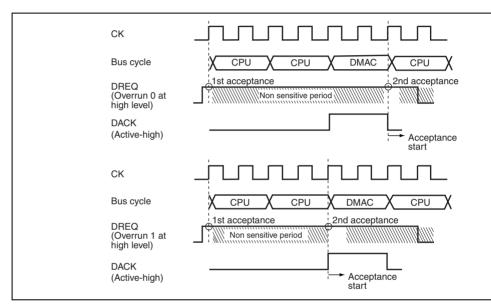


Figure 9.14 Example of DREQ Input Detection in Cycle Steal Mode Level Det

Rev. 3.00 Mar. 04, 2009 Page

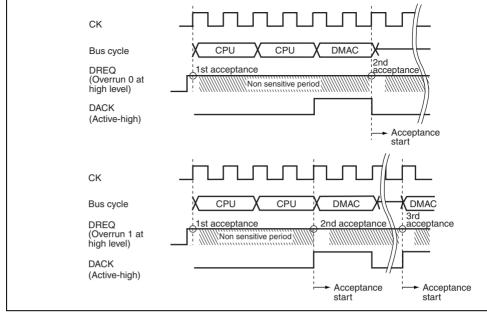


Figure 9.16 Example of DREQ Input Detection in Burst Mode Level Detection

REJ09B0344-0300

(Cycle Steal Mode Level Detection)

The unit of the DMA transfer is divided into multiple bus cycles when 16-byte transfer performed for an 8-bit or 16-bit external device, when longword access is performed for or 16-bit external device, or when word access is performed for an 8-bit external device setting is made so that the DMA transfer size is divided into multiple bus cycles and the is negated between bus cycles, note that DACK and TEND are divided like the \overline{CS} signalignment. Also, if the DREQ detection is set to level-detection mode (DS bit in CHCR DREQ sampling may not be detected correctly with divided DACK, and one extra over occur at maximum.

Use a setting that does not divide DACK or specify a transfer size smaller than the extension width if DACK is divided. Figure 9.18 shows this example.

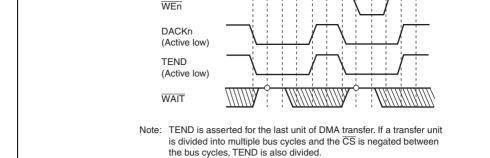


Figure 9.18 BSC Normal Memory Access (No Wait, Idle Cycle 1, Longword Access to 16-Bit Device)

Rev. 3.00 Mar. 04, 2009 Page 348 of 1168

REJ09B0344-0300

following DMA transfer, the half-end flag setting timing may be earlier than half of the count or the half-end flag may not be set. The same is true for the half-end interrupt.

Rev. 3.00 Mar. 04, 2009 Page 350 of 1168

REJ09B0344-0300

- Waveform output at compare match
 - Input capture function
 - Counter clear operation
 - Multiple timer counters (TCNT) can be written to simultaneously
 - Simultaneous clearing by compare match and input capture is possible
 - Register simultaneous input/output is possible by synchronous counter operation
 - A maximum 12-phase PWM output is possible in combination with synchronous However, waveform output by compare match for channel 5 is not possible.
- Buffer operation settable for channels 0, 3, and 4
- Phase counting mode settable independently for each of channels 1 and 2
- Cascade connection operation
- Fast access via internal 16-bit bus
- 28 interrupt sources
- Automatic transfer of register data
- A/D converter start trigger can be generated
- Module standby mode can be settable
- A total of six-phase waveform output, which includes complementary PWM output, positive and negative phases of reset PWM output by interlocking operation of chan 4, is possible.

AC synchronous motor (brushless DC motor) drive mode using complementary PW

- and reset PWM output is settable by interlocking operation of channels 0, 3, and 4, a selection of two types of waveform outputs (chopping and level) is possible.
- Dead time compensation counter available in channel 5
- In complementary PWM mode, interrupts at the crest and trough of the counter valu converter start triggers can be skipped.

utput ggle	TGRC_0 TGRD_0 TGRF_0 TIOCOA TIOCOB TIOCOC TIOCOD TGR compare match or input capture	TIOC1A TIOC1B TGR compare match or input capture	TIOC2A TIOC2B TGR compare match or input capture	TGRC_3 TGRD_3 TIOC3A TIOC3B TIOC3C TIOC3D TGR compare match or input capture
utput ggle	TIOCOB TIOCOC TIOCOD TGR compare match or input capture	TIOC1B TGR compare match or input capture	TIOC2B TGR compare match or input capture	TIOC3B TIOC3C TIOC3D TGR compare match or input capture
utput ggle	compare match or input capture	compare match or input capture	compare match or input capture	compare match or input capture
utput ggle		V	V	V
ggle	√			•
		V	V	V
put	V	√	√	√
	√	√	√	√
	√	√	√	√
	√	V	V	√
	$\sqrt{}$	V	V	_
ry	_	_	_	√
ode	_	_	_	V
us ode	V	_	_	√
1	ode us ode	√	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

TGRB_0

TGRE_0

TGRB_1

TGRB_2

TGRB_3

TGRB_4

TGRC_4

TGRD_4

TIOC4A

TIOC4B

TIOC4C

TIOC4D

compare

match or

input capture

TGR

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

TG

TG

Inp

TIC

TIC

TIC

TG

cor

ma

inp

A/D converter start	TGRA_0	TGRA_1	TGRA_2	TGRA_3	TGRA_4	
trigger	compare	compare	compare	compare	compare	
	match or	match or	match or	match or	match or	
	input capture	input capture	input capture	input capture	input capture	
	TGRE_0 compare match				TCNT_4 underflow (trough) in complement ary PWM mode	

	Capture 0B	capture 1B	capture 2B	capture 3B	4B
	Compare • match or • input capture 0C	Overflow • Underflow •	Overflow • Underflow	Compare • match or input capture 3C	Compare • match or input capture 4C
i	Compare match or input capture 0D		•	Compare • match or input capture 3D	Compare match or input capture 4D
•	Compare match 0E Compare match 0F		•	Overflow •	Overflow or underflow
•	Overflow				

Rev. 3.00 Mar. 04, 2009 Page 354 of 1168

						request at
						a match
						between
						TADCOR
						B_4 and
						TCNT_4
Interrupt skipping —	_	_	•	Skips	•	Skips -
function				TGRA_3		TCIV_4
				compare		interrupts
				match		
				interrupts		
[Legend]						
√: Possible						

Not possible

REJ09

converter start

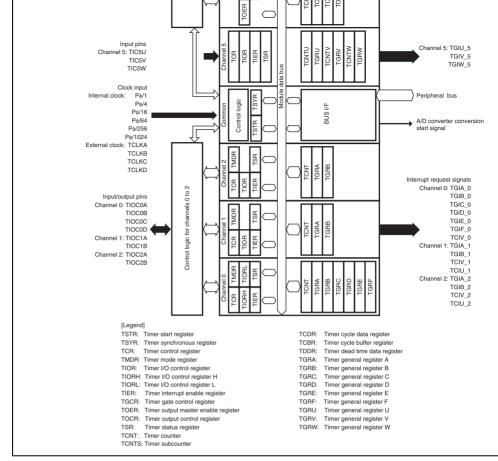


Figure 10.1 Block Diagram of MTU2

1	TIOC1A	I/O	TGRA_1 input capture input/output compare output/PWM
	TIOC1B	I/O	TGRB_1 input capture input/output compare output/PWM
2	TIOC2A	I/O	TGRA_2 input capture input/output compare output/PWM
	TIOC2B	I/O	TGRB_2 input capture input/output compare output/PWM
3	TIOC3A	I/O	TGRA_3 input capture input/output compare output/PWM
	TIOC3B	I/O	TGRB_3 input capture input/output compare output/PWM
	TIOC3C	I/O	TGRC_3 input capture input/output compare output/PWM
	TIOC3D	I/O	TGRD_3 input capture input/output compare output/PWM
4	TIOC4A	I/O	TGRA_4 input capture input/output compare output/PWM
	TIOC4B	I/O	TGRB_4 input capture input/output compare output/PWM
	TIOC4C	I/O	TGRC_4 input capture input/output compare output/PWM
	TIOC4D	I/O	TGRD_4 input capture input/output compare output/PWM
5	TIC5U	Input	TGRU_5 input capture input/external pulse input pin
	TIC5V	Input	TGRV_5 input capture input/external pulse input pin
	TIC5W	Input	TGRW_5 input capture input/external pulse input pin

External clock D input pin

(Channel 2 phase counting mode B phase input)

TGRA_0 input capture input/output compare output/PWM

TGRB_0 input capture input/output compare output/PWM

TGRC 0 input capture input/output compare output/PWM

TGRD_0 input capture input/output compare output/PWM

TCLKD

TIOC0A

TIOC0B

TIOC0C

TIOC0D

0

Input

I/O I/O

I/O

I/O

Complementary PWM Mode.

For the pin configuration in complementary PWM mode, see table 10.54 in section

	Timer mode register_0	TMDR_0
	Timer I/O control register H_0	TIORH_0
	Timer I/O control register L_0	TIORL_0
	Timer interrupt enable register_0	TIER_0
	Timer status register_0	TSR_0
	Timer counter_0	TCNT_0
	Timer general register A_0	TGRA_0
	Timer general register B_0	TGRB_0
	Timer general register C_0	TGRC_0
	Timer general register D_0	TGRD_0
	Timer general register E_0	TGRE_0
	Timer general register F_0	TGRF_0
	Timer interrupt enable register2_0	TIER2_0
	Timer status register2_0	TSR2_0
	Timer buffer operation transfer mode register_0	TBTM_0
1	Timer control register_1	TCR_1
	Timer mode register_1	TMDR_1
	Timer I/O control register_1	TIOR_1
	Timer interrupt enable register_1	TIER_1
	Timer status register_1	TSR_1

Rev. 3.00 Mar. 04, 2009 Page 358 of 1168

REJ09B0344-0300

Timer control register_0

0

RENESAS

TCR_0

R/W

H'00

H'00

H'00

H'00

H'00

H'C0

H'0000

H'FFFF

H'FFFF

H'FFFF

H'FFFF

H'FFFF

H'FFFF

H'00

H'C0

H'00

H'00

H'00

H'C0

H'00 H'00

H'FFFE4325 H'FFFE4326

H'FFFE4380

H'FFFE4381

H'FFFE4382

H'FFFE4384

H'FFFE4385

H'FFFE4324

H'FFFE4322

H'FFFE4320

H'FFFE4300

H'FFFE4301

H'FFFE4302

H'FFFE4303

H'FFFE4304

H'FFFE4305

H'FFFE4306

H'FFFE4308

H'FFFE430A

H'FFFE430C

	Timer general register B_2	TGRB_2	R/W	H'FFFF	H'FFFE400A
3	Timer control register_3	TCR_3	R/W	H'00	H'FFFE4200
	Timer mode register_3	TMDR_3	R/W	H'00	H'FFFE4202
	Timer I/O control register H_3	TIORH_3	R/W	H'00	H'FFFE4204
	Timer I/O control register L_3	TIORL_3	R/W	H'00	H'FFFE420
	Timer interrupt enable register_3	TIER_3	R/W	H'00	H'FFFE4208
	Timer status register_3	TSR_3	R/W	H'C0	H'FFFE4220
	Timer counter_3	TCNT_3	R/W	H'0000	H'FFFE4210
	Timer general register A_3	TGRA_3	R/W	H'FFFF	H'FFFE4218
	Timer general register B_3	TGRB_3	R/W	H'FFFF	H'FFFE421/
	Timer general register C_3	TGRC_3	R/W	H'FFFF	H'FFFE422
	Timer general register D_3	TGRD_3	R/W	H'FFFF	H'FFFE4226
	Timer buffer operation transfer mode register_3	TBTM_3	R/W	H'00	H'FFFE4238
4	Timer control register_4	TCR_4	R/W	H'00	H'FFFE420
	Timer mode register_4	TMDR_4	R/W	H'00	H'FFFE420
	Timer I/O control register H_4	TIORH_4	R/W	H'00	H'FFFE4206
	Timer I/O control register L_4	TIORL_4	R/W	H'00	H'FFFE420

TIER_2

TSR_2

TCNT_2

TGRA_2

R/W

R/W

R/W

R/W

H'00

H'C0

H'0000

H'FFFF

Rev. 3.00 Mar. 04, 2009 Page

REJ09

H'FFFE4004

H'FFFE4005

H'FFFE4006

H'FFFE4008

Timer interrupt enable

Timer status register_2

Timer general register A_2

Timer counter_2

register_2

	request cycle set register B_4				
	Timer A/D converter start request cycle set buffer register A_4	TADCOBRA _4	R/W	H'FFFF	H'FFFE4248
	Timer A/D converter start request cycle set buffer register B_4	TADCOBRB _4	R/W	H'FFFF	H'FFFE424A
5	Timer control register U_5	TCRU_5	R/W	H'00	H'FFFE4084
	Timer control register V_5	TCRV_5	R/W	H'00	H'FFFE4094
	Timer control register W_5	TCRW_5	R/W	H'00	H'FFFE40A4
	Timer I/O control register U_5	TIORU_5	R/W	H'00	H'FFFE4086
	Timer I/O control register V_5	TIORV_5	R/W	H'00	H'FFFE4096
	Timer I/O control register W_5	TIORW_5	R/W	H'00	H'FFFE40A6
	Timer interrupt enable register_5	TIER_5	R/W	H'00	H'FFFE40B2
	Timer status register_5	TSR_5	R/W	H'00	H'FFFE40B0
	Timer start register_5	TSTR_5	R/W	H'00	H'FFFE40B4
	Timer counter U_5	TCNTU_5	R/W	H'0000	H'FFFE4080
	Timer counter V_5	TCNTV_5	R/W	H'0000	H'FFFE4090
	00 Mar. 04, 2009 Page 360 of 1168 30344-0300	(ENESA	S		

Timer buffer operation transfer TBTM_4

mode register_4

Timer A/D converter start

request cycle set register A_4 Timer A/D converter start

request control register Timer A/D converter start R/W

R/W

TADCR

TADCORA 4 R/W

TADCORB 4 R/W

H'00

H'0000

H'FFFF

H'FFFE4239

H'FFFE4240

H'FFFE4244

H'FFFF H'FFFE4246

Timer gate control register	TGCR	R/W	H80	H'FFFE420D
Timer cycle control register	TCDR	R/W	H'FFFF	H'FFFE4214
Timer dead time data register	TDDR	R/W	H'FFFF	H'FFFE4216
Timer subcounter	TCNTS	R	H'0000	H'FFFE4220
Timer cycle buffer register	TCBR	R/W	H'FFFF	H'FFFE4222
Timer interrupt skipping set register	TITCR	R/W	H'00	H'FFFE4230
Timer interrupt skipping counter	TITCNT	R	H'00	H'FFFE4231
Timer buffer transfer set register	TBTER	R/W	H'00	H'FFFE4232
Timer dead time enable register	TDER	R/W	H'01	H'FFFE4234
Timer synchronous clear register	TSYCR	R/W	H'00	H'FFFE4250
Timer waveform control register	TWCR	R/W	H'00	H'FFFE4260
Timer output level buffer register	TOLBR	R/W	H'00	H'FFFE4236

TCSYSTR

TRWER

TOER

TOCR1

TOCR2

R/W

R/W

R/W

R/W

R/W

H'00

H'01

H'C0

H'00

H'00

H'FFFE4282

H'FFFE4284

H'FFFE420A

H'FFFE420E

H'FFFE420F

Timer counter synchronous

Timer output control register 1

Timer output control register 2

Timer read/write enable

start register

Common Timer output master enable

register

register

to 3 and

4

REJ09

Rev. 3.00 Mar. 04, 2009 Page

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	CCLR[2:0]	000	R/W	Counter Clear 0 to 2
				These bits select the TCNT counter clearing so See tables 10.4 and 10.5 for details.
4, 3	CKEG[1:0]	00	R/W	Clock Edge 0 and 1
				These bits select the input clock edge. When to clock is counted using both edges, the input cloperiod is halved (e.g. $P\phi/4$ both edges = $P\phi/2$ redge). If phase counting mode is used on charand 2, this setting is ignored and the phase comode setting has priority. Internal clock edges is valid when the input clock is $P\phi/4$ or slower. $P\phi/1$ or the overflow/underflow of another charselected for the input clock, although values cawritten, counter operation compiles with the initial part of the selected for the input clock.
				00: Count at rising edge
				01: Count at falling edge
				1x: Count at both edges
2 to 0	TPSC[2:0]	000	R/W	Time Prescaler 0 to 2
				These bits select the TCNT counter clock. The

[Legend]

x: Don't care

RENESAS

source can be selected independently for each

See tables 10.6 to 10.10 for details.

Rev. 3.00 Mar. 04, 2009 Page 362 of 1168

		1	0	0	TCNT clearing disabled
				1	TCNT cleared by TGRC compare mate capture*2
			1	0	TCNT cleared by TGRD compare mate capture*2
				1	TCNT cleared by counter clearing for a channel performing synchronous clear synchronous operation*
lotes:	1.	Synchronou	s operation is	s set by setti	ng the SYNC bit in TSYR to 1.

N

2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared beca buffer register setting has priority, and compare match/input capture does no

Bit 5

0

1

CCLR0

Table 10.5 CCLR0 to CCLR2 (Channels 1 and 2)

0

Reserved*2 CCLR1

Bit 6

Bit 7

0

Channel

1, 2

		•
1	0	TCNT cleared by TGRB compare ma capture
	1	TCNT cleared by counter clearing for channel performing synchronous clea synchronous operation* ¹

Notes: 1. Synchronous operation is selected by setting the SYNC bit in TSYR to 1.

2. Bit 7 is reserved in channels 1 and 2. It is always read as 0 and cannot be mo

synchronous operation*

Description

capture

TCNT clearing disabled

TCNT cleared by TGRA compare ma

1	0	External clock: counts on TCLKC pin i
	1	External clock: counts on TCLKD pin i

Table 10.7 TPSC0 to TPSC2 (Channel 1)

1 0	0)	^	
			U	Internal clock: counts on Pφ/1
		·	1	Internal clock: counts on Pφ/4
	1		0	Internal clock: counts on Pφ/16
		·	1	Internal clock: counts on Pφ/64
1	0)	0	External clock: counts on TCLKA pin in
		·-	1	External clock: counts on TCLKB pin in
	1		0	Internal clock: counts on Pφ/256
		-	1	Counts on TCNT_2 overflow/underflow

Note: This setting is ignored when channel 1 is in phase counting mode.

Rev. 3.00 Mar. 04, 2009 Page 364 of 1168 REJ09B0344-0300

1	0	External clock: counts on TCLKC pin it
	1	Internal clock: counts on Pφ/1024

Note: This setting is ignored when channel 2 is in phase counting mode.

Table 10.9 TPSC0 to TPSC2 (Channels 3 and 4)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
3, 4	0	0	0	Internal clock: counts on Pφ/1
			1	Internal clock: counts on Pφ/4
		1	0	Internal clock: counts on Pφ/16
			1	Internal clock: counts on Pφ/64
	1	0	0	Internal clock: counts on Pφ/256
			1	Internal clock: counts on Pφ/1024
		1	0	External clock: counts on TCLKA pin in
			1	External clock: counts on TCLKB pin in

10.3.2 Timer Mode Register (TMDR)

The TMDR registers are 8-bit readable/writable registers that are used to set the operating each channel. The MTU2 has five TMDR registers, one each for channels 0 to 4. TMDR settings should be changed only when TCNT operation is stopped.

Bit:	7	6	5	4	3	2	1	0
	-	BFE	BFB	BFA		MD[[3:0]	
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.
6	BFE	0	R/W	Buffer Operation E
				Specifies whether TGRE_0 and TGRF_0 are to in the normal way or to be used together for bu operation.
				TGRF compare match is generated when TGF used as the buffer register.
				In channels 1 to 4, this bit is reserved. It is always 0 and the write value should always be 0.
				0: TGRE_0 and TGRF_0 operate normally
				 TGRE_0 and TGRF_0 used together for buf operation

Rev. 3.00 Mar. 04, 2009 Page 366 of 1168

REJ09B0344-0300

				reserved. It is always read as 0 and cannot be
				0: TGRB and TGRD operate normally
				1: TGRB and TGRD used together for buffer
4	BFA	0	R/W	Buffer Operation A
				Specifies whether TGRA is to operate in the r way, or TGRA and TGRC are to be used toge buffer operation. When TGRC is used as a buregister, TGRC input capture/output compare generated in a mode other than complementated TGRC compare match is generated when in complementary PWM mode. When compare channel 4 occurs during the Tb period in

enable register 3/4 (TIER_3/4) to 0.

In channels 1 and 2, which have no TGRD, b

complementary PWM mode, TGFC is set. Th set the TGIEC bit in the timer interrupt enable

These bits are used to set the timer operating

In channels 1 and 2, which have no TGRC, be reserved. It is always read as 0 and cannot be 0: TGRA and TGRC operate normally 1: TGRA and TGRC used together for buffer

R/W

0000

3 to 0

MD[3:0]

(TIER_4) to 0.

Modes 0 to 3

See table 10.11 for details.

Rev. 3.00 Mar. 04, 2009 Page

		1	Phase counting mode 4*2
0	0	0	Reset synchronous PWM mode*3
		1	Setting prohibited
	1	Х	Setting prohibited
1	0	0	Setting prohibited
		1	Complementary PWM mode 1 (transmit at crest)*3
	1	0	Complementary PWM mode 2 (transmit at trough)*
		1	Complementary PWM mode 2 (transmit at crest and trough)*3

[Legend]

1

X: Don't care

Notes: 1. PWM mode 2 cannot be set for channels 3 and 4.

0

1

- - 2. Phase counting mode cannot be set for channels 0, 3, and 4. 3. Reset synchronous PWM mode, complementary PWM mode can only be set f channel 3. When channel 3 is set to reset synchronous PWM mode or comple PWM mode, the channel 4 settings become ineffective and automatically confe channel 3 settings. However, do not set channel 4 to reset synchronous PWM complementary PWM mode. Reset synchronous PWM mode and complement mode cannot be set for channels 0, 1, and 2.

Phase counting mode 3*2

Rev. 3.00 Mar. 04, 2009 Page 368 of 1168

When TGRC or TGRD is designated for buffer operation, this setting is invalid and the operates as a buffer register.

• TIORH_0, TIOR_1, TIOR_2, TIORH_3, TIORH_4

Bit:	7	6	5	4	3	2	1	0
		IOB	[3:0]		IOA[3:0]			
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	IOB[3:0]	0000	R/W	I/O Control B0 to B3
				Specify the function of TGRB.
				See the following tables.
				TIORH_0: Table 10.12 TIOR_1: Table 10.14 TIOR_2: Table 10.15 TIORH_3: Table 10.16 TIORH_4: Table 10.18
3 to 0	IOA[3:0]	0000	R/W	I/O Control A0 to A3
				Specify the function of TGRA.
				See the following tables.
				TIORH_0: Table 10.20 TIOR_1: Table 10.22 TIOR_2: Table 10.23 TIORH_3: Table 10.24 TIORH_4: Table 10.26

				TIORL_0: Table 10.13 TIORL_3: Table 10.17 TIORL_4: Table 10.19
3 to 0	IOC[3:0]	0000	R/W	I/O Control C0 to C3
				Specify the function of TGRC.
				See the following tables.
				TIORL_0: Table 10.21

• TIORU_5, TIORV_5, TIORW_5

Bit:	7	6	5	4	3	2	1	0
	-	-	-			IOC[4:0]		
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R/W	R/W	R/W	R/W	R/W

TIORL_3: Table 10.25 TIORL_4: Table 10.27

Bit	Bit Name	Initial Value	R/W	Description
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valalways be 0.
4 to 0	IOC[4:0]	00000	R/W	I/O Control C0 to C4
				Specify the function of TGRU_5, TGRV_5, and TGRW_5.
				For details, see table 10.28.

Rev. 3.00 Mar. 04, 2009 Page 370 of 1168

	1	0	0		Output retained
			1		Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	0	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х		Input capture at both edges
	1	Х	Х		Capture input source is channel 1/coun Input capture at TCNT_1 count-up/cour
[Lege	nd]				

Toggle output at compare match

[Le

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

		1		Initial output is 0
				Toggle output at compare match
1	0	0	-	Output retained
		1	-	Initial output is 1
				0 output at compare match
•	1	0	-	Initial output is 1
				1 output at compare match
	•	1	-	Initial output is 1
				Toggle output at compare match
0	0			Input capture at rising edge
	•	1	register*	Input capture at falling edge
•	1	X	-	Input capture at both edges
1	Х	X	-	Capture input source is channel 1/count
	0	0 0	1 0 0 0 0 1 1 X	$ \begin{array}{c cccc} \hline 1 & 0 & \\ \hline 1 & & \\ \hline 0 & 0 & \\ \hline 1 & & \\ \hline 0 & \frac{0}{1} & \\ \hline 1 & X & \\ \end{array} $ Input capture register* ²

[Legend]

X: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Input capture at TCNT_1 count-up/count

Rev. 3.00 Mar. 04, 2009 Page 372 of 1168

-	1	0	0		Output retained
		•	1	<u> </u>	Initial output is 1
					0 output at compare match
	•	1	0	-	Initial output is 1
					1 output at compare match
		•	1	-	Initial output is 1
					Toggle output at compare match
	0	0	0		Input capture at rising edge
		•	1	register	Input capture at falling edge
	•	1	Х	-	Input capture at both edges
-	1	X	X		Input capture at generation of TGRC_0 match/input capture
egend]					

Toggle output at compare match

[Le

1

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

			1		Initial output is 0
					Toggle output at compare match
	1	0	0	-	Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	Χ	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	=	Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

Rev. 3.00 Mar. 04, 2009 Page 374 of 1168

				Toggle output at compare match
1	0	0		Output retained
		1		Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1		Initial output is 1
				Toggle output at compare match
Х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	Х		Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

					Toggle output at compare match
	1	0	0	•	Output retained
			1	•	Initial output is 1
	_				0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	X	0	0		Input capture at rising edge
	_		1	register*2	Input capture at falling edge
	•	1	Х	•	Input capture at both edges

[Legend]

X: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

1

After power-off reset, 0 is output until 11OA is set.
 When the BFB bit in TMDR_3 is set to 1 and TGRD_3 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 3.00 Mar. 04, 2009 Page 376 of 1168

				Toggle output at compare match
1	0	0		Output retained
		1		Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1		Initial output is 1
				Toggle output at compare match
Х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	Х		Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

	1	0	0		Output retained
			1	•	Initial output is 1
					0 output at compare match
	•	1	0	•	Initial output is 1
					1 output at compare match
			1	•	Initial output is 1
					Toggle output at compare match
1	Х	0	0		Input capture at rising edge
			1	register*2	Input capture at falling edge
	•	1	Х	•	Input capture at both edges

Toggle output at compare match

[Legend]

X: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

1

After power-off reset, 0 is output until 11OA is set.
 When the BFB bit in TMDR_4 is set to 1 and TGRD_4 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 3.00 Mar. 04, 2009 Page 378 of 1168

			_	
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
	1	0	-	Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
0	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	Χ	-	Input capture at both edges
1	Х	Х	-	Capture input source is channel 1/coun
				Input capture at TCNT_1 count-up/cour
endl				

Toggle output at compare match

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

		1		Initial output is 0
				Toggle output at compare ma
1	0	0		Output retained
		1	•	Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare m
0	0	0		Input capture at rising edge
		1	register*2	Input capture at falling edge
	1	Х	•	Input capture at both edges

Χ

Rev. 3.00 Mar. 04, 2009 Page 380 of 1168

	Input capture at falling edge
•	Input capture at both edges
	Capture input source is channel 1/count

Input capture at TCNT_1 count-up/count

Toggle output at compare match

Initial output is 0

Toggle output at compare match

[Legend]

1

X: Don't care

1

Notes: 1. After power-on reset, 0 is output until TIOR is set.

Х

2. When the BFA bit in TMDR_0 is set to 1 and TGRC_0 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

	1	0	0	•	Output retained
			1	•	Initial output is 1
					0 output at compare match
	•	1	0	•	Initial output is 1
					1 output at compare match
		•	1	•	Initial output is 1
					Toggle output at compare match
	0	0	0		Input capture at rising edge
		•	1	register	Input capture at falling edge
	•	1	X	_	Input capture at both edges
	1	Х	Х	-	Input capture at generation of channel compare match/input capture
eaend [*]	1				

Toggle output at compare match

[Legend]

Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

			1		Initial output is 0
					Toggle output at compare match
	1	0	0	-	Output retained
			1	-	Initial output is 1
					0 output at compare match
		1	0	-	Initial output is 1
					1 output at compare match
			1	='	Initial output is 1
					Toggle output at compare match
1	Х	0	0		Input capture at rising edge
			1	register	Input capture at falling edge
		1	Х	_	Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 382 of 1168

				Toggle output at compare match
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
Х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	Х	•	Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

					Toggle output at compare match
	1	0	0	•	Output retained
			1		Initial output is 1
	_				0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1		Initial output is 1
					Toggle output at compare match
1	Х			Input capture at rising edge	
			1	register* ² -	Input capture at falling edge
	•	1	Х		Input capture at both edges

[Legend]

X: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

2. When the BFA bit in TMDR_3 is set to 1 and TGRC_3 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 3.00 Mar. 04, 2009 Page 384 of 1168

				Toggle output at compare match
1	0	0	•	Output retained
		1	•	Initial output is 1
				0 output at compare match
	1	0		Initial output is 1
				1 output at compare match
		1	•	Initial output is 1
				Toggle output at compare match
Х	0	0		Input capture at rising edge
		1	register	Input capture at falling edge
	1	Х	•	Input capture at both edges

[Legend]

X: Don't care

Note: * After power-on reset, 0 is output until TIOR is set.

					Toggle output at compare match
	1	0	0	•	Output retained
			1		Initial output is 1
					0 output at compare match
		1	0		Initial output is 1
					1 output at compare match
			1	-	Initial output is 1
					Toggle output at compare match
1	Х	0	0		Input capture at rising edge
			1	register* ²	Input capture at falling edge
		1	Х		Input capture at both edges

[Legend]

X: Don't care

Notes: 1. After power-on reset, 0 is output until TIOR is set.

After power-off reset, 0 is output until 11OA is set.
 When the BFA bit in TMDR_4 is set to 1 and TGRC_4 is used as a buffer regis setting is invalid and input capture/output compare is not generated.

Rev. 3.00 Mar. 04, 2009 Page 386 of 1168

	1	Χ	Χ	Setting prohibited
1	0	0	0	Setting prohibited
			1	Measurement of low pulse width of external
				Capture at trough in complementary PWM m
		1	0	Measurement of low pulse width of external
				Capture at crest in complementary PWM mo
			1	Measurement of low pulse width of external
				Capture at crest and trough in complementa mode
	1	0	0	Setting prohibited
			1	Measurement of high pulse width of external
				Capture at trough in complementary PWM m
		1	0	Measurement of high pulse width of external
				Capture at crest in complementary PWM mo
			1	Measurement of high pulse width of external
				Capture at crest and trough in complementa mode
[Legend] X: D	on't care	۵		

Setting prohibited

Setting prohibited

Input capture at rising edge

Input capture at falling edge

Input capture at both edges

1

0

1

Χ

0

Χ

0

1

Χ

0

1

0

1

Input capture

register

			These bits are always read as 0. The write val always be 0.
2	CMPCLR5U 0	R/W	TCNT Compare Clear 5U
			Enables or disables requests to clear TCNTU_TGRU_5 compare match or input capture.
			 Disables TCNTU_5 to be cleared to H'0000 TCNTU_5 and TGRU_5 compare match or capture
			 Enables TCNTU_5 to be cleared to H'0000 TCNTU_5 and TGRU_5 compare match or capture
1	CMPCLR5V 0	R/W	TCNT Compare Clear 5V
			Enables or disables requests to clear TCNTV_TGRV_5 compare match or input capture.
			 Disables TCNTV_5 to be cleared to H'0000 TCNTV_5 and TGRV_5 compare match or capture
			1: Enables TCNTV 5 to be cleared to H'0000

All 0

7 to 3 —

R

Reserved

Rev. 3.00 Mar. 04, 2009 Page 388 of 1168 REJ09B0344-0300

capture

TCNTV_5 and TGRV_5 compare match or i

10.3.5 Timer Interrupt Enable Register (TIER)

The TIER registers are 8-bit readable/writable registers that control enabling or disablin interrupt requests for each channel. The MTU2 has seven TIER registers, two for channone each for channels 1 to 5.

TIER_0, TIER_1, TIER_2, TIER_3, TIER_4

Bit:	7	6	5	4	3	2	1	0
	TTGE	TTGE2	TCIEU	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	TTGE	0	R/W	A/D Converter Start Request Enable
				Enables or disables generation of A/D converequests by TGRA input capture/compare materials.
				0: A/D converter start request generation disa
				1: A/D converter start request generation ena

Rev. 3.00 Mar. 04, 2009 Page

REJ09

5	TCIEU	0	R/W	Underflow Interrupt Enable
				Enables or disables interrupt requests (TCIU) TCFU flag when the TCFU flag in TSR is set to channels 1 and 2.
				In channels 0, 3, and 4, bit 5 is reserved. It is a read as 0 and the write value should always be
				0: Interrupt requests (TCIU) by TCFU disabled
				1: Interrupt requests (TCIU) by TCFU enabled
4	TCIEV	0	R/W	Overflow Interrupt Enable
				Enables or disables interrupt requests (TCIV) I TCFV flag when the TCFV flag in TSR is set to
				0: Interrupt requests (TCIV) by TCFV disabled
				1: Interrupt requests (TCIV) by TCFV enabled
3	TGIED	0	R/W	TGR Interrupt Enable D
				Enables or disables interrupt requests (TGID) TGFD bit when the TGFD bit in TSR is set to 1 channels 0, 3, and 4.
				In channels 1 and 2, bit 3 is reserved. It is alwaas 0 and the write value should always be 0.
				0: Interrupt requests (TGID) by TGFD bit disab
				1: Interrupt requests (TGID) by TGFD bit enab

underflow (trough) enabled

				TGFB bit when the TGFB bit in TSR is set to
				0: Interrupt requests (TGIB) by TGFB bit disa
				1: Interrupt requests (TGIB) by TGFB bit enal
0	TGIEA	0	R/W	TGR Interrupt Enable A
				Enables or disables interrupt requests (TGIA) TGFA bit when the TGFA bit in TSR is set to
				0: Interrupt requests (TGIA) by TGFA bit disa
				1: Interrupt requests (TGIA) by TGFA bit enal

Enables or disables interrupt requests (TGIB)

REJ09

Rev. 3.00 Mar. 04, 2009 Page

				0: A/D converter start request generation by comatch between TCNT_0 and TGRE_0 disal
				1: A/D converter start request generation by comatch between TCNT_0 and TGRE_0 enables.
6 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
1	TGIEF	0	R/W	TGR Interrupt Enable F
				Enables or disables interrupt requests by comp

TGRE_0.

match between TCNT_0 and TGRF_0.

TGR Interrupt Enable E

0: Interrupt requests (TGIF) by TGFE bit disab1: Interrupt requests (TGIF) by TGFE bit enabl

Enables or disables interrupt requests by compatch between TCNT_0 and TGRE_0.

0: Interrupt requests (TGIE) by TGEE bit disab1: Interrupt requests (TGIE) by TGEE bit enab

0

R/W

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 392 of 1168

0

TGIEE

0	TGIE5W	0	R/W	1: Interrupt requests (TGIV_5) enabled TGR Interrupt Enable 5W
				Enables or disables interrupt requests (TGIV CMFW5 bit when this bit in TSR_5 is set to
				0: Interrupt requests (TGIW_5) disabled
				1: Interrupt requests (TGIW_5) enabled

R/W

R/W

TGR Interrupt Enable 5U

TGR Interrupt Enable 5V

Enables or disables interrupt requests (TGIU) CMFU5 bit when this bit in TSR_5 is set to 1. 0: Interrupt requests (TGIU_5) disabled 1: Interrupt requests (TGIU_5) enabled

Enables or disables interrupt requests (TGIV

2

1

TGIE5U

TGIE5V

0

0

Rev. 3.00 Mar. 04, 2009 Page

		Initial		
Bit	Bit Name	Value	R/W	Description
7	TCFD	1	R	Count Direction Flag
				Status flag that shows the direction in which To counts in channels 1 to 4.
				In channel 0, bit 7 is reserved. It is always read and the write value should always be 1.
				0: TCNT counts down
				1: TCNT counts up
6	_	1	R	Reserved
				This bit is always read as 1. The write value shalways be 1.
5	TCFU	0	R/(W)*1	Underflow Flag
				Status flag that indicates that TCNT underflow occurred when channels 1 and 2 are set to pha counting mode. Only 0 can be written, for flag of
				In channels 0, 3, and 4, bit 5 is reserved. It is a read as 0 and the write value should always be
				[Clearing condition]
				When 0 is written to TCFU after reading TC
				[Setting condition]

Note: 1. Writing 0 to this bit after reading it as 1 clears the hag and is the only allowed way.

Rev. 3.00 Mar. 04, 2009 Page 394 of 1168

• When the TCNT value underflows (change

H'0000 to H'FFFF)

Status flag that indicates the occurrence of T capture or compare match in channels 0, 3, a Only 0 can be written, for flag clearing. In chand 2, bit 3 is reserved. It is always read as 0 write value should always be 0.
[Clearing condition]
 When 0 is written to TGFD after reading TGFD = 1*²
[Setting conditions]
 When TCNT = TGRD and TGRD is funct output compare register
 When TCNT value is transferred to TGRI capture signal and TGRD is functioning a capture register

3

TGFD

0

H'FFFF to H'0000)

R/(W)*1 Input Capture/Output Compare Flag D

In channel 4, when the TCNT_4 value un (changes from H'0001 to H'0000) in comp

PWM mode, this flag is also set.

Rev. 3.00 Mar. 04, 2009 Page

			[Setting conditions]
			 When TCNT = TGRC and TGRC is function output compare register
			 When TCNT value is transferred to TGRC capture signal and TGRC is functioning as capture register
1	TGFB	0	R/(W)*1 Input Capture/Output Compare Flag B
			Status flag that indicates the occurrence of To capture or compare match. Only 0 can be writ

flag clearing. [Clearing condition]

• When 0 is written to TGFB after reading TGFB = 1*2

[Setting conditions]

- When TCNT = TGRB and TGRB is function
- output compare register • When TCNT value is transferred to TGRB capture signal and TGRB is functioning as capture register

Rev. 3.00 Mar. 04, 2009 Page 396 of 1168

- When TCNT = TGRA and TGRA is function
 - output compare registerWhen TCNT value is transferred to TGRA
 - capture register

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed
2. When writing to the timer status register (TSR), write 0 to the bit to be cleared reading 1. Write 1 to other bits. But 1 is not actually written and the previous

held.

REJ09

				should always be 1.
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write va should always be 0.
1	TGFF	0	R/(W)*1	Compare Match Flag F
				Status flag that indicates the occurrence of comatch between TCNT_0 and TGRF_0.
				[Clearing condition]
				• When 0 is written to TGFF after reading TGFF = 1*2
				[Setting condition]
				 When TCNT_0 = TGRF_0 and TGRF_0 is functioning as compare register
0	TGFE	0	R/(W)*1	Compare Match Flag E

functioning as compare register

Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed visiting to the only allowed visit

RENESAS

2. When writing to the timer status register (TSR), write 0 to the bit to be cleared reading 1. Write 1 to other bits. But 1 is not actually written and the previous variables.

[Clearing condition]

TGFE = 1*²
[Setting condition]

Status flag that indicates the occurrence of comatch between TCNT_0 and TGRE_0.

When 0 is written to TGFE after reading

• When TCNT_0 = TGRE_0 and TGRE_0 is

held.

Rev. 3.00 Mar. 04, 2009 Page 398 of 1168

R/(W)*1 Compare Match/Input Capture Flag U5 Status flag that indicates the occurrence of TGI input capture or compare match. [Clearing condition] When 0 is written to CMFU5 after reading 0 [Setting conditions] When $TCNTU_5 = TGRU_5$ and $TGRU_5$ i functioning as output compare register When TCNTU_5 value is transferred to TGI input capture signal and TGRU_5 is functio input capture register When TCNTU_5 value is transferred to TGI TGRU_5 is functioning as a register for mea pulse width of the external input signal. The

2

CMFU₅

0

always be 0.

Rev. 3.00 Mar. 04, 2009 Page

timing is specified by the IOC bits in timer I/ registers U_5, V_5, and W_5 (TIORU_5, TI

and TIORW_5).*2

These bits are always read as 0. The write valu

 When TCNTV_5 value is transferred to TGR input capture signal and TGRV_5 is function input capture register

When TCNTV_5 value is transferred to TGR

TGRV_5 is functioning as a register for measurement of the second of the pulse width of the external input signal. The timing is specified by the IOC bits in timer I/C registers U_5, V_5, and W_5 (TIORU_5, TIC and TIORW_5).*2

- functioning as output compare register
 - When TCNTW_5 value is transferred to TG input capture signal and TGRW_5 is function input capture register.

R/W R/W

- input capture register
 When TCNTW_5 value is transferred to TG
- TGRW_5 is functioning as a register for me the pulse width of the external input signal.

 Notes: 1. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed

Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed
 Timing for transfer is set by the IOC bit in the timer I/O control register U_5/V (TIORU_5/V_5/W_5).

10.3.7 Timer Buffer Operation Transfer Mode Register (TBTM)

R/W: R

The TBTM registers are 8-bit readable/writable registers that specify the timing for tran data from the buffer register to the timer general register in PWM mode. The MTU2 has TBTM registers, one each for channels 0, 3, and 4.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	TTSE	TTSB	TTSA
Initial value:	0	0	0	0	0	0	0	0

REJ09

				not set this bit to 1.
				0: When compare match E occurs in channel 0
				1: When TCNT_0 is cleared
1	TTSB	0	R/W	Timing Select B
				Specifies the timing for transferring data from TGRB in each channel when they are used tog buffer operation. When the channel is used in other than PWM mode, do not set this bit to 1.
				0: When compare match B occurs in each cha
				1: When TCNT is cleared in each channel
0	TTSA	0	R/W	Timing Select A
				Specifies the timing for transferring data from TGRA in each channel when they are used tog buffer operation. When the channel is used in

channel 0 is used in a mode other than PWM r

other than PWM mode, do not set this bit to 1. 0: When compare match A occurs in each cha 1: When TCNT is cleared in each channel

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 402 of 1168

				0: Does not include the TIOC2B pin in the TG input capture conditions
				1: Includes the TIOC2B pin in the TGRB_1 in capture conditions
2	I2AE	0	R/W	Input Capture Enable
				Specifies whether to include the TIOC2A pin TGRA_1 input capture conditions.
				0: Does not include the TIOC2A pin in the TG input capture conditions
				1: Includes the TIOC2A pin in the TGRA_1 in capture conditions
1	I1BE	0	R/W	Input Capture Enable
				Specifies whether to include the TIOC1B pin TGRB_2 input capture conditions.
				0: Does not include the TIOC1B pin in the TO input capture conditions
				1: Includes the TIOC1B pin in the TGRB_2 in capture conditions

R

R/W

Reserved

always be 0.

Input Capture Enable

These bits are always read as 0. The write va

Specifies whether to include the TIOC2B pin

TGRB_1 input capture conditions.

All 0

0

7 to 4

I2BE

3

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

REJ09

10.3.9 Timer Synchronous Clear Register (TSYCR)

Initial

TSYCR is an 8-bit readable/writable register that specifies conditions for clearing TCNT TCNT_4 in the MTU2S in synchronization with the MTU2. The MTU2S has one TSYCl channel 3 but the MTU2 has no TSYCR.

Bit:	7	6	5	4	3	2	1	0
	CE0A	CE0B	CE0C	CE0D	CE1A	CE1B	CE2A	CE2B
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Bit	Bit Name	Value	R/W	Description
7	CE0A	0	R/W	Clear Enable 0A
				Enables or disables counter clearing when the flag of TSR_0 in the MTU2 is set.
				0: Disables counter clearing by the TGFA flag
				1: Enables counter clearing by the TGFA flag i
6	CE0B	0	R/W	Clear Enable 0B
				Enables or disables counter clearing when the flag of TSR_0 in the MTU2 is set.
				0: Disables counter clearing by the TGFB flag
				1: Enables counter clearing by the TGFB flag i

Rev. 3.00 Mar. 04, 2009 Page 404 of 1168 REJ09B0344-0300

RENESAS

				0: Disables counter clearing by the TGFA flag
				1: Enables counter clearing by the TGFA flag
2	CE1B	0	R/W	Clear Enable 1B
				Enables or disables counter clearing when the flag of TSR_1 in the MTU2 is set.
				0: Disables counter clearing by the TGFB flag
				1: Enables counter clearing by the TGFB flag
1	CE2A	0	R/W	Clear Enable 2A
				Enables or disables counter clearing when the flag of TSR_2 in the MTU2 is set.
				0: Disables counter clearing by the TGFA flag
				1: Enables counter clearing by the TGFA flag
0	CE2B	0	R/W	Clear Enable 2B
				Enables or disables counter clearing when the flag of TSR_2 in the MTU2 is set.
				0: Disables counter clearing by the TGFB fla

R/W

Clear Enable 1A

3

CE1A

0

1: Enables counter clearing by the TGFB flag

0: Disables counter clearing by the TGFD flag 1: Enables counter clearing by the TGFD flag

Enables or disables counter clearing when th

flag of TSR_1 in the MTU2 is set.

Bit	Bit Name	Value	R/W	Description
				·
15, 14	BF[1:0]	00	R/W	TADCOBRA_4/TADCOBRB_4 Transfer Timin
				Select the timing for transferring data from TADCOBRA_4 and TADCOBRB_4 to TADCO and TADCORB_4.
				For details, see table 10.29.
13 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
7	UT4AE	0	R/W	Up-Count TRG4AN Enable
				Enables or disables A/D converter start reques (TRG4AN) during TCNT_4 up-count operation
				A/D converter start requests (TRG4AN) disa during TCNT_4 up-count operation
				 A/D converter start requests (TRG4AN) ena during TCNT_4 up-count operation
6	DT4AE	0*	R/W	Down-Count TRG4AN Enable
				Enables or disables A/D converter start reques (TRG4AN) during TCNT_4 down-count operat
				A/D converter start requests (TRG4AN) disa during TCNT_4 down-count operation
				1: A/D converter start requests (TRG4AN) ena during TCNT_4 down-count operation

Initial

Rev. 3.00 Mar. 04, 2009 Page 406 of 1168 REJ09B0344-0300

					A/D converter start requests (TRG4BN) dis during TCNT_4 down-count operation
					A/D converter start requests (TRG4BN) en during TCNT_4 down-count operation
-	3	ITA3AE	0*	R/W	TGIA_3 Interrupt Skipping Link Enable
					Select whether to link A/D converter start required (TRG4AN) with TGIA_3 interrupt skipping open

2

ITA4VE

0*

					Select whether to link A/D converter start requ (TRG4AN) with TCIV_4 interrupt skipping open
					0: Does not link with TCIV_4 interrupt skippin
					1: Links with TCIV_4 interrupt skipping
-	1	ITB3AE	0*	R/W	TGIA_3 Interrupt Skipping Link Enable
					Select whether to link A/D converter start requ (TRG4BN) with TGIA_3 interrupt skipping open
					0: Does not link with TGIA_3 interrupt skippin
					1: Links with TGIA_3 interrupt skipping

R/W

Rev. 3.00 Mar. 04, 2009 Page

Enables of disables 700 converter start reque (TRG4BN) during TCNT_4 down-count opera

0: Does not link with TGIA_3 interrupt skippin 1: Links with TGIA_3 interrupt skipping

TCIV_4 Interrupt Skipping Link Enable

interrupt skipping operation (clear the ITA3AE, ITA4VE, ITB3AE, and ITB4VE timer A/D converter start request control register (TADCR) to 0).

- 3. If link with interrupt skipping is enabled while interrupt skipping is disabled, A/E converter start requests will not be issued.
 - Do not set to 1 when complementary PWM mode is not selected.

Table 10.29 Setting of Transfer Timing by Bits BF1 and BF0

DIL /	DIL 0	
BF1	BF0	Description
0	0	Does not transfer data from the cycle set buffer register to the set register.
0	1	Transfers data from the cycle set buffer register to the cycle register at the crest of the TCNT_4 count.* ¹
1	0	Transfers data from the cycle set buffer register to the cycle

Notes: 1. Data is transferred from the cycle set buffer register to the cycle set register w crest of the TCNT_4 count is reached in complementary PWM mode, when co match occurs between TCNT 3 and TGRA 3 in reset-synchronized PWM mod when compare match occurs between TCNT_4 and TGRA_4 in PWM mode 1 normal operation mode.

2. These settings are prohibited when complementary PWM mode is not selected

register at the trough of the TCNT_4 count.*2

Transfers data from the cycle set buffer register to the cycle register at the crest and trough of the TCNT_4 count.*2

Dit 7

1

Dit 6

1

Note: TADCORA_4 and TADCORB_4 must not be accessed in eight bits; they should always be accessed in 16

10.3.12 Timer A/D Converter Start Request Cycle Set Buffer Registers (TADCO) and TADCOBRB 4)

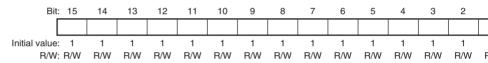
TADCOBRA_4 and TADCOBRB_4 are 16-bit readable/writable registers. When the cr trough of the TCNT_4 count is reached, these register values are transferred to TADCO TADCORB 4, respectively.

TADCOBRA_4 and TADCOBRB_4 are initialized to H'FFFF.

Bit: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value: 1	1	1	1	•	•	•	•	•	•	1	1	1	1
R/W: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RΛ

Note: TADCOBRA_4 and TADCOBRB_4 must not be accessed in eight bits; they should always be accessed in

Note: The TCNT counters must not be accessed in eight bits; they should always be accessed in 16 bits.


10.3.14 Timer General Register (TGR)

The TGR registers are 16-bit readable/writable registers. The MTU2 has 21 TGR register channel 0, two each for channels 1 and 2, four each for channels 3 and 4, and three for channels 1 are 2, four each for channels 3 and 4, and three for channels 3 are 4.

TGRA, TGRB, TGRC, and TGRD function as either output compare or input capture reg TGRC and TGRD for channels 0, 3, and 4 can also be designated for operation as buffer TGR buffer register combinations are TGRA and TGRC, and TGRB and TGRD.

TGRE_0 and TGRF_0 function as compare registers. When the TCNT_0 count matches TGRE_0 value, an A/D converter start request can be issued. TGRF can also be designated operation as a buffer register. TGR buffer register combination is TGRE and TGRF.

TGRU_5, TGRV_5, and TGRW_5 function as compare match, input capture, or external width measurement registers.

Note: The TGR registers must not be accessed in eight bits; they should always be accessed in 16 bits. TGR registers are initialized to H'FFFF.

Rev. 3.00 Mar. 04, 2009 Page 410 of 1168

REJ09B0344-0300

Bit:	7	6	5	4	3	2	1	0
	CST4	CST3	-	-	-	CST2	CST1	CST0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
		value		Description
7	CST4	0	R/W	Counter Start 4 and 3
6	CST3	0	R/W	These bits select operation or stoppage for T
				If 0 is written to the CST bit during operation of TIOC pin designated for output, the counter so the TIOC pin output compare output level is retailed. TIOR is written to when the CST bit is cleared pin output level will be changed to the set initivalue.
				0: TCNT_4 and TCNT_3 count operation is st
				1: TCNT_4 and TCNT_3 performs count oper
5 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.

TSTR_5

Bit :	7	6	5	4	3	2	1	0
	-	-	-	-	-	CSTU5	CSTV5	CSTW5
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write val always be 0.
2	CSTU5	0	R/W	Counter Start U5
				Selects operation or stoppage for TCNTU_5.
				0: TCNTU_5 count operation is stopped
				1: TCNTU_5 performs count operation
1	CSTV5	0	R/W	Counter Start V5
				Selects operation or stoppage for TCNTV_5.
				0: TCNTV_5 count operation is stopped
				1: TCNTV_5 performs count operation
0	CSTW5	0	R/W	Counter Start W5
				Selects operation or stoppage for TCNTW_5.
				0: TCNTW_5 count operation is stopped
				1: TCNTW_5 performs count operation

Rev. 3.00 Mar. 04, 2009 Page 412 of 1168 REJ09B0344-0300

RENESAS

				To set synchronous operation, the SYNC bits least two channels must be set to 1. To set synchronous clearing, in addition to the SYNC TCNT clearing source must also be set by me bits CCLR0 to CCLR2 in TCR.
				TCNT_4 and TCNT_3 operate independen presetting/clearing is unrelated to other cha
				 TCNT_4 and TCNT_3 performs synchrono operation TCNT synchronous presetting/synchronous is possible
5 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.

R/W

R/W

R/W

Description

channel, are possible.

Timer Synchronous operation 4 and 3

These bits are used to select whether operati

independent of or synchronized with other ch When synchronous operation is selected, the synchronous presetting of multiple channels, synchronous clearing by counter clearing on

Value

0

0

Bit

7

6

Bit Name

SYNC4

SYNC3

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

TCNT clearing source must also be set by meabits CCLR0 to CCLR2 in TCR.

- 0: TCNT_2 to TCNT_0 operates independently presetting /clearing is unrelated to other cha
- 1: TCNT_2 to TCNT_0 performs synchronous TCNT synchronous presetting/synchronous is possible

				[Clearing condition]
				• When 1 is set to the CST0 bit of TSTR in while SCH0 = 1
6	SCH1	0	R/(W)*	Synchronous Start
				Controls synchronous start of TCNT_1 in the
				0: Does not specify synchronous start for TCI the MTU2
				1: Specifies synchronous start for TCNT_1 in
				[Clearing condition]
				• When 1 is set to the CST1 bit of TSTR in while SCH1 = 1

Initial Value

0

R/W

R/(W)*

Description

Synchronous Start

the MTU2

Controls synchronous start of TCNT_0 in the 0: Does not specify synchronous start for TCI

1: Specifies synchronous start for TCNT_0 in

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Bit

7

Bit Name

SCH0

4	SCH3	0	R/(W)*	Synchronous Start
				Controls synchronous start of TCNT_3 in the M
				0: Does not specify synchronous start for TCN the MTU2
				1: Specifies synchronous start for TCNT_3 in t
				[Clearing condition]
				 When 1 is set to the CST3 bit of TSTR in N while SCH3 = 1
3	SCH4	0	R/(W)*	Synchronous Start
				Controls synchronous start of TCNT_4 in the M
				0: Does not specify synchronous start for TCN the MTU2
				1: Specifies synchronous start for TCNT_4 in t
				[Clearing condition]
				 When 1 is set to the CST4 bit of TSTR in M while SCH4 = 1
2	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.

Rev. 3.00 Mar. 04, 2009 Page 416 of 1168 RENESAS REJ09B0344-0300

	Controls synchronous start of TCNT_4S in the
	 Does not specify synchronous start for TCI the MTU2S
	 Specifies synchronous start for TCNT_4S i MTU2S
	[Clearing condition]
	 When 1 is set to the CST4 bit of TSTRS in while SCH4S = 1
Note: Only 1 can be written to se	the register.

Wille SCH3S = 1

R/(W)* Synchronous Start

SCH4S

Rev. 3.00 Mar. 04, 2009 Page

Bit	Bit Name	Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
0	RWE	1	R/W	Read/Write Enable
				Enables or disables access to the registers wh write-protection capability against accidental modification.
				0: Disables read/write access to the registers
				1: Enables read/write access to the registers
				[Clearing condition]
				 When 0 is written to the RWE bit after read RWE = 1

Initial

Registers and counters having write-protection capability against accidental modifica 22 registers: TCR_3, TCR_4, TMDR_3, TMDR_4, TIORH_3, TIORH_4, TIORL_3, TIORL_4, TIER_3, TIER_4, TGRA_3, TGRA_4, TGRB_3, TGRB_4, TOER, TOCK TOCR2, TGCR, TCDR, TDDR, TCNT_3, and TCNT4.

Rev. 3.00 Mar. 04, 2009 Page 418 of 1168

				<u> </u>
7, 6		All 1	R	Reserved
				These bits are always read as 1. The write va always be 1.
5	OE4D	0	R/W	Master Enable TIOC4D
				This bit enables/disables the TIOC4D pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
4	OE4C	0	R/W	Master Enable TIOC4C
				This bit enables/disables the TIOC4C pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
3	OE3D	0	R/W	Master Enable TIOC3D
				This bit enables/disables the TIOC3D pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
2	OE4B	0	R/W	Master Enable TIOC4B
				This bit enables/disables the TIOC4B pin MT
				0: MTU2 output is disabled (inactive level)*
				1: MTU2 output is enabled
1	OE4A	0	R/W	Master Enable TIOC4A
				This bit enables/disables the TIOC4A pin MT

Initial

Value

R/W

Description

Bit

Bit Name

1: MTU2 output is enabled

0: MTU2 output is disabled (inactive level)*

10.3.20 Timer Output Control Register 1 (TOCR1)

TOCR1 is an 8-bit readable/writable register that enables/disables PWM synchronized to output in complementary PWM mode/reset synchronized PWM mode, and controls output inversion of PWM output.

Bit:	7	6	5	4	3	2	1	0
[-	PSYE	-	-	TOCL	TOCS	OLSN	OLSP
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R/W	R	R	R/(W)*	R/W	R/W	R/W

Note: * This bit can be set to 1 only once after a power-on reset. After 1 is written, 0 cannot be written to the

		Initial		
Bit	Bit Name	value	R/W	Description
7	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.
6	PSYE	0	R/W	PWM Synchronous Output Enable
				This bit selects the enable/disable of toggle ou synchronized with the PWM period.
				0: Toggle output is disabled
				1: Toggle output is enabled
5, 4	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.

Rev. 3.00 Mar. 04, 2009 Page 420 of 1168

REJ09B0344-0300

				be used for the output level in complementary mode and reset-synchronized PWM mode.
				0: TOCR1 setting is selected
				1: TOCR2 setting is selected
1	OLSN	0	R/W	Output Level Select N*3
				This bit selects the reverse phase output leve synchronized PWM mode/complementary PV See table 10.30.

Output Level Select P*3

Function

This bit selects the positive phase output leve synchronized PWM mode/complementary PV

Rev. 3.00 Mar. 04, 2009 Page

REJ09

See table 10.31. Notes: 1. This bit can be set to 1 only once after a power-on reset. After 1 is written, 0 of written to the bit.

2. Setting the TOCL bit to 1 prevents accidental modification when the CPU goe control.

R/W

3. Clearing the TOCS0 bit to 0 makes this bit setting valid.

Table 10.30 Output Level Select Function

0

0

Bit 1

OLSP

			Compare Match Outpo	
OLSN	Initial Output	Active Level	Up Count	Down Count
0	High level	Low level	High level	Low level
1	Low level	High level	Low level	High level

Note: The reverse phase waveform initial output value changes to active level after elap dead time after count start.

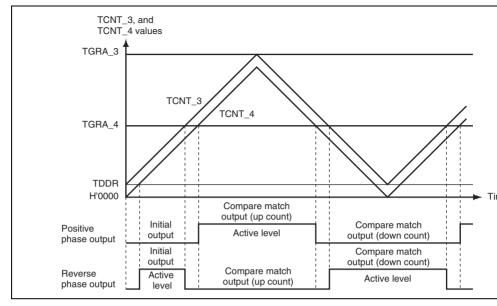


Figure 10.2 Complementary PWM Mode Output Level Example

				This bit selects the output level on TIOC4D ir synchronized PWM mode/complementary PV See table 10.33.
4	OLS3P	0	R/W	Output Level Select 3P*
				This bit selects the output level on TIOC4B ir synchronized PWM mode/complementary PV See table 10.34.
3	OLS2N	0	R/W	Output Level Select 2N*
				This bit selects the output level on TIOC4C in synchronized PWM mode/complementary PV See table 10.35.
2	OLS2P	0	R/W	Output Level Select 2P*
				This bit selects the output level on TIOC4A is synchronized PWM mode/complementary Pt See table 10.36.
1	OLS1N	0	R/W	Output Level Select 1N*
				This bit selects the output level on TIOC3D is synchronized PWM mode/complementary Pt See table 10.37.

Bit

7, 6

5

Bit Name

BF[1:0]

OLS3N

value

00

0

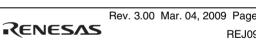
R/W

R/W

R/W

Description

TOLBR to TOCR2.


For details, see table 10.32.

Output Level Select 3N*

TOLBR Buffer Transfer Timing Select

These bits select the timing for transferring da

0	1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest of the TCNT_4 count.			
1	0	Transfers data from the buffer register (TOLBR) to TOCR2 at the trough of the TCNT_4 count.			
1	1	Transfers data from the buffer register (TOLBR) to TOCR2 at the crest and trough of the TCNT_4 count.			
Table 10.33 TIOC4D Output Level Select Function					

Complementary PWM Mode

Does not transfer data from the

buffer register (TOLBR) to TOCR2.

Reset-Synchronized PW

Does not transfer data from

buffer register (TOLBR) to

Transfers data from the bu

register (TOLBR) to TOCF TCNT_3/TCNT_4 is cleared

Setting prohibited

Setting prohibited

Compare Match Output

Down Count

Low level

High level

T

Initial Output

the dead time after count start.

Rev. 3.00 Mar. 04, 2009 Page 424 of 1168

High level

Low level

Active Level

Low level

High level

RENESAS

Function

Up Count

High level

Low level

The reverse phase waveform initial output value changes to the active level after e

BF1

Bit 5

OLS3N

0

1

Note:

0

BF0 0

0	High level	Low level	High level	Low level			
1	Low level	High level	Low level	High level			
Note:	Note: The reverse phase waveform initial output value changes to the active level after the dead time after count start.						
Table	Table 10.36 TIOC4A Output Level Select Function						

Up Count

High level

Active Level

Initial Output

Low level

DIL 3

OLS2N

Bit 2	Function				
				Compare Match Output	
OLS2P	Initial Output	Active Level	Up Count	Down Count	
0	High level	Low level	Low level	High level	

High level

Table 10.37 TIOC3D Output Level Select Function

Function Bit 1

	- (Compare Match Output			
OLS1N	Initial Output	Active Level	Up Count	Down Count		
0	High level	Low level	High level	Low level		
1	Low level	High level	Low level	High level		

The reverse phase waveform initial output value changes to the active level after

the dead time after count start.

Compare Match Output

Down Count

Low level

TOLBR is an 8-bit readable/writable register that functions as a buffer for TOCR2 and sp the PWM output level in complementary PWM mode and reset-synchronized PWM mod

Initial

value

R/W

Bit:	7	6	5	4	3	2	1	0
	1	-	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N	OLS1P
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R/W	R/W	R/W	R/W	R/W	R/W

Description

7, 6	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
5	OLS3N	0	R/W	Specifies the buffer value to be transferred to t OLS3N bit in TOCR2.
4	OLS3P	0	R/W	Specifies the buffer value to be transferred to t OLS3P bit in TOCR2.
3	OLS2N	0	R/W	Specifies the buffer value to be transferred to t OLS2N bit in TOCR2.
2	OLS2P	0	R/W	Specifies the buffer value to be transferred to t OLS2P bit in TOCR2.
1	OLS1N	0	R/W	Specifies the buffer value to be transferred to t OLS1N bit in TOCR2.
0	OLS1P	0	R/W	Specifies the buffer value to be transferred to t OLS1P bit in TOCR2.

Bit

Bit Name

Figure 10.3 PWM Output Level Setting Procedure in Buffer Operation

10.3.23 Timer Gate Control Register (TGCR)

TGCR is an 8-bit readable/writable register that controls the waveform output necessary brushless DC motor control in reset-synchronized PWM mode/complementary PWM m register settings are ineffective for anything other than complementary PWM mode/rese synchronized PWM mode.

Bit:	7	6	5	4	3	2	1	0
	-	BDC	N	Р	FB	WF	VF	UF
Initial value:	1	0	0	0	0	0	0	0
R/W·	R	R/W						

Bit	Bit Name	Initial value	R/W	Description
7	_	1	R	Reserved
				This bit is always read as 1. The write value salways be 1.
6	BDC	0	R/W	Brushless DC Motor
				This bit selects whether to make the functions register (TGCR) effective or ineffective.
				0: Ordinary output
				1: Functions of this register are made effective

This bit selects whether the level output or the synchronized PWM/complementary PWM output the positive pin (TIOC3B, TIOC4A, and TIOC4 output.
0: Level output
 Reset synchronized PWM/complementary F output
External Feedback Signal Enable

3	FB*	0	R/W	External Feedback Signal Enable
				This bit selects whether the switching of the out the positive/reverse phase is carried out autom
				with the MTU2/channel 0 TGRA, TGRB, TGRO

TGCR.

0: Output switching is external input (Input sou

channel 0 TGRA, TGRB, TGRC input captu 1: Output switching is carried out by software (values of UF, VF, and WF in TGCR).

capture signals or by writing 0 or 1 to bits 2 to

DIF 0 B/W phase on or off state. The setting of the	WF	0	R/W	Output Phase Switch 2 to 0
UE () B/W '	VF	0	R/W	These bits set the positive phase/negative pha
,	UF	0	R/W	only when the FB bit in this register is set to 1. case, the setting of bits 2 to 0 is a substitute fo

Note: If the BDC bit in the MTU2S is set to 1, the FB bit should not be cleared to 0.

Rev. 3.00 Mar. 04, 2009 Page 428 of 1168

2

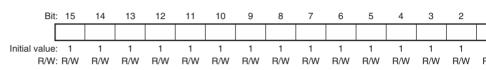
	1	ON	OFF	OFF	OFF	ON
1	0	OFF	OFF	ON	ON	OFF
	1	OFF	OFF	OFF	OFF	OFF

10.3.24 Timer Subcounter (TCNTS)

TCNTS is a 16-bit read-only counter that is used only in complementary PWM mode.

The initial value of TCNTS is H'0000.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R


Note: Accessing the TCNTS in 8-bit units is prohibited. Always access in 16-bit units.

Note: Accessing the TDDR in 8-bit units is prohibited. Always access in 16-bit units.

10.3.26 Timer Cycle Data Register (TCDR)

TCDR is a 16-bit register used only in complementary PWM mode. Set half the PWM ca value as the TCDR register value. This register is constantly compared with the TCNTS complementary PWM mode, and when a match occurs, the TCNTS counter switches directly (decrement to increment).

The initial value of TCDR is H'FFFF.

Note: Accessing the TCDR in 8-bit units is prohibited. Always access in 16-bit units.

Rev. 3.00 Mar. 04, 2009 Page 430 of 1168

REJ09B0344-0300

RENESAS

10.3.28 Timer Interrupt Skipping Set Register (TITCR)

TITCR is an 8-bit readable/writable register that enables or disables interrupt skipping a specifies the interrupt skipping count. The MTU2 has one TITCR.

Bit:	7	6	5	4	3	2	1	0
	T3AEN	3/	ACOR[2:	0]	T4VEN	4'	VCOR[2:	0]
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	value	R/W	Description
7	T3AEN	0	R/W	T3AEN
				Enables or disables TGIA_3 interrupt skipping
				0: TGIA_3 interrupt skipping disabled
				1: TGIA_3 interrupt skipping enabled
6 to 4	3ACOR[2:0]	000	R/W	These bits specify the TGIA_3 interrupt skipp within the range from 0 to 7.*
				For details, see table 10.40.
3	T4VEN	0	R/W	T4VEN
				Enables or disables TCIV_4 interrupt skipping
				0: TCIV_4 interrupt skipping disabled
				1: TCIV_4 interrupt skipping enabled

Rev. 3.00 Mar. 04, 2009 Page

3ACOR2	3ACOR1	3ACOR0	Description
0	0	0	Does not skip TGIA_3 interrupts.
0	0	1	Sets the TGIA_3 interrupt skipping count to 1.
0	1	0	Sets the TGIA_3 interrupt skipping count to 2.
0	1	1	Sets the TGIA_3 interrupt skipping count to 3.
1	0	0	Sets the TGIA_3 interrupt skipping count to 4.
1	0	1	Sets the TGIA_3 interrupt skipping count to 5.
1	1	0	Sets the TGIA_3 interrupt skipping count to 6.
1	1	1	Sets the TGIA_3 interrupt skipping count to 7.

Table 10.41 Setting of Interrupt Skipping Count by Bits 4VCOR2 to 4VCOR0				
Bit 2	Bit 1	Bit 0		
4VCOR2	4VCOR1	4VCOR0	Description	
0	0	0	Does not skip TCIV_4 interrupts.	
0	0	1	Sets the TCIV_4 interrupt skipping count to 1.	
0	1	0	Sets the TCIV_4 interrupt skipping count to 2.	
0	1	1	Sets the TCIV_4 interrupt skipping count to 3.	
1	0	0	Sets the TCIV_4 interrupt skipping count to 4.	
1	0	1	Sets the TCIV_4 interrupt skipping count to 5.	
1	1	0	Sets the TCIV_4 interrupt skipping count to 6.	

1

Sets the TCIV_4 interrupt skipping count to 7.

1

Bit 6

Bit 5

Bit 4

				[Clearing conditions]
				 When the 3ACNT2 to 3ACNT0 value in T matches the 3ACOR2 to 3ACOR0 value When the T3AEN bit in TITCR is cleared
				When the 3ACOR2 to 3ACOR0 bits in Ti cleared to 0
3	_	0	R	Reserved
				This bit is always read as 0.
2 to 0	4VCNT[2:0]	000	R	TCIV_4 Interrupt Counter
				While the T4VEN bit in TITCR is set to 1, the these bits is incremented every time a TCIV_occurs.
				[Clearing conditions]
				 When the 4VCNT2 to 4VCNT0 value in T matches the 4VCOR2 to 4VCOR2 value
				When the T4VEN bit in TITCR is cleared
				When the 4VCOR2 to 4VCOR2 bits in TI
				cleared to 0
Note:	To clear the Ti	TCNT, cle	ar the b	its T3AEN and T4VEN in TITCR to 0.
				Rev. 3.00 Mar. 04, 2009 Page

R

R

Reserved

occurs.

This bit is always read as 0.

While the T3AEN bit in TITCR is set to 1, the these bits is incremented every time a TGIA_

TGIA_3 Interrupt Counter

0

3ACNT[2:0] 000

6 to 4

				-
7 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
1, 0	BTE[1:0]	00	R/W	These bits enable or disable transfer from the registers* used in complementary PWM mode temporary registers and specify whether to link transfer with interrupt skipping operation.
				For details, see table 10.42.
Note:		e buffer re	0	TODD 4 and TODD

R/W

Description

TGRC_3, TGRD_3, TGRC_4, TGRD_4, and TCBR

Bit

Bit Name

Value

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 434 of 1168

1. Data is transferred according to the MDS to MDS bit setting in TMD1. For det to section 10.4.8, Complementary PWM Mode.

transfer will not be performed.

2. When interrupt skipping is disabled (the T3AEN and T4VEN bits are cleared timer interrupt skipping set register (TITCR) or the skipping count set bits (3A 4VCOR) in TITCR are cleared to 0)), be sure to disable link of buffer transfer interrupt skipping (clear the BTE1 bit in the timer buffer transfer set register (0). If link with interrupt skipping is enabled while interrupt skipping is disabled

				-		
7 to 1	_	All 0	R	Reserved		
				These bits are always read as 0. The write val always be 0.		
0	TDER	1	R/(W)	Dead Time Enable		
				Specifies whether to generate dead time.		
				0: Does not generate dead time		
				1: Generates dead time*		
				[Clearing condition]		
				When 0 is written to TDER after reading TI		
Note:	: * TDDR must be set to 1 or a larger value.					

Description

R/W

N

Initial

Value

Bit

Bit Name

Rev. 3.00 Mar. 04, 2009 Page 436 of 1168

Note: * Do not set to 1 when complementary PWM mode is not selected.

Bit	Bit Name	Initial Value	R/W	Description
7	CCE	0*	R/(W)	Compare Match Clear Enable
				Specifies whether to clear counters at TGRA compare match in complementary PWM mod
				0: Does not clear counters at TGRA_3 compa
				1: Clears counters at TGRA_3 compare matc
				[Setting condition]
				When 1 is written to CCE after reading CC
6 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.

Counter clearing synchronized with the MTU2 disabled by the SCC bit setting only when synclearing occurs outside the Tb interval at the tr When synchronous clearing occurs in the Tb in

TCNT_4 in the MTU2S are cleared.

For the Tb interval at the trough in complemen PWM mode, see figure 10.40.

the trough including the period immediately aft TCNT_3 and TCNT_4 start operation, TCNT_5

In the MTU2, this bit is reserved. It is always reand the write value should always be 0.

When 1 is written to SCC after reading SC

- O: Enables clearing of TCNT_3 and TCNT_4 in MTU2S by MTU2–MTU2S synchronous clear operation

 O: Enables clearing of TCNT_3 and TCNT_4 in MTU2S by MTU2–MTU2S synchronous clear operation

 O: Enables clearing of TCNT_3 and TCNT_4 in MTU2S by MTU2–MTU2S synchronous clear operation.
- Disables clearing of TCNT_3 and TCNT_4 i MTU2S by MTU2–MTU2S synchronous clear operation

Catting condition

[Setting condition]

Rev. 3.00 Mar. 04, 2009 Page 438 of 1168

the trough immediately after TCNT_3 and TC operation.

operation.

For the Tb interval at the trough in compleme

- PWM mode, see figure 10.40.
- 0: Outputs the initial value specified in TOCR
- Retains the waveform output immediately l synchronous clearing

When 1 is written to WRE after reading W

[Setting condition]

Note: * Do not set to 1 when complementary PWM mode is not selected.

10.3.33 Bus Master Interface

timer A/D converter start request control register (TADCR), timer A/D converter start recycle set registers (TADCOR), and timer A/D converter start request cycle set buffer registers (TADCOBR) are 16-bit registers. A 16-bit data bus to the bus master enables 16-bit readbit read/write is not possible. Always access in 16-bit units.

The timer counters (TCNT), general registers (TGR), timer subcounter (TCNTS), timer buffer register (TCBR), timer dead time data register (TDDR), timer cycle data register

All registers other than the above registers are 8-bit registers. These are connected to the 16-bit data bus, so 16-bit read/writes and 8-bit read/writes are both possible.

(1) Counter Operation

When one of bits CST0 to CST4 in TSTR or bits CSTU5, CSTV5, and CSTW5 in TSTR to 1, the TCNT counter for the corresponding channel begins counting. TCNT can operat free-running counter, periodic counter, for example.

(a) Example of Count Operation Setting Procedure

Figure 10.4 shows an example of the count operation setting procedure.

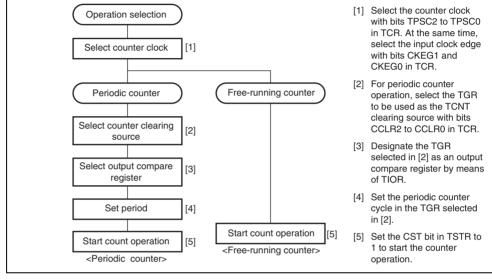


Figure 10.4 Example of Counter Operation Setting Procedure

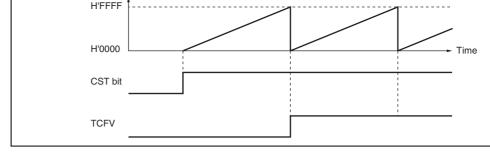


Figure 10.5 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the channel performs periodic count operation. The TGR register for setting the period is deas an output compare register, and counter clearing by compare match is selected by me CCLR0 to CCLR2 in TCR. After the settings have been made, TCNT starts up-count of a periodic counter when the corresponding bit in TSTR is set to 1. When the count value the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the MTU2 requests interrupt. After a compare match, TCNT starts counting up again from H'0000.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

Figure 10.6 Periodic Counter Operation

(2) Waveform Output by Compare Match

The MTU2 can perform 0, 1, or toggle output from the corresponding output pin using comatch.

(a) Example of Setting Procedure for Waveform Output by Compare Match

Figure 10.7 shows an example of the setting procedure for waveform output by compare

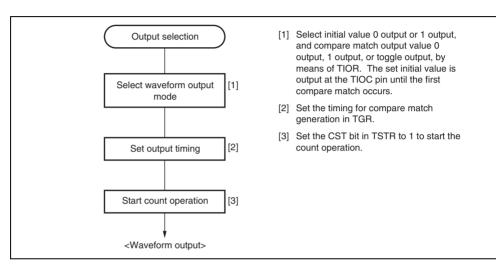


Figure 10.7 Example of Setting Procedure for Waveform Output by Compare N

Rev. 3.00 Mar. 04, 2009 Page 442 of 1168 REJ09B0344-0300

RENESAS

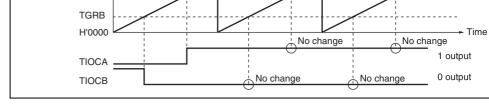


Figure 10.8 Example of 0 Output/1 Output Operation

Figure 10.9 shows an example of toggle output.

In this example, TCNT has been designated as a periodic counter (with counter clearing compare match B), and settings have been made such that the output is toggled by both match A and compare match B.

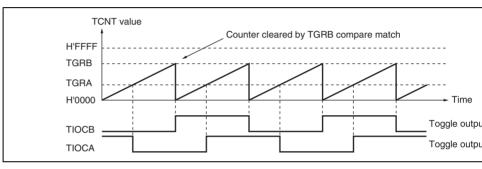


Figure 10.9 Example of Toggle Output Operation

Rev. 3.00 Mar. 04, 2009 Page

(a) Example of Input Capture Operation Setting Procedure

Figure 10.10 shows an example of the input capture operation setting procedure.

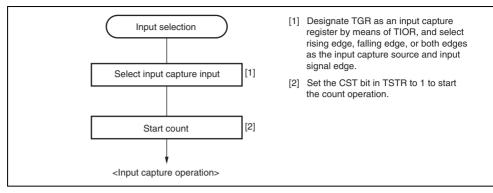


Figure 10.10 Example of Input Capture Operation Setting Procedure

Rev. 3.00 Mar. 04, 2009 Page 444 of 1168

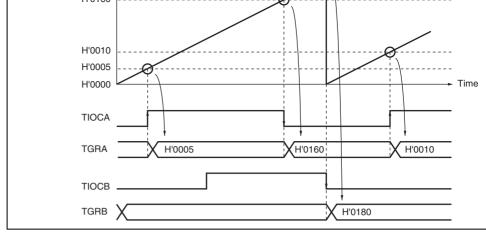
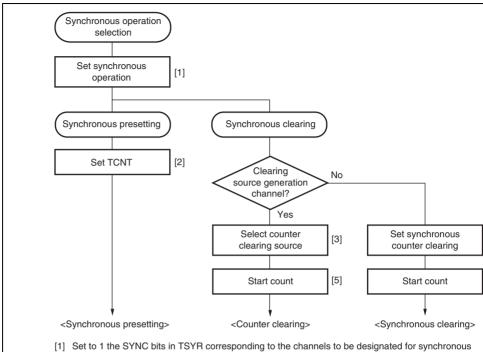



Figure 10.11 Example of Input Capture Operation

Rev. 3.00 Mar. 04, 2009 Page

Example of Synchronous Operation Setting Procedure

Figure 10.12 shows an example of the synchronous operation setting procedure.

- operation.
- [2] When the TCNT counter of any of the channels designated for synchronous operation is written to, the same value is simultaneously written to the other TCNT counters.
- [3] Use bits CCLR2 to CCLR0 in TCR to specify TCNT clearing by input capture/output compare, etc. [4] Use bits CCLR2 to CCLR0 in TCR to designate synchronous clearing for the counter clearing source
- [5] Set to 1 the CST bits in TSTR for the relevant channels, to start the count operation.

Figure 10.12 Example of Synchronous Operation Setting Procedure

Rev. 3.00 Mar. 04, 2009 Page 446 of 1168

, 010.

For details of PWM modes, see section 10.4.5, PWM Modes.

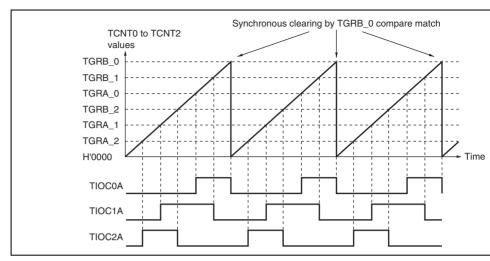


Figure 10.13 Example of Synchronous Operation

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

Table 10.43 shows the register combinations used in buffer operation.

Table 10.43 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0
	TGRE_0	TGRF_0
3	TGRA_3	TGRC_3
	TGRB_3	TGRD_3
4	TGRA_4	TGRC_4
	TGRB_4	TGRD_4

When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding of transferred to the timer general register.

This operation is illustrated in figure 10.14.

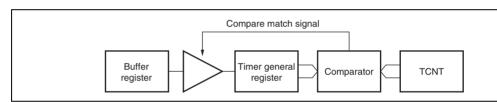


Figure 10.14 Compare Match Buffer Operation

Rev. 3.00 Mar. 04, 2009 Page 448 of 1168 REJ09B0344-0300

RENESAS

Figure 10.15 Input Capture Buffer Operation

(1) Example of Buffer Operation Setting Procedure

Figure 10.16 shows an example of the buffer operation setting procedure.

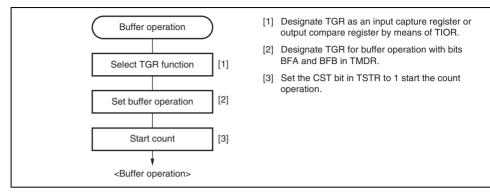


Figure 10.16 Example of Buffer Operation Setting Procedure

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

F. 1.4.11 CDWM ... 1. ... 10.45 DWMM.1.

For details of PWM modes, see section 10.4.5, PWM Modes.

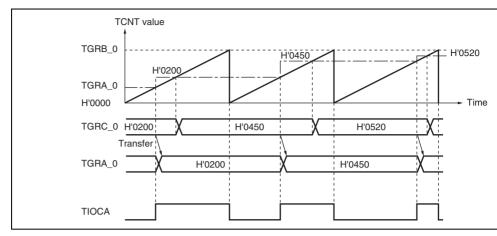


Figure 10.17 Example of Buffer Operation (1)

(b) When TGR is an input capture register

Figure 10.18 shows an operation example in which TGRA has been designated as an inpuregister, and buffer operation has been designated for TGRA and TGRC.

Counter clearing by TGRA input capture has been set for TCNT, and both rising and fall have been selected as the TIOCA pin input capture input edge.

As buffer operation has been set, when the TCNT value is stored in TGRA upon the occurring transferred to TCNT value is simultaneously transferred to TCNT.

Rev. 3.00 Mar. 04, 2009 Page 450 of 1168

TGRA	χ H'0532	H'0F07	H'09FB
	1	\	
TGRC	X	H'0532	H'0F07

Figure 10.18 Example of Buffer Operation (2)

3) Selecting Timing for Transfer from Buffer Registers to Timer General Regist Buffer Operation

The timing for transfer from buffer registers to timer general registers can be selected in mode 1 or 2 for channel 0 or in PWM mode 1 for channels 3 and 4 by setting the buffer transfer mode registers (TBTM_0, TBTM_3, and TBTM_4). Either compare match (ini setting) or TCNT clearing can be selected for the transfer timing. TCNT clearing as trantiming is one of the following cases.

- When TCNT overflows (H'FFFF to H'0000)
- When H'0000 is written to TCNT during counting
- When TCNT is cleared to H'0000 under the condition specified in the CCLR2 to CC in TCR

Note: TBTM must be modified only while TCNT stops.

Figure 10.19 shows an operation example in which PWM mode 1 is designated for char buffer operation is designated for TGRA_0 and TGRC_0. The settings used in this exam TCNT_0 clearing by compare match B, 1 output at compare match A, and 0 output at compare match B. The TTSA bit in TBTM_0 is set to 1.

Rev. 3.00 Mar. 04, 2009 Page

TIOCA

Figure 10.19 Example of Buffer Operation When TCNT_0 Clearing is Selected

TGRC 0 to TGRA 0 Transfer Timing

10.4.4 **Cascaded Operation**

In cascaded operation, two 16-bit counters for different channels are used together as a 32 counter.

This function works by counting the channel 1 counter clock upon overflow/underflow or TCNT_2 as set in bits TPSC0 to TPSC2 in TCR.

Underflow occurs only when the lower 16-bit TCNT is in phase counting mode.

Table 10.44 shows the register combinations used in cascaded operation.

When phase counting mode is set for channel 1, the counter clock setting is inval counters operates independently in phase counting mode.

Table 10.44 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
Channels 1 and 2	TCNT_1	TCNT_2

For simultaneous input capture of TCNT_1 and TCNT_2 during cascaded operation, add input capture input pins can be specified by the input capture control register (TICCR). F capture in cascade connection, refer to section 10.7.22, Simultaneous Capture of TCNT_ TCNT_2 in Cascade Connection.

Rev. 3.00 Mar. 04, 2009 Page 452 of 1168

	TIAE DIL = 1	HOCZA, HOCTA
Input capture from TCNT_2	I1BE bit = 0 (initial value)	TIOC2B
TGRB_2	I1BE bit = 1	TIOC2B, TIOC1B

(1) Example of Cascaded Operation Setting Procedure

Figure 10.20 shows an example of the setting procedure for cascaded operation.

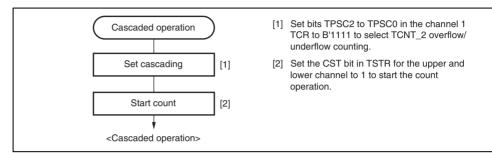


Figure 10.20 Cascaded Operation Setting Procedure

(2) Cascaded Operation Example (a)

Figure 10.21 illustrates the operation when TCNT_2 overflow/underflow counting has be TCNT_1 and phase counting mode has been designated for channel 2.

TCNT_1 is incremented by TCNT_2 overflow and decremented by TCNT_2 underflow

Figure 10.22 illustrates the operation when TCNT_1 and TCNT_2 have been cascaded at I2AE bit in TICCR has been set to 1 to include the TIOC2A pin in the TGRA_1 input casconditions. In this example, the IOA0 to IOA3 bits in TIOR_1 have selected the TIOC1A edge for the input capture timing while the IOA0 to IOA3 bits in TIOR_2 have selected to TIOC2A rising edge for the input capture timing.

Under these conditions, the rising edge of both TIOC1A and TIOC2A is used for the TGI input capture condition. For the TGRA_2 input capture condition, the TIOC2A rising edge

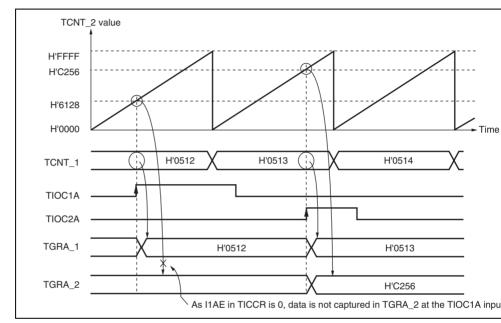


Figure 10.22 Cascaded Operation Example (b)

Rev. 3.00 Mar. 04, 2009 Page 454 of 1168 REJ09B0344-0300

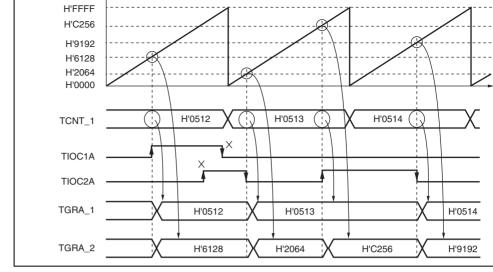


Figure 10.23 Cascaded Operation Example (c)

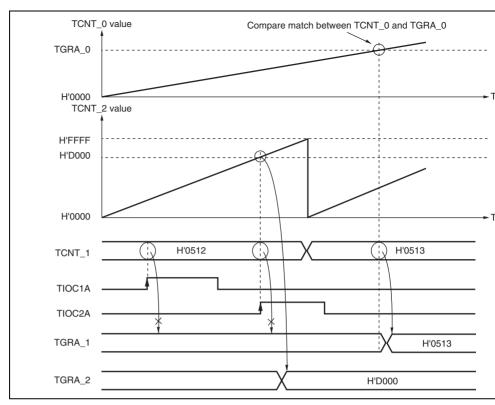


Figure 10.24 Cascaded Operation Example (d)

There are two PWM modes, as described below.

• PWM mode 1

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRC with TGRD. The output specified by bits IOA0 to IOA3 and IOC0 to IOC3 is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB0 to IOB3 and IOD0 to IOD3 in TIOR is output at compare matches and D. The initial output value is the value set in TGRA or TGRC. If the set values of TGRs are identical, the output value does not change when a compare match occurs. In PWM mode 1, a maximum 8-phase PWM output is possible.

• PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty The output specified in TIOR is performed by means of compare matches. Upon conclearing by a synchronization register compare match, the output value of each pin is value set in TIOR. If the set values of the cycle and duty registers are identical, the cycle does not change when a compare match occurs.

In PWM mode 2, a maximum 8-phase PWM output is possible in combination use v

synchronous operation.

The correspondence between PWM output pins and registers is shown in table 10.46.

3	TGRA_3	TIOC3A	Cannot be set
	TGRB_3		Cannot be set
	TGRC_3	TIOC3C	Cannot be set
	TGRD_3		Cannot be set
4	TGRA_4	TIOC4A	Cannot be set
	TGRB_4		Cannot be set
	TGRC_4	TIOC4C	Cannot be set
	TGRD_4		Cannot be set
Note: In PWM	I mode 2, PWM output is n	not possible for the TGR	register in which the per

TGRA_2

TGRB_2

TIOC2A

TIOC2A

TIOC2B

REJ09B0344-0300

2

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 458 of 1168

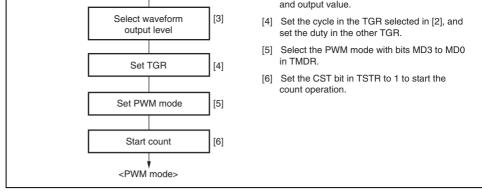


Figure 10.25 Example of PWM Mode Setting Procedure

(2) Examples of PWM Mode Operation

Figure 10.26 shows an example of PWM mode 1 operation.

In this example, TGRA compare match is set as the TCNT clearing source, 0 is set for the initial output value and output value, and 1 is set as the TGRB output value.

In this case, the value set in TGRA is used as the period, and the values set in the TGRE are used as the duty levels.

Rev. 3.00 Mar. 04, 2009 Page

In this example, synchronous operation is designated for channels 0 and 1, TGRB_1 commatch is set as the TCNT clearing source, and 0 is set for the initial output value and 1 for output value of the other TGR registers (TGRA_0 to TGRD_0, TGRA_1), outputting a 5 PWM waveform.

In this case, the value set in TGRB_1 is used as the cycle, and the values set in the other used as the duty levels.

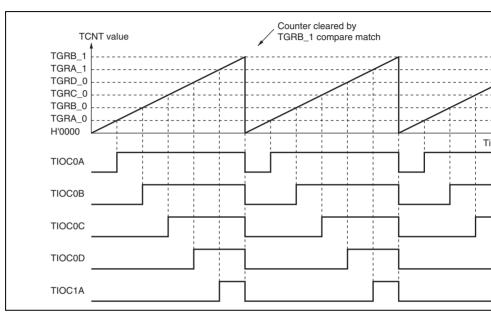


Figure 10.27 Example of PWM Mode Operation (2)

Rev. 3.00 Mar. 04, 2009 Page 460 of 1168 REJ09B0344-0300

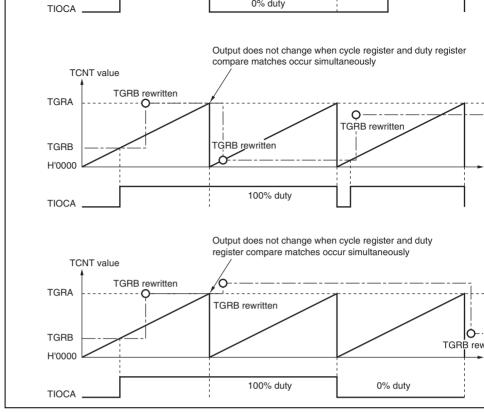


Figure 10.28 Example of PWM Mode Operation (3)

Rev. 3.00 Mar. 04, 2009 Page

This can be used for two-phase encoder pulse input.

If overflow occurs when TCNT is counting up, the TCFV flag in TSR is set; if underflow when TCNT is counting down, the TCFU flag is set.

The TCFD bit in TSR is the count direction flag. Reading the TCFD flag reveals whether counting up or down.

Table 10.47 shows the correspondence between external clock pins and channels.

Table 10.47 Phase Counting Mode Clock Input Pins

	External Clock Pins		
Channels	A-Phase	B-Phase	
When channel 1 is set to phase counting mode	TCLKA	TCLKB	
When channel 2 is set to phase counting mode	TCLKC	TCLKD	

(1) Example of Phase Counting Mode Setting Procedure

Figure 10.29 shows an example of the phase counting mode setting procedure.

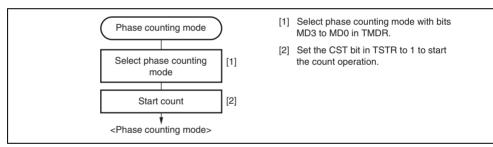


Figure 10.29 Example of Phase Counting Mode Setting Procedure

Rev. 3.00 Mar. 04, 2009 Page 462 of 1168 REJ09B0344-0300

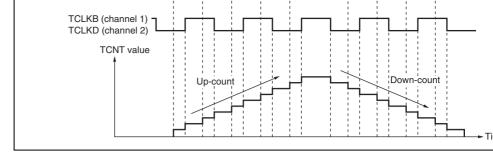


Figure 10.30 Example of Phase Counting Mode 1 Operation

Table 10.48 Up/Down-Count Conditions in Phase Counting Mode 1

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level		Up-count
Low level	<u> </u>	
	Low level	
<u>T</u> _	High level	
High level	<u> </u>	Down-count
Low level		
	High level	
<u></u>	Low level	
[Legend]		

_**√**: Rising edge

→: Falling edge

Rev. 3.00 Mar. 04, 2009 Page

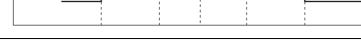


Figure 10.31 Example of Phase Counting Mode 2 Operation

Table 10.49 Up/Down-Count Conditions in Phase Counting Mode 2

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level		Don't care
Low level	T_	Don't care
<u>_</u>	Low level	Don't care
<u></u>	High level	Up-count
High level	Ŧ_	Don't care
Low level	_	Don't care
<u>_</u>	High level	Don't care
7_	Low level	Down-count
		•

[Legend]

L: Falling edge

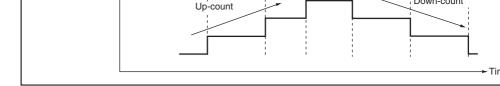


Figure 10.32 Example of Phase Counting Mode 3 Operation

Table 10.50 Up/Down-Count Conditions in Phase Counting Mode 3

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level		Don't care
Low level	T.	Don't care
<u>_</u>	Low level	Don't care
<u></u>	High level	Up-count
High level	T_	Down-count
Low level	_	Don't care
<u></u>	High level	Don't care
<u> </u>	Low level	Don't care
[] a supur all		

[Legend]

_F: Rising edge

L: Falling edge

Rev. 3.00 Mar. 04, 2009 Page

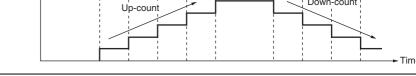


Figure 10.33 Example of Phase Counting Mode 4 Operation

Table 10.51 Up/Down-Count Conditions in Phase Counting Mode 4

TCLKA (Channel 1) TCLKC (Channel 2)	TCLKB (Channel 1) TCLKD (Channel 2)	Operation
High level	<u>_</u>	Up-count
Low level	T_	
<u></u>	Low level	Don't care
7_	High level	
High level	T_	Down-count
Low level		
<u></u>	High level	Don't care
<u></u>	Low level	
[Legend]		

[Legend]

Rising edge

Falling edge

in buffer mode. The channel 1 counter input clock is designated as the TGRB_0 input casource, and the pulse widths of 2-phase encoder 4-multiplication pulses are detected.

TGRA_1 and TGRB_1 for channel 1 are designated for input capture, and channel 0 TGRC_0 compare matches are selected as the input capture source and store the up/dow values for the control periods.

This procedure enables the accurate detection of position and speed.

Rev. 3.00 Mar. 04, 2009 Page

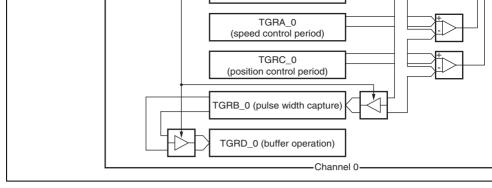


Figure 10.34 Phase Counting Mode Application Example

	TIOC3D	PWM output pin 1' (negative-phase waveform of PWM ou
4	TIOC4A	PWM output pin 2
	TIOC4C	PWM output pin 2' (negative-phase waveform of PWM ou
	TIOC4B	PWM output pin 3
	TIOC4D	PWM output pin 3' (negative-phase waveform of PWM ou
Table 10.53	3 Register Set	tings for Reset-Synchronized PWM Mode
Register	Description	of Setting
TCNT_3	Initial setting	of H'0000

Initial setting of H'0000

Set count cycle for TCNT_3

Description

PWM output pin 1

Channel

TCNT_4

TGRA_3

TGRB_3

TGRA_4

3

Output Pin

TIOC3B

TGRB_4	Sets the turning point for PWM waveform output by the TIOC4B and TIOC4

Sets the turning point for PWM waveform output by the TIOC3B and TIOC3

Sets the turning point for PWM waveform output by the TIOC4A and TIOC4

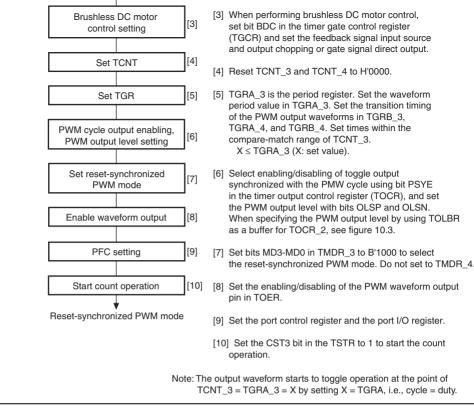


Figure 10.35 Procedure for Selecting Reset-Synchronized PWM Mode

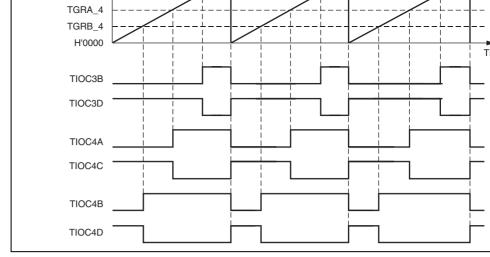


Figure 10.36 Reset-Synchronized PWM Mode Operation Example (When TOCR's OLSN = 1 and OLSP = 1)

Rev. 3.00 Mar. 04, 2009 Page

used.

A function to directly cut off the PWM output by using an external signal is supported as function.

Table 10.54 Output Pins for Complementary PWM Mode

Channel	Output Pin	Description
3	TIOC3A	Toggle output synchronized with PWM period (or I/O
	TIOC3B	PWM output pin 1
	TIOC3C	I/O port*
	TIOC3D	PWM output pin 1' (non-overlapping negative-phase waveform of PWM o PWM output without non-overlapping interval is also a
4	TIOC4A	PWM output pin 2
	TIOC4B	PWM output pin 3
	TIOC4C	PWM output pin 2' (non-overlapping negative-phase waveform of PWM or PWM output without non-overlapping interval is also a
	TIOC4D	PWM output pin 3' (non-overlapping negative-phase waveform of PWM or PWM output without non-overlapping interval is also a

Note: * Avoid setting the TIOC3C pin as a timer I/O pin in complementary PWM mode

Rev. 3.00 Mar. 04, 2009 Page 472 of 1168 REJ09B0344-0300

RENESAS

TGRC_4	PWM output 2/TGRA_4 buffer register	Always readable
TGRD_4	PWM output 3/TGRB_4 buffer register	Always readable
Timer dead time data register (TDDR)	Set TCNT_4 and TCNT_3 offset value (dead time value)	Maskable by TR\ setting*
Timer cycle data register (TCDR)	Set TCNT_4 upper limit value (1/2 carrier cycle)	Maskable by TR\ setting*
Timer cycle buffer register (TCBR)	TCDR buffer register	Always readable
Subcounter (TCNTS)	Subcounter for dead time generation	Read-only
Temporary register 1 (TEMP1)	PWM output 1/TGRB_3 temporary register	Not readable/writ
Temporary register 2 (TEMP2)	PWM output 2/TGRA_4 temporary register	Not readable/writ
Temporary register 3 (TEMP3)	PWM output 3/TGRB_4 temporary register	Not readable/writ
Note: * Access can be enable (timer read/write enable	ed or disabled according to the settingle register).	g of bit 0 (RWE) in

register

H[']0000

4

TCNT_4

TGRA_4

TGRB_4

Up-count start, initialized to

PWM output 2 compare register

PWM output 3 compare register

Maskable by TR

Maskable by TR

Maskable by TR

setting*

setting*

setting*

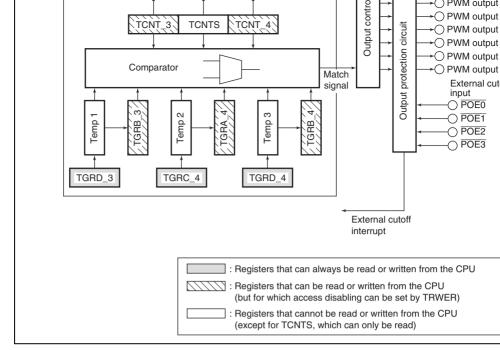


Figure 10.37 Block Diagram of Channels 3 and 4 in Complementary PWM M

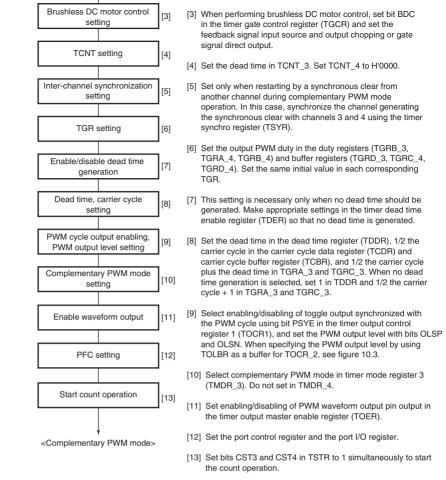


Figure 10.38 Example of Complementary PWM Mode Setting Procedur

is selected and the CST bit in TSTR is 0.

When the CST bit is set to 1, TCNT 3 counts up to the value set in TGRA 3, then switch down-counting when it matches TGRA_3. When the TCNT3 value matches TDDR, the switches to up-counting, and the operation is repeated in this way.

TCNT_4 is initialized to H'0000.

When the CST bit is set to 1, TCNT4 counts up in synchronization with TCNT_3, and sw down-counting when it matches TCDR. On reaching H'0000, TCNT4 switches to up-cou and the operation is repeated in this way.

TCNTS is a read-only counter. It need not be initialized.

When TCNT_3 matches TCDR during TCNT_3 and TCNT_4 up/down-counting, downis started, and when TCNTS matches TCDR, the operation switches to up-counting. Whe TCNTS matches TGRA_3, it is cleared to H'0000.

When TCNT_4 matches TDDR during TCNT_3 and TCNT_4 down-counting, up-counti started, and when TCNTS matches TDDR, the operation switches to down-counting. Wh

TCNTS reaches H'0000, it is set with the value in TGRA 3.

TCNTS is compared with the compare register and temporary register in which the PWM set during the count operation only.

rigure 10.39 Complementary PWM Mode Counter Operation

(b) Register Operation

In complementary PWM mode, nine registers are used, comprising compare registers, b registers, and temporary registers. Figure 10.40 shows an example of complementary PV operation.

The registers which are constantly compared with the counters to perform PWM output TGRB_3, TGRA_4, and TGRB_4. When these registers match the counter, the value se OLSN and OLSP in the timer output control register (TOCR) is output.

The buffer registers for these compare registers are TGRD_3, TGRC_4, and TGRD_4.

Between a buffer register and compare register there is a temporary register. The temporary registers cannot be accessed by the CPU.

Data in a compare register is changed by writing the new data to the corresponding buff The buffer registers can be read or written at any time.

The data written to a buffer register is constantly transferred to the temporary register in interval. Data is not transferred to the temporary register in the Tb interval. Data written buffer register in this interval is transferred to the temporary register at the end of the Tb

The value transferred to a temporary register is transferred to the compare register when for which the Tb interval ends matches TGRA_3 when counting up, or H'0000 when co down. The timing for transfer from the temporary register to the compare register can be with bits MD3 to MD0 in the timer mode register (TMDR). Figure 10.40 shows an exart which the mode is selected in which the change is made in the trough.

In the tb interval (tb1 in figure 10.40) in which data transfer to the temporary register is performed, the temporary register has the same function as the compare register, and is

Rev. 3.00 Mar. 04, 2009 Page

Rev. 3.00 Mar. 04, 2009 Page 478 of 1168

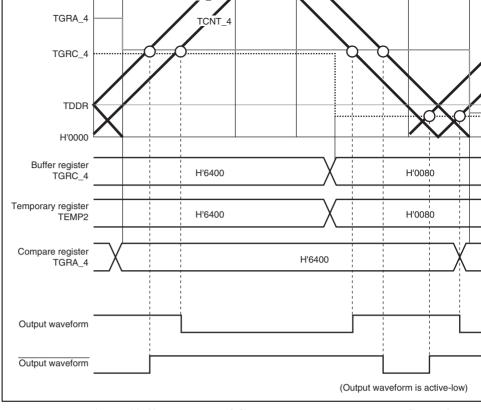


Figure 10.40 Example of Complementary PWM Mode Operation

time Td in the timer dead time data register (TDDR).

When dead time is not needed, the TDER bit in the timer dead time enable register (TDE be cleared to 0, TGRC_3 and TGRA_3 should be set to 1/2 the PWM carrier cycle + 1, a should be set to 1.

Set the respective initial PWM duty values in buffer registers TGRD_3, TGRC_4, and TG

The values set in the five buffer registers excluding TDDR are transferred simultaneously corresponding compare registers when complementary PWM mode is set.

Set TCNT_4 to H'0000 before setting complementary PWM mode.

Table 10.56 Registers and Counters Requiring Initialization

Register/Counter	Set Value
TGRC_3	1/2 PWM carrier cycle + dead time Td
	(1/2 PWM carrier cycle $+$ 1 when dead time (is disabled by TDER)
TDDR	Dead time Td (1 when dead time generation disabled by TDER)
TCBR	1/2 PWM carrier cycle
TGRD_3, TGRC_4, TGRD_4	Initial PWM duty value for each phase
TCNT_4	H'0000

Note: The TGRC 3 set value must be the sum of 1/2 the PWM carrier cycle set in TCBP

dead time Td set in TDDR. When dead time generation is disabled by TDER, TGF must be set to 1/2 the PWM carrier cycle + 1.

Rev. 3.00 Mar. 04, 2009 Page 480 of 1168

In complementary PWM mode, PWM pulses are output with a non-overlapping relation between the positive and negative phases. This non-overlap time is called the dead time

The non-overlap time is set in the timer dead time data register (TDDR). The value set i used as the TCNT_3 counter start value, and creates non-overlap between TCNT_3 and Complementary PWM mode should be cleared before changing the contents of TDDR.

(f) Dead Time Suppressing

Dead time generation is suppressed by clearing the TDER bit in the timer dead time enargister (TDER) to 0. TDER can be cleared to 0 only when 0 is written to it after reading 1.

TGRA_3 and TGRC_3 should be set to 1/2 PWM carrier cycle + 1 and the timer dead to register (TDDR) should be set to 1.

By the above settings, PWM waveforms without dead time can be obtained. Figure 10.4 an example of operation without dead time.

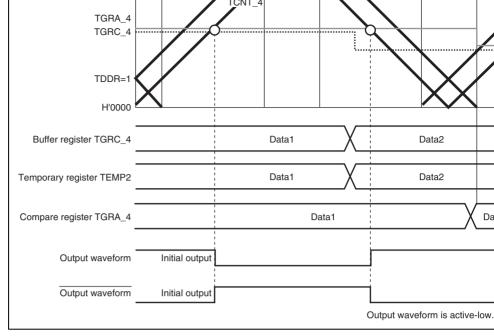


Figure 10.41 Example of Operation without Dead Time

RENESAS

TCDR in accordance with the transfer timing selected with bits MD3 to MD0 in the tim register (TMDR).

The updated PWM cycle is reflected from the next cycle when the data update is performed; and from the current cycle when performed in the trough. Figure 10.42 illustrates operation when the PWM cycle is updated at the crest.

See the following section, Register Data Updating, for the method of updating the data i buffer register.

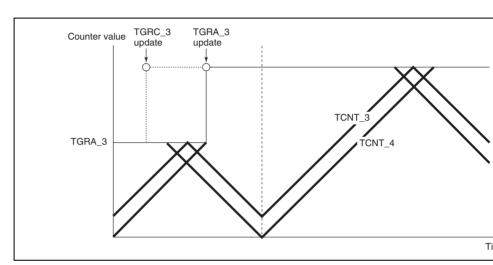


Figure 10.42 Example of PWM Cycle Updating

The temporary register value is transferred to the compare register at the data update timi with bits MD3 to MD0 in the timer mode register (TMDR). Figure 10.43 shows an exam data updating in complementary PWM mode. This example shows the mode in which data updates the state of the compared to the compared register at the data update timi with bits MD3 to MD0 in the timer mode register (TMDR). Figure 10.43 shows an example at updating in complementary PWM mode.

updating is performed at both the counter crest and trough.

When rewriting buffer register data, a write to TGRD_4 must be performed at the end of update. Data transfer from the buffer registers to the temporary registers is performed simultaneously for all five registers after the write to TGRD_4.

A write to TGRD_4 must be performed after writing data to the registers to be updated, enot updating all five registers, or when updating the TGRD_4 data. In this case, the data TGRD_4 should be the same as the data prior to the write operation.

RENESAS

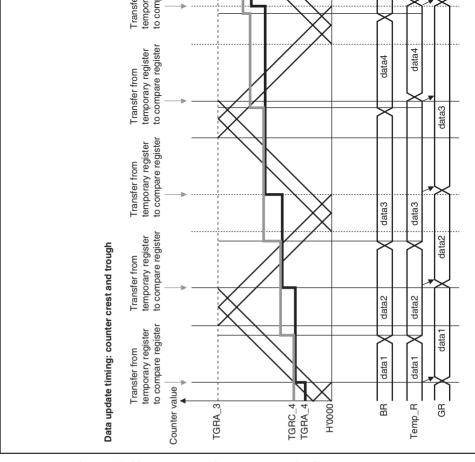


Figure 10.43 Example of Data Update in Complementary PWM Mode

shown in figure 10.45.

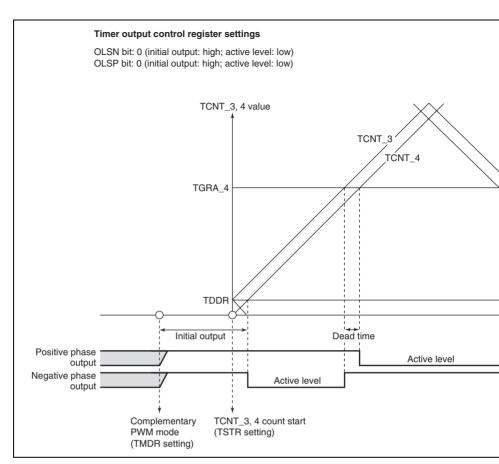


Figure 10.44 Example of Initial Output in Complementary PWM Mode (1

Rev. 3.00 Mar. 04, 2009 Page 486 of 1168

REJ09B0344-0300

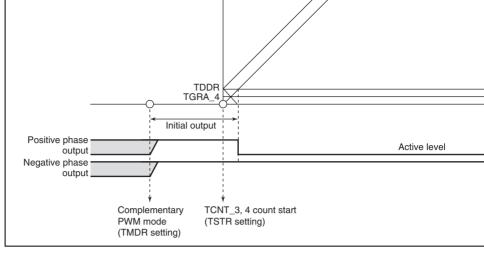


Figure 10.45 Example of Initial Output in Complementary PWM Mode (

Rev. 3.00 Mar. 04, 2009 Page

Figures 10.46 to 10.48 show examples of waveform generation in complementary PWM

The positive phase/negative phase off timing is generated by a compare-match with the s counter, and the on timing by a compare-match with the dotted-line counter operating wi of the dead time behind the solid-line counter. In the T1 period, compare-match $\bf a$ that tunnegative phase has the highest priority, and compare-matches occurring prior to $\bf a$ are ign the T2 period, compare-match $\bf c$ that turns off the positive phase has the highest priority, compare-matches occurring prior to $\bf c$ are ignored.

In normal cases, compare-matches occur in the order $\mathbf{a} \to \mathbf{b} \to \mathbf{c} \to \mathbf{d}$ (or $\mathbf{c} \to \mathbf{d} \to \mathbf{a'} \to \mathbf{s}$ shown in figure 10.46.

If compare-matches deviate from the $\mathbf{a} \to \mathbf{b} \to \mathbf{c} \to \mathbf{d}$ order, since the time for which the phase is off is less than twice the dead time, the figure shows the positive phase is not be on. If compare-matches deviate from the $\mathbf{c} \to \mathbf{d} \to \mathbf{a'} \to \mathbf{b'}$ order, since the time for whice positive phase is off is less than twice the dead time, the figure shows the negative phase being turned on.

match \mathbf{b} is ignored, and the negative phase is turned off by compare-match \mathbf{d} . This is becturning off of the positive phase has priority due to the occurrence of compare-match \mathbf{c} (phase off timing) before compare-match \mathbf{b} (positive phase on timing) (consequently, the does not change since the positive phase goes from off to off).

If compare-match c occurs first following compare-match a, as shown in figure 10.47, co

Similarly, in the example in figure 10.48, compare-match \mathbf{a}' with the new data in the tem register occurs before compare-match \mathbf{c} , but other compare-matches occurring up to \mathbf{c} , who off the positive phase, are ignored. As a result, the negative phase is not turned on.

Thus, in complementary PWM mode, compare-matches at turn-off timings take preceder turn-on timing compare-matches that occur before a turn-off timing compare-match are in

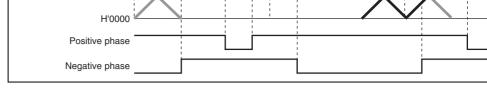


Figure 10.46 Example of Complementary PWM Mode Waveform Output

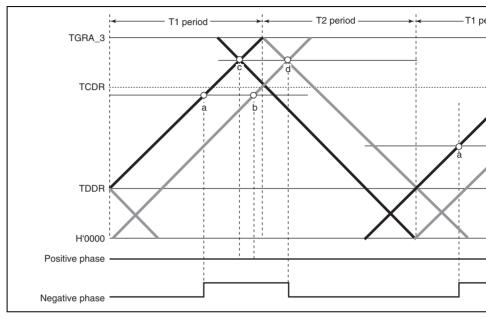


Figure 10.47 Example of Complementary PWM Mode Waveform Output

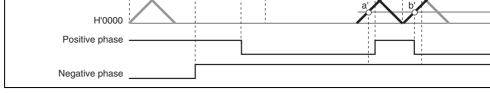


Figure 10.48 Example of Complementary PWM Mode Waveform Output (

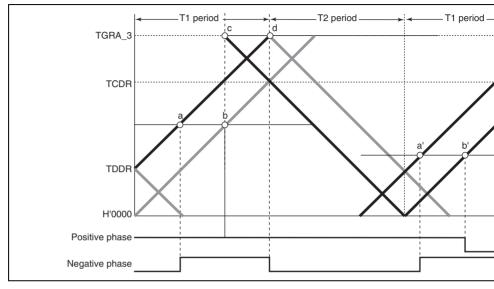


Figure 10.49 Example of Complementary PWM Mode 0% and 100% Waveform C

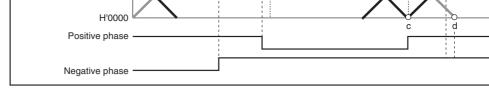


Figure 10.50 Example of Complementary PWM Mode 0% and 100% Waveform

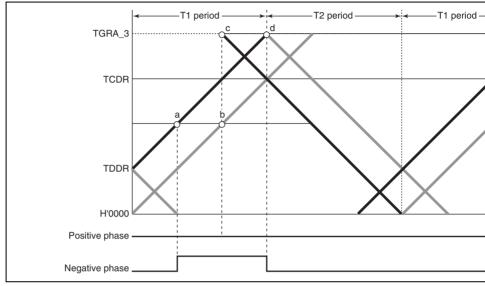


Figure 10.51 Example of Complementary PWM Mode 0% and 100% Waveform

Rev. 3.00 Mar. 04, 2009 Page

Figure 10.52 Example of Complementary PWM Mode 0% and 100% Waveform C

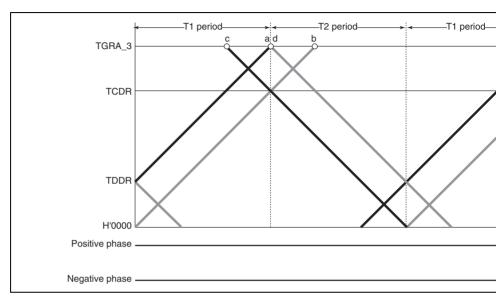


Figure 10.53 Example of Complementary PWM Mode 0% and 100% Waveform C

Rev. 3.00 Mar. 04, 2009 Page 492 of 1168 REJ09B0344-0300

the waveform does not change.

(l) Toggle Output Synchronized with PWM Cycle

In complementary PWM mode, toggle output can be performed in synchronization with carrier cycle by setting the PSYE bit to 1 in the timer output control register (TOCR). A of a toggle output waveform is shown in figure 10.54.

This output is toggled by a compare-match between TCNT_3 and TGRA_3 and a comp between TCNT4 and H'0000.

The output pin for this toggle output is the TIOC3A pin. The initial output is 1.

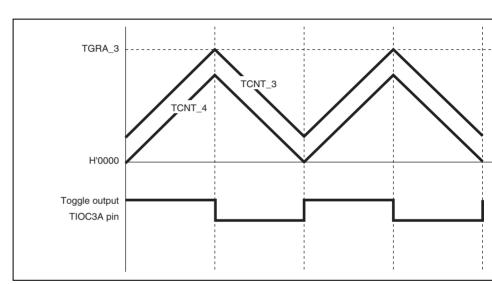


Figure 10.54 Example of Toggle Output Waveform Synchronized with PWM

Rev. 3.00 Mar. 04, 2009 Page

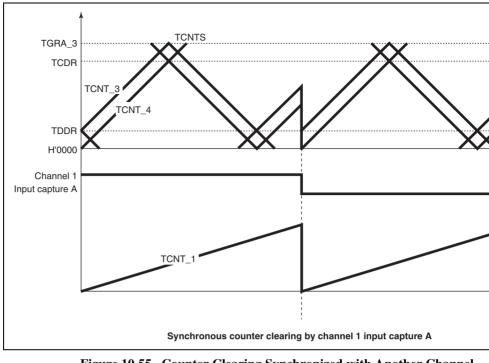


Figure 10.55 Counter Clearing Synchronized with Another Channel

REJ09B0344-0300

suppressed.

This function can be used in both the MTU2 and MTU2S. In the MTU2, synchronous of generated in channels 0 to 2 in the MTU2 can cause counter clearing in complementary mode; in the MTU2S, compare match or input capture flag setting in channels 0 to 2 in can cause counter clearing.

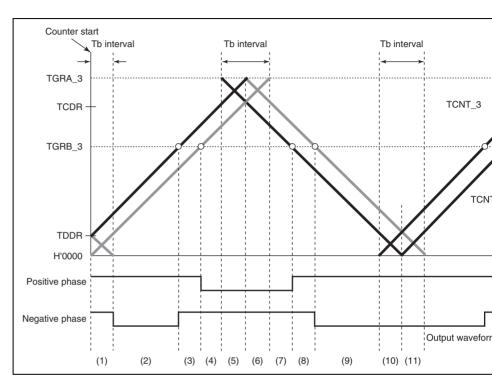


Figure 10.56 Timing for Synchronous Counter Clearing

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

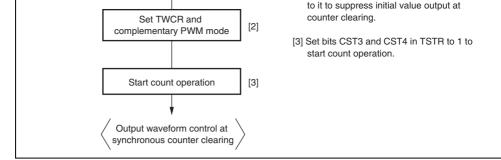


Figure 10.57 Example of Procedure for Setting Output Waveform Control at Sync Counter Clearing in Complementary PWM Mode

 Examples of Output Waveform Control at Synchronous Counter Clearing in Complex PWM Mode

Figures 10.58 to 10.61 show examples of output waveform control in which the MTU operates in complementary PWM mode and synchronous counter clearing is generate the WRE bit in TWCR is set to 1. In the examples shown in figures 10.58 to 10.61, synchronous counter clearing occurs at timing (3), (6), (8), and (11) shown in figure 1 respectively.

In the MTU2S, these examples are equivalent to the cases when the MTU2S operates complementary PWM mode and synchronous counter clearing is generated while the is cleared to 0 and the WRE bit is set to 1 in TWCR.

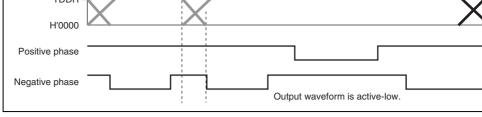


Figure 10.58 Example of Synchronous Clearing in Dead Time during Up-Cou (Timing (3) in Figure 10.56; Bit WRE of TWCR in MTU2 is 1)

Rev. 3.00 Mar. 04, 2009 Page

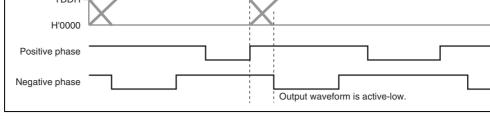


Figure 10.59 Example of Synchronous Clearing in Interval Tb at Crest (Timing (6) in Figure 10.56; Bit WRE of TWCR in MTU2 is 1)

Rev. 3.00 Mar. 04, 2009 Page 498 of 1168

REJ09B0344-0300

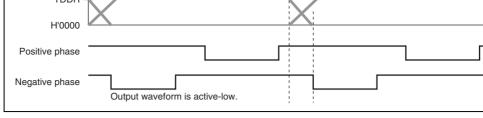


Figure 10.60 Example of Synchronous Clearing in Dead Time during Down-Co (Timing (8) in Figure 10.56; Bit WRE of TWCR is 1)

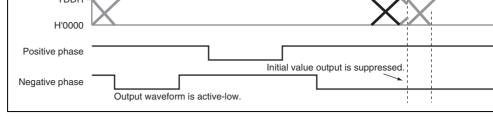


Figure 10.61 Example of Synchronous Clearing in Interval Tb at Trough (Timing (11) in Figure 10.56; Bit WRE of TWCR is 1)

Rev. 3.00 Mar. 04, 2009 Page 500 of 1168

REJ09B0344-0300

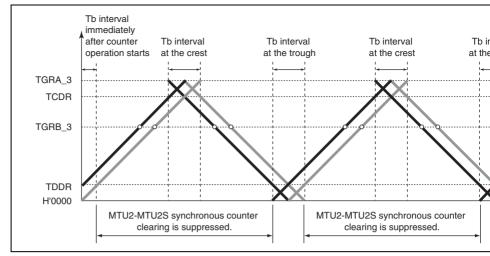
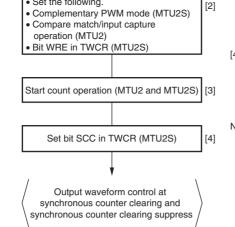



Figure 10.62 MTU2–MTU2S Synchronous Clearing-Suppressed Interval Specifie Bit in TWCR

Rev. 3.00 Mar. 04, 2009 Page

[4] Read TWCR and then set bit SCC in TWCR to 1 to supp MTU2-MTU2S synchronous counter clearing*. Here, do modify the CCE and WRE bit values in TWCR of the MT MTU2-MTU2S synchronous counter clearing is suppres

operation in any one of TCNT_0 to TCNT_2.

count operation. For MTU2-MTU2S synchronous counted

clearing, set bits CST of TSTR in the MTU2 to 1 to start

the intervals shown in figure 10.62.

Note: * The SCC bit value can be modified during counter operation. However, if a synchronous clearing occu when bit SCC is modified from 0 to 1, the synchronous clearing may not be suppressed. If a synchronous clearing occurs when bit SCC is modified from 1 to synchronous clearing may be suppressed.

Figure 10.63 Example of Procedure for Suppressing MTU2–MTU2S Synchronous Clearing

• Examples of Suppression of MTU2–MTU2S Synchronous Counter Clearing Figures 10.64 to 10.67 show examples of operation in which the MTU2S operates in complementary PWM mode and MTU2–MTU2S synchronous counter clearing is sup by setting the SCC bit in TWCR in the MTU2S to 1. In the examples shown in figure 10.67, synchronous counter clearing occurs at timing (3), (6), (8), and (11) shown in figure 10.56, respectively.

In these examples, the WRE bit in TWCR of the MTU2S is set to 1.

Rev. 3.00 Mar. 04, 2009 Page 502 of 1168

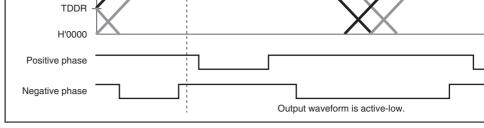


Figure 10.64 Example of Synchronous Clearing in Dead Time during Up-Cou (Timing (3) in Figure 10.56; Bit WRE is 1 and Bit SCC is 1 in TWCR of MT

Rev. 3.00 Mar. 04, 2009 Page

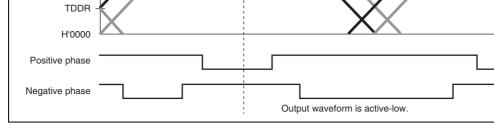


Figure 10.65 Example of Synchronous Clearing in Interval Tb at Crest (Timing (6) in Figure 10.56; Bit WRE is 1 and Bit SCC is 1 in TWCR of MTU

Rev. 3.00 Mar. 04, 2009 Page 504 of 1168

REJ09B0344-0300

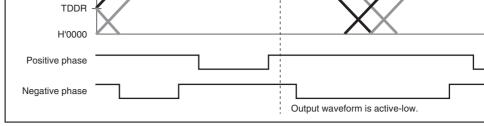


Figure 10.66 Example of Synchronous Clearing in Dead Time during Down-Co (Timing (8) in Figure 10.56; Bit WRE is 1 and Bit SCC is 1 in TWCR of MT

Rev. 3.00 Mar. 04, 2009 Page

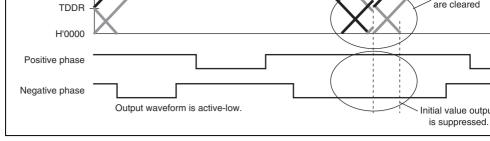


Figure 10.67 Example of Synchronous Clearing in Interval Tb at Trough (Timing (11) in Figure 10.56; Bit WRE is 1 and Bit SCC is 1 in TWCR of MTU

Rev. 3.00 Mar. 04, 2009 Page 506 of 1168

REJ09B0344-0300

(TSYCR) to 1).

- 3. Do not set the PWM duty value to H'0000.
- 4. Do not set the PSYE bit in timer output control register 1 (TOCR1) to 1.

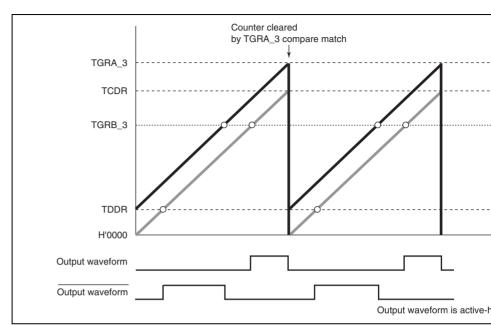


Figure 10.68 Example of Counter Clearing Operation by TGRA_3 Compare

When the FB bit is 1, the output on/off state is switched when the UF, VF, or WF bit in T cleared to 0 or set to 1.

The drive waveforms are output from the complementary PWM mode 6-phase output pin this 6-phase output, in the case of on output, it is possible to use complementary PWM moutput and perform chopping output by setting the N bit or P bit to 1. When the N bit or I level output is selected.

The 6-phase output active level (on output level) can be set with the OLSN and OLSP bit timer output control register (TOCR) regardless of the setting of the N and P bits.

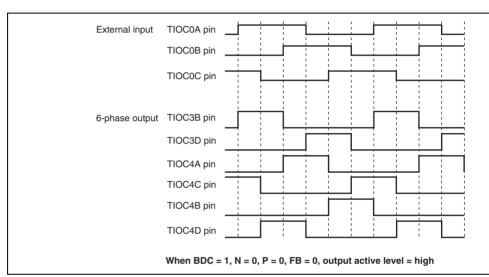


Figure 10.69 Example of Output Phase Switching by External Input (1)

Rev. 3.00 Mar. 04, 2009 Page 508 of 1168 REJ09B0344-0300

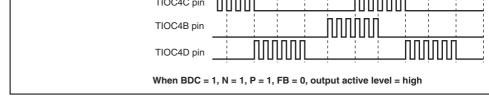


Figure 10.70 Example of Output Phase Switching by External Input (2)

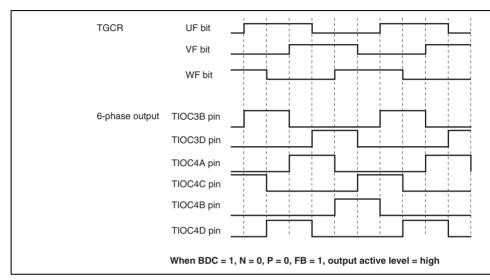


Figure 10.71 Example of Output Phase Switching by Means of UF, VF, WF Bit S

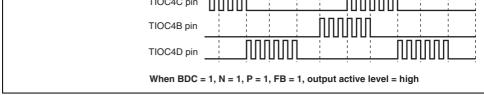


Figure 10.72 Example of Output Phase Switching by Means of UF, VF, WF Bit Se

(r) A/D Converter Start Request Setting

In complementary PWM mode, an A/D converter start request can be issued using a TGF compare-match, TCNT_4 underflow (trough), or compare-match on a channel other than 3 and 4.

When start requests using a TGRA_3 compare-match are specified, A/D conversion can at the crest of the TCNT 3 count.

A/D converter start requests can be set by setting the TTGE bit to 1 in the timer interrupt register (TIER). To issue an A/D converter start request at a TCNT 4 underflow (trough) TTGE2 bit in TIER_4 to 1.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 510 of 1168

converter request control register (TADCR). For the linkage with the A/D converter star delaying function, refer to section 10.4.9, A/D Converter Start Request Delaying Function

The setting of the timer interrupt skipping setting register (TITCR) must be done while TGIA_3 and TCIV_4 interrupt requests are disabled by the settings of TIER_3 and TIE with under the conditions in which TGFA_3 and TCFV_4 flag settings by compare mat occur. Before changing the skipping count, be sure to clear the T3AEN and T4VEN bits clear the skipping counter.

(a) Example of Interrupt Skipping Operation Setting Procedure

Figure 10.73 shows an example of the interrupt skipping operation setting procedure. Fi shows the periods during which interrupt skipping count can be changed.

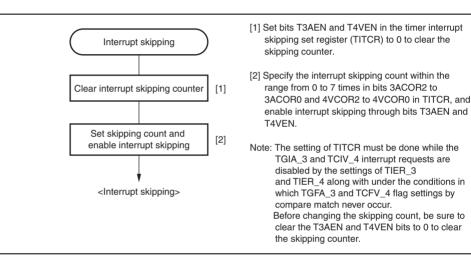


Figure 10.73 Example of Interrupt Skipping Operation Setting Procedur

Figure 10.74 Periods during which Interrupt Skipping Count can be Chang

Example of Interrupt Skipping Operation

Figure 10.75 shows an example of TGIA_3 interrupt skipping in which the interrupt skip count is set to three by the 3ACOR bit and the T3AEN bit is set to 1 in the timer interrup set register (TITCR).

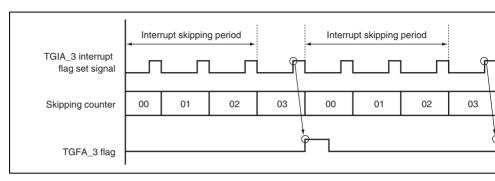
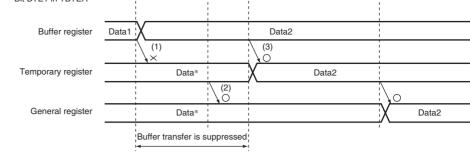


Figure 10.75 Example of Interrupt Skipping Operation

register outside the buffer transfer-enabled period.


buffer transfer is never performed.

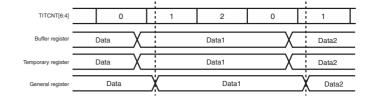
There are two types of timing in which data is transferred from the buffer register to the register or to general register, depending on the buffer register modification timing after interrupt occurrence.

Note that the buffer transfer-enabled period depends on the T3AEN and T4VEN bit sett timer interrupt skipping set register (TITCR). Figure 10.78 shows the relationship betwee T3AEN and T4VEN bit settings in TITCR and buffer transfer-enabled period.

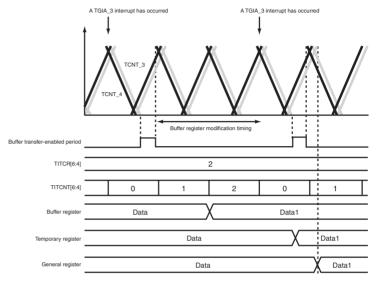
This function must always be used in combination with interrupt skipping.

When interrupt skipping is disabled (the T3AEN and T4VEN bits in the timer in skipping set register (TITCR) are cleared to 0 or the skipping count set bits (3A 4VCOR) in TITCR are cleared to 0), make sure that buffer transfer is not linked interrupt skipping (clear the BTE1 bit in the timer buffer transfer set register (T) 0). If buffer transfer is linked with interrupt skipping while interrupt skipping is

[Legend]


- (1) No data is transferred from the buffer register to the temporary register in the buffer transfer-disabled period (bits BTE1 and BTE0 in TBTER are set to 0 and 1, respectively).
- (2) Data is transferred from the temporary register to the general register even in the buffer transfer-disabled period. (3) After buffer transfer is enabled, data is transferred from the buffer register to the temporary register.

Note: * When buffer transfer at the crest is selected.


Figure 10.76 Example of Operation when Buffer Transfer is Suppressed (BTE1 = 0 and BTE0 = 1)

Rev. 3.00 Mar. 04, 2009 Page 514 of 1168 REJ09B0344-0300

RENESAS

(2) When the buffer register is modified after one carrier cycle has been passed from a TGIA_3 interrupt occurrence

Note: MD[3:0] in TMDR_3 = 1101 Buffer transfer at the crest is selected.

The skipping count is set to two.

T3AEN and T4VEN are set to 1 and cleared to 0, respectively.

Figure 10.77 Example of Operation when Buffer Transfer is Linked with Into Skipping (BTE1 = 1 and BTE0 = 0)

Rev. 3.00 Mar. 04, 2009 Page

Buffer transfer-enabled period (T4VEN is set to 1)

Buffer transfer-enabled period (T3AEN and T4VEN are set to 1)

Note: MD[3:0] in TMDR_3 = 1111

Buffer transfer at the crest and trough is selected.
The skipping count is set to three.
T3AEN and T4VEN are set to 1.

Figure 10.78 Relationship between Bits T3AEN and T4VEN in TITCR and Bu Transfer-Enabled Period

Rev. 3.00 Mar. 04, 2009 Page 516 of 1168

REJ09B0344-0300

TCR_3 and TCR_4, TMDR_3 and TMDR_4, TIORH_3 and TIORH_4, TIORL_3 a TIORL_4, TIER_3 and TIER_4, TCNT_3 and TCNT_4, TGRA_3 and TGRA_4, TGRA_5 and TGRB 4, TOER, TOCR, TGCR, TCDR, and TDDR.

This function enables miswriting due to CPU runaway to be prevented by disabling CPU the mode registers, control registers, and counters. When the applicable registers are rea access-disabled state, undefined values are returned. Writing to these registers is ignored

Halting of PWM output by external signal

The 6-phase PWM output pins can be set automatically to the high-impedance state by i specified external signals. There are four external signal input pins.

See section 12, Port Output Enable 2 (POE2), for details.

A/D converter start requests (TRG4AN and TRG4BN) can be skipped in coordination wi interrupt skipping by making settings in the ITA3AE, ITA4VE, ITB3AE, and ITB4VE by TADCR.

Example of Procedure for Specifying A/D Converter Start Request Delaying Function
 Figure 10.79 shows an example of procedure for specifying the A/D converter start redelaying function.

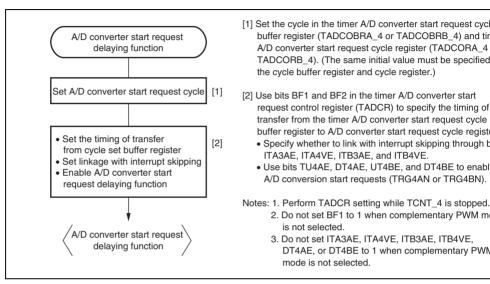


Figure 10.79 Example of Procedure for Specifying A/D Converter Start Request Delaying Function

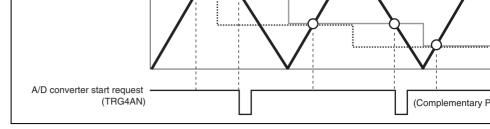


Figure 10.80 Basic Example of A/D Converter Start Request Signal (TRG4AN) C

Buffer Transfer

The data in the timer A/D converter start request cycle set registers (TADCORA_4 a TADCORB_4) is updated by writing data to the timer A/D converter start request cybuffer registers (TADCOBRA_4 and TADCOBRB_4). Data is transferred from the registers to the respective cycle set registers at the timing selected with the BF1 and

A/D Converter Start Request Delaying Function Linked with Interrupt Skipping
 A/D converter start requests (TRG4AN and TRG4BN) can be issued in coordination
 interrupt skipping by making settings in the ITA3AE, ITA4VE, ITB3AE, and ITB4V
 the timer A/D converter start request control register (TADCR).

in the timer A/D converter start request control register (TADCR 4).

Figure 10.81 shows an example of A/D converter start request signal (TRG4AN) opwhen TRG4AN output is enabled during TCNT_4 up-counting and down-counting a converter start requests are linked with interrupt skipping.

Figure 10.82 shows another example of A/D converter start request signal (TRG4AN operation when TRG4AN output is enabled during TCNT_4 up-counting and A/D constart requests are linked with interrupt skipping.

Rev. 3.00 Mar. 04, 2009 Page

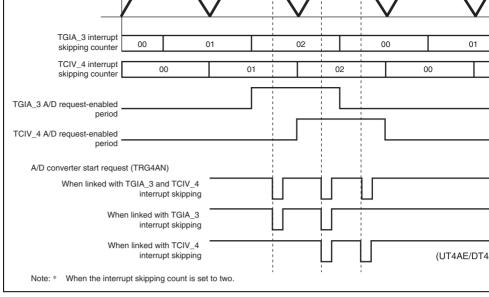
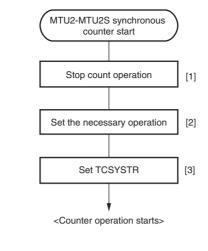


Figure 10.81 Example of A/D Converter Start Request Signal (TRG4AN) Operation with Interrupt Skipping


Rev. 3.00 Mar. 04, 2009 Page 520 of 1168

REJ09B0344-0300

TCIV_4 A/D request-enabled period		
A/D converter start request (TRG4AN)		
When linked with TGIA_3 and TCIV_4 interrupt skipping		
When linked with TGIA_3 interrupt skipping		
When linked with TCIV_4 interrupt skipping		UT4AE =
Note: * When the interrupt skipping count is set	to two.	

Figure 10.82 Example of A/D Converter Start Request Signal (TRG4AN) Operation with Interrupt Skipping

- [1] Use TSTR registers in the MTU2 and MTU2S and halt the counters used for synchronous start operation.
 - [2] Specify necessary operation with appropriate registers such TCR and TMDR.
 - [3] In TCSYSTR in the MTU2, set the bits corresponding to the counters to be started synchronously to 1. The TSTRs are automatically set appropriately and the counters start synchronously.
 - counter is cleared to 0, the counter will not stop. To stop the counter, clear the corresponding bit in TSTR to 0 directly.

 2. To start channels 3 and 4 in reset-synchronized PWM mode or complementary PWM mode, make appropria settings in TCYSTR according to the TSTR setting for

Complementary PWM Mode.

the respective mode. For details, refer to section 10.4 Reset-Synchronized PWM Mode, and section 10.4.8,

Notes: 1. Even if a bit in TCSYSTR corresponding to an operation

Figure 10.83 Example of Synchronous Counter Start Setting Procedure

REJ09B0344-0300

	TCSYSTR	H'00 H'51	_X	H'00	
	MTU2/TSTR	H'00		H'42	
	MTU2S/TSTR	H'00		H'80	
N	MTU2/TCNT_1	H'0000		H'0001	H'0002
M	TU2S/TCNT_4	H'0000		H'0001	H'0002

Clock Frequency Ratio = 1:1)

Rev. 3.00 Mar. 04, 2009 Page

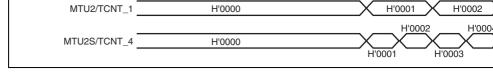


Figure 10.84 (2) Example of Synchronous Counter Start Operation (MTU2-to-M Clock Frequency Ratio = 1:2)

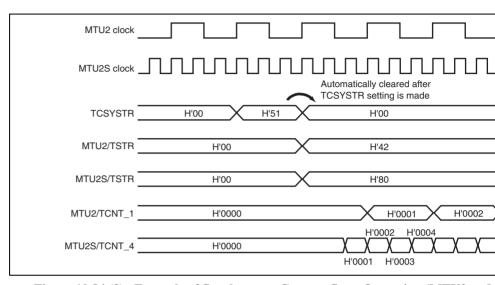


Figure 10.84 (3) Example of Synchronous Counter Start Operation (MTU2-to-M Clock Frequency Ratio = 1:3)

Rev. 3.00 Mar. 04, 2009 Page 524 of 1168 REJ09B0344-0300

Figure 10.84 (4)	Example of Synchronous Counter S	Start Operation (MTU2-	·to
	H'	0001 H'0003	
MTU2S/TCNT_4	H'0000		
		H'0002 H'0004	
MTU2/TCNT_1	H'0000	H'0001 H'00	002
MTU2/TCNT_1	H'0000	H'0001 F	1'00

Clock Frequency Ratio = 1:4)

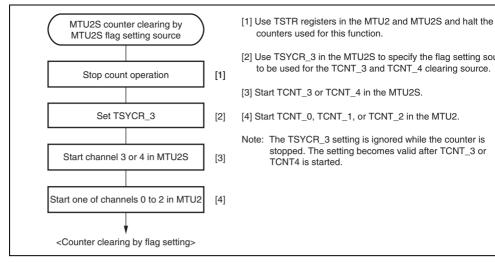


Figure 10.85 Example of Procedure for Specifying MTU2S Counter Clearing by MTU2 Flag Setting Source

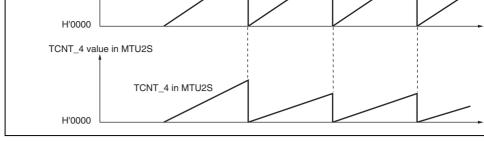


Figure 10.86 (1) Example of MTU2S Counter Clearing Caused by MTU2 Flag Setting Source (1)

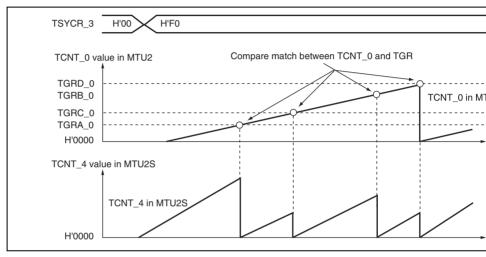


Figure 10.86 (2) Example of MTU2S Counter Clearing Caused by MTU2 Flag Setting Source (2)

Rev. 3.00 Mar. 04, 2009 Page

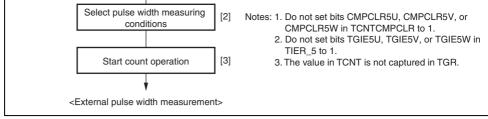


Figure 10.87 Example of External Pulse Width Measurement Setting Proced

(2) Example of External Pulse Width Measurement

Figure 10.88 Example of External Pulse Width Measurement (Measuring High Pulse Width)

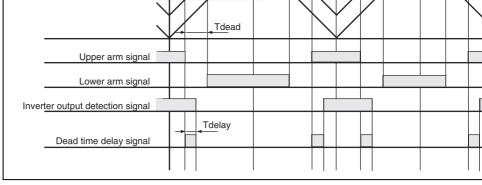
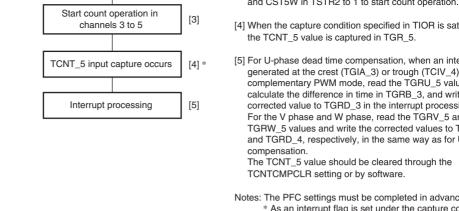



Figure 10.89 Delay in Dead Time in Complementary PWM Operation

Rev. 3.00 Mar. 04, 2009 Page

[4] When the capture condition specified in TIOR is satisfied the TCNT_5 value is captured in TGR_5.

[5] For U-phase dead time compensation, when an interrupt generated at the crest (TGIA 3) or trough (TCIV 4) in complementary PWM mode, read the TGRU 5 value,

calculate the difference in time in TGRB_3, and write the corrected value to TGRD_3 in the interrupt processing. For the V phase and W phase, read the TGRV 5 and TGRW 5 values and write the corrected values to TGRC

and TGRD_4, respectively, in the same way as for U-pha The TCNT_5 value should be cleared through the TCNTCMPCLR setting or by software.

Notes: The PFC settings must be completed in advance. * As an interrupt flag is set under the capture condition specified in TIOR, do not enable interrupt requests TIER 5.

Figure 10.90 Example of Dead Time Compensation Setting Procedure

Rev. 3.00 Mar. 04, 2009 Page 530 of 1168

Figure 10.91 Example of Motor Control Circuit Configuration

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

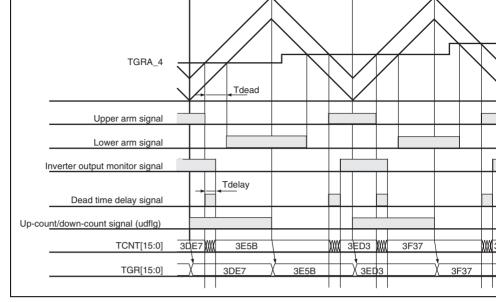


Figure 10.92 TCNT Capturing at Crest and/or Trough in Complementary PWM C

REJ09B0344-0300

interrupt request is cleared by clearing the status riag to 0.

Relative channel priorities can be changed by the interrupt controller, however the prior within a channel is fixed. For details, see section 6, Interrupt Controller (INTC).

Table 10.57 lists the MTU2 interrupt sources.

RA_1 input capture/compare ma RB_1 input capture/compare ma NT_1 overflow NT_1 underflow RA_2 input capture/compare ma RB_2 input capture/compare ma NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RC_3 input capture/compare ma RC_4 input capture/compare ma RB_4 input capture/compare ma RC_4 input capture/compare ma	tech To	GFA_1 GFB_1 CFV_1 CFV_1 GFA_2 GFB_2 CFV_2 CFV_2 GFA_3 GFA_3 GFC_3 GFC_3 GFC_3 GFO_3 GFO_3	Possible Not possibl Not possibl Possible Not possibl Not possibl Not possibl Possible Not possibl Not possibl Not possibl Not possibl Not possibl Not possibl
NT_1 overflow NT_1 underflow RA_2 input capture/compare ma RB_2 input capture/compare ma NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma RD_3 input capture/compare ma RD_3 input capture/compare ma RB_4 input capture/compare ma	To T	CFV_1 CFV_1 GFA_2 GFB_2 CFV_2 CFV_2 GFA_3 GFA_3 GFC_3 GFC_3 GFC_3 CFV_3	Not possible Possible Not possible Not possible Not possible Possible Not possible Not possible Not possible Not possible Not possible Not possible
NT_1 underflow RA_2 input capture/compare ma RB_2 input capture/compare ma NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RC_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	Total	CFU_1 GFA_2 GFB_2 CFV_2 CFU_2 GFA_3 GFB_3 GFC_3 GFC_3 GFD_3 CFV_3	Not possible Possible Not possibl Not possible Possible Not possible Not possibl Not possibl Not possibl Not possibl
RA_2 input capture/compare ma RB_2 input capture/compare ma NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma RT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	ttch Tottch	GFA_2 GFB_2 CFV_2 CFU_2 GFA_3 GFB_3 GFC_3 GFC_3 GFV_3	Possible Not possibl Not possible Possible Not possible Not possibl Not possibl Not possibl
RB_2 input capture/compare ma NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	To T	GFB_2 CFV_2 CFU_2 GFA_3 GFB_3 GFC_3 GFC_3	Not possibl Not possibl Possible Not possibl Not possibl Not possibl Not possibl
NT_2 overflow NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	To T	CFV_2 CFU_2 GFA_3 GFB_3 GFC_3 GFD_3 CFV_3	Not possible Possible Not possible Not possible Not possible Not possible Not possible
NT_2 underflow RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	tch To tc	GFU_2 GFA_3 GFB_3 GFC_3 GFD_3 CFV_3	Not possible Possible Not possibl Not possibl Not possibl
RA_3 input capture/compare ma RB_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	atch To	GFA_3 GFB_3 GFC_3 GFD_3 CFV_3	Possible Not possible Not possible Not possible Not possible
RB_3 input capture/compare ma RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	atch To	GFB_3 GFC_3 GFD_3 CFV_3	Not possible Not possible Not possible Not possible
RC_3 input capture/compare ma RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	atch To	GFC_3 GFD_3 CFV_3	Not possible Not possible Not possible
RD_3 input capture/compare ma NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	tch To	GFD_3 CFV_3	Not possible
NT_3 overflow RA_4 input capture/compare ma RB_4 input capture/compare ma	To	CFV_3	Not possibl
RA_4 input capture/compare ma	itch T		•
RB_4 input capture/compare ma		GFA_4	5 " '
	tch T		Possible
RC 4 input capture/compare ma	itori I	GFB_4	Not possible
-	tch T	GFC_4	Not possible
RD_4 input capture/compare ma	tch T	GFD_4	Not possible
NT_4 overflow/underflow	T	CFV_4	Not possible
RU_5 input capture/compare ma	tch T	GFU_5	Not possible
RV_5 input capture/compare ma	tch T	GFV_5	Not possible
RW_5 input capture/compare ma	atch To	GFW_5	Not possible
	RU_5 input capture/compare ma RV_5 input capture/compare ma RW_5 input capture/compare ma	RU_5 input capture/compare match TORV_5 input captu	RU_5 input capture/compare match TGFU_5 RV_5 input capture/compare match TGFV_5 RW_5 input capture/compare match TGFW_5 the initial state immediately after a reset. The relationship

TGIF_0 TGRF_0 compare match

TGFF_0

Not possible

1 by the occurrence of TCNT overflow on a channel. The interrupt request is cleared by the TCFV flag to 0. The MTU2 has five overflow interrupts, one for each channel.

(3) Underflow Interrupt

An interrupt is requested if the TCIEU bit in TIER is set to 1 when the TCFU flag in TS 1 by the occurrence of TCNT underflow on a channel. The interrupt request is cleared b the TCFU flag to 0. The MTU2 has two underflow interrupts, one each for channels 1 as

10.5.2 DMAC Activation

The DMAC can be activated by the TGRA input capture/compare match interrupt in each For details, see section 9, Direct Memory Access Controller (DMAC).

In the MTU2, a total of five TGRA input capture/compare match interrupts can be used activation sources, one each for channels 0 to 4.

H'0000).

A/D converter start request signal TRGAN is issued to the A/D converter under either on following conditions.

• When the TGFA flag in TSR is set to 1 by the occurrence of a TGRA input capture/comatch on a particular channel while the TTGE bit in TIER is set to 1

• When the TCNT_4 count reaches the trough (TCNT_4 = H'0000) during complement

PWM operation while the TTGE2 bit in TIER_4 is set to 1

When either condition is satisfied, if A/D converter start signal TRGAN from the MTU2

selected as the trigger in the A/D converter, A/D conversion will start.

when a compare match occurs between TCNT_0 and TGRE_0 in channel 0.

MTU2 is selected as the trigger in the A/D converter, A/D conversion will start.

(2) A/D Converter Activation by Compare Match between TCNT_0 and TGRE_0

The A/D converter can be activated by generating A/D converter start request signal TRO

When the TGFE flag in TSR2_0 is set to 1 by the occurrence of a compare match betwee TCNT_0 and TGRE_0 in channel 0 while the TTGE2 bit in TIER2_0 is set to 1, A/D constart request TGR0N is issued to the A/D converter. If A/D converter start signal TGR0N

Rev. 3.00 Mar. 04, 2009 Page 536 of 1168

RENESAS

	<u> </u>	•
TGRA_0 and TCNT_0	Input capture/compare match	TRGAN
TGRA_1 and TCNT_1	_	
TGRA_2 and TCNT_2	_	
TGRA_3 and TCNT_3	_	
TGRA_4 and TCNT_4	_	
TCNT_4	TCNT_4 Trough in	

Compare match

complementary PWM mode

Interrupt Source

TADCORA and TCNT_4
TADCORB and TCNT_4

Target Registers

TGRE_0 and TCNT_0

A/D Converter Start

Signal

TRG0N

TRG4AN

TRG4BN

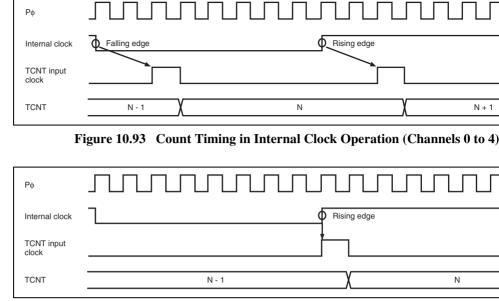


Figure 10.94 Count Timing in Internal Clock Operation (Channel 5)

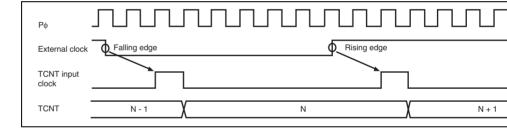


Figure 10.95 Count Timing in External Clock Operation (Channels 0 to 4)

Rev. 3.00 Mar. 04, 2009 Page 538 of 1168 RENESAS

REJ09B0344-0300

A compare match signal is generated in the final state in which TCNT and TGR match (at which the count value matched by TCNT is updated). When a compare match signal generated, the output value set in TIOR is output at the output compare output pin (TIO After a match between TCNT and TGR, the compare match signal is not generated until TCNT input clock is generated.

Figure 10.97 shows output compare output timing (normal mode and PWM mode) and to 10.98 shows output compare output timing (complementary PWM mode and reset synctopy PWM mode).

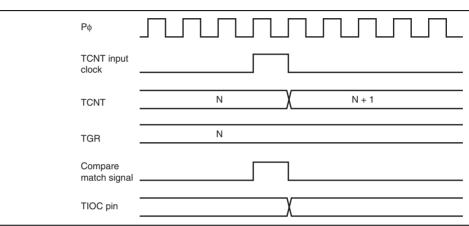
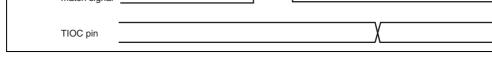



Figure 10.97 Output Compare Output Timing (Normal Mode/PWM Mod

Figure 10.98 Output Compare Output Timing (Complementary PWM Mode/Reset Synchronous PWM Mode)

(3) Input Capture Signal Timing

Figure 10.99 shows input capture signal timing.

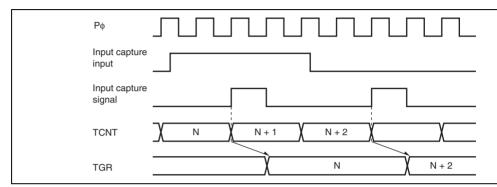


Figure 10.99 Input Capture Input Signal Timing

RENESAS

Figure 10.100	Counter Clear Timing (Compare Match) (Channels 0 to
TGR	N	
TCNT -	N	H'0000

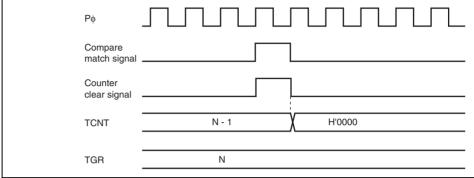
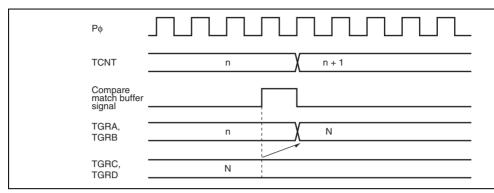



Figure 10.101 Counter Clear Timing (Compare Match) (Channel 5)

rigure 10.102 Counter Clear Timing (Input Capture) (Channels 0 to 5)

(5) Buffer Operation Timing

Figures 10.103 to 10.105 show the timing in buffer operation.

Figure 10.103 Buffer Operation Timing (Compare Match)

Figure 10.104 Buffer Operation Timing (Input Capture)

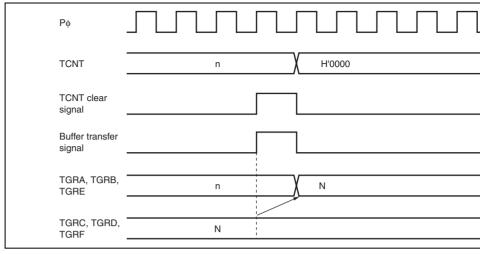


Figure 10.105 Buffer Transfer Timing (when TCNT Cleared)

Rev. 3.00 Mar. 04, 2009 Page REJ09

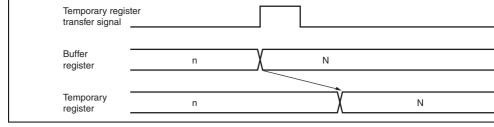


Figure 10.106 Transfer Timing from Buffer Register to Temporary Register (TCN

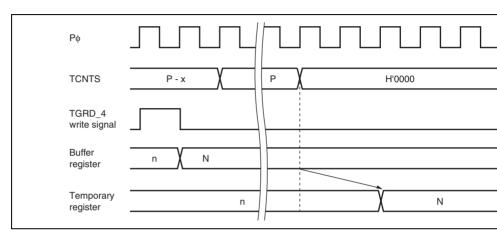


Figure 10.107 Transfer Timing from Buffer Register to Temporary Register (TCNTS Operating)

Rev. 3.00 Mar. 04, 2009 Page 544 of 1168 REJ09B0344-0300

RENESAS

Figure 10.108 Transfer Timing from Temporary Register to Compare Regi

10.6.2 **Interrupt Signal Timing**

TGF Flag Setting Timing in Case of Compare Match

Figures 10.109 and 110 show the timing for setting of the TGF flag in TSR on compare and TGI interrupt request signal timing.

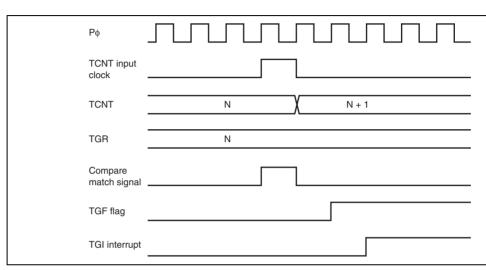


Figure 10.109 TGI Interrupt Timing (Compare Match)

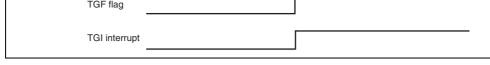


Figure 10.110 TGI Interrupt Timing (Compare Match) (Channel 5)

TGF Flag Setting Timing in Case of Input Capture (2)

Figures 10.111 and 112 show the timing for setting of the TGF flag in TSR on input capt TGI interrupt request signal timing.

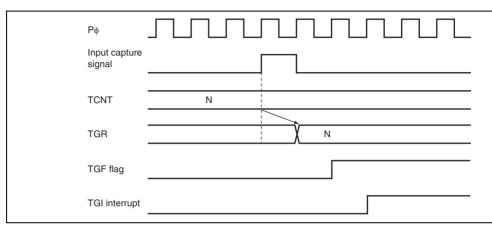


Figure 10.111 TGI Interrupt Timing (Input Capture) (Channels 0 to 4)

r Grimlerrupi	I

Figure 10.112 TGI Interrupt Timing (Input Capture) (Channel 5)

(3) TCFV Flag/TCFU Flag Setting Timing

Figure 10.113 shows the timing for setting of the TCFV flag in TSR on overflow, and T interrupt request signal timing.

Figure 10.114 shows the timing for setting of the TCFU flag in TSR on underflow, and interrupt request signal timing.

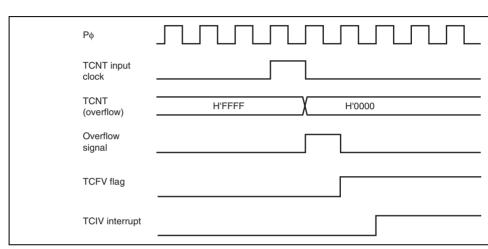


Figure 10.113 TCIV Interrupt Setting Timing

TCIU interrupt

Figure 10.114 TCIU Interrupt Setting Timing

(4) Status Flag Clearing Timing

After a status flag is read as 1 by the CPU, it is cleared by writing 0 to it. When the DMA activated, the flag is cleared automatically. Figures 10.115 and 116 show the timing for s clearing by the CPU, and figure 10.117 shows the timing for status flag clearing by the D

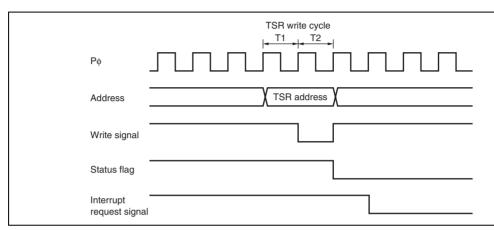


Figure 10.115 Timing for Status Flag Clearing by CPU (Channels 0 to 4)

Rev. 3.00 Mar. 04, 2009 Page 548 of 1168 REJ09B0344-0300

RENESAS

request signal

Figure 10.116 Timing for Status Flag Clearing by CPU (Channel 5)

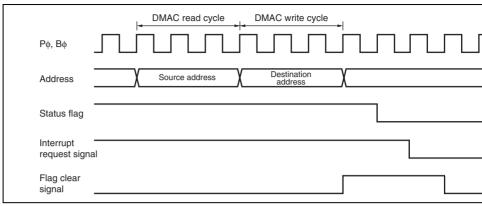


Figure 10.117 Timing for Status Flag Clearing by DTC Activation (Channels

Rev. 3.00 Mar. 04, 2009 Page

The input clock pulse width must be at least 1.5 states in the case of single-edge detection least 2.5 states in the case of both-edge detection. The MTU2 will not operate properly at pulse widths.

In phase counting mode, the phase difference and overlap between the two input clocks in least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10.118 shows the inconditions in phase counting mode.

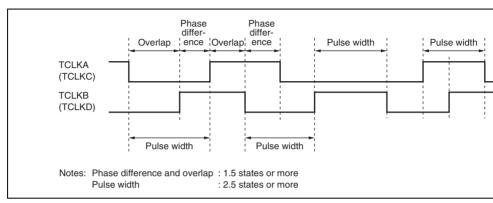


Figure 10.118 Phase Difference, Overlap, and Pulse Width in Phase Counting

• Channel 5

$$f = \frac{P\phi}{N}$$

Where f:

f: Counter frequency

Pφ: Peripheral clock operating frequency

N: TGR set value

10.7.4 Contention between TCNT Write and Clear Operations

If the counter clear signal is generated in the T2 state of a TCNT write cycle, TCNT clear precedence and the TCNT write is not performed.

Figure 10.119 shows the timing in this case.

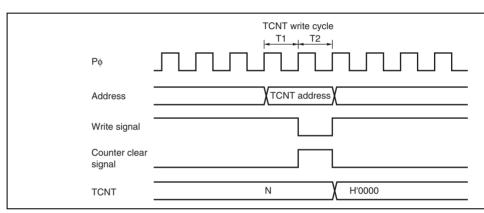


Figure 10.119 Contention between TCNT Write and Clear Operations

Rev. 3.00 Mar. 04, 2009 Page

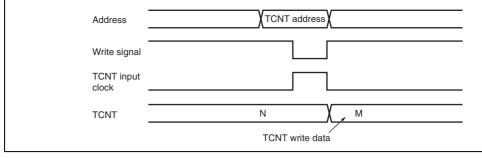


Figure 10.120 Contention between TCNT Write and Increment Operation

Address	TGR address	
Write signal		
Compare match signal .		
TCNT	N	N + 1
TGR .	N X	M
	TGR write data	

Figure 10.121 Contention between TGR Write and Compare Match

Rev. 3.00 Mar. 04, 2009 Page

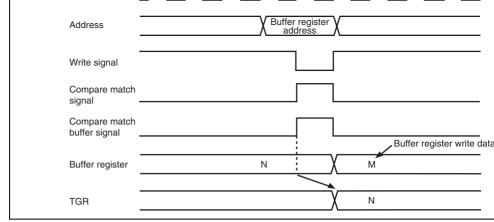


Figure 10.122 Contention between Buffer Register Write and Compare Mat

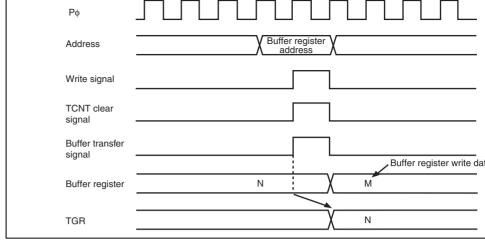


Figure 10.123 Contention between Buffer Register Write and TCNT Clear

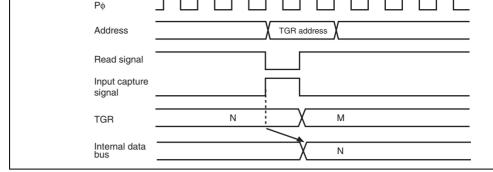


Figure 10.124 Contention between TGR Read and Input Capture (Channels 0

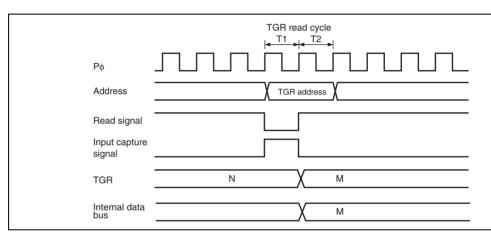


Figure 10.125 Contention between TGR Read and Input Capture (Channel

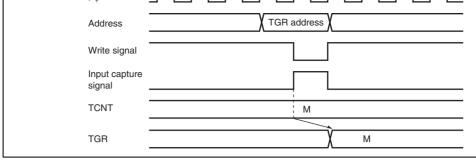


Figure 10.126 Contention between TGR Write and Input Capture (Channels

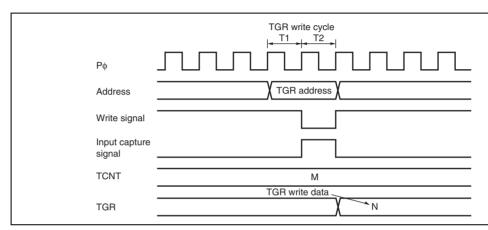


Figure 10.127 Contention between TGR Write and Input Capture (Channel

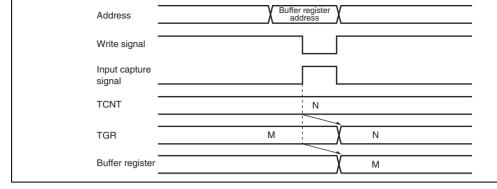


Figure 10.128 Contention between Buffer Register Write and Input Captur

TCNT2 Write and Overflow/Underflow Contention in Cascade Connection

With timer counters TCNT1 and TCNT2 in a cascade connection, when a contention occ during TCNT_1 count (during a TCNT_2 overflow/underflow) in the T, state of the TCN write cycle, the write to TCNT_2 is conducted, and the TCNT_1 count signal is disabled. point, if there is match with TGRA 1 and the TCNT 1 value, a compare signal is issued. Furthermore, when the TCNT_1 count clock is selected as the input capture source of characteristics. TGRA_0 to D_0 carry out the input capture operation. In addition, when the compare ma capture is selected as the input capture source of TGRB 1, TGRB 1 carries out input cap operation. The timing is shown in figure 10.129.

For cascade connections, be sure to synchronize settings for channels 1 and 2 when setting clearing.

Rev. 3.00 Mar. 04, 2009 Page 558 of 1168 REJ09B0344-0300

Ch2 compare- match signal A/B_	
TCNT_1 input clock _	Disabled
TCNT_1	М
TGRA_1	М
Ch1 compare- match signal A	
TGRB_1	N M
Ch1 input capture signal B	
TCNT_0	Р
TGRA_0 to TGRD_0	Q P
Ch0 input capture signal A to D	

Figure 10.129 TCNT_2 Write and Overflow/Underflow Contention with Cas Connection

Rev. 3.00 Mar. 04, 2009 Page REJ09

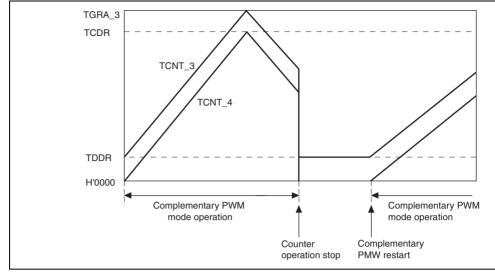


Figure 10.130 Counter Value during Complementary PWM Mode Stop

10.7.14 Buffer Operation Setting in Complementary PWM Mode

In complementary PWM mode, conduct rewrites by buffer operation for the PWM cycle register (TGRA_3), timer cycle data register (TCDR), and duty setting registers (TGRB_TGRA_4, and TGRB_4).

In complementary PWM mode, channel 3 and channel 4 buffers operate in accordance w settings BFA and BFB of TMDR_3. When TMDR_3's BFA bit is set to 1, TGRC_3 func buffer register for TGRA_3. At the same time, TGRC_4 functions as the buffer register f TGRA_4, and TCBR functions as the TCDR's buffer register.

Rev. 3.00 Mar. 04, 2009 Page 560 of 1168 REJ09B0344-0300

The TGFC bit and TGFD bit of TSR_3 and TSR_4 are not set when TGRC_3 and TGR operating as buffer registers.

Figure 10.131 shows an example of operations for TGR_3, TGR_4, TIOC3, and TIOC4 TMDR_3's BFA and BFB bits set to 1, and TMDR_4's BFA and BFB bits set to 0.

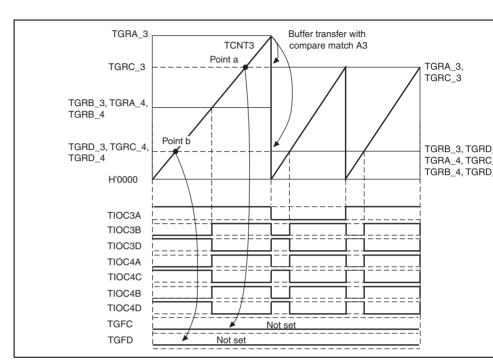


Figure 10.131 Buffer Operation and Compare-Match Flags in Reset Synchronous PWM Mode

Rev. 3.00 Mar. 04, 2009 Page

Figure 10.132 shows a TCFV bit operation example in reset synchronous PWM mode wi value for cycle register TGRA_3 of H'FFFF, when a TGRA_3 compare-match has been swithout synchronous setting for the counter clear source.

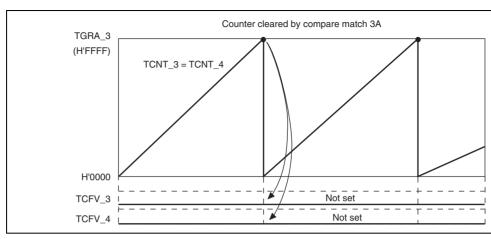


Figure 10.132 Reset Synchronous PWM Mode Overflow Flag

clock	
TCNT	H'FFFF H'0000
Counter cleasignal	ar
TGF	
TCFV	Disabled —

Figure 10.133 Contention between Overflow and Counter Clearing

Rev. 3.00 Mar. 04, 2009 Page

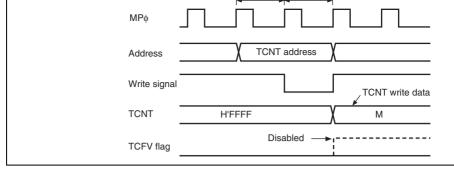


Figure 10.134 Contention between TCNT Write and Overflow

10.7.19 Cautions on Transition from Normal Operation or PWM Mode 1 to Reset Synchronized PWM Mode

When making a transition from channel 3 or 4 normal operation or PWM mode 1 to reset synchronized PWM mode, if the counter is halted with the output pins (TIOC3B, TIOC3: TIOC4A, TIOC4C, TIOC4B, TIOC4D) in the high-level state, followed by the transition synchronized PWM mode and operation in that mode, the initial pin output will not be considered.

When making a transition from normal operation to reset-synchronized PWM mode, writ registers TIORH_3, TIORL_3, TIORH_4, and TIORL_4 to initialize the output pins to lo output, then set an initial register value of H'00 before making the mode transition.

When making a transition from PWM mode 1 to reset-synchronized PWM mode, first sw normal operation, then initialize the output pins to low level output and set an initial regist of H'00 before making the transition to reset-synchronized PWM mode.

Rev. 3.00 Mar. 04, 2009 Page 564 of 1168

REJ09B0344-0300

RENESAS

disabled before entering module standby mode.

10.7.22 Simultaneous Capture of TCNT_1 and TCNT_2 in Cascade Connection

When timer counters 1 and 2 (TCNT_1 and TCNT_2) are operated as a 32-bit counter in connection, the cascade counter value cannot be captured successfully even if input-cap

is simultaneously done to TIOC1A and TIOC2A or to TIOC1B and TIOC2B. This is be input timing of TIOC1A and TIOC2A or of TIOC1B and TIOC2B may not be the same external input-capture signals to be input into TCNT_1 and TCNT_2 are taken in synch with the internal clock. For example, TCNT_1 (the counter for upper 16 bits) does not count-up value by overflow from TCNT_2 (the counter for lower 16 bits) but captures the value before the count-up. In this case, the values of TCNT_1 = H'FFF1 and TCNT_2 = should be transferred to TGRA_1 and TGRA_2 or to TGRB_1 and TGRB_2, but the value TCNT_1 = H'FFF0 and TCNT_2 = H'0000 are erroneously transferred.

The MTU2 additionally supports the function that can capture TCNT_1 and TCNT_2 simultaneously via a single input capture input. This function allows 32-bit counter fetch without TCNT_1 and TCNT_2 capture timing deviation. For details, see section 10.3.8, Input Capture Control Register (TICCR).

- Phase counting modes 1 to 4 (channels 1 and 2)
- Complementary PWM mode (channels 3 and 4)
- Reset-synchronized PWM mode (channels 3 and 4)

The MTU2 output pin initialization method for each of these modes is described in this se

10.8.2 Reset Start Operation

The MTU2 output pins (TIOC*) are initialized low by a reset and in standby mode. Since pin function selection is performed by the pin function controller (PFC), when the PFC is MTU2 pin states at that point are output to the ports. When MTU2 output is selected by timmediately after a reset, the MTU2 output initial level, low, is output directly at the port the active level is low, the system will operate at this point, and therefore the PFC setting be made after initialization of the MTU2 output pins is completed.

Note: Channel number and port notation are substituted for *.

RENESAS

Table 10.59 Mode Transition Combinations

Before	Normal	PWM1	PWM2	PCM	CPWM	RF
Normal	(1)	(2)	(3)	(4)	(5)	(6)
PWM1	(7)	(8)	(9)	(10)	(11)	(12
PWM2	(13)	(14)	(15)	(16)	None	No
PCM	(17)	(18)	(19)	(20)	None	No
CPWM	(21)	(22)	None	None	(23) (24)	(2
RPWM	(26)	(27)	None	None	(28)	(29

After

[Legend]

Normal: Normal mode PWM1: PWM mode 1 PWM2: PWM mode 2

PCM: Phase counting modes 1 to 4
CPWM: Complementary PWM mode
RPWM: Reset-synchronized PWM mode

Rev. 3.00 Mar. 04, 2009 Page

not initialize the pins. If initialization is required, carry it out in normal mode, then sw PWM mode 2.

- In normal mode or PWM mode 2, if TGRC and TGRD operate as buffer registers, set TIOR will not initialize the buffer register pins. If initialization is required, clear buffer carry out initialization, then set buffer mode again.
 - In PWM mode 1, if either TGRC or TGRD operates as a buffer register, setting TIOR initialize the TGRC pin. To initialize the TGRC pin, clear buffer mode, carry out initialize the TGRC pin. then set buffer mode again. When making a transition to a mode (CPWM, RPWM) in which the pin output level
- selected by the timer output control register (TOCR) setting, switch to normal mode a perform initialization with TIOR, then restore TIOR to its initial value, and temporari channel 3 and 4 output with the timer output master enable register (TOER). Then op unit in accordance with the mode setting procedure (TOCR setting, TMDR setting, T setting).

Note: Channel number is substituted for * indicated in this article.

Pin initialization procedures are described below for the numbered combinations in table The active level is assumed to be low.

Rev. 3.00 Mar. 04, 2009 Page 568 of 1168

T1 404	4. E	_		 				
n = 0 to 15								
PEn		High-Z	!			 !		
PEn		High-Z		 		 	¦	
Port output			!		! !	! !	! !	
110C*B		i	1	 				

Figure 10.135 Error Occurrence in Normal Mode, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. After a reset, the TMDR setting is for normal mode.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIO
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low out compare-match occurrence.)
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Not necessary when restarting in normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

1100 5			_	
Port output				
PEn —	High-Z			
PEn	High-Z			
n = 0 to 15				
T1 404	26 E 0		116 1 5	

Figure 10.136 Error Occurrence in Normal Mode, Recovery in PWM Mode

1 to 10 are the same as in figure 10.135.

- 11. Set PWM mode 1.
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized. I initialization is required, initialize in normal mode, then switch to PWM mode 1.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

REJ09B0344-0300

Port output				! !	! !			
PEn	High-Z					 		
PEn	High-Z					 		
n = 0 to 15		-	-			-		

Figure 10.137 Error Occurrence in Normal Mode, Recovery in PWM Mod

1 to 10 are the same as in figure 10.135.

- 11. Set PWM mode 2.
- 12. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial initialization is required, initialize in normal mode, then switch to PWM mode 2.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: PWM mode 2 can only be set for channels 0 to 2, and therefore TOER setting is necessary.

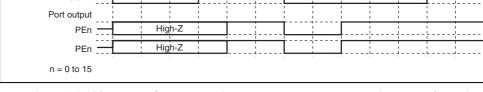


Figure 10.138 Error Occurrence in Normal Mode, Recovery in Phase Counting

1 to 10 are the same as in figure 10.135.

- 11. Set phase counting mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: Phase counting mode can only be set for channels 1 and 2, and therefore TOER s not necessary.

Rev. 3.00 Mar. 04, 2009 Page 572 of 1168

REJ09B0344-0300

Port output PE8 High-Z PE9 High-Z PE11 High-Z	TIOC3D	;;; 1	 			 				
PE9 High-Z PE11 High-Z	Port output		<u> </u>	i_	<u>i</u>		i	į	<u>i </u>	
PE9 High-Z PE11 High-Z	PE8	High-Z	 l			 				
PE11 High-Z		High-Z	 			 				
	PE11	High-Z				 				

Figure 10.139 Error Occurrence in Normal Mode, Recovery in Complementary PWM Mode

1 to 10 are the same as in figure 10.135.

- 11. Initialize the normal mode waveform generation section with TIOR.
- 12. Disable operation of the normal mode waveform generation section with TIOR.
- 13. Disable channel 3 and 4 output with TOER.
- 14. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 15. Set complementary PWM.
- 16. Enable channel 3 and 4 output with TOER.
- 17. Set MTU2 output with the PFC.
- 18. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page

TIOC3D	1					1	(1	Л
Port output										-
PE8	High-Z	—		 		 ÷				Ţ.
PE9	High-Z		\Box			 			1	Ţ.
PE11 —	High-Z		T	 	-	_		-	+	Ŧ
4						 				

Figure 10.140 Error Occurrence in Normal Mode, Recovery in Reset-Synchronized PWM Mode

1 to 13 are the same as in figure 10.135.

- 14. Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 15. Set reset-synchronized PWM.
- 16. Enable channel 3 and 4 output with TOER.
- 17. Set MTU2 output with the PFC.
- 18. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 574 of 1168

REJ09B0344-0300

1100.8	GNOT Initialized (1100 B)	i
Port output		-
PEn —	High-Z	Ţ.,
PEn —	High-Z	Ι
n = 0 to 15		

Figure 10.141 Error Occurrence in PWM Mode 1, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set PWM mode 1.
- 3. For channels 3 and 4, enable output with TOER before initializing the pins with TIOER
- 4. Initialize the pins with TIOR. (The example shows initial high output, with low ou compare-match occurrence. In PWM mode 1, the TIOC*B side is not initialized.)
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. Output goes low on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR.
- 11. Set normal mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Figure 10 142	Error Occ	urrena	e in F	ww	Mod	o 1 1	Recov	erv ir	PWN	л Ма	ď
n = 0 to 15											
PEn	High-Z						I		<u>-</u>	L	_
PEn	High-Z						ļ				_
Port output											
1100 B	ii	OTVOL IIII	Hanzea	(1100	D) ;		<u> </u>		<u> </u>	VOL II II II	uı

1 to 10 are the same as in figure 10.141.

- 11. Not necessary when restarting in PWM mode 1.
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 576 of 1168

Port output	1 1	!		 	. , , , , , , , , , , , , , , , , , , ,	1	!		!		
PEn	High-Z			<u>.</u>				; !		; !	
PEn	High-Z	!	İ	i							
n = 0 to 15											

Figure 10.143 Error Occurrence in PWM Mode 1, Recovery in PWM Mod

1 to 10 are the same as in figure 10.141.

- 11. Set PWM mode 2.
- 12. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: PWM mode 2 can only be set for channels 0 to 2, and therefore TOER setting is necessary.

Figure 10 144 Free	r Occurrence	in PWM Mo	da 1 Daca	wary in P	haca C	ountin	~
n = 0 to 15							
PEn	High-Z						
PEn —	High-Z	_		ļ			
Port output							
ПОС-В	- 140	i iliitialized (1100	, 0)		<u> </u>		

Figure 10.144 Error Occurrence in PWM Mode 1, Recovery in Phase Counting

1 to 10 are the same as in figure 10.141.

- 11. Set phase counting mode.
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Note: Phase counting mode can only be set for channels 1 and 2, and therefore TOER s not necessary.

Rev. 3.00 Mar. 04, 2009 Page 578 of 1168 REJ09B0344-0300

RENESAS

HOUSE			_	TNOL	muanze	u (110	(030)		1	1		4	1	1	1	1
Port output																
PE8			ligh-Z	=					Γ	ļ	<u></u>	į	<u> </u>	Į	Ţ	Į
PES		F	ligh-Z	\neg	 	; <u>'</u>		ļ		_		$\overline{}$		-	_	\vdash
PE11	1 - 		liah-Z	=												
								-								

Figure 10.145 Error Occurrence in PWM Mode 1, Recovery in Complementary PWM Mode

1 to 10 are the same as in figure 10.141.

- 11. Set normal mode for initialization of the normal mode waveform generation section
- 12. Initialize the PWM mode 1 waveform generation section with TIOR.
- 13. Disable operation of the PWM mode 1 waveform generation section with TIOR.
- 14. Disable channel 3 and 4 output with TOER.
- 15. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 16. Set complementary PWM.
- 17. Enable channel 3 and 4 output with TOER.
- 18. Set MTU2 output with the PFC.
- 19. Operation is restarted by TSTR.

110030		• NOL IIIIIIaii	zeu (110	(030)					1	Г
Port output									! !	-
PE8 ===	High-Z	1				 	 ļ		ļ	 ī
PE9	High-Z						 	!	!	 t
PE11 —	High-Z	+			 	 				 Ŧ
	1	•				 	 			

Figure 10.146 Error Occurrence in PWM Mode 1, Recovery in Reset-Synchronized PWM Mode

1 to 14 are the same as in figure 10.145.

- 15. Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 16. Set reset-synchronized PWM.
- 17. Enable channel 3 and 4 output with TOER.
- 18. Set MTU2 output with the PFC.
- 19. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 580 of 1168

REJ09B0344-0300

Port output	!
Port output	
PEn High-Zi	
PEn High-Z	l L
n = 0 to 15	

Figure 10.147 Error Occurrence in PWM Mode 2, Recovery in Normal Mo

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set PWM mode 2.
- 3. Initialize the pins with TIOR. (The example shows initial high output, with low ou compare-match occurrence. In PWM mode 2, the cycle register pins are not initialize example, TIOC*A is the cycle register.)
- 4. Set MTU2 output with the PFC.
- 5. The count operation is started by TSTR.
- 6. Output goes low on compare-match occurrence.
- 7. An error occurs.
- 8. Set port output with the PFC and output the inverse of the active level.
- 9. The count operation is stopped by TSTR.
- 10. Set normal mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

1100-8		 				MOL IUI	lialized
Port output	1 1	!					
PEn —	High-Z	Ĭ		j			
PEn	High-Z						
n = 0 to 15				,			
E' 10 140	E	 DXX/X/	 n n		D	X X 7 N /F	N T - 1 -

Figure 10.148 Error Occurrence in PWM Mode 2, Recovery in PWM Mode

1 to 9 are the same as in figure 10.147.

- 10. Set PWM mode 1.
- 11. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

F! 10	1.40 E	0					D		DII	
n = 0 to 15										
PEn _	Hig	ıh-Z	ļ <u>i</u>	L	- !	-		-	ļ	
==		-	-					+	1	
PEn -	Hig	ıh-Z			į		i	į	į	
Port output		!	1	! .		. !	!	!	!	<u> </u>
1100-15			ļ j	 	<u>i</u>	- i	- i	i	ļ	<u></u>

Figure 10.149 Error Occurrence in PWM Mode 2, Recovery in PWM Mod

1 to 9 are the same as in figure 10.147.

- 10. Not necessary when restarting in PWM mode 2.
- 11. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

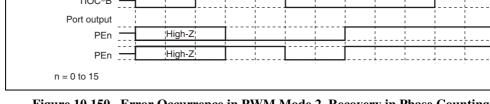


Figure 10.150 Error Occurrence in PWM Mode 2, Recovery in Phase Counting

1 to 9 are the same as in figure 10.147.

- 10. Set phase counting mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

110C*B		 		
Port output				
PEn —	High-Z			
PEn	High-Z			
n = 0 to 15		 · · ·	· ·	· · ·

Figure 10.151 Error Occurrence in Phase Counting Mode, Recovery in Norma

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Set phase counting mode.
- 3. Initialize the pins with TIOR. (The example shows initial high output, with low our compare-match occurrence.)
- 4. Set MTU2 output with the PFC.
- 5. The count operation is started by TSTR.
- 6. Output goes low on compare-match occurrence.
- 7. An error occurs.
- 8. Set port output with the PFC and output the inverse of the active level.
- 9. The count operation is stopped by TSTR.
- 10. Set in normal mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Figure 10.152	Er	ror O	cenr	rence	in Pł	iase (ากมากร	ing N	Inde.	Reco	verv i	in PW	/ M]
n = 0 to 15				-									
PEn	$\exists\exists$		High-Z	! !									
PEn	Ξ		High-Z	i i									
Port output				I I I				 - 					
HOC*B				l	L							NOT ILII	lialize

1 to 9 are the same as in figure 10.151.

- 10. Set PWM mode 1.
- 11. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

1100-8		i i L	<u> </u>	 	i
Port output					
PEn	High-Z			 	
PEn	High-Z		·	 	
n = 0 to 15					

Figure 10.153 Error Occurrence in Phase Counting Mode, Recovery in PWM

- 10. Set PWM mode 2.
- 11. Initialize the pins with TIOR. (In PWM mode 2, the cycle register pins are not initial
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

REJ09

1100	, D]
Port out	put				
F	En H	igh-Z		ļ	
F	En H	igh-Z		ļ	
n = 0					

Figure 10.154 Error Occurrence in Phase Counting Mode, Recovery in Phase Counting Mode

- 10. Not necessary when restarting in phase counting mode.
- 11. Initialize the pins with TIOR.
- 12. Set MTU2 output with the PFC.
- 13. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 588 of 1168

110C3B ==		
TIOC3D		
Port output		
PE8	High-Z	
PE9	High-Z	
PE11 ====	High-Z	

Figure 10.155 Error Occurrence in Complementary PWM Mode, Recovery in Normal Mode

- 1. After a reset, MTU2 output is low and ports are in the high-impedance state.
- 2. Select the complementary PWM output level and cyclic output enabling/disabling v TOCR.
- 3. Set complementary PWM.
- 4. Enable channel 3 and 4 output with TOER.
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. The complementary PWM waveform is output on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR. (MTU2 output becomes the complementa output initial value.)
- 11. Set normal mode. (MTU2 output goes low.)
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page

REJ09

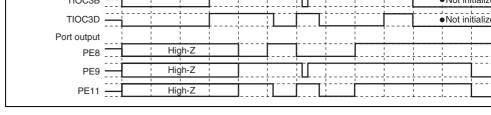


Figure 10.156 Error Occurrence in Complementary PWM Mode, Recovery in PWM Mode 1

- 11. Set PWM mode 1. (MTU2 output goes low.)
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.)
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

RENESAS

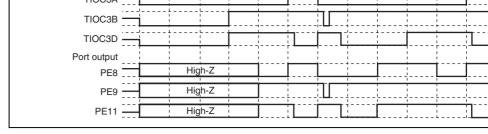


Figure 10.157 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- 11. Set MTU2 output with the PFC.
- 12. Operation is restarted by TSTR.
- 13. The complementary PWM waveform is output on compare-match occurrence.

Rev. 3.00 Mar. 04, 2009 Page

REJ09

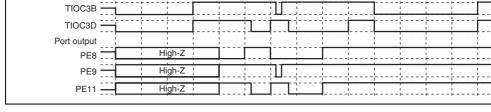


Figure 10.158 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- 11. Set normal mode and make new settings. (MTU2 output goes low.)
- 12. Disable channel 3 and 4 output with TOER.
- 13. Select the complementary PWM mode output level and cyclic output enabling/disable TOCR.
- 14. Set complementary PWM.
- 15. Enable channel 3 and 4 output with TOER.
- 16. Set MTU2 output with the PFC.
- 17. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 592 of 1168

TIOC3D	 											П
Port output	į	į		į	i	į	į	i	į	į	į	i
PE8	High-Z			 							ļ	Ξ.
PE9	High-Z		J			 br>	+					
PE11	High-Z								ļ	ļ		Ţ

Figure 10.159 Error Occurrence in Complementary PWM Mode, Recovery in Reset-Synchronized PWM Mode

- 11. Set normal mode. (MTU2 output goes low.)
- 12. Disable channel 3 and 4 output with TOER.
- 13. Select the reset-synchronized PWM mode output level and cyclic output enabling/d with TOCR.
- 14. Set reset-synchronized PWM.
- 15. Enable channel 3 and 4 output with TOER.
- 16. Set MTU2 output with the PFC.
- 17. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page

REJ09

HOC3B		1	‡ -	L			l‡.
TIOC3D		T	<u> </u>				1 1
Port output							
PE8	High-Z			J	ļ	-	; ;
PE9	High-Z			7			
PE11	High-Z		· · · · · · · · · · · · · · · · · · ·				

Figure 10.160 Error Occurrence in Reset-Synchronized PWM Mode, **Recovery in Normal Mode**

- After a reset, MTU2 output is low and ports are in the high-impedance state. 1.
- Select the reset-synchronized PWM output level and cyclic output enabling/disabling TOCR.
- 3. Set reset-synchronized PWM.
- Enable channel 3 and 4 output with TOER.
- 5. Set MTU2 output with the PFC.
- 6. The count operation is started by TSTR.
- 7. The reset-synchronized PWM waveform is output on compare-match occurrence.
- 8. An error occurs.
- 9. Set port output with the PFC and output the inverse of the active level.
- 10. The count operation is stopped by TSTR. (MTU2 output becomes the reset-synchron PWM output initial value.)
- 11. Set normal mode. (MTU2 positive phase output is low, and negative phase output is
- 12. Initialize the pins with TIOR.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

Rev. 3.00 Mar. 04, 2009 Page 594 of 1168 REJ09B0344-0300

RENESAS

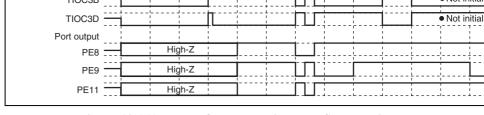


Figure 10.161 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in PWM Mode 1

- 11. Set PWM mode 1. (MTU2 positive phase output is low, and negative phase output
- 12. Initialize the pins with TIOR. (In PWM mode 1, the TIOC*B side is not initialized.
- 13. Set MTU2 output with the PFC.
- 14. Operation is restarted by TSTR.

REJ09

TIOC3B		<u> </u>			П				
TIOC3D		<u> </u>				<u> </u>	 		
Port output			- :			-			:
PE8	Hi	gh-Z			 		 	 	 ļ
PE9	Hi	gh-Z			 П				
PE11	Hi	gh-Z		ز ـ ـ ـ ـ ـ		1			
		,					 	 ,	 ,

Figure 10.162 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Complementary PWM Mode

- 11. Disable channel 3 and 4 output with TOER.
- 12. Select the complementary PWM output level and cyclic output enabling/disabling was TOCR.
- 13. Set complementary PWM. (The MTU2 cyclic output pin goes low.)
- 14. Enable channel 3 and 4 output with TOER.
- 15. Set MTU2 output with the PFC.
- 16. Operation is restarted by TSTR.

110037						-i
TIOC3B						
TIOC3D		П		 		
Port output						'
PE8	High-Z		,			
PE9	High-Z				J	.
PE11	High-Z	<u> </u>				-

Figure 10.163 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Reset-Synchronized PWM Mode

- 11. Set MTU2 output with the PFC.
- 12. Operation is restarted by TSTR.
- 13. The reset-synchronized PWM waveform is output on compare-match occurrence.

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Rev. 3.00 Mar. 04, 2009 Page 598 of 1168

The W11025 can operate at 60 W1112 max. for complementary 1 WW1 output functions of max. for the other functions.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

General reg buffer regis		TGRC_3S TGRD_3S	TGRC_4S TGRD_4S	_
I/O pins		TIOC3AS TIOC4AS TIOC3BS TIOC4BS TIOC3CS TIOC4CS TIOC3DS TIOC4DS		Input pins TIC5US TIC5VS TIC5WS
Counter clear function		TGR compare match or input capture	TGR compare match or input capture	TGR compare input capture
Compare	0 output	√	$\sqrt{}$	
match output	1 output		$\sqrt{}$	_
output	Toggle output	V	V	_
Input captu function	re	1	V	√
Synchronou operation	us	V	V	_
PWM mode	e 1	$\sqrt{}$	√	_
PWM mode	2	_	_	_
Complemer PWM mode	•	V	V	_
Reset PWN	/I mode	V	$\sqrt{}$	_
AC synchro motor drive		_	_	_
Phase cour mode	nting	_	_	_
Buffer oper	ation		$\sqrt{}$	_

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 600 of 1168

			•
	input capture 3AS	input capture 4AS	input captu
	 Compare match or input capture 3BS 	 Compare match or input capture 4BS 	 Compare r input captu
	 Compare match or input capture 3CS 	 Compare match or input capture 4CS 	 Compare r input captu
	 Compare match or input capture 3DS 	 Compare match or input capture 4DS 	
	 Overflow 	 Overflow or underflow 	
A/D converter start request delaying function	_	 A/D converter start request at a match between TADCORA_4S and TCNT_4S A/D converter start request at a match between TADCORB_4S and TCNT_4S 	_
		TCNT_4S	

5 sources

Compare match or

3 sources

Compare r

Interrupt sources

5 sources

Compare match or

Rev. 3.00 Mar. 04, 2009 Page 602 of 1168

	1100408	1/0	TGRC_4S input capture input/output compare output/PWW
	TIOC4DS	I/O	TGRD_4S input capture input/output compare output/PWM
5	TIC5US	Input	TGRU_5S input capture input/external pulse input pin
	TIC5VS	Input	TGRV_5S input capture input/external pulse input pin
	TIC5WS	Input	TGRW_5S input capture input/external pulse input pin

TIOC4BS I/O TGRB_4S input capture input/output compare output/PWM

Note: For the pin configuration in complementary PWM mode, see table 10.54.

3	Timer control register_3S	TCR_3S	R/W	H'00	H'FFFE4A00
	Timer mode register_3S	TMDR_3S	R/W	H'00	H'FFFE4A02
	Timer I/O control register H_3S	TIORH_3S	R/W	H'00	H'FFFE4A04
	Timer I/O control register L_3S	TIORL_3S	R/W	H'00	H'FFFE4A05
	Timer interrupt enable register_3S	TIER_3S	R/W	H'00	H'FFFE4A08
	Timer status register_3S	TSR_3S	R/W	H'C0	H'FFFE4A2C
	Timer counter_3S	TCNT_3S	R/W	H'0000	H'FFFE4A10
	Timer general register A_3S	TGRA_3S	R/W	H'FFFF	H'FFFE4A18
	Timer general register B_3S	TGRB_3S	R/W	H'FFFF	H'FFFE4A1A
	Timer general register C_3S	TGRC_3S	R/W	H'FFFF	H'FFFE4A24
	Timer general register D_3S	TGRD_3S	R/W	H'FFFF	H'FFFE4A26
	Timer buffer operation transfer mode register_3S	TBTM_3S	R/W	H'00	H'FFFE4A38
4	Timer control register_4S	TCR_4S	R/W	H'00	H'FFFE4A01
	Timer mode register_4S	TMDR_4S	R/W	H'00	H'FFFE4A03
	Timer I/O control register H_4S	TIORH_4S	R/W	H'00	H'FFFE4A06
	Timer I/O control register L_4S	TIORL_4S	R/W	H'00	H'FFFE4A07
	Timer interrupt enable register_4S	TIER_4S	R/W	H'00	H'FFFE4A09
	Timer status register_4S	TSR_4S	R/W	H'C0	H'FFFE4A2D
	Timer counter_4S	TCNT_4S	R/W	H'0000	H'FFFE4A12
	Timer general register A_4S	TGRA_4S	R/W	H'FFFF	H'FFFE4A1C
	Timer general register B_4S	TGRB_4S	R/W	H'FFFF	H'FFFE4A1E

Rev. 3.00 Mar. 04, 2009 Page 604 of 1168

RENESAS

5	Timer control register U_5S	TCRU_5S	R/W	H'00	H'FFFE4884
	Timer control register V_5S	TCRV_5S	R/W	H'00	H'FFFE4894
	Timer control register W_5S	TCRW_5S	R/W	H'00	H'FFFE48A4
	Timer I/O control register U_5S	TIORU_5S	R/W	H'00	H'FFFE4886
	Timer I/O control register V_5S	TIORV_5S	R/W	H'00	H'FFFE4896
	Timer I/O control register W_5S	TIORW_5S	R/W	H'00	H'FFFE48A6
	Timer interrupt enable register_5S	TIER_5S	R/W	H'00	H'FFFE48B2
	Timer status register_5S	TSR_5S	R/W	H'00	H'FFFE48B0
	Timer start register_5S	TSTR_5S	R/W	H'00	H'FFFE48B4
	Timer counter U_5S	TCNTU_5S	R/W	H'0000	H'FFFE4880
	Timer counter V_5S	TCNTV_5S	R/W	H'0000	H'FFFE4890
	Timer counter W_5S	TCNTW_5S	R/W	H'0000	H'FFFE48A0
	Timer general register U_5S	TGRU_5S	R/W	H'FFFF	H'FFFE4882
	Timer general register V_5S	TGRV_5S	R/W	H'FFFF	H'FFFE4892
	Timer general register W_5S	TGRW_5S	R/W	H'FFFF	H'FFFE48A2
	Timer compare match clear	TCNTCMPCLRS	R/W	H'00	H'FFFE48B6

TADCORB_45 R/W H FFFF H FFFE4A46

TADCOBRA_4S R/W H'FFFF H'FFFE4A48

TADCOBRB_4S R/W H'FFFF H'FFFE4A4A

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Timer A/D convener stant

Timer A/D converter start

A_4S

B_4S

register S

request cycle set register B_4S Timer A/D converter start

request cycle set buffer register

request cycle set buffer register

Timer gate control register S	TGCRS	R/W	H80	H'FFFE4A0D
Timer cycle control register S	TCDRS	R/W	H'FFFF	H'FFFE4A14
Timer dead time data register S	TDDRS	R/W	H'FFFF	H'FFFE4A16
Timer subcounter S	TCNTSS	R	H'0000	H'FFFE4A20
Timer cycle buffer register S	TCBRS	R/W	H'FFFF	H'FFFE4A22
Timer interrupt skipping set register S	TITCRS	R/W	H'00	H'FFFE4A30
Timer interrupt skipping counter S	TITCNTS	R	H'00	H'FFFE4A31
Timer buffer transfer set register S	TBTERS	R/W	H'00	H'FFFE4A32

TDERS

TSYCRS

TOLBRS

пии

H'00

H'01

H'00

H'00

H'00

R/W

R/W

R/W

R/W

R/W

T FFFE4AUE

H'FFFE4A0F

H'FFFE4A34

H'FFFE4A50

H'FFFE4A60

H'FFFE4A36

Timer output control register 15 TOCK 15

Timer output control register 2S TOCR2S

Timer output level buffer register S

Rev. 3.00 Mar. 04, 2009 Page 606 of 1168

Timer dead time enable

Timer synchronous clear

Timer waveform control register TWCRS

register S

register S

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

• Interrupts can be generated by input-level sampling or output-level comparison result

The POE2 has input level detection circuits, output level comparison circuits, and a high-impedance request/interrupt request generating circuit as shown in the block diagram of f 12.1.

Rev. 3.00 Mar. 04, 2009 Page 608 of 1168 REJ09B0344-0300

RENESAS

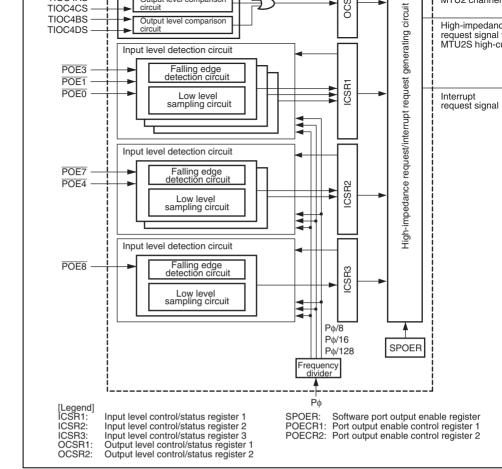


Figure 12.1 Block Diagram of POE2

4 and 7	POE4 and POE7	Input	request signals to place current pins (PB21/TIOC3B: PB20/TIOC3DS, PB12/TIOCPB13/TIOC4BS, PB10/TIOCPB11/TIOC4DS) for MT high-impedance state
Port output enable input pin 8	POE8	Input	Inputs a request signal to pl (PA22/TIOC0A, PA23/TIOC PA24/TIOC0C, and PA25/T for channel 0 in MTU2 in hig impedance state

Rev. 3.00 Mar. 04, 2009 Page 610 of 1168

This active level comparison is done who MTU2 output function or general output 1 selected in the pin function controller. If a function is selected, the output level is no checked. Pin combinations for output comparison impedance control can be selected by P registers. PB21/TIOC3BS and PB20/TIOC3DS Output The high-current pins for the MTU2S are

high-impedance state when the pins PB12/TIOC4AS and PB10/TIOC4CS simultaneously output an active level for PB13/TIOC4BS and PB11/TIOC4DS more cycles of the peripheral clock (P_{\phi}). case of TOCS = 0 in timer output control

1S (TOCR1S) in the MTU2S, low level w output level select P (OLSP) bit is 0, or h when the OLSP bit is 1. In the case of To low level when the OLS3N, OLS3P, OLS OLS2P, OLS1N, and OLS1P bits are 0 in

> Pin combinations for output comparison impedance control can be selected by Pe registers.

Rev. 3.00 Mar. 04, 2009 Page RENESAS

TOCR2S, or high level when these bits a This active level comparison is done who MTU2S output function or general output is selected in the pin function controller. function is selected, the output level is no

THE OLSE BILLS 1. III THE CASE OF TOOS = level when the OLS3N, OLS3P, OLS2N, OLS1N, and OLS1P bits are 0 in TOCR2

level when these bits are 1.)

checked.

Output level control/status register 1	OCSR1	R/W	H'0000	H'FFFE5002
Input level control/status register 2	ICSR2	R/W	H'0000	H'FFFE5004
Output level control/status register 2	OCSR2	R/W	H'0000	H'FFFE5006
Input level control/status register 3	ICSR3	R/W	H'0000	H'FFFE5008
Software port output enable register	SPOER	R/W	H'00	H'FFFE500A
Port output enable control register 1	POECR1	R/W	H'00	H'FFFE500B
Port output enable control register 2	POECR2	R/W	H'7700	H'FFFE500C

Rev. 3.00 Mar. 04, 2009 Page 612 of 1168

Bit	Bit Name	Initial Value	R/W	Description
15	POE3F	0	R/(W)*1	POE3 Flag
				Indicates that a high impedance request has be to the $\overline{\text{POE3}}$ pin.
				[Clearing conditions]
				 By writing 0 to POE3F after reading POE3F (when the falling edge is selected by bits 7 ICSR1)
				 By writing 0 to POE3F after reading POE3F a high level input to POE3 is sampled at Pφ or Pφ/128 clock (when low-level sampling is by bits 7 and 6 in ICSR1)
				[Setting condition]
				• When the input set by bits 7 and 6 in ICSR the POE3 pin

(when the falling edge is selected by bits 3 a ICSR1)

By writing 0 to POE1F after reading POE1F a high level input to POE1 is sampled at Po/8

or P ϕ /128 clock (when low-level sampling is by bits 3 and 2 in ICSR1)

[Setting condition]

 When the input set by bits 3 and 2 in ICSR1 the POE1 pin

Rev. 3.00 Mar. 04, 2009 Page 614 of 1168 REJ09B0344-0300

RENESAS

				by bits 1 and 0 in ICSR1) [Set condition] • When the input set by bits 1 and 0 in ICSR1 the POE0 pin
11	to 9 —	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
8	PIE1	0	R/W	Port Interrupt Enable 1
				Enables or disables interrupt requests when an

to 1.

POE3 Mode

R/W*2

a night level input to POEU is sampled at Po or Ph/128 clock (when low-level sampling is

the POE0F, POE1F, and POE3F bits of the ICS

These bits select the input mode of the POE3 p 00: Accept request on falling edge of POE3 inp 01: Accept request when POE3 input has been for 16 Ph/8 clock pulses and all are low level 10: Accept request when POE3 input has been for 16 Po/16 clock pulses and all are low levels are low levels and all are low levels and all are low levels are low levels and all are low levels are low levels are low levels and all are low levels and levels are low lev

0: Interrupt requests disabled 1: Interrupt requests enabled

11: Accept request when POE3 input has been for 16 Ph/128 clock pulses and all are low le

7, 6

POE3M[1:0] 00

REJ09

Rev. 3.00 Mar. 04, 2009 Page

			11: Accept request when POE1 input has been s for 16 P∮/128 clock pulses and all are low le
1, 0	POE0M[1:0] 00	R/W* ²	POE0 Mode
			These bits select the input mode of the $\overline{\text{POE0}}$ pi
			00: Accept request on falling edge of POE0 inpu
			01: Accept request when POE0 input has been s for 16 Pφ/8 clock pulses and all are low level
			10: Accept request when POE0 input has been s

10: Accept request when POE1 input has been s for 16 Pφ/16 clock pulses and all are low level

for 16 P ϕ /16 clock pulses and all are low leve 11: Accept request when $\overline{POE0}$ input has been s

- $\frac{\text{for 16 P}_{\phi}/\text{128 clock pulses and all are low lemonth}}{\text{Notes: 1. Only 0 can be written to clear the flag after 1 is read.}}$
 - 2. Can be modified only once after a power-on reset.

Can be modified	only	once	atter	а	power	-on	res
-----------------	------	------	-------	---	-------	-----	-----

		1		
Bit	Bit Name	Initial Value	R/W	Description
15	OSF1	0	R/(W)*1	Output Short Flag 1
				Indicates that any one of the three pairs of MTL phase outputs to be compared has simultaneous become an active level.
				[Clearing condition]
				• By writing 0 to OSF1 after reading OSF1 = [Setting condition]
				When any one of the three pairs of 2-phase has simultaneously become an active level
14 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
9	OCE1	0	R/W* ²	Output Short High-Impedance Enable 1
				Specifies whether to place the pins in high-impostate when the OSF1 bit in OCSR1 is set to 1.
				0: Does not place the pins in high-impedance s
				1: Places the pins in high-impedance state
8	OIE1	0	R/W	Output Short Interrupt Enable 1
				Enables or disables interrupt requests when the in OCSR is set to 1.
				0: Interrupt requests disabled
				1: Interrupt requests enabled

ICSR2 is a 16-bit readable/writable register that selects the POE4 and POE7 pin input mo controls the enable/disable of interrupts, and indicates status.

	Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
		POE7F	-	-	POE4F	-	-	-	PIE2	POE7	M[1:0]	-	-	-	-
Initia	al value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	₽/\//·	P//\//*1	R	R	R//\/*1	B	R	R	D/M	₽/\//*2	₽/\//*2	R	R	R	B

- Notes: 1. Only 0 can be written to clear the flag after 1 is read.

	2. Can be mod	dified only once	e after a pow	er-on reset.
Bit	Bit Name	Initial Value	R/W	Description
15	POE7F	0	R/(W)*1	POE7 Flag
				Indicates that a high impedance request has been to the $\overline{\text{POE7}}$ pin.
				[Clearing conditions]
				 By writing 0 to POE7F after reading POE7F : (when the falling edge is selected by bits 7 a ICSR2)
				 By writing 0 to POE7F after reading POE7F a high level input to POE7 is sampled at Pφ/8 or Pφ/128 clock (when low-level sampling is by bits 7 and 6 in ICSR2) [Setting condition]
				 When the input condition set by bits 7 and 6 occurs at the POE7 pin

Rev. 3.00 Mar. 04, 2009 Page 618 of 1168

RENESAS

				occurs at the POE4 pin
11 to 9	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
8	PIE2	0	R/W	Port Interrupt Enable 2
				Enables or disables interrupt requests when a the POE4F and POE7F bits of the ICSR2 is s
				0: Interrupt requests disabled
				1: Interrupt requests enabled
7, 6	POE7M[1:0]	00	R/W* ²	POE7 Mode
				These bits select the input mode of the POE7
				00: Accept request on falling edge of POE7 in
				01: Accept request when POE7 input has been for 16 Po/8 clock pulses and all are at a local pulses.
				10: Accept request when POE7 input has be for 16 P∮/16 clock pulses and all are at a
				11: Accept request when POE7 input has be for 16 P∳/128 clock pulses and all are at

(when the falling edge is selected by bits i

• By writing 0 to POE4F after reading POE4F a high level input to POE4 is sampled at Po or Ph/128 clock (when low-level sampling is

• When the input condition set by bits 1 and 0

by bits 1 and 0 in ICSR2)

ICSR2)

[Setting condition]

- 10: Accept request when POE4 input has been s for 16 P∮/16 clock pulses and all are at a low
 - 11: Accept request when $\overline{POE4}$ input has been s for 16 P ϕ /128 clock pulses and all are at a lo
- Notes: 1. Only 0 can be written to clear the flag after 1 is read.
 - 2. Can be modified only once after a power-on reset.

RENESAS

Bit	Bit Name	Initial Value	R/W	Description
15	OSF2	0	R/(W)*1	Output Short Flag 2
				Indicates that any one of the three pairs of MTU phase outputs to be compared has simultaneous become an active level.
				[Clearing condition]
				• By writing 0 to OSF2 after reading OSF2 =
				[Setting condition]
				When any one of the three pairs of 2-phase has simultaneously become an active level
14 to 10	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
9	OCE2	0	R/W* ²	Output Short High-Impedance Enable 2
				Specifies whether to place the pins in high-impestate when the OSF2 bit in OCSR2 is set to 1.
				0: Does not place the pins in high-impedance s
				1: Places the pins in high-impedance state

- Notes: 1. Only 0 can be written to clear the flag after 1 is read.
 - 2. Can be modified only once after a power-on reset.

12.3.5 Input Level Control/Status Register 3 (ICSR3)

ICSR3 is a 16-bit readable/writable register that selects the POE8 pin input mode, control enable/disable of interrupts, and indicates status.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	POE8F	-	-	POE8E	PIE3	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R/(W)*1	R	R	R/W*2	R/W	R	R	R	R	R	R

Notes: 1. Only 0 can be written to clear the flag after 1 is read.

2. Can be modified only once after a power-on reset.

Bit	Bit Name	Initial Value	R/W	Description
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write valu always be 0.
				· · · · · · · · · · · · · · · · · · ·

Rev. 3.00 Mar. 04, 2009 Page 622 of 1168 REJ09B0344-0300

				or P\psi/128 clock (when low-level sampling by bits 1 and 0 in ICSR3) [Setting condition] • When the input condition set by bits 1 and ICSR3 occurs at the POE8 pin
11, 10	_	All 0	R	Reserved
				These bits are always read as 0. The write val always be 0.
9	POE8E	0	R/W* ²	POE8 High-Impedance Enable
				Specifies whether to place the pins in high-imp state when the POE8F bit in ICSR3 is set to 1.

R/W

R

PIE3

0

All 0

8

7 to 2

0: Does not place the pins in high-impedance 1: Places the pins in high-impedance state

Enables or disables interrupt requests when the

These bits are always read as 0. The write val

Port Interrupt Enable 3

bit in ICSR3 is set to 1.

Reserved

always be 0.

0: Interrupt requests disabled 1: Interrupt requests enabled

Notes: 1. Only 0 can be written to clear the flag after 1 is read.

2. Can be modified only once after a power-on reset.

12.3.6 **Software Port Output Enable Register (SPOER)**

SPOER is an 8-bit readable/writable register that controls high-impedance state of the pir

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	MTU2S HIZ	MTU2 CH0HIZ	MTU2 CH34HIZ
Initial value:	0	0	0	0	0	0	0	0
R/W·	R	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

		0: Does not place the pins in high-im	ped
		[Clearing conditions]	
		 Power-on reset 	
		 By writing 0 to MTU2CH0HIZ aft MTU2CH0HIZ = 1 	er re
		1: Places the pins in high-impedance	e sta
		[Setting condition]	
		 By writing 1 to MTU2CH0HIZ 	
0	MTU2CH34HIZ 0	R/W MTU2 Channel 3 and 4 Output High	-Im
		Specifies whether to place the high- the MTU2 in high-impedance state.	curr
		0: Does not place the pins in high-im	pe
		[Clearing conditions]	
		 Power-on reset 	
		 By writing 0 to MTU2CH34HIZ at MTU2CH34HIZ = 1 	fter
		1: Places the pins in high-impedance	e st
		[Setting condition]	
		By writing 1 to MTU2CH34HIZ	
		Rev. 3.00 Mar. 04, 200	
			R

R/W

MTU2CH0HIZ

1

0

1: Places the pins in high-impedance state

MTU2 Channel 0 Output High-Impedance Specifies whether to place the pins for char the MTU2 in high-impedance state.

By writing 1 to MTU2SHIZ

[Setting condition]

3	MTU2PA25ZE 0	R/W*	MTU2PA25 High-Impedance Enable
			Specifies whether to place the PA25/TIOC0E channel 0 in the MTU2 in high-impedance steither POE8F or MTU2CH0HIZ bit is set to 1
			0: Does not place the pin in high-impedance
			1: Places the pin in high-impedance state
2	MTU2PA24ZE 0	R/W*	MTU2PA24 High-Impedance Enable
			Specifies whether to place the PA24/TIOC00 channel 0 in the MTU2 in high-impedance state either POE8F or MTU2CH0HIZ bit is set to 1
			0: Does not place the pin in high-impedance
			1: Places the pin in high-impedance state
1	MTU2PA23ZE 0	R/W*	MTU2PA23 High-Impedance Enable
			Specifies whether to place the PA23/TIOC0E channel 0 in the MTU2 in high-impedance statistic POE8F or MTU2CH0HIZ bit is set to 1
			0: Does not place the pin in high-impedance
			1: Places the pin in high-impedance state

Value

All 0

R/W

R

Description

should always be 0.

These bits are always read as 0. The write va

Reserved

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 626 of 1168

Bit

7 to 4

Bit Name

POECR2 is a 16-bit readable/writable register that controls high-impedance state of the

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	MTU2 P1CZE	MTU2 P2CZE	MTU2 P3CZE	-	MTU2S P1CZE	MTU2S P2CZE	MTU2S P3CZE	-	-	-	-	-	-
Initial value:	0	1	1	1	0	1	1	1	0	0	0	0	0	0
R/W:	R	R/W*	R/W*	R/W*	R	R/W*	R/W*	R/W*	R	R	R	R	R	R

Description

R/W

Note: * Can be modified only once after a power-on reset.

Bit

Bit Name

Initial

Value

15	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
14	MTU2P1CZE	1	R/W*	MTU2 Port 1 Output Comparison/High-Impe
				Specifies whether to compare output levels MTU2 high-current PB18/TIOC3B and PB1s pins and to place them in high-impedance s the OSF1 bit is set to 1 while the OCE1 bit i when any one of the POE0F, POE1F, POE3MTU2CH34HIZ bits is set to 1.
				0: Does not compare output levels or place high-impedance state
				Compares output levels and places the p high-impedance state

				J 1
				Compares output levels and places the pir high-impedance state
12	MTU2P3CZE	1	R/W*	MTU2 Port 3 Output Comparison/High-Imped Enable
				Specifies whether to compare output levels for MTU2 high-current PB5/TIOC4B and PB7/TI pins and to place them in high-impedance state the OSF1 bit is set to 1 while the OCE1 bit is when any one of the POE0F, POE1F, POE3 MTU2CH34HIZ bits is set to 1.
				Does not compare output levels or place the high-impedance state
				Compares output levels and places the pir high-impedance state
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10	MTU2SP1CZE	1	R/W*	MTU2S Port 1 Output Comparison/High-Imp
				Specifies whether to compare output levels for MTU2S high-current PB21/TIOC3BS and PB20/TIOC3DS pins and to place them in high impedance state when the OSF2 bit is set to
				•

Rev. 3.00 Mar. 04, 2009 Page 628 of 1168 RENESAS

the OCE2 bit is 1 or when any one of the PO POE7F, and MTU2SHIZ bits is set to 1. 0: Does not compare output levels or place to

1: Compares output levels and places the pir

high-impedance state.

high-impedance state.

8	MTU2SP3CZE	. 1	R/W*	MTU2S Port 3 Output Comparison/High-Im Enable
				Specifies whether to compare output levels MTU2S high-current PB13/TIOC4BS and PB11/TIOC4DS pins and to place them in himpedance state when the OSF2 bit is set to the OCE2 bit is 1 or when any one of the POE7F, and MTU2SHIZ bits is set to 1.
				Does not compare output levels or place high-impedance state.
				 Compares output levels and places the p high-impedance state.
7 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write should always be 0.

1: Compares output levels and places the p

high-impedance state.

Note: Can be modified only once after a power-on reset. PB20/TIOC3DS) SPOER setting Input level detection, MTU2S high-current pins (PB12/TIOC4AS and output level comparison, or PB10/TIOC4CS) SPOER setting MTU2S high-current pins Input level detection. (PB13/TIOC4BS and output level comparison, or PB11/TIOC4DS) SPOER setting MTU2 channel 0 pins Input level detection or (PA22/TIOC0A, SPOER setting

> PA23/TIOC0B. PA24/TIOC0C, and PA25/TIOC0D)

MTU2 high-current pins

MTU2 high-current pins

MTU2S high-current pins (PB21/TIOC3BS and

(PB4/TIOC4A and

(PB5/TIOC4B and

PB6/TIOC4C)

PB7/TIOC4D)

Input level detection,

Input level detection,

Input level detection,

SPOER setting

SPOER setting

output level comparison, or

output level comparison, or

output level comparison, or

MTU2P2CZE •

MTU2P3CZE •

MTU2SP1CZE •

MTU2SP2CZE •

MTU2SP3CZE •

(MTU2SHIZ))

(MTU2SHIZ))

(MTU2SHIZ))

((POE3F+POE1F+POE0F) + (

((POE3F+POE1F+POE0F) + (

((POE4F+POE7F) + (OSF2 • (

((POE4F+POE7F) + (OSF2 • (

((POE4F+POE7F) + (OSF2 • (

((POE8F • POE8E) + (MTU2C

OCE1) + (MTU2CH34HIZ))

OCE1) + (MTU2CH34HIZ))

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 630 of 1168

REJ09B0344-0300

POE8 pins, the high-current pins and the pins for channel 0 of the MTU2 are placed in himpedance state.

Figure 12.2 shows the sample timing after the level changes in input to the $\overline{POE0}$, $\overline{POE1}$ POE4, $\overline{POE7}$, and $\overline{POE8}$ pins until the respective pins enter high-impedance state.

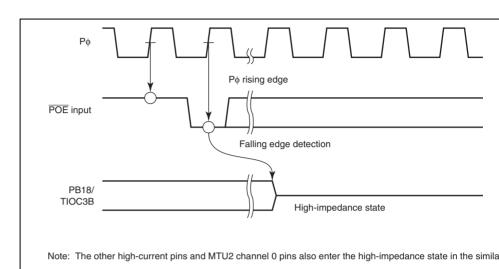


Figure 12.2 Falling Edge Detection

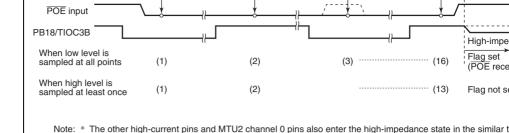


Figure 12.3 Low-Level Detection Operation

12.4.2 Output-Level Compare Operation

Sampling clock

Figure 12.4 shows an example of the output-level compare operation for the combination TIOC3B and TIOC3D. The operation is the same for the other pin combinations.

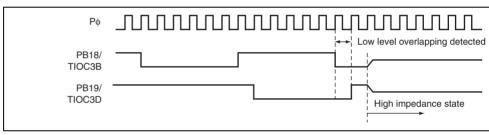


Figure 12.4 Output-Level Compare Operation

Rev. 3.00 Mar. 04, 2009 Page 632 of 1168 REJ09B0344-0300

released either by returning them to their initial state with a power-on reset, or by clearing in bit 15 (OCF1 and OCF2) in OCSR1 and OCSR2. However, note that just writing 0 to ignored (the flag is not cleared); flags can be cleared only after an inactive level is output high-current pins. Inactive-level outputs can be achieved by setting the MTU2 and MTU internal registers.

OEI2	Output enable interrupt 2	POE8F	PIE3 • POE8F
OEI3	Output enable interrupt 3	POE4F, POE7F, and OSF2	PIE2 • (POE4F + POE OIE2 • OSF2

If a power-on reset is issued by the WDT during high-impedance processing by MTU2 short detection, the I/O port pins are placed in the same status as described above.

Figure 12.5 shows the I/O port pin status when a power-on reset is issued by the WDT of high-impedance processing by the POE input while the timer output is selected.

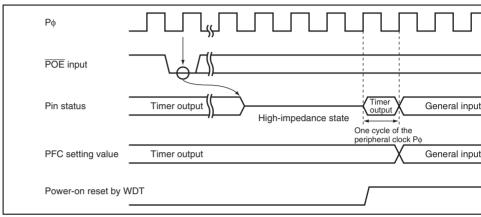


Figure 12.5 Pin Status When Power-on Reset is Issued from Watchdog Tir

Rev. 3.00 Mar. 04, 2009 Page 636 of 1168

REJ09B0344-0300

DMAC setting

 When not in use, the CMT can be stopped by halting its clock supply to reduce power consumption.

Figure 13.1 shows a block diagram of CMT.

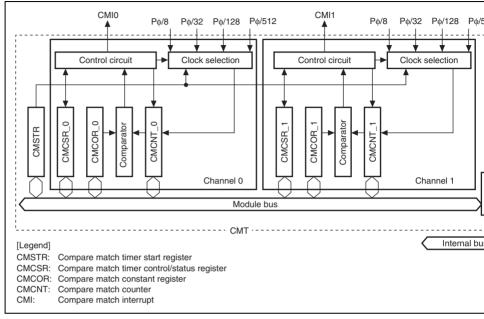


Figure 13.1 Block Diagram of CMT

	Compare match counter_0	CMCNT_0	R/W	H'0000	H'FFFEC004
	Compare match constant register_0	CMCOR_0	R/W	H'FFFF	H'FFFEC006
1	Compare match timer control/ status register_1	CMCSR_1	R/(W)*	H'0000	H'FFFEC008
	Compare match counter_1	CMCNT_1	R/W	H'0000	H'FFFEC00A
	Compare match constant register_1	CMCOR_1	R/W	H'FFFF	H'FFFEC00C

Rev. 3.00 Mar. 04, 2009 Page 638 of 1168

Bit	Bit Name	Value	R/W	Description
15 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
1	STR1	0	R/W	Count Start 1
				Specifies whether compare match counter_1 or is stopped.
				0: CMCNT_1 count is stopped
				1: CMCNT_1 count is started
0	STR0	0	R/W	Count Start 0
				Specifies whether compare match counter_0 or is stopped.
				0: CMCNT_0 count is stopped
				1: CMCNT_0 count is started

RW: R R R R R R R R R R R

Initial

Note: * Only 0 can be written to clear the flag after 1 is read.

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
7	CMF	0	R/(W)*	Compare Match Flag
				Indicates whether or not the values of CMCNT CMCOR match.
				0: CMCNT and CMCOR values do not match
				[Clearing condition]
				When 0 is written to CMF after reading CM
				1: CMCNT and CMCOR values match
6	CMIE	0	R/W	Compare Match Interrupt Enable
				Enables or disables compare match interrupt (generation when CMCNT and CMCOR values (CMF = 1).
				0: Compare match interrupt (CMI) disabled
				1: Compare match interrupt (CMI) enabled
5 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.

Note: * Only 0 can be written to clear the flag after 1 is read.

															L
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R/W														

13.2.4 Compare Match Constant Register (CMCOR)

CMCOR is a 16-bit register that sets the interval up to a compare match with CMCNT.

CMCOR is initialized to H'FFFF by a power-on reset or in software standby mode, but reprevious value in module standby mode.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
Initial value:	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R/W:	R/W													

Rev. 3.00 Mar. 04, 2009 Page 642 of 1168 REJ09B0344-0300

Figure 13.2 shows the operation of the compare match counter.

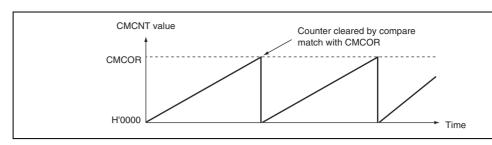


Figure 13.2 Counter Operation

13.3.2 CMCNT Count Timing

One of four clocks ($P\phi/8$, $P\phi/32$, $P\phi/128$, and $P\phi/512$) obtained by dividing the peripher ($P\phi$) can be selected with the CKS[1:0] bits in CMCSR. Figure 13.3 shows the timing.

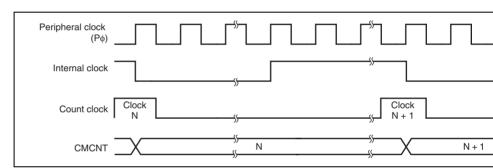


Figure 13.3 Count Timing

Rev. 3.00 Mar. 04, 2009 Page

REJ09

another interrupt will be generated. The direct memory access controller (DMAC) can be activated when a compare match interrupt is requested. In this case, an interrupt is not iss the CPU. If the setting to activate the DMAC has not been made, an interrupt request is s CPU. The CMF bit is automatically cleared to 0 when data is transferred by the DMAC.

Clear the Civir bit to 0 by the user exception handling routine. If this operation is not carr

13.4.2 Timing of Compare Match Flag Setting

When CMCOR and CMCNT match, a compare match signal is generated at the last state the values match (the timing when the CMCNT value is updated to H'0000) and the CMF CMCSR is set to 1. That is, after a match between CMCOR and CMCNT, the compare m signal is not generated until the next CMCNT counter clock input. Figure 13.4 shows the CMF bit setting.

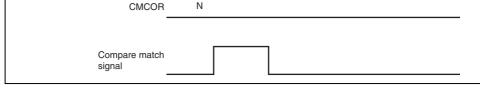


Figure 13.4 Timing of CMF Setting

13.4.3 Timing of Compare Match Flag Clearing

The CMF bit in CMCSR is cleared by first, reading as 1 then writing to 0. However, in the DMAC being activated, the CMF bit is automatically cleared to 0 when data is trans the DMAC.

Rev. 3.00 Mar. 04, 2009 Page

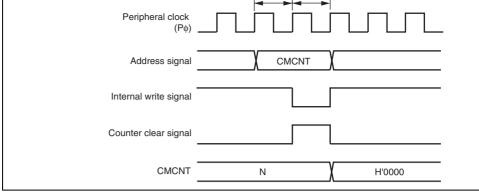


Figure 13.5 Conflict between Write and Compare Match Processes of CMC

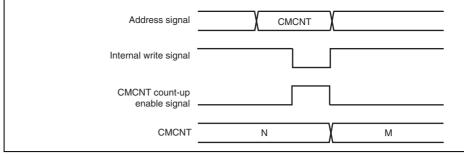


Figure 13.6 Conflict between Word-Write and Count-Up Processes of CMC

Rev. 3.00 Mar. 04, 2009 Page

09 Page REJ09

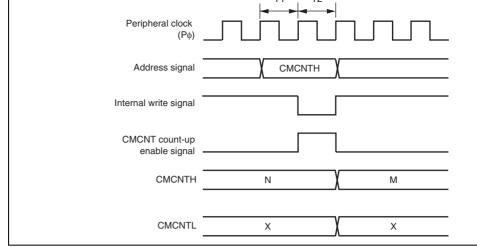


Figure 13.7 Conflict between Byte-Write and Count-Up Processes of CMCN

13.5.4 **Compare Match Between CMCNT and CMCOR**

Do not set a same value to CMCNT and CMCOR while the count operation of CMCNT is stopped.

Rev. 3.00 Mar. 04, 2009 Page 648 of 1168 RENESAS

REJ09B0344-0300

14.1 Features

- Can be used to ensure the clock oscillation settling time
 The WDT is used in leaving software standby mode or the temporary standby period occur when the clock frequency is changed.
- Can switch between watchdog timer mode and interval timer mode.
- Outputs WDTOVF signal in watchdog timer mode

When the counter overflows in watchdog timer mode, the \overline{WDTOVF} signal is output externally. It is possible to select whether to reset the LSI internally when this happened the power-on reset or manual reset signal can be selected as the internal reset type.

- Interrupt generation in interval timer mode

 An interval timer interrupt is generated when the counter overflows.
- Choice of eight counter input clocks
 Eight clocks (Pφ × 1 to Pφ × 1/16384) that are obtained by dividing the peripheral cl selected.

Rev. 3.00 Mar. 04, 2009 Page

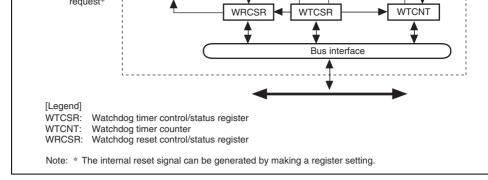


Figure 14.1 Block Diagram of WDT

Rev. 3.00 Mar. 04, 2009 Page 650 of 1168

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page

Watchdog reset control/status WRCSR R/W H'1F H'FFFE0004 register

Note: * For the access size, see section 14.3.4, Notes on Register Access.

14.3.1 Watchdog Timer Counter (WTCNT)

WTCNT is an 8-bit readable/writable register that is incremented by cycles of the selecte signal. When an overflow occurs, it generates a watchdog timer overflow signal (WDTO watchdog timer mode and an interrupt in interval timer mode. WTCNT is initialized to H power-on reset caused by the RES pin or in software standby mode.

Use word access to write to WTCNT, writing H'5A in the upper byte. Use byte access to from WTCNT.

Note: The method for writing to WTCNT differs from that for other registers to preven erroneous writes. See section 14.3.4, Notes on Register Access, for details.

Bit:	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Rev. 3.00 Mar. 04, 2009 Page 652 of 1168

REJ09B0344-0300

Note: The method for writing to WTCSR differs from that for other registers to prever erroneous writes. See section 14.3.4, Notes on Register Access, for details.

R/W

R/(W)

Initial Value

0

Bit Name

IOVF

Bit

7

7	6	5	4	3	2	1	0
IOVF	WT/ĪT	TME	-	-		CKS[2:0]	
0	0	0	1	1	0	0	0
R/(W)	R/W	R/W	R	R	R/W	R/W	R/W
	0	IOVF WT/IT 0 0	IOVF WT/ĪT TME 0 0 0	IOVF WT/IT TME -	IOVF WT/IT TME - -	IOVF WT/IT TME - -	IOVF WT/IT TME - - CKS[2:0]

Description

Interval Timer Overflow

Indicates that WTCNT has overflowed in int

				mode. This flag is not set in watchdog timer
				0: No overflow
				1: WTCNT overflow in interval timer mode
				[Clearing condition]
				When 0 is written to IOVF after reading
6	WT/ IT	0	R/W	Timer Mode Select
				Selects whether to use the WDT as a watch or an interval timer.
				0: Use as interval timer
				1: Use as watchdog timer
				Note: When the WTCNT overflows in water mode, the WDTOVF signal is output If this bit is modified when the WDT

the up-count may not be performed

These bits are always read as 1. The write va should always be 1.

These bits select the clock to be used for the count from the eight types obtainable by divid peripheral clock ($P\phi$). The overflow period that shown in the table is the value when the peri

clocl	k (Pφ) is	40 MHz.	
Bit	s 2 to 0	Clock Ratio	Overflov
000):	1 × P ϕ	6.4 μs
001	l:	1/64 × Pφ	409.6 μs
010):	1/128 × P¢	819.2 ms
011	l:	1/256 × Pφ	1.64 ms
100):	1/512 × P¢	3.3 ms
101	l:	1/1024 × P ϕ	6.6 ms
110):	1/4096 × Pφ	26.2 ms
111	l:	$1/16384 \times P \varphi$	104.9 ms
Vote	runni corre	s CKS[2:0] are modified ng, the up-count may notly. Ensure that these when the WDT is not ru	ot be perf bits are m

000

R/W

Clock Select

CKS[2:0]

2 to 0

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 654 of 1168

5 WOVF RSTE RSTS Initial value: 0 0 1 1 1 1 0 1 R/W: R/(W) R/W R/W R R R R R

Bit	Bit Name	Initial Value	R/W	Description		
7	WOVF	0	R/(W)	Watchdog Timer Overflow		
				Indicates that the WTCNT has overflowed in watchdog timer mode. This bit is not set in i timer mode.		
				0: No overflow		
				1: WTCNT has overflowed in watchdog tin		
				[Clearing condition]		
				When 0 is written to WOVF after reading		
6	RSTE	0	R/W	Reset Enable		
				Selects whether to generate a signal to reseinternally if WTCNT overflows in watchdog to mode. In interval timer mode, this setting is		
				0: Not reset when WTCNT overflows*		
				1: Reset when WTCNT overflows		
				Note: * LSI not reset internally, but WTCI WTCSR reset within WDT.		

Should always be 1.

14.3.4 Notes on Register Access

The watchdog timer counter (WTCNT), watchdog timer control/status register (WTCSR) watchdog reset control/status register (WRCSR) are more difficult to write to than other. The procedures for reading or writing to these registers are given below.

(1) Writing to WTCNT and WTCSR

These registers must be written by a word transfer instruction. They cannot be written by longword transfer instruction.

When writing to WTCNT, set the upper byte to H'5A and transfer the lower byte as the was shown in figure 14.2. When writing to WTCSR, set the upper byte to H'A5 and transfe lower byte as the write data. This transfer procedure writes the lower byte data to WTCN WTCSR.

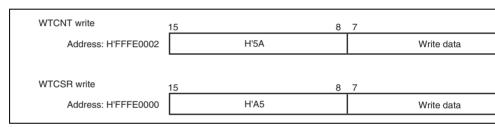


Figure 14.2 Writing to WTCNT and WTCSR

Rev. 3.00 Mar. 04, 2009 Page 656 of 1168

The WOVF bit is not affected.

	Writing 0 to the WOVF bit					
		15		8	7	
	Address: H'FFFE0004		H'A5			H'00
	Writing to the RSTE and RSTS bits	15		8	7	
	Address: H'FFFE0004		H'5A			Write data
П						

Figure 14.3 Writing to WRCSR

(3) Reading from WTCNT, WTCSR, and WRCSR

WTCNT, WTCSR, and WRCSR are read in a method similar to other registers. WTCSI allocated to address H'FFFE0000, WTCNT to address H'FFFE0002, and WRCSR to address H'FFFE0004. Byte transfer instructions must be used for reading from these registers.

Rev. 3.00 Mar. 04, 2009 Page

2. Set the type of count clock used in the CKS[2:0] bits in WTCSR and the initial value counter in WTCNT. These values should ensure that the time till count overflow is lo the clock oscillation settling time.

when the count overnows.

- 3. After setting the STBY bit of the standby control register (STBCR: see section 23, Po Down Modes) to 1, the execution of a SLEEP instruction puts the system in software mode and clock operation then stops.
- 4. The WDT starts counting by detecting the edge change of the NMI signal.
- 5. When the WDT count overflows, the CPG starts supplying the clock and this LSI resu operation. The WOVF flag in WRCSR is not set when this happens.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 658 of 1168

- 5. When the frequency control register (TRQCR) is written to, this LSI stops temporari WDT starts counting.
- 4. When the WDT count overflows, the CPG resumes supplying the clock and this LSI operation. The WOVF flag in WRCSR is not set when this happens.
- 5. The counter stops at the value of H'00.
- 6. Before changing WTCNT after execution of the frequency change instruction, always that the value of WTCNT is H'00 by reading from WTCNT.

RENESAS

REJ09

- the system. The WDTOVF signal is output for $64 \times P\phi$ clock cycles.
- 5. If the RSTE bit in WRCSR is set to 1, a signal to reset the inside of this LSI can be go simultaneously with the WDTOVF signal. Either power-on reset or manual reset can selected for this interrupt by the RSTS bit in WRCSR. The internal reset signal is out 128 × Pφ clock cycles.
- 6. When a WDT overflow reset is generated simultaneously with a reset input on the \overline{RES} pin reset takes priority, and the WOVF bit in WRCSR is cleared to 0.

Rev. 3.00 Mar. 04, 2009 Page 660 of 1168

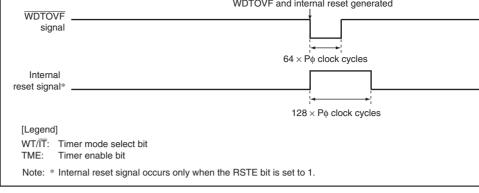


Figure 14.4 Operation in Watchdog Timer Mode

Rev. 3.00 Mar. 04, 2009 Page

REJ09

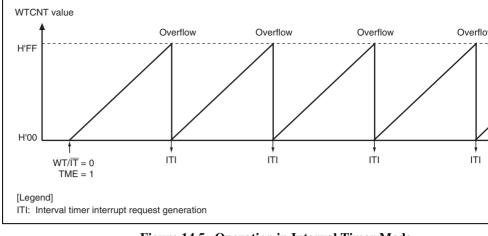


Figure 14.5 Operation in Interval Timer Mode

Rev. 3.00 Mar. 04, 2009 Page 662 of 1168

REJ09B0344-0300

incrementation is in accord with the selected frequency division ratio. Accordingly, this difference is referred to as timer variation.

This also applies to the timing of the first incrementation after WTCNT has been written timer operation.

14.5.2 Prohibition against Setting H'FF to WTCNT

When the value in WTCNT reaches H'FF, the WDT assumes that an overflow has occur Accordingly, when H'FF is set in WTCNT, an interval timer interrupt or WDT reset wil immediately, regardless of the current clock selection by the CKS[2:0] bits.

14.5.3 System Reset by WDTOVF Signal

If the \overline{WDTOVF} signal is input to the \overline{RES} pin of this LSI, this LSI cannot be initialized

Avoid input of the $\overline{\text{WDTOVF}}$ signal to the $\overline{\text{RES}}$ pin of this LSI through glue logic circuit reset the entire system with the $\overline{\text{WDTOVF}}$ signal, use the circuit shown in figure 14.6.

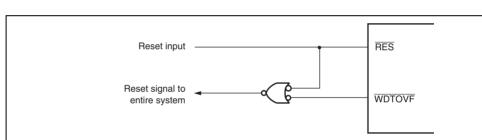


Figure 14.6 Example of System Reset Circuit Using WDTOVF Signal

REJ09

Rev. 3.00 Mar. 04, 2009 Page 664 of 1168

REJ09B0344-0300

- Asynchronous serial communication:
 - Serial data communication is performed by start-stop in character units. The SCI communicate with a universal asynchronous receiver/transmitter (UART), an asy communication interface adapter (ACIA), or any other communications chip that a standard asynchronous serial system. There are eight selectable serial data
 - Data length: 7 or 8 bits
 - Stop bit length: 1 or 2 bits
 - Parity: Even, odd, or none

communication formats.

- Receive error detection: Parity, framing, and overrun errors
- Break detection: Break is detected when a framing error is followed by at least o
 - the space 0 level (low level). It is also detected by reading the RXD level directly serial port register when a framing error occurs.
- Clocked synchronous serial communication:
- Serial data communication is synchronized with a clock signal. The SCIF can co with other chips having a clocked synchronous communication function. There is

data communication format.

- Data length: 8 bits
- Receive error detection: Overrun errors
- Receive error detection. Overruin error
- Full duplex communication: The transmitting and receiving sections are independen SCIF can transmit and receive simultaneously. Both sections use 16-stage FIFO buff
- high-speed continuous data transfer is possible in both the transmit and receive direc
- On-chip baud rate generator with selectable bit rates
- Internal or external transmit/receive clock source: From either baud rate generator (i SCK pin (external)

REJ09

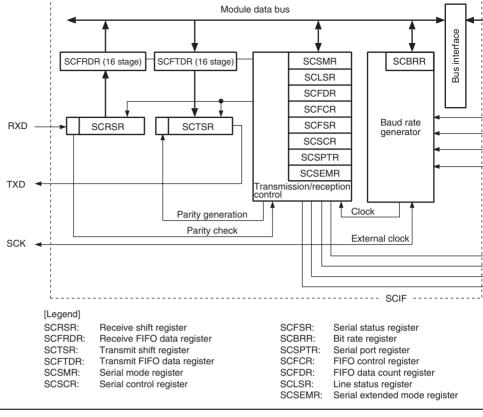


Figure 15.1 Block Diagram of SCIF

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page

Serial mode register_1	SCSMR_1
Bit rate register_1	SCBRR_1
Serial control register_1	SCSCR_1
Transmit FIFO data register_1	SCFTDR_1
Serial status register_1	SCFSR_1
Receive FIFO data register_1	SCFRDR_1
FIFO control register_1	SCFCR_1
FIFO data count register_1	SCFDR_1
Serial port register_1	SCSPTR_1
Line status register_1	SCLSR_1
Serial extended mode register_1	SCSEMR_1

Transmit FIFO data register_0

Receive FIFO data register 0

Serial status register_0

FIFO control register_0

Serial port register_0

Line status register_0

1

FIFO data count register_0

SCFTDR_0

SCFSR_0

SCFRDR_0

SCFCR_0

SCFDR_0

SCSPTR 0

SCLSR_0

W

R

R

R/W

R/W

R/W

R/W

R/W

R/(W)*1

W

R

R

R/W

R/W

R/W

R/(W)*2

R/(W)*2

R/(W)*1

Undefined

Undefined

H'0060

H'0000

H'0000

H'0050

H'0000

H'0000

H'0000

H'0060

H'0000

H'0000

H'0050

H'0000

H'00

Undefined

Undefined

H'FF

H'FFFE800C

H'FFFE8010

H'FFFE8014

H'FFFE8018

H'FFFE801C

H'FFFE8020

H'FFFE8024

H'FFFE8800

H'FFFE8804

H'FFFE8808

H'FFFE880C

H'FFFE8810

H'FFFE8814

H'FFFE8818

H'FFFE881C

H'FFFE8820

H'FFFE8824

H'FFFE8900

Rev. 3.00 Mar. 04, 2009 Page 668 of 1168

		Serial status register_3	SCFSR_3	R/(W)*1	H'0060	H'FFFE9810
		Receive FIFO data register_3	SCFRDR_3	R	Undefined	H'FFFE9814
		FIFO control register_3	SCFCR_3	R/W	H'0000	H'FFFE9818
		FIFO data count register_3	SCFDR_3	R	H'0000	H'FFFE981C
		Serial port register_3	SCSPTR_3	R/W	H'0050	H'FFFE9820
		Line status register_3	SCLSR_3	R/(W)*2	H'0000	H'FFFE9824
Notes:	1.	Only 0 can be written to clea cannot be modified.	ar the flag. Bits	15 to 8,	3, and 2 are	read-only bit
	2.	Only 0 can be written to cleamodified.	ar the flag. Bits	15 to 1 a	re read-only	bits that can

001 D11_2

SCSPTR_2

SCLSR_2

SCSEMR_2

SCSMR_3

SCBRR_3

SCSCR_3

SCFTDR_3

i ii O data codiit registei_2

Serial port register_2

Line status register_2

Serial extended mode

Serial mode register_3

Serial control register_3

Transmit FIFO data register_3

Bit rate register_3

register_2

3

Rev. 3.00 Mar. 04, 2009 Page

110000

H'0050

H'0000

H'0000

H'0000

Undefined

H'FF

H'00

R/W

R/W

R/W

R/W

R/W

W

R/(W)*2

11111 = 5010

H'FFFE9020

H'FFFE9024

H'FFFE9100

H'FFFE9800

H'FFFE9804

H'FFFE9808

H'FFFE980C

R/W: - - - - - - - -

15.3.2 Receive FIFO Data Register (SCFRDR)

SCFRDR is a register that stores serial receive data. The SCIF completes the reception of of serial data by moving the received data from the receive shift register (SCRSR) into Sc for storage. Continuous reception is possible until 16 bytes are stored. The CPU can read write to SCFRDR. If data is read when there is no receive data in the SCFRDR, the value undefined.

When SCFRDR is full of receive data, subsequent serial data is lost.

SCFRDR is initialized to an undefined value by a power-on reset.

Bit:	7	6	5	4	3	2	1	0	
]
Initial value:	-	-	-	-	-	-	-	-	-
R/W:	R	R	R	R	R	R	R	R	

Rev. 3.00 Mar. 04, 2009 Page 670 of 1168

REJ09B0344-0300

Initial value:	-	-	-	-	-	-	-	-
R/W:	-	-	-	-	-	-	-	-

15.3.4 Transmit FIFO Data Register (SCFTDR)

SCFTDR is a 16-byte FIFO register that stores data for serial transmission. When the SC that the transmit shift register (SCTSR) is empty, it moves transmit data written in the S into SCTSR and starts serial transmission. Continuous serial transmission is performed is no transmit data left in SCFTDR. The CPU can write to SCFTDR at all times.

When SCFTDR is full of transmit data (16 bytes), no more data can be written. If writin data is attempted, the data is ignored.

SCFTDR is initialized to an undefined value by a power-on reset.

Bit:	7	6	5	4	3	2	1	0
Initial value:	-	-	-	-	-	-	-	-
R/W:	W	W	W	W	W	W	W	W

REJ09

Bit	Bit Name	Value	R/W	Description
15 to 8	_	All 0	R	Reserved
				These bits are always read as 0. The write valual always be 0.
7	C/A	0	R/W	Communication Mode
				Selects whether the SCIF operates in asynchroclocked synchronous mode.
				0: Asynchronous mode
				1: Clocked synchronous mode
6	CHR	0	R/W	Character Length
				Selects 7-bit or 8-bit data length in asynchrono In clocked synchronous mode, the data length 8 bits, regardless of the CHR setting.
				0: 8-bit data
				1: 7-bit data*
				Note: * When 7-bit data is selected, the MSE the transmit FIFO data register is not transmitted.

Initial

Rev. 3.00 Mar. 04, 2009 Page 672 of 1168

				checked according to the even/odd (C setting.
4	O/E	0	R/W	Parity mode
				Selects even or odd parity when parity bits are and checked. The O/\overline{E} setting is used only in asynchronous mode and only when the parity (PE) is set to 1 to enable parity addition and characteristic The O/\overline{E} setting is ignored in clocked synchronous, or in asynchronous mode when parity a and checking is disabled.
				0: Even parity* ¹
				1: Odd parity*2

Notes:1. If even parity is selected, the parity is

mode (O/E) setting. Receive data pari

- parity bit combined. Receive data is to see if it has an even number of 1s received character and parity bit cor 2. If odd parity is selected, the parity bi to transmit data to make an odd nun
- in the transmitted character and part combined. Receive data is checked has an odd number of 1s in the rece character and parity bit combined.

				When transmitting, a single 1-bit is added at of each transmitted character.
				Two stop bits When transmitting, two 1 bits are added at the each transmitted character.
2	_	0	R	Reserved
				This bit is always read as 0. The write value shalways be 0.
1, 0	CKS[1:0]	00	R/W	Clock Select
				Select the internal clock source of the on-chip generator. For further information on the clock bit rate register settings, and baud rate, see se 15.3.8, Bit Rate Register (SCBRR).
				00: Ρφ
				01: Pφ/4
				10: P _{\$\phi\$} /16
				11: P _{\$\phi\$} /64

0: One stop bit

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 674 of 1168

Note: Pop: Peripheral clock

the specified transmission trigger nu SCFTDR and by clearing TDFE to 0					
Enables or disables the transmit-FIFO-data-einterrupt (TXI) requested when the serial transis transferred from the transmit FIFO data reg (SCFTDR) to the transmit shift register (SCT the quantity of data in the transmit FIFO regist becomes less than the specified number of transmission triggers, and when the TDFE flaserial status register (SCFSR) is set to 1. 0: Transmit-FIFO-data-empty interrupt requedisabled 1: Transmit-FIFO-data-empty interrupt requedenabled* Note: * The TXI interrupt request can be cleased writing a greater quantity of transmit the specified transmission trigger numbers of the specified transmission trigger numbers of transmit tr					,
interrupt (TXI) requested when the serial trans is transferred from the transmit FIFO data req (SCFTDR) to the transmit shift register (SCT the quantity of data in the transmit FIFO regist becomes less than the specified number of transmission triggers, and when the TDFE flaserial status register (SCFSR) is set to 1. 0: Transmit-FIFO-data-empty interrupt requed disabled 1: Transmit-FIFO-data-empty interrupt requedenabled* Note: * The TXI interrupt request can be cleased writing a greater quantity of transmit the specified transmission trigger numbers of the specified transmission trigger numbers of the specified transmission trigger numbers of transmit of	TIE	0	R/W	Transm	it Interrupt Enable
1: Transmit-FIFO-data-empty interrupt reque enabled* Note: * The TXI interrupt request can be clewriting a greater quantity of transmit the specified transmission trigger nu SCFTDR and by clearing TDFE to 0 reading 1 from TDFE, or can be clear				interrup is transf (SCFTE the qua become transmis serial st 0: Trans	t (TXI) requested when the serial transferred from the transmit FIFO data reg DR) to the transmit shift register (SCTS ntity of data in the transmit FIFO registers less than the specified number of assion triggers, and when the TDFE flatatus register (SCFSR) is set to 1.
Note: * The TXI interrupt request can be clewriting a greater quantity of transmit the specified transmission trigger nu SCFTDR and by clearing TDFE to 0 reading 1 from TDFE, or can be clear				1: Trans	smit-FIFO-data-empty interrupt reques
					The TXI interrupt request can be clear writing a greater quantity of transmit the specified transmission trigger nur SCFTDR and by clearing TDFE to 0 reading 1 from TDFE, or can be clear

Initial

Value

All 0

R/W

R

Description

Reserved

Bit Name

Bit

15 to 8

Rev. 3.00 Mar. 04, 2009 Page

are disabled 1: Receive FIFO data full interrupt (RXI), receive interrupt (ERI), and break interrupt (BRI) red are enabled* Note: * RXI interrupt requests can be cleared reading the DR or RDF flag after it has set to 1, then clearing the flag to 0, or clearing RIE to 0. ERI or BRI interrupt can be cleared by reading the ER, BR ORER flag after it has been set to 1, to

R/W

clearing the flag to 0, or by clearing RI

Enables or disables the serial transmitter.

Note: * Serial transmission starts after writing transmit data into SCFTDR. Select the format in SCSMR and SCFCR and res transmit FIFO before setting TE to 1.

REIE to 0.

0: Transmitter disabled 1: Transmitter enabled*

Transmit Enable

0

Rev. 3.00 Mar. 04, 2009 Page 676 of 1168

5

ΤE

				clocked synchronous mode. Select receive format in SCSMR and SCF reset the receive FIFO before setting
3	REIE	0	R/W	Receive Error Interrupt Enable
				Enables or disables the receive-error (ERI) in and break (BRI) interrupts. The setting of RE valid only when RIE bit is set to 0.
				0: Receive-error interrupt (ERI) and break into

only when RIE bit is set to 0. ceive-error interrupt (ERI) and break into (BRI) requests are disabled 1: Receive-error interrupt (ERI) and break into (BRI) requests are enabled* Note: * ERI or BRI interrupt requests can be reading the ER, BR or ORER flag aft

been set to 1, then clearing the flag t clearing RIE and REIE to 0. Even if F

> to 0, when REIE is set to 1, ERI or B interrupt requests are enabled. Set s wants to inform INTC of ERI or BRI in requests during DMA transfer.

detected in asynchronous mode, or synchronous clock input is detected clocked synchronous mode. Select receive format in SCSMR and SCF reset the receive FIFO before settir

REJ09

then set CKE[1:0]. Asynchronous mode 00: Internal clock, SCK pin used for input pin (i signal is ignored)

01: Internal clock, SCK pin used for clock outp

(The output clock frequency is 16 times the

10: External clock, SCK pin used for clock inpu (The input clock frequency is 16 times the

11: Setting prohibited Clocked synchronous mode

00: Internal clock, SCK pin used for serial cloc

01: Internal clock, SCK pin used for serial cloc 10: External clock, SCK pin used for serial clock

11: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 678 of 1168

R/W:	R	R	R	R	R	R	R		
Note: * Only 0 can be written to clear the flag after 1 is read.									
Initial									

0

Initial value:

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 12	PER[3:0]	0000	R	Number of Parity Errors
				Indicate the quantity of data including a part the receive data stored in the receive FIFO register (SCFRDR). The value indicated by 12 after the ER bit in SCFSR is set, represe number of parity errors in SCFRDR. When errors have occurred in all 16-byte receive of SCFRDR, PER[3:0] shows 0000.
11 to 8	FER[3:0]	0000	R	Number of Framing Errors
				Indicate the quantity of data including a fran in the receive data stored in SCFRDR. The indicated by bits 11 to 8 after the ER bit in S set, represents the number of framing errors SCFRDR. When framing errors have occur 16-byte receive data in SCFRDR, FER[3:0] 0000.

0

0 0 1 1 0 0

R R/(W)* R/(W)* R/(W)* R R

- 1: A framing error or parity error has occurred
 - [Setting conditions]
 - ER is set to 1 when the stop bit is 0 after whether or not the last stop bit of the receded data is 1 at the end of one data receive
 - operation*²
 ER is set to 1 when the total number of 1 receive data plus parity bit does not mate
 - receive data plus parity bit does not mate even/odd parity specified by the O/E bit in Notes: 1. Clearing the RE bit to 0 in SCSC not affect the ER bit, which retain
 - previous value. Even if a receive occurs, the receive data is transfe SCFRDR and the receive operati continued. Whether or not the da from SCFRDR includes a receive can be detected by the FER and
 - in SCFSR.2. In two stop bits mode, only the fir bit is checked; the second stop b checked.

Rev. 3.00 Mar. 04, 2009 Page 680 of 1168

1: End of transmission

- [Setting conditions]
- - reset • TEND is set to 1 when TE is cleared to serial control register (SCSCR)

TEND is set to 1 when the chip is a pow

when the DMAC writes data to \$ due to a TXI interrupt request.

- TEND is set to 1 when SCFTDR does n
- receive data when the last bit of a one-b character is transmitted

Note: * Do not use this bit as a transmit

RENESAS

REJ09

number

TDFE is cleared to 0 when data exceeding

[Clearing conditions]

TDFE is set to 1 when the quantity of trar

data in SCFTDR becomes equal to or les the specified transmission trigger number result of transmission.

RENESAS

Note: * Since SCFTDR is a 16-byte FIFO re the maximum quantity of data that ca written when TDFE is 1 is "16 minus specified transmission trigger number attempt is made to write additional d

SCFDR.

Rev. 3.00 Mar. 04, 2009 Page 682 of 1168

number*

[Setting conditions] TDFE is set to 1 by a power-on reset

1: The quantity of transmit data in SCFTDR i to or less than the specified transmission t

> data is ignored. The quantity of data SCFTDR is indicated by the upper 8

specified transmission trigger number is v

specified transmission trigger number is v

SCFTDR after 1 is read from TDFE and t written TDFE is cleared to 0 when data exceeding

SCFTDR by the DMAC.

1: Break signal received* [Setting condition] BRK is set to 1 when data including a fra error is received, and a framing error oc space 0 in the subsequent receive data Note: * When a break is detected, transfer receive data (H'00) to SCFRDR sto detection. When the break ends an receive signal becomes mark 1, the of receive data resumes. 3 **FER** R 0 Framing Error Indication Indicates a framing error in the data read from next receive FIFO data register (SCFRDR) asynchronous mode. 0: No receive framing error occurred in the read from SCFRDR [Clearing conditions] FER is cleared to 0 when the chip unde power-on reset FER is cleared to 0 when no framing err present in the next data read from SCFF

REJ09

after it has been set to 1, then writes 0 t

1: A receive framing error occurred in the ne

• FER is set to 1 when a framing error is ; the next data read from SCFRDR

Rev. 3.00 Mar. 04, 2009 Page

read from SCFRDR.

[Setting condition]

- PER is cleared to 0 when no parity error in the next data read from SCFRDR
- A receive parity error occurred in the next from SCFRDR

[Setting condition]

 PER is set to 1 when a parity error is prethe next data read from SCFRDR

Rev. 3.00 Mar. 04, 2009 Page 684 of 1168 REJ09B0344-0300

RENESAS

mode
 RDF is cleared to 0 when the SCFRDR until the quantity of receive data in SCF becomes less than the specified receive number after 1 is read from RDF and the

written

RDF is cleared to 0 by a power-on reset

DMAC until the quantity of receive data SCFRDR becomes less than the specifi trigger number.

1: The quantity of receive data in SCFRDR

RDF is cleared to 0 when SCFRDR is re

- than the specified receive trigger number
 [Setting condition]

 RDF is set to 1 when a quantity of receive trigger number
- RDF is set to 1 when a quantity of receive more than the specified receive trigger in stored in SCFRDR*
 Note: * As SCFTDR is a 16-byte FIFO region maximum quantity of data that can when RDF is 1 becomes the specified maximum.

receive trigger number. If an attempto read after all the data in SCFRD been read, the data is undefined. To quantity of receive data in SCFRDF indicated by the lower 8 bits of SCFRDF indicated by the lower

- [Clearing conditions] DR is cleared to 0 when the chip undergo
 - power-on reset

 - DR is cleared to 0 when all receive data a after 1 is read from DR and then 0 is writt
 - DR is cleared to 0 when all receive data i SCFRDR are read by the DMAC.
 - 1: Next receive data has not been received
 - [Setting condition]
 - DR is set to 1 when SCFRDR contains le
 - than the specified receive trigger number next data has not yet been received after elapse of 15 ETU from the last stop bit.* Note: * This is equivalent to 1.5 frames with

1-stop-bit format. (ETU: elementary

Only 0 can be written to clear the flag after 1 is read. Note:

Rev. 3.00 Mar. 04, 2009 Page 686 of 1168

The SCBRR setting is calculated as follows:

- Asynchronous mode:
 - (1) In normal mode (when the ABCS bit in SCSEMR is 0)

$$N = \frac{P\phi}{64 \times 2^{2n-1} \times B} \times 10^6 - 1$$

(2) In serial extended mode (when the ABCS bit in SCSEMR is 1)

$$N = \frac{P\phi}{32 \times 2^{2n-1} \times B} \times 10^6 - 1$$

• Clocked synchronous mode:

$$N = \frac{P\phi}{8 \times 2^{2n-1} \times B} \times 10^6 - 1$$

- B: Bit rate (bits/s)
- N: SCBRR setting for baud rate generator (0 \leq N \leq 255)
- (The setting must satisfy the electrical characteristics.)
- P ϕ : Operating frequency for peripheral modules (MHz)
 - : Baud rate generator clock source (n = 0, 1, 2, 3) (for the clock sources and value see table 15.3.)

(1) In normal mode (when the ABCS bit in SCSEMR is 0)

Error (%) =
$$\left\{ \frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

(2) In serial extended mode (when the ABCS bit in SCSEMR is 1)

Error (%) =
$$\left\{ \frac{P\phi \times 10^6}{(N+1) \times B \times 32 \times 2^{2n-1}} - 1 \right\} \times 100$$

Table 15.4 lists examples of SCBRR settings in asynchronous mode, and table 15.5 lists of SCBRR settings in clocked synchronous mode.

2400	1	103	0.16	1	116	0.16	1	129
4800	1	51	0.16	1	58	-0.69	1	64
9600	0	103	0.16	0	116	0.16	0	129
19200	0	51	0.16	0	58	-0.69	0	64
31250	0	31	0.00	0	35	0.00	0	39
38400	0	25	0.16	0	28	1.02	0	32
Note: Settings with an arror of 1% or loss are recommended								

Note: Settings with an error of 1% or less are recommended.

25 K	ı	79	ı	89		
50 k	1	39	1	44	1	
100 k	0	79	0	89	0	
250 k	0	31	0	35	0	
500 k	0	15	0	17	0	
1 M	0	7	0	8	0	
2 M	0	3	_	_	0	

97

48

97

38

19

9

4

[Legend]

Blank: No setting possible

-: Setting possible, but error occurs

Rev. 3.00 Mar. 04, 2009 Page 690 of 1168

Pφ (MHz)	External Input Clock (Mi	Hz) Ma	aximum Bit Rate (t
Table 15.7	Maximum Bit Rates with External Clock I	nput (Asy	nchronous Mode)
40	1250000	0	0
36	1125000	0	0

32 8.0000 500000 9.0000 562500 36 40 10.0000 625000

Table 15.8 Maximum Bit Rates with External Clock Input (Clocked Synchronous Mode, $t_{corr} = 12t_{corr}$)

1000000

	Seye peye							
Pφ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (b						
32	2.6667	2666666.7						
36	3.0000	3000000.0						
40	3.3333	3333333.3						

Note: Confirm that these bit rates meet the electrical characteristics of this LSI and the communication device.

			These always	bits are always read able 0.	as 0. The write valu
RTRG[1:0]	00	R/W	Receiv	e FIFO Data Trigger	
			data fu The RI data st	e quantity of receive d ill (RDF) flag in the se DF flag is set to 1 who cored in the receive Fl sed more than the set	rial status register (en the quantity of re FO register (SCFR
			• As	ynchronous mode •	Clocked synchron
			00:	: 1	00: 1
			01:	: 4	01: 2
			10:	8	10: 8
			11:	: 14	11: 14
			Note:	In clock synchronou receive data using E number to 1. If set to read the receive dat	MAC, set the receing other than 1, CPU

Initial Value

All 0

Bit Name

R/W

R

Description

Reserved

Bit

15 to 8

7, 6

Rev. 3.00 Mar. 04, 2009 Page 692 of 1168

				set to 1.
3	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
2	TFRST	0	R/W	Transmit FIFO Data Register Reset
				Disables the transmit data in the transmit FIFO register and resets the data to the empty state
				0: Reset operation disabled*
				1: Reset operation enabled
				Note: * Reset operation is executed by a pow reset.
1	RFRST	0	R/W	Receive FIFO Data Register Reset
				Disables the receive data in the receive FIFO register and resets the data to the empty state
				0: Reset operation disabled*
				1: Reset operation enabled
				Note: * Reset operation is executed by a pow reset.
0	LOOP	0	R/W	Loop-Back Test
				Internally connects the transmit output pin (TX

10: 2 (14)* 11: 0 (16)*

Note: * Values in parentheses mean the num

empty bytes in SCFTDR when the TD

0: Loop back test disabled 1: Loop back test enabled

receive input pin (RXD) and internally connect pin and CTS pin and enables loop-back testin

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write valalways be 0.
12 to 8	T[4:0]	00000	R	T4 to T0 bits indicate the quantity of non-trans data stored in SCFTDR. H'00 means no trans and H'10 means that SCFTDR is full of transm
7 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write valalways be 0.
4 to 0	R[4:0]	00000	R	R4 to R0 bits indicate the quantity of receive of stored in SCFRDR. H'00 means no receive da H'10 means that SCFRDR full of receive data.
-				

R

R

R

R

R

R

R

R/W:

R

R

R R

Rev. 3.00 Mar. 04, 2009 Page 694 of 1168

				always be 0.
3	SCKIO	0	R/W	SCK Port Input/Output
				Indicates input or output of the serial port SCI When the SCK pin is actually used as a port of the SCKDT bit value, the CKE[1:0] bits in SCI should be cleared to 0.
				0: SCKDT bit value not output to SCK pin
				1: SCKDT bit value output to SCK pin
2	SCKDT	0	R/W	SCK Port Data
				Indicates the input/output data of the serial popin. Input/output is specified by the SCKIO bit output, the SCKDT bit value is output to the STHE SCK pin status is read from the SCKDT is regardless of the SCKIO bit setting. However input/output must be set in the PFC.
				0: Input/output data is low level
				1: Input/output data is high level

0

R

R

Description

Reserved

R

R

These bits are always read as 0. The write va

R

R

0

R

Initial

Value

All 0

R

R

R/W

R

0

R

Bit Name

R

Initial value:

Bit

15 to 4

R/W:

R

0

0

R/W R/W

data of the TXD pin used as serial ports. Input specified by the SPB2IO bit. When the TXD pin output, the SPB2DT bit value is output to the TThe RXD pin status is read from the SPB2DT regardless of the SPB2IO bit setting. However input and TXD output must be set in the PFC.

0: Input/output data is low level

1: Input/output data is high level

15.3.12 Line Status Register (SCLSR)

The CPU can always read or write to SCLSR, but cannot write 1 to the ORER flag. This be cleared to 0 only if it has first been read (after being set to 1).

SCLSR is initialized to H'0000 by a power-on reset.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Note: * Only 0 can be written to clear the flag after 1 is read.

Rev. 3.00 Mar. 04, 2009 Page 696 of 1168 REJ09B0344-0300

- ORER is cleared to 0 when 0 is written a read from ORER.
 - 1: An overrun error has occurred*2
 - [Setting condition]
 - ORER is set to 1 when the next serial re finished while the receive FIFO is full of

receive data. Notes: 1. Clearing the RE bit to 0 in SCS0

not affect the ORER bit, which r previous value. 2. The receive FIFO data register (

retains the data before an overr has occurred, and the next rece is discarded. When the ORER b 1, the SCIF cannot continue the

serial reception. Note: * Only 0 can be written to clear the flag after 1 is read.

Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Initial

BIT	Bit Name	value	H/W	Description
7	ABCS	0	R/W	Asynchronous Basic Clock Select
				Selects the basic clock for 1-bit period in asynchronous mode.
				Setting of ABCS is valid when the asynchron mode bit $(C/\overline{A} \text{ in SCSMR}) = 0$.
				 Basic clock with a frequency of 16 times the transfer rate
				Basic clock with a frequency of 8 times the rate
6 to 0	_	All 0	R/W	Reserved
				These bits are always read as 0. The write vashould always be 0.

The transmission format is selected in the serial mode register (SCSMR), as shown in ta The SCIF clock source is selected by the combination of the CKE1 and CKE0 bits in the control register (SCSCR), as shown in table 15.10.

1) Asynchronous Mode

- Data length is selectable: 7 or 8 bits
- Parity bit is selectable. So is the stop bit length (1 or 2 bits). The combination of the selections constitutes the communication format and character length.
- In receiving, it is possible to detect framing errors, parity errors, receive FIFO data f overrun errors, receive data ready, and breaks.
- The number of stored data bytes is indicated for both the transmit and receive FIFO
- An internal or external clock can be selected as the SCIF clock source.
 - When an internal clock is selected, the SCIF operates using the clock of on-chip generator.
 - When an external clock is selected, the external clock input must have a frequence the bit rate. (The on-chip baud rate generator is not used.)

(2) Clocked Synchronous Mode

- The transmission/reception format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors (ORER).
- An internal or external clock can be selected as the SCIF clock source.
 - When an internal clock is selected, the SCIF operates using the clock of the on-c
 - rate generator, and outputs this clock to external devices as the synchronous cloc

 When an external clock is selected, the SCIF operates on the input synchronous of using the on-chip baud rate generator.

			1				2 Dits
		1	0			Set	1 bit
			1				2 bits
1	х	х	х	Clocked synchronous	8 bits	Not set	None
[Leg x:	end] Don't	caro					

Table 15.10 SCSMR and SCSCR Settings and SCIF Clock Source Selection

SCSMR	SCSCR	SCSCR	_	S	CIF Transmit/Receive Cloc
Bit 7	Bit 1	Bit 0	_	Clock	
C/A	CKE1	CKE0	Mode	Source	SCK Pin Function
0	0	0	Asynchronous	Internal	SCIF does not use the SCI
		1	-		Outputs a clock with a freq times the bit rate
	1	0	-	External	Inputs a clock with frequen times the bit rate
		1	_	Setting p	rohibited
1	0	х	Clocked	Internal	Outputs the serial clock
	1 0		synchronous	External	Inputs the serial clock
		1	_	Setting p	rohibited

[Legend]

x: Don't care

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 700 of 1168

In asynchronous serial communication, the communication line is normally held in the reliable (high) state. The SCIF monitors the line and starts serial communication when the line generate (low) state, indicating a start bit. One serial character consists of a start bit (low), first), parity bit (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCIF synchronizes at the falling edge of the The SCIF samples each data bit on the eighth pulse of a clock with a frequency 16 times rate. Receive data is latched at the center of each bit.

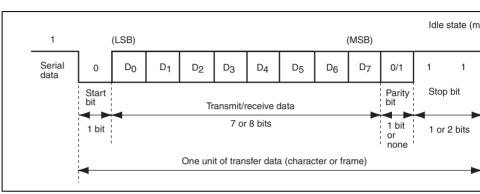


Figure 15.2 Example of Data Format in Asynchronous Communication (8-Bit Data with Parity and Two Stop Bits)

Note: * This is an example when ABCS = 0 in SCSEMR. When ABCS = 1, a freque times the bit rate becomes the basic clock, and receive data is sampled at the rising edge of the basic clock.

1	0	0	START	7-bit data
1	0	1	START	7-bit data
1	1	0	START	7-bit data
1	1	1	START	7-bit data
[Legend	-	rt bit		
STOP: P:		p bit ity bit		

SIANI

START

START

0

1

Clock

0

0

1

1

SCK pin can be selected as the SCIF transmit/receive clock. The clock source is selected

(SCSCR). For clock source selection, refer to table 15.10, SCSMR and SCSCR Settings a Clock Source Selection.

C/A bit in the serial mode register (SCSMR) and bits CKE[1:0] in the serial control regis

When an external clock is input at the SCK pin, it must have a frequency equal to 16 time desired bit rate.

When the SCIF operates on an internal clock, it can output a clock signal on the SCK pin frequency of this output clock is 16 times the desired bit rate.

RENESAS

An internal clock generated by the on-chip baud rate generator or an external clock input

8-bit data

8-bit data

1310

STO

STO

Р

STOP

STOP STO

STOP

STOP STOP

Rev. 3.00 Mar. 04, 2009 Page 702 of 1168 REJ09B0344-0300

TEND flag in the SCFSR is set. The TE bit can be cleared to 0 during transmission, but transmit data goes to the Mark state after the bit is cleared to 0. Set the TFRST bit in SC and reset SCFTDR before TE is set again to start transmission.

When an external clock is used, the clock should not be stopped during initialization or operation. SCIF operation becomes unreliable if the clock is stopped.

Rev. 3.00 Mar. 04, 2009 Page

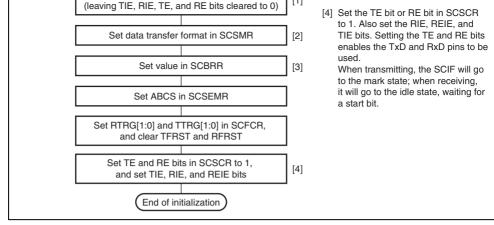


Figure 15.3 Sample Flowchart for SCIF Initialization

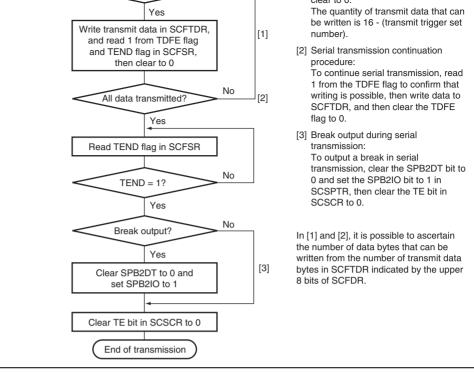


Figure 15.4 Sample Flowchart for Transmitting Serial Data

generated.

The serial transmit data is sent from the TXD pin in the following order.

A. Start bit: One-bit 0 is output.

- B. Transmit data: 8-bit or 7-bit data is output in LSB-first order.
- C. Parity bit: One parity bit (even or odd parity) is output. (A format in which a parit not output can also be selected.)
- D. Stop bit(s): One or two 1 bits (stop bits) are output.
- E. Mark state: 1 is output continuously until the start bit that starts the next transmiss sent.
- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the stop bit. If oppresent, the data is transferred from SCFTDR to SCTSR, the stop bit is sent, and then transmission of the next frame is started.

RENESAS

request flag read as 1 then cleared to 0 by TXI interrupt handler

One frame

Figure 15.5 Example of Transmit Operation (8-Bit Data, Parity, 1 Stop Bit)

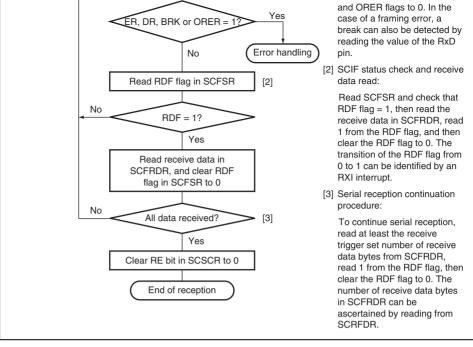


Figure 15.6 Sample Flowchart for Receiving Serial Data

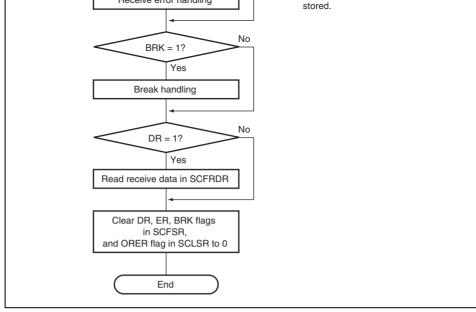


Figure 15.7 Sample Flowchart for Receiving Serial Data (cont)

Rev. 3.00 Mar. 04, 2009 Page

- C. Overrun check: The SCIF checks that the ORER flag is 0, indicating that the over has not occurred.
 - D. Break check: The SCIF checks that the BRK flag is 0, indicating that the break sta set.

If all the above checks are passed, the receive data is stored in SCFRDR.

Note: When a parity error or a framing error occurs, reception is not suspended.

4. If the RIE bit in SCSCR is set to 1 when the RDF or DR flag changes to 1, a receivedata-full interrupt (RXI) request is generated. If the RIE bit or the REIE bit in SCSCF 1 when the ER flag changes to 1, a receive-error interrupt (ERI) request is generated. RIE bit or the REIE bit in SCSCR is set to 1 when the BRK or ORER flag changes to

Figure 15.8 shows an example of the operation for reception.

break reception interrupt (BRI) request is generated.

Rev. 3.00 Mar. 04, 2009 Page 710 of 1168

Figure 15.8 Example of SCIF Receive Operation (8-Bit Data, Parity, 1 Stop Bit)

15.4.3 Operation in Clocked Synchronous Mode

In clocked synchronous mode, the SCIF transmits and receives data in synchronization pulses. This mode is suitable for high-speed serial communication.

The SCIF transmitter and receiver are independent, so full-duplex communication is possible sharing the same clock. The transmitter and receiver are also 16-byte FIFO buffer continuous transmitting or receiving is possible by reading or writing data while transmireceiving is in progress.

Figure 15.9 shows the general format in clocked synchronous serial communication.

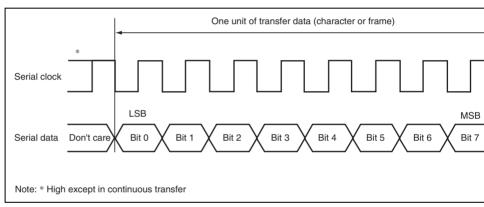


Figure 15.9 Data Format in Clocked Synchronous Communication

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

The data length is fixed at eight bits. No parity bit can be added.

(2) Clock

An internal clock generated by the on-chip baud rate generator by the setting of the C/A I SCSMR and CKE[1:0] in SCSCR, or an external clock input from the SCK pin can be set the SCIF transmit/receive clock.

When the SCIF operates on an internal clock, it outputs the clock signal at the SCK pin. I clock pulses are output per transmitted or received character. When the SCIF is not transmitted or receiving, the clock signal remains in the high state. When only receiving, the clock signal while the RE bit of SCSCR is 1 and the number of data in receive FIFO is more than the

FIFO data trigger number.

(3) Transmitting and Receiving Data

• SCIF Initialization (Clocked Synchronous Mode)

Before transmitting, receiving, or changing the mode or communication format, the softw clear the TE and RE bits to 0 in the serial control register (SCSCR), then initialize the SC Clearing TE to 0 initializes the transmit shift register (SCTSR). Clearing RE to 0, however not initialize the RDF, PER, FER, and ORER flags and receive data register (SCRDR), we retain their previous contents.

RENESAS

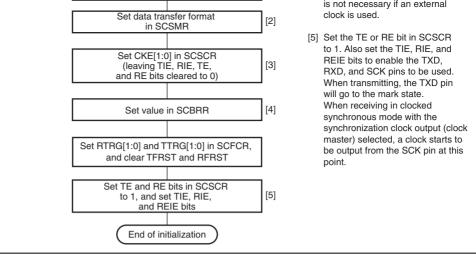


Figure 15.10 Sample Flowchart for SCIF Initialization

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

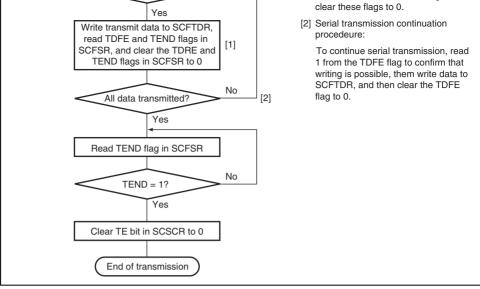


Figure 15.11 Sample Flowchart for Transmitting Serial Data

generated.

If clock output mode is selected, the SCIF outputs eight synchronous clock pulses. It external clock source is selected, the SCIF outputs data in synchronization with the i

external clock source is selected, the SCIF outputs data in synchronization with the iclock. Data is output from the TXD pin in order from the LSB (bit 0) to the MSB (bit 0).

- 3. The SCIF checks the SCFTDR transmit data at the timing for sending the MSB (bit is present, the data is transferred from SCFTDR to SCTSR, and then serial transmiss next frame is started. If there is no data, the TXD pin holds the state after the TEND SCFSR is set to 1 and the MSB (bit 7) is sent.
- 4. After the end of serial transmission, the SCK pin is held in the high state.

Figure 15.12 shows an example of SCIF transmit operation.

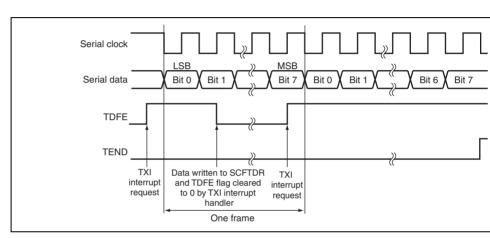


Figure 15.12 Example of SCIF Transmit Operation

Rev. 3.00 Mar. 04, 2009 Page

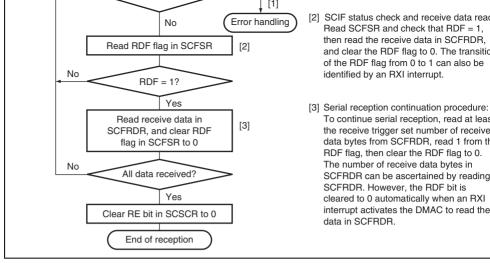


Figure 15.13 Sample Flowchart for Receiving Serial Data (1)

Figure 15.14 Sample Flowchart for Receiving Serial Data (2)

Figure 15.15 shows an example of SCIF receive operation.

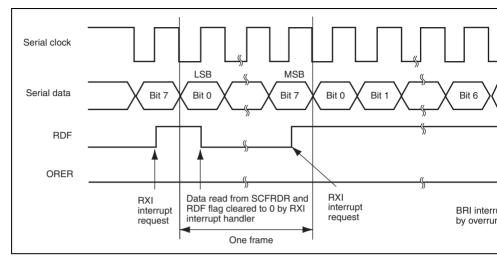


Figure 15.15 Example of SCIF Receive Operation

REJ09B0344-0300

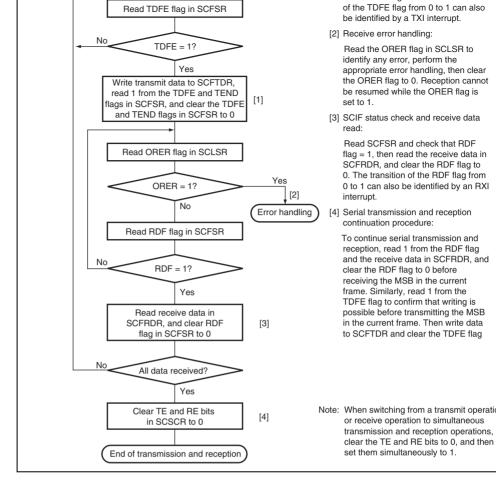


Figure 15.16 Sample Flowchart for Transmitting/Receiving Serial Data

transfer performed by this TAT interrupt request. At this time, an interrupt request is not s CPU.

When an RXI request is enabled by the RIE bit and the RDFE flag or the DR flag in SCF to 1, an RXI interrupt request is generated. The DMAC can be activated and data transfer performed by this RXI interrupt request. At this time, an interrupt request is not sent to the The RXI interrupt request caused by the DR flag is generated only in asynchronous mode

When the RIE bit is set to 0 and the REIE bit is set to 1, the SCIF requests only an ERI in without requesting an RXI interrupt.

The TXI interrupt indicates that transmit data can be written, and the RXI interrupt indicates there is receive data in SCFRDR.

Table 15.12 SCIF Interrupt Sources

Interrupt Source	Description	DMAC Activation	Priority Reset F
BRI	Interrupt initiated by break (BRK) or overrun error (ORER)	Not possible	High •
ERI	Interrupt initiated by receive error (ER)	Not possible	_
RXI	Interrupt initiated by receive FIFO data full (RDF) or data ready (DR)	Possible	_
TXI	Interrupt initiated by transmit FIFO data empty (TDFE)	Possible	_ ↓ Low

However, if the number of data bytes written in SCFTDR is equal to or less than the trace trigger number, the TDFE flag will be set to 1 again after being read as 1 and cleared to flag clearing should therefore be carried out when SCFTDR contains more than the transtrigger number of transmit data bytes.

The number of transmit data bytes in SCFTDR can be found from the upper 8 bits of the data count register (SCFDR).

15.6.2 SCFRDR Reading and RDF Flag

The RDF flag in the serial status register (SCFSR) is set when the number of receive darenthe receive FIFO data register (SCFRDR) has become equal to or greater than the receive number set by bits RTRG[1:0] in the FIFO control register (SCFCR). After RDF flag is receive data equivalent to the trigger number can be read from SCFRDR, allowing effic continuous reception.

However, if the number of data bytes in SCFRDR exceeds the trigger number, the RDF be set to 1 again if it is cleared to 0. The RDF flag should therefore be cleared to 0 after as 1 after reading the number of the received data in the receive FIFO data register (SCF which is less than the trigger number.

The number of receive data bytes in SCFRDR can be found from the lower 8 bits of the count register (SCFDR).

Rev. 3.00 Mar. 04, 2009 Page

Note that, although transfer of receive data to SCFRDR is halted in the break state, the SCFRDR is halted in the break receiver continues to operate.

15.6.5 Sending a Break Signal

and the parity error mag (PER) may also be set.

The I/O condition and level of the TXD pin are determined by the SPB2IO and SPB2DT the serial port register (SCSPTR). This feature can be used to send a break signal.

Until TE bit is set to 1 (enabling transmission) after initializing, the TXD pin does not we During the period, mark status is performed by the SPB2DT bit. Therefore, the SPB2IO a SPB2DT bits should be set to 1 (high level output).

To send a break signal during serial transmission, clear the SPB2DT bit to 0 (designating level), then clear the TE bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, and 0 is output from pin.

Rev. 3.00 Mar. 04, 2009 Page 722 of 1168 RENESAS

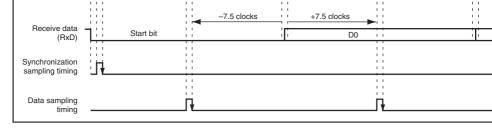


Figure 15.17 Receive Data Sampling Timing in Asynchronous Mode

Note: * This is an example when ABCS = 0 in SCSEMR. When ABCS = 1, a frequency the bit rate becomes the basic clock, and receive data is sampled at the fourth ris of the basic clock.

Rev. 3.00 Mar. 04, 2009 Page

L: Frame length (L = 9 to 12)

F: Absolute deviation of clock frequency

From equation 1, if F = 0, D = 0.5, and N = 16, the receive margin is 46.875%, as given be equation 2.

Equation 2:

When D = 0.5 and F = 0:

$$M = (0.5 - 1/(2 \times 16)) \times 100\%$$

$$= 46.875\%$$

This is a theoretical value. A reasonable margin to allow in system designs is 20% to 30%

15.6.7 FER and PER Flags in the Serial Status Register (SCFSR)

The FER (framing error) and PER (parity error) flags in the serial status register (SCFSR status flags of the receive FIFO data register (SCFRDR) to be read next. If the CPU or D reads the receive FIFO data register, the FER (framing error) and PER (parity error) flags current receive data will be lost. To check the framing error and parity error status of the receive data correctly, the serial status register (SCFSR) should be read before the receive data register is read.

Since the shift register, transmit data register, and receive data register are independent each other, the continuous transmission/reception can be performed.

I²C bus format:

- Start and stop conditions generated automatically in master mode
- Selection of acknowledge output levels when receiving
- Automatic loading of acknowledge bit when transmitting
- Bit synchronization/wait function

In master mode, the state of SCL is monitored per bit, and the timing is synchronized automatically. If transmission/reception is not yet possible, set the SCL to low until preparations are completed.

• Six interrupt sources

Transmit data empty (including slave-address match), transmit end, receive data full slave-address match), arbitration lost, NACK detection, and stop condition detection

- The direct memory access controller (DMAC) can be activated by a transmit-data-energuest or receive-data-full request to transfer data.
- Direct bus drive

Two pins, SCL and SDA pins, function as NMOS open-drain outputs when the bus of function is selected.

Clocked synchronous serial format:

• Four interrupt sources

Transmit-data-empty, transmit-end, receive-data-full, and overrun error

The direct memory access controller (DMAC) can be activated by a transmit-data-enequest or receive-data-full request to transfer data.

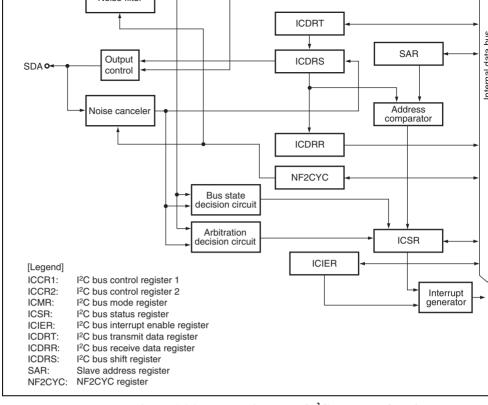


Figure 16.1 Block Diagram of I²C Bus Interface 3

REJ09B0344-0300

Figure 16.2 snows an example of I/O pin connections to external circuits.

Figure 16.2 External Circuit Connections of I/O Pins

Rev. 3.00 Mar. 04, 2009 Page

I ² C bus interrupt enable register	ICIER	R/W	H'00	H'FFFEE003
I ² C bus status register	ICSR	R/W	H'00	H'FFFEE004
Slave address register	SAR	R/W	H'00	H'FFFEE005
I ² C bus transmit data register	ICDRT	R/W	H'FF	H'FFFEE006
I ² C bus receive data register	ICDRR	R/W	H'FF	H'FFFEE007
NF2CYC register	NF2CYC	R/W	H'00	H'FFFEE008

Bit	Bit Name	Initial Value	R/W	Description
7	ICE	0	R/W	I ² C Bus Interface 3 Enable
				0: This module is halted. (SCL and SDA pine as ports.)
				1: This bit is enabled for transfer operations. SDA pins are bus drive state.)
6	RCVD	0	R/W	Reception Disable
				Enables or disables continuous reception who and ICDRR is not read. If ICDRR cannot be the rising of 8th clock cycle of SCL in master mode, reception in byte units should be perfectly setting the RCVD bit to 1.
				0: Enables continuous reception

1: Disables continuous reception

set to 1. If an overrun error occurs in master r mode with the clocked synchronous serial for is cleared and the mode changes to slave rec mode.
Operating modes are described below accord MST and TRS combination. When clocked synchronous serial format is selected and MS clock is output.
00: Slave receive mode
01: Slave transmit mode
10: Master receive mode

				11: Master transmit mode
3 to 0	CKS[3:0]	0000	R/W	Transfer Clock Select

These bits should be set according to the nec transfer rate (table 16.3) in master mode.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 730 of 1168

			1	Ρφ/108	296.3	333.3	
1	0	0	0	Ρφ/176	181.8	204.5	
			1	Pφ/208	153.8	173.1	
		1	0	Ρφ/256	125.0	140.6	
			1	Pφ/288	111.1	125.0	
	1	0	0	Ρφ/336	95.2	107.1	
			1	Pφ/368	87.0	97.8	
		1	0	Ρφ/400	80.0	90.0	
			1	Ρφ/432	74.1	83.3	
Note:	The set	tings sho	uld satisfy	external spec	cifications.		

Pφ/92

P₀/100

347.8

320.0

391.3

360.0

434.

400.

370.

227. 192. 156. 138. 119. 108. 100. 92.6

1

0

1

Bit	Bit Name	Value	R/W	Description
7	BBSY	0	R/W	Bus Busy
				Enables to confirm whether the I ² C bus is occur released and to issue start/stop conditions in mode. With the clocked synchronous serial for bit is always read as 0. With the I ² C bus format is set to 1 when the SDA level changes from hunder the condition of SCL = high, assuming the start condition has been issued. This bit is clear when the SDA level changes from low to high condition of SCL = high, assuming that the stop condition has been issued. Write 1 to BBSY are SCP to issue a start condition. Follow this product when also re-transmitting a start condition. Write BBSY and 0 in SCP to issue a stop condition.
6	SCP	1	R/W	Start/Stop Issue Condition Disable
				Controls the issue of start/stop conditions in m mode. To issue a start condition, write 1 in BB in SCP. A retransmit start condition is issued in same way. To issue a stop condition, write 0 in and 0 in SCP. This bit is always read as 1. Ever written to this bit, the data will not be stored.

Initial

				outputs high. When SCLO is 0, SCL pin outp
2	_	1	R	Reserved
				This bit is always read as 1. The write value always be 1.
1	IICRST	0	R/W	IIC Control Part Reset
				Resets the control part except for I ² C register is set to 1 when hang-up occurs because of communication failure during I ² C bus operating IIC3 registers and the control part can be re-
0	_	1	R	Reserved
				This bit is always read as 1. The write value always be 1.

R/W

R

SDAOP

SCLO

1

3

Rev. 3.00 Mar. 04, 2009 Page

(outpute riight by external pair ap reciciane

Controls change of output level of the SDA pi modifying the SDAO bit. To change the output clear SDAO and SDAOP to 0 or set SDAO to clear SDAOP to 0. This bit is always read as

Monitors SCL output level. When SCLO is 1,

SDAO Write Protect

SCL Output Level

Bit	Bit Name	Initial Value	R/W	Description
7	MLS	0	R/W	MSB-First/LSB-First Select
				0: MSB-first
				1: LSB-first
				Set this bit to 0 when the I2C bus format is use
6	_	0	R	Reserved
				This bit is always read as 0. The write value sh always be 0.
5, 4	_	All 1	R	Reserved
				These bits are always read as 1. The write valual always be 1.
3	BCWP	1	R/W	BC Write Protect
				Controls the BC[2:0] modifications. When mod BC[2:0] bits, this bit should be cleared to 0. In synchronous serial mode, the BC[2:0] bits should be modified.
				0: When writing, values of the BC[2:0] bits are
				1: When reading, 1 is always read.

R/W R/W R/W

When writing, settings of the BC[2:0] bits are

R/W: R/W

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 734 of 1168

transfer, including the acknowledge bit. These cleared by a power-on reset and in software a mode and module standby mode. These bits cleared by setting the IICRST bit of ICCR2 to

, ,	nronous serial format, these dified.
I ² C Bus Format	Clocked Synchronous Se
000: 9 bits	000: 8 bits
001: 2 bits	001: 1 bit
010: 3 bits	010: 2 bits
011: 4 bits	011: 3 bits
100: 5 bits	100: 4 bits
101: 6 bits	101: 5 bits
110: 7 bits	110: 6 bits
111: 8 bits	111: 7 bits

				When the TDRE bit in ICSR is set to 1 or 0, thi enables or disables the transmit data empty in (TXI).
				Transmit data empty interrupt request (TXI) disabled.
				Transmit data empty interrupt request (TXI) enabled.
6	TEIE	0	R/W	Transmit End Interrupt Enable
				Enables or disables the transmit end interrupt the rising of the ninth clock while the TDRE bit is 1. TEI can be canceled by clearing the TENI the TEIE bit to 0.
				0: Transmit end interrupt request (TEI) is disab
				1: Transmit end interrupt request (TEI) is enab
5	RIE	0	R/W	Receive Interrupt Enable
				Enables or disables the receive data full interrunce request (RXI) and the overrun error interrupt re (ERI) in the clocked synchronous format when data is transferred from ICDRS to ICDRR and

R/W: R/W R/W R/W R/W R/W

R/W

R/W

Description

Transmit Interrupt Enable

RDRF bit in ICSR is set to 1. RXI can be cancelled

0: Receive data full interrupt request (RXI) are 1: Receive data full interrupt request (RXI) are

clearing the RDRF or RIE bit to 0.

Initial

Value

0

Bit Name

TIE

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 736 of 1168

Bit

7

				Stop condition detection interrupt request (enabled.
2	ACKE	0	R/W	Acknowledge Bit Judgment Select
				0: The value of the receive acknowledge bit is and continuous transfer is performed.
				1: If the receive acknowledge bit is 1, continu transfer is halted.
1	ACKBR	0	R	Receive Acknowledge
				In transmit mode, this bit stores the acknowle that are returned by the receive device. This be modified. This bit can be canceled by setti BBSY bit in ICCR2 to 1.
				0: Receive acknowledge = 0
				1: Receive acknowledge = 1
0	ACKBT	0	R/W	Transmit Acknowledge
				In receive mode, this bit specifies the bit to be the acknowledge timing.
				0: 0 is sent at the acknowledge timing.
				1: 1 is sent at the acknowledge timing.

3

STIE

0

R/W

disabled.

Stop Condition Detection Interrupt Enable Enables or disables the stop condition detect interrupt request (STPI) when the STOP bit ir

0: Stop condition detection interrupt request (

			 When 0 is written in TDRE after reading TD When data is written to ICDRT [Setting conditions]
			 When data is transferred from ICDRT to IC ICDRT becomes empty When TRS is set
			When the start condition (including retransististissued)
 			When slave mode is changed from receive transmit mode
TEND	0	R/W	Transmit End
			[Clearing conditions]
			When 0 is written in TEND after reading TE
			When data is written to ICDRT
			[Setting conditions]
			 When the ninth clock of SCL rises with the format while the TDRE flag is 1
			When the final bit of transmit frame is sent clocked synchronous serial format

Initial

Value

0

Bit Name

TDRE

R/W

R/W

Description

[Clearing conditions]

Transmit Data Register Empty

Bit

7

6

Rev. 3.00 Mar. 04, 2009 Page 738 of 1168

			 When 0 is written in NACKF after reading = 1
			[Setting condition]
			 When no acknowledge is detected from device in transmission while the ACKE b is 1
STOP	0	R/W	Stop Condition Detection Flag
			[Clearing condition]

[Setting conditions]

after frame transfer

3

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

REJ09

• When 0 is written in STOP after reading S

In master mode, when a stop condition is

In slave mode, when the slave address in byte after the general call and detecting s condition matches the address set in SAF

				 When 0 is written in AL/OVE after reading a = 1
				[Setting conditions]
				 If the internal SDA and SDA pin disagree a of SCL in master transmit mode
				When the SDA pin outputs high in master is while a start condition is detected
				 When the final bit is received with the clock synchronous format while RDRF = 1
1	AAS	0	R/W	Slave Address Recognition Flag
				In slave receive mode, this flag is set to 1 if the frame following a start condition matches bits 3 in SAR.
				[Clearing condition]
				When 0 is written in AAS after reading AAS
				[Setting conditions]
				When the slave address is detected in slav mode
				When the general call address is detected receive mode.
0	ADZ	0	R/W	General Call Address Recognition Flag
				This bit is valid in slave receive mode with the format.
				[Clearing condition]
				When 0 is written in ADZ after reading ADZ
				[Setting condition]
				When the general call address is detected receive mode

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 740 of 1168

REJ09B0344-0300

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	SVA[6:0]	0000000	R/W	Slave Address
				These bits set a unique address in these l differing form the addresses of other slave connected to the l ² C bus.

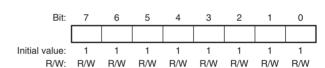
R/W

Format Select

0: I2C bus format is selected

1: Clocked synchronous serial format is se

16.3.7 I²C Bus Transmit Data Register (ICDRT)


0

0

FS

R/W:

ICDRT is an 8-bit readable/writable register that stores the transmit data. When ICDRT space in the shift register (ICDRS), it transfers the transmit data which is written in ICD ICDRS and starts transferring data. If the next transfer data is written to ICDRT during transferring data of ICDRS, continuous transfer is possible. ICDRT is initialized to H'FI

Rev. 3.00 Mar. 04, 2009 Page

REJ09

R/W

R/W

R/W: R/W R/W R/W R/W R/W R/W

16.3.9 I²C Bus Shift Register (ICDRS)

ICDRS is a register that is used to transfer/receive data. In transmission, data is transferred ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred ICDRS to ICDRR after data of one byte is received. This register cannot be read directly CPU.

Bit:	7	6	5	4	3	2	1	0
Initial value:	-	-	-	-	-	-	-	-
R/W·	_	_	_	_	_	_	_	_

Rev. 3.00 Mar. 04, 2009 Page 742 of 1168

REJ09B0344-0300

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
0	NF2CYC	0	R/W	Noise Filtering Range Select
				0: The noise less than one cycle of the periph can be filtered out
				1: The noise less than two cycles of the perip can be filtered out

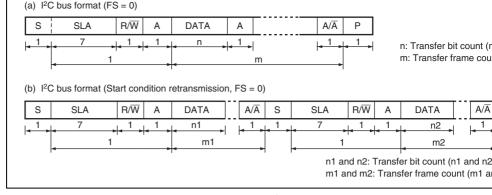


Figure 16.3 I²C Bus Formats

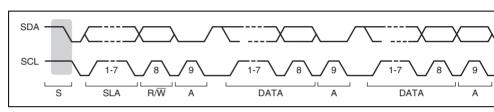


Figure 16.4 I²C Bus Timing

[Legend]

S: Start condition. The master device drives SDA from high to low while SCL is high.

SLA: Slave address

R/W: Indicates the direction of data transfer: from the slave device to the master device R/W is 1, or from the master device to the slave device when R/W is 0.

A: Acknowledge. The receive device drives SDA to low.

DATA: Transfer data

P: Stop condition. The master device drives SDA from low to high while SCL is high.

Rev. 3.00 Mar. 04, 2009 Page 744 of 1168

REJ09B0344-0300

- 3. After confirming that TDRE in ICSR has been set, write the transmit data (the first b show the slave address and R/\overline{W}) to ICDRT. At this time, TDRE is automatically clearly clearly contained and R/\overline{W} and data is transferred from ICDRT to ICDRS. TDRE is set again.
 - 4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR
 - at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confir slave device has been selected. Then, write second byte data to ICDRT. When ACK the slave device has not been acknowledged, so issue the stop condition. To issue the condition, write 0 to BBSY and SCP. SCL is fixed low until the transmit data is prethe stop condition is issued.
 - 5. The transmit data after the second byte is written to ICDRT every time TDRE is set. 6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the byte data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1)
 - receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TE NACKF.
 - 7. When the STOP bit in ICSR is set to 1, the operation returns to slave receive mode.

Rev. 3.00 Mar. 04, 2009 Page

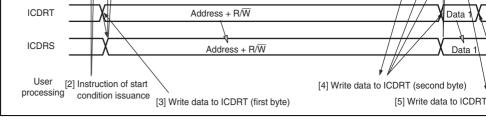


Figure 16.5 Master Transmit Mode Operation Timing (1)

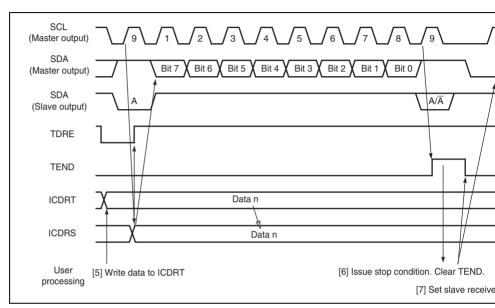


Figure 16.6 Master Transmit Mode Operation Timing (2)

Rev. 3.00 Mar. 04, 2009 Page 746 of 1168 REJ09B0344-0300

- level specified by ACKBT in ICIER to SDA, at the 9th receive clock pulse.
- 3. After the reception of first frame data is completed, the RDRF bit in ICSR is set to 1 of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, a
- is cleared to 0. 4. The continuous reception is performed by reading ICDRR every time RDRF is set. I receive clock pulse falls after reading ICDRR by the other processing while RDRF i
 - fixed low until ICDRR is read. 5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading
 - This enables the issuance of the stop condition after the next reception.
 - 6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage of 7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.
 - 8. The operation returns to slave receive mode.
 - If only one byte is received, read ICDRR (dummy-read) after the RCVD bit in I

Rev. 3.00 Mar. 04, 2009 Page

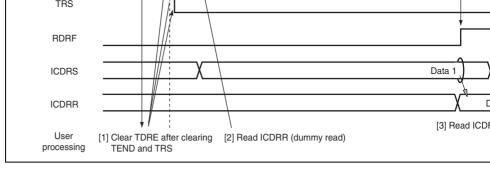


Figure 16.7 Master Receive Mode Operation Timing (1)

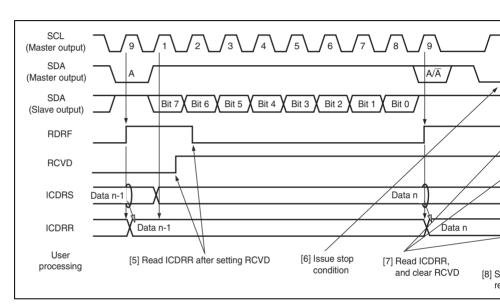


Figure 16.8 Master Receive Mode Operation Timing (2)

Rev. 3.00 Mar. 04, 2009 Page 748 of 1168 REJ09B0344-0300

the slave device outputs the level specified by ACKB1 in ICIER to SDA, at the rise clock pulse. At this time, if the 8th bit data (R/W) is 1, the TRS bit in ICCR1 and the in ICSR are set to 1, and the mode changes to slave transmit mode automatically. The continuous transmission is performed by writing transmit data to ICDRT every time set.

- 3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR i with TDRE = 1. When TEND is set, clear TEND.
- 4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is opened.
- 5. Clear TDRE.

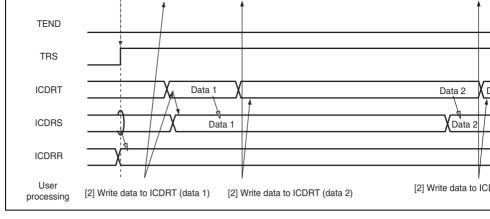


Figure 16.9 Slave Transmit Mode Operation Timing (1)

REJ09B0344-0300

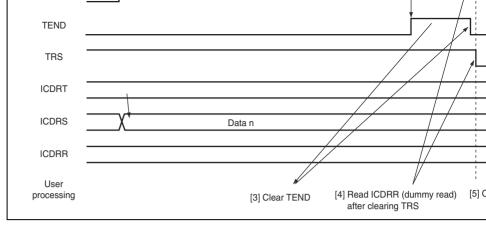


Figure 16.10 Slave Transmit Mode Operation Timing (2)

Rev. 3.00 Mar. 04, 2009 Page REJ09 clock pulse. At the same time, RDRF in ICSR is set to read ICDRR (dummy read). (S read data show the slave address and R/W, it is not used.)

read data show the slave address and R/W, it is not used.)

3. Read ICDRR every time RDRF is set. If 8th receive clock pulse falls while RDRF is

returned to the master device, is reflected to the next transmit frame.

fixed low until ICDRR is read. The change of the acknowledge before reading ICDRI

4. The last byte data is read by reading ICDRR.

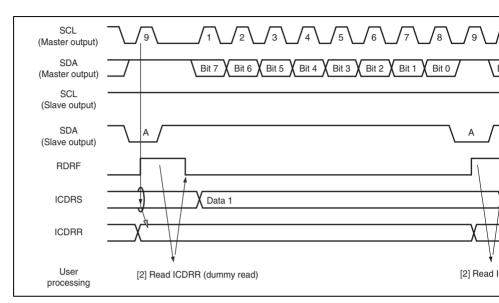


Figure 16.11 Slave Receive Mode Operation Timing (1)

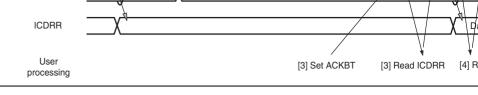


Figure 16.12 Slave Receive Mode Operation Timing (2)

of the SCL clock is guaranteed. The MLS bit in ICMR sets the order of data transfer, in e MSB first or LSB first. The output level of SDA can be changed during the transfer wait, SDAO bit in ICCR2.

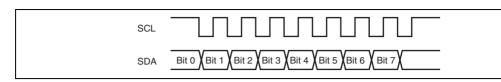


Figure 16.13 Clocked Synchronous Serial Transfer Format

(2) Transmit Operation

In transmit mode, transmit data is output from SDA, in synchronization with the fall of the clock. The transfer clock is output when MST in ICCR1 is 1, and is input when MST is 0 transmit mode operation timing, refer to figure 16.14. The transmission procedure and opin transmit mode are described below.

- 1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS[3:0] bits in ICCR1. (Initial setti
- 2. Set the TRS bit in ICCR1 to select transmit mode. Then, TDRE in ICSR is set.
- 3. Confirm that TDRE has been set. Then, write the transmit data to ICDRT. The data is transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous transmission is performed by writing data to ICDRT every time TDRE is set. When c from transmit mode to receive mode, clear TRS while TDRE is 1.

User processing [3] Write data to ICDRT [2] Set TRS [3] Write data

to ICDRT

[3] Write data

Figure 16.14 Transmit Mode Operation Timing

(3) Receive Operation

In receive mode, data is latched at the rise of the transfer clock. The transfer clock is our MST in ICCR1 is 1, and is input when MST is 0. For receive mode operation timing, re figure 16.15. The reception procedure and operations in receive mode are described below

- 1. Set the ICE bit in ICCR1 to 1. Set bits CKS[3:0] in ICCR1. (Initial setting)
- 2. When the transfer clock is output, set MST to 1 to start outputting the receive clock.3. When the receive operation is completed, data is transferred from ICDRS to ICDRR
- RDRF in ICSR is set. When MST = 1, the next byte can be received, so the clock is continually output. The continuous reception is performed by reading ICDRR every RDRF is set. When the 8th clock is risen while RDRF is 1, the overrun is detected at AL/OVE in ICSR is set. At this time, the previous reception data is retained in ICDF
- 4. To stop receiving when MST = 1, set RCVD in ICCR1 to 1, then read ICDRR. Ther fixed high after receiving the next byte data.

Rev. 3.00 Mar. 04, 2009 Page

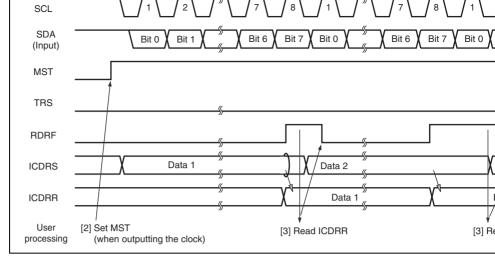


Figure 16.15 Receive Mode Operation Timing

Figure 16.16 Operation Timing For Receiving One Byte (MST = 1)

Rev. 3.00 Mar. 04, 2009 Page

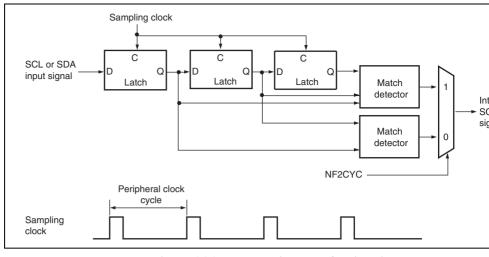


Figure 16.17 Block Diagram of Noise Filter

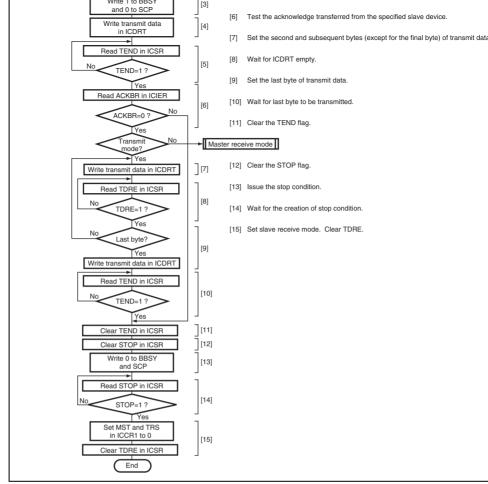


Figure 16.18 Sample Flowchart for Master Transmit Mode

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

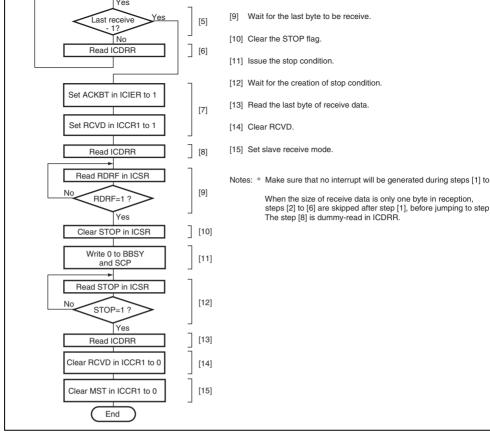


Figure 16.19 Sample Flowchart for Master Receive Mode

Rev. 3.00 Mar. 04, 2009 Page 760 of 1168

REJ09B0344-0300

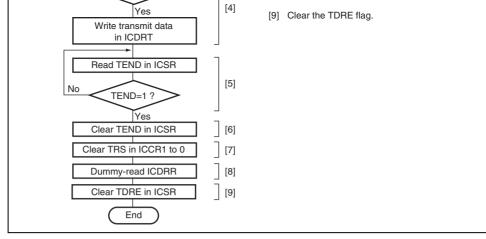


Figure 16.20 Sample Flowchart for Slave Transmit Mode

Rev. 3.00 Mar. 04, 2009 Page

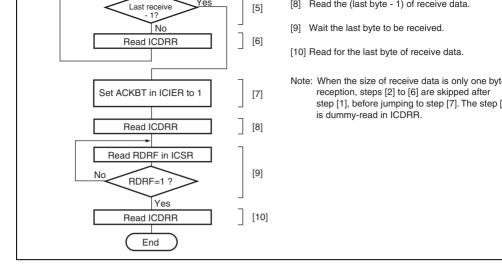


Figure 16.21 Sample Flowchart for Slave Receive Mode

STOP recognition	STPI	(STOP = 1) • (STIE = 1)	$\sqrt{}$	_
NACK detection	NAKI	{(NACKF = 1) + (AL = 1)} ●	V	_
Arbitration lost/ overrun error		(NAKIE = 1)	√	V

 $(TEND = 1) \bullet (TEIE = 1)$

Transmit end

TEI

handling. Note that a TXI or RXI interrupt can activate the DMAC if the setting for DM activation has been made. In such a case, an interrupt request is not sent to the CPU. Into sources should be cleared in the exception handling. The TDRE and TEND bits are autocleared to 0 by writing the transmit data to ICDRT. The RDRF bit is automatically clear reading ICDRR. The TDRE bit is set to 1 again at the same time when the transmit data to ICDRT. Therefore, when the TDRE bit is cleared to 0, then an excessive data of one be transmitted.

Figure 16.22 shows the timing of the bit synchronous circuit and table 16.5 shows the time. the SCL output changes from low to Hi-Z then SCL is monitored.

Rev. 3.00 Mar. 04, 2009 Page 764 of 1168 REJ09B0344-0300

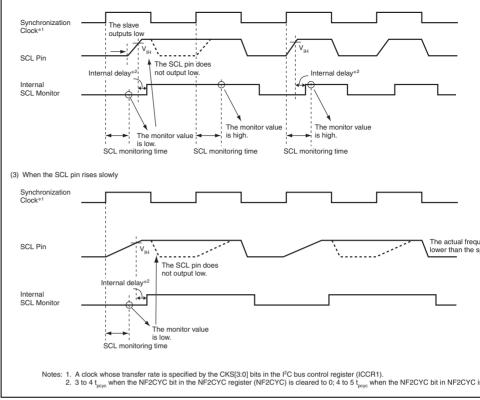


Figure 16.22 Bit Synchronous Circuit Timing

Rev. 3.00 Mar. 04, 2009 Page

Rev. 3.00 Mar. 04, 2009 Page 766 of 1168

REJ09B0344-0300

16.7.2 Note on Master Receive Mode

If ICDRR is read near the falling edge of 8th clock, the receive data will not be received cases. In addition, if RCVD is set to 1 near the falling edge of 8th clock, a stop condition be issued in some cases. To prevent these errors, one of the following two methods show selected.

- 1. In master receive mode, ICDRR should be read before the falling edge of 8th clock.
- 2. In master receive mode, RCVD should be set to 1 and the processing should be perfebyte units.

In master receive mode operation, ACKBT should be set before the 8th falling edge of \$2.00 master receive mode operation.

If the master transmission is set according to the MST and TRS bit settings while multipare used, the conflicting status in which the AL bit in ICSR is set to 1 in master transmit

16.7.3 Note on Master Receive Mode with ACKBT Setting

final data transfer during continuous data transfer. Otherwise, the slave device may over

16.7.4 Note on MST and TRS Bit Status When an Arbitration was Lost

(MST and TRS are set to 1) depending on the arbitration lost generation timing during Thandling instruction execution.

This problem can be avoided by the following methods.

- When multiple masters are used, the MST and TRS bits should be set by a MOV ins
- When an arbitration lost occurs, check if both MST and TRS bits are cleared to 0. If both of MST and TRS bits are not cleared to 0, both the bits should be cleared to 0.

Rev. 3.00 Mar. 04, 2009 Page

Rev. 3.00 Mar. 04, 2009 Page 768 of 1168

When $A\phi = 40$ MHz: Minimum 1.25 µs per channel

AD clock = 40 MHz, 50 conversion states

Two operating modes

- Single-cycle scan mode: Continuous A/D conversion on one to eight channels
 - Continuous scan mode: Repetitive A/D conversion on one to eight channels
- A/D data registers

Eight A/D data registers (ADDR) are provided. A/D conversion results are stored in registers (ADDR) that correspond to the input channels.

- Sample-and-hold function
 - A sample-and-hold circuit is built into the A/D converter of this LSI, simplifying the configuration of the external analog input circuitry. Multiple channels can be sample simultaneously because sample-and-hold circuits can be dedicated for channels 0 to 10.
 - Group A (GrA): Analog input pins selected from channels 0, 1, and 2 can be simultaneously sampled.
- Three methods for starting conversion

Software: Setting of the ADST bit in ADCR

Timer: TRGAN, TRG0N, TRG4AN, and TRG4BN from the MTU2 TRGAN, TRG4AN, and TRG4BN from the MTU2S

External trigger: ADTRG (LSI pin)

- Selectable analog input channel
- A/D conversion of a selected channel is accomplished by setting the A/D analog inp select registers (ADANSR).
- A/D conversion end interrupt and DMAC transfer function is supported On completion of A/D conversion, A/D conversion end interrupts (ADI) can be gene
- the DMAC can be activated by ADI.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

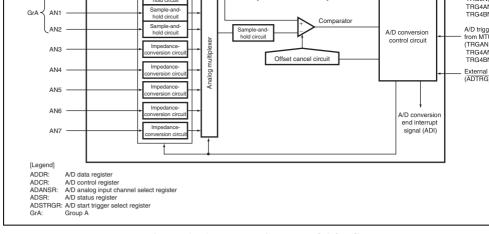


Figure 17.1 Block Diagram of A/D Converter

Rev. 3.00 Mar. 04, 2009 Page 770 of 1168

ADTRG	Input	A/D external trigger input pin
AN0	Input	Analog input pin 0 (Group A)
AN1	Input	Analog input pin 1 (Group A)
AN2	Input	Analog input pin 2 (Group A)
AN3	Input	Analog input pin 3
AN4	Input	Analog input pin 4
AN5	Input	Analog input pin 5
AN6	Input	Analog input pin 6
AN7	Input	Analog input pin 7

AVREFVss

Input

, maiog block reference perver capply pin

Analog block reference ground pin

register					
A/D analog input channel select register	ADANSR	R/W	H'00	H'FFFFE820	8
A/D data register 0	ADDR0	R	H'0000	H'FFFFE840	16
A/D data register 1	ADDR1	R	H'0000	H'FFFFE842	16
A/D data register 2	ADDR2	R	H'0000	H'FFFFE844	16
A/D data register 3	ADDR3	R	H'0000	H'FFFFE846	16
A/D data register 4	ADDR4	R	H'0000	H'FFFFE848	16
A/D data register 5	ADDR5	R	H'0000	H'FFFFE84A	16
A/D data register 6	ADDR6	R	H'0000	H'FFFFE84C	16
A/D data register 7	ADDR7	R	H'0000	H'FFFFE84E	16

Rev. 3.00 Mar. 04, 2009 Page 772 of 1168

RENESAS

				continuous scan mode, A/D conversion is continuous for the selected channels in sequence bit is cleared by software, a reset, or in software mode, or module standby mode.
6	ADCS	0	R/W	A/D Continuous Scan
				Selects either a single-cycle or a continuous sca mode. This bit is valid only when scan mode is
				0: Single-cycle scan
				1: Continuous scan
				When changing the operating mode, first clear t bit to 0.
5	ACE	0	R/W	Automatic Clear Enable
				Enables or disables the automatic clearing of Al ADDR is read by the CPU or DMAC. When this to 1, ADDR is automatically cleared to H'0000 a CPU or DMAC reads ADDR. This function allow detection of any renewal failures of ADDR.
				 Automatic clearing of ADDR after being read disabled.
				1: Automatic clearing of ADDR after being read

R/W

A/D Start

When this bit is cleared to 0, A/D conversion is and the A/D converter enters the idle state. When is set to 1, A/D conversion is started. In single-comode, this bit is automatically cleared to 0 when conversion ends on the selected single channel

7

ADST

0

				generated.
				0: Generation of A/D conversion end interrupt is
				1: Generation of A/D conversion end interrupt is
3, 2	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
1	TRGE	0	R/W	Trigger Enable
				Enables or disables A/D conversion start by the etrigger input (ADTRG) or A/D conversion start trig from the MTU2 and MTU2S (TRGAN, TRG0N, Tl and TRG4BN from the MTU2 and TRGAN, TRG4TRG4BN from the MTU2S). For selection of the etrigger and A/D conversion start trigger from the MTU2S, see the description of the EXTRG bit.

disabled

enabled

in addition, ADIE activates the Diviac when an A generated. At this time, no interrupt to the CPU is

0: A/D conversion start by the external trigger or conversion start trigger from the MTU or MTU2

1: A/D conversion start by the external trigger or conversion start trigger from the MTU2 or MTU

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 774 of 1168

conversion start by the external trigger input is e only when the ADST bit is cleared to 0.

When the external trigger is used as an A/D cor start trigger, the low-level pulse input to the AD7 must be at least 1.5 Aφ clock cycles in width.

0: A/D converter is started by the A/D conversio trigger from the MTU2 or MTU2S

1: A/D converter is started by the external pin (A

Bit	Bit Name	Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write value always be 0.
0	ADF	0	R/(W)*	A/D End Flag
				A status flag that indicates the completion of A/I conversion.
				[Setting condition]
				When A/D conversion on all specified chann completed in scan mode
				[Clearing conditions]
				• When 0 is written after reading ADF = 1
				 When the DMAC is activated by an ADI inter ADDR is read

Initial

Rev. 3.00 Mar. 04, 2009 Page 776 of 1168

				Enables or disables the A/D conversion start re input from the MTU2S.
				 Disables the A/D conversion start by TRGAN (MTU2S).
				 Enables the A/D conversion start by TRGAN (MTU2S).
5	STR5	0	R/W	Start Trigger 5
				Enables or disables the A/D conversion start re input from the MTU2S.
				 Disables the A/D conversion start by TRG4A (MTU2S).
				 Enables the A/D conversion start by TRG4A (MTU2S).
4	STR4	0	R/W	Start Trigger 4
				Enables or disables the A/D conversion start re input from the MTU2S.
				 Disables the A/D conversion start by TRG4E (MTU2S).
				 Enables the A/D conversion start by TRG4B (MTU2S).

Initial

Value

0

0

R/W

R/W

R

Description

always be 0.

Start Trigger 6

This bit is always read as 0. The write value sh

Reserved

Bit

7

6

Bit Name

STR6

Rev. 3.00 Mar. 04, 2009 Page

				(···· v= /·
				1: Enables the A/D conversion start by TRGAN (MTU2).
1	STR1	0	R/W	Start Trigger 1
				Enables or disables the A/D conversion start re- input from the MTU2.
				Disables the A/D conversion start by TRG4A (MTU2).
				 Enables the A/D conversion start by TRG4AN (MTU2).
0	STR0	0	R/W	Start Trigger 0
				Enables or disables the A/D conversion start re-

Enables or disables the A/D conversion start red

0: Disables the A/D conversion start by TRGAN

0: Disables the A/D conversion start by TRG4BI

1: Enables the A/D conversion start by TRG4BN

input from the MTU2.

input from the MTU2.

(MTU2).

(MTU2).

(MTU2).

Rev. 3.00 Mar. 04, 2009 Page 778 of 1168

7	ANS7	0	R/W	Setting bits in the A/D analog input channel se
6	ANS6	0	R/W	register to 1 selects a channel that correspond specified bit. For the correspondence between
5	ANS5	0	R/W	input pins and bits, see table 17.3.
4	ANS4	0	R/W	When changing the analog input channel, the
3	ANS3	0	R/W	ADCR must be cleared to 0 to prevent incorrect
2	ANS2	0	R/W	operations.
1	ANS1	0	R/W	
0	ANS0	0	R/W	

Table 17.3 Channel Select List

Bit Name

ANS0

ANS1

ANS2

ANS3

ANS4

ANS5	AN5	
ANS6	AN6	
ANS7	AN7	
ANS/	AN/	

Analog Input Channels

AN0

AN1

AN2

AN3

AN4

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	-	-	-	-						ADD	[11:0]				
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Bit	Bit Name	Initial Value	R/W	Description
15 to 12	_	All 0	R	Reserved
11 to 0	ADD[11:0]	All 0	R	12-bit data

Table 17.4 Correspondence between Analog Channels and Registers (ADDR0 to A

Analog Input Channels	A/D Data Registers
ANO	ADDR0
AN1	ADDR1
AN2	ADDR2
AN3	ADDR3
AN4	ADDR4
AN5	ADDR5
AN6	ADDR6
AN7	ADDR7

Rev. 3.00 Mar. 04, 2009 Page 780 of 1168

AN0 to AN7.

completed, the ADF bit in ADSR is set to 1 and the ADST bit is automatically cleared t continuous scan mode, when conversion on all specified channels is completed, the AD ADSR is set to 1. To stop A/D conversion, write 0 to the ADST bit. When the ADF bit is if the ADIE bit in ADCR is set to 1, an A/D conversion end interrupt (ADI) is generated clearing the ADF bit to 0, read the ADF bit while set to 1 and then write 0. However, while set to 1 and then write 0. DMAC is activated by an ADI interrupt, the ADF bit is automatically cleared to 0.

In single-cycle scan mode, when one cycle of A/D conversion on all specified channels

17.4.1 Single-Cycle Scan Mode

selected and the A/D conversion is performed in single-cycle scan mode using four char 1. Set the ADCS bit in the A/D control register (ADCR) to 0.

The following example shows the operation when analog input channels 0 to 3 (AN0 to

- 2. Set all bits ANS0 to ANS3 in the A/D analog input channel select register (ADANS)
- 3. Set the ADST bit in the A/D control register (ADCR) to 1 to start A/D conversion. 4. After channels 0 to 2 (GrA) are sampled simultaneously, offset canceling processing
- performed. Then, A/D conversion is performed on channel 0. Upon completion of the conversion, the A/D conversion result is transferred to ADDR0. Following this, char converted. Upon completion of the conversion, the A/D conversion result is transfer. ADDR1. In the same way, channel 2 is converted and the A/D conversion result is to to ADDR2.

A/D conversion of channel 3 is then started. Upon completion of the A/D conversion conversion result is transferred to ADDR3.

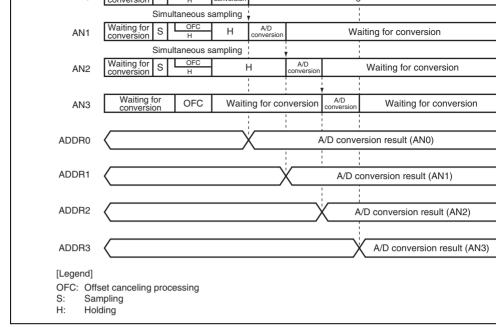


Figure 17.2 Example of A/D_0 Converter Operation (Single-Cycle Scan Moo

- 4. Channels U and 2 (GrA) are sampled simultaneously. As the ANS1 bit in ADANSK channel 1 is not sampled. After this, offset canceling processing (OFC) is performed A/D conversion on channel 0 is started. Upon completion of the A/D conversion, the conversion result is transferred to ADDR0. In the same way, channel 2 is converted A/D conversion result is transferred to ADDR2. The A/D conversion is not performed channel 1.
 - 5. The A/D conversion of channel 3 starts. Upon completion of the A/D conversion, th conversion result is transferred to ADDR3. 6. When the A/D conversion ends on all the specified channels (AN0 to AN3), the AD to 1. At this time, if the ADIE bit is set to 1, an ADI interrupt is generated after the A
 - conversion. 7. Steps 4 to 6 are repeated as long as the ADST bit remains set to 1. When the ADST cleared to 0, the A/D conversion stops. After this, if the ADST bit is set to 1, the A/I
 - conversion starts again and repeats steps 4 to 6.

Rev. 3.00 Mar. 04, 2009 Page

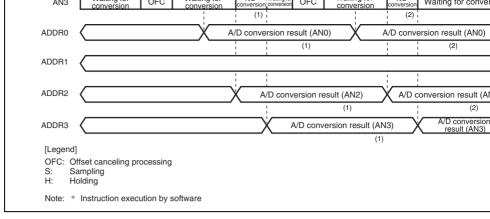


Figure 17.3 Example of A/D Converter Operation (Continuous Scan Mode

activation request from the MTU2, the MTU2S, or an external trigger signal occurs, the input is sampled by the dedicated sample-and-hold circuit for each channel after the A/I conversion start delay time (t_n) has passed and the offset canceling processing (OFC) is performed. After this, the sampling of the analog input using the sample-and-hold circuit to all the channels is performed and then the A/D conversion is started. Figure 17.4 show conversion timing in this case. This A/D conversion time (t_{CONV}) includes the t_{D} , the offset canceling processing time (t_{osc}) , the analog input sampling time with a dedicated sample circuit for each channel (t_{splsh}), and the analog input sampling time with the sample-and circuit common to all the channels (t_{SPI}) . The t_{SPISH} does not depend on the number of channels (t_{SPI}) . simultaneously sampled.

In continuous scan mode, the A/D conversion time (t_{CONV}) given in table 17.6 applies to conversion time of the first cycle. The conversion time of the second and subsequent cyexpressed as $(t_{CONV} - t_D + 6)$.

Table 17.5 Correspondence between Analog Input Channels and Groups being A Simultaneous Sampling

Analog Input Channels	Group			
AN0	GrA			
AN1				
AN2				
AN3	_			
AN4	_			
AN5	_			
AN6	_			
AN7	_			

Rev. 3.00 Mar. 04, 2009 Page

t_{conv} 50n + 95*³ —

50n

- Notes: 1. A/D converter activation by the MTU2 or MTU2S trigger signal.
 - 2. A/D converter activation by an external trigger signal.
 - 3. n: number of A/D conversion channels (n = 1 to 8)

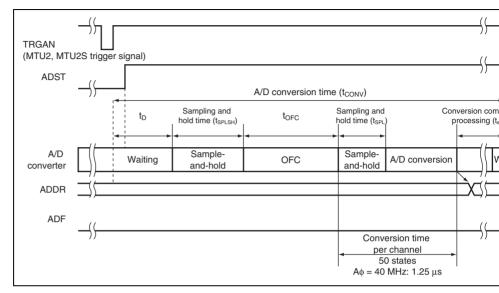


Figure 17.4 A/D Conversion Timing (Single-Cycle Scan Mode)

Rev. 3.00 Mar. 04, 2009 Page

the ADCR, ADSTRGR, and ADANSR registers have been set.

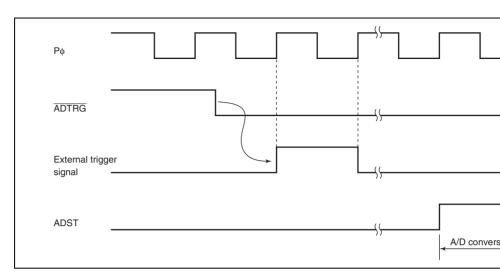


Figure 17.5 External Trigger Input Timing

17.4.6 Example of ADDR Auto-Clear Function

When the A/D data register (ADDR) is read by the CPU or DMAC, ADDR can be autom cleared to H'0000 by setting the ACE bit in ADCR to 1. This function allows the detection updated ADDR states.

Figure 17.6 shows an example of when the auto-clear function of ADDR is disabled (nor and enabled.

Rev. 3.00 Mar. 04, 2009 Page 788 of 1168 REJ09B0344-0300

RENESAS

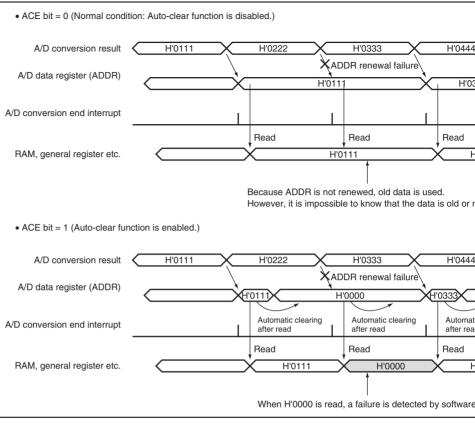


Figure 17.6 Example of When ADDR Auto-clear Function is Disabled (Normal Condition)/Enabled

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

Rev. 3.00 Mar. 04, 2009 Page 790 of 1168

figure 1/./).

- Full-scale error
 - The deviation of the actual A/D conversion characteristic from the ideal A/D conver characteristic when the digital output value changes from B'1111111111111 to the ma
 - figure 17.7).
 - Quantization error

- The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 17.7).
- Nonlinearity error
- The deviation of the actual A/D conversion characteristic from the ideal A/D conver characteristic between zero voltage and full-scale voltage. Does not include offset er
- Absolute accuracy

scale error, or quantization error (see figure 17.7). The deviation between the digital value and the analog input value. Includes offset e scale error, quantization error, and nonlinearity error.

voltage value (full-scale voltage) B'111111111111. Does not include a quantization

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 FS

Analog Offset error input voltage

[Legend]

FS: Full-scale

Figure 17.7 Definitions of A/D Conversion Accuracy

FS

input voltage

Analog

Rev. 3.00 Mar. 04, 2009 Page 792 of 1168

When using the A/D converter or D/A converter, set AVREF to a level between 4.5 V a When the A/D converter and D/A converter are not used, make settings such that AVRE AVcc, and do not leave the AVREF pin open.

The setting of the AVREFVss pin should always be such that AVREFVss = AVss, and leave AVREFVss open. If these conditions are not met, the reliability of the SH7211 mandversely affected.

17.7.3 Notes on Board Design

and the layout in which the digital circuit signal lines and analog circuit signal lines crossclose proximity to each other should be avoided as much as possible. Failure to do so me the incorrect operation of the analog circuitry due to inductance, adversely affecting the conversion values.

In board design, digital circuitry and analog circuitry should be as mutually isolated as r

Also, digital circuitry must be isolated from the analog input signals (AN0 to AN7), and reference power supply (AVREF), the analog power supply (AVcc), the analog ground and the analog reference ground (AVREFVss). Also, AVss should be connected at one stable digital ground (Vss) on the board.

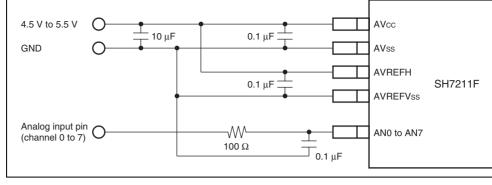


Figure 17.8 Example of Analog Input Pin Protection Circuit

Notes on Register Setting 17.7.5

- Set the ADST bit in the A/D control register (ADCR) after the A/D start trigger select (ADSTRGR) and the A/D analog input channel select register (ADANSR) have been not modify the settings of the ADCS, ACE, ADIE, TRGE, and EXTRG bits while the bit in the ADCR register is set to 1.
- Do not start the A/D conversion when the ANS bits (ANS[7:0]) in the A/D analog inp channel select register (ADANSR) are all 0.

Module standby mode can be set

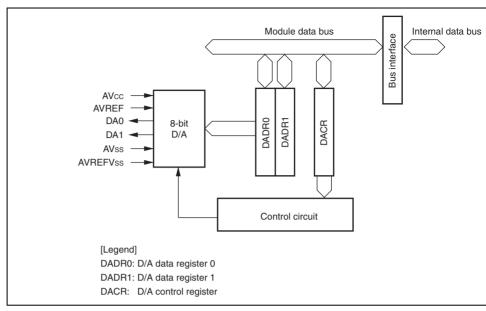


Figure 18.1 Block Diagram of D/A Converter

Rev. 3.00 Mar. 04, 2009 Page

Reference ground pin	AVHERVSS	iriput	D/A conversion reference grou
Analog output pin 0	DA0	Output	Channel 0 analog output
Analog output pin 1	DA1	Output	Channel 1 analog output

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 796 of 1168

18.3.1 D/A Data Registers 0 and 1 (DADR0 and DADR1)

DADR is an 8-bit readable/writable register that stores data to which D/A conversion is performed. Whenever analog output is enabled, the values in DADR are converted and the analog output pins.

DADR is initialized to H'00 by a power-on reset or in module standby mode.

Bit:	7	6	5	4	3	2	1	0
Initial value:	0	0	0	0	0	0	0	0
R/W:	R/W							

Rev. 3.00 Mar. 04, 2009 Page

				Controls D/A conversion and analog output for c
				0: Analog output of channel 1 (DA1) is disabled
				 D/A conversion of channel 1 is enabled. Analogous of channel 1 (DA1) is enabled.
	DAOE0	0	R/W	D/A Output Enable 0
				Controls D/A conversion and analog output for c
				0: Analog output of channel 0 (DA0) is disabled
				1: D/A conversion of channel 0 is enabled. Analo of channel 0 (DA0) is enabled.
	DAE	0	R/W	D/A Enable
				Used together with the DAOE0 and DAOE1 bits D/A conversion. Output of conversion results is a controlled by the DAOE0 and DAOE1 bits. For d see table 18.3.
				0: D/A conversion for channels 0 and 1 is contro independently
				1: D/A conversion for channels 0 and 1 is contro together
to 0	_	All 1	_	Reserved
				These bits are always read as 1 and cannot be r

Initial

Value

0

Bit Name

DAOE1

R/W

R/W

Description

D/A Output Enable 1

Bit

7

6

5

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 798 of 1168

U	U	D/A conversion is disabled.
	1	D/A conversion of channels 0 and 1 is enabled.
1	0	_
	1	_

the analog output pin DA0 after the conversion time t_{DCONV} has elapsed. The conversion continues to be output until DADR0 is written to again or the DAOE0 bit is cleared to output value is expressed by the following formula:

- 3. If DADR0 is written to again, the conversion is immediately started. The conversion output after the conversion time t_{DCONV} has elapsed.
- 4. If the DAOE0 bit is cleared to 0, analog output is disabled.

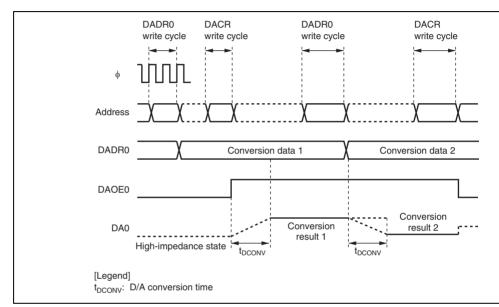


Figure 18.2 Example of D/A Converter Operation

Rev. 3.00 Mar. 04, 2009 Page 800 of 1168 REJ09B0344-0300

retained, and the analog power supply current is equal to as during D/A conversion. If the power supply current needs to be reduced in software standby mode, clear the DAOE0, and DAE bits to 0 to disable the D/A outputs.

18.5.3 Setting Analog Input Voltage

The reliability of this LSI may be adversely affected if the following voltage ranges are

- 1. AVcc and AVss input voltages
 - Input voltages AVcc and AVss should be $Vcc \le AVcc \le 5.0 \text{ V} \pm 0.5 \text{ V}$ and AVss = not leave the AVcc and AVss pins open when the A/D converter or D/A converter is and in software standby mode. When not in use, connect AVcc to the power supply and AVss to the ground (VssQ).
- 2. Setting range of AVREF input voltage

Setting range of AVREF input voltage Set the voltage range of the AVREF pin as AVREF = AVcc \pm 0.3 V when the A/D c or D/A converter is used, or as AVREF = AVcc when no A/D converter or D/A converted.

Rev. 3.00 Mar. 04, 2009 Page 802 of 1168

(port)	(BSC)		(INTC)	(MTU2)	(SCIF1)
PA23 I/O (port)	A23 output (BSC)	_	IRQ5 input (INTC)	TIOC0B I/O (MTU2)	SCK1 I/O (SCIF1)
PA22 I/O (port)	A22 output (BSC)	_	IRQ4 input (INTC)	TIOC0A I/O (MTU2)	_
PA21 I/O (port)	A21 output (BSC)	_	IRQ3 input (INTC)	_	_
PA20 I/O (port)	A20 output (BSC)	_	IRQ2 input (INTC)	_	_
PA19 I/O (port)	A19 output (BSC)	_	IRQ1 input (INTC)	_	_
PA18 I/O (port)	A18 output (BSC)	_	IRQ0 input (INTC)	_	_
PA17 I/O (port)	A17 output (BSC)	_	_	_	TXD3 output (SCIF3)
PA16 I/O (port)	A16 output (BSC)	_	_	_	RXD3 input (SCIF3)
PA15 I/O (port)	A15 output (BSC)	_	_	_	SCK3 I/O (SCIF3)
PA14 I/O (port)	A14 output (BSC)	_	_	_	_
PA13 I/O (port)	A13 output (BSC)	_	_	_	_

IRQ7 input

IRQ6 input

(INTC)

TIOCOD I/O

TIOCOC I/O

(MTU2)

TXD1 output

RXD1 input

(SCIF1)

Α

PA25 I/O

(port) PA24 I/O A25 output

A24 output

(BSC)

REJ09

PA8 I/O (port)	A8 output (BSC)	_	_	_	_	_
PA7 I/O (port)	A7 output (BSC)	_	_	_	_	_
PA6 I/O (port)	A6 output (BSC)	—	_	_	_	_
PA5 I/O (port)	A5 output (BSC)	_	—	_	_	_
PA4 I/O (port)	A4 output (BSC)	_	_	_	_	_
PA3 I/O (port)	A3 output (BSC)	_	_	_	_	_
PA2 I/O (port)	A2 output (BSC)	_	_	_	_	_
PA1 I/O (port)	A1 output (BSC)		_		=	_
PA0 I/O (port)	A0 output (BSC)	_	_			_

CS2 output (BSC) BS output (BSC)	DACK1 output (DMAC) TEND1 output (DMAC) DREQ2 input (DMAC) DACK2 output (DMAC) —	IRQ3 input (INTC) IRQ2 input (INTC) — IRQ0 input (INTC)	TCLKA input (MTU2) TCLKB input (MTU2) TCLKC input (MTU2) TCLKD input (MTU2) TIOC3BS I/O (MTU2S)	TXD3 output (SCIF3) RXD3 input (SCIF3) TXD2 output (SCIF2) RXD2 input (SCIF2) RXD0 input (SCIF0)
(BSC) BS output	DREQ2 input (DMAC) DACK2 output	(INTC) IRQ0 input	TCLKC input (MTU2) TCLKD input (MTU2) TCLKD input (MTU2) TIOC3BS I/O (MTU2S)	(SCIF3) (TXD2 output (SCIF2) (RXD2 input (SCIF2) (RXD0 input -
(BSC) BS output	(DMAC) DACK2 output	•	(MTU2) TCLKD input (MTU2) TIOC3BS I/O (MTU2S)	(SCIF2) (RXD2 input (SCIF2) (RXD0 input -
(BSC) BS output		•	(MTU2) TIOC3BS I/O (MTU2S)	(SCIF2) (
(BSC) BS output	_	•	(MTU2S)	·
•	_		TIO 0 0 D 0 1/2	
(000)			TIOC3DS I/O (MTU2S)	
CS6 output (BSC)	_	IRQ6 input (INTC)	TIOC3D I/O (MTU2)	
CS4 output (BSC)	_	IRQ4 input (INTC)	TIOC3B I/O (MTU2)	
CS3 output (BSC)	_	IRQ1 input (INTC)	TIOC3A I/O (MTU2)	_
				ar. 04, 2009 Page REJ09
	(BSC) CS3 output	(BSC) CS3 output — (BSC)	(BSC) (INTC) CS3 output — IRQ1 input (BSC) (INTC)	(BSC) (INTC) (MTU2) CS3 output — IRQ1 input TIOC3A I/O (BSC) (INTC) (MTU2)

(DMAC)

(DMAC)

(DMAC)

TEND0 output —

DREQ1 input —

(port)

(port)

(port)

PB27 I/O

PB26 I/O

(SCIF3)

(SCIF3)

SCK3 I/O

(SCIF3)

TXD3 output

(MTU2)

(MTU2)

(MTU2)

TIOC2A I/O

TIOC2B I/O

PB11 I/O (port)	AH output (BSC)	DACK3 output (DMAC)	=	TIOC4DS I/O (MTU2S)	TXD2 output (SCIF2)
PB10 I/O (port)	WAIT input (BSC)	DREQ3 input (DMAC)	_	TIOC4CS I/O (MTU2S)	RXD2 input (SCIF2)
PB9 I/O (port)	WE1/DQMLU output (BSC)	_	_	TIOC3CS I/O (MTU2S)	TXD3 (SCIF3)
PB8 I/O (port)	WE0/DQMLL output (BSC)	_	_	TIOC3AS I/O (MTU2S)	RXD3 (SCIF3)
PB7 I/O (port)	CS7 output (BSC)	_	IRQ7 input (INTC)	TIOC4D I/O (MTU2)	_
PB6 I/O (port)	CASL output (BSC)	_	IRQ3 input (INTC)	TIOC4C I/O (MTU2)	_
PB5 I/O (port)	RASL output (BSC)	_	IRQ2 input (INTC)	TIOC4B I/O (MTU2)	_
PB4 I/O (port)	CKE output (BSC)	_	_	TIOC4A I/O (MTU2)	_
PB3 I/O (port)	CK output (CPG)	_	_	_	_
PB2 I/O (port)	CS0 output (BSC)	_	_	POE4 input (POE)	SCK0 I/O (SCIF0)
PB1 I/O (port)	RD/WR output (BSC)	_	_	POE8 input (POE)	TXD0 output (SCIF0)
PB0 I/O (port)	RD output (BSC)	_	_	POE0 input (POE)	RXD0 input (SCIF0)

TIOC4AS I/O

(MTU2S)

TXD2 output

(SCIF2)

PB12 I/O

(port)

BREQ input

(BSC)

Rev. 3.00 Mar. 04, 2009 Page 806 of 1168

(port)	(BSC)			(MTU2)	
PD9 I/O (port)	D9 I/O (BSC)	_	_	_	
PD8 I/O (port)	D8 I/O (BSC)	_	_	_	
PD7 I/O (port)	D7 I/O (BSC)	_	_	_	
PD6 I/O (port)	D6 I/O (BSC)	_	_	_	
PD5 I/O (port)	D5 I/O (BSC)	_	_	_	
PD4 I/O (port)	D4 I/O (BSC)	_	_	_	
PD3 I/O (port)	D3 I/O (BSC)	_	_	_	
PD2 I/O (port)	D2 I/O (BSC)	_	_	_	
PD1 I/O (port)	D1 I/O (BSC)	_	_	_	
PD0 I/O (port)	D0 I/O (BSC)	_	_	_	
				Bev. 3.00) Mar 04 2009 Page

PD12 I/O

PD11 I/O

(port)

(port) PD10 I/O D12 I/O

D11 I/O (BSC)

D10 I/O

(BSC)

Rev. 3.00 Mar. 04, 2009 Page

REJ09

TIC5U input (MTU2)

TIC5V input

TIC5W input

(MTU2)

Rev. 3.00 Mar. 04, 2009 Page 808 of 1168

REJ09B0344-0300

Port A control register L3	PACRL3	R/W	H'0000/ H'1111	H'FFFE3812 8
Port A control register L2	PACRL2	R/W	H'0000/ H'1111	H'FFFE3814 8
Port A control register L1	PACRL1	R/W	H'0000/ H'1111	H'FFFE3816 8
Port B I/O register H	PBIORH	R/W	H'0000	H'FFFE3884 8
Port B I/O register L	PBIORL	R/W	H'0000	H'FFFE3886 8
Port B control register H4	PBCRH4	R/W	H'0000	H'FFFE3888 8
Port B control register H3	PBCRH3	R/W	H'0000	H'FFFE388A 8
Port B control register H2	PBCRH2	R/W	H'0000	H'FFFE388C 8
Port B control register H1	PBCRH1	R/W	H'0000/ H'0001	H'FFFE388E 8
Port B control register L4	PBCRL4	R/W	H'0000	H'FFFE3890 8
Port B control register L3	PBCRL3	R/W	H'0000/ H'0011	H'FFFE3892 8
Port B control register L2	PBCRL2	R/W	H'0000	H'FFFE3894 8
Port B control register L1	PBCRL1	R/W	H'0000/ H'0101/ H'1101	H'FFFE3896 8

PACRH2

PACRH1

PACRL4

R/W

R/W

R/W

H'0000/

H'1111

H'0000/

H'1111

H'0000/ H'1111

H'FFFE380C 8, 1

H'FFFE380E 8, 1

H'FFFE3810 8, 1

REJ09

Port A control register H2

Port A control register H1

Port A control register L4

RQOUT function control egister	IFCR
WAVE function control egister 2	WAVECR2
NAVE function control egister 1	WAVECR1

Port F control register LT PFCHLT

H'0000

H'0001

H'1111

R/W

R/W

R/W

TELESASO O, IC

H'FFFE38A2 16

H'FFFE3A14 8, 16

H'FFFE3A16 8, 16

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 810 of 1168

PAIORH and PAIORL are initialized to H'0000 by a power-on reset; but are not initialized manual reset or in sleep mode or software standby mode.

(1) Port A I/O Register H (PAIORH)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	-	-	-	-	-	PA25 IOR	PA24 IOR	PA23 IOR	PA22 IOR	PA21 IOR	PA20 IOR	PA19 IOR	PA18 IOR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R/W							

(2) Port A I/O Register L (PAIORL)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	PA15 IOR	PA14 IOR	PA13 IOR	PA12 IOR	PA11 IOR	PA10 IOR	PA9 IOR	PA8 IOR	PA7 IOR	PA6 IOR	PA5 IOR	PA4 IOR	PA3 IOR	PA2 IOR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D/\/\·	DAM	DAM	D/M	D/M	D/M	D/M	DAM	DAM	DAM	DAM	D/M	DAM	DAM	D/M

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Initial value: R/W:	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R	0 R/W	0 R/W	0 R/W	0 R	0 R/W	
Bit	Bit N	lame		nitial /alue	R	/W	Des	cripti	ion						
15 to 7	_		Д	All O	R		Res	erved							
								se bit		•	s rea	d as 0	. The	write	V
6 to 4	PA2	5MD[2	2:0] 0	000*	R	/W	PA2	25 Mo	de						
										tion o		TXD1	pin.		
							•	Area (0: 16-	bit mo	de/8-	bit mo	ode		
								000: F	PA25	I/O (p	ort)				
								001: <i>A</i>	\25 o	utput	(BSC)	(initia	al valı	ue)	
								010: 5	Settin	g proh	iibited				
								011: I	RQ7	input ((INTC)			
								100: 7	LIOC)D I/O	(MTU	J2)			
								101: 7	ΓXD1	outpu	t (SC	IF)			
								110: 5	Settin	g proh	iibited				
-								111: 5	Settin	g proh	iibited				
3	_		0)	R	l	Res	erved	I						
								s bit is ays be		ys rea	ad as	0. The	write	e value	Э

PA2

PA25MD[2:0]

Rev. 3.00 Mar. 04, 2009 Page 812 of 1168 REJ09B0344-0300

Bit:

100: HOCOC I/O (MTU2)
101: RXD1 input (SCIF)
110: Setting prohibited
111: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

14 to 12	PA23MD[2:0]	000*	R/W	PA23 Mode
				Select the function of the PA23/A23/IRQ5/TIOC0B/SCK1 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA23 I/O (port)
				001: A23 output (BSC) (initial value)
				010: Setting prohibited
				011: IRQ5 input (INTC)
				100: TIOC0B I/O (MTU2)
				101: SCK1 I/O (SCIF)
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

aiways be 0.

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 814 of 1168

RENESAS

				110: Setting prohibited
				111: Setting prohibited
7	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
6 to 4	PA21MD[2:0]	000*	R/W	PA21 Mode
				Select the function of the PA21/A21/IRQ3 p
				Area 0: 16-bit mode/8-bit mode
				000: PA21 I/O (port)
				001: A21 output (BSC) (initial value)
				010: Setting prohibited
				011: IRQ3 input (INTC)
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

100: HOCOA I/O (MTU2) 101: Setting prohibited

010: Setting prohibited 011: IRQ2 input (INTC) 100: Setting prohibited 101: Setting prohibited 110: Setting prohibited 111: Setting prohibited

* The initial value depends on the operating mode of the LSI. Note:

Rev. 3.00 Mar. 04, 2009 Page 816 of 1168

REJ09B0344-0300

				Select the function of the PA19/A19/IRQ1
				Area 0: 16-bit mode/8-bit mode
				000: PA19 I/O (port)
				001: A19 output (BSC) (initial value)
				010: Setting prohibited
				011: IRQ1 input (INTC)
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
10 to 8	PA18MD[2:0]	000*	R/W	PA18 Mode
				Select the function of the PA18/A18/IRQ0
				Area 0: 16-bit mode/8-bit mode
				000: PA18 I/O (port)
				001: A18 output (BSC) (initial value)
				010: Setting prohibited
				011: IRQ0 input (INTC)
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

14 to 12 PA19MD[2:0] 000* R/W PA19 Mode

aiways be 0.

				010: Setting prohibited				
				011: Setting prohibited				
				100: Setting prohibited				
				101: TXD3 output (SCIF)				
				110: Setting prohibited				
				111: Setting prohibited				
3	_	0	R	Reserved				
				This bit is always read as 0. The write value always be 0.				
2 to 0	PA16MD[2:0]	000*	R/W	PA16 Mode				
				Select the function of the PA16/A16/RXD3 p				
				Area 0: 16-bit mode/8-bit mode				
				000: PA16 I/O (port)				
				001: A16 output (BSC) (initial value)				
				010: Setting prohibited				
				011: Setting prohibited				
				100: Setting prohibited				
				101: RXD3 input (SCIF)				

* The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 818 of 1168

RENESAS

110: Setting prohibited 111: Setting prohibited

Note:

				111: Setting prohibited
				110: Setting prohibited
				101: Setting prohibited
				100: Setting prohibited
				011: Setting prohibited
				010: Setting prohibited
				001: A14 vice (port)
				000: PA14 I/O (port)
				 Select the function of the PA14/A14 pin. Area 0: 16-bit mode/8-bit mode
10 to 8	PA14MD[2:0]	UUU*	R/W	PA14 Mode
10 +- 0	DA14MD[0:0]	000*	DAM	This bit is always read as 0. The write vialways be 0.
11	_	0	R	Reserved
				111: Setting prohibited
				110: Setting prohibited
				101: SCK3 I/O (SCIF)
				100: Setting prohibited
				011: Setting prohibited
				** /
				Area 0: 16-bit mode/8-bit mode One: PA15 I/O (port)
				000: PA15 I/O (port) 001: A15 output (BSC) (initial value 010: Setting prohibited

aiways be 0.

PA15 Mode

Select the function of the PA15/A15/SCK3

R/W

14 to 12 PA15MD[2:0] 000*

				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2 to 0	PA12MD[2:0]	000*	R/W	PA12 Mode
				Select the function of the PA12/A12 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA12 I/O (port)
				001: A12 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 820 of 1168

RENESAS

	L - 3			
				Select the function of the PA11/A11 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA11 I/O (port)
				001: A11 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write va always be 0.
10 to 8	PA10MD[2:0]	000*	R/W	PA10 Mode
				Select the function of the PA10/A10 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA10 I/O (port)
				001: A10 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

14 to 12 PA11MD[2:0] 000* R/W PA11 Mode

aiways be 0.

				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2 to 0	PA8MD[2:0]	000*	R/W	PA8 Mode
				Select the function of the PA8/A8 pin.
				 Area 0: 16-bit mode/8-bit mode
				000: PA8 I/O (port)
				001: A8 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

010: Setting prohibited

111: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 822 of 1168

Note: * The initial value depends on the operating mode of the LSI.

RENESAS

	. , .,	000	, • •	1717 111000
				Select the function of the PA7/A7 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA7 I/O (port)
				001: A7 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write va always be 0.
10 to 8	PA6MD[2:0]	000*	R/W	PA6 Mode
				Select the function of the PA6/A6 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA6 I/O (port)
				001: A6 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

aiways be 0.

14 to 12 PA7MD[2:0] 000* R/W PA7 Mode

Rev. 3.00 Mar. 04, 2009 Page

				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2 to 0	PA4MD[2:0]	000*	R/W	PA4 Mode
				Select the function of the PA4/A4 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PA4 I/O (port)
				001: A4 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 824 of 1168

RENESAS

. , .0	000	,	1710111000
			Select the function of the PA3/A3 pin.
			Area 0: 16-bit mode/8-bit mode
			000: PA3 I/O (port)
			001: A3 output (BSC) (initial value)
			010: Setting prohibited
			011: Setting prohibited
			100: Setting prohibited
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
_	0	R	Reserved
			This bit is always read as 0. The write va always be 0.
PA2MD[2:0]	000*	R/W	PA2 Mode
			Select the function of the PA2/A2 pin.
			Area 0: 16-bit mode/8-bit mode
			000: PA2 I/O (port)
			001: A2 output (BSC) (initial value)
			010: Setting prohibited
			011: Setting prohibited
			400 0 11' 1 11'1 1
			100: Setting prohibited
			100: Setting prohibited 101: Setting prohibited
	PA2MD[2:0]		

aiways be 0.

14 to 12 PA3MD[2:0] 000* R/W PA3 Mode

				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
2 to 0	PA0MD[2:0]	000*	R/W	PA0 Mode
				Select the function of the PA0/A0 pin.
				 Area 0: 16-bit mode/8-bit mode
				000: PA0 I/O (port)
				001: A0 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 826 of 1168

RENESAS

PBIORH and PBIORL are initialized to H'0000 by a power-on reset; but are not initialized manual reset or in sleep mode or software standby mode.

(1) Port B I/O Register H (PBIORH)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	PB30 IOR	PB29 IOR	PB28 IOR	PB27 IOR	PB26 IOR	PB25 IOR	PB24 IOR	PB23 IOR	PB22 IOR	PB21 IOR	PB20 IOR	PB19 IOR	PB18 IOR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R/W												

(2) Port B I/O Register L (PBIORL)

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	PB15 IOR	PB14 IOR	PB13 IOR	PB12 IOR	PB11 IOR	PB10 IOR	PB9 IOR	PB8 IOR	PB7 IOR	PB6 IOR	PB5 IOR	PB4 IOR	PB3 IOR	PB2 IOR
nitial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D/M.	D/M DAM	D/M	D/M	D/M	D/M	D/M	D/M							

Rev. 3.00 Mar. 04, 2009 Page

2009 Page REJ09

								-							
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R/W:	R	R	R	R	R	R/W	R/W	R/W	R	R/W	R/W	R/W	R	R/W	F
Bit	Bit I	Name		Initia Value	-	R/W	De	escrip	otion						
15 to 11	_			All 0		R	Re	eserve	ed						
								nese b lould a			-	ad as	0. TI	ne writ	е
10 to 8	PB3	0MD[2	2:0]	000		R/W	PI	330 M	lode						
								elect tl 330/IF					TRG	pin.	
							00	0: PB	30 1/0) (por	t)				
							00	1: ĪR(TUOG	/REF	OUT	outpu	t (IN	rc/Bs	C)
							01	0: Se	tting p	orohib	ited				
							01	1: UB	CTR	G outp	out (U	BC)			
							10	0: Se	tting p	orohib	ited				
							10	1: Se	tting p	orohib	ited				
							11	0: Se	tting p	orohib	ited				
							11	1: Se	tting p	orohib	ited				
7	_			0		R	Re	eserve	ed						
								nis bit ways l		ays r	ead as	s 0. T	he wi	rite val	u

PB2

PB29MD[2:0]

Rev. 3.00 Mar. 04, 2009 Page 828 of 1168 REJ09B0344-0300

Bit:

PB30MD[2:0]

				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
2 to 0	PB28MD[2:0]	000	R/W	PB28 Mode
				Select the function of the PB28/DACK0/TIOC1A/RXD3 pin.
				000: PB28 I/O (port)
				001: Setting prohibited
				010: Dack0 output (DMAC)
				011: Setting prohibited
				100: TIOC1A I/O (MTU2)
				101: RXD3 input (SCIF)
				110: Setting prohibited
				111: Setting prohibited

	[]			
				Select the function of the PB27/TEND0/TIOC2A/TXD3/AUDATA0 pix
				000: PB27 I/O (port)
				001: Setting prohibited
				010: TEND0 output (DMAC)
				011: Setting prohibited
				100: TIOC2A I/O (MTU2)
				101: TXD3 output (SCIF)
				110: AUDATA0 output (AUD)
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
10 to 8	PB26MD[2:0]	000	R/W	PB26 Mode
				Select the function of the PB26/DREQ0/TIOC2B/SCK3/AUDATA1 p
				000: PB26 I/O (port)
				· · · · · · · · · · · · · · · · · · ·
				001: Setting prohibited
				001: Setting prohibited

R/W

14 to 12 PB27MD[2:0] 000

aiways be 0.

PB27 Mode

101: SCK3 I/O (SCIF)

110: AUDATA1 output (AUD)111: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 830 of 1168 REJ09B0344-0300

REJ09B0344-0300

				aiways be 0.
2 to 0	PB24MD[2:0]	000	R/W	PB24 Mode
				Select the function of the PB24/TEND1/IRQ2/TCLKB/RXD3/AUDA
				000: PB24 I/O (port)
				001: Setting prohibited
				010: TEND1 output (DMAC)
				011: IRQ2 input (INTC)
				100: TCLKB input (MTU2)
				101: RXD3 input (SCIF)
				110: AUDATA3 output (AUD)
				111: Setting prohibited.

R

0

3

010: DACK1 output (DMAC) 011: IRQ3 input (INTC) 100: TCLKA input (MTU2) 101: TXD3 output (SCIF) 110: AUDATA2 output (AUD) 111: Setting prohibited

This bit is always read as 0. The write value

Reserved

				<u>, </u>
14 to 12	PB23MD[2:0]	000	R/W	PB23 Mode
				Select the function of the PB23/DREQ2/TCLKC/TXD2/AUDCK pin.
				000: PB23 I/O (port)
				001: Setting prohibited
				010: DREQ2 input (DMAC)
				011: Setting prohibited
				100: TCLKC input (MTU2)
				101: TXD2 output (SCIF)
				110: AUDCK output (AUD)
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
10 to 8	PB22MD[2:0]	000	R/W	PB22 Mode
				Select the function of the PB22/DACK2/TCLKD/RXD2/AUDSYNC pi
				000: PB22 I/O (port)
				001: Setting prohibited
				010: DACK2 output (DMAC)
				011: Setting prohibited
				100: TCLKD input (MTU2)
				101: RXD2 input (SCIF)

aiways be 0.

110: AUDSYNC output (AUD)

111: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 832 of 1168 REJ09B0344-0300

				100: TIOC3BS I/O (MTU2S)
				101: RXD0 input (SCIF)
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
2 to 0	PB20MD[2:0]	000	R/W	PB20 Mode
				Select the function of the PB20/BS/TIOC3
				000: PB20 I/O (port)
				001: BS output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: TIOC3DS I/O (MTU2S)
				101: Setting prohibited
				110: Setting prohibited

010: Setting prohibited 011: IRQ0 input (INTC)

				-
14 to 12	PB19MD[2:0]	000	R/W	PB19 Mode
				Select the function of the PB19/CS6/IRQ6/pin.
				000: PB19 I/O (port)
				001: CS6 output (BSC)
				010: Setting prohibited
				011: IRQ6 input (INTC)
				100: TIOC3D I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
10 to 8	PB18MD[2:0]	000	R/W	PB18 Mode
				Select the function of the PB18/CS4/IRQ4/pin.
				000: PB18 I/O (port)
				001: CS4 output (BSC)
				010: Setting prohibited
				011: IRQ4 input (INTC)
				100: TIOC3B I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited

111: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 834 of 1168 RENESAS

REJ09B0344-0300

				100: TIOC3A I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write val always be 0.
2 to 0	PB16MD[2:0]	000*	R/W	PB16 Mode
				Select the function of the PB16/CS1/POE pin.
				Area 0: 16-bit mode/8-bit mode
				000: PB16 I/O (port)
				001: CS1 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: POE1 input (POE2)
				101: TXD0 output (SCIF)
				110: Setting prohibited
				111: Setting prohibited

* The initial value depends on the operating mode of the LSI.

010: Setting prohibited 011: IRQ1 input (INTC)

Note:

14 to 12	PB15MD[2:0]	000	R/W	PB15 Mode
				Select the function of the PB15/CS5/IRQ5, pin.
				000: PB15 I/O (port)
				001: CS5 output (BSC)
				010: Setting prohibited
				011: IRQ5 input (INTC)
				100: TIOC3C I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
10 to 8	PB14MD[2:0]	000	R/W	PB14 Mode
				Select the function of the PB14/ADTRG/RXD2/MRES pin.
				000: PB14 I/O (port)
				001: Setting prohibited
				010: Setting prohibited
				011: ADTRG input (ADC)
				100: Setting prohibited
				101: RXD2 input (SCIF)
				110: MRES input (system control)

Rev. 3.00 Mar. 04, 2009 Page 836 of 1168 REJ09B0344-0300

				011: Setting prohibited 100: TIOC4BS I/O (MTU2S)
				101: SCK2 I/O (SCIF)
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write valual always be 0.
2 to 0	PB12MD[2:0]	000	R/W	PB12 Mode
				Select the function of the PB12/BREQ/TIOC4AS/TXD2 pin.
				000: PB12 I/O (port)
				001: BREQ input (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: TIOC4AS I/O (MTU2S)
				101: TXD2 output (SCIF)
				110: Setting prohibited

010: Setting prohibited

				Select the function of the PB11/AH/DACK3/TIOC4DS/TXD2 pin.
				000: PB11 I/O (port)
				001: AH output (BSC)
				010: DACK3 output (DMAC)
				011: Setting prohibited
				100: TIOC4DS I/O (MTU2S)
				101: TXD2 output (SCIF)
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10 to 8	PB10MD[2:0]	000	R/W	PB10 Mode
				Select the function of the PB10/WAIT/DREQ3/TIOC4CS/RXD2 pin.
				000: PB10 I/O (port)
				001: WAIT input (BSC)
				010: DREQ3 input (DMAC)
				011: Setting prohibited
				100: TIOC4CS I/O (MTU2S)
				101: RXD2 input (SCIF)
				110: Setting prohibited

R/W

14 to 12 PB11MD[2:0] 000

aiways be 0.

PB11 Mode

				010: Setting prohibited
				011: Setting prohibited
				100: TIOC3CS I/O (MTU2S)
				101: TXD3 output (SCIF)
				110: Setting prohibited
				111: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
2 to 0	PB8MD[2:0]	000*	R/W	PB8 Mode
				Select the function of the PB8/WE0/DQMLL/TIOC3AS/RXD3 pin.
				Area 0: 16-bit mode/8-bit mode
				000: PB8 I/O (port)
				001: WE0/DQMLL output (BSC) (initia
				010: Setting prohibited
				011: Setting prohibited
				100: TIOC3AS I/O (MTU2S)
				101: RXD3 input (SCIF)

Note: * The initial value depends on the operating mode of the LSI.

110: Setting prohibited 111: Setting prohibited

001: WEI/DQIVILO output (BSC) (Initia

				Select the function of the PB7/CS7/IRQ7/TIO
				000: PB7 I/O (port)
				001: CS7 output (BSC)
				010: Setting prohibited
				011: IRQ7 input (INTC)
				100: TIOC4D I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value s always be 0.
10 to 8	PB6MD[2:0]	000	R/W	PB6 Mode
				Select the function of the PB6/CASL/IRQ3/TIO
				000: PB6 I/O (port)
				000: 1 B0 1/0 (port)
				001: CASL output (BSC)
				(1 /
				001: CASL output (BSC)
				001: CASL output (BSC) 010: Setting prohibited
				001: CASL output (BSC) 010: Setting prohibited 011: IRQ3 input (INTC)

aiways be 0.

PB7 Mode

14 to 12 PB7MD[2:0]

000

R/W

Rev. 3.00 Mar. 04, 2009 Page 840 of 1168 REJ09B0344-0300

				100: TIOC4B I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write valualways be 0.
2 to 0	PB4MD[2:0]	000	R/W	PB4 Mode
				Select the function of the PB4/CKE/TIOC4
				000: PB4 I/O (port)
				001: CKE output (BSC)
				010: Setting prohibited
				011: Setting prohibited
				100: TIOC4A I/O (MTU2)
				101: Setting prohibited
				110: Setting prohibited

010: Setting prohibited 011: IRQ2 input (INTC)

111: Setting prohibited

14 to 12	PB3MD[2:0]	000*	R/W	PB3 Mode
14 10 12	I DOWD[2.0]	000	1 1/ V V	Select the function of the PB3/CK pin.
				·
				Area 0: 16-bit mode/8-bit mode
				000: PB3 I/O (port)
				001: CK output (CPG) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write val always be 0.
10 to 8	PB2MD[2:0]	000*	R/W	PB2 Mode
				Select the function of the PB2/CS0/POE4
				Area 0: 16-bit mode/8-bit mode
				000: PB2 I/O (port)
				001: CS0 output (BSC) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: POE4 input (POE2)
				101: SCK0 I/O (SCIF)
				110: Setting prohibited
				111: Setting prohibited

aiways be 0.

Rev. 3.00 Mar. 04, 2009 Page 842 of 1168 REJ09B0344-0300

				011: Setting prohibited				
				100: POE8 input (POE2)				
				101: TXD0 output (SCIF)				
				110: Setting prohibited				
				111: Setting prohibited				
3	_	0	R	Reserved				
				This bit is always read as 0. The write valualways be 0.				
2 to 0	PB0MD[2:0]	000*	R/W	PB0 Mode				
				Select the function of the PB0/RD/POE0/F				
				Area 0: 16-bit mode/8-bit mode				
				000: PB0 I/O (port)				
				001: RD output (BSC) (initial value)				
				010: Setting prohibited				
				011: Setting prohibited				
				100: POE0 input (POE2)				
				101: RXD0 input (SCIF)				

* The initial value depends on the operating mode of the LSI.

010: Setting prohibited

Note:

110: Setting prohibited 111: Setting prohibited

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
	PD15 IOR	PD14 IOR	PD13 IOR	PD12 IOR	PD11 IOR	PD10 IOR	PD9 IOR	PD8 IOR	PD7 IOR	PD6 IOR	PD5 IOR	PD4 IOR	PD3 IOR	PD2 IOR	Ī
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
B/W·	R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W								

19.1.6 Port D Control Registers L1 to L4 (PDCRL1 to PDCRL4)

PDCRL1 to PDCRL4 are 16-bit readable/writable registers that are used to select the fun the multiplexed pins on port D.

PDCRL1 to PDCRL4 are initialized to the values shown in table 19.6 by a power-on resent initialized by a manual reset or in sleep mode or software standby mode.

Table 19.6 Initial Values of Port D Control Registers

	Initial Value					
Register Name	Area 0: 16-Bit Mode	Area 0: 8-Bit Mode				
PDCRL4	H'1111	H'0000				
PDCRL3	H'1111	H'0000				
PDCRL2	H'1111	H'1111				
PDCRL1	H'1111	H'1111				

Select the function of the PD15/D15/TIC5U
Area 0: 16-bit mode
000: PD15 I/O (port)
001: D15 I/O (data) (initial value)
010: Setting prohibited
011: Setting prohibited
100: TIC5US input (MTU2S)
101: Setting prohibited
110: Setting prohibited
111: Setting prohibited
Area 0: 8-bit mode
000: PD15 I/O (port) (initial value)
001: D15 I/O (data)
010: Setting prohibited
011: Setting prohibited
100: TIC5US input (MTU2S)
101: Setting prohibited
110: Setting prohibited
111: Setting prohibited

R/W

14 to 12 PD15MD[2:0] 000*

11

0

R

aiways be 0.

PD15 Mode

RENESAS

Reserved

always be 0.

This bit is always read as 0. The write value

			110: Setting prohibited
			111: Setting prohibited
			Area 0: 8-bit mode
			000: PD14 I/O (port) (initial value)
			001: D14 I/O (data)
			010: Setting prohibited
			011: Setting prohibited
			100: TIC5VS input (MTU2S)
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
_	0	R	Reserved
			This bit is always read as 0. The write valualways be 0.

Rev. 3.00 Mar. 04, 2009 Page 846 of 1168 REJ09B0344-0300

			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
			Area 0: 8-bit mode
			000: PD13 I/O (port) (initial value)
			001: D13 I/O (data)
			010: Setting prohibited
			011: Setting prohibited
			100: TIC5WS input (MTU2S)
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
_	0	R	Reserved
			This bit is always read as 0. The write value

always be 0.

REJ09

	101: Setting prohibited
	110: Setting prohibited
	111: Setting prohibited
•	Area 0: 8-bit mode
	000: PD12 I/O (port) (in
	001: D12 I/O (data)
	010: Setting prohibited

000: PD12 I/O (port) (initial value)

011: Setting prohibited

100: TIC5U input (MTU2)

101: Setting prohibited

110: Setting prohibited 111: Setting prohibited

The initial value depends on the operating mode of the LSI. Note:

Rev. 3.00 Mar. 04, 2009 Page 848 of 1168

REJ09B0344-0300

				<u> </u>
14 to 12	PD11MD[2:0]	000*	R/W	PD11 Mode
				Select the function of the PD11/D11/TIC5V
				Area 0: 16-bit mode
				000: PD11 I/O (port)
				001: D11 I/O (data) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: TIC5V input (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
				Area 0: 8-bit mode
				000: PD11 I/O (port) (initial value)
				001: D11 I/O (data)
				010: Setting prohibited
				011: Setting prohibited
				100: TIC5V input (MTU2)
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value

aiways be 0.

always be 0.

			110: Setting prohibited
			111: Setting prohibited
			Area 0: 8-bit mode
			000: PD10 I/O (port) (initial value)
			001: D10 I/O (data)
			010: Setting prohibited
			011: Setting prohibited
			100: TIC5W input (MTU2)
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
7	 0	R	Reserved
			This bit is always read as 0. The write value always be 0.

Rev. 3.00 Mar. 04, 2009 Page 850 of 1168

REJ09B0344-0300

RENESAS

			110: Setting prohibited
			111: Setting prohibited
			 Area 0: 8-bit mode
			000: PD9 I/O (port) (initial value)
			001: D9 I/O (data)
			010: Setting prohibited
			011: Setting prohibited
			100: Setting prohibited
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
_	0	R	Reserved

This bit is always read as 0. The write value

Rev. 3.00 Mar. 04, 2009 Page

REJ09

2=>====

always be 0.

	110: Setting prohibited
	111: Setting prohibited
•	Area 0: 8-bit mode
	000: PD8 I/O (port) (initial value)
	001: D8 I/O (data)
	010: Setting prohibited
	011: Setting prohibited
	100: Setting prohibited
	101: Setting prohibited
	110: Setting prohibited
	111: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 852 of 1168 REJ09B0344-0300

RENESAS

				Select the function of the PD7/D7 pin.
				Area 0: 8-bit mode
				000: PD7 I/O (port)
				001: D7 I/O (data) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10 to 8	PD6MD[2:0]	000*	R/W	PD6 Mode
				Select the function of the PD6/D6 pin.
				Area 0: 8-bit mode
				000: PD6 I/O (port)
				001: D6 I/O (data) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited

14 to 12 PD7MD[2:0] 000* R/W PD7 Mode

aiways be 0.

Rev. 3.00 Mar. 04, 2009 Page

				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
2 to 0	PD4MD[2:0]	000*	R/W	PD4 Mode
				Select the function of the PD4/D4 pin.
				Area 0: 8-bit mode
				000: PD4 I/O (port)
				001: D4 I/O (data) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 854 of 1168

RENESAS

111: Setting prohibited

			Select the function of the PD3/D3 pin.
			Area 0: 8-bit mode
			000: PD3 I/O (port)
			001: D3 I/O (data) (initial value)
			010: Setting prohibited
			011: Setting prohibited
			100: Setting prohibited
			101: Setting prohibited
			110: Setting prohibited
			111: Setting prohibited
_	0	R	Reserved
			This bit is always read as 0. The write valuays be 0.
PD2MD[2:0]	000*	R/W	This bit is always read as 0. The write va always be 0. PD2 Mode
PD2MD[2:0]	000*	R/W	always be 0.
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin.
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode 000: PD2 I/O (port)
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode 000: PD2 I/O (port) 001: D2 I/O (data) (initial value)
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode 000: PD2 I/O (port) 001: D2 I/O (data) (initial value) 010: Setting prohibited
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode 000: PD2 I/O (port) 001: D2 I/O (data) (initial value) 010: Setting prohibited 011: Setting prohibited
PD2MD[2:0]	000*	R/W	always be 0. PD2 Mode Select the function of the PD2/D2 pin. • Area 0: 8-bit mode 000: PD2 I/O (port) 001: D2 I/O (data) (initial value) 010: Setting prohibited 011: Setting prohibited 100: Setting prohibited
		_ 0	_ 0 R

14 to 12 PD3MD[2:0] 000* R/W PD3 Mode

aiways be 0.

Rev. 3.00 Mar. 04, 2009 Page

				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited
				111: Setting prohibited
3	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
2 to 0	PD0MD[2:0]	000*	R/W	PD0 Mode
				Select the function of the PD0/D0 pin.
				Area 0: 8-bit mode
				000: PD0 I/O (port)
				001: D0 I/O (data) (initial value)
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: Setting prohibited

Note: * The initial value depends on the operating mode of the LSI.

Rev. 3.00 Mar. 04, 2009 Page 856 of 1168

RENESAS

111: Setting prohibited

Bit	Bit Name	Initial Value	R/W	Description
	Dit Hallie	All 0	R	Reserved
15 to 7	_	All U	n	Reserved
				These bits are always read as 0. The write should always be 0.
6 to 4	PF1MD[2:0]	000	R/W	PF1 Mode
				Select the function of the PF1/IRQ1/POE3
				000: PF1 input (port)
				001: Setting prohibited
				010: Setting prohibited
				011: IRQ1 input (INTC)
				100: POE3 input (POE2)
				101: SDA I/O (IIC3)
				110: Setting prohibited
				111: Setting prohibited

011: IRQ0 input (INTC)
100: POE7 input (POE2)
101: SCL I/O (IIC3)
110: Setting prohibited
111: Setting prohibited

Rev. 3.00 Mar. 04, 2009 Page 858 of 1168

REJ09B0344-0300

Bit Name Value R/W Description 15 to 2 — All 0 R Reserved These bits are always read as 0. The write should always be 0. 1, 0 IRQMD[1:0] 00 R/W IRQOUT Mode Select the function of the IRQOUT/REFOU bits 10 to 8 (PB30MD[2:0]) in PBCRH4 are B'001. 00: Interrupt request accept signal output 01: Refresh signal output 10: Interrupt request accept signal output o signal output (depends on the operating 11: Always high-level output	R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R
These bits are always read as 0. The write should always be 0. 1, 0 IRQMD[1:0] 00 R/W IRQOUT Mode Select the function of the IRQOUT/REFOU bits 10 to 8 (PB30MD[2:0]) in PBCRH4 are B'001. 00: Interrupt request accept signal output 01: Refresh signal output 10: Interrupt request accept signal output of signal output (depends on the operating)	Bit	Bit	Name			R	/W	Des	cripti	ion					
should always be 0. 1, 0 IRQMD[1:0] 00 R/W IRQOUT Mode Select the function of the IRQOUT/REFOU bits 10 to 8 (PB30MD[2:0]) in PBCRH4 are B'001. 00: Interrupt request accept signal output 01: Refresh signal output 10: Interrupt request accept signal output of signal output (depends on the operating)	15 to 2	_			All 0	R		Res	erved						
Select the function of the IRQOUT/REFOU bits 10 to 8 (PB30MD[2:0]) in PBCRH4 are B'001. 00: Interrupt request accept signal output 01: Refresh signal output 10: Interrupt request accept signal output o signal output (depends on the operating											•	s read	d as 0	. The	write
bits 10 to 8 (PB30MD[2:0]) in PBCRH4 are B'001. 00: Interrupt request accept signal output 01: Refresh signal output 10: Interrupt request accept signal output o signal output (depends on the operating	1, 0	IRQ	MD[1:0]	00	R	/W	IRQ	OUT	Mode					
01: Refresh signal output 10: Interrupt request accept signal output o								bits	10 to						
10: Interrupt request accept signal output o signal output (depends on the operating								00:	Interr	upt re	quest	accep	ot sigr	nal ou	tput
signal output (depends on the operating								01:	Refre	sh sig	nal o	utput			
11: Always high-level output										•	•		_		•
								11:	Alway	s high	n-leve	l outp	ut		

Initial value:

Bit	Bit Name	Initial Value	R/W	Description
15 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.
2 to 0	WVRMD[2:0]	001	R/W	WRXD Mode
				Select the function of the WRXD pin.
				000: Setting prohibited
				001: Initial value
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: WRXD input
				111: Setting prohibited

0

R/W I

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 860 of 1168

Initial value:

R/W:

R

R

R

R

R

R

R

R

R

R

R

RENESAS

				000: Setting prohibited
				001: Initial value
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: WTXD output
				111: Setting prohibited
11	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.
10 to 8	WVSMD[2:0]	001	R/W	WSCK Mode
				Select the function of the WSCK pin.
				000: Setting prohibited
				001: Initial value
				010: Setting prohibited
				011: Setting prohibited
				100: Setting prohibited
				101: Setting prohibited
				110: WSCK output

WTXD Mode

Select the function of the WTXD pin.

R/W

14 to 12 WVTMD[2:0] 001

111: Setting prohibited

0	_	1	R	Reserved
				This bit is always read as 1. The write value salways be 1.

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 862 of 1168

20.1 I UI LA

Port A is an input/output port with the 26 pins shown in figure 20.1.

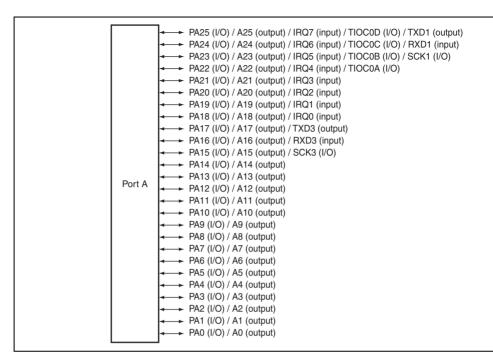


Figure 20.1 Port A

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Port A port register L ロトトトロンのコロ

20.1.2 Port A Data Registers H, L (PADRH, PADRL)

PADRH and PADRL are 16-bit readable/writable registers that store port A data. Bits PA PA0DR correspond to pins PA25 to PA0, respectively.

When a pin function is general output, if a value is written to PADRH or PADRL, the va

output directly from the pin, and if PADRH or PADRL is read, the register value is return directly regardless of the pin state.

When a pin function is general input, if PADRH or PADRL is read, the pin state, not the value, is returned directly. If a value is written to PADRH or PADRL, although that value written into PADRH or PADRL, it does not affect the pin state. Table 20.2 summarizes F and PADRL read/write operations.

PADRH and PADRL are initialized to the respective values shown in table 20.1 by a pov reset. PADRH and PADRL are not initialized by a manual reset or in sleep mode or softw standby mode.

RENESAS

				aiways be o.
9	PA25DR	0	R/W	See table 20.2.
8	PA24DR	0	R/W	
7	PA23DR	0	R/W	
6	PA22DR	0	R/W	
5	PA21DR	0	R/W	
4	PA20DR	0	R/W	
3	PA19DR	0	R/W	
2	PA18DR	0	R/W	
1	PA17DR	0	R/W	
0	PA16DR	0	R/W	

13	PA13DR	0	R/W
12	PA12DR	0	R/W
11	PA11DR	0	R/W
10	PA10DR	0	R/W
9	PA9DR	0	R/W
8	PA8DR	0	R/W
7	PA7DR	0	R/W
6	PA6DR	0	R/W
5	PA5DR	0	R/W
4	PA4DR	0	R/W
3	PA3DR	0	R/W
2	PA2DR	0	R/W
1	PA1DR	0	R/W
0	PA0DR	0	R/W

Other than general output	PADRH or PADRL value	Can write to PADRH and PADRL, but it effect on pin state.

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Bit	Bit Name	Value	R/W	Description
15 to 10	_	All 0	R	Reserved
				These bits are always read as 0 and cannot be modified.
9	PA25PR	Pin state	R	The pin state is returned regardless of the PFC
8	PA24PR	Pin state	R	These bits cannot be modified.
7	PA23PR	Pin state	R	-
6	PA22PR	Pin state	R	
5	PA21PR	Pin state	R	-
4	PA20PR	Pin state	R	-
3	PA19PR	Pin state	R	
2	PA18PR	Pin state	R	-
1	PA17PR	Pin state	R	-
0	PA16PR	Pin state	R	-

Initial

Rev. 3.00 Mar. 04, 2009 Page 868 of 1168

13	PA13PR	Pin state	R
12	PA12PR	Pin state	R
11	PA11PR	Pin state	R
10	PA10PR	Pin state	R
9	PA9PR	Pin state	R
8	PA8PR	Pin state	R
7	PA7PR	Pin state	R
6	PA6PR	Pin state	R
5	PA5PR	Pin state	R
4	PA4PR	Pin state	R
3	PA3PR	Pin state	R
2	PA2PR	Pin state	R
1	PA1PR	Pin state	R
0	PA0PR	Pin state	R

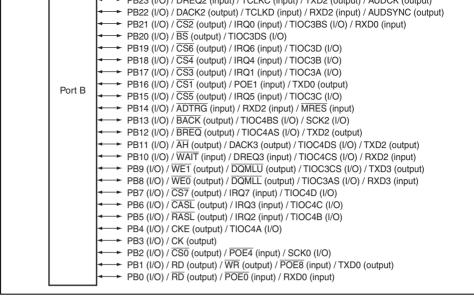


Figure 20.2 Port B

REJ09B0344-0300

20.2.2 Port B Data Registers H, L (PBDRH, PBDRL)

PBDRH and PBDRL are 16-bit readable/writable registers that store port B data. Bits P and PB0DR correspond to pins PB30 to PB0, respectively.

When a pin function is general output, if a value is written to PBDRH or PBDRL, the va output directly from the pin, and if PBDRH or PBDRL is read, the register value is return directly regardless of the pin state.

When a pin function is general input, if PBDRH or PBDRL is read, the pin state, not the value, is returned directly. If a value is written to PBDRH or PBDRL, although that value written into PBDRH or PBDRL, it does not affect the pin state. Table 20.4 summarizes and PBDRL read/write operations.

PBDRH and PBDRL are initialized to the value shown in table 20.3 by a power-on rese not initialized by a manual reset or in sleep mode or software standby mode.

				aiways be 0.
14	PB30DR	0	R/W	See table 20.4.
13	PB29DR	0	R/W	
12	PB28DR	0	R/W	
11	PB27DR	0	R/W	
10	PB26DR	0	R/W	
9	PB25DR	0	R/W	
8	PB24DR	0	R/W	
7	PB23DR	0	R/W	
6	PB22DR	0	R/W	
5	PB21DR	0	R/W	
4	PB20DR	0	R/W	
3	PB19DR	0	R/W	
2	PB18DR	0	R/W	
1	PB17DR	0	R/W	
0	PB16DR	0	R/W	

Rev. 3.00 Mar. 04, 2009 Page 872 of 1168 REJ09B0344-0300

13	PB13DR	0	R/W
12	PB12DR	0	R/W
11	PB11DR	0	R/W
10	PB10DR	0	R/W
9	PB9DR	0	R/W
8	PB8DR	0	R/W
7	PB7DR	0	R/W
6	PB6DR	0	R/W
5	PB5DR	0	R/W
4	PB4DR	0	R/W
3	PB3DR	0	R/W
2	PB2DR	0	R/W
1	PB1DR	0	R/W
0	PB0DR	0	R/W

Other that general of	/PBDRL Can write to effect on pir	PBDRH or PBDRL, but it state.

		Initial		
Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value salways be 0.
14	PB30PR	Pin state	R	The pin state is returned regardless of the PF
13	PB29PR	Pin state	R	These bits cannot be modified.
12	PB28PR	Pin state	R	_
11	PB27PR	Pin state	R	_
10	PB26PR	Pin state	R	_
9	PB25PR	Pin state	R	_
8	PB24PR	Pin state	R	_
7	PB23PR	Pin state	R	_
6	PB22PR	Pin state	R	_
5	PB21PR	Pin state	R	_
4	PB20PR	Pin state	R	_
3	PB19PR	Pin state	R	_
2	PB18PR	Pin state	R	_
1	PB17PR	Pin state	R	=

PB16PR

Pin state R

13	PB13PR	Pin state	R
12	PB12PR	Pin state	R
11	PB11PR	Pin state	R
10	PB10PR	Pin state	R
9	PB9PR	Pin state	R
8	PB8PR	Pin state	R
7	PB7PR	Pin state	R
6	PB6PR	Pin state	R
5	PB5PR	Pin state	R
4	PB4PR	Pin state	R
3	PB3PR	Pin state	R
2	PB2PR	Pin state	R
1	PB1PR	Pin state	R
0	PB0PR	Pin state	R

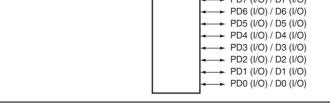


Figure 20.3 Port D

20.3.1 **Register Descriptions**

Table 20.5 lists the port D registers.

Table 20.5 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Acc
Port D data register L	PDDRL	R/W	H'0000	H'FFFE3982	8, 1
Port D port register L	PDPRL	R	H'xxxx	H'FFFE399E	8, 1

Rev. 3.00 Mar. 04, 2009 Page

does not affect the pin state. Table 20.8 summarizes PDDRL read/write operations.

PDDRL is initialized to the respective values shown in table 20.5 by a power-on reset, but initialized by a manual reset or in sleep mode or software standby mode.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	PD15 DR	PD14 DR	PD13 DR	PD12 DR	PD11 DR	PD10 DR	PD9 DR	PD8 DR	PD7 DR	PD6 DR	PD5 DR	PD4 DR	PD3 DR	PD2 DR
Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W							

RENESAS REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 878 of 1168

0	1 00011	0	1 t/ V V
7	PD7DR	0	R/W
6	PD6DR	0	R/W
5	PD5DR	0	R/W
4	PD4DR	0	R/W
3	PD3DR	0	R/W
2	PD2DR	0	R/W
1	PD1DR	0	R/W
0	PD0DR	0	R/W

Pin Function

general output

Table 20.6 Port D Data Register L (PDDRL) Read/Write Operations

Read

• PDDRL bits 15 to 0

PDIORL

0	General input	Pin state	Can write to PDDRL, but it has no effect state.
	Other than general input	Pin state	Can write to PDDRL, but it has no effect state.
1	General output	PDDRL value	The value written is output from the pin.
	Other than	PDDRL value	Can write to PDDRL, but it has no effect

Write

state.

15	PD15PR	Pin state	R	The pin state is returned regard
14	PD14PR	Pin state	R	These bits cannot be modified.
13	PD13PR	Pin state	R	•
12	PD12PR	Pin state	R	•
11	PD11PR	Pin state	R	•
10	PD10PR	Pin state	R	•
9	PD9PR	Pin state	R	•
8	PD8PR	Pin state	R	•
7	PD7PR	Pin state	R	•
6	PD6PR	Pin state	R	•
5	PD5PR	Pin state	R	•
4	PD4PR	Pin state	R	•
3	PD3PR	Pin state	R	•
2	PD2PR	Pin state	R	•
1	PD1PR	Pin state	R	•
0	PD0PR	Pin state	R	•

Bit Name

vaiue

R/W

Description

The pin state is returned regardless of the PFC

Bit

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 880 of 1168

20.4.1 Register Descriptions

Table 20.7 lists the port F register.

Table 20.7 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address	Acc
Port F data register	PFDR	R	H'0000	H'FFFE3A82	8, 1

Rev. 3.00 Mar. 04, 2009 Page

Initial value:	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R

Note: * Depends on the external pin state.

		Initial		
Bit	Bit Name	Value	R/W	Description
15 to 2	_	All 0	R	Reserved
				These bits are always read as 0. The write valualways be 0.
1	PF1DR	Pin state	R	See table 20.8.
0	PF0DR	Pin state	R	

Table 20.8 Port F Data Register (PFDR) Read/Write Operations

• PFDR bits 1 and 0

Pin Function	Read	Write
General input	Pin state	Ignored (no effect on pin state)
Other than general input	Pin state	Ignored (no effect on pin state)

- WE1/DQMLU and WE0/DQMLL
 - RASL and CASL
 - CKE
 - WAIT
 - BREQ
 - BACK
 - MRES

Rev. 3.00 Mar. 04, 2009 Page 884 of 1168

REJ09B0344-0300

- LSI has started up.
- Size of the user MAT, from which booting-up proceeds after a power-on reset in mode: 384/512 kbytes* — Size of the user boot MAT, from which booting-up proceeds after a power-on re-
- Three on-board programming modes and one off-board programming mode

On-board programming modes

boot mode: 12 kbytes

Boot Mode: The on-chip SCIF interface is used for programming in this mode. Eith MAT or user-boot MAT can be programmed, and the bit rate for data transfer between and this LSI are automatically adjusted.

interface. **User Boot Mode**: This mode allows writing of a user boot program via any desired

User Program Mode: This mode allows programming of the user MAT via any des

and programming of the user MAT.

Off-board programming mode

Programmer Mode: This mode allows programming of the user MAT and user boo with the aid of a PROM programmer.

- Downloading of an on-chip program to provide an interface for programming/erasur This LSI has a dedicated programming/erasing program. After this program has been downloaded to the on-chip RAM, programming or erasing can be performed by setti
- parameters as arguments. "User branching" is also supported.

See Appendix B. Product Lineup.

When an abnormal state is detected, such as runaway execution of programming/eras protection modes initiate the transition to the error protection state and suspend programming/erasing processing.

• Programming/erasing time

The time taken to program 256 bytes of flash memory in a single round is 2 ms (typ.). equivalent to 7.8 µs per byte. The erasing time is 80 ms (typ.) per 8-Kbyte block, 600 per 64-Kbyte block, and 1200 ms (typ.) per 128-Kbyte block.

- Number of programming operations The flash memory can be programmed up to 100 times.
- Operating frequency for programming/erasing The operating frequency range for programming/erasing $I\phi = 32$ to 40 MHz

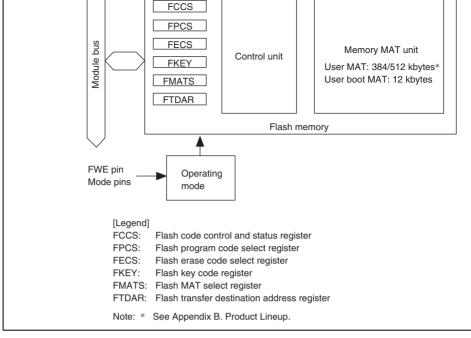


Figure 21.1 Block Diagram of Flash Memory

- user boot mode, and boot mode.
 - Flash memory can be read, programmed, or erased by means of the PROM programm programmer mode.

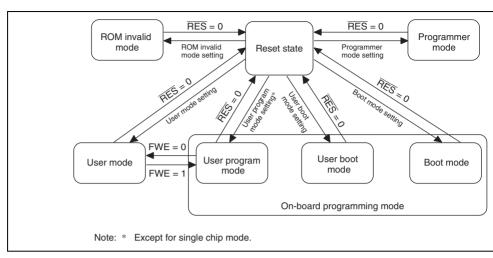


Figure 21.2 Mode Transition of Flash Memory

2.	MD0 = 0: External bus can be used, $MD0 = 1$: Single-chip mode (external bus be used)

Programming/ erasing control	Command method
All erasure	Possible (Automatic)
Block division erasure	Possible*1
Program data	From host via

User branch function Not possible

erasing enable MAT User boot MAT

rogramming/

transfer

mode

Reset initiation MAT

Transition to user

•	The user boot MAT can be programmed or erased or
•	The user MAT and user boot MAT are all erased in
	hoot MAT can be presented by many of the con

SCIF

MAT

Embedded

Mode setting

program storage

change and reset

Notes: 1. All-erasure is performed. After that, the specified block can be erased.

Programming/

Possible

Possible

Possible

User MAT

FWE setting

2. Initiation starts from the embedded program storage MAT. After checking the f memory related registers, initiation starts from the reset vector of the user MA

change

From optional

device via RAM

erasing interface

- only in boot mode and programme n boot mode. Then, the user MAT a
- boot MAT can be programmed by means of the command method. However, the comthe MAT cannot be read until this state. Only user boot MAT is programmed and the user MAT is programmed in user boot n
- only user MAT is programmed because user boot mode is not used. In user boot mode, the boot operation of the optional interface can be performed by a setting different from user program mode.
- Rev. 3.00 Mar. 04, 2009 Page 890 of 1168 RENESAS

User boo

Possible (Automa

Not poss

Via proq

Not poss

Embedd

program

MAT

Programming/

From optional

device via RAM

User boot MAT*2

change and reset

Mode setting

Possible

Possible

Possible

erasing interface

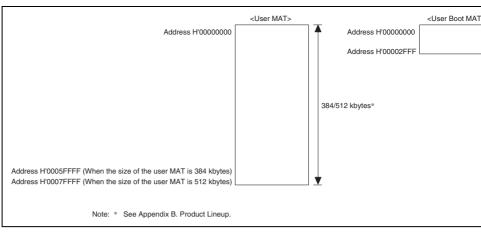


Figure 21.3 Flash Memory Configuration

The user MAT and user boot MAT have different memory sizes. Do not access a user b that is 12 kbytes or more. When a user boot MAT exceeding 12 kbytes is read from, an value is read.

Rev. 3.00 Mar. 04, 2009 Page

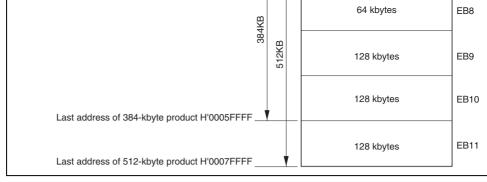


Figure 21.4 Block Division of User MAT

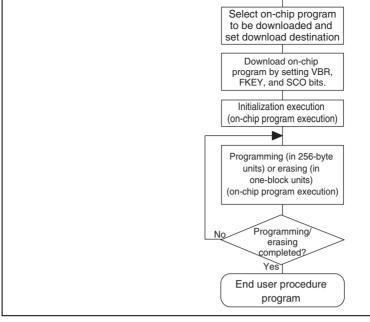


Figure 21.5 Overview of User Procedure Program

(1) Selection of On-Chip Program to be Downloaded and Setting of Download Destinat This LSI has programming/erasing programs and they can be downloaded to the on-RAM. The on-chip program to be downloaded is selected by setting the correspondi the programming/erasing interface registers. The download destination can be specif FTDAR.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

- Note that VBR can be changed after download is completed.
- (3) Initialization of Programming/Erasing
- The operating frequency and user branch are set before execution of programming/era The user branch destination must be in an area other than the user MAT area which is middle of programming and the area where the on-chip program is downloaded. Thes

are performed by using the programming/erasing interface parameters.

(4) Programming/Erasing Execution

To program or erase, the FWE pin must be brought high and user program mode mus entered.

The program data/programming destination address is specified in 256-byte units who

The area to be programmed must be erased in advance when programming flash mem

programming. The block to be erased is specified in erase-block units when erasing.

These specifications are set by using the programming/erasing interface parameters as chip program is initiated. The on-chip program is executed by using the JSR or BSR

instruction to perform the subroutine call of the specified address in the on-chip RAM execution result is returned to the programming/erasing interface parameters.

Ensure that NMI, IRO, and all other interrupts are not generated during programming erasing.

- (5) When Programming/Erasing is Executed Consecutively
 - When the processing is not ended by the 256-byte programming or one-block erasure program address/data and erase-block number must be updated and consecutive programming/erasing is required.

Since the downloaded on-chip program is left in the on-chip RAM after the processin download and initialization are not required when the same processing is executed consecutively.

Mode 0	MD0	Input	Sets operating mode of this L
Transmit data	TXD1 (PA25)	Output	Serial transmit data output (u boot mode)
Receive data	RXD1 (PA24)	Input	Serial receive data input (use mode)

21.4 Register Descriptions

21.4.1 Registers

The registers/parameters which control flash memory when the on-chip flash memory is shown in table 21.4.

There are several operating modes for accessing flash memory, for example, read mode, mode.

There are two memory MATs: user MAT and user boot MAT. The dedicated registers/p are allocated for each operating mode and MAT selection. The correspondence of opera and registers/parameters for use is shown in table 21.5.

Flash trans	sfer destination address	FTDAR	R/W	H'00	H'8000C006
Notes: 1.	The bits except the SCO (The value which can be	,		SCO bit is	a programming

8,

8.

8,

8,

8,

R5 of CPU

R4 of CPU

R4 of CPU

R4 of CPU

R5 of CPU

- 2. The initial value of the FWE bit is 0 when the FWE pin goes low. The initial value of the FWE bit is 1 when the FWE pin goes high.
- 3. The initial value at initiation in user mode or user program mode is H'00.

The initial value at initiation in user boot mode is H'AA.

Table 21.4 (2)	Paramete	r Configuration				
Name		Abbreviation	R/W	Initial Value	Address	A Si
Download pass/fai	l result	DPFR	R/W	Undefined	On-chip RAM*	8,
Flash pass/fail res	ult	FPFR	R/W	Undefined	R0 of CPU	8,

R/W

R/W

R/W

R/W

R/W

Undefined

Undefined

Undefined

Undefined

Undefined

FMPAR

Flash multipurpose address area Flash multipurpose data

FMPDR destination area

Flash erase block select **FEBS** Flash program and erase **FPEFEQ** frequency control Flash user branch address **FUBRA**

set parameter One byte of the start address in the on-chip RAM area specified by FTDAR is Note:

Rev. 3.00 Mar. 04, 2009 Page 896 of 1168

REJ09B0344-0300

RENESAS

erasing interface parameters	D	,					
	FPFR	_	$\sqrt{}$	√	V	_	_
paramotoro	FPEFEQ	_	V	_	_	_	_
	FUBRA	_	$\sqrt{}$	_	_	_	_
	FMPAR	_	_	√	_	_	_
	FMPDR	_	_	√	_	_	_
	FEBS	_	_	_	V	_	_
Notes: 1. The se	etting is requ	ired when p	rogrammin	g or erasing	user MAT	in user bo	ot

Programming/

DPFR

No 2. The setting may be required according to the combination of initiation mode a

target MAT.

	FWE	MAT	-	FLER	-		-	SCO
Initial value:	1/0	1/0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	(R)/V
Initial								

Description

R/W

				-
7	FWE	1/0	R	Flash Programming Enable
				Monitors the level which is input to the FWE pin t performs hardware protection of the flash memor programming or erasing. The initial value is 0 or according to the FWE pin state.
				When the FWE pin goes low (in hardware prot state)
				1: When the FWE pin goes high
6	MAT	1/0	R	MAT Bit
				Indicates whether the user MAT or user boot MA selected.
				0: User MAT is selected
				1: User boot MAT is selected
5	_	0	R	Reserved
				This bit is always read as 0. The write value shoube 0.

Bit

Bit Name Value

 Flash memory operates normally Programming/erasing protection for flash mer protection) is invalid.
[Clearing condition]
At a power-on reset
 Indicates an error occurs during programming flash memory. Programming/erasing protection for flash mer protection) is valid.
[Setting condition]
See section 21.6.3, Error Protection.

Reserved

always be 0.

All 0

R

3 to 1 —

These bits are always read as 0. The write value

immediately after setting this bit to 1.

For interrupts during download, see section 21.7. Interrupts during Programming/Erasing. For the o

this bit cannot be read as 1

time, see section 21.7.3, Other Notes.

Since this bit is cleared to 0 when download is co

Download by setting the SCO bit to 1 requires a s

interrupt processing that performs bank switching on-chip program storage area. Therefore, before download request (SCO = 1), set VBR to H'80000 Otherwise, the CPU gets out of control. Once do

end is confirmed, VBR can be changed to any other The mode in which the FWE pin is high must be when using the SCO function. 0: Download of the on-chip programming/erasing

to the on-chip RAM is not executed.

[Clearing condition]

When download is completed Request that the on-chip programming/erasing

is downloaded to the on-chip RAM is generate [Setting conditions] When all of the following conditions are satisfied

FKEY is written to H'A5

written to this bit

RENESAS

During execution in the on-chip RAM

Rev. 3.00 Mar. 04, 2009 Page 900 of 1168

				These bits are always read as 0. The write value always be 0.
0	PPVS	0	R/W	Program Pulse Single
				Selects the programming program.
				0: On-chip programming program is not selected
				[Clearing condition]
				When transfer is completed
				1: On-chip programming program is selected

(3) Flash Erase Code Select Register (FECS)

FECS selects download of the on-chip erasing program.

Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	EPVB
Initial value:	0	0	0	0	0	0	0	0
R/W:	R	R	R	R	R	R	R	R/W

Bit	Bit Name	Initial Value	R/W	Description
7 to 1	_	All 0	R	Reserved
				These bits are always read as 0. The write va always be 0.
-				,

FKEY is a register for software protection that enables download of the on-chip program programming/erasing of flash memory. Before setting the SCO bit to 1 in order to download on-chip program or executing the downloaded programming/erasing program, these proc cannot be executed if the key code is not written.

Bit:	7	6	5	4	3	2	1	0				
	K[7:0]											
Initial value:	0	0	0	0	0	0	0	0				
₽/M·	D/M	D/M	D/M	D/M	D/M	D/M	D/M	R/M				

Bit	Bit Name	Initial Value	R/W	Description
7 to 0	K[7:0]	All 0	R/W	Key Code
				Only when H'A5 is written, writing to the SCO bit When a value other than H'A5 is written to FKEY cannot be written to the SCO bit. Therefore down to the on-chip RAM cannot be executed.
				Only when H'5A is written, programming/erasing memory can be executed. Even if the on-chip programming/erasing program is executed, flash cannot be programmed or erased when a value H'5A is written to FKEY.
				H'A5: Writing to the SCO bit is enabled (The SC cannot be set by a value other than H'A5.)
				H'5A: Programming/erasing is enabled (A value H'5A enables software protection state.)
				H'00: Initial value

Rev. 3.00 Mar. 04, 2009 Page 902 of 1168 RENESAS

programmer mode.)
H'AA: The user boot MAT is selected (in user-M selection state when the value of these bi other than H'AA) Initial value when these bits are initiated in boot mode.
H'00: Initial value when these bits are initiated in except for user boot mode (in user-MAT s state)
[Programmable condition]
These bits are in the execution state in the on-c

MS6

MS5

MS4

MS3

MS2

MS1

MS0

6

5

4

3

2

1

0

0

0/1

0

0/1

0

0/1

0

R/W

R/W

R/W

R/W

R/W

R/W

R/W

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

REJ09

These bits are in user-MAT selection state when

other than H'AA is written and in user-boot-MAT

The MAT is switched by writing a value in FMAT

When the MAT is switched, follow section 21.7. Switching between User MAT and User Boot Materials and

user boot MAT cannot be programmed in user p

mode if user boot MAT is selected by FMATS. I boot MAT must be programmed in boot mode o

state when H'AA is written.

on-chip RAM instruction.

	00 Mar. 04, 2009 F 30344-0300	Page 904 o	of 1168 RENESAS
			H'06 to H'7F: Setting prohibited. If this value is set, the (bit 7) is set to 1 to abort the download p
			H'05: Download start address is set to H'FFF83800
			H'04: Download start address is set to H'FFF83000
			H'03: Download start address is set to H'FFF82800
			H'02: Download start address is set to H'FFF82000
			H'01: Download start address is set to H'FFF81800
			H'00: Download start address is set to H'FFF81000
			A value from H'06 to H'7F cannot be set. If such a value the TDER bit (bit 7) in this register is set to 1 to prever download from being executed.
			These bits specify the download start address. A value H'00 to H'05 can be set to specify the download start a on-chip RAM in 2-kbyte units.
6 to 0	TDA[6:0] All 0	R/W	Transfer Destination Address
			1: Setting of TDER and TDA6 to TDA0 is H'06 to H'FF download has been aborted
			0: Setting of TDA6 to TDA0 is normal
			address set by bits 6 to 0 (TDA6 to TDA0). Whether the setting is erroneous or not is tested by checking whethe setting of TDA6 to TDA0 is in the range of H'00 to H'05 setting the SCO bit in FCCS to 1 and performing down Before setting the SCO bit to 1 be sure to set the FTD between H'00 to H'05 as well as clearing this bit to 0.

Value R/W

R/W

0

Description

Transfer Destination Address Setting Error

This bit is set to 1 when there is an error in the downloa

Bit

7

Name

TDER

must be saved at the processing start. (The maximum size of a stack area to be used is 1

The programming/erasing interface parameters are used in the following four items.

- 1. Download control
- 2. Initialization before programming or erasing
- 3. Programming
- 4. Erasing

These items use different parameters. The correspondence table is shown in table 21.6.

The processing results of initialization, programming, and erasing are returned, but the lave different meanings according to the processing program. See the description of FP each processing.

control
Floob woor brong

area

data destination

Flash erase block

address set	
Flash multipurpose	FMPAR
address area	
Flash multipurpose	FMPDR

FUBRA

FEBS

R/W

R/W

R R/W Undefined R R/W Undefined R

select Note: One byte of start address of download destination specified by FTDAR

(1) Download Control

area to be downloaded is the area as much as 3 kbytes starting from the start address spec

(a)

FTDAR. For the address map of the on-chip RAM, see figure 21.10.

value is given by the DPFR parameter.

The download control is set by using the programming/erasing interface registers. The re

REJ09B0344-0300

RAM Specified by FTDAR)

Rev. 3.00 Mar. 04, 2009 Page 906 of 1168

The on-chip program is automatically downloaded by setting the SCO bit to 1. The on-ch

Download Pass/Fail Result Parameter (DPFR: One Byte of Start Address of O

RENESAS

This parameter indicates the return value of the download result. The value of this param be used to determine if downloading is executed or not. Since the confirmation whether t bit is set to 1 is difficult, the certain determination must be performed by setting one byte start address of the on-chip RAM area specified by FTDAR to a value other than the retu of download (for example, H'FF) before the download start (before setting the SCO bit to

Undefined R

Undefined R

				 Download error occurs (Multi-selection or p which is not mapped is selected)
1	FK	Undefined	R/W	Flash Key Register Error Detect
				Returns the check result whether the value of set to H'A5.
				0: FKEY setting is normal (FKEY = H'A5)
				1: FKEY setting is abnormal (FKEY = value o H'A5)
0	SF	Undefined	R/W	Success/Fail
				Returns the result whether download has enconormally or not.
				 Downloading on-chip program has ended r (no error)
				 Downloading on-chip program has ended a (error occurs)

Return 0.

an error occurs.

Source Select Error Detect

The on-chip program which can be download specified as only one type. When more than to fithe program are selected, the program is neelected, or the program is selected without r

0: Download program can be selected norma

Undefined R/W

2

SS

(2.1) Flash Programming/Erasing Frequency Parameter (FPEFEQ: General Registor CPU)

This parameter sets the operating frequency of the CPU.

The flash programming/erasing frequency I\phi of this LSI is limited to 32 to 40 MHz.

	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	F15	F14	F13	F12	F11	F10	F9	F8	F7	F6	F5	F4	F3	F2
بمنامير امتفتما														

19

Rev. 3.00 Mar. 04, 2009 Page 908 of 1168

REJ09B0344-0300

Bit: 31

- 2. For example, when $I\phi = 33.333$ MHz, set a
 - (1) $I\phi = 3333 \times 10^4 \text{ Hz}$
 - (2) F[15:0] = 3333 (H'0D05)
 - (3) Set R4 (FPEFEQ) to H'00000D05.
- (2.2) Flash User Branch Address Setting Parameter (FUBRA: General Register R5

This parameter sets the user branch destination address. The user program which has be be executed in specified processing units when programming and erasing.

Bi	t: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	UA31	UA30	UA29	UA28	UA27	UA26	UA25	UA24	UA23	UA22	UA21	UA20	UA19	UA18
Initial value	e: -	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W	/: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bi	t: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	UA15	UA14	UA13	UA12	UA11	UA10	UA9	UA8	UA7	UA6	UA5	UA4	UA3	UA2
Initial value	9: -	-	-	-	-	-	-	-	-	-	-	-	-	-

R/W: R/W R/W R/W

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

program download area and stack area must r overwritten. If CPU runaway occurs or the dow area or stack area is overwritten, the value of f memory cannot be guaranteed.

The download of the on-chip program, initializa initiation of the programming/erasing program be executed in the processing of the user bran destination. Programming or erasing cannot be guaranteed when returning from the user brandestination. The program data which has alrea

prepared must not be programmed. Store general registers R8 to R15. General reg to R7 are available without storing them.

Moreover, the programming/erasing interface in must not be written to in the processing of the branch destination.

After the processing of the user branch has en programming/erasing program must be returned using the RTS instruction.

For the execution intervals of the user branch processing, see note 2 (User branch processing intervals) in section 21.7.3, Other Notes.

Bit	Bit Name	Value	R/W	Description
31 to 3	_	Undefined	R/W	Unused
				Return 0.
2	BR	Undefined	R/W	User Branch Error Detect
				Returns the check result whether the specifie branch destination address is in the area other storage area of the programming/erasing programming has been downloaded.
				0: User branch address setting is normal
				1: User branch address setting is abnormal
1	FQ	Undefined	R/W	Frequency Error Detect
				Returns the check result whether the specifie operating frequency of the CPU is in the rang supported operating frequency.
				0: Setting of operating frequency is normal
				1: Setting of operating frequency is abnormal
0	SF	Undefined	R/W	Success/Fail
				Indicates whether initialization is completed n
				0: Initialization has ended normally (no error)
				1: Initialization has ended abnormally (error o

Initial

data must be in the consecutive space which can be accessed by using the MOV.B ins of the CPU and is not the flash memory space.

prepared by embedding the dummy code (H'FF). The start address of the area in which the prepared program data is stored must be set general register R4. This parameter is called FMPDR (flash multipurpose data destination)

When data to be programmed does not satisfy 256 bytes, the 256-byte program data n

parameter). For details on the programming procedure, see section 21.5.2, User Program Mode.

(3.1) Flash Multipurpose Address Area Parameter (FMPAR: General Register R5 of

When an address in an area other than the flash memory space is set, an error occurs.

This parameter indicates the start address of the programming destination on the user MA

The start address of the programming destination must be at the 256-byte boundary. If the boundary condition is not satisfied, an error occurs. The error occurrence is indicated by

Bit	: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	MOA31	MOA30	MOA29	MOA28	MOA27	MOA26	MOA25	MOA24	MOA23	MOA22	MOA21	MOA20	MOA19	MOA18
Initial value R/W	: - : R/W	- R/W												
Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	MOA15	MOA14	MOA13	MOA12	MOA11	MOA10	MOA9	MOA8	MOA7	MOA6	MOA5	MOA4	MOA3	MOA2

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Rev. 3.00 Mar. 04, 2009 Page 912 of 1168

RENESAS

R/W: R/W

Initial value:

bit (bit 1) in FPFR.

of CPU)

This parameter indicates the start address in the area which stores the data to be program the user MAT. When the storage destination of the program data is in flash memory, an occurs. The error occurrence is indicated by the WD bit (bit 2) in FPFR.

Bit	: 31	30	29	28	27	26	25	24	23	22	21	20	19	18
	MOD31	MOD30	MOD29	MOD28	MOD27	MOD26	MOD25	MOD24	MOD23	MOD22	MOD21	MOD20	MOD19	MOD18
Initial value	: -	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W	: R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	: 15	14	13	12	11	10	9	8	7	6	5	4	3	2
	MOD15	MOD14	MOD13	MOD12	MOD11	MOD10	MOD9	MOD8	MOD7	MOD6	MOD5	MOD4	MOD3	MOD2
Initial value	: -	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W	': R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			Initi	al										
Bit	Bit N	lame	Val	ue	R/	W	Desc	riptic	n					

		Initial		
Bit	Bit Name	Value	R/W	Description
31 to 0		Undefined	R/W	MOD31 to MOD0
	MOD0			Store the start address of the area which store program data for the user MAT. The consecut byte data is programmed to the user MAT stathe specified start address.

Bit	Bit Name	Value	R/W	Description
31 to 7	_	Undefined	R/W	Unused
				Return 0.
6	MD	Undefined	R/W	Programming Mode Related Setting Error Dete
				Returns the check result of whether the signal the FWE pin is high and whether the error prot state is not entered.
				When a low-level signal is input to the FWE pir error protection state is entered, 1 is written to The input level to the FWE pin and the error pr state can be confirmed with the FWE bit (bit 7) FLER bit (bit 4) in FCCS, respectively. For con enter the error protection state, see section 21 Error Protection.
				0: FWE and FLER settings are normal (FWE = = 0)
				1: FWE = 0 or FLER = 1, and programming ca performed

Initial

			Returns the check result of the value of FKE the start of the programming processing.
			0: FKEY setting is normal (FKEY = H'5A)
			1: FKEY setting is error (FKEY = value other
3	_	Undefined R/	/ Unused
			Return 0.
2	WD	Undefined R/	Write Data Address Error Detect
			When an address in the flash memory area i as the start address of the storage destination program data, an error occurs.
			0: Setting of write data address is normal
			1: Setting of write data address is abnormal

Undefined R/W

4

FΚ

Rev. 3.00 Mar. 04, 2009 Page

selected, an error occurs when programming performed. In this case, both the user MAT at

Programming of the user boot MAT must be e

1: Programming has ended abnormally (prog

in boot mode or programmer mode.0: Programming has ended normally

boot MAT are not rewritten.

result is not guaranteed)

Flash Key Register Error Detect

			Setting of programming destination address abnormal
0	SF	Undefined R/W	Success/Fail
			Indicates whether the program processing has

normally or not.

0: Programming has ended normally (no error)

 1: Programming has ended abnormally (error of

RENESAS

Rev. 3.00 Mar. 04, 2009 Page 916 of 1168

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18
	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Initial value:		-	-	-	-	-	-	-	-	-	-	-	-	-
R/W:	R/W	R/W												
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	-	1	1	-	-	-	-	-				EBS	[7:0]	
Initial value:	-	-	-	-	-	-	-	-	-	-	-	-	-	-
R/W:	R/W	R/W												
H/VV:	H/VV	H/VV												

Bit	Bit Name	Initial Value	R/W	Description
31 to 8	_	Undefined	R/W	Unused
				Return 0.
7 to 0	EBS[7:0]	Undefined	R/W	Set the erase-block number in the range from corresponds to the EB0 block and 11 corresp the EB11 block. An error occurs when a numl than 0 to 11 (H'00 to H'0B) is set.

Bit	Bit Name	Value	R/W	Description
31 to 7	_	Undefined	R/W	Unused
				Return 0.
6	MD	Undefined	R/W	Erasure Mode Related Setting Error Detect
				Returns the check result of whether the signal the FWE pin is high and whether the error prot state is not entered.
				When a low-level signal is input to the FWE pir error protection state is entered, 1 is written to The input level to the FWE pin and the error pr state can be confirmed with the FWE bit (bit 7) FLER bit (bit 4) in FCCS, respectively. For con enter the error protection state, see section 21 Error Protection.
				0: FWE and FLER settings are normal (FWE = = 0)
				1: FWE = 0 or FLER = 1, and erasure cannot be performed

Initial

				not erased.
				Erasure of the user boot MAT must be execumode or programmer mode.
				0: Erasure has ended normally
				 Erasure has ended abnormally (erasure re guaranteed)
4	FK	Undefined	R/W	Flash Key Register Error Detect
				Returns the check result of FKEY value before the erasing processing.
				0: FKEY setting is normal (FKEY = H'5A)
				1: FKEY setting is error (FKEY = value other
3	EB	Undefined	R/W	Erase Block Select Error Detect
				Returns the check result whether the specifie block number is in the block range of the use
				0: Setting of erase-block number is normal

Undefined R/W

Undefined R/W

2, 1

0

SF

this case, both the user MAT and user boot N

1: Setting of erase-block number is abnormal

Indicates whether the erasing processing has

Rev. 3.00 Mar. 04, 2009 Page

REJ09

0: Erasure has ended normally (no error)1: Erasure has ended abnormally (error occu

Unused Return 0.

Success/Fail

normally or not.

Boot mode executes programming/erasing user MAT and user boot MAT by means of the command and program data transmitted from the host using the on-chip SCI. The tool for transmitting the control command and program data must be prepared in the host. The SC communication mode is set to asynchronous mode. When reset start is executed after this is set in boot mode, the boot program in the microcontroller is initiated. After the SCI bit automatically adjusted, the communication with the host is executed by means of the concommand method.

The system configuration diagram in boot mode is shown in figure 21.6. For details on the setting in boot mode, see table 21.1. Interrupts are ignored in boot mode, so do not generally that the AUD cannot be used during boot mode operation.

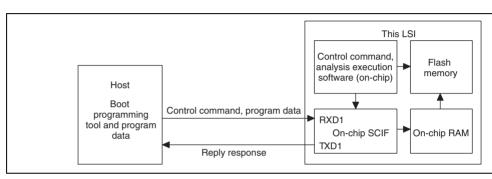


Figure 21.6 System Configuration in Boot Mode

the transfer bit rate of the host must be set to 9,600 bps or 19,200 bps.

Table 21.7

This LSI

The system clock frequency which can automatically adjust the transfer bit rate of the hibit rate of this LSI is shown in table 21.7. Boot mode must be initiated in the range of the clock.

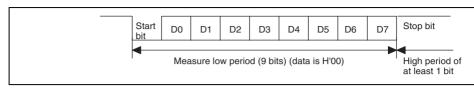


Figure 21.7 Automatic Adjustment Operation of SCIF Bit Rate

Peripheral Clock (Po) Frequency that Can Automatically Adjust Bit I

Host Bit Rate	Peripheral Clock (P ϕ) Frequency That Can Automatically Adjust Rate
9,600 bps	32 to 40 MHz
19,200 bps	32 to 40 MHz

and configuration of the user MAT, start addresses of the MATs, information on supp devices, etc.

- 3. Automatic erasure of the entire user MAT and user boot MAT
 - After all necessary inquiries and selections have been made and the command for trar the programming/erasure state is sent by the host, the entire user MAT and user boot
- 4. Waiting for programming/erasure command

automatically erased.

- On receiving the programming selection command, the chip waits for data to be programmed. To program data, the host transmits the programming command code followed by the address where programming should start and the data to be programming is repeated as required while the chip is in the programming-selected state. To terminate programming, H'FFFFFFFF should be transmitted as the first address of the chip is a start and the data to be programming.
 - terminate programming, H'FFFFFFF should be transmitted as the first address of for programming. This makes the chip return to the programming/erasure comman waiting state from the programming data waiting state.

 On receiving the erasure select command, the chip waits for the block number of a large of Theorem 1.1.
 - be erased. To erase a block, the host transmits the erasure command code follower number of the block to be erased. This is repeated as required while the chip is in erasure-selected state. To terminate erasure, H'FF should be transmitted as the blo number. This makes the chip return to the programming/erasure command waiting from the erasure block number waiting state. Erasure should only be executed who specific block is to be reprogrammed without executing a reset-start of the chip af flash memory has been programmed in boot mode. If all desired programming is of
 - before the chip enters the programming/erasure/other command waiting state.
 In addition to the programming and erasure commands, commands for sum check blank checking (checking for erasure) of the user MAT and user boot MAT, readi

single operation, such erasure processing is not necessary because all blocks are e

from the user MAT/user boot MAT, and acquiring current state information are pro-

Rev. 3.00 Mar. 04, 2009 Page 922 of 1168

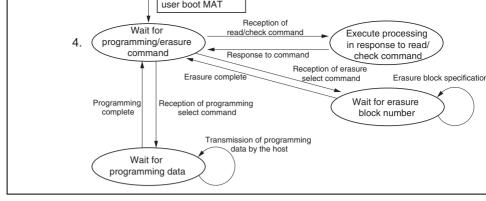


Figure 21.8 State Transitions in Boot Mode

Rev. 3.00 Mar. 04, 2009 Page

memory. If reset is executed accidentally, the reset signal must be released after the reset period, which is longer than the normal 100 µs.

For details on the programming procedure, see the description in section 21.5.2 (2), Program Procedure in User Program Mode. For details on the erasing procedure, see the description section 21.5.2 (3), Erasing Procedure in User Program Mode.

For the overview of a processing that repeats erasing and programming by downloading to programming program and the erasing program in separate on-chip ROM areas using FT the description in section 21.5.2 (4), Erasing and Programming Procedure in User Program

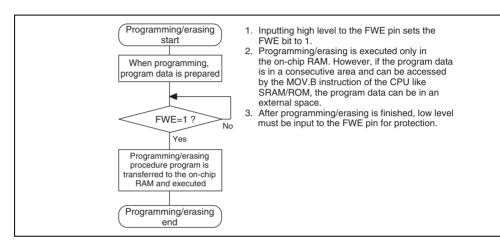


Figure 21.9 Programming/Erasing Overview Flow

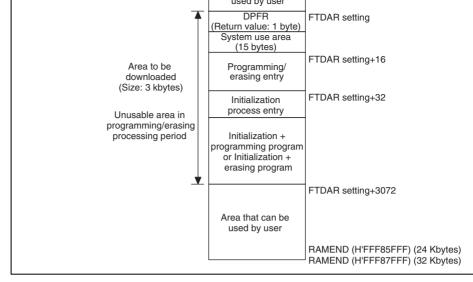


Figure 21.10 RAM Map after Download

Rev. 3.00 Mar. 04, 2009 Page

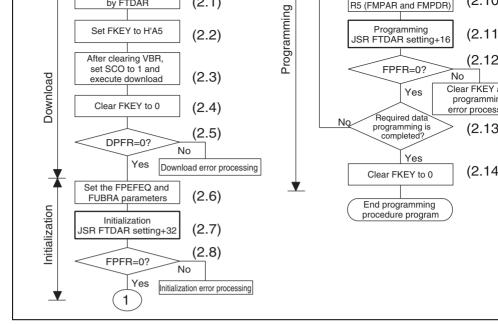


Figure 21.11 Programming Procedure

The details of the programming procedure are described below. The procedure program resecuted in an area other than the flash memory to be programmed. Especially the part w SCO bit in FCCS is set to 1 for downloading must be executed in the on-chip RAM. Specas the frequency division ratios of an internal clock ($I\phi$), a bus clock ($B\phi$), and a peripher ($P\phi$) through the frequency control register (FRQCR).

The area that can be executed in the steps of the user procedure program (on-chip RAM, MAT, and external space) is shown in section 21.8.2, Areas for Storage of the Procedural and Data for Programming.

Rev. 3.00 Mar. 04, 2009 Page 926 of 1168 REJ09B0344-0300

(2.1) Select the on-chip program to be downloaded

When the PPVS bit of FPCS is set to 1, the programming program is selected.

Several programming/erasing programs cannot be selected at one time. If several programs

set, download is not performed and a download error is returned to the source select detect (SS) bit in the DPFR parameter.

Specify the start address of the download destination by FTDAR.

(2.2) Write H'A5 in FKEY

If H'A5 is not written to FKEY for protection, 1 cannot be written to the SCO bit for download request.

(2.3) VBR is set to 0 and 1 is written to the SCO bit of FCCS, and then download is exe

VBR must always be set to H'80000000 before setting the SCO bit to 1. To write 1 to the SCO bit, the following conditions must be satisfied.

- H'A5 is written to FKEY.
- The SCO bit writing is executed in the on-chip RAM.

When the SCO bit is set to 1, download is started automatically. When execution ret

user procedure program, the SCO bit is cleared to 0. Therefore, the SCO bit cannot be confirmed to be 1 in the user procedure program. The download result can be confirmed only by the return value of the DPFR parame

instructions that set the SCO bit to 1.

the SCO bit is set to 1, incorrect decision must be prevented by setting the DPFR particles. that is one byte of the start address of the on-chip RAM area specified by FTDAR, to other than the return value (H'FF).

When download is executed, particular interrupt processing, which is accompanied l switch as described below, is performed as an internal microcontroller processing, so need to be set to H'80000000. Thirty-two NOP instructions are executed immediatel

RENESAS

The notes on download are as follows.

In the download processing, the values of the general registers of the CPU are retaine During the download processing, interrupts must not be generated. For details on the

relationship between download and interrupts, see section 21.7.2, Interrupts during Programming/Erasing.

Since a stack area of maximum 256 bytes is used, an area of at least 128 bytes must b before setting the SCO bit to 1.

If flash memory is accessed by the DMAC during downloading, operation cannot be guaranteed. Therefore, access by the DMAC must not be executed.

- (2.4) FKEY is cleared to H'00 for protection.
- (2.5) The value of the DPFR parameter must be checked to confirm the download result. A recommended procedure for confirming the download result is shown below.
 - 1. Check the value of the DPFR parameter (one byte of start address of the download destination specified by FTDAR). If the value is H'00, download has been perform normally. If the value is not H'00, the source that caused download to fail can be investigated by the description below.
 - 2. If the value of the DPFR parameter is the same as before downloading (e.g. H'FF) address setting of the download destination in FTDAR may be abnormal. In this c confirm the setting of the TDER bit (bit 7) in FTDAR.
 - 3. If the value of the DPFR parameter is different from before downloading, check the (bit 2) and the FK bit (bit 1) in the DPFR parameter to ensure that the download p selection and FKEY register setting were normal, respectively.

When the user branch is executed, the branch destination is executed in flash me

than the one that is to be programmed. The area of the on-chip program that is do cannot be set.

The program processing must be returned from the user branch processing by the instruction.

See the description in section 21.4.3 (2.2), Flash User Branch Address Setting Pa (FUBRA: General Register R5 of CPU).

(2.7) Initialization

When a programming program is downloaded, the initialization program is also dow on-chip RAM. There is an entry point of the initialization program in the area from (start address set by FTDAR) + 32 bytes. The subroutine is called and initialization is by using the following steps.

MOV.L	#DLTOP+32,R1	;	Set entry address to R1
JSR	@R1	;	Call initialization routine
NOP			

- 1. The general registers other than R0 are saved in the initialization program.
- 2. R0 is a return value of the FPFR parameter.
- 3. Since the stack area is used in the initialization program, a stack area of 256 byte

must be reserved in RAM.

4. Interrupts can be accepted during the execution of the initialization program. Ho program storage area and stack area in on-chip RAM and register values must no destroyed.

programming is not executed and an error is returned to the return value parameter. Since the unit is 256 bytes, the lower eight bits (MOA7 to MOA0) must be in the

2. FMPDR setting

boundary of H'00.

If the storage destination of the program data is flash memory, even when the program execution routine is executed, programming is not executed and an error is returne FPFR parameter. In this case, the program data must be transferred to on-chip RA then programming must be executed.

(2.11) Programming

There is an entry point of the programming program in the area from (download start set by FTDAR) + 16 bytes of on-chip RAM. The subroutine is called and programmin executed by using the following steps.

MOV.L #	DLTOP+16,R1	;	Set entry address to R1
JSR @	R1	;	Call programming routine
NOP			

- 1. The general registers other than R0 are saved in the programming program.
- 2. R0 is a return value of the FPFR parameter.
- 3. Since the stack area is used in the programming program, a stack area of maximum bytes must be reserved in RAM.

finished, secure a reset period (period of RES = 0) that is at least as long as the norm

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

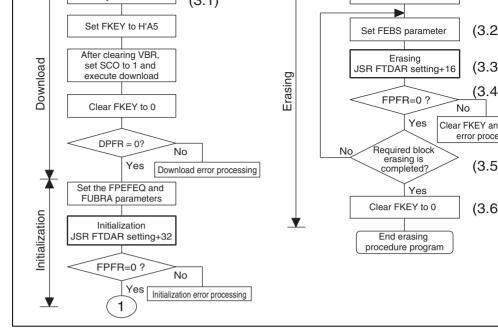


Figure 21.12 Erasing Procedure

The details of the erasing procedure are described below. The procedure program must be executed in an area other than the user MAT to be erased.

Especially the part where the SCO bit in FCCS is set to 1 for downloading must be executively RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM, MAT, and external space) is shown in section 21.8.2, Areas for Storage of the Procedural and Data for Programming.

Rev. 3.00 Mar. 04, 2009 Page 932 of 1168 REJ09B0344-0300

Several programming/erasing programs cannot be selected at one time. If several programs

set, download is not performed and a download error is returned to the source select detect (SS) bit in the DPFR parameter.

Specify the start address of the download destination by FTDAR.

The procedures to be carried out after setting FKEY, e.g. download and initialization same as those in the programming procedure. For details, see the description in secti

(3.2) Set the FEBS parameter necessary for erasure

(2), Programming Procedure in User Program Mode.

Set the erase block number of the user MAT in the flash erase block select paramete general register R4). If a value other than an erase block number of the user MAT is

block is erased even though the erasing program is executed, and an error is returned return value parameter FPFR.

(3.3) Erasure

Similar to as in programming, there is an entry point of the erasing program in the a (download start address set by FTDAR) + 16 bytes of on-chip RAM. The subrouting and erasing is executed by using the following steps.

MOV.L #DLTOP+16,R1 ; Set entry address to R1 **JSR** @R1 ; Call erasing routine NOP

1. The general registers other than R0 are saved in the erasing program.

- 2. R0 is a return value of the FPFR parameter.
- 3. Since the stack area is used in the erasing program, a stack area of maximum 128 must be reserved in RAM.

By changing the on-chip RAM address of the download destination in FTDAR, the erasin program and programming program can be downloaded to separate on-chip RAM areas.

Figure 21.13 shows an example of repetitively executing RAM emulation, erasing, and programming.

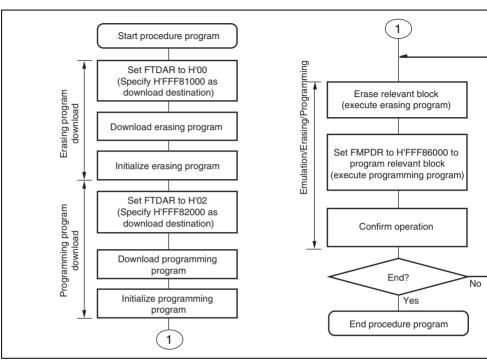


Figure 21.13 Sample Procedure of Repeating RAM Emulation, Erasing, and Progr (Overview)

Rev. 3.00 Mar. 04, 2009 Page 934 of 1168 REJ09B0344-0300

(H'FFF81020 in this example) and (download start address for programming pro bytes (H'FFF82020 in this example).

21.5.3 User Boot Mode

This LSI has user boot mode which is initiated with different mode pin settings than the program mode or boot mode. User boot mode is a user-arbitrary boot mode, unlike boot uses the on-chip SCIF.

Only the user MAT can be programmed/erased in user boot mode. Programming/erasing user boot MAT is only enabled in boot mode or programmer mode.

(1) User Boot Mode Initiation

40 MHz.

For the mode pin settings to start up user boot mode, see table 21.1.

When the reset start is executed in user boot mode, the check routine for flash-memory registers runs on the on-chip RAM. NMI and all other interrupts cannot be accepted. Net the AUD be used in this period. This period is $100 \,\mu s$ while operating at an internal frequency.

Next, processing starts from the execution start address of the reset vector in the user bo At this point, H'AA is set to the flash MAT select register (FMATS) because the execut is the user boot MAT.

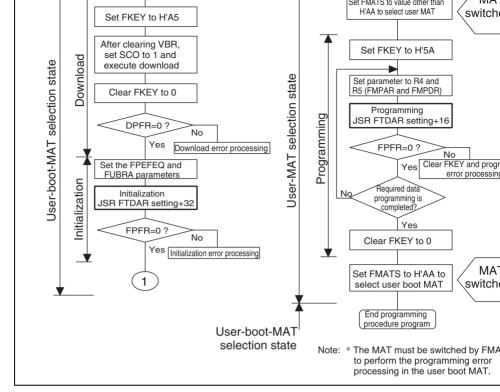


Figure 21.14 Procedure for Programming User MAT in User Boot Mode

with the description in section 21.7.1, Switching between User MAT and User Boot Except for MAT switching, the programming procedure is the same as that in user p mode.

The area that can be executed in the steps of the user procedure program (on-chip RAMAT, and external space) is shown in section 21.8.2, Areas for Storage of the Proce Program and Data for Programming.

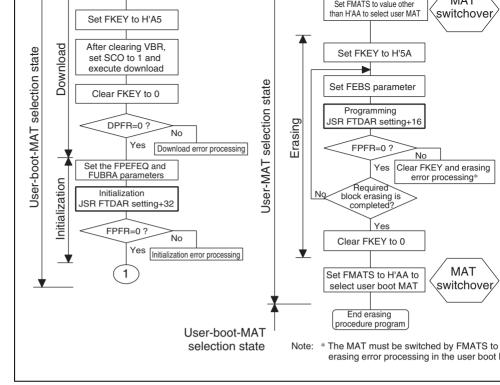


Figure 21.15 Procedure for Erasing User MAT in User Boot Mode

MAT, and external space) is shown in section 21.8.2, Areas for Storage of the Procedurand Data for Programming.

parameter.

Table 21.8 Hardware Protection

		Function 1	to be Pro
Item	Description	Download	Progr Erasu
FWE-pin protection	The input of a low-level signal on the FWE pin clears the FWE bit of FCCS and the LSI enters a programming/erasing-protected state.	_	V
Reset/standby protection	 A power-on reset (including a power-on reset by the WDT) and entry to standby mode initializes the programming/erasing interface registers and the LSI enters a programming/erasing-protected state. Resetting by means of the RES pin after power is initially supplied will not make the LSI enter the reset state unless the RES pin is held low until oscillation has stabilized. In the case of a reset during operation, hold the RES pin low for the RES pulse width that is specified in the section on AC characteristics. If the LSI is reset during programming or erasure, data in the flash memory is not guaranteed. In this case, execute erasure and then execute programming again. 		V

Rev. 3.00 Mar. 04, 2009 Page 940 of 1168 REJ09B0344-0300

000 2	program, thus making the LSI enter a programming/erasing-protected state.	
Protection by FKEY	Downloading and programming/erasing are disabled unless the required key code is written in FKEY. Different key codes are used for downloading and for programming/erasing.	V

21.6.3 Error Protection

Error protection is a mechanism for aborting programming or erasure when an error occ form of the microcontroller getting out of control during programming/erasing of the flamemory or operations that are not in accordance with the established procedures for programming/erasing. Aborting programming or erasure in such cases prevents damage flash memory due to excessive programming or erasing.

If the microcontroller malfunctions during programming/erasing of the flash memory, the bit in FCCS is set to 1 and the LSI enters the error protection state, thus aborting programming.

this reason, it is necessary to reduce the risk of damage to the flash memory by extending period so that the charge is released.

The state-transition diagram in figure 21.16 shows transitions to and from the error protectate.

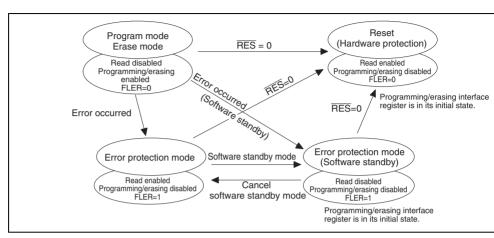


Figure 21.16 Transitions to and from Error Protection State

microcontroller prefetches execution instructions. Therefore, a switchover during pre-

- execution in the user MAT causes an instruction code in the user MAT to be prefetc instruction in the newly selected user boot MAT to be prefetched, thus resulting in u operation.
- 2. To ensure that the MAT that has been switched to is accessible, execute thirty-two N instructions in on-chip RAM immediately after writing to FMATS of on-chip RAM prevents access to the flash memory during MAT switching). 3. If an interrupt occurs during switching, there is no guarantee of which memory MAT
- accessed. Always mask the maskable interrupts before switching MATs. In addition, configuration system so that NMI interrupts do not occur during MAT switching is recommended. 4. After the MATs have been switched, take care because the interrupt vector table wil
 - been switched. If the same interrupt processings are to be executed before and after MAT switching interrupt requests cannot be disabled, transfer the interrupt processing routine to on-
 - and use the VBR setting to place the interrupt vector table in on chip RAM. In this c sure the VBR setting change does not conflict with the interrupt occurrence. 5. Memory sizes of the user MAT and user boot MAT are different. When accessing the boot MAT, do not access addresses exceeding the 12-kbyte memory space. If access
 - beyond the 12-kbyte space, the values read are undefined.

(3) Execute thirty-two NOP instructions before accessing

Figure 21.17 Switching between User MAT and User Boot MAT

21.7.2 **Interrupts during Programming/Erasing**

(1) Download of On-Chip Program

(a) VBR Setting Change

Before downloading the on-chip program, VBR must be set to H'80000000. If VBR is se value other than H'80000000, the interrupt vector table is placed in the user MAT (FMAT H'AA) or the user boot MAT (FMATS is H'AA) on setting H'80000000 to VBR.

When VBR setting change conflicts with interrupt occurrence, whether the vector table b

Therefore, for cases where VBR setting change may conflict with interrupt occurrence, p vector table to be referenced when VBR is H'00000000 (initial value) at the start of the u

SCO Download Request and Interrupt Request

after VBR is changed is referenced may cause an error.

Download of the on-chip programming/erasing program that is initiated by setting the SC FCCS to 1 generates a particular interrupt processing accompanied by MAT switchover.

Operation when the SCO download request and interrupt request conflicts is described be

1. Contention between SCO download request and interrupt request Figure 21.18 shows the timing of contention between execution of the instruction that SCO bit in FCCS to 1 and interrupt acceptance.

Rev. 3.00 Mar. 04, 2009 Page 944 of 1168

REJ09B0344-0300

or user boot MAT.

2. Generation of interrupt requests during downloading Ensure that interrupts are not generated during downloading that is initiated by the S

Rev. 3.00 Mar. 04, 2009 Page

frequency is 40 MHz, the download for each program takes approximately 10 ms at maximum.

User Branch Processing Intervals

The intervals for executing the user branch processing differs in programming and erasin processing phase also differs. Table 21.10 lists the maximum intervals for initiating the u branch processing when the CPU clock frequency is 40 MHz.

Table 21.10 Initiation Intervals of User Branch Processing

Processing Name	Maximum Interval
Programming	Approximately 2 ms*
Erasing	Approximately 15 ms*
N	

Note: * Reference value

However, when operation is done with CPU clock of 40 MHz, maximum values of the tip first user branch processing are as shown in table 21.11.

Table 21.11 Initial User Branch Processing Time

Processing Name	Maximum
Programming	Approximately 2 ms*
Erasing	Approximately 15 ms*
Note: * Reference value	

Rev. 3.00 Mar. 04, 2009 Page 946 of 1168 RENESAS

- Boot mode
 - Programmer mode

(5) Compatibility with Programming/Erasing Program of Conventional F-ZTAT Microcontroller

A programming/erasing program for flash memory used in the conventional F-ZTAT SI

microcontroller which does not support download of the on-chip program by a SCO transequest cannot run in this LSI.

Be sure to download the on-chip program to execute programming/erasing of flash men LSI.

(6) Monitoring Runaway by WDT

Unlike the conventional F-ZTAT SH microcontroller, no countermeasures are available runaway by WDT during programming/erasing by the downloaded on-chip program. Prepare countermeasures (e.g. use of the user branch routine and periodic timer interrup WDT while taking the programming/erasing time into consideration as required.

H'11111* H'1333*

Note: * The CKOEN bit (bit 12) can be specified as either 0 or 1.

(8) Programming the User MAT in User Program Mode

This LSI does not allow transitions from single chip mode to user program mode. Thereforder to program the user MAT in user program mode, be sure to activate the LSI in MC extension mode 2 rather than in single chip mode.

Rev. 3.00 Mar. 04, 2009 Page 948 of 1168

REJ09B0344-0300

1. Bit-rate matching state

In this state, the boot program adjusts the bit rate to match that of the host. When the starts up in boot mode, the boot program is activated and enters the bit-rate matching which it receives commands from the host and adjusts the bit rate accordingly. After

2. Inquiry-and-selection state

In this state, the boot program responds to inquiry commands from the host. The dev mode, and bit rate are selected in this state. After making these selections, the boot p enters the programming/erasure state in response to the transition-to-programming/e state command. The boot program transfers the erasure program to RAM and execut of the user MAT and user boot MAT before it enters the programming/erasure state.

matching is complete, the boot program proceeds to the inquiry-and-selection state.

3. Programming/erasure state

In this state, programming/erasure are executed. The boot program transfers the program programming/erasure to RAM in line with the command received from the host and programming/erasure. It also performs sum checking and blank checking as directed respective commands.

Figure 21.19 shows the flow of processing by the boot program.

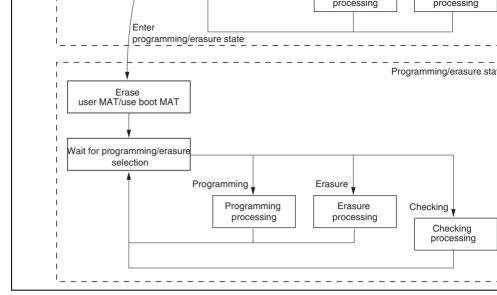


Figure 21.19 Flow of Processing by the Boot Program

(2)**Bit-Rate Matching State**

In bit-rate matching, the boot program measures the low-level intervals in a signal carrying data that is transmitted by the host, and calculates the bit rate from this. The bit rate can be changed by the new-bit-rate selection command. On completion of bit-rate matching, the program goes to the inquiry and selection state. The sequence of processing in bit-rate magnetic processing in bit-rate magnet shown in figure 21.20.

Rev. 3.00 Mar. 04, 2009 Page 950 of 1168 RENESAS

Figure 21.20 Sequence of Bit-Rate Matching

(3) Communications Protocol

Formats in the communications protocol between the host and boot program after compathe bit-rate matching are as follows.

- 1. One-character command or one-character response
 - A command or response consisting of a single character used for an inquiry or the A indicating normal completion.
- 2. n-character command or n-character response
 - A command or response that requires n bytes of data, which is used as a selection coresponse to an inquiry. The length of programming data is treated separately below.
- 3. Error response
 - Response to a command in case of an error: two bytes, consisting of the error responserror code.
- 4. 256-byte programming command
 - The command itself does not include data-size information. The data length is know response to the command for inquiring about the programming size.
- 5. Response to a memory reading command
 - This response includes four bytes of size information.

Rev. 3.00 Mar. 04, 2009 Page

Figure 21.21 Formats in the Communications Protocol

- Command (1 byte): Inquiry, selection, programming, erasure, checking, etc.
- Response (1 byte): Response to an inquiry
- Size (one or two bytes): The length of data for transfer, excluding the command/respondent checksum.
- Data (n bytes): Particular data for the command or response
- Checksum (1 byte): Set so that the total sum of byte values from the command code to checksum is H'00.
- Error response (1 byte): Error response to a command
- Error code (1 byte): Indicates the type of error.
- Address (4 bytes): Address for programming
- Data (n bytes): Data to be programmed. "n" is known from the response to the common to inquire about the programming size.
- Data size (4 bytes): Four-byte field included in the response to a memory reading con

		the values of the multipliers and divisors.
H'23	Inquiry on operating frequency	Requests the minimum and maximum values fo frequency of the main clock and peripheral clock
H'24	Inquiry on user boot MATs	Requests the number of user boot MAT areas a their start and end addresses.
H'25	Inquiry on user MATs	Requests the number of user MAT areas along start and end addresses.
H'26	Inquiry on erasure blocks	Requests the number of erasure blocks along w start and end addresses.
H'27	Inquiry on programming size	Requests the unit of data for programming.
H'3F	New bit rate selection	Selects a new bit rate.
H'40	Transition to programming/erasure state	On receiving this command, the boot program e user MAT and user boot MAT and enters the programming/erasure state.
H'4F	Inquiry on boot program state	Requests information on the current state of boo processing.

program names.

respective values.

Selects a device code.

Selects a clock mode.

Requests the number of available clock modes a

Requests the number of clock signals for which fi

multipliers and divisors are selectable, the number multiplier and divisor settings for the respective c

devices

multipliers

Device selection

Inquiry on clock modes

Clock-mode selection

Inquiry on frequency

H'10

H'21

H'11

H'22

Rev. 3.00 Mar. 04, 2009 Page

(a) inquiry on Supported Devices

In response to the inquiry on supported devices, the boot program returns the device code devices it supports and the product names of their respective boot programs.

Command	H'20

Command H'20 (1 byte): Inquiry on supported devices

Response	H'30	Size	No. of devices	
	Number of characters	Device code		Product name
	SUM			

- Response H'30 (1 byte): Response to the inquiry on supported devices
- Size (1 byte): The length of data for transfer excluding the command code, this field (the checksum. Here, it is the total number of bytes taken up by the number of devices of characters, device code, and product name fields.
- Number of devices (1 byte): The number of device models supported by the boot programmer. embedded in the microcontroller.
- Number of characters (1 byte): The number of characters in the device code and produced in t fields.
- Device code (4 bytes): Device code of a supported device (ASCII encoded)
- Product name (n bytes): Product code of the boot program (ASCII encoded)
- SUM (1 byte): Checksum This is set so that the total sum of all bytes from the command code to the checksum

Rev. 3.00 Mar. 04, 2009 Page 954 of 1168 REJ09B0344-0300

RENESAS

devices (ASCII encoded)
• SUM (1 byte): Checksum
Response H'06
• Response H'06 (1 byte): Response to device selection This is the ACK code and is returned when the specified device code matches one of supported devices.
Error

error response H'90 ERROR

- Error response H'90 (1 byte): Error response to device selection
- ERROR (1 byte): Error code

H'11: Sum-check error

H'21: Non-matching device code

c) Inquiry on Clock Modes

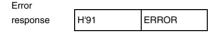
In response to the inquiry on clock modes, the boot program returns the number of avail modes.

Command H'21

• Command H'21 (1 byte): Inquiry on clock modes

Response	H'31	Size	Mode	 SUM

RENESAS


Rev. 3.00 Mar. 04, 2009 Page

Command	H'11	Size	Mode	SUM	
---------	------	------	------	-----	--

- Command H'11 (1 byte): Clock mode selection
- Size (1 byte): Number of characters in the clock-mode field (fixed at 1)
- Mode (1 byte): A clock mode returned in response to the inquiry on clock modes
- SUM (1 byte): Checksum

Response H'06

Response H'06 (1 byte): Response to clock mode selection
 This is the ACK code and is returned when the specified clock-mode matches one of available clock modes.

- Error response H'91 (1 byte): Error response to clock mode selection
- ERROR (1 byte): Error code

H'11: Sum-check error

H'21: Non-matching clock mode

REJ09B0344-0300

No. of multipliers	Multiplier	•••		
SUM				

- Response H'32 (1 byte): Response to the inquiry on frequency multipliers
- Size (1 byte): The total length of the number of operating clocks, number of multiplies multiplier fields.
- Number of operating clocks (1 byte): The number of operating clocks for which multiplier settings can be made for the frequencies of the

peripheral operating clocks, the value should be H'02).

Number of multipliers (1 byte): The number of multipliers selectable for the opera

- Number of multipliers (1 byte): The number of multipliers selectable for the operating frequency of the main or peripheral modules
- Multiplier (1 byte):

Multiplier: Numerical value in the case of frequency multiplication (e.g. H'04 for \times 4 Divisor: Two's complement negative numerical value in the case of frequency divising H'FE [-2] for \times 1/2)

As many multiplier fields are included as there are multipliers or divisors, and comb the number of multipliers and multiplier fields are repeated as many times as there a operating clocks.

SUM (1 byte): Checksum

... SUM

- Response H'33 (1 byte): Response to the inquiry on operating frequency
- Size (1 byte): The total length of the number of operating clocks, and maximum and revalues of operating frequency fields.
- Number of operating clocks (1 byte): The number of operating clock frequencies requestion within the device.
 - For example, the value two indicates main and peripheral operating clock frequencies
- Minimum value of operating frequency (2 bytes): The minimum frequency of a frequency multiplied or -divided clock signal.
 - The value in this field and in the maximum value field is the frequency in MHz to two places, multiplied by 100 (for example, if the frequency is 20.00 MHz, the value mult 100 is 2000, so H'07D0 is returned here).
- Maximum value of operating frequency (2 bytes): The maximum frequency of a frequency in multiplied or -divided clock signal.
 - As many pairs of minimum/maximum values are included as there are operating clock
- SUM (1 byte): Checksum

•••		
SUM		
	'	

- Response H'34 (1 byte): Response to the inquiry on user boot MATs
- Size (1 byte): The total length of the number of areas and first and last address fields
- Number of areas (1 byte): The number of user boot MAT areas. H'01 is returned if the entire user boot MAT area is continuous.
- First address of the area (4 bytes)
- Last address of the area (4 bytes)

 As many pairs of first and last address field are included as there are areas.
- SUM (1 byte): Checksum

(h) Inquiry on User MATs

In response to the inquiry on user MATs, the boot program returns the number of user Mand their addresses.

Command H'25

• Command H'25 (1 byte): Inquiry on user MAT information

Response	H'35	Size	No. of areas	
	First address of	f the area		Last address of the area
	SUM			

Rev. 3.00 Mar. 04, 2009 Page

In response to the inquiry on erasure blocks, the boot program returns the number of eras blocks in the user MAT and the addresses where each block starts and ends.

Command	H'26
---------	------

• Command H'26 (1 byte): Inquiry on erasure blocks

Response	H'36	Size	No. of blocks	
	First address of the block			Last address of the block
	SUM			

- Response H'36 (1 byte): Response to the inquiry on erasure blocks
- Size (2 bytes): The total length of the number of blocks and first and last address field
- Number of blocks (1 byte): The number of erasure blocks in flash memory
- First address of the block (4 bytes)
- Last address of the block (4 bytes)
 As many pairs of first and last address data are included as there are blocks.
- SUM (1 byte): Checksum

- Response H'37 (1 byte): Response to the inquiry on programming size
 - Size (1 byte): The number of characters in the programming size field (fixed at 2)
 - Programming size (2 bytes): The size of the unit for programming
 - Programming size (2 bytes): The size of the unit for programmin
 This is the unit for the reception of data to be programmed.
 - SUM (1 byte): Checksum

(k) New Bit Rate Selection

In response to the new-bit-rate selection command, the boot program changes the bit rat the new bit rate and, if the setting was successful, responds to the ACK sent by the host returning another ACK at the new bit rate.

The new-bit-rate selection command should be sent after clock-mode selection.

Command	H'3F	Size	Bit rate	Input frequency
	No. of multipliers	Multiplier 1	Multiplier 2	
	SUM			

• Command H'3F (1 byte): New bit rate selection

H'00C0, which is 192 in decimal notation).

- multiplier fields
- Bit rate (2 bytes): New bit rate
 - The bit rate value divided by 100 should be set here (for example, to select 19200 bp
- Input frequency (2 bytes): The frequency of the clock signal fed to the boot program
 This should be the frequency in MHz to the second decimal place, multiplied by 100
 example, if the frequency is 8.882 MHz, the value is truncated to the second decima

• Size (1 byte): The total length of the bit rate, input frequency, number of multipliers

H'FE [-2] for $\times 1/2$)

SUM (1 byte): Checksum

H'06 Response

Response H'06 (1 byte): Response to the new-bit-rate selection command This is the ACK code and is returned if the specified bit rate is selected.

Error H'BF ERROR response

- Error response H'BF (1 byte): Error response to the new-bit-rate selection command
 - ERROR (1 byte): Error code

H'11: Sum-check error

H'24: Bit rate selection error (the specified bit rate is not selectable).

H'25: Input frequency error (the specified input frequency is not within the range from minimum to the maximum value).

H'26: Frequency multiplier error (the specified multiplier does not match an available H'27: Operating frequency error (the specified operating frequency is not within the r from the minimum to the maximum value).

The operating frequency is calculated from the received input frequency and the frequency

multiplier or divisor. The input frequency is the frequency of the clock signal supplied LSI, while the operating frequency is the frequency at which the LSI is actually driv

Operating frequency = input frequency × multiplier, or

Operating frequency = input frequency / divisor

following formulae are used for this calculation.

device. A value outside the range generates an operating frequency error. 4. Bit rate From the peripheral operating frequency $(P\phi)$ and the bit rate (B), the value (=n) of

The calculated operating frequency is checked to see if it is within the range of the n and maximum values of the operating frequency for the selected clock mode of the s

select bits (CKS) in the serial mode register (SCSMR) and the value (= N) of the bit register (SCBRR) are calculated, after which the error in the bit rate is calculated. The checked to see if it is smaller than 4%. A result greater than or equal to 4% generates

Error (%) =
$$\left\{ \left[\frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} \right] - 1 \right\} \times 100$$

Response H'06 (1 byte): The ACK code transferred in response to acknowledgement new bit rate

The sequence of new bit rate selection is shown in figure 21.22.

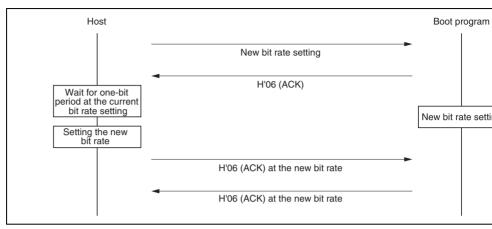


Figure 21.22 Sequence of New Bit Rate Selection

Command	H'40	

• Command H'40 (1 byte): Transition to programming/erasure state

Response H'0)6
--------------	----

Response H'06 (1 byte): Response to the transition-to-programming/erasure state co.
This is returned as ACK when erasure of the user boot MAT and user MAT has succe after transfer of the erasure program.

- Error response H'C0 (1 byte): Error response to the transition-to-programming/erasu command
- ERROR (1 byte): Error code
 H'51: Erasure error (Erasure did not succeed because of an error.)

• Command H'xx (1 byte): Received command

Order of Commands

In the inquiry-and-selection state, commands should be sent in the following order.

- 1. Send the inquiry on supported devices command (H'20) to get the list of supported de 2. Select a device from the returned device information, and send the device selection co
- (H'10) to select that device.
- 3. Send the inquiry on clock mode command (H'21) to get the available clock modes.
- 4. Select a clock mode from among the returned clock modes, and send the clock-mode command (H'11).5. After selection of the device and clock mode, send the commands to inquire about fre
- multipliers (H'22) and operating frequencies (H'23) to get the information required to new bit rate.6. Taking into account the returned information on the frequency multipliers and operation.
- 6. Taking into account the returned information on the frequency multipliers and operation frequencies, send a new-bit-rate selection command (H'3F).7. After the device and clock mode have been selected, get the information required for
- programming and erasure of the user boot MAT and user MAT by sending the comm inquire about the user boot MAT (H'24), user MAT (H'25), erasure block (H'26), and programming size (H'27).

 8. After making all necessary inquiries and the new bit rate selection, send the transition
 - 8. After making all necessary inquiries and the new bit rate selection, send the transition programming/erasure state command (H'40) to place the boot program in the programming/erasure state.

RENESAS

H'52	Memory read	Reads from memory.
H'4A	Sum checking of user boot MAT	Executes sum checking of the user boot MAT.
H'4B	Sum checking of user MAT	Executes sum checking of the user MAT.
H'4C	Blank checking of user boot MAT	Executes blank checking of the user boot MAT.
H'4D	Blank checking of user MAT	Executes blank checking of the user MAT.
H'4F	Inquiry on boot program state	Requests information on the state of boot proces

programming.

Selects transfer of the program for user boot MA

Selects transfer of the program for user MAT pro-

Executes 256-byte programming.

Selects transfer of the erasure program.

Executes erasure of the specified block.

Selection of user boot

Selection of user MAT

256-byte programming

Erasure selection

Block erasure

MAT programming

programming

H'42

H'43

H'50

H'48 H'58

RENESAS

REJ09

Rev. 3.00 Mar. 04, 2009 Page

Next, the host issues a 256-byte programming command. 256 bytes of data for programming the method selected by the preceding programming selection command are expected to for command. To program more than 256 bytes, repeatedly issue 256-byte programming command the address H'FFFFFFF. On completion of programming, the boot program waits for the programming/erasure selection command.

To then program the other MAT, start by sending the programming select command.

The sequence of programming by programming-selection and 256-byte programming coil is shown in figure 21.23.

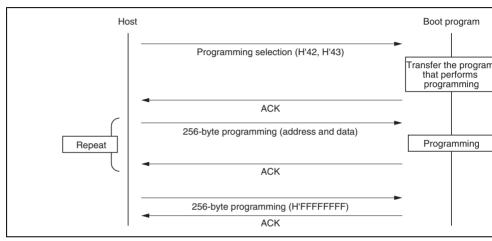


Figure 21.23 Sequence of Programming

Rev. 3.00 Mar. 04, 2009 Page 968 of 1168 REJ09B0344-0300 Response H'06 (1 byte): Response to selection of user boot MAT programming This ACK code is returned after transfer of the program that performs writing to the MAT.

Error		
response	H'C2	ERROR

- Error response H'C2 (1 byte): Error response to selection of user boot MAT program
- ERROR (1 byte): Error code H'54: Error in selection processing (processing was not completed because of a trans

(b) Selection of User MAT Programming

In response to the command for selecting programming of the user MAT, the boot program transfers the corresponding flash-writing program, i.e. the program for writing to the use

Command	H'43
---------	------

• Command H'43 (1 byte): Selects programming of the user MAT.

H'06 Response

Rev. 3.00 Mar. 04, 2009 Page

(c) 256-Byte Programming

In response to the 256-byte programming command, the boot program executes the flash-program transferred in response to the command to select programming of the user boot I user MAT.

Com	ms	nd
COIII	IIIIc	uu

H'50	Address for programming					
Data						
SUM						

- Command H'50 (1 byte): 256-byte programming
- Address for programming (4 bytes): Address where programming starts Specify the address of a 256-byte boundary.
 [Example] H'00, H01, H'00, H'00: H'00010000
- Programming data (n bytes): Data for programming
 The length of the programming data is the size returned in response to the programming inquiry command.
- SUM (1 byte): Checksum

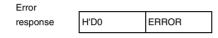
Response H'06

• Response H'06 (1 byte): Response to 256-byte programming
The ACK code is returned on completion of the requested programming.

Error		
response	H'D0	ERROR

Rev. 3.00 Mar. 04, 2009 Page 970 of 1168

REJ09B0344-0300


been sent; the boot program then waits for the next programming/erasure selection compared to the selection compared to th

Command H'50 Address for programming SUM

- Command H'50 (1 byte): 256-byte programming
- Address for programming (4 bytes): Terminating code (H'FF, H'FF, H'FF, H'FF)
- SUM (1 byte): Checksum

Response H'06

Response H'06 (1 byte): Response to 256-byte programming
 This ACK code is returned on completion of the requested programming.

- Error response H'D0 (1 byte): Error response to 256-byte programming
- ERROR (1 byte): Error code H'11: Sum-check error

H'53: Programming error

in figure 21.24.

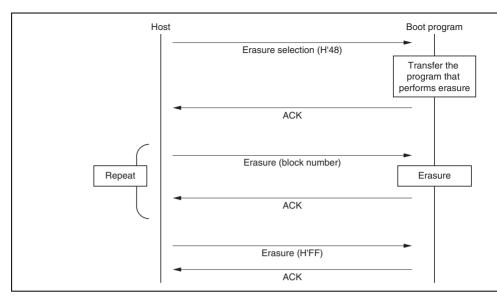


Figure 21.24 Sequence of Erasure

REJ09B0344-0300

Response H'06 (1 byte): Response to selection of erasure
 This ACK code is returned after transfer of the program that performs erasure.

Error		
response	H'C8	ERROR

- Error response H'C8 (1 byte): Error response to selection of erasure
- ERROR (1 byte): Error code
 H'54: Error in selection processing (processing was not completed because of a trans

(b) Block Erasure

In response to the block erasure command, the boot program erases the data in a specific the user MAT.

Command	H'58	Size	Block number	SUM

- Command H'58 (1 byte): Erasure of a block
- Size (1 byte): The number of characters in the block number field (fixed at 1)
- Block number (1 byte): Block number of the block to be erased
- SUM (1 byte): Checksum

Response H'06

Rev. 3.00 Mar. 04, 2009 Page

1131. Erasure error (all error occurred during erasure.)

On receiving the command with HFF as the block number, the boot program stops erasur processing and waits for the next programming/erasure selection command.

Command	H'58	Size	Block number	SUM
---------	------	------	--------------	-----

- Command H'58 (1 byte): Erasure of a block
- Size (1 byte): The number of characters in the block number field (fixed at 1)
- Block number (1 byte): H'FF (erasure terminating code)
- SUM (1 byte): Checksum

Response H'06

 Response H'06 (1 byte): ACK code to indicate response to the request for termination erasure

To perform erasure again after having issued the command with the block number specific H'FF, execute the process from the selection of erasure.

(10) Memory Read

In response to the memory read command, the boot program returns the data from the speaddress.

Command	H'52	Size	Area	First address	for reading	
	Amount to read				SUM	

Rev. 3.00 Mar. 04, 2009 Page 974 of 1168

REJ09B0344-0300

Response	H'52	Amount to read				
	Data					
	SUM					

- Response H'52 (1 byte): Response to the memory read command
- Amount to read (4 bytes): The amount to read as specified in the memory read common to read (4 bytes).
- Data (n bytes): The specified amount of data read out from the specified address
- SUM (1 byte): Checksum

Error			
response	H'D2	ERROR	

- Error response H'D2 (1 byte): Error response to memory read command
- ERROR (1 byte): Error code

H'11: Sum-check error

H'2A: Address error (the address specified for reading is beyond the range of the MAT, H'2B: Size error (the specified amount is greater than the size of the MAT,

the last address for reading as calculated from the specified address for the start of rette amount to read is beyond the MAT area, or "0" was specified as the amount to re

- Response H'5A (1 byte): Response to sum checking of the user boot MAT
 - Size (1 byte): The number of characters in the checksum for the MAT (fixed at 4)
 - Checksum for the MAT (4 bytes): Result of checksum calculation for the user boot Method to the total of all data in the MAT, in byte units.
 - SUM (1 byte): Checksum (for the transmitted data)

(12) Sum Checking of the User MAT

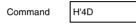
In response to the command for sum checking of the user MAT, the boot program adds a data in the user MAT and returns the result.

Command H'4B

• Command H'4B (1 byte): Sum checking of the user MAT

Response	H'5B	Size	Checksum for the MAT	SUM

- Response H'5B (1 byte): Response to sum checking of the user MAT
- Size (1 byte): The number of characters in the checksum for the MAT (fixed at 4)
- Checksum for the MAT (4 bytes): Result of checksum calculation for the user MAT: the total of all data in the MAT, in byte units.
- SUM (1 byte): Checksum (for the transmitted data)


Response H'06 (1 byte): Response to blank checking of the user boot MAT
This ACK code is returned when the whole area is blank (all bytes are H'FF).

Error						
response	H'CC	H'52				

- Error response H'CC (1 byte): Error response to blank checking of the user boot MA
- Error code H'52 (1 byte): Non-erased error

(14) Blank Checking of the User MAT

In response to the command for blank checking of the user MAT, the boot program checking the whole of the user MAT is blank; the value returned indicates the result.

Command H'4D (1 byte): Blank checking of the user boot MAT

Response H'06 (1 byte): Response to blank checking of the user MAT
 The ACK code is returned when the whole area is blank (all bytes are H'FF).

- Error response H'CD (1 byte): Error response to blank checking of the user MAT
- Error code H'52 (1 byte): Non-erased error

Rev. 3.00 Mar. 04, 2009 Page

- Response H'5F (1 byte): Response to the inquiry regarding boot-program state
- Size (1 byte): The number of characters in STATUS and ERROR (fixed at 2)
- STATUS (1 byte): State of the standard boot program See table 21.14. Status Codes.
- ERROR (1 byte): Error state (indicates whether the program is in normal operation or has occurred)

ERROR = 0: Normal $ERROR \neq 0$: Error

See table 21.15, Error Codes.

• SUM (1 byte): Checksum

Table 21.14 Status Codes

Code	Description
H'11	Waiting for device selection
H'12	Waiting for clock-mode selection
H'13	Waiting for bit-rate selection
H'1F	Waiting for transition to programming/erasure status (bit-rate selection or
H'31	Erasing the user MAT or user boot MAT
H'3F	Waiting for programming/erasure selection (erasure complete)
H'4F	Waiting to receive data for programming (programming complete)
H'5F	Waiting for erasure block specification (erasure complete)

H'27	Operating frequency error
H'29	Block number error
H'2A	Address error
H'2B	Data length error (size error)
H'51	Erasure error
H'52	Non-erased error
H'53	Programming error
H'54	Selection processing error
H'80	Command error

In the descriptions in the previous section, storable areas for the programming/erasing p programs and program data are assumed to be in on-chip RAM. However, the procedure and data can be stored in and executed from other areas (e.g. external address space) as

following conditions are satisfied. 1. The on-chip programming/erasing program is downloaded from the address set by F

Bit-rate matching acknowledge error

- on-chip RAM, therefore, this area is not available for use. 2. The on-chip programming/erasing program will use 128 bytes or more as a stack. M
- this area is reserved.
- 3. Since download by setting the SCO bit to 1 will cause the MATs to be switched, it s executed in on-chip RAM.

H'FF

21.8.2

4. The flash memory is accessible until the start of programming or erasing, that is, unt result of downloading has been decided.

> Rev. 3.00 Mar. 04, 2009 Page REJ09

Areas for Storage of the Procedural Program and Data for Programming

- 7. Switching of the MATs by FMATS is needed for programming/erasing of the user M
- user boot mode. The program which switches the MATs should be executed from the RAM. For details, see section 21.7.1, Switching between User MAT and User Boot M Please make sure you know which MAT is selected when switching the MATs.
- 8. When the program data storage area indicated by the FMPDR parameter in the program processing is within the flash memory area, an error will occur. Therefore, temporaril the program data to on-chip RAM to change the address set in FMPDR to an address than flash memory.

Based on these conditions, tables 21.16 and 21.17 show the areas in which the program d be stored and executed according to the operation type and mode.

Table 21.16 Executable MAT

	Initiated Mode			
Operation	User Program Mode	User Boot Mode*		
Programming	Table 21.17 (1)	Table 21.17 (3)		
Erasing	Table 21.17 (2)	Table 21.17 (4)		

* Programming/Erasing is possible to user MATs.

Rev. 3.00 Mar. 04, 2009 Page 980 of 1168 RENESAS

	Writing 1 to SCO in FCCS (download)	V	Х	Х		V
	Key register clearing	V	√	√	V	
	Judging download result	√	√	\checkmark	$\sqrt{}$	
	Download error processing	V	$\sqrt{}$	\checkmark	V	
\	Setting initialization parameters	V	$\sqrt{}$	\checkmark	$\sqrt{}$	
Pro- gram- ming proce- dure	Initialization	√	Х	Х	$\sqrt{}$	
	Judging initialization result	√	$\sqrt{}$	\checkmark	$\sqrt{}$	
	Initialization error processing	$\sqrt{}$	√	√	$\sqrt{}$	
	Writing H'5A to key register	$\sqrt{}$	√	√	$\sqrt{}$	
	Setting programming parameters	√	Х	\checkmark	$\sqrt{}$	
	Programming	$\sqrt{}$	Х	Х	$\sqrt{}$	
	Judging programming result	V	Х	$\sqrt{}$	V	
	Programming error processing	$\sqrt{}$	Х	√	$\sqrt{}$	
	Key register clearing	V	Х	√	V	
Note:	* If the data has been transferred	to or	n-chip RAN	1 in adva	nce, this area ca	an be

	(download)				
	Key register clearing	√	$\sqrt{}$	√	V
	Judging download result	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark
	Download error processing	$\sqrt{}$	\checkmark	\checkmark	\checkmark
	Setting initialization parameters	V	\checkmark	$\sqrt{}$	$\sqrt{}$
¥	Initialization	$\sqrt{}$	Х	Χ	$\sqrt{}$
Erasing proce- dure	Judging initialization result	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
	Initialization error processing	V	V	√	V
	Writing H'5A to key register	V	V	√	V
	Setting erasure parameters	$\sqrt{}$	Х	$\sqrt{}$	$\sqrt{}$
	Erasure	$\sqrt{}$	Х	Χ	$\sqrt{}$
	Judging erasure result		Χ	$\sqrt{}$	$\sqrt{}$
	Erasing error processing	V	Х	√	V
	Key register clearing	V	Χ	V	V

Rev. 3.00 Mar. 04, 2009 Page 982 of 1168 REJ09B0344-0300

1	Key register clearing	$\sqrt{}$	√	√	•	
o- ^y am-	Judging download result	V	$\sqrt{}$	V		V
ng oce- re	Download error processing	√	V	V		V
	Setting initialization parameters	√	V	V		V
	Initialization	$\sqrt{}$	Х	Х		
	Judging initialization result	√	V	V		V
	Initialization error processing	V	V	V		V
	Switching MATs by FMATS	√	Х	Х	V	
	Writing H'5A to Key Register	V	Х	V	V	

 $\sqrt{}$

Χ

Χ

Writing H'A5 to key

Writing 1 to SCO in FCCS (download)

register

Rev. 3.00 Mar. 04, 2009 Page

gram-	result								
ming proce- dure	Programming error processing	V	X* ²	V	V				
adio	Key register clearing	V	Х	V	\checkmark				
	Switching MATs by FMATS	V	Х	Х		$\sqrt{}$			
Notes:	1. If the data has been	transfer	red to on-	chip RAM	1 in advance	e, this area ca	an be		
	2. If the MATs have been	en switc	hed by FN	/IATS in c	on-chip RAN	/I, this MAT c	an be		

эе

Rev. 3.00 Mar. 04, 2009 Page 984 of 1168 REJ09B0344-0300

RENESAS

	· ·						
	Writing 1 to SCO in FCCS (download)	V	Х	Х			√
	Key register clearing	$\sqrt{}$	$\sqrt{}$	√		V	
	Judging download result	V	V	V		V	
V	Download error processing	$\sqrt{}$	$\sqrt{}$	V		V	
Erasing proce-	Setting initialization parameters	V	$\sqrt{}$	$\sqrt{}$		V	
dure	Initialization	V	Х	Х		V	
	Judging initialization result	V	V	V		V	
	Initialization error processing	V	V	V		V	
	Switching MATs by FMATS	V	Х	Х		V	
	Writing H'5A to key register	V	Х	V	V		
	Setting erasure parameters	V	Х	V	V		

uuie	Key register clearing	$\sqrt{}$	Х	$\sqrt{}$	$\sqrt{}$
	Switching MATs by	V	Х	Х	V
	FMATS				
Note:	* If the MATs have been	en swit	ched by FN	MATS in	on-chip RAM, this MAT can be

21.9 **Programmer Mode**

In programmer mode, a PROM programmer can be used to perform programming/erasing socket adapter, just as for a discrete flash memory. Use a PROM programmer that support Renesas 512-kbyte flash memory on-chip MCU device type (F-ZTAT512DV3_15A).

The 32 Kbyte on-chip RAM is divided into four pages (pages 0 to 3).

The 24 Kbyte on-chip RAM is divided into three pages (pages 0 to 2).

• Memory map

The on-chip RAM is located in the address spaces shown in table 22.1, 22.2.

Table 22.1 32 Kbyte On-Chip RAM Address Spaces

Page	Address
Page 0	H'FFF80000 to H'FFF81FFF
Page 1	H'FFF82000 to H'FFF83FFF
Page 2	H'FFF84000 to H'FFF85FFF
Page 3	H'FFF86000 to H'FFF87FFF

Table 22.2 24 Kbyte On-Chip RAM Address Spaces

Page	Address
Page 0	H'FFF80000 to H'FFF81FFF
Page 1	H'FFF82000 to H'FFF83FFF
Page 2	H'FFF84000 to H'FFF85FFF

Ports

bus), CPU instruction fetch bus (F bus), and CPU memory access bus (M bus). (Not bus is connected only to the read ports.)

Each page has two independent read and write ports and is connected to the internal

The F bus and M bus are used for access by the CPU, and the I bus is used for access DMAC.

Priority

Rev. 3.00 Mar. 04, 2009 Page REJ09 each bus.

22.2.2 RAME and RAMWE Bits

Before disabling memory operation or write access through the RAME or RAMWE bit, by read from any address and then write to the same address in each page; otherwise, the last data in each page may not be actually written to the RAM. For setting the RAME and RAM bits, see section 23.3.5, System Control Register 1 (SYSCR1), and section 23.3.6, System Register 2 (SYSCR2).

Rev. 3.00 Mar. 04, 2009 Page 988 of 1168 REJ09B0344-0300


```
// For page 2

MOV.L #H'FFF84000,R0

MOV.L @R0,R1

MOV.L R1,@R0

// For page 3

MOV.L #H'FFF86000,R0

MOV.L @R0,R1

MOV.L R1,@R0
```

Figure 22.1 Examples of Read/Write before Disabling RAM

Rev. 3.00 Mar. 04, 2009 Page 990 of 1168

REJ09B0344-0300

- 1. Sleep mode
- 2. Software standby mode
- 3. Module standby function

Table 23.1 shows the transition conditions for entering the modes from the program exe state, as well as the CPU and peripheral module states in each mode and the procedures canceling each mode.

Software standby mode	Execute SLEEP instruction with STBY bit set to 1 in STBCR	Halts	Halts	Held
Module standby function	Set the MSTP bits in STBCR2, STBCR3, and STBCR4 to 1	Runs	Runs	Held

Note:

States.

Halts

held)

Specified

held)

The pin state is retained or set to high impedance. For details, see appendix A

module halts

(contents are

(contents are

Halts

Specified

module halts

Self-

Auto-

refreshing

refreshing

ΝN

IR

Ma Ро

Cle

to

Ро

(or UE D١

- The watchdog timer (WDT) starts counting with the WT/IT bit in WTCSR set to 1 the RSTS bit in WRCSR set to 0 while the RSRE bit in WRCSR is 1, and the coun overflows.
- The H-UDI reset is generated (for details on the H-UDI reset, see section 24, User 3. Debugging Interface (H-UDI)).

Manual Reset (2)

- A low level is input to the $\overline{\text{MRES}}$ pin. 1.
- The WDT starts counting with the WT/IT bit in WTCSR set to 1 and with the RST 2. WRCSR set to 1 while the RSRE bit in WRCSR is 1, and the counter overflows.

23.3 Register Descriptions

The following registers are used in power-down modes.

Table 23.3 Register Configuration

Register Name	Abbreviation	R/W	Initial Value	Address
Standby control register	STBCR	R/W	H'00	H'FFFE0014
Standby control register 2	STBCR2	R/W	H'00	H'FFFE0018
Standby control register 3	STBCR3	R/W	H'7E	H'FFFE0408
Standby control register 4	STBCR4	R/W	H'F4	H'FFFE040C
System control register 1	SYSCR1	R/W	H'FF	H'FFFE0402
System control register 2	SYSCR2	R/W	H'FF	H'FFFE0404

Rev. 3.00 Mar. 04, 2009 Page 994 of 1168 REJ09B0344-0300

			Specifies transition to software standby n
			Executing SLEEP instruction puts chip mode.
			 Executing SLEEP instruction puts chip software standby mode.
_	All 0	R	Reserved
			These bits are always read as 0. The writ should always be 0.
			•
		— All 0	— All 0 R

R/W

R/W

Description

Software Standby

Initial

Value

0

Bit Name

STBY

Bit

7

				clock to the H-UDI is halted.
				0: H-UDI runs.
				1: Clock supply to H-UDI halted.
6	MSTP9	0	R/W	Module Stop 9
				When the MSTP9 bit is set to 1, the supply o clock to the UBC is halted.
				0: UBC runs.
				1: Clock supply to UBC halted.
5	MSTP8	0	R/W	Module Stop 8
				When the MSTP8 bit is set to 1, the supply o clock to the DMAC is halted.
				0: DMAC runs.
				1: Clock supply to DMAC halted.
4 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write vashould always be 0.

Initial

Value

0

R/W

R/W

Description

Module Stop 10

When the MSTP10 bit is set to 1, the supply

Bit Name

MSTP10

Bit

7

Rev. 3.00 Mar. 04, 2009 Page 996 of 1168

				Do not set this bit when the TME bit of WTS WDT is 1. When setting the output pin to the impedance state, set the HIZ bit with the TM being 0.
				0: The pin state is held in software standby
				 The pin state is set to the high-impedance software standby mode.
6	MSTP36	1	R/W	Module Stop 36
				When the MSTP36 bit is set to 1, the supply clock to the MTU2S is halted.
				0: MTU2S runs.
				1: Clock supply to MTU2S halted.
5	MSTP35	1	R/W	Module Stop 35
				When the MSTP35 bit is set to 1, the supply clock to the MTU2 is halted.
				0: MTU2 runs.
				1: Clock supply to MTU2 halted.

Description

applied.

Port High Impedance

Selects whether the state of a specified pin retained or the pin is placed in the high-imp state in software standby mode. See appen States to determine the pin to which this co

Initial Value

0

R/W

R/W

Bit Name

HIZ

Bit

7

				1: Clock supply to IIC3 halted.
2	MSTP32	1	R/W	Module Stop 32
				When the MSTP32 bit is set to 1, the supply clock to the ADC is halted.
				0: ADC runs.
				1: Clock supply to ADC halted.
1	MSTP31	1	R/W	Module Stop 31
				When the MSTP31 bit is set to 1, the supply clock to the DAC is halted.
				0: DAC runs.
				1: Clock supply to DAC halted.
0	MSTP30	0	R/W	Module Stop 30
				When the MSTP30 bit is set to 1, the supply clock to the flash memory is halted.
				0: Flash memory runs.
				1: Clock supply to flash memory halted.

0: IIC3 runs.

Rev. 3.00 Mar. 04, 2009 Page 998 of 1168

				1: Clock supply to SCIF0 halted.
6	MSTP46	1	R/W	Module Stop 46
				When the MSTP46 bit is set to 1, the supply clock to the SCIF1 is halted.
				0: SCIF1 runs.
				1: Clock supply to SCIF1 halted.
5	MSTP45	1	R/W	Module Stop 45
				When the MSTP45 bit is set to 1, the supply clock to the SCIF2 is halted.
				0: SCIF2 runs.
				1: Clock supply to SCIF2 halted.
4	MSTP44	1	R/W	Module Stop 44
				When the MSTP44 bit is set to 1, the supply clock to the SCIF3 is halted.
				0: SCIF3 runs.
				1: Clock supply to SCIF3 halted.
3	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

Initial

Value

1

Bit Name

MSTP47

R/W

R/W

Description

Module Stop 47

0: SCIF0 runs.

clock to the SCIF0 is halted.

When the MSTP47 bit is set to 1, the supply

Bit

7

				1: Clock supply to WAVEIF halted.
0	_	0	R	Reserved
				This bit is always read as 0. The write value always be 0.

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1000 of 1168

Note that when clearing the RAME bit to 0 to disable the on-chip RAM, be sure to execute instruction to read from or write to the same arbitrary address in each page before settin RAME bit. If such an instruction is not executed, the data last written to each page may written to the on-chip RAM. Furthermore, an instruction to access the on-chip RAM she located immediately after the instruction to write to SYSCR1. If an on-chip RAM access

instruction is set, normal access is not guaranteed.

To enable the on-chip RAM by setting the RAME bit to 1, place an instruction to read d SYSCR1 immediately after an instruction to write to SYSCR1. If an instruction to access chip RAM is placed immediately after the instruction to write to SYSCR1, normal access guaranteed.

Bit:	7	6	5	4	3	2	1	0
	1	-	-	-	RAME3	RAME2	RAME1	RAME0
Initial value:	1	1	1	1	1	1	1	1
R/W:	R	R	R	R	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7 to 4	_	All 1	R	Reserved
				These bits are always read as 1. The write should always be 1.
3	RAME3	1	R/W	RAM Enable 3 (corresponding RAM addres H'FFF86000 to H'FFF87FFF)
				0: On-chip RAM disabled

Note: This is a reserved bit on versions with RAM. Its value is always 1 when read

1: On-chip RAM enabled

write 1 to this bit.

Rev. 3.00 Mar. 04, 2009 Page 1002 of 1168

instruction to read from or write to the same arbitrary address in each page before settin RAMWE bit. If such an instruction is not executed, the data last written to each page may written to the on-chip RAM. Furthermore, an instruction to access the on-chip RAM sho

located immediately after the instruction to write to SYSCR2. If an on-chip RAM acces

instruction is set, normal access is not guaranteed.

To enable the on-chip RAM by setting the RAMWE bit to 1, locate an instruction to rea from SYSCR2 immediately after an instruction to write to SYSCR2. If an instruction to on-chip RAM is located immediately after the instruction to write to SYSCR2, normal a not guaranteed.

	Bit:	7	6	5	4	3	2	1	0
		-	-	-	-	RAM WE3	RAM WE2	RAM WE1	RAM WE0
Initial v	alue:	1	1	1	1	1	1	1	1
	D/\//-	D	D	D	D	DAM	D/M	DAM	D/M/

Bit	Bit Name	Initial Value	R/W	Description
7 to 4	_	All 1	R	Reserved
				These bits are always read as 1. The write should always be 1.
3	RAMWE3	1	R/W	RAM Write Enable 3 (corresponding RAM a H'FFF86000 to H'FFF87FFF)
				0: On-chip RAM write disabled
				1: On-chip RAM write enabled
				Note: This is a reserved bit on versions with RAM. Its value is always 1 when read

write 1 to this bit.

0	RAMWE0	1	R/W	RAM Write Enable 0 (corresponding RAM ad H'FFF80000 to H'FFF81FFF)
				0: On-chip RAM write disabled
				1: On-chip RAM write enabled

(2) Canceling Sleep Mode

Sleep mode is canceled by an interrupt (NMI, IRQ, and on-chip peripheral module), DM error, or reset (manual reset or power-on reset).

- Canceling with an interrupt
 - When an NMI, IRQ, or on-chip peripheral module interrupt occurs, sleep mode is call interrupt exception handling is executed. When the priority level of the generated interprivate or lower than the interrupt mask level that is set in the status register (SR) or the interrupt by the on-chip peripheral module is disabled on the module side, the request is not accepted and sleep mode is not canceled.
- Canceling with a DMA address error

When a DMA address error occurs, sleep mode is canceled and DMA address error handling is executed.

Canceling with a reset
 Sleep mode is canceled by a power-on reset or a manual reset.

23.4.2 Software Standby Mode

also halts.

(1) Transition to Software Standby Mode

The LSI switches from a program execution state to software standby mode by executin SLEEP instruction when the STBY bit in STBCR is 1. In software standby mode, not of CPU but also the clock and on-chip peripheral modules halt. The clock output from the

The contents of the CPU remain unchanged. Some registers of on-chip peripheral modul however, initialized. Table 23.4 shows the states of peripheral module registers in softw standby mode.

Rev. 3.00 Mar. 04, 2009 Page

User break controller (UBC)	_
Bus state controller (BSC)	_
A/D converter (ADC)	All registers
I/O port	_
User debugging interface (H-UDI)	_
Serial communication interface with FIFO (SCIF)	_
Direct memory access controller (DMAC)	_
Multi-function timer pulse unit 2 (MTU2)	_
Multi-function timer pulse unit 2S (MTU2S)	_
Port output enable 2 (POE2)	_
Compare match timer (CMT)	All registers
I ² C bus interface 3 (IIC3)	BC2 and BC0 bits in ICMR register
· · · · · · · · · · · · · · · · · · ·	

The procedure for switching to software standby mode is as follows:

values to secure the specified oscillation settling time.

3. After setting the STBY bit in STBCR to 1, read STBCR. Then, execute a SLEEP inst

RENESAS

2. Set the WDT's timer counter (WTCNT) to 0 and the CKS[2:0] bits in WTCSR to app

1. Clear the TME bit in the WDT's timer control register (WTCSR) to 0 to stop the WD'

D/A converter (DAC)

Rev. 3.00 Mar. 04, 2009 Page 1006 of 1168

REJ09B0344-0300

All registers

All registers All registers All registers

ICMR

All registers All registers

All registers All registers All registers

Other than BC[2]

All registers

(WDT) used to count the oscillation settling time.

control/status register (WTCSR) of the WDT before the transition to software standby n WDT overflow occurs. Since this overflow indicates that the clock has been stabilized, pulse will be supplied to the entire chip after this overflow. Software standby mode is cloud NMI interrupt exception handling (IRQ interrupt exception handling in the case of IRRO).

After the elapse of the time set in the clock select bits (CKS[2:0]) in the watchdog times

When canceling software standby mode by the NMI interrupt or IRQ interrupt, set the C bits so that the WDT overflow period will be equal to or longer than the oscillation settlement of the control of t

The clock output phase of the CK pin may be unstable immediately after detecting an in and until software standby mode is canceled. When software standby mode is canceled falling edge of the NMI pin, the NMI pin should be high when the CPU enters software mode (when the clock pulse stops) and should be low when the CPU returns from softw standby mode (when the clock is initiated after the oscillation settling). When software mode is canceled by the rising edge of the NMI pin, the NMI pin should be low when the enters software standby mode (when the clock pulse stops) and should be high when the returns from software standby mode (when the clock is initiated after the oscillation sett is the same with the IRQ pin.)

When the \overline{RES} or \overline{MRES} pin is driven low, this LSI enters the power-on reset or manual

(b) Exit from Software Standby by a Reset

state, and software standby mode is exited.

Keep the RES or MRES pin low until the clock oscillation settles.

Internal clock pulses are output continuously on the CK pin.

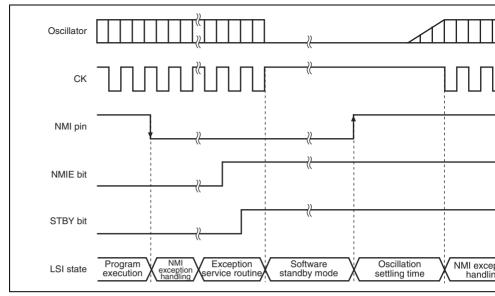


Figure 23.1 NMI Timing in Software Standby Mode (Application Example

However, the states of the CMT and DAC registers are exceptional. In the CMT, all reginitialized in software standby mode, but retain their previous values in module standby the DAC, all registers retain their previous values in software standby mode, but are init module standby mode.

(2) Canceling Module Standby Function

The module standby function can be canceled by clearing the MSTP bits to 0, or by a poreset (only possible for H-UDI, UBC, and DMAC). When taking a module out of the mestandby state by clearing the corresponding MSTP bit to 0, read the MSTP bit to confirm has been cleared to 0.

Figure 24.1 shows a block diagram of the H-UDI.

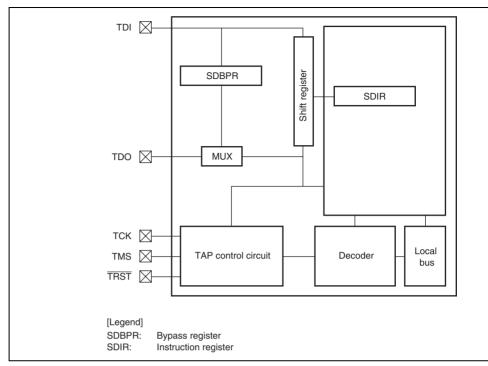


Figure 24.1 Block Diagram of H-UDI

		period when power is turned on rof using the H-UDI function. See 24.4.2, Reset Configuration, for nonformation.
TDI	Input	Data transfer to the H-UDI is exec changing this signal in synchroniz TCK.
TDO	Output	Data read from the H-UDI is exect reading this pin in synchronization TCK. The initial value of the data timing is the TCK falling edge. The changed to the TCK rising edge to inputting the TDO change timing command to SDIR. See section 2 TDO Output Timing, for more information in the section of the section of the section 2
ASEMD*	Input	If a low level is input at the ASEM while the RES pin is asserted, AS entered; if a high level is input, no mode is entered. In ASE mode, demulator function can be used. The level at the ASEMD pin should be at least one cycle after RES negaliars.
	TDO	TDO Output

TRST

Input

RENESAS

synchronization with TCK. For the

Input is accepted asynchronously verspect to TCK, and when low, the reset. TRST must be low for a constant.

see figure 24.2.

H-UDI reset input pin

24.3.1 Bypass Register (SDBPR)

SDBPR is a 1-bit register that cannot be accessed by the CPU. When SDIR is set to BY mode, SDBPR is connected between H-UDI pins TDI and TDO. The initial value is unc

24.3.2 Instruction Register (SDIR)

SDIR is a 16-bit read-only register. It is initialized by TRST assertion or in the TAP test reset state, and can be written to by the H-UDI irrespective of CPU mode. Operation is a guaranteed if a reserved command is set in this register. The initial value is H'EFFD.

Bit:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	
				TI[7:0]				-	-	-	-	-	-	
Initial value:	1*	1*	1*	0*	1*	1*	1*	1*	1	1	1	1	1	1	
R/W:	R	R	R	R	R	R	R	R	R	R	R	R	R	R	

Note: * The initial value of the TI[7:0] bits is a reserved value. When setting a command, the TI[7:0] bits must be set to

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09 Note: * The initial value of the TI[7:0] bits is a reserved value. When setting a commar TI[7:0] bits must be set to another value.

Table 24.3 H-UDI Commands

Bits 15 to 8

TI7	TI6	TI5	TI4	TI3	TI2	TI1	TI0	Description
0	1	1	0	_	_	_	_	H-UDI reset negate
0	1	1	1	_	_	_	_	H-UDI reset assert
1	0	0	1	1	1	0	0	TDO change timing
1	0	1	1	_	_	_	_	H-UDI interrupt
1	1	1	1	_	_	_	_	BYPASS mode
Other	than abo	ove						Reserved

Rev. 3.00 Mar. 04, 2009 Page 1014 of 1168 REJ09B0344-0300

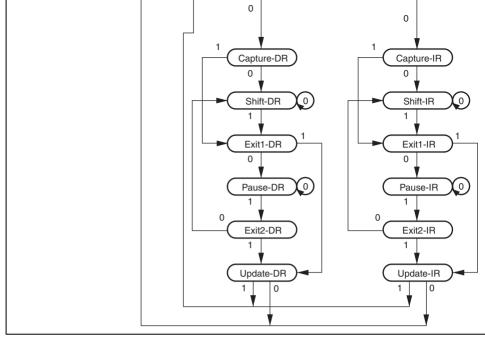


Figure 24.2 TAP Controller State Transitions

Note: The transition condition is the TMS value at the rising edge of TCK. The TDI v sampled at the rising edge of TCK; shifting occurs at the falling edge of TCK. F on change timing of the TDO value, see section 24.4.3, TDO Output Timing. The at high impedance, except with shift-DR and shift-IR states. During the change 0, there is a transition to test-logic-reset asynchronously with TCK.

Rev. 3.00 Mar. 04, 2009 Page

	Н	Power-on reset
Н	L	H-UDI reset only
	Н	Normal operation
Notes: 1. Performs normal n	node and AS	E mode settings
$\overline{ASEMD} = H$, norm	al mode	

ASEMD = L, ASE mode

2. In ASE mode, reset hold is entered if the TRST pin is driven low while the RES negated. In this state, the CPU does not start up. When TRST is driven high, F operation is enabled, but the CPU does not start up. The reset hold state is ca by a power-on reset.

24.4.3 TDO Output Timing

The initial value of the TDO change timing is to perform data output from the TDO pin of TCK falling edge. However, setting a TDO change timing switch command in SDIR via UDI pin and passing the Update-IR state synchronizes the TDO change timing to the TC edge. Thereafter the TDO change timing cannot be changed unless a power-on reset that the TRST pin simultaneously is performed.

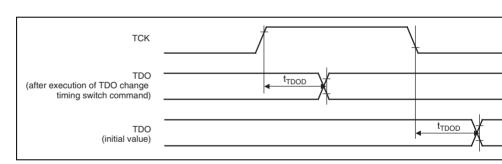


Figure 24.3 H-UDI Data Transfer Timing

Rev. 3.00 Mar. 04, 2009 Page 1016 of 1168

REJ09B0344-0300

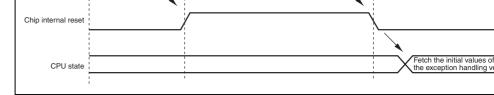


Figure 24.4 H-UDI Reset

24.4.5 **H-UDI Interrupt**

The H-UDI interrupt function generates an interrupt by setting a command from the H-U SDIR. An H-UDI interrupt is a general exception/interrupt operation, resulting in fetchi exception service routine start address from the exception handling vector table, jumpin address, and starting program execution from that address. This interrupt request has a f priority level of 15.

H-UDI interrupts are accepted in sleep mode, but not in software standby mode.

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

Table 25.1 Pin Configuration

Pin Name	Symbol	I/O	Function	
WAVE clock pin	WSCK	Output	WAVE interface clock output	
WAVE receive data	WRXD	Input	WAVE interface receive data input	
WAVE transmit data	WTXD	Output	WAVE interface transmit data output	
	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	

REJ09

REJ09B0344-0300

- 2. Register Bits Bit configurations of the registers are described in the same order as the Register Ad (by functional module, in order of the corresponding section numbers).
- Reserved bits are indicated by in the bit name.
- No entry in the bit-name column indicates that the whole register is allocated as a co
 - 3. Register States in Each Operating Mode

for holding data.

instructions.

- Register states are described in the same order as the Register Addresses (by functio
 - module, in order of the corresponding section numbers).
 - For the initial state of each bit, refer to the description of the register in the correspond section.
 - 4. Notes when Writing to the On-Chip Peripheral Modules

 - To access an on-chip module register, two or more peripheral module clock (Pf) cyc required. Care must be taken in system design. When the CPU writes data to the inte peripheral registers, the CPU performs the succeeding instructions without waiting f completion of writing to registers. For example, a case is described here in which the

The register states described are for the basic operating modes. If there is a specific register states described are for the basic operating modes. on-chip peripheral module, refer to the section on that on-chip peripheral module.

transferring to the software standby mode for power savings. To make this transition SLEEP instruction must be performed after setting the STBY bit in the STBCR regis However a dummy read of the STBCR register is required before executing the SLE

instruction. If a dummy read is omitted, the CPU executes the SLEEP instruction be STBY bit is set to 1, thus the system enters sleep mode not software standby mode. read of the STBCR register is indispensable to complete writing to the STBY bit. To

change by internal peripheral registers while performing the succeeding instructions dummy read of registers to which write instruction is given and then perform the suc

	Bank control register	IBCR
	Bank number register	IBNR
	Interrupt priority register 01	IPR01
	Interrupt priority register 02	IPR02
	Interrupt priority register 05	IPR05
	Interrupt priority register 06	IPR06
	Interrupt priority register 07	IPR07
	Interrupt priority register 08	IPR08
	Interrupt priority register 09	IPR09
	Interrupt priority register 10	IPR10
	Interrupt priority register 11	IPR11
	Interrupt priority register 12	IPR12
	Interrupt priority register 13	IPR13
	Interrupt priority register 14	IPR14
	Interrupt priority register 15	IPR15
UBC	Break address register_0	BAR_0
	Break address mask register_0	BAMR_0
	Break bus cycle register_0	BBR_0
	Break address register_1	BAR_1
	Break address mask register_1	BAMR_1
	Break bus cycle register_1	BBR_1
	Break address register_2	BAR_2

IRQ interrupt request register

32 32

16

32

H'FFFC0414 H'FFFC04B0

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1022 of 1168

IRQRR

16 16 16

16

16

16

16

16

32

32

16

16

16

16 16

16

16

16

16

H'FFFE0C08 H'FFFE0C0A

H'FFFE0806

H'FFFE080C H'FFFE080E

H'FFFE0818

H'FFFE081A

H'FFFE0820

H'FFFE0C00

H'FFFE0C02

H'FFFE0C04

H'FFFE0C06

H'FFFE0C0C

H'FFFE0C0E

H'FFFE0C10

H'FFFE0C12

H'FFFC0400

H'FFFC0404

H'FFFC04A0

H'FFFC0410

H'FFFC0420

	oco opaco bas control registor	00020.1	0_	11111 00010
	CS6 space bus control register	CS6BCR	32	H'FFFC001C
	CS7 space bus control register	CS7BCR	32	H'FFFC0020
	CS0 space wait control register	CS0WCR	32	H'FFFC0028
	CS1 space wait control register	CS1WCR	32	H'FFFC002C
	CS2 space wait control register	CS2WCR	32	H'FFFC0030
	CS3 space wait control register	CS3WCR	32	H'FFFC0034
	CS4 space wait control register	CS4WCR	32	H'FFFC0038
	CS5 space wait control register	CS5WCR	32	H'FFFC003C
	CS6 space wait control register	CS6WCR	32	H'FFFC0040
	CS7 space wait control register	CS7WCR	32	H'FFFC0044
	SDRAM control register	SDCR	32	H'FFFC004C
	Refresh timer control/status register	RTCSR	16	H'FFFC0050
	Refresh timer counter	RTCNT	16	H'FFFC0054
	Refresh time constant register	RTCOR	16	H'FFFC0058
DMAC	DMA source address register_0	SAR_0	32	H'FFFE1000
	DMA destination address register_0	DAR_0	32	H'FFFE1004
	DMA transfer count register_0	DMATCR_0	32	H'FFFE1008
	DMA channel control register_0	CHCR_0	32	H'FFFE100C
			_	
		Re	ev. 3.00 M	lar. 04, 2009 Page

ood space bus control register

CS1 space bus control register

CS2 space bus control register

CS3 space bus control register

CS4 space bus control register

CS5 space bus control register

CCCDCII

CS1BCR

CS2BCR

CS3BCR

CS4BCR

CS5BCR

32

32

32

32

32

REJ09

1111100007

H'FFFC0008

H'FFFC000C

H'FFFC0010

H'FFFC0014

H'FFFC0018

register_1			
DMA reload transfer count register_1	RDMATCR_1	32	H'FFFE1118
DMA source address register_2	SAR_2	32	H'FFFE1020
DMA destination address register_2	DAR_2	32	H'FFFE1024
DMA transfer count register_2	DMATCR_2	32	H'FFFE1028
DMA channel control register_2	CHCR_2	32	H'FFFE102C
DMA reload source address register_2	RSAR_2	32	H'FFFE1120
DMA reload destination address register_2	RDAR_2	32	H'FFFE1124
DMA reload transfer count register_2	RDMATCR_2	32	H'FFFE1128
DMA source address register_3	SAR_3	32	H'FFFE1030
DMA destination address register_3	DAR_3	32	H'FFFE1034
DMA transfer count register_3	DMATCR_3	32	H'FFFE1038
DMA channel control register_3	CHCR_3	32	H'FFFE103C
DMA reload source address register_3	RSAR_3	32	H'FFFE1130
DMA reload destination address register_3	RDAR_3	32	H'FFFE1134
DMA reload transfer count register_3	RDMATCR_3	32	H'FFFE1138
DMA source address register_4	SAR_4	32	H'FFFE1040
DMA destination address register_4	DAR_4	32	H'FFFE1044

DMA reload source address register_1

DMA reload destination address

Rev. 3.00 Mar. 04, 2009 Page 1024 of 1168

RENESAS

H'FFFE1048

H'FFFE104C

32

32

REJ09B0344-0300

DMA transfer count register_4

DMA channel control register_4

DMATCR_4

CHCR_4

RSAR_1

RDAR_1

32

32

H'FFFE1110

H'FFFE1114

DMA transfer count register_6	DMATCR_6	32	H'FFFE1068
DMA channel control register_6	CHCR_6	32	H'FFFE106C
DMA reload source address register_6	RSAR_6	32	H'FFFE1160
DMA reload destination address register_6	RDAR_6	32	H'FFFE1164
DMA reload transfer count register_6	RDMATCR_6	32	H'FFFE1168
DMA source address register_7	SAR_7	32	H'FFFE1070
DMA destination address register_7	DAR_7	32	H'FFFE1074
DMA transfer count register_7	DMATCR_7	32	H'FFFE1078
DMA channel control register_7	CHCR_7	32	H'FFFE107C
DMA reload source address register_7	RSAR_7	32	H'FFFE1170
DMA reload destination address register_7	RDAR_7	32	H'FFFE1174
DMA reload transfer count register_7	RDMATCR_7	32	H'FFFE1178
DMA operation register	DMAOR	16	H'FFFE1200
DMA extension resource selector 0	DMARS0	16	H'FFFE1300
DMA extension resource selector 1	DMARS1	16	H'FFFE1304
	DMA channel control register_6 DMA reload source address register_6 DMA reload destination address register_6 DMA reload transfer count register_6 DMA source address register_7 DMA destination address register_7 DMA transfer count register_7 DMA channel control register_7 DMA reload source address register_7 DMA reload destination address register_7 DMA reload destination address register_7 DMA reload transfer count register_7 DMA operation register DMA extension resource selector 0	DMA channel control register_6 CHCR_6 DMA reload source address register_6 RSAR_6 DMA reload destination address register_6 DMA reload transfer count register_6 RDMATCR_6 DMA source address register_7 SAR_7 DMA destination address register_7 DAR_7 DMA transfer count register_7 DMATCR_7 DMA channel control register_7 CHCR_7 DMA reload source address register_7 RSAR_7 DMA reload destination address register_7 RSAR_7 DMA reload destination address register_7 RDMA_7 DMA reload destination address register_7 RDMA_7 DMA reload transfer count register_7 RDMATCR_7 DMA operation register DMAOR DMA extension resource selector 0 DMARS0	DMA channel control register_6 CHCR_6 32 DMA reload source address register_6 RSAR_6 32 DMA reload destination address RDAR_6 32 register_6 DMA reload transfer count register_6 RDMATCR_6 32 DMA source address register_7 SAR_7 32 DMA destination address register_7 DAR_7 32 DMA transfer count register_7 DMATCR_7 32 DMA channel control register_7 CHCR_7 32 DMA reload source address register_7 RSAR_7 32 DMA reload destination address register_7 RSAR_7 32 DMA reload destination address RDAR_7 32 DMA reload transfer count register_7 RDMATCR_7 32 DMA reload transfer count register_7 RDMATCR_7 32 DMA reload transfer count register_7 RDMATCR_7 32 DMA operation register DMAOR 16 DMA extension resource selector 0 DMARSO 16

DMA reload source address register_5

DMA reload transfer count register_5

DMA destination address register_6

DMA extension resource selector 2

DMA extension resource selector 3

DMA reload destination address

DMA source address register_6

register_5

DMARS2

DMARS3

RSAR_5

RDAR_5

SAR_6

DAR_6

RDMATCR_5

32

32

32

32

32

H'FFFE1150

H'FFFE1154

H'FFFE1158

H'FFFE1060

H'FFFE1064

16

16

REJ09

0 0 =	_	
Timer general register C_0	TGRC_0	16
Timer general register D_0	TGRD_0	16
Timer general register E_0	TGRE_0	16
Timer general register F_0	TGRF_0	16
Timer interrupt enable register2_0	TIER2_0	8
Timer status register2_0	TSR2_0	8
Timer buffer operation transfer mode register_0	TBTM_0	8
Timer control register_1	TCR_1	8
Timer mode register_1	TMDR_1	8
Timer I/O control register_1	TIOR_1	8
Timer interrupt enable register_1	TIER_1	8
Timer status register_1	TSR_1	8
Timer counter_1	TCNT_1	16
Timer general register A_1	TGRA_1	16
Timer general register B_1	TGRB_1	16
Timer input capture control register	TICCR	8
Timer control register_2	TCR_2	8
Timer mode register_2	TMDR_2	8
Timer I/O control register_2	TIOR_2	8
Timer interrupt enable register_2	TIER_2	8
Timer status register_2	TSR_2	8

Timer general register B_0

Rev. 3.00 Mar. 04, 2009 Page 1026 of 1168

REJ09B0344-0300

RENESAS

I GI IA_U

TGRB_0

16

H'FFFE4384

H'FFFE4385 H'FFFE4386 H'FFFE4388 H'FFFE438A H'FFFE4390 H'FFFE4000 H'FFFE4001 H'FFFE4002 H'FFFE4004 H'FFFE4005

11111 = +000

H'FFFE430A H'FFFE430C H'FFFE430E H'FFFE4320 H'FFFE4322 H'FFFE4324 H'FFFE4325 H'FFFE4326

H'FFFE4380 H'FFFE4381 H'FFFE4382

Timer general register C_3	TGRC_3	16	H'FFFE4224
Timer general register D_3	TGRD_3	16	H'FFFE4226
Timer buffer operation transfer mode register_3	TBTM_3	8	H'FFFE4238
Timer control register_4	TCR_4	8	H'FFFE4201
Timer mode register_4	TMDR_4	8	H'FFFE4203
Timer I/O control register H_4	TIORH_4	8	H'FFFE4206
Timer I/O control register L_4	TIORL_4	8	H'FFFE4207
Timer interrupt enable register_4	TIER_4	8	H'FFFE4209
Timer status register_4	TSR_4	8	H'FFFE422D
Timer counter_4	TCNT_4	16	H'FFFE4212
Timer general register A_4	TGRA_4	16	H'FFFE421C
Timer general register B_4	TGRB_4	16	H'FFFE421E
Timer general register C_4	TGRC_4	16	H'FFFE4228
Timer general register D_4	TGRD_4	16	H'FFFE422A
Timer buffer operation transfer mode	TBTM_4	8	H'FFFE4239

Timer A/D converter start request control TADCR

11-11-0

TSR_3

TCNT_3

TGRA_3

TGRB_3

8

16

16

16

Timer interrupt enable register_o

Timer status register_3

Timer general register A_3

Timer general register B_3

Timer counter_3

register

REJ09

H'FFFE4240

Rev. 3.00 Mar. 04, 2009 Page

16

11111 67200

H'FFFE422C

H'FFFE4210

H'FFFE4218

H'FFFE421A

-	
Timer I/O control register U_5	TIORU_5
Timer I/O control register V_5	TIORV_5
Timer I/O control register W_5	TIORW_5
Timer interrupt enable register_5	TIER_5
Timer status register_5	TSR_5
Timer start register_5	TSTR_5
Timer counter U_5	TCNTU_5
Timer counter V_5	TCNTV_5
Timer counter W_5	TCNTW_5
Timer general register U_5	TGRU_5
Timer general register V_5	TGRV_5
Timer general register W_5	TGRW_5
Timer compare match clear register	TCNTCMP
Timer start register	TSTR
Timer synchronous register	TSYR
Timer counter synchronous start register	TCSYSTR
Timer read/write enable register	TRWER
Timer output master enable register	TOER
Timer output control register 1	TOCR1
Timer output control register 2	TOCR2
Timer gate control register	TGCR

Rev. 3.00 Mar. 04, 2009 Page 1028 of 1168

REJ09B0344-0300

Timer control register V_5

Timer control register W_5

RENESAS

TCRV_5

TCRW_5

H'FFFE4282 H'FFFE4284

8 8

8

8

8

8

8

8 8

16 16

8

8

8

8

8

8

8

8

16

16

H'FFFE4090

16 H'FFFE40A0

H'FFFE4082

16 CMPCLR

H'FFFE4092 H'FFFE40A2

H'FFFE4094

H'FFFE40A4

H'FFFE4086

H'FFFE4096

H'FFFE40A6

H'FFFE40B2

H'FFFE40B0

H'FFFE40B4

H'FFFE4080

H'FFFE40B6

H'FFFE420A

H'FFFE420E H'FFFE420F

H'FFFE420D

H'FFFE4281

Timer mode register_3S	TMDR_3S	8	H'FFFE4A02
Timer I/O control register H_3S	TIORH_3S	8	H'FFFE4A04
Timer I/O control register L_3S	TIORL_3S	8	H'FFFE4A05
Timer interrupt enable register_3S	TIER_3S	8	H'FFFE4A08
Timer status register_3S	TSR_3S	8	H'FFFE4A2C
Timer counter_3S	TCNT_3S	16	H'FFFE4A10
Timer general register A_3S	TGRA_3S	16	H'FFFE4A18
Timer general register B_3S	TGRB_3S	16	H'FFFE4A1A
Timer general register C_3S	TGRC_3S	16	H'FFFE4A24
Timer general register D_3S	TGRD_3S	16	H'FFFE4A26
Timer buffer operation transfer mode register_3S	TBTM_3S	8	H'FFFE4A38
Timer control register_4S	TCR_4S	8	H'FFFE4A01
Timer mode register_4S	TMDR_4S	8	H'FFFE4A03
Timer I/O control register H_4S	TIORH_4S	8	H'FFFE4A06
Timer I/O control register L_4S	TIORL_4S	8	H'FFFE4A07
Timer interrupt enable register_4S	TIER_4S	8	H'FFFE4A09
Timer status register_4S	TSR_4S	8	H'FFFE4A2D
 Timer counter_4S	TCNT_4S	16	H'FFFE4A12
	F	Rev. 3.00 M	ar. 04, 2009 Page

Timer dead time chable register

Timer synchronous clear register

Timer waveform control register

Timer output level buffer register

Timer control register_3S

MTU2S

IDLII

TSYCR

TWCR

TOLBR

TCR_3S

8

8

8

8

11111 67207

H'FFFE4250

H'FFFE4260

H'FFFE4236

H'FFFE4A00

REJ09

Timer A/D converter start request cycle set register A_4S	TADCORA_4S	16	H'FFFE4A44
Timer A/D converter start request cycle set register B_4S	TADCORB_4S	16	H'FFFE4A46
Timer A/D converter start request cycle set buffer register A_4S	TADCOBRA_4S	16	H'FFFE4A48
Timer A/D converter start request cycle set buffer register B_4S	TADCOBRB_4S	16	H'FFFE4A4A
Timer control register U_5S	TCRU_5S	8	H'FFFE4884
Timer control register V_5S	TCRV_5S	8	H'FFFE4894
Timer control register W_5S	TCRW_5S	8	H'FFFE48A4
Timer I/O control register U_5S	TIORU_5S	8	H'FFFE4886
Timer I/O control register V_5S	TIORV_5S	8	H'FFFE4896
Timer I/O control register W_5S	TIORW_5S	8	H'FFFE48A6
Timer interrupt enable register_5S	TIER_5S	8	H'FFFE48B2
Timer status register_5S	TSR_5S	8	H'FFFE48B0
Timer start register_5S	TSTR_5S	8	H'FFFE48B4
Timer counter U_5S	TCNTU_5S	16	H'FFFE4880
Timer counter V_5S	TCNTV_5S	16	H'FFFE4890
Timer counter W_5S	TCNTW_5S	16	H'FFFE48A0
Timer general register U_5S	TGRU_5S	16	H'FFFE4882
Timer general register V_5S	TGRV_5S	16	H'FFFE4892
Timer general register W_5S	TGRW_5S	16	H'FFFE48A2
Timer compare match clear register S	TCNTCMPCLRS	8	H'FFFE48B6
Timer start register S	TSTRS	8	H'FFFE4A80

RENESAS

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1030 of 1168

	Timer interrupt skipping counter S	TITCNTS	8	H'FFFE4A3
	Timer buffer transfer set register S	TBTERS	8	H'FFFE4A3
	Timer dead time enable register S	TDERS	8	H'FFFE4A3
	Timer synchronous clear register S	TSYCRS	8	H'FFFE4A5
	Timer waveform control register S	TWCRS	8	H'FFFE4A6
	Timer output level buffer register S	TOLBRS	8	H'FFFE4A3
POE2	Input level control/status register 1	ICSR1	16	H'FFFE5000
	Output level control/status register 1	OCSR1	16	H'FFFE5002
	Input level control/status register 2	ICSR2	16	H'FFFE500
	Output level control/status register 2	OCSR2	16	H'FFFE500
	Input level control/status register 3	ICSR3	16	H'FFFE500
	Software port output enable register	SPOER	8	H'FFFE500
	Port output enable control register 1	POECR1	8	H'FFFE500
	Port output enable control register 2	POECR2	16	H'FFFE500
CMT	Compare match timer start register	CMSTR	16	H'FFFEC00
	Compare match timer control/status register_0	CMCSR_0	16	H'FFFEC00
	Compare match counter_0	CMCNT_0	16	H'FFFEC00
	Compare match constant register_0	CMCOR_0	16	H'FFFEC00

Timer dead time data register S

Timer cycle buffer register S

Timer interrupt skipping set register S

Timer subcounter S

Rev. 3.00 Mar. 04, 2009 Page

REJ09

TDDRS

TCNTSS

TCBRS

TITCRS

16

16

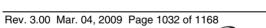
16

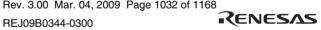
8

H'FFFE4A16

H'FFFE4A20

H'FFFE4A22


H'FFFE4A30


Dit rate regioter_e	00B/111_0	U	11111 20001	
Serial control register_0	SCSCR_0	16	H'FFFE8008	
Transmit FIFO data register_0	SCFTDR_0	8	H'FFFE800C	
Serial status register_0	SCFSR_0	16	H'FFFE8010	
Receive FIFO data register_0	SCFRDR_0	8	H'FFFE8014	
FIFO control register_0	SCFCR_0	16	H'FFFE8018	
FIFO data count register_0	SCFDR_0	16	H'FFFE801C	
Serial port register_0	SCSPTR_0	16	H'FFFE8020	
Line status register_0	SCLSR_0	16	H'FFFE8024	
Serial mode register_1	SCSMR_1	16	H'FFFE8800	
Bit rate register_1	SCBRR_1	8	H'FFFE8804	
Serial control register_1	SCSCR_1	16	H'FFFE8808	
Transmit FIFO data register_1	SCFTDR_1	8	H'FFFE880C	
Serial status register_1	SCFSR_1	16	H'FFFE8810	
Receive FIFO data register_1	SCFRDR_1	8	H'FFFE8814	
FIFO control register_1	SCFCR_1	16	H'FFFE8818	
FIFO data count register_1	SCFDR_1	16	H'FFFE881C	
Serial port register_1	SCSPTR_1	16	H'FFFE8820	
Line status register_1	SCLSR_1	16	H'FFFE8824	
Serial extended mode register_1	SCSEMR_1	8	H'FFFE8900	
Serial mode register_2	SCSMR_2	16	H'FFFE9000	
Bit rate register_2	SCBRR_2	8	H'FFFE9004	•
Serial control register_2	SCSCR_2	16	H'FFFE9008	•

SCBRR_0

H'FFFE8004

Bit rate register_0

	Serial status register_3	SCFSR_3	16	H'FFFE9810
	Receive FIFO data register_3	SCFRDR_3	8	H'FFFE9814
	FIFO control register_3	SCFCR_3	16	H'FFFE9818
	FIFO data count register_3	SCFDR_3	16	H'FFFE981C
	Serial port register_3	SCSPTR_3	16	H'FFFE9820
	Line status register_3	SCLSR_3	16	H'FFFE9824
IIC3	l ² C bus control register 1	ICCR1	8	H'FFFEE000
	I ² C bus control register 2	ICCR2	8	H'FFFEE001
	I ² C bus mode register	ICMR	8	H'FFFEE002
	I ² C bus interrupt enable register	ICIER	8	H'FFFEE003
	I ² C bus status register	ICSR	8	H'FFFEE004
	Slave address register	SAR	8	H'FFFEE005
	I ² C bus transmit data register	ICDRT	8	H'FFFEE006
	I ² C bus receive data register	ICDRR	8	H'FFFEE007
	NF2CYC register	NF2CYC	8	H'FFFEE008
ADC	A/D control register	ADCR	16	H'FFFFE800
	A/D status register	ADSR	16	H'FFFFE802
	A/D start trigger select register	ADSTRGR	8	H'FFFFE81C
	A/D analog input channel select register	ADANSR	8	H'FFFFE820

ochai cxtchaca moac register_z

Serial mode register_3

Serial control register_3

Transmit FIFO data register_3

Bit rate register_3

OOOLIVII I_Z

SCSMR_3

SCBRR_3

SCSCR_3

SCFTDR_3

16

8

16

8

11111 = 5100

H'FFFE9800 H'FFFE9804

H'FFFE9808

H'FFFE980C

	Port A I/O register L	PAIORL
	Port A control register H3	PACRH3
	Port A control register H2	PACRH2
	Port A control register H1	PACRH1
	Port A control register L4	PACRL4
	Port A control register L3	PACRL3
	Port A control register L2	PACRL2
	Port A control register L1	PACRL1
	Port B I/O register H	PBIORH
	Port B I/O register L	PBIORL
	Port B control register H4	PBCRH4
	Port B control register H3	PBCRH3
	Port B control register H2	PBCRH2
	Port B control register H1	PBCRH1
	Port B control register L4	PBCRL4
	Port B control register L3	PBCRL3
	Port B control register L2	PBCRL2
	Port B control register L1	PBCRL1
D 0.00	Mars 04 0000 Page 4004 of 4400	
Hev. 3.00	Mar. 04, 2009 Page 1034 of 1168	

RENESAS

ווטטוו

DADR0

DADR1

DACR

PAIORH

8

8

8

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

16

111111 -----

H'FFFE6800

H'FFFE6801

H'FFFE6802

H'FFFE3804

H'FFFE3806

H'FFFE380A

H'FFFE380C

H'FFFE380E

H'FFFE3810

H'FFFE3812

H'FFFE3814

H'FFFE3816

H'FFFE3884

H'FFFE3886

H'FFFE3888

H'FFFE388A

H'FFFE388C

H'FFFE388E

H'FFFE3890

H'FFFE3892

H'FFFE3894

H'FFFE3896

DAC

PFC

D/A data register 0

D/A data register 1

D/A control register

Port A I/O register H

	Port B data register H	PBDRH	16	H'FFFE388
	Port B data register L	PBDRL	16	H'FFFE388
	Port B port register H	PBPRH	16	H'FFFE389
	Port B port register L	PBPRL	16	H'FFFE389
	Port D data register L	PDDRL	16	H'FFFE398
	Port D port register L	PDPRL	16	H'FFFE399
	Port F data register	PFDR	16	H'FFFE3A8
FLASH	Flash code control and status register	FCCS	8	H'8000C00
	Flash program code select register	FPCS	8	H'8000C00
	Flash erase code select register	FECS	8	H'8000C00
	Flash key code register	FKEY	8	H'8000C00
	Flash MAT select register	FMATS	8	H'8000C00
	Flash transfer destination address register	FTDAR	8	H'8000C00

WAVEOILE

WAVECR1

PADRH

PADRL

PAPRH

PAPRL

16

16

16

16

16

H'FFFE3A16

H'FFFE3800

H'FFFE3802

H'FFFE381C

H'FFFE381E

WAVE full client control register Z

WAVE function control register 1

Port A data register H

Port A data register L

Port A port register H

Port A port register L

I/O port

REJ09

prevent incorrect writing.

Rev. 3.00 Mar. 04, 2009 Page 1036 of 1168

REJ09B0344-0300

IBNR	BE	[1:0]	BOVE	_	_	_	_	
	_	_	_	_		BN[3:0]	
IPR01		IRQ	0[3:0]		IRQ1[3:0]			
		IRQ2	2[3:0]		IRQ3[3:0]			
IPR02		IRQ4	1[3:0]		IRQ5[3:0]			
		IRQ		IRQ7	[3:0]			
IPR05		_	_	_		_	_	
	ADI[3:0]				_	_	_	
IPR06	DMAC0[3:0]			DMAC1[3:0]				
	DMAC2[3:0]				DMAC3[3:0]			
IPR07		DMAC	C4[3:0]		DMAC5[3:0]			
		DMAC	DMAC7[3:0]					
IPR08		CMT	0[3:0]		CMT1[3:0]			
		BSC	WDT[3:0]					
IPR09	MTU0(TGI0A to TGI0D)[3:0]				MTU0(TCI0V, TGI0E, TGI0			
	MTU1(TGI1A, TGI1B)[3:0]				MTU1(TCI1V, TCI1U)[3			

ICR1

IRQRR

IBCR

IRQ71S

IRQ31S

IRQ7F

E15

E7

IRQ70S

IRQ30S

IRQ6F

E14

E6

IRQ61S

IRQ21S

IRQ5F

E13

E5

IRQ60S

IRQ20S

IRQ4F

E12

E4

REJ09

Rev. 3.00 Mar. 04, 2009 Page

IRQ419

IRQ018

IRQ1F

E9

E1

IRQ50S

IRQ10S

IRQ2F

E10

E2

IRQ51S

IRQ11S

IRQ3F

E11

E3

	BA0_23	BA0_22	BA0_21	BA0_20	
	BA0_15	BA0_14	BA0_13	BA0_12	
	BA0_7	BA0_6	BA0_5	BA0_4	
BAMR_0	BAM0_31	BAM0_30	BAM0_29	BAM0_28	
	BAM0_23	BAM0_22	BAM0_21	BAM0_20	
	BAM0_15	BAM0_14	BAM0_13	BAM0_12	
	BAM0_7	BAM0_6	BAM0_5	BAM0_4	
BBR_0	_		UBID0	_	
	CD0	[1:0]	ID0[1:0]		
				_	
BAR_1	BA1_31	BA1_30	BA1_29	BA1_28	
BAR_1		BA1_30 BA1_22	BA1_29 BA1_21	BA1_28 BA1_20	
BAR_1	BA1_31	_		_	
BAR_1	BA1_31 BA1_23	BA1_22	BA1_21	BA1_20	
BAR_1 BAMR_1	BA1_31 BA1_23 BA1_15	BA1_22 BA1_14	BA1_21 BA1_13	BA1_20 BA1_12	
	BA1_31 BA1_23 BA1_15 BA1_7	BA1_22 BA1_14 BA1_6	BA1_21 BA1_13 BA1_5	BA1_20 BA1_12 BA1_4	
	BA1_31 BA1_23 BA1_15 BA1_7 BAM1_31	BA1_22 BA1_14 BA1_6 BAM1_30	BA1_21 BA1_13 BA1_5 BAM1_29	BA1_20 BA1_12 BA1_4 BAM1_28	

BAM1_7

Rev. 3.00 Mar. 04, 2009 Page 1038 of 1168

REJ09B0344-0300

BA0 31

IPR14

IPR15

BAR_0

UBC

1103[3:0]

SCIF0[3:0] SCIF2[3:0]

WAVEIF[3:0]

BA0_29

BA0 28

BA0_27

BA0_19

BA0_11

BA0_3

BAM0_27

BAM0_19

BAM0_11

BAM0 3

BA1_27

BA1_19

BA1_11

BA1_3

BAM1_27

BAM1_19

RW0[1:0]

BA0 30

RENESAS

BAM1_6 BAM1_5

BAM1_11 BAM1_4 BAM1_3

SCIF1[3:0]

SCIF3[3:0]

BA0_25

BA0_17

BA0_9

BA0_1

BAM0_25

BAM0_17

BAM0_9

BAM0_1 CP

BA1_25

BA1_17

BA1_9

BA1_1

BAM1_25

BAM1_17

BAM1_9

BAM1_1

SZ

BA0_26

BA0_18

BA0_10

BA0_2

BAM0_26

BAM0_18

BAM0_10

BAM0 2

BA1_26

BA1_18

BA1_10

BA1_2

BAM1_26

BAM1_18

BAM1_10

BAM1_2

		BA3_15	BA3_14	BA3_13	BA3_12	BA3_11	BA3_10	BA3_9
		BA3_7	BA3_6	BA3_5	BA3_4	BA3_3	BA3_2	BA3_1
	BAMR_3	BAM3_31	BAM3_30	BAM3_29	BAM3_28	BAM3_27	BAM3_26	BAM3_2
		BAM3_23	BAM3_22	BAM3_21	BAM3_20	BAM3_19	BAM3_18	BAM3_1
		BAM3_15	BAM3_14	BAM3_13	BAM3_12	BAM3_11	BAM3_10	BAM3_9
		BAM3_7	BAM3_6	BAM3_5	BAM3_4	BAM3_3	BAM3_2	BAM3_
	BBR_3	_	_	UBID3	_	_	_	С
		CD3	[1:0]	ID3	[1:0]] RW3[1:0]		
	BRCR	_	_	_	_	_	_	_
		_	_	_	_	_	_	CI
		SCMFC0	SCMFC1	SCMFC2	SCMFC3	SCMFD0	SCMFD1	SCMFD
		PCB3	PCB2	PCB1	PCB0	_	_	_
		•	·	· ·	· ·	·	· ·	

DAIVIZ_Z3

BAM2_15

BAM2 7

BA3 31

BA3_23

CD2[1:0]

BBR_2

BAR_3

DAIVIZ_ZZ

BAM2_14

BAM2 6

BA3_30

BA3_22

DAIVIZ_ZI

BAM2_13

BAM2_5

UBID2

BA3_29

BA3_21

ID2[1:0]

DAIVIZ_ZU

BAM2_12

BAM2 4

BA3_28

BA3_20

DAIVIZ_19

BAM2_11

BAM2 3

BA3_27

BA3_19

RW2[1:0]

DAIVIZ_ IO | DAIVIZ_ I

BAM2_

BAM2_

BA3_2

BA3_1

С

S

BAM2_10

BAM2 2

BA3_26

BA3_18

CS1BCR	_		IWW[2:0]			WRWD[2:0]	
	IWRW	/S[1:0]		IWRRD[2:0]		IWRRS[2:0
	_		TYPE[2:0]		ENDIAN	BSZ[1:0]	
	_	_	_	_	_		
CS2BCR	_		IWW[2:0]			WRWD[2:0]	
	IWRW	/S[1:0]		IWRRD[2:0]		IWRRS[2:0
	_		TYPE[2:0]		ENDIAN	BSZ[1:0]	
	_	_	_	_	_		
CS3BCR	_		IWW[2:0]			WRWD[2:0]	
	IWRW	/S[1:0]		IWRRD[2:0]		IWRRS[2:0
	_		TYPE[2:0]		ENDIAN	BSZ[1:0]	
	_	_	_	_	_		
CS4BCR	_		IWW[2:0]			WRWD[2:0]	
	IWRW	/S[1:0]		IWRRD[2:0]		IWRRS[2:0
	_		TYPE[2:0]		ENDIAN	BSZ[1:0]	
CS5BCR	_		IWW[2:0]			WRWD[2:0]	
	IWRW	/S[1:0]		IWRRD[2:0]		IWRRS[2:0
			TYPE[2:0]		ENDIAN	BSZ[1:0]	

Rev. 3.00 Mar. 04, 2009 Page 1040 of 1168 REJ09B0344-0300

CS0WCR*1	_	_	_	_	_	_	_
	_	_	_	BAS	_	_	_
	_	_	_	SW	[1:0]		WR[3:1]
	WR[0]	WM	_	_	_	_	Н
CS0WCR*2	_	_	_	_	_	_	_
	_	_	BST	[1:0]	_	_	В
	_	_	_	_	_		W[3:1]
	W[0]	WM	_	_	_	_	_
CS0WCR*4	_	_	_	_	_	_	_
	_	_	_	_	_	_	В
	_	_	_	_	_		W[3:1]
	W[0]	WM	_	_	_	_	_
CS1WCR*1	_	_	_	_	_	_	_
	_	_	_	BAS	_		WW[2:0
	_	_	_	SW	[1:0]		WR[3:1]
	WR[0]	WM	_	_	_	_	Н
CS2WCR*1	_	_	_	_	_	_	_
	_	_	_	BAS	_	_	_
	_	_	_	_	_		WR[3:1]

WR[0]

WM

REJ09

Rev. 3.00 Mar. 04, 2009 Page

	_	WTR	P[1:0]	_	
	A3CL[0]	_	_	TRW	L[1:0]
CS4WCR*1	_	_	_	_	-
	_	_	_	BAS	-
	_	_	_	SW	[1:0]
	WR[0]	WM	_	_	-
CS4WCR*2	_	_	_	_	=
	_	_	BST	[1:0]	-
	_	_	_	SW	[1:0]
	W[0]	WM	_	_	-
CS5WCR*1	_	_	_	_	-
	_	_	SZSEL	MPXW/BAS	=
	_	_	_	SW	[1:0]
	WR[0]	WM	_	_	-
CS6WCR*1	_	_	_	_	_
	_	_	_	BAS	-
				SW	[1:0]
	WR[0]	WM			_

WH[U]

CS3WCR*3

WTRCD[1:0]

WTF

WW[2:0]

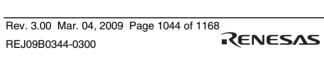
WR[3:1] HV

в۷

W[3:1] Н۷

WW[2:0] WR[3:1]

WR[3:1] Н۷


Н۷

		_	_	_	ASHO	VV[1:0]	_	A3
	RTCSR	_	_	_	_	_	_	_
		_	_	_	_	_	_	_
		_	_	_	_	_	_	_
		CMF	CMIE		CKS[2:0]			RRC[2:0
	RTCNT	_	_	_	_	_	_	_
		_	_	_	_	_	_	_
		_	_	_	_	_	_	_
	RTCOR	_	_	_	_	_	_	_
		_	_	_	_	_	_	_
		_	_	_	_	_	_	_
DMAC	SAR_0							
	DAR_0							

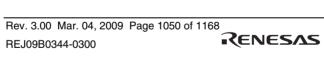
Rev. 3.00 Mar. 04, 2009 Page REJ09

	DL	סמ	IB	15[1:0]	IE	IE
RSAR_0							
							<u> </u>
RDAR_0							
RDMATCR_0							
SAR_1							
DAR1							
ļ							

	DL	סט	IΒ	15[1:0]	IE	IE
RSAR_1							
RDAR_1							
RDMATCR_1	_	_	_	_	_	_	_
SAR_2							
DAR_2							

	DL	סט	IB	15[1:0]	IE	IE
RSAR_2							
RDAR_2							
RDMATCR_2	_	_	_	_	_	_	=
SAR_3							
DAR_3							

	DL	סט	IΒ	15[1:0]	IE	IE
RSAR_3							
RDAR_3							
RDMATCR_3	_	_	_	_	_	_	=
SAR_4							
DAR_4							


	_	_	IB	15[1:0]	IE	15
RSAR_4							
RDAR_4							
RDMATCR_4	_	_	_	_	_	_	_
SAR_5							
DAR_5							

Rev. 3.00 Mar. 04, 2009 Page 1048 of 1168

		_	_	IB	15[1:0]	IE	IE
	RSAR_5							
	RDAR_5							
	RDMATCR_5	_	_	_	_	_	_	_
	SAR_6							
	DAR_6							

		_	IB	15[1:0]	IE	IE
RSAR_6							
RDAR_6							
RDMATCR_6	_	_	_	_	_	_	_
SAR_7							
DAR_7							

RDAR_7										
RDMATCR_7	_	_	_	_	_	_				
DMAOR	_	_	СМ	S[1:0]	_	_				
	_	_	_	_	_	AE				
DMARS0			CH1 N	/ID[5:0]						
		CH0 MID[5:0]								
DMARS1		CH3 MID[5:0]								
			CH2 N	/ID[5:0]						
DMARS2			CH5 N	/ID[5:0]						
			CH4 N	/ID[5:0]						
DMARS3			CH7 N	/ID[5:0]						
	CH6 MID[5:0]									

RSAR_7

15[1:0]

ΙŒ

1 =

CH2
CH4
CH4

REJ09

Rev. 3.00 Mar. 04, 2009 Page

TGRA_0								
TGRB_0								
TGRC_0								
TGRD_0								
TGRE_0								
TGRF_0								
TIER2_0	TTGE2	_	_	_	_	_	TGIEF	
TSR2_0	_	_	_	_	_	_	TGFF	
TBTM_0	_	_	_	_	_	TTSE	TTSB	
TCR_1		CCLF	२[1:0]	CKEG	3[1:0]		TPSC[2:0]	
TMDR_1	_	_	_	_		MD[3:0]		
TIOR_1		IOB	[3:0]		IOA[3:0]			
TIER_1	TTGE	_	TCIEU	TCIEV	_	_	TGIEB	
TSR_1	TCFD	_	TCFU	TCFV	_	_	TGFB	
TCNT_1								
TGRA_1								
TGRB_1								
TICCR	_	_	_	_	I2BE	I2AE	I1BE	
TCR_2	_	CCLF	₹[1:0]	CKEG	3[1:0]		TPSC[2:0]	
TMDR_2	_	_	_	_		MD[3	3:0]	
				IOA[3:0]				
TIOR_2		IOB	[3:0]			IOA[3:0]	

TSR_2

TCNT_2

TCFV

TGFB

TCFU

TCFD

_							
TGRC_3							
TGRD_3							
TBTM_3	_	_	_	_	_	_	TTS
TCR_4		CCLR[2:0]		CKEC	G[1:0]		TPSC[2
TMDR_4	_	_	BFB	BFA		MD[3:0]
TIORH_4		IOB	[3:0]			IOA[3:0]
TIORL_4		IOD	[3:0]			IOC[3:0]
TIER_4	TTGE	TTGE2	_	TCIEV	TGIED	TGIEC	TGIE
TSR_4	TCFD	_	_	TCFV	TGFD	TGFC	TGFI
TCNT_4							
TGRA_4							
TGRB_4							
TGRC_4							
TGRD_4							
TBTM_4	_	_	_	_	_	_	TTSI
TADCR	BF[1:0]			_		_
	UT4AE	DT4AE	UT4BE	DT4BE	ITA3AE	ITA4VE	ITB3A
TADCORA_4							
TADCORB_4							
TADCOBRA_4	•						

ICEV

IGFD

IGEC

IGED

10H_3

TCNT_3 TGRA_3 TGRB_3 ICFD

Rev. 3.00 Mar. 04, 2009 Page REJ09

HEH_5		_	_			IGIESU	IGIESV
TSR_5	_	_	_	_	_	CMFU5	CMFV5
TSTR_5	_	_	_	_	_	CSTU5	CSTV5
TCNTU_5							
TCNTV_5							
TCNTW_5							
TGRU_5							
TGRV_5							
TGRW_5							
TCNTCMPCLR	_	_	_	_	_	CMPCLR 5U	CMPCLF 5V
TSTR	CST4	CST3	_	_	_	CST2	CST1
TSYR	SYNC4	SYNC3	_	_	_	SYNC2	SYNC1
TCSYSTR	SCH0	SCH1	SCH2	SCH3	SCH4	_	SCH3S
TRWER	_	_	_	_	_	_	_
TOER	_	_	OE4D	OE4C	OE3D	OE4B	OE4A
TOCR1	_	PSYE	_	_	TOCL	TOCS	OLSN
TOCR2	BF[[1:0]	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N
TGCR	_	BDC	N	Р	FB	WF	VF
TCDR							
TDDR							

Rev. 3.00 Mar. 04, 2009 Page 1054 of 1168

	TSYCR	CE0A	CE0B	CE0C	CE0D	CE1A	CE1B	CE2A
	TWCR	CCE	_	_	_	_	_	_
	TOLBR	_	_	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N
MTU2S	TCR_3S	CCLR[2:0]			CKE	G[1:0]		TPSC[2:
	TMDR_3S	_	_	BFB	BFA		MD[3:0]
	TIORH_3S		IOB	[3:0]			IOA[3:0]
	TIORL_3S		IOD		IOC[3:0]		
	TIER_3S	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB
	TSR_3S	TCFD	_	_	TCFV	TGFD	TGFC	TGFB
	TCNT_3S							
	TGRA_3S							
	TGRB_3S							
	TGRC_3S							
	TGRD_3S							
	TBTM_3S	_	_	_	_	_	_	TTSB
	TCR_4S		CCLR[2:0]		CKE	G[1:0]		TPSC[2:
	TMDR_4S	_	_	BFB	BFA		MD[3:0]
	TIORH_4S	IOB[3:0]				IOA[3:0]		
	TIORL_4S		IOD	[3:0]		IOC[3:0]		
	TIER_4S	TTGE	TTGE2	_	TCIEV	TGIED	TGIEC	TGIEB

IDER

TSR_4S

TCNT_4S TGRA_4S TCFD

REJ09

TGFB

TGFC

Rev. 3.00 Mar. 04, 2009 Page

TGFD

RENESAS

TCFV

TADCORB_45							
TADCOBRA_4S							
TADCOBRB_4S							
TCRU_5S	_	_	_	_	_	_	TPS
TCRV_5S	_	_	_	_	_	_	TPS
TCRW_5S	_	_	_	_	_	_	TPS
TIORU_5S	_	_	_		•	IOC[4:0]	
TIORV_5S	_	_	_			IOC[4:0]	
TIORW_5S	_	_	_			IOC[4:0]	
TIER_5S	_	_	_	_	_	TGIE5U	TGIE5V
TSR_5S		_	_	_	_	CMFU5	CMFV5
TSTR_5S	_	_	_	_	_	CSTU5	CSTV5
TCNTU_5S							
TCNTV_5S							
TCNTW_5S							
TGRU_5S							
TGRV_5S							
TGRW_5S							
TCNTCMPCLRS	_	_	_	_	_	CMPCLR 5U	CMPCLR 5V
TSTRS	CST4	CST3	_	_	_	CST2	CST1
TSYRS	SYNC4	SYNC3	_	_	_	SYNC2	SYNC1

Rev. 3.00 Mar. 04, 2009 Page 1056 of 1168 REJ09B0344-0300

TRWERS TOERS

OE4C

OE3D

OE4B

OE4A

OE4D

		<u> </u>						
	TITCRS	T3AEN		3ACOR[2:0]	J	T4VEN		4VCOR[2
	TITCNTS			3ACNT[2:0]	1			4VCNT[2
	TBTERS		_	_	_	_	_	В
	TDERS		_	_	_	_	_	_
	TSYCRS	CE0A	CE0B	CE0C	CE0D	CE1A	CE1B	CE2A
	TWCRS	CCE	_	_	_	_	_	scc
	TOLBRS		_	OLS3N	OLS3P	OLS2N	OLS2P	OLS1N
POE2	ICSR1	POE3F	_	POE1F	POE0F	_	_	_
		POE3	BM[1:0]	POE2	2M[1:0]	POE1	IM[1:0]	РО
	OCSR1	OSF1	_	_	_	_	_	OCE1
		_	_	_	_	_	_	_
	ICSR2	POE7F	_	_	POE4F	_	_	_
		POE7	/M[1:0]	_	_	_	_	РО
	OCSR2	OSF2	_	_	_	_	_	OCE2
		_	_	_	_	_	_	
	ICSR3	_ '	_	_	POE8F	_	_	POE8E
		_	_	_	_	_	_	РО
	SPOER		_	_	_	_	MTU2S	MTU2

1011122

TCBRS

HIZ

CHOHI

Rev. 3.00 Mar. 04, 2009 Page REJ09

		CMF	CMIE	_	_	_	_	СК	
	CMCNT_0					'			
	CMCOR_0	1							
		,	1			,			
	CMCSR_1	_	_	_	_	_	_	_	
		CMF	CMIE			_	_	СК	
	CMCNT_1	†							
		·							
	CMCOR_1	† '							
		1							
WDT	WTCSR	IOVF	WT/IT	TME		_		CKS[2:0]	
	WTCNT	1							
	WRCSR	WOVF	RSTE	RSTS	_	_	_	_	
SCIF	SCSMR_0	_	_	_	_	_	_	_	
		C/Ā	CHR	PE	O/E	STOP	_	СК	
	SCBRR_0	1							
	SCSCR_0	_	_	_	_	_	_	_	
		TIE	RIE	TE	RE	REIE	_	СК	
	SCFTDR_0	_	_	_	_	_	_	_	
	SCFSR_0		PEP	R[3:0]	·		FER[3:0]		
		ER	TEND	TDFE	BRK	FER	PER	RDF	

Rev. 3.00 Mar. 04, 2009 Page 1058 of 1168 REJ09B0344-0300

SCFRDR_0

	TIE	RIE	TE	RE	REIE	_	(
SCFTDR_1	_	_	_	_	_	_	_	
SCFSR_1		PER	[3:0]			FER[3:0]	
	ER	TEND	TDFE	BRK	FER	PER	RDF	
SCFRDR_1								
SCFCR_1	_	_	_	_	_	_	_	
	RTRO	G[1:0]	TTRO	G[1:0]	_	TFRST	RFRS	
SCFDR_1	_	_	_	T[4:0]				
	_	_	_	R[4:0]				
SCSPTR_1	_	_	_	_	_	_	_	
	_	_	_	_	SCKIO	SCKDT	SPB2	
SCLSR_1	_	_	_	_	_	_	_	
	=	_	_	_	_	=	_	
SCSEMR_1	ABCS	_	_	_	_	_	_	
SCSMR_2	_	_	_	_	_	_	_	
	C/Ā	CHR	PE	O/Ē	STOP		(
SCBRR_2								
SCSCR_2	=	_	_	_	_	_	_	
	TIE	RIE	TE	RE	REIE	_	(

PΕ

CHR

O/E

STOP

SCSMR_1

SCBRR_1 SCSCR_1 C/A

Rev. 3.00 Mar. 04, 2009 Page

С

REJ09

	_	_	_			H[4:0]	
SCSPTR_2	_	_	_	_	_	_	_
İ	_	_	_	_	SCKIO	SCKDT	SPB2IO
SCLSR_2	_	_	_	_	_	_	_
	_	_	_	_	_	_	_
SCSEMR_2	ABCS	_	_	_	_	_	_
SCSMR_3	_	_	_	_	_	_	_
	C/Ā	CHR	PE	O/Ē	STOP	_	СК
SCBRR_3							
SCSCR_3	_	_	_	_	_	_	_
	TIE	RIE	TE	RE	REIE	_	СК
SCFTDR_3							
SCFSR_3		PEF	R[3:0]			FER[3:0]
	ER	TEND	TDFE	BRK	FER	PER	RDF
SCFRDR_3	_	_	_	_	_	_	_
SCFCR_3	_	_	_	_	_	_	_
	RTR	G[1:0]	TTRG[1:0]		_	TFRST	RFRST
SCFDR_3	_	_	_			T[4:0]	
	_	_	_			R[4:0]	
SCSPTR_3	_	_	_	_	_	_	_
	_	_	_	=	SCKIO	SCKDT	SPB2IO
	ı				l		

Rev. 3.00 Mar. 04, 2009 Page 1060 of 1168 REJ09B0344-0300

SCLSR_3

ADC	ADCR	ADST	ADCS	ACE	ADIE	_	_	TRO		
	ADSR	_	_	_	_	_	_	_		
	ADSTRGR	_	STR6	STR5	STR4	STR3	STR2	STE		
	ADANSR	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	AN:		
	ADDR0	_	_	_	_		ADD0[11:8]		
		ADD0[7:0]								
	ADDR1	_	_	_	_		ADD1[11:8]		
		ADD1[7:0]								
	ADDR2	_	_	_	_	ADD2[11:8]				
					ADD2	[7:0]				
	ADDR3	_	_	_	_		ADD3[11:8]		
		ADD3[7:0]								
	ADDR4	_	_	_	_		ADD4[11:8]		
					ADD4	[7:0]				
	ADDR5	_	_	_	_		ADD5[11:8]		
					ADD5	[7:0]				
	ADDR6	_	_	_	_		ADD6[11:8]		
		ADD6[7:0]								
	ADDR7	_					ADD7[11:8]		
					ADD7	[7:0]				

ICDRR NF2CYC

REJ09

Rev. 3.00 Mar. 04, 2009 Page

TRGE

STR1 ANS1

			-	•				
PACRH1	_		PA19MD[2:0]				
	_		PA17MD[2:0]				
PACRL4			PA15MD[2:0]					
		PA13MD[2:0]						
PACRL3			PA11MD[2:0]				
	_		PA9MD[2:0]					
PACRL2		PA7MD[2:0]						
		PA5MD[2:0]						
PACRL1								
			PA1MD[2:0]					
PBIORH		PB30IOR	PB29IOR	PB28IOR				
	PB23IOR	PB22IOR	PB21IOR	PB20IOR				
PBIORL	PB15IOR	PB14IOR	PB13IOR	PB12IOR				
	PB7IOR	PB6IOR	PB5IOR	PB4IOR				
PBCRH4			_					
	_		PB29MD[2:0]				

PA25MD[2:0]

PA23MD[2:0]

PA21MD[2:0]

PA24MD[2:

PA22MD[2:

PA20MD[2: PA18MD[2: PA16MD[2: PA14MD[2: PA12MD[2: PA10MD[2: PA8MD[2:0 PA6MD[2:0 PA4MD[2:0 PA2MD[2:0 PA0MD[2:0

PB27MD[2:0]

PB25MD[2:0]

PB27IOR

PB19IOR

PB11IOR

PB3IOR

PB26IOR

PB18IOR

PB10IOR

PB2IOR

PB25IOF

PB17IOF

PB9IOR

PB1IOR PB30MD[2: PB28MD[2:

PB26MD[2: PB24MD[2:

Rev. 3.00 Mar. 04, 2009 Page 1062 of 1168

PBCRH3

PACHES

PACRH2

RENESAS REJ09B0344-0300

PDIOR	PD15IOR	PD14IOR	PD13IOR	PD12IOR	PD11IOR	PD10IOR	PD9IO
	PD7IOR	PD6IOR	PD5IOR	PD4IOR	PD3IOR	PD2IOR	PD1IO
PDCRL4	_		PD15MD[2:0]	_	PD14MD	
	_		PD13MD[2:0]	_	F	PD12MD[
PDCRL3	_		PD11MD[2:0]	_	F	PD10MD[
	_	PD9MD[2:0]			_		PD8MD[2
PDCRL2	_		PD7MD[2:0]		_		PD6MD[2
	_		PD5MD[2:0]		_		PD4MD[2
PDCRL1	_	PD3MD[2:0]			_		PD2MD[2
	_		PD1MD[2:0]		_		PD0MD[2
PFCRL1	_	_		_	_	_	
	_		PF1MD[2:0]		_		PF0MD[2
IFCR	_	_		_	_	_	
	_	_		_	_	_	IRO
WAVECR2		_		_	_	_	
	_	_	_	_	_	,	WVRMD[2
WAVECR1	_		WVTMD[2:0]		_	,	WVSMD[2
	_	_		_	_	_	

PB9IVID[2:0]

PB7MD[2:0] PB5MD[2:0]

PB3MD[2:0]

PB1MD[2:0]

PBCRL2

PBCRL1

RENESAS

REJ09

Rev. 3.00 Mar. 04, 2009 Page

PBOIVID[2

PB6MD[2

PB4MD[2

PB2MD[2

PB0MD[2

		1 7/111	1 701 11	1 731 11	1 74111	1 701 11	1 72111	1 7 11 11
	PBDRH	_	PB30DR	PB29DR	PB28DR	PB27DR	PB26DR	PB25DR
		PB23DR	PB22DR	PB21DR	PB20DR	PB19DR	PB18DR	PB17DR
	PBDRL	PB15DR	PB14DR	PB13DR	PB12DR	PB11DR	PB10DR	PB9DR
Ì		PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR
	PBPRH	_	PB30PR	PB29PR	PB28PR	PB27PR	PB26PR	PB25PR
		PB23PR	PB22PR	PB21PR	PB20PR	PB19PR	PB18PR	PB17PR
	PBPRL	PB15PR	PB14PR	PB13PR	PB12PR	PB11PR	PB10PR	PB9PR
		PB7PR	PB6PR	PB5PR	PB4PR	PB3PR	PB2PR	PB1PR
	PDDRL	PD15DR	PD14DR	PD13DR	PD12DR	PD11DR	PD10DR	PD9DR
		PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR
	PDPRL	PD15PR	PD14PR	PD13PR	PD12PR	PD11PR	PD10PR	PD9PR
		PD7PR	PD6PR	PD5PR	PD4PR	PD3PR	PD2PR	PD1PR
	PFDR	_	_ =	_ =			_ =	_
		_	=	_	_	=	_	PF1DR
FLASH	FCCS	FWE	MAT	_	FLER	_	_	_
	FPCS	_	_	_	_	_	_	_
	FECS	_	_	_	_	_	_	_
	FKEY				K[7:	:0]		
	FMATS	MS7	MS6	MS5	MS4	MS3	MS2	MS1

Rev. 3.00 Mar. 04, 2009 Page 1064 of 1168 REJ09B0344-0300

FTDAR

TDA[6:0]

TDER

- 4. When burst ROM (clocked synchronous) is the memory type

REJ09

	IPR01	Initialized	Retained
	IPR02	Initialized	Retained
	IPR05	Initialized	Retained
	IPR06	Initialized	Retained
	IPR07	Initialized	Retained
	IPR08	Initialized	Retained
	IPR09	Initialized	Retained
	IPR10	Initialized	Retained
	IPR11	Initialized	Retained
	IPR12	Initialized	Retained
	IPR13	Initialized	Retained
	IPR14	Initialized	Retained
	IPR15	Initialized	Retained
UBC	BAR_0	Initialized	Retained
	BAMR_0	Initialized	Retained
	BBR_0	Initialized	Retained
	BAR_1	Initialized	Retained
	BAMR_1	Initialized	Retained
	BBR_1	Initialized	Retained
	BAR_2	Initialized	Retained
	BAMR_2	Initialized	Retained

1110011111

IBCR

IBNR

minanzea

Initialized

Initialized

ricianica

Retained

Retained*2

Retained

110

Ret

ned

Retained

Retained

Retained

Retained

Retained

Retained

Retained

CS1WCR	Initialized	Retained	Retained	_
CS2WCR	Initialized	Retained	Retained	_
CS3WCR	Initialized	Retained	Retained	_
CS4WCR	Initialized	Retained	Retained	_
CS5WCR	Initialized	Retained	Retained	_
CS6WCR	Initialized	Retained	Retained	_
CS7WCR	Initialized	Retained	Retained	_
SDCR	Initialized	Retained	Retained	_
RTCSR	Initialized	Retained (Flag processing continued)	Retained	_
RTCNT	Initialized	Retained (Count-up continued)	Retained	_
RTCOR	Initialized	Retained	Retained	_
	R	ENESAS	Rev. 3.00	Mar. 04,

minanzca

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

ricianica

Retained

Retained

Retained

Retained

Retained

Retained

Retained

ricianica

Retained

Retained

Retained

Retained

Retained

Retained

Retained

R

R

R

R

R

R

R

R R R R R R R R R (F pr CC R (C CC R

REJ09

COIDOIL

CS2BCR

CS3BCR

CS4BCR

CS5BCR

CS6BCR

CS7BCR

CS0WCR

DAR_2	Initialized	Retained
DMATCR_2	Initialized	Retained
CHCR_2	Initialized	Retained
RSAR_2	Initialized	Retained
RDAR_2	Initialized	Retained
RDMATCR_2	Initialized	Retained
SAR_3	Initialized	Retained
DAR_3	Initialized	Retained
DMATCR_3	Initialized	Retained
CHCR_3	Initialized	Retained
RSAR_3	Initialized	Retained
RDAR_3	Initialized	Retained
RDMATCR_3	Initialized	Retained
SAR_4	Initialized	Retained
DAR_4	Initialized	Retained
DMATCR_4	Initialized	Retained

Rev. 3.00 Mar. 04, 2009 Page 1068 of 1168

REJ09B0344-0300

O/ \1 _ 1

DAR_1

DMATCR_1

CHCR_1

RSAR 1

RDAR_1

SAR_2

RDMATCR_1

minuanzoa

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Retained

1 lotali loa

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Ref

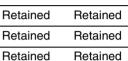
Ref

Ref

Ref

Ref

Ref


Ref

Ref

Ref

110

Ref

Ref

Ref

Ref

Ref

Ref

Ref

Ref

Retained

Retained

Retained

Retained

Retained

Retained

Retained

RSAR_6	Initialized	Retained	Retained	Retained
RDAR_6	Initialized	Retained	Retained	Retained
RDMATCR_6	Initialized	Retained	Retained	Retained
SAR_7	Initialized	Retained	Retained	Retained
DAR_7	Initialized	Retained	Retained	Retained
DMATCR_7	Initialized	Retained	Retained	Retained
CHCR_7	Initialized	Retained	Retained	Retained
RSAR_7	Initialized	Retained	Retained	Retained
RDAR_7	Initialized	Retained	Retained	Retained
RDMATCR_7	Initialized	Retained	Retained	Retained

Initialized

Retained

Retained

Retained

Retained

Retained

Retained

Retained

011011_0

RSAR_5

RDAR_5

SAR_6

DAR_6

RDMATCR_5

DMATCR_6

CHCR_6

DMAOR

DMARS0

DMARS1

DMARS2

DMARS3

Retained

Retained

Retained

Retained

Retained

1 lotali loa

Retained

1 lotali loa

Retained

R

R

R

R

R

R

R

R

R

R

R

REJ09

TGRF_0	Initialized	Retained	Retained
TIER2_0	Initialized	Retained	Retained
TSR2_0	Initialized	Retained	Retained
TBTM_0	Initialized	Retained	Retained
TCR_1	Initialized	Retained	Retained
TMDR_1	Initialized	Retained	Retained
TIOR_1	Initialized	Retained	Retained
TIER_1	Initialized	Retained	Retained
TSR_1	Initialized	Retained	Retained
TCNT_1	Initialized	Retained	Retained
TGRA_1	Initialized	Retained	Retained
TGRB_1	Initialized	Retained	Retained
TICCR	Initialized	Retained	Retained
TCR_2	Initialized	Retained	Retained
TMDR_2	Initialized	Retained	Retained
TIOR_2	Initialized	Retained	Retained
TIER_2	Initialized	Retained	Retained
TSR_2	Initialized	Retained	Retained
TCNT_2	Initialized	Retained	Retained
ev. 3.00 Mar. 04, 2009	Page 1070 of 1168		
	Page 1070 of 1168	?ENES∧	

1 01 1/1_0

TGRB_0

TGRC_0

TGRD_0

TGRE 0

1 lotali loa

Retained

Retained

Retained

Retained

Initialized

Initialized

Initialized

Initialized

i icianica

Retained

Retained

Retained

Retained

minuanzoa

Initialized

Ret

TBTM_3	Initialized	Retained	Retained	Initialized	Re
TCR_4	Initialized	Retained	Retained	Initialized	Re
TMDR_4	Initialized	Retained	Retained	Initialized	Re
TIORH_4	Initialized	Retained	Retained	Initialized	Re
TIORL_4	Initialized	Retained	Retained	Initialized	Re
TIER_4	Initialized	Retained	Retained	Initialized	Re
TSR_4	Initialized	Retained	Retained	Initialized	Re
TCNT_4	Initialized	Retained	Retained	Initialized	Re
TGRA_4	Initialized	Retained	Retained	Initialized	Re
TGRB_4	Initialized	Retained	Retained	Initialized	Re
TGRC_4	Initialized	Retained	Retained	Initialized	Re
TGRD_4	Initialized	Retained	Retained	Initialized	Re
TBTM_4	Initialized	Retained	Retained	Initialized	Re
TADCR	Initialized	Retained	Retained	Initialized	Re
TADCORA_4	Initialized	Retained	Retained	Initialized	Re
TADCORB_4	Initialized	Retained	Retained	Initialized	Re
TADCOBRA_4	Initialized	Retained	Retained	Initialized	Re
TADCOBRB_4	Initialized	Retained	Retained	Initialized	Re
	2	ENESAS	Rev. 3.00 M	ar. 04, 2009	·
		C VC 3/32	•		REJ09

milianzea

Initialized

Initialized

Initialized

Initialized

Initialized

ricianica

Retained

Retained

Retained

Retained

Retained

ricianica

Retained

Retained

Retained

Retained

Retained

minanzca

Initialized

Initialized

Initialized

Initialized

Initialized

Re

Re

R

Re

R

1011_0

TCNT_3

TGRA_3

TGRB_3

TGRC_3

TGRD_3

	TGRV_5	Initialized	Retained
	TGRW_5	Initialized	Retained
	TCNTCMPCLR	Initialized	Retained
	TSTR	Initialized	Retained
	TSYR	Initialized	Retained
	TCSYSTR	Initialized	Retained
	TRWER	Initialized	Retained
	TOER	Initialized	Retained
	TOCR1	Initialized	Retained
	TOCR2	Initialized	Retained
	TGCR	Initialized	Retained
	TCDR	Initialized	Retained
	TDDR	Initialized	Retained
	TCNTS	Initialized	Retained
	TCBR	Initialized	Retained
	TITCR	Initialized	Retained
	TITCNT	Initialized	Retained
	TBTER	Initialized	Retained
ev. 3.00 Mar	c. 04, 2009 Page 10	72 of 1168	

REJ09B0344-0300

1011_0

TSTR_5

TCNTU_5

TCNTV_5

TCNTW_5

TGRU_5

Initialized

Initialized

Initialized

Initialized

Initialized

Retained

Retained

Retained

Retained

Retained

Retained Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained Retained Initialized Initialized Initialized

minuanzoa

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Ret Ret Initialized

Ret Ret Ret

Ret

Ret

Ret

Ret

Ret

Ret

Ret

Initialized Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized Initialized Ret Ret

Ret

Ret

Ret

Ret

Ret

Ret

Ret

Ret

Ret

	1	ENESY	S		REJ0
				Mar. 04, 2009	Page
TADCORB_4S	Initialized	Retained	Retained	Initialized	R
TADCORA_4S	Initialized	Retained	Retained	Initialized	R
TADCRS	Initialized	Retained	Retained	Initialized	R
TBTM_4S	Initialized	Retained	Retained	Initialized	R
TGRD_4S	Initialized	Retained	Retained	Initialized	R
TGRC_4S	Initialized	Retained	Retained	Initialized	R
TGRB_4S	Initialized	Retained	Retained	Initialized	R
TGRA_4S	Initialized	Retained	Retained	Initialized	P
TCNT_4S	Initialized	Retained	Retained	Initialized	F
TSR_4S	Initialized	Retained	Retained	Initialized	F
TIER_4S	Initialized	Retained	Retained	Initialized	F
TIORL_4S	Initialized	Retained	Retained	Initialized	F
TIORH_4S	Initialized	Retained	Retained	Initialized	F
TMDR_4S	Initialized	Retained	Retained	Initialized	F
TCR_4S	Initialized	Retained	Retained	Initialized	F
TBTM_3S	Initialized	Retained	Retained	Initialized	F
TGRD_3S	Initialized	Retained	Retained	Initialized	P
TGRC_3S	Initialized	Retained	Retained	Initialized	F

milianzea

Initialized

Initialized

Initialized

Initialized

Initialized

ricianica

Retained

Retained

Retained

Retained

Retained

ricianica

Retained

Retained

Retained

Retained

Retained

minanzca

Initialized

Initialized

Initialized

Initialized

Initialized

R

R

R

R

R

TIOTIL_00

TIER_3S

TSR_3S

TCNT_3S

TGRA_3S

TGRB_3S

TGRV_5S	Initialized	Retained
TGRW_5S	Initialized	Retained
TCNTCMPCLRS	Initialized	Retained
TSTRS	Initialized	Retained
TSYRS	Initialized	Retained
TRWERS	Initialized	Retained
TOERS	Initialized	Retained
TOCR1S	Initialized	Retained
TOCR2S	Initialized	Retained
TGCRS	Initialized	Retained
TCDRS	Initialized	Retained
TDDRS	Initialized	Retained
TCNTSS	Initialized	Retained
TCBRS	Initialized	Retained
TITCRS	Initialized	Retained

1101111_00

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Retained

TIER 5S

TSR_5S

TSTR_5S

TCNTU 5S

TCNTV_5S

TCNTW_5S

TGRU_5S

minuanzoa

Initialized

Ret

Rev. 3.00 Mar. 04, 2009 Page 1074 of 1168

CMT					
CIVII	CMSTR	Initialized	Retained	Initialized	Retained
	CMCSR_0	Initialized	Retained	Initialized	Retained
	CMCNT_0	Initialized	Retained	Initialized	Retained
	CMCOR_0	Initialized	Retained	Initialized	Retained
	CMCSR_1	Initialized	Retained	Initialized	Retained
	CMCNT_1	Initialized	Retained	Initialized	Retained
	CMCOR_1	Initialized	Retained	Initialized	Retained
WDT	WTCSR	Initialized	Retained	Retained	_
	WTCNT	Initialized	Retained	Retained	_
	WRCSR	Initialized*1	Retained	Retained	_
SCIF	SCSMR_0	Initialized	Retained	Retained	Retained
	SCBRR_0	Initialized	Retained	Retained	Retained
	SCSCR_0	Initialized	Retained	Retained	Retained
	SCFTDR_0	Undefined	Retained	Retained	Retained
	SCFSR_0	Initialized	Retained	Retained	Retained
	SCFRDR_0	Undefined	Retained	Retained	Retained
	SCFCR_0	Initialized	Retained	Retained	Retained

minanzea

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Retained

Retained

Retained

Retained

Retained

Retained

CCCITI

ICSR2

OCSR2

ICSR3

SPOER

POECR1

POECR2

ricianica

Retained

Retained

Retained

Retained

Retained

Retained

ricianica

Retained

Retained

Retained

Retained

Retained

Retained

. .

Re

Re

Re

Re

Re

Re

Ini

Ini

Ini

Ini

Ini

Ini

Ini Re Re Re

Re

Re

Re

Re

Re

Re

Re

REJ09

REJ09B0344		_	ENESA	_
Rev 3.00 M	ar. 04, 2009 Page 1	1076 of 1168		
	SCFRDR_3	Undefined	Retained	F
	SCFSR_3	Initialized	Retained	F
	SCFTDR_3	Undefined	Retained	F
	SCSCR_3	Initialized	Retained	F
	SCBRR_3	Initialized	Retained	F
	SCSMR_3	Initialized	Retained	F
	SCSEMR_2	Initialized	Retained	F
	SCLSR_2	Initialized	Retained	F
	SCSPTR_2	Initialized	Retained	F
	SCFDR_2	Initialized	Retained	F
	SCFCR_2	Initialized	Retained	F
	SCFRDR_2	Undefined	Retained	F
	SCFSR_2	Initialized	Retained	F
	SCFTDR_2	Undefined	Retained	F
	SCSCR_2	Initialized	Retained	F
	SUBRR_2	milianzed	Helaineu	Г

SCFCR_1

SCFDR_1

SCSPTR 1

SCLSR_1

SCSEMR_1

SCSMR_2

SCFRDR 1

Retained Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained Retained

Ret Retained

Ret

Ret Ret Ret

Ret

Retained Retained Retained

Retained

Ret

Retained Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Ret

Ret

Ret

Ret

Ret

Ret

SCBBB 2

Initialized

minuanzoa

Undefined

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Retained

etained etained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained Retained

1 lotali loa

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Ret

	ADSR	Initialized	Retained	Initialized	Retained
	ADSTRGR	Initialized	Retained	Initialized	Retained
	ADANSR	Initialized	Retained	Initialized	Retained
	ADDR0	Initialized	Retained	Initialized	Retained
	ADDR1	Initialized	Retained	Initialized	Retained
	ADDR2	Initialized	Retained	Initialized	Retained
	ADDR3	Initialized	Retained	Initialized	Retained
	ADDR4	Initialized	Retained	Initialized	Retained
	ADDR5	Initialized	Retained	Initialized	Retained
	ADDR6	Initialized	Retained	Initialized	Retained
	ADDR7	Initialized	Retained	Initialized	Retained
DAC	DADR0	Initialized	Retained	Retained	Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

ICIER

ICSR

SAR

ICDRT

ICDRR

ADCR

DADR1

DACR

ADC

NF2CYC

Retained

Retained

(bc3-0)

Retained

Retained

Retained

Retained

Retained

Retained

Initialized

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

(bc3-0)

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Initialized

Initialized

Re

PBCRL2 Initialized Retains PBCRL1 Initialized Retains PDIOR Initialized Retains PDCRL4 Initialized Retains PDCRL3 Initialized Retains PDCRL2 Initialized Retains PDCRL1 Initialized Retains PDCRL1 Initialized Retains
PDIOR Initialized Retains PDCRL4 Initialized Retains PDCRL3 Initialized Retains PDCRL2 Initialized Retains PDCRL1 Initialized Retains
PDCRL4 Initialized Retains PDCRL3 Initialized Retains PDCRL2 Initialized Retains PDCRL1 Initialized Retains
PDCRL3 Initialized Retained PDCRL2 Initialized Retained PDCRL1 Initialized Retained
PDCRL2 Initialized Retained PDCRL1 Initialized Retained
PDCRL1 Initialized Retain
PFCRL1 Initialized Retained
IFCR Initialized Retain
WAVECR2 Initialized Retain
WAVECR1 Initialized Retain

1 / (0) (LZ

PACRL1

PBIORH

PBIORL

PBCRH4

PBCRH3

PBCRH2

PBCRH1

PBCRL4

PBCRL3

1 lotali loa

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Retained

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

Initialized

i icianica

Retained

Ret

Rev. 3.00 Mar. 04, 2009 Page 1078 of 1168

	FKEY	Initialized	Retained	Initialized	Initialized	Re
	FMATS	Initialized	Retained	Initialized	Initialized	Re
	FTDAR	Initialized	Retained	Initialized	Initialized	Re
Power-	STBCR	Initialized	Retained	Retained	_	Re
down mode	STBCR2	Initialized	Retained	Retained	_	Re
mode	SYSCR1	Initialized	Retained	Retained	_	Re
	SYSCR2	Initialized	Retained	Retained	_	Re
	STBCR3	Initialized	Retained	Retained	_	Re
	STBCR4	Initialized	Retained	Retained	_	Re
H-UDI*3	SDIR	Retained	Retained	Retained	Retained	Re
Notes: 1.	Retains the previ	ous value after	an internal p	ower-on reset	by means of	the \
2.	Bits BN[3:0] are i	nitialized.				

3. Initialized by TRST assertion or in the Test-Logic-Reset state of the TAP con-

Initialized

Undefined

Initialized

Initialized

Initialized

Initialized

Retained

Retained

Retained

Retained

Retained

Retained

PDDRL

PDPRL

PFDR

FCCS

FPCS

FECS

FLASH

Rev. 3.00 Mar. 04, 2009 Page

ricianica

Retained

Retained

Retained

Initialized

Initialized

Initialized

110

Re

Re

Re

Re

Re

Re

Initialized

Initialized

Initialized

Item	Symbol	Value
Power supply voltage (I/O)	$V_{cc}Q$	-0.3 to 4.6
Power supply voltage (Internal)	V _{cc}	-0.3 to 2.3
	$PLLV_cc$	
Input voltage (except analog input pins)	Vin	-0.3 to $V_{\rm cc}Q$ +0.3
Analog power supply voltage	AV _{cc}	-0.3 to 7.0
Analog reference voltage	AVREF	-0.3 to AV $_{\rm cc}$ +0.3
Analog input voltage	$V_{_{AN}}$	-0.3 to AV $_{\rm CC}$ +0.3
Operating temperature	T _{opr}	-40 to +85
Storage temperature	T _{stg}	-55 to +125

Caution: Permanent damage to the LSI may result if absolute maximum ratings are exc

Rev. 3.00 Mar. 04, 2009 Page REJ09

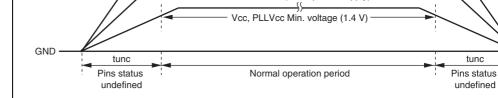


Figure 27.1 Power-on/Power-off Sequence

Table 27.2 Recommended Time for Power-on/Power-off Sequence

Item	Symbol	Maximum Allowance Value	Unit
Undefined time	tunc	100	ms

Note: VccQ ≥ Vcc = PLLVcc is recommended. Either VccQ, Vcc, or PLLVcc power suppturned on or off first, though, an undefined period appears until Vcc rises to the Mi or after Vcc passes the Min. voltage. During these periods, pin or internal states b undefined. Design the system so that such undefined states do not cause a system malfunction. To avoid an increase in the current consumption during the undefined at power-on, it is recommended that VccQ, Vcc, and PLLVcc be turned on simulta. This undefined period can be eliminated by turning on the power supplies in the or shown in figure 27.2.

rigare 27/2 rower on Sequen

To prevent the pin and internal states from being undefined, VccQ and AVcc

Notes:

kept GND voltage level (0 V) and they should not be placed in floating state reaches the Min. voltage. In addition, the \overline{RES} pin should be input low to pla on reset state. In this case, care must be taken for the power consumption inc caused by sink current because each pin is placed in low-impedance state unreaches the Min. voltage.

REJ09

	Sleep mode	sleep	-	60	100	mA	$B\phi = 40 \text{ N}$ $P\phi = 40 \text{ N}$
Input leakage current	All input pins (except PF0, PF1)	I _{in}	-	-	1	μА	V _{in} = 0.5 to V _{cc}
	PF0, PF1	=	-	-	1	μА	<u> </u>
Three-state leakage current	Input/output pins, all output pins (off state)	I _{sti}	-	-	1	μА	Vin = 0.5 to V _{cc}
Input capacitance	All pins	C _{in}	_	_	10	pF	
Analog power supply current	During A/D or D/A conversion	Al _{cc}	-	5	4	mA	Including
	Waiting for A/D or D/A conversion	-	_	1	3	mA	
	Standby mode	-		_	4	μА	
A\ Notes: 1. Cu 2. I _{cc}	hen neither the A/D co Vss, AVREF, and AVF urrent consumption va ,, I _{sleep} , and I _{stby} represer stby is the total current	REFVss palues are values are valu	ins oper when all al curren	n. output p ts consu	ins are ur med in the	nloaded. e Vcc ar	

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1084 of 1168

Analog power supply voltage

Normal operation

Software standby

mode

Current

consumption*1

L LL A CC

4.5

5.0

200

5

0.1

 $\mathsf{AV}_{\mathsf{cc}}$

 I_{cc}

l_{stby}

 $\mathsf{PI}_{\mathsf{stby}}$

5.5

310

60

1

٧

mΑ

mΑ

mΑ

V_{cc}= 1.5 \

 $I\phi = 160 \text{ N}$

 $B\phi = 40 \text{ N}$ $P\phi = 40 \text{ M}$

Ta = 25°C

 $V_{cc} = 3.3$

 $V_{cc} = 1.5$

	Input pins other than above (excluding Schmitt pins)		2.0	_	$V_{cc}Q + 0.3$	V
Input low voltage	RES, MRES, NMI, MD1, MD0, MD_CLK2, MD_CLK0, ASEMD, TRST, EXTAL, ASEBRK, FWE	V _{IL}	-0.3	_	0.5	V
	Input pins other than above (excluding Schmitt pins)	-	-0.3	_	0.8	V

ASEBRK, FWE

REJ09

Rev. 3.00 Mar. 04, 2009 Page

	TIOC4CS, TIOC4DS,	
	TIC5US, TIC5VS,	
	TIC5WS,	
	POE8, POE7, POE4,	
	POE3, POE1, POE0,	
	SCK3 to SCK0,	
	RXD3 to RXD0,	
	IRQ7 to IRQ0	
Output high	TIOC3B (PB18),	V_{OH}
voltage	TIOC3D (PB19)	
	TIOC4A to TIOC4D	
	(PB4 to PB7)	
	TIOC3BS (PB21),	

TIOC4AS to TIOC4DS (PB12, PB13, PB10,

All output pins except for above pins

PB11)

Rev. 3.00 Mar. 04, 2009 Page 1086 of 1168

 $V_{cc}Q - 0.8$ -

 $V_{cc}Q - 0.5$ -

٧

Table 27.3 DC Characteristics (3) [I²C-Related Pins*]

Conditions: Vcc = PLLVcc = 1.4 V to 1.6 V, VccQ = 3.0 V to 3.6 V,

Vss = PLLVss = VssQ = 0 V, Ta = -40°C to +85°C

Item	Symbol	Min.	Тур.	Max.	Unit	Test C
Input high voltage	V _{IH}	$V_{\text{cc}}Q \times 0.7$	-	V _{cc} Q + 0.3	٧	
Input low voltage	V _{IL}	-0.3	-	$PV_{cc} \times 0.3$	٧	
Schmitt trigger input characteristics	$V_{\text{IH}} - V_{\text{IL}}$	0.4	-	_	٧	
Output low voltage	V _{oL}	_	-	0.4	٧	I _{oL} = 3.

* The PF0/IRQ0/POE7/SCL and PF1/IRQ1/POE3/SDA pins (open-drain pins) Note:

REJ09

 $I_{OL} = 2$

	(PB12, PB13, PB10, PB11)				
	SCL, SDA				10
	Output pins other than above	_			2
Permissible output low cur	rent (total)	$\Sigma \mathbf{I}_{OL}$	_	_	80
Permissible output high current (per pin)	TIOC3B (PB18), TIOC3D (PB19) TIOC4A to TIOC4D (PB4 to PB7) TIOC3BS (PB21), TIOC3DS (PB20) TIOC4AS to TIOC4DS (PB12, PB13, PB10, PB11)	-I _{OH}	-	-	5
	Output pins other than above	_	_	-	2

TIOC4AS to TIOC4DS

To protect the LSI's reliability, do not exceed the output current values in table

 $\Sigma - \mathbf{I}_{\mathrm{OH}}$

25

Rev. 3.00 Mar. 04, 2009 Page 1088 of 1168 RENESAS REJ09B0344-0300

Permissible output high current (total)

Operating	CPU (I)	f	32	-	160	MHz
frequency	Internal bus, external bus (Βφ)		32	-	40	_
	Peripheral module (Pφ)		4	-	40	_

EXTAL clock input pulse high width	$t_{\scriptscriptstyleEXH}$	6	_	ns	
EXTAL clock input rise time	t _{EXr}	_	3	ns	
EXTAL clock input fall time	t _{exf}	_	3	ns	
CK clock output frequency	f _{op}	16	40	MHz	Figure
CK clock output cycle time	t _{cyc}	25.0	62.5	ns	
CK clock output pulse low width	t _{ckol}	6	=	ns	
CK clock output pulse high width	t _{cкон}	6	_	ns	
CK clock output rise time	t _{cKOr}	_	3	ns	
CK clock output fall time	t _{ckof}	_	3	ns	
Power-on oscillation setting time	t _{osc1}	10	_	ms	Figure
Oscillation settling time on return from standby 1	t _{osc2}	10	_	ms	Figure
Oscillation settling time on return from	t _{osc3}	10	-	ms	Figure

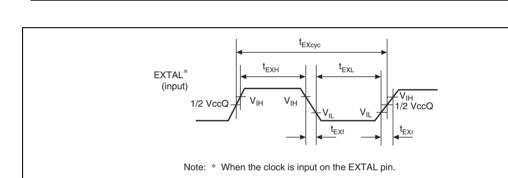


Figure 27.3 EXTAL Clock Input Timing

standby 2

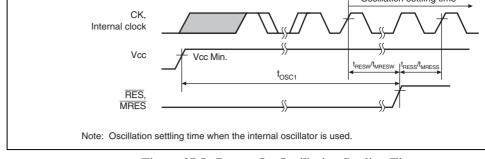


Figure 27.5 Power-On Oscillation Settling Time

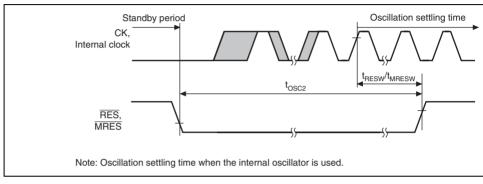


Figure 27.6 Oscillation Settling Time on Return from Standby (Return by R

Rev. 3.00 Mar. 04, 2009 Page REJ09

Rev. 3.00 Mar. 04, 2009 Page 1092 of 1168

BREQ hold time	t _{BREQH}	1/2t _{cyc} + 4	_	ns	_
NMI setup time *1	t _{NMIS}	15	_	ns	Figu
NMI hold time	t _{nmih}	7	_	ns	_
IRQ7 to IRQ0 setup time *1	t _{IRQS}	15	_	ns	_
IRQ7 to IRQ0 hold time	t _{IRQH}	7	_	ns	_
IRQOUT/REFOUT output delay time	t _{IRQOD}	_	100	ns	Figu
BACK delay time	t _{BACKD}	_	1/2t _{cyc} + 20	ns	Figu
Bus tri-state delay time 1	t _{BOFF1}	0	100	ns	_
Bus tri-state delay time 2	t _{BOFF2}	0	100	ns	_
Bus buffer on time 1	t _{BON1}	0	30	ns	
Bus buffer on time 2	t _{BON2}	0	30	ns	_
Notes: 1. RES, NMI, and IRQ7 to IRC	Q0 are asy	nchronous s	ignals. When	these s	setup t

 \mathbf{t}_{RESH}

 $\mathbf{t}_{\text{MRESW}}$

 t_{MRESS}

 $\boldsymbol{t}_{\text{MRESH}}$

 $\mathbf{t}_{_{\text{MDS}}}$

 $\mathbf{t}_{\text{BREQS}}$

15

25

15

20

 $1/2t_{_{\text{cyc}}} + 10 -$

20*3

ns

 $\mathbf{t}_{\scriptscriptstyle{\mathrm{cyc}}}$

ns

ns

 $t_{\rm cyc}$

ns

Figur

Figur

Figur

RES hold time

MRES pulse width

MRES setup time

MRES hold time

BREQ setup time

MD1, MD0 setup time

2. In standby mode or when the clock multiplication ratio is changed, $t_{RESW} = t_{OSC2}$ 3. In standby mode, $t_{RESW} = t_{OSC2}$ (Min. 10 ms).

rising edge of the clock.

observed, a change of these signals is detected at the clock rising edge. If the times are not observed, detection of a signal change may be delayed until the

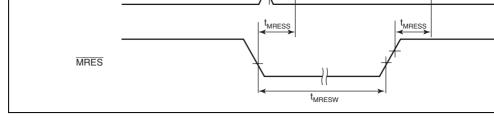


Figure 27.8 Reset Input Timing

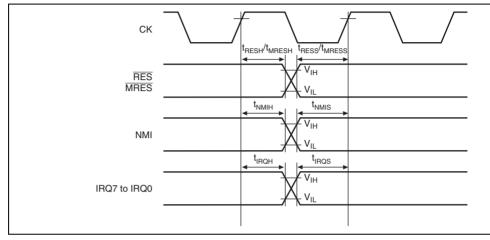


Figure 27.9 Interrupt Signal Input Timing

REJ09B0344-0300

RENESAS

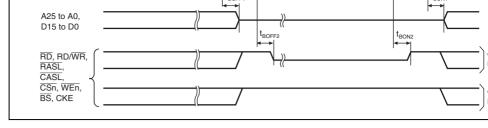


Figure 27.10 Interrupt Signal Output Timing

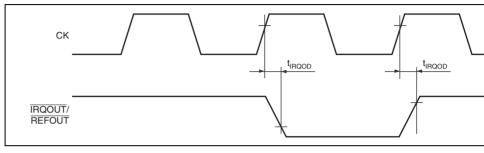


Figure 27.11 Bus Release Timing

Rev. 3.00 Mar. 04, 2009 Page

Address hold time t_{AH} 0 ns Figures 27. 27.15 BS delay time t_{BSD} 20 Figures 27. ns 27.33, 27.3 CS delay time 1 $\boldsymbol{t}_{\text{CSD1}}$ 1 20 Figures 27. ns 27.36 1/2t_{cyc} CS delay time 2 $1/2t_{cvc} + 20$ $\mathbf{t}_{_{\text{CSD2}}}$ Figures 27. ns CS setup time $\mathbf{t}_{\mathrm{css}}$ 0 ns 27.15 CS hold time 0 t_{CSH} ns 27.15 1 Read write delay time 1 20 t_{RWD1} ns 27.36 1/2t_{cvc} $1/2t_{cvc} + 20$ Read write delay time 2 $\boldsymbol{t}_{\text{RWD2}}$ ns 1/2t_{cyc} $1/2t_{cvc} + 20$ Read strobe delay time t_{BSD} ns

 t_{AD2}

 $\mathbf{t}_{_{\mathrm{AD3}}}$

 $\mathbf{t}_{\scriptscriptstyle{\mathsf{AS}}}$

1/2t_{cyc}

1/2t_{cyc}

0

 $1/2t_{cyc} + 20$

 $1/2t_{cvc} + 20$

ns

ns

ns

Address delay time 2

Address delay time 3

Read data setup time 1

Read data setup time 2

REJ09B0344-0300

Address setup time

Read data setup time 3 $1/2t_{cvc} + 20$ t_{RDS3} Read data setup time 4 $\boldsymbol{t}_{\text{RDS4}}$ $1/2t_{cvc} + 20 -$

 \mathbf{t}_{RDS1}

 $\mathbf{t}_{_{\text{RDS2}}}$

Rev. 3.00 Mar. 04, 2009 Page 1096 of 1168

RENESAS

1/2t_{cvc}+ 13

10

Figures 27. 27.23, 27.2

ns

ns

ns

ns

27.19 Figures 27. 27.18

27.30

Figure 27.1

Figure 27.3

Figures 27.

Figures 27.

Figure 27.1

Figures 27.

Figures 27.

27.15, 27.1

	WEDI	cyc	cyc		27.17
Write enable delay time 2	t _{wed2}	_	20	ns	Figure 27.
Write data delay time 1	t _{wdd1}	_	20	ns	Figures 27 27.18
Write data delay time 2	t _{wdd2}	_	20	ns	Figures 27 27.27, 27. 27.33
Write data delay time 3	t _{wdd3}	_	1/2t _{cyc} + 20	ns	Figure 27.
Write data hold time 1	t _{wDH1}	1	15	ns	Figures 27 27.18
Write data hold time 2	t _{WDH2}	1	_	ns	Figures 27 27.27, 27. 27.33

 \mathbf{t}_{WDH3}

 $\boldsymbol{t}_{_{WDH4}}$

 t_{wts}

t_{wed1}

 $t_{cyc} \times (n + 1) -$ - 31*²

1/2t_{cvc}

1/2t_{cyc}

1/2t_{cvc} + 10 —

 $1/2t_{cyc} + 5$ \mathbf{t}_{WTH} RAS delay time 1 1 t_{RASD1} 1/2t_{cyc} RAS delay time 2 t_{RASD2}

Access time after read strobe

Write enable delay time 1

Write data hold time 3

Write data hold time 4

WAIT setup time

WAIT hold time

20 ns 27.36

ns

ns

ns

ns

ns

Rev. 3.00 Mar. 04, 2009 Page

Figure 27.

Figures 27

21.10, 21. 27.18

Figures 27 27.15, 27. 27.18

Figures 27

ns

ns

 $1/2t_{cvc} + 20$

 $1/2t_{cvc} + 20$

Figures 27

CKE delay time 2	t _{CKED}
AH delay time	$\mathbf{t}_{_{\mathrm{AHD}}}$
Multiplexed address delay time	t _{mad}
Multiplexed address hold time	t _{mah}
DACK, TEND delay time	t

	modules
Note:	*1 The maximum value (fmax) of B ϕ (external bus clock) depends on the number cycles and the system configuration of your board.
	*2 n is the number of wait cycles.

1

 $1/2t_{\rm cyc}$

1/2t_{cyc}

 $\mathbf{t}_{\text{CKED2}}$

 \mathbf{t}_{dacd}

 $1/2t_{cyc} + 20$

1/2t_{cvc} + 20

Refer to

peripheral

20

ns

ns

ns

ns

ns

Figure 27.3

Figure 27.1

Figure 27.1

Figure 27.1

Figures 27.

27.33, 27.3

*3 It is not necessary to accommodate $t_{\mbox{\tiny RDS1}}$ if the access time is accommodated.

Rev. 3.00 Mar. 04, 2009 Page 1098 of 1168

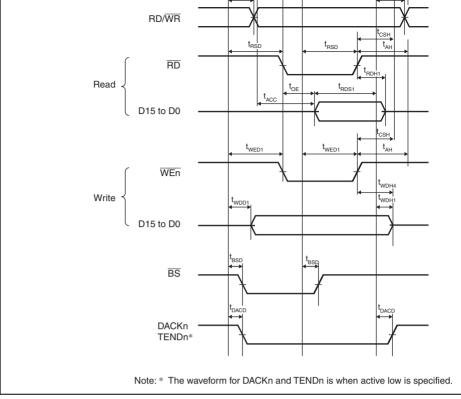


Figure 27.12 Basic Bus Timing for Normal Space (No Wait)

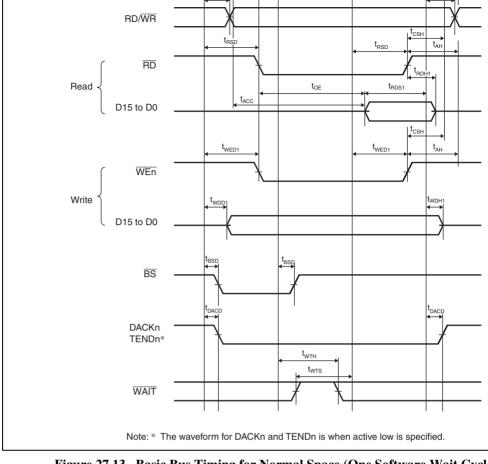


Figure 27.13 Basic Bus Timing for Normal Space (One Software Wait Cycl

Rev. 3.00 Mar. 04, 2009 Page 1100 of 1168 REJ09B0344-0300

RENESAS

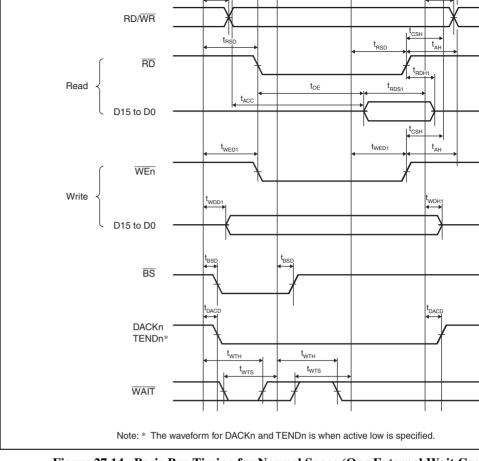


Figure 27.14 Basic Bus Timing for Normal Space (One External Wait Cyc

Rev. 3.00 Mar. 04, 2009 Page

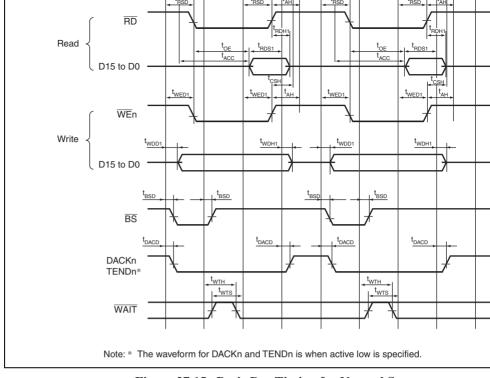


Figure 27.15 Basic Bus Timing for Normal Space (One Software Wait Cycle, External Wait Cycle Valid (WM Bit = 0), No Idle C

Rev. 3.00 Mar. 04, 2009 Page 1102 of 1168 REJ09B0344-0300

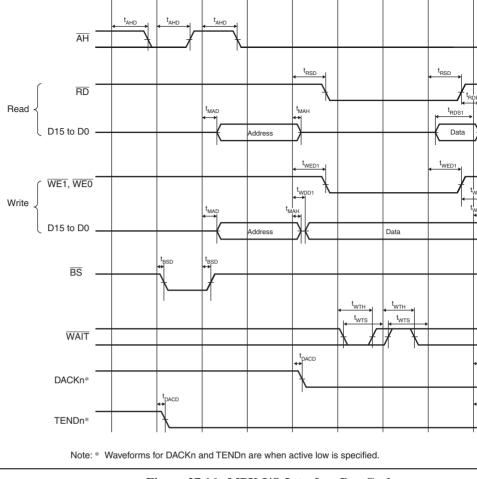


Figure 27.16 MPX-I/O Interface Bus Cycle (Three Address Cycles, One Software Wait Cycle, One External Wait Cycle

Rev. 3.00 Mar. 04, 2009 Page

RENESAS

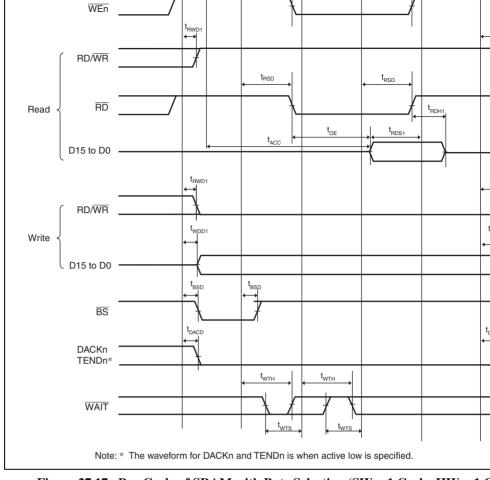


Figure 27.17 Bus Cycle of SRAM with Byte Selection (SW = 1 Cycle, HW = 1 C One Asynchronous External Wait Cycle, BAS = 0 (Write Cycle UB/LB Control

Rev. 3.00 Mar. 04, 2009 Page 1104 of 1168

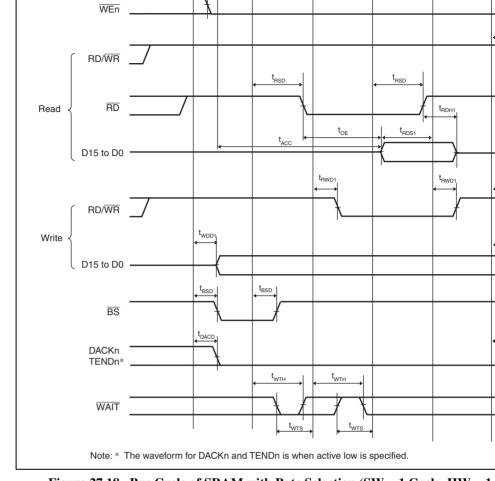


Figure 27.18 Bus Cycle of SRAM with Byte Selection (SW = 1 Cycle, HW = 1 One Asynchronous External Wait Cycle, BAS = 1 (Write Cycle WE Control

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

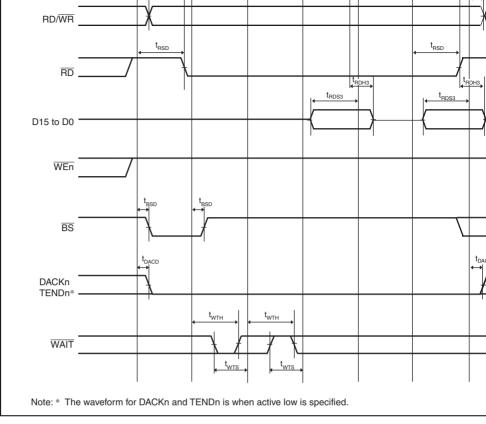


Figure 27.19 Burst ROM Read Cycle (One Software Wait Cycle, One Asynchronous External Burst Wait Cycle, Two-Cyc

Rev. 3.00 Mar. 04, 2009 Page 1106 of 1168 REJ09B0344-0300

RENESAS

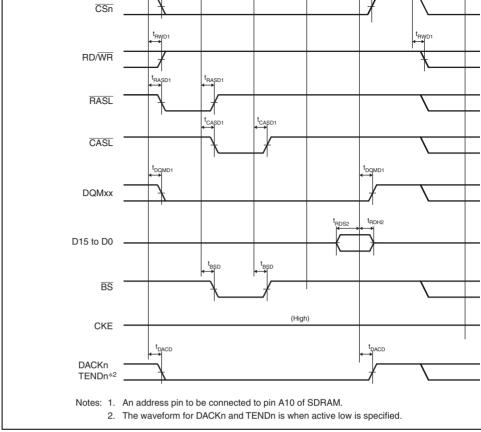


Figure 27.20 Synchronous DRAM Single Read Bus Cycle (Auto Precharge, CAS Latency 2, WTRCD = 0 Cycle, WTRP = 0 Cycle)

Rev. 3.00 Mar. 04, 2009 Page

REJ09

RENESAS

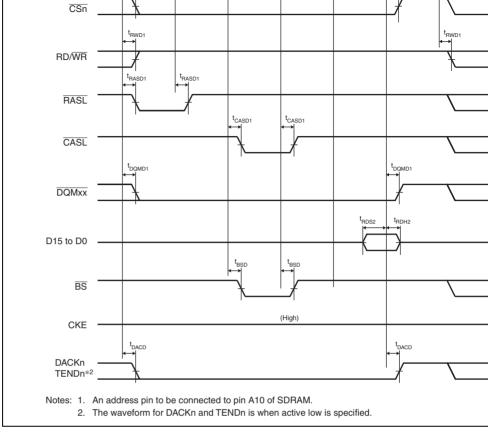
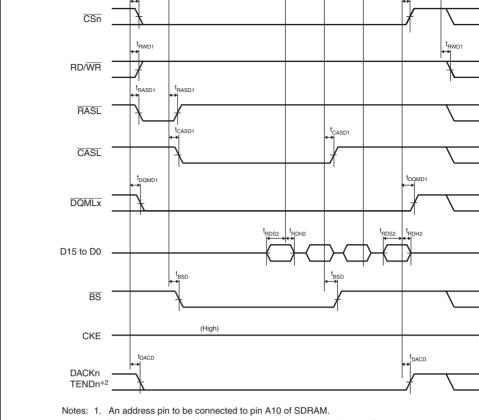



Figure 27.21 Synchronous DRAM Single Read Bus Cycle (Auto Precharge, CAS Latency 2, WTRCD = 1 Cycle, WTRP = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1108 of 1168

2. The waveform for DACKn and TENDn is when active low is specified.

Figure 27.22 Synchronous DRAM Burst Read Bus Cycle (Four Read Cycl (Auto Precharge, CAS Latency 2, WTRCD = 0 Cycle, WTRP = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page REJ09

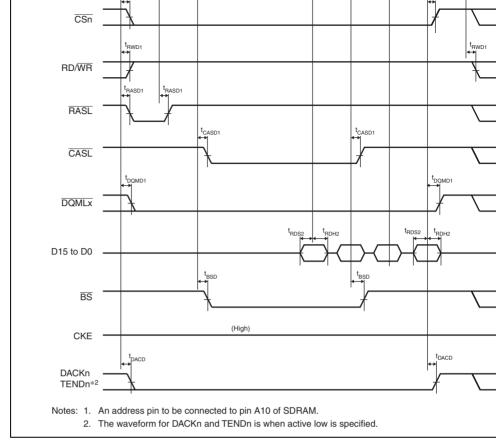
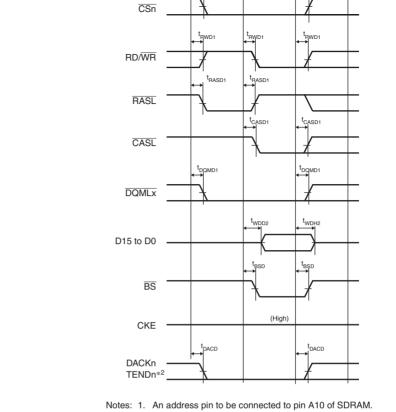



Figure 27.23 Synchronous DRAM Burst Read Bus Cycle (Four Read Cycle (Auto Precharge, CAS Latency 2, WTRCD = 1 Cycle, WTRP = 0 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1110 of 1168

2. The waveform for DACKn and TENDn is when active low is specified.

Figure 27.24 Synchronous DRAM Single Write Bus Cycle (Auto Precharge, TRWL = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page RENESAS

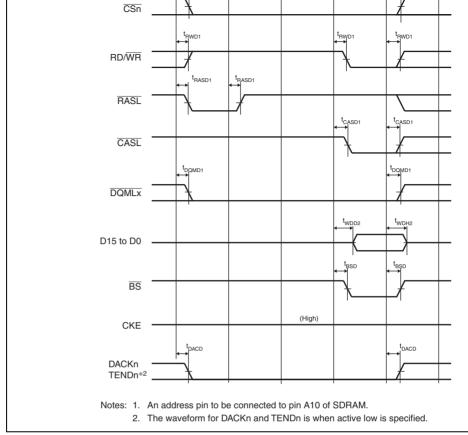


Figure 27.25 Synchronous DRAM Single Write Bus Cycle (Auto Precharge, WTRCD = 2 Cycles, TRWL = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1112 of 1168

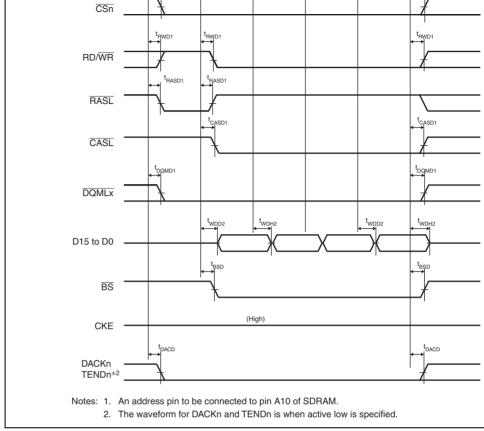


Figure 27.26 Synchronous DRAM Burst Write Bus Cycle (Four Write Cyc (Auto Precharge, WTRCD = 0 Cycle, TRWL = 1 Cycle)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

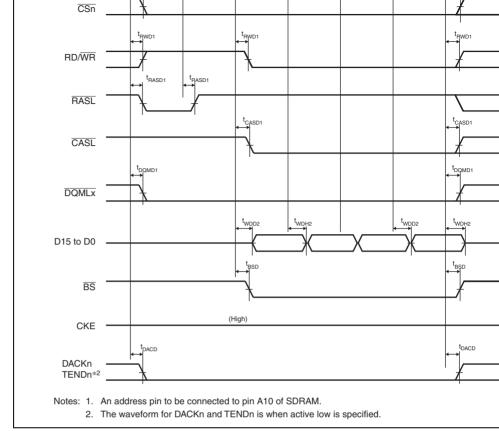


Figure 27.27 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycle (Auto Precharge, WTRCD = 1 Cycle, TRWL = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1114 of 1168

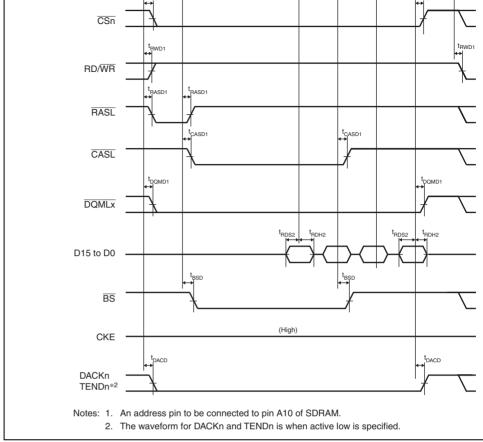


Figure 27.28 Synchronous DRAM Burst Read Bus Cycle (Four Read Cycl (Bank Active Mode: ACT + READ Commands, CAS Latency 2, WTRCD = 0

Rev. 3.00 Mar. 04, 2009 Page

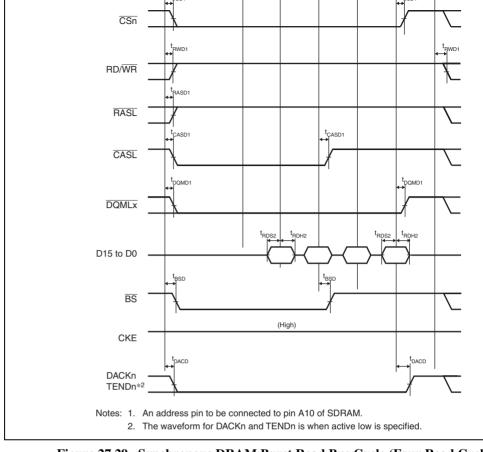
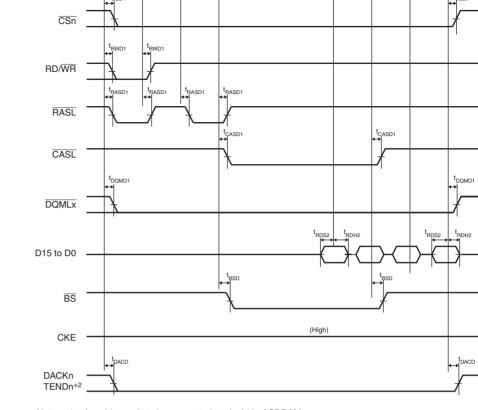



Figure 27.29 Synchronous DRAM Burst Read Bus Cycle (Four Read Cycle (Bank Active Mode: READ Command, Same Row Address, CAS Latency 2, WTRCD =

Rev. 3.00 Mar. 04, 2009 Page 1116 of 1168

Notes: 1. An address pin to be connected to pin A10 of SDRAM.

2. The waveform for DACKn and TENDn is when active low is specified.

Figure 27.30 Synchronous DRAM Burst Read Bus Cycle (Four Read Cycle)
(Bank Active Mode: PRE + ACT + READ Commands, Different Row Addrese CAS Latency 2, WTRCD = 0 Cycle)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

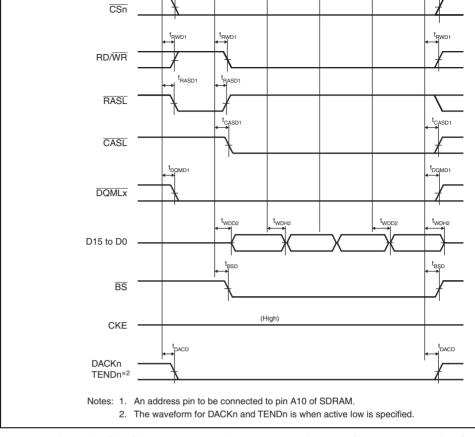


Figure 27.31 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycle (Bank Active Mode: ACT + WRITE Commands, WTRCD = 0 Cycle, TRWL = 0

Rev. 3.00 Mar. 04, 2009 Page 1118 of 1168

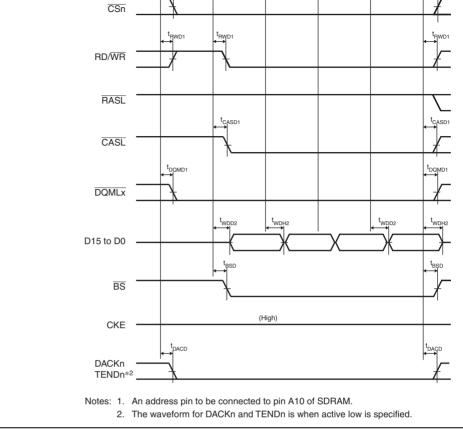


Figure 27.32 Synchronous DRAM Burst Write Bus Cycle (Four Write Cyc (Bank Active Mode: WRITE Command, Same Row Address, WTRCD = 0 C TRWL = 0 Cycle

Rev. 3.00 Mar. 04, 2009 Page

REJ09

RENESAS

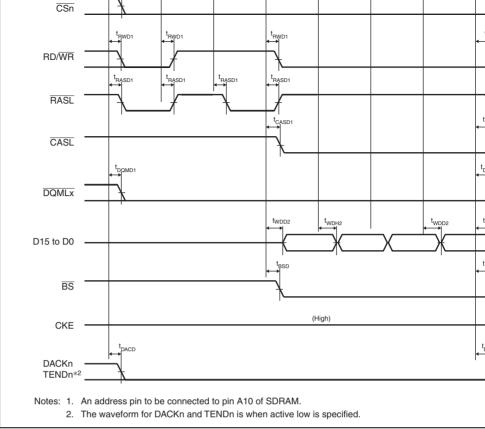


Figure 27.33 Synchronous DRAM Burst Write Bus Cycle (Four Write Cycle (Bank Active Mode: PRE + ACT + WRITE Commands, Different Row Address WTRCD = 0 Cycle, TRWL = 0 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1120 of 1168

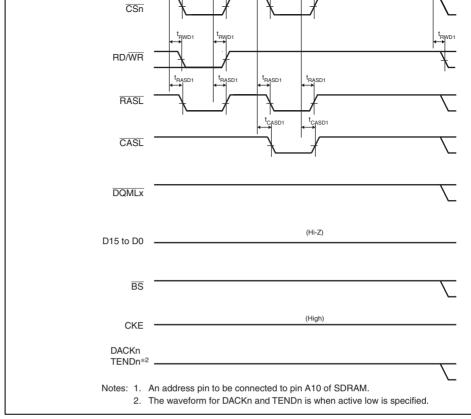


Figure 27.34 Synchronous DRAM Auto-Refreshing Timing (WTRP = 1 Cycle, WTRC = 3 Cycles)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

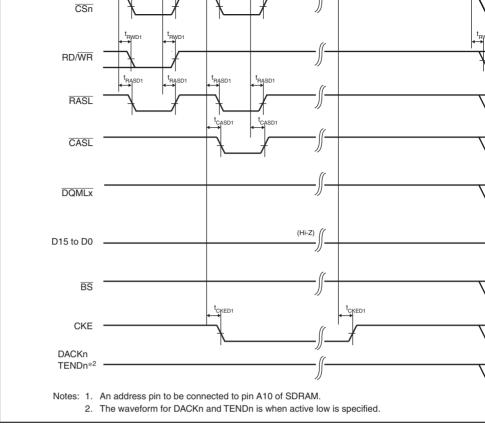


Figure 27.35 Synchronous DRAM Self-Refreshing Timing (WTRP = 1 Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1122 of 1168 REJ09B0344-0300

RENESAS

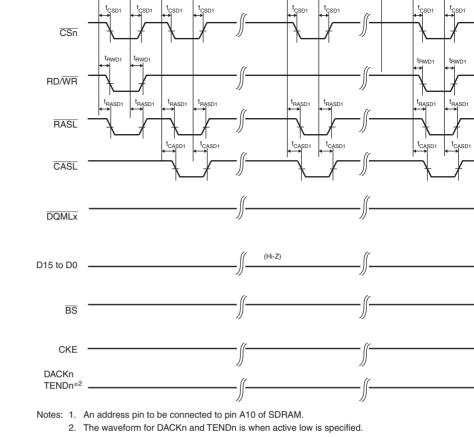


Figure 27.36 Synchronous DRAM Mode Register Write Timing (WTRP = 1

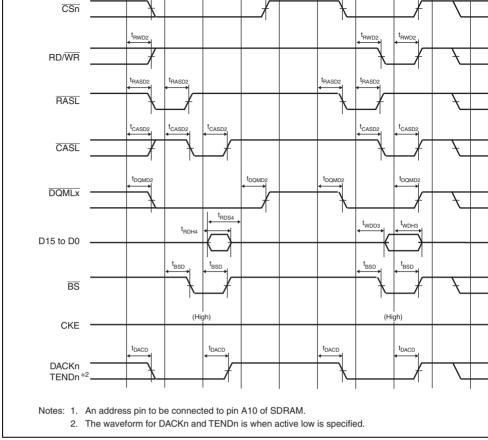


Figure 27.37 Synchronous DRAM Access Timing in Low-Frequency Mode (Auto-Precharge, TRWL = 2 Cycles)

Rev. 3.00 Mar. 04, 2009 Page 1124 of 1168

Notes: 1. An address pin to be connected to pin A10 of SDRAM.

2. The waveform for DACKn and TENDn is when active low is specified.

Figure 27.38 Synchronous DRAM Self-Refreshing Timing in Low-Frequency (WTRP = 2 Cycles)

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

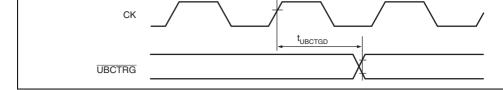


Figure 27.39 UBC Trigger Timing

27.4.5 DMAC Module Timing

Table 27.10 DMAC Module Timing

Conditions: Vcc = PLLVcc = 1.4 to 1.6 V, VccQ = 3.0 to 3.6 V, Vss = PLLVss = VssQ

 $Ta = -40^{\circ}C$ to $+85^{\circ}C$

Item	Symbol	Min.	Max.	Unit	Figure
DREQ setup time	t _{DRQS}	20	_	ns	Figure 27
DREQ hold time	t _{DRQH}	20	_		
DACK, TEND delay time	t	_	20		Figure 27

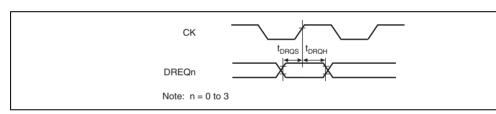


Figure 27.40 DREQ Input Timing

Rev. 3.00 Mar. 04, 2009 Page 1126 of 1168

Rev. 3.00 Mar. 04, 2009 Page

Timor input ootap timo	TCKS	cyc · 20		110	9
Timer clock pulse width (single edge)	t _{TCKWH/L}	1.5	_	t _{pcyc}	_
Timer clock pulse width (both edges)	t _{TCKWH/L}	2.5	_	t _{pcyc}	_
Timer clock pulse width (phase counting mode)	t _{TCKWH/L}	2.5	_	t _{peye}	

Note: t_{poyc} indicates peripheral clock (P ϕ) cycle.

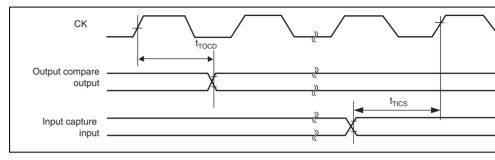


Figure 27.42 MTU2, MTU2S Input/Output Timing

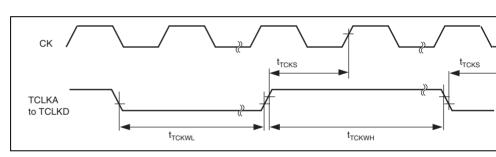


Figure 27.43 MTU2, MTU2S Clock Input Timing

Rev. 3.00 Mar. 04, 2009 Page 1128 of 1168

REJ09B0344-0300

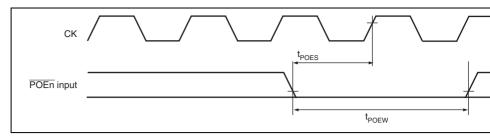


Figure 27.44 POE2 Input/Output Timing

27.4.8 **Watchdog Timer Timing**

Table 27.13 Watchdog Timer Timing

Conditions: Vcc = PLLVcc = 1.4 V to 1.6 V, VccQ = 3.0 V to 3.6 V,

Vss = PLLVss = VssQ = 0 V, Ta = -40°C to +85°C

Item	Symbol	Min.	Max.	Unit	Figure
WDTOVF delay time	t _{wovd}	_	50	ns	Figure

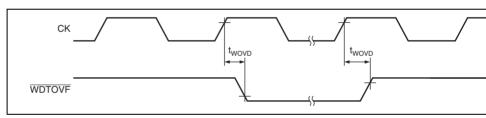


Figure 27.45 Watchdog Timer Timing

Rev. 3.00 Mar. 04, 2009 Page RENESAS

REJ09

Input clock fall time	t _{sckf}	_	1.5	t _{pcyc}	Figu
Input clock width	t _{sckw}	0.4	0.6	t _{scyc}	Figu
Transmit data delay time (clocked synchronous)	t _{TXD}	_	100	t _{pcyc}	Figu
Receive data setup time (clocked synchronous)	t _{RXS}	100	_	ns	Figu
Receive data hold time (clocked synchronous)	t _{RXH}	100	_	ns	Figu
Note: t _{pcyc} indicates peripheral clock (Pφ)	cycle.				

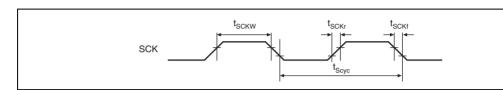


Figure 27.46 SCK Input Clock Timing

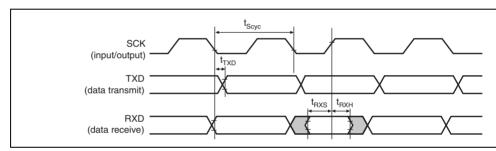


Figure 27.47 SCIF Input/Output Timing in Clocked Synchronous Mode

Rev. 3.00 Mar. 04, 2009 Page 1130 of 1168

REJ09B0344-0300

T _{SCLL}		5 t _{pcyc} + 300		_	ns
t _{sr}		_	_	300	ns
t _{sf}		_	_	300	ns
t _{sp}		_	_	1 t _{pcyc}	ns
t _{BUF}		5	_	_	t _{pcyc} *1
t _{stah}		3	_	_	t _{pcyc} *1
t _{stas}		3	_	_	t _{pcyc} *1
t _{stos}		3	_	_	t _{pcyc} *1
t _{sdas}		1 t _{pcyc} + 20	_	_	ns
t _{sdah}		0	_	_	ns
Cb		0	_	400	pF
t _{sf}	PV _{cc} = 3.0 to 3.6 V	_	_	300	ns
	t _{SI} t _{SP} t _{BUF} t _{STAH} t _{STAS} t _{STOS} t _{SDAS} t _{SDAH}	t _{Sr} t _{Sr} t _{SP} t _{SP} t _{BUF} t _{STAH} t _{STAS} t _{STOS} t _{SDAS} t _{SDAH} Cb	t _{sr} — t _{sr} — t _{sp} — t _{sp} 5 t _{stah} 3 t _{stas} 3 t _{stos} 3 t _{stos} 1 t _{sdas} 1 t _{sdah} 0 Cb 0	t _{sr} — — t _{sr} — — t _{sp} — — t _{sp} — — t _{star} 5 — t _{star} 3 — t _{star} 3 — t _{stos} 3 — t _{stos} 1 t _{poyc} + 20 — t _{stoah} 0 — Cb 0 —	t _{sr} — — 300 t _{sr} — — 300 t _{sp} — — 1 t _{poye} t _{sp} 5 — — t _{stah} 3 — — t _{stas} 3 — — t _{stos} 3 — — t _{stos} 1 t _{poye} + 20 — — t _{stos} 0 — — Cb 0 — 400

Notes: 1. t_{pcyc} indicates peripheral clock (Pφ) cycle.

- 2. Depends on the value of NF2CYC.
- Indicates the I/O buffer characteristic.

S: Start condition
P: Stop condition

Sr: Start condition for retransmission

Figure 27.48 I²C Bus Interface 3 Input/Output Timing

27.4.11 A/D Trigger Input Timing

Table 27.16 A/D Trigger Input Timing

Conditions: Vcc = PLLVcc = 1.4 V to 1.6 V, VccQ = 3.0 V to 3.6 V, Vss = PLLVss = VssQ = 0 V, $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$

Module	Item		Symbol	Min.	Max.	Unit	Figu
A/D		B:P clock ratio = 1:1	t _{TRGS}	20	_	ns	Figur
converter	setup time	B:P clock ratio = 2:1		t _{cyc} + 20	_	_	
		B:P clock ratio = 4:1		$3 \times t_{\text{cyc}} + 20$	_		

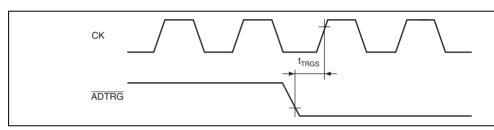


Figure 27.49 A/D Converter External Trigger Input Timing

REJ09B0344-0300

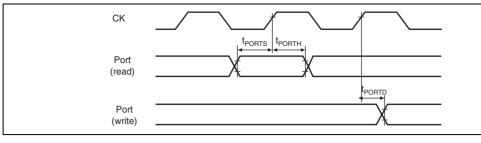


Figure 27.50 I/O Port Timing

TDI setup time	t _{TDIS}	15	_	ns	Figure
TDI hold time	t _{tdih}	15	_	ns	
TMS setup time	t _{mss}	15	_	ns	
TMS hold time	t _{msh}	15	_	ns	
TDO delay time	t _{TDOD}	_	40	ns	

Note: * Should be greater than the peripheral clock (Pφ) cycle time.

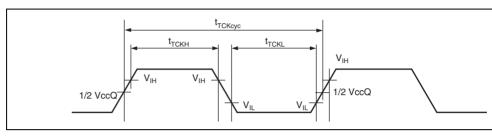


Figure 27.51 TCK Input Timing

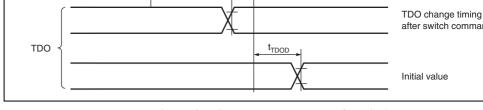


Figure 27.52 H-UDI Data Transfer Timing

REJ09

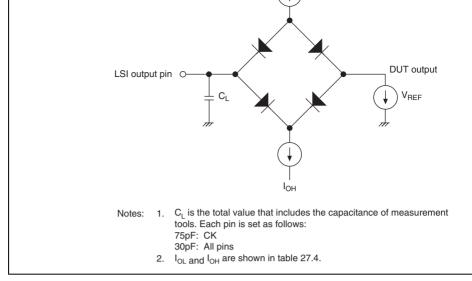


Figure 27.53 Output Load Circuit

Conversion time per channel *2	1.25	_	_
Analog input capacitance	_	_	5
Permissible signal-source impedance	_	_	3
Nonlinearity error	_	_	(±4.0)*1
Offset error	_	_	(±7.5)*1
Full-scale error	_	_	(±7.5)*1
Quantization error	_	_	(±0.5)*1
Absolute accuracy *3	_	_	±8.0
Notes: 1. The values in parentheses are re	eference valu	ies.	
Conversion time per channel dur continuous conversion start to er	•		

e from (ADC). 3. The conversion error between 0 to 0.25 V of the AN0 to AN2 inputs and AVco

IVIIII.

ı yp.

12

IVIAX.

AVcc does not meet the above value.

пеш

Resolution

RENESAS

nesolution	0	0	_	DIIS	
Conversion time	10	_	_	μS	Load capacitance
Absolute accuracy	_	±2.0	±3.0	LSB	Load resistance
	_	_	±2.5	LSB	Load resistance

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1138 of 1168

Write time (total) *1*2*4	Σt_{P}	_	4.5	12	s/512 Kb
Erase time (total) *1*2*4	$\Sigma t_{\scriptscriptstyle E}$	_	4.5	12	s/512 Kb
Write and erase time (total) *1*2*4	Σt_{PE}	_	9	24	s/512 Kb
Number of rewrite times	N_{wec}	100*3	_	_	times
Notes: 1. Write time and erase tir	ne depen	nd on data.			

Notes: 1. Write time and erase time depend on data.

- 2. Data transfer time is not included in the write and erase time.
- 3. Minimum value that guarantees all characteristics after rewriting (guarantees
- range from 1 to Min. value). 4. Characteristics when the number of rewrite times falls within the range includ

1200

3000

Min. value.

ms/128-K

-	CK (clock mode 6)	0		Z	0	O/Z**	
	XTAL (clock mode 6)	0	0			L	
	EXTAL (clock mode 6)	I	I				
System	RES	I	I		I	1	
control	MRES	Z	Z		I	I	
-	WDTOVF	Н	Н		0	Н	
	BREQ	Z	Z		I	Z	
	BACK	Z	Z		0	Z	
Operating	MD1, MD0	I			I	I	
node ontrol	MD_CLK2, MD_CLK0	I		I	I		
nterrupt	NMI	I			I	I	
	IRQ7 to IRQ0	Z			1	I	
	IRQOUT	Z			0	H/Z*1	
Address	A25 to A0	0	7	7	0	O/Z*3	

Extended without ROM

16 Bits

8 Bits

Туре

bus

Data bus

D15 to D0

Pin Name

Extended

with ROM

Single

chip

Manual

Z

REJ09

Z

Rev. 3.00 Mar. 04, 2009 Page

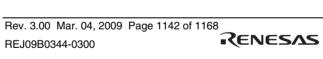
I/O

Software

Standby

Slee

0


I

0 I 0

0 0

I/O

	ВЭ	2	0	Π/Δ*	0	
	RD	Н	Z	0	H/Z*3	0
	RD/WR	Z		0	H/Z*3	0
	WE0/DQMLL	Н	Z	0	H/Z*3	0
	AH, WE1/DQMLU	Z		0	H/Z*3	0
	RASL, CASL	Z		0	O/Z*2	0
	CKE	Z		0	O/Z*2	0
	REFOUT	Z		0	H/Z*1	0
DMAC	DREQ3 to DREQ0	Z	I	Z	I	
	DACK3 to DACK0	Z	0	O/Z*1	0	
	TEND1, TEND0	Z		0	O/Z*1	0
MTU2	TCLKA, TCLKB, TCLKC, TCLKD	Z		I	Z	I
	TIOC0A*6, TIOC0B*6, TIOC0C*6, TIOCOD*6	Z		I/O	K/Z* ¹	I/O
	TIOC1A, TIOC1B	Z		I/O	K/Z*1	I/O
	TIOC2A, TIOC2B	Z		I/O	K/Z*1	I/O
	TIOC3A, TIOC3B* ⁶ , TIOC3C, TIOC3D* ⁶	Z		I/O	K/Z* ¹	I/O

	TIOC3DS*, TIOC3DS*				
	TIOC4AS* ⁶ , TIOC4BS* ⁶ , TIOC4CS* ⁶ , TIOC4DS* ⁶	Z	I/O	K/Z* ¹	
	TIC5US, TIC5VS, TIC5WS	Z	I	Z	
POE2	POE8, POE7, POE4, POE3, POE1, POE0	Z	I	Z	
SCIF	SCK3 to SCK0	Z	I/O	K/Z*1	_
	RXD3 to RXD0	Z	1	Z	
	TXD3 to TXD0	Z	0	O/Z*1	
WAVE	WSCK	Z	0	O/Z*1	
	WRXD	Z	1	Z	
	WTXD	Z	0	O/Z*1	
A/D	AN7 to AN0	Z	1	Z	
converter	ADTRG	Z	1	Z	
D/A converter	DA1, DA0	Z	0	0	
IIC3	SCL	Z	I/O	Z	
	SDA	Z	I/O	Z	

Z

K/Z*1

I/O

I/O

I/O

ı

I/O
I
O
I
O

0

I/O I/O

REJ09

Rev. 3.00 Mar. 04, 2009 Page

TIC5W

TIOC3AS,

TIOC3BS*6,

MTU2S

ASEBRK/ ASEBRKAK	I 0	I	I	1
	0	_	•——	
AOLDINAK		0	I	0
TRST	ı	I	ı	- 1
тск	I	I	I	- 1
TDI	I	I	ı	- 1
TDO	O/Z* ⁵	O/Z*5	O/Z*5	O/Z*5
TMS	I	I	I	- 1
UBCTRG	Z	0	O/Z*1	0
PA25 to PA0	Z	I/O	K/Z*1	I/O
PB30 to PB22, PB21 to PB18* ⁶ , PB19 to PB12 PB13 to PB10* ⁶ , PB9, PB8, PB7 to PB4* ⁶ , PB3 to PB0	Z	I/O	K/Z* ¹	1/0
PD15 to PD0	Z	I/O	K/Z*1	I/O
PF1, PF0	Z	1	Z	ı
	TDI TDO TMS UBCTRG PA25 to PA0 PB30 to PB22, PB21 to PB18*6, PB19 to PB12 PB13 to PB10*6, PB9, PB8, PB7 to PB4*6, PB3 to PB0 PD15 to PD0	TDI I TDO O/Z*5 TMS I UBCTRG Z PA25 to PA0 Z PB30 to PB22, PB21 to PB18*6, PB19 to PB12 PB13 to PB10*6, PB9, PB8, PB7 to PB4*6, PB3 to PB0 PD15 to PD0 Z	TDI I I TDO O/Z*5 O/Z*5 TMS I I UBCTRG Z O PA25 to PA0 Z I/O PB30 to PB22, PB21 to PB18*6, PB19 to PB12 PB13 to PB10*5, PB9, PB8, PB7 to PB4*6, PB3 to PB0 PD15 to PD0 Z I/O	TDI I I I TDO O/Z*5 O/Z*5 O/Z*5 TMS I I I UBCTRG Z O O/Z*1 PA25 to PA0 Z I/O K/Z*1 PB30 to PB22, PB21 to PB18*6, PB19 to PB12 PB13 to PB10*6, PB9, PB8, PB7 to PB4*6, PB3 to PB0 PD15 to PD0 Z I/O K/Z*1

[Legend]

I: Input

O: Output

H: High-level output

L: Low-level output

Z: High-impedance

K: Input pins become high-impedance, and output pins retain their state.

Rev. 3.00 Mar. 04, 2009 Page 1144 of 1168

RENESAS

REJ09B0344-0300

states at normal operation (see section 19, Pin Function Controller (PFC)).

RENESAS

Rev. 3.00 Mar. 04, 2009 Page REJ09

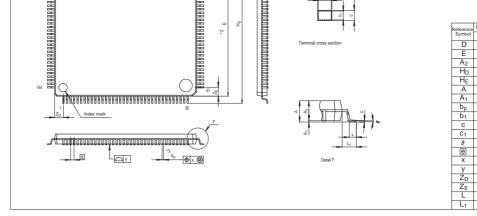
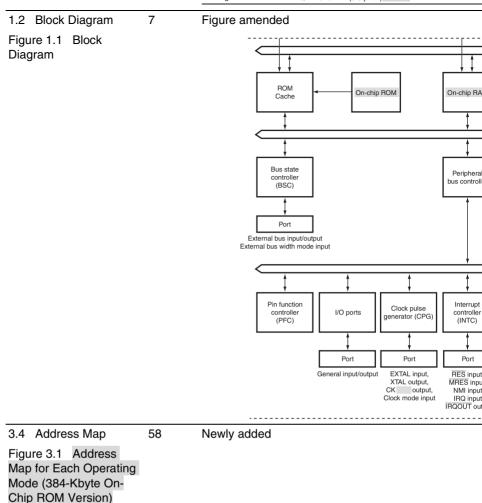



Figure C.1 FP-144LV

Rev. 3.00 Mar. 04, 2009 Page

REJ09

Rev. 3.00 Mar. 04, 2009 Page

REJ09

CHCR and the DME bit in DMAOR are so transfer is not enabled. This bit can only l writing 0 after reading 1.
0: No DMAC address error
1: DMAC address error occurred
[Clearing condition]
 Only write 0 to the AE bit after it has be
 If the bit's value is 0 when read, wr

Initial

Value

R/W

Description

Indicates whether an address error has on the DMAC. When this bit is set, even if the

R/(W)* Address Error Flag

Bit Name

ΑE

323 Table amended

Bi	t Bit Name	Initial Value	R/W	Description
1	NMIF	0	R/(W)*	NMI Flag
				Indicates that an NMI interrupt occurred. V is set, even if the DE bit in CHCR and the DMAOR are set to 1, DMA transfer is not 6 bit can only be cleared by writing 0 after re
				When the NMI is input, the DMA transfer in can be done in one transfer unit. Even if the interrupt is input while the DMAC is not in the NMIF bit is set to 1.
				0: No NMI interrupt
				1: NMI interrupt occurred
				[Clearing condition]
				 Only write 0 to the NMIF bit after it has as 1. If the bit's value is 0 when read, v

Note amended

Note: * To clear flags, read the register and then write to the bits that were read as 1. Write 1 to the bewere read as 0.

Rev. 3.00 Mar. 04, 2009 Page 1150 of 1168 REJ09B0344-0300

		converter and D/A converter are not used, make sett that AVcc = VccQ and AVss = VssQ, and do not leav AVcc and AVss pins open.
17.7.2 AVREF Pin	793	Description amended
Setting Range	g Range	When using the A/D converter or D/A converter, set A a level between 4.5 V and AVcc. When the A/D conv D/A converter are not used, make settings such that AVcc, and do not leave the AVREF pin open.
		The setting of the AVREFVss pin should always be s AVREFVss = AVss, and do not leave AVREFVss ope
	these conditions are not met, the reliability of the SHI be adversely affected.	

Deleted

Description amended

When using the A/D converter or D/A converter, make

such that AVcc = 5.0 V ±0.5 V and AVss = Vss. Whe

Voltage Range

and VssQ

17.7.1 Relationship of

AVcc and AVss to VccQ

17.7.6 Treatment of

AVcc and AVss When the A/D Converter is Not

Used

793

RENESAS

Rev. 3.00 Mar. 04, 2009 Page

		PB28/DACK0/TIOC1A/RXD3 pin. 000: PB28 I/O (port) 001: Setting prohibited 010: Dack0 output (DMAC) 011: Setting prohibited 100: TIOC1A I/O (MTU2) 101: RXD3 input (SCIF) 110: Setting prohibited 111: Setting prohibited
Section21 Flash	885	Description amended
Memory		This LSI has 384/512*kbyte on-chip flash memory. The memory has the following features.
21.1 Features	885	Description amended
		Size of the user MAT, from which booting-up proceeds power-on reset in user mode: 384/512 kbytes*
		Note added
		Note: * See Appendix B. Product Lineup.
21.1.1 Block Diagram	887	Figure amended
Figure 21.1 Block Diagram of Flash Memory		FCCS FPCS
		FECS Control unit FKEY Control unit User MAT: 384/512 kby User boot MAT: 12 kby

2 to 0

PB28MD[2:0] 000

This bit is always read as 0. The write v

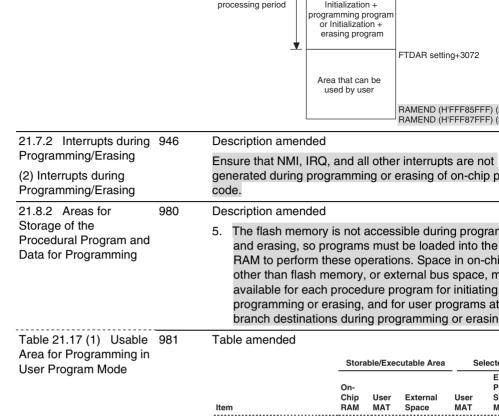
always be 0.

PB28 Mode Select the function of the

Flash memory

R/W

Rev. 3.00 Mar. 04, 2009 Page 1152 of 1168 REJ09B0344-0300


⁶⁸RENESAS

Address H'0007FFFF (When the size of the user MAT is 512 kbytes) Note added Note: * See Appendix B. Product Lineup. 21.2.5 Block Division 892 Figure amended Figure 21.4 Block < User MAT > Division of User MAT Address H'00000000 8 kbytes × 8 64 kbytes 128 kbytes 128 kbytes Last address of 384-kbyte product H'0005FFFF 128 kbytes Last address of 512-kbyte product H'0007FFFF 21.2.6 894 Description amended Programming/Erasing The area to be programmed must be erased in advar Interface programming flash memory. (4) Programming/Erasing Ensure that NMI, IRQ, and all other interrupts are no Execution

Address H'0005FFFF (When the size of the user MAT is 384 kbytes)

generated during programming or erasing.

REJ09

Initialization error processing

Writing H'5A to key register

V

V

V

programming/erasing

REJ09B0344-0300

Rev. 3.00 Mar. 04, 2009 Page 1154 of 1168

		Initialization error processing	V	V	√	√
		Switching MATs by FMATS	1	Х	Х	V
22.1 Features	987	Description ame	ended			
				hip R	AM is divid	ded into four pa
		(pages 0 to 3 The 24 Kbyt (pages 0 to 3	e on-c	hip R	AM is divid	ded into three p
		Memory map)			

Table added

Note added

Item

Item

985

987

1001

Table 21.17 (4) Usable

Table 22.2 24 Kbyte

Spaces

On-Chip RAM Address

23.3.5 System Control

Register 1 (SYSCR1)

Boot Mode

Area for Erasure in User

Initialization error processing Switching MATs by **FMATS**

Table amended

On-

Chip

RAM

On-

Chip

RAM

User

Boot

MAT

Storable/Executable Area

The on-chip RAM is located in the address space

User

Boot

MAT

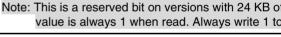
External

External

Space

Space

User


MAT

User

MAT

REJ09

Rev. 3.00 Mar. 04, 2009 Page

User

Boot

MAT

Selected I

User

Boot

MAT

in table 22.1, 22.2.

for the power consumption increase caused by sink cubecause each pin is placed in low-impedance state un reaches the Min. voltage.

do not leave the AVcc.

27.3	DC Characteristics	1084
Table	27.3 DC	
~ :		

Table 27.3 DC Characteristics (1) [Common Items]

27.4.3 Bus Timing
Table 27.8 Bus Timing

1096.

1097

Note amended

Caution: When neither the A/D converter nor the D/A

converter is in use, do n AVREF, and AVREFVss pins open.

Table amended

		B φ = 4	IO MHz*1		
Item	Symbol	Min.	Max.	Unit	Figure
CS delay time 2	t _{CSD2}	1/2t _{cyc}	1/2t _{cyc} + 20	ns	Figures
CS setup time	t _{css}	0	_	ns	Figures 27.15
CS hold time	t _{CSH}	0	_	ns	Figures 27.15
Read write delay time 1	t _{RWD1}	1	20	ns	Figures 27.36
Read write delay time 2	t _{RWD2}	1/2t _{cyc}	1/2t _{cyc} + 20	ns	Figures
Read strobe delay time	t _{RSD}	1/2t _{cyc}	1/2t _{cyc} + 20	ns	Figures 27.19
Read data setup time 1	t _{RDS1}	1/2t _{cyc} + 13	_	ns	Figures 27.18
Read data hold time 4	t _{RDH4}	1/2t _{cyc} + 5	_	ns	Figure 2
Read data access time	t _{ACC} *3	t _{cyc} × (n + 1.5) 31*2	_	ns	Figures 27.15, 2 27.18
Access time after read strobe	t _{oE} *3	t _{cyc} × (n + 1) 31* ²		ns	Figures 27.15, 2 27.18
Write enable delay time 1	t _{wed1}	1/2t _{cyc}	1/2t _{cyc} + 20	ns	Figures 27.17
Write data hold time 1	t _{wDH1}	1	15	ns	Figures 27.18
Write data hold time 2	t _{WDH2}	1	_	ns	Figures 27.27, 2 27.33

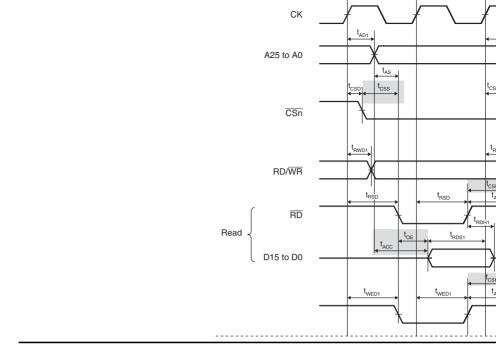

1/2t_{cyc}

Figure 2

Rev. 3.00 Mar. 04, 2009 Page 1156 of 1168 REJ09B0344-0300

Write data hold time 3

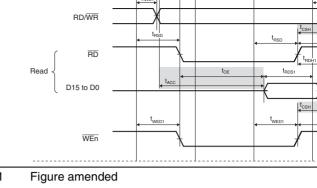
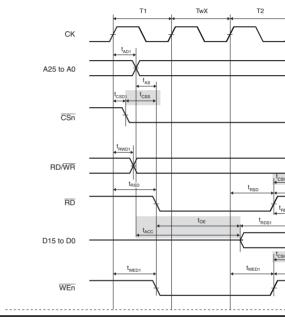



Figure 27.14 Basic Bus 1101 Timing for Normal Space (One External Wait Cycle)

Rev. 3.00 Mar. 04, 2009 Page 1158 of 1168

REJ09B0344-0300

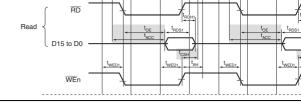
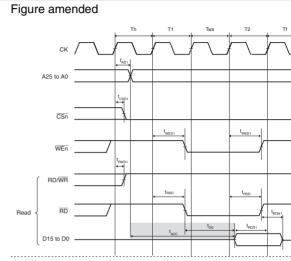
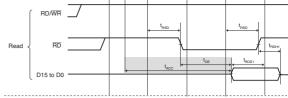




Figure 27.17 Bus Cycle 1104
of SRAM with Byte
Selection (SW = 1 Cycle,
HW = 1 Cycle,
One Asynchronous
External Wait Cycle,
BAS = 0 (Write Cycle
UB/LB Control))

ROM Capacity RAM Capacity Operating

24 Kbytes

32 Kbytes

Temperature

40 to 85 C

40 to 85 C

Product Part No.

R5F72114D160FPV LC R5F72115D160FPV (F

27.4.10 IIC3 Module Timing	1131	Table amended	t	Sne	ecification		
Table 27.15 I ² C Bus		Item	Symbol Test Conditions		Typ.	Max.	— Unit
Interface 3 Timing		SCL input low pulse width	t _{scu.}	5 t _{peye} + 300	— · · · · · · · · · · · · · · · · · · ·	—	ns
interface o Timing		SCL, SDA input rise time	t _s ,	_	_	300	ns
		SCL, SDA input fall time	t _{ss}	_	_	300	ns
		SCL, SDA input spike pulse removal time ⁹²	t _{so}	_	_	1 t _{poye}	ns
27.5 A/D Converter 1137		Condition amer	nded				
Characteristics		AVcc = 4.5 V to Vss = PLLVss :	= 1.4 V to 1.6 V, 0 5.5 V, AVREF = VssQ = AVss = C, V _{ANO-2} = 0.25 to	= 4.5 V to = AVREF	o AVo	cc, = 0 V	, Ta
27.6 D/A Converter	1138	Condition amer	nded				
Characteristics		4.5 V to 5.5 V, AVREF = 4.5 V	= 1.4 V to 1.6 V, ' to AVcc, Vss = V, Ta = -40°C t	PLLVss			
Appendix	1146	Table amended	k				

Product Type

Name

Sh7211

Rev. 3.00 Mar. 04, 2009 Page 1160 of 1168 REJ09B0344-0300

B. Product Lineup

Lineup

Table B.1 Product

Classification

F-ZTAT version

384 Kbytes

512 Kbytes

function518	
Absolute accuracy791	
Absolute address	C
Absolute address accessing25	Calculating exception handling
Access size and data alignment229	vector table addresses
Access wait control236	Canceling software standby mod
Address errors87	(WDT)
Address map 179	Cascaded operation
Address multiplexing244	Caution on period setting
Addressing modes26	Changing the division ratio
Arithmetic operation instructions44	Changing the frequency
Auto-refreshing265	Changing the multiplication rate
Auto-request mode329	Clock frequency control circuit
	Clock operating modes
	Clock pulse generator (CPG)
В	Clocked synchronous serial form
Bank active258	CMCNT count timing
Banked register and input/output	Compare match timer (CMT)
of banks136	Complementary PWM mode
Bit manipulation instructions52	Conditions for determining number
Bit synchronous circuit764	of idle cycles
Block diagram7	Conflict between byte-write
Boot mode920	and count-up processes of CMCl
Branch instructions49	Conflict between word-write
Break detection and processing722	and count-up processes of CMC
Break on data access cycle168	

A/D converter activation by

MTU2 and MTU2S......787

A/D converter start request delaying

Bus arbitration..... Bus state controller (BSC)

Bus-released state.....

signals	140	General illegal instructions
Dead time compensation	529	General registers
Deep power-down mode	277	Global base register (GBR)
Definitions of A/D conversion		_
accuracy	791	
Delayed branch instructions	23	Н
Direct memory access controller		Hardware protection
(DMAC)	299	H-UDI commands
Displacement accessing	25	H-UDI interrupt
Divider 1	63	H-UDI reset
DMA transfer flowchart	328	
DMAC activation	535	
DREQ pin sampling timing	345	I
Dual address mode	337	I/O ports
		I ² C bus format
		I ² C bus interface 3 (IIC3)
${f E}$		Immediate data
Effective address calculation	26	Immediate data accessing
Endian	229	Immediate data format
Equation for getting SCBRR value.	687	Initial user branch processing time
Error protection	941	Initial values of control registers
Exception handling	77	Initial values of general registers
Exception handling state	54	Initial values of system registers
		, ,

Flash memory configuration......

Full-scale error.....

 \mathbf{G}

D/A output hold function

Data transfer with interrupt request

IRQ interrupts	Multiply/Multiply-and-accumulat operations
J	
Jump table base register (TBR)17	${f N}$
	NMI interrupt
	Noise filter
L	Nonlinearity error
Load-store architecture	Normal space interface
Logic operation instructions47	Note on bypass capacitor
Low-frequency mode270	Note on changing operating mode
Low-power SDRAM275	Note on using a PLL oscillation c
	Note on using an external crystal resonator
M	Notes on board design
Manual reset	Notes on noise countermeasures
Master receive operation747	
Master transmit operation	
MCU extension mode	0
MCU operating modes55	Offset error
Module standby function 1009	On-board programming mode
MPX-I/O interface	On-chip peripheral module interru
MTU2 functions	On-chip peripheral module reques
MTU2 interrupts 534	On-chip RAM
MTU2 output pin initialization566	Operation in asynchronous mode.
MTU2–MTU2S synchronous	Operation in clocked synchronous
operation	mode

Interrupt priority level.......91

Interrupt response time 129

REJ09

Multiply and accumulate register

(MACL)

2 0 Wel GO Wil State IIII	
Power-on reset	CSnWCR ($n = 0 \text{ to } 7$)
Power-on sequence	DACR
Procedure register (PR) 18	DADR0
Product code 1146	DADR1
Program counter (PC)18	DAR
Program execution state54	DMAOR
Programmer mode	DMARS0 to DMARS3
PWM Modes457	DMATCR
	DPFR
	FCCS
Q	FEBS
Quantization error791	FECS
	FKEY
	FMATS
R	FMPAR
Receive data sampling timing and	FMPDR
receive margin (asynchronous mode) 723	FPCS
Register bank error exception	FPEFEQ
handling	FPFR911
Register bank errors	FRQCR
Register bank exception	FTDAR
Register banks 19, 135	FUBRA
Registers	IBCR
ACLKCR72	IBNR
ADANSR779	ICCR1
ADCR773	ICCR2
ADDR0 to ADDR7780	ICDRR
Rev. 3.00 Mar. 04, 2009 Page 1164 of 1168	
	ESAS

Power-down modes 991

CMSTR..... CSnBCR (n = 0 to 7).....

OCSR1	617	RDAR
OCSR2	621	RDMATCR
PACRH1	817	RSAR
PACRH2	814	RTCNT
PACRH3	812	RTCOR
PACRL1	825	RTCSR
PACRL2	823	SAR (DMAC)
PACRL3	821	SAR (IIC3)
PACRL4	819	SCBRR
PADRH	865	SCFCR
PADRL	866	SCFDR
PAIORH	811	SCFRDR
PAIORL	811	SCFSR
PAPRH	868	SCFTDR
PAPRL	869	SCLSR
PBCRH1	834	SCRSR
PBCRH2	832	SCSCR
PBCRH3	830	SCSEMR
PBCRH4	828	SCSMR
PBCRL1	842	SCSPTR
PBCRL2	840	SCTSR
PBCRL3	838	SDBPR
PBCRL4	836	SDCR
PBDRH	872	SDIR
PBDRL	873	SPOER
PBDRL		Rev. 3.00 Mar. 04, 2009 Page

IPR01, IPR02, IPR05 to IPR15 105

IRQRR......109

MCLKCR71

NF2CYC......743

PFCRL1

PFDR

POECR1.....

POECR2.....

TBTER 434	Reset state		
TBTM401	Reset-synchronized PWM mode		
TCBR431	Restoration from bank		
TCDR430	Restoration from stack		
TCNT410	Restriction on DMAC usage		
TCNTCMPCLR388	RISC-type instruction set		
TCNTS429	Round-robin mode		
TCR 362			
TCSYSTR415			
TDDR430	S		
TDER436	Saving to bank		
TGCR427	Saving to stack		
TGR410	SCIF interrupt sources		
TICCR403	SDRAM interface		
TIER 389	Self-refreshing		
TIOR369	Sending a break signal		
TITCNT433	Serial communication interface		
TITCR431	with FIFO (SCIF)		
TMDR366	Setting analog input voltage		
TOCR1420	Shift instructions		
TOCR2423	Sign extension of word data		
TOER419	Single address mode		
TOLBR426	Single chip mode		
TRWER418	Single read		
TSR394	Single write		
TSTR411	Single-cycle scan mode		
TSYCR 404	Slave receive operation		
TSYR413	Slave transmit operation		
TWCR437	Sleep mode		
Rev. 3.00 Mar. 04, 2009 Page 1166 of 1168			
REJ09B0344-0300 RENESAS			

T	
T bit23	\mathbf{V}
TAP controller 1015	Vector base register (VBR)
TDO output timing1016	
The address map for the operating	
modes58	\mathbf{W}
Timing to clear an interrupt source 141	Wait between access cycles
Transfer rate731	Watchdog timer (WDT)
Trap instructions	WAVE Interface (WAVEIF)
Types of exception handling and	
priority order77	

System control instructions......50

REJ09

Renesas 32-Bit RISC Microcomputer Hardware Manual SH7211 Group

Publication Date: Rev.1.00, October 30, 2006

Rev.3.00, March 4, 2009

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Customer Support Department

Global Strategic Communication Div.

Renesas Solutions Corp.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.

RENESAS SALES OFFICES

http://www.re

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.

Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852-2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632

Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, M
Tel: <603 - 7955-9390, Fax: <603 - 7955-9510

SH7211 Group Hardware Manual

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 32-bit Microcontrollers - MCU category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

 MB91F575BHSPMC-GSE1
 MB91F594BSPMC-GSE1
 PIC32MX120F032B-50I/ML
 MB91F464AAPMC-GSE2
 MB91F577BHSPMC-GSE1

 SPC5604EEF2MLH
 MB91F528USCPMC-GSE2
 MB91F248PFV-GE1
 MB91F594BPMC-GSE1
 MB91243PFV-GS-136E1

 MB91F577BHSPMC1-GSE1
 PIC32MM0032GPL020-E/ML
 PIC32MM0032GPL020-E/SS
 MEC1632X-AUE
 PIC32MM0016GPL020-E/ML

 PIC32MM0016GPL020-E/SS
 PIC32MM0016GPL028-E/SS
 PIC32MM0016GPL028-E/SO
 PIC32MM0032GPL028-E/ML
 PIC32MM0032GPL028-E/ML

 PIC32MM00032GPL028-E/SS
 PIC32MM0032GPL028-E/ME
 PIC32MM0032GPL028-E/ME
 PIC32MM0032GPL028-E/ME
 MB91F526KSEPMC-GSE1

 PIC32MM0064GPL028-E/SP
 PIC32MM0032GPL036-E/M2
 TLE9872QTW40XUMA1
 FT902L-T
 R5F564MLCDFB#31

 R5F524TAADFF#31
 MCF51AC256ACPUE
 PIC32MM0064GPL028-I/ML
 PIC32MM2064GPL028-I/ML
 PIC32MM2064DAB28-I/ML

 PIC32MX2064DAB288-I/4J
 ATUC256L4U-AUT
 R5F56318CDBG#U0
 PIC32MX150F128C-I/TL
 PIC32MX170F256B-50IML

 PIC32MX130F064C-ITL
 PIC32MX230F064D-IML
 PIC32MM0032GPL028-I/ML