## intersill

## 12MHz Rail-to-Rail Input-Output Operational Amplifier <br> EL5120T <br> Features

The EL5120T is a high voltage rail-to-rail input-output amplifier with low power consumption. The EL5120T is a single amplifier that exhibits beyond the rail input capability, rail-to-rail output capability, and is unity gain stable.

The operating voltage range is from 4.5 V to 19 V . It can be configured for single or dual supply operation, and typically consumes only $750 \mu \mathrm{~A}$. The EL5120T has an output short circuit capability of $\pm 200 \mathrm{~mA}$ and a continuous output current capability of $\pm 70 \mathrm{~mA}$.

The EL5120T features a slew rate of $12 \mathrm{~V} / \mu \mathrm{s}$. Also, the device provides common mode input capability beyond the supply rails, rail-to-rail output capability, and a bandwidth of $12 \mathrm{MHz}(-3 \mathrm{~dB})$. This enables the amplifier to offer maximum dynamic range at any supply voltage. These features make the EL5120T an ideal amplifier solution for use in TFT-LCD panels as a $\mathrm{V}_{\text {COM }}$ or static gamma buffer, and in high speed filtering and signal conditioning applications. Other applications include battery power and portable devices, especially where low power consumption is important.

The EL5120T is available in small 5 Ld TSOT package. It features a standard operational amplifier pinout. The device operates over an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

- $750 \mu \mathrm{~A}$ supply current
- $12 \mathrm{MHz}(-3 \mathrm{~dB})$ bandwidth
- 4.5 V to 19 V maximum supply voltage range
- $12 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- $\pm 70 \mathrm{~mA}$ continuous output current
- $\pm 200 \mathrm{~mA}$ output short circuit current
- Unity-gain stable
- Beyond the rails input capability
- Rail-to-rail output swing
- Built-in thermal protection
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient temperature range
- Pb-free (RoHS compliant)


## Applications

- TFT-LCD panel - tablet, monitor, notebook
- $V_{\text {COM }}$ amplifier, static gamma buffer, panel repair
- Electronic notebooks, games
- Touch-screen displays
- Personal communication devices, digital assistants (PDA)
- Portable instrumentation
- Sampling ADC amplifiers
- Wireless LANs
- Office automation
- Active filters
- ADC/DAC buffer


FIGURE 1. TYPICAL TFT-LCD VCOM APPLICATION


FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS $\mathbf{R}_{\mathbf{L}}$

## Pin Configuration



## Pin Descriptions

| PIN NUMBER | PIN <br> NAME |  | EQUIVALENT <br> CIRCUIT |
| :---: | :---: | :--- | :---: |
| $\mathbf{1}$ | VOUT | Amplifier output | (Reference "CIRCUIT 1") |
| $\mathbf{2}$ | VS- | Negative power supply |  |
| $\mathbf{3}$ | VIN+ | Amplifier non-inverting input | (Reference "CIRCUIT 2") |
| 4 | VIN- | Amplifier inverting input | (Reference "CIRCUIT 2") |
| $\mathbf{5}$ | VS + | Positive power supply |  |



## Ordering Information

| PART NUMBER <br> (Notes 2, 3) | PART <br> MARKING | PACKAGE <br> (Pb-Free) | PKG. <br> DWG. \# |
| :--- | :--- | :--- | :--- |
| EL5120TIWTZ-T7 (Note 1) | BESA | 5 Ld TSOT | MDP0049 |

NOTES:

1. Please refer to TB 347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5120T. For more information on MSL please see techbrief TB363.

| Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: |
|  Input Voltage Range ( $\left.\mathrm{V}_{\mathrm{IN}^{+}}, \mathrm{V}_{\mathrm{IN}^{\prime}}\right) \ldots \ldots . . . . . . . . . . . . . . \mathrm{V}_{\mathbf{S}^{-}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathbf{S}^{+}}+0.5 \mathrm{~V}$ |  |
|  |  |
| Input Differential Voltage ( $\mathrm{V}_{\mathrm{IN}+}-\mathrm{V}_{\mathrm{IN}}$ )$\left(\mathrm{V}_{\mathrm{S}^{+}}+0.5 \mathrm{~V}\right)-\left(\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}\right)$ |  |
|  |  |
| Maximum Continuous Output Current | $\pm 70 \mathrm{~mA}$ |
| ESD Rating |  |
| Human Body Model (Tested per JESD22-A114) | 4000V |
| Machine Model (Tested per JESD22-A115). | 300 V |
| Charged Device Model (Tested per JESD22-C101) | ). . . . . . . . . . . 2000 V |
| atch Up (Tested per JESD78; Class II, Level A) | 100 |

## Thermal Information

Thermal Resistance (Typical)
5 Ld TSOT (Notes 4, 5)
$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right) \quad \theta_{\mathbf{J C}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$

Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature . . . . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$
Power Dissipation
See Figures 30 and 31

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
4. $\theta_{\mathrm{JA}}$ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For $\theta_{\mathrm{J}} \mathrm{C}$, the "case temp" location is taken at the package top center.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

| PARAMETER | DESCRIPTION | CONDITIONS | MIN (Note 9) | TYP | $\begin{gathered} \text { MAX } \\ \text { (Note 9) } \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  | 5 | 18 | mV |
| TCV ${ }_{\text {OS }}$ | Average Offset Voltage Drift (Note 6) |  |  | 5 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ |  | 2 | 50 | nA |
| $\mathrm{R}_{\mathrm{IN}}$ | Input Impedance |  |  | 1 |  | G $\Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  |  | 2 |  | pF |
| CMIR | Common-Mode Input Range |  | -5.5 |  | +5.5 | V |
| CMRR | Common-Mode Rejection Ratio | For $\mathrm{V}_{\text {IN }}$ from -5.5V to +5.5 V | 50 | 75 |  | dB |
| $A_{\text {VOL }}$ | Open Loop Gain | $-4.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.5 \mathrm{~V}$ | 75 | 105 |  | dB |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Swing Low | $I_{L}=-5 m A$ |  | -4.94 | -4.85 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Swing High | $\mathrm{I}_{\mathrm{L}}=+5 \mathrm{~mA}$ | 4.85 | 4.94 |  | V |
| ${ }^{\text {ISC }}$ | Short Circuit Current | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, Source: $\mathrm{V}_{\text {OUT }}$ short to $\mathrm{V}_{\mathrm{S}^{-}}$, <br> Sink: $\mathrm{V}_{\text {OUT }}$ short to $\mathrm{V}_{\mathrm{S}^{+}}$ |  | $\pm 200$ |  | mA |
| IOUT | Output Current |  |  | $\pm 70$ |  | mA |
| POWER SUPPLY PERFORMANCE |  |  |  |  |  |  |
| $\left(\mathrm{V}_{\mathrm{S}^{+}}\right)-\left(\mathrm{V}_{\mathrm{S}^{-}}\right)$ | Supply Voltage Range |  | 4.5 |  | 19 | V |
| $I_{S}$ | Supply Current | $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$, No load |  | 750 | 950 | $\mu \mathrm{A}$ |
| PSRR | Power Supply Rejection Ratio | Supply is moved from $\pm 2.25 \mathrm{~V}$ to $\pm 9.5 \mathrm{~V}$ | 60 | 75 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |
| SR | Slew Rate (Note 7) | $-4.0 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4.0 \mathrm{~V}, 20 \%$ to $80 \%$ |  | 12 |  | $\mathrm{V} / \mu \mathrm{s}$ |
| ${ }^{\text {t }}$ | Settling to +0.1\% (Note 8) | $\begin{aligned} & A_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V} \text { step } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 500 |  | ns |
| BW | -3dB Bandwidth | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$ |  | 12 |  | MHz |

## EL5120T

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified. (Continued)

| PARAMETER | DESCRIPTION | CONDITIONS | MIN (Note 9) | TYP | $\begin{gathered} \text { MAX } \\ \text { (Note 9) } \end{gathered}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GBWP | Gain-Bandwidth Product | $\begin{aligned} & A_{V}=-50, R_{F}=5 \mathrm{k} \Omega, R_{G}=100 \Omega \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=8 \mathrm{pF} \end{aligned}$ |  | 8 |  | MHz |
| PM | Phase Margin | $\begin{aligned} & A_{V}=-50, R_{F}=5 \mathrm{k} \Omega, R_{G}=100 \Omega \\ & R_{L}=10 k \Omega, C_{L}=8 p F \end{aligned}$ |  | 50 |  | - |

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{v}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

| PARAMETER | DESCRIPTION | CONDITIONS | MIN (Note 9) | TYP | MAX <br> (Note 9) | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ |  | 5 | 18 | mV |
| $\mathrm{TCV}_{\text {OS }}$ | Average Offset Voltage Drift (Note 6) |  |  | 5 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current | $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ |  | 2 | 50 | nA |
| $\mathrm{R}_{\mathrm{IN}}$ | Input Impedance |  |  | 1 |  | G $\Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  |  | 2 |  | pF |
| CMIR | Common-Mode Input Range |  | -0.5 |  | +5.5 | V |
| CMRR | Common-Mode Rejection Ratio | For $\mathrm{V}_{\text {IN }}$ from -0.5 V to +5.5 V | 45 | 70 |  | dB |
| Avol | Open Loop Gain | $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUx }} \leq+4.5 \mathrm{~V}$ | 75 | 105 |  | dB |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Swing Low | $\mathrm{I}_{\mathrm{L}}=-2.5 \mathrm{~mA}$ |  | 30 | 150 | mV |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Swing High | $\mathrm{I}_{\mathrm{L}}=+2.5 \mathrm{~mA}$ | 4.85 | 4.97 |  | V |
| ${ }^{\text {ISC }}$ | Short Circuit Current | $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, Source: $\mathrm{V}_{\text {OUT }}$ short to $\mathrm{V}_{\mathrm{S}^{-}}$, <br> Sink: $\mathrm{V}_{\text {OUT }}$ short to $\mathrm{V}_{\mathbf{S}^{+}}$ |  | $\pm 125$ |  | mA |
| IOUT | Output Current |  |  | $\pm 70$ |  | mA |
| POWER SUPPLY PERFORMANCE |  |  |  |  |  |  |
| $\left(\mathrm{V}^{+}{ }^{+}\right)-\left(\mathrm{V}_{\mathrm{S}^{-}}\right)$ | Supply Voltage Range |  | 4.5 |  | 19 | V |
| Is | Supply Current | $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$, No load |  | 750 | 950 | $\mu \mathrm{A}$ |
| PSRR | Power Supply Rejection Ratio | Supply is moved from 4.5 V to 19 V | 60 | 75 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |
| SR | Slew Rate (Note 7) | $1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4 \mathrm{~V}, 20 \%$ to $80 \%$ |  | 12 |  | $\mathrm{V} / \mu \mathrm{s}$ |
| ${ }^{\text {ts }}$ | Settling to +0.1\% (Note 8) | $\begin{aligned} & \mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{OUT}}=2 \mathrm{~V} \text { step, } \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 500 |  | ns |
| BW | -3dB Bandwidth | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$ |  | 12 |  | MHz |
| GBWP | Gain-Bandwidth Product | $\begin{aligned} & A_{V}=-50, R_{F}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 8 |  | MHz |
| PM | Phase Margin | $\begin{aligned} & A_{V}=-50, R_{F}=5 \mathrm{k} \Omega, R_{G}=100 \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 50 |  | - |

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+18 \mathrm{~V}, \mathrm{v}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to $9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

| PARAMETER | DESCRIPTION | CONDITIONS | MIN (Note 9) | TYP | $\begin{aligned} & \text { MAX } \\ & \text { (Note 9) } \end{aligned}$ | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\mathrm{V}_{\mathrm{CM}}=9 \mathrm{~V}$ |  | 6 | 18 | mV |
| TCV ${ }_{\text {OS }}$ | Average Offset Voltage Drift (Note 6) |  |  | 6 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current | $\mathrm{V}_{\mathrm{CM}}=9 \mathrm{~V}$ |  | 2 | 50 | nA |
| $\mathrm{R}_{\mathrm{IN}}$ | Input Impedance |  |  | 1 |  | G $\Omega$ |
| $\mathrm{C}_{\mathrm{IN}}$ | Input Capacitance |  |  | 2 |  | pF |
| CMIR | Common-Mode Input Range |  | -0.5 |  | +18.5 | V |
| CMRR | Common-Mode Rejection Ratio | For $\mathrm{V}_{\text {IN }}$ from -0.5 V to +18.5 V | 53 | 78 |  | dB |
| $A_{\text {VOL }}$ | Open Loop Gain | $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 17.5 \mathrm{~V}$ | 75 | 90 |  | dB |
| OUTPUT CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Output Swing Low | $\mathrm{I}_{\mathrm{L}}=-9 \mathrm{~mA}$ |  | 120 | 150 | mV |
| $\mathrm{V}_{\mathrm{OH}}$ | Output Swing High | $\mathrm{I}_{\mathrm{L}}=+9 \mathrm{~mA}$ | 17.85 | 17.88 |  | V |
| ${ }^{\text {ISC }}$ | Short Circuit Current | $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=9 \mathrm{~V} \text {, Source: } \mathrm{V}_{\mathrm{OUT}} \text { short to } \mathrm{V}_{\mathrm{S}^{-}}, \\ & \text {Sink: } \mathrm{V}_{\mathrm{OUT}} \text { short to } \mathrm{V}_{\mathrm{S}^{+}} \end{aligned}$ |  | $\pm 200$ |  | mA |
| IOUT | Output Current |  |  | $\pm 70$ |  | mA |
| POWER SUPPLY PERFORMANCE |  |  |  |  |  |  |
| $\left(\mathrm{V}_{\mathrm{S}^{+}}\right)-\left(\mathrm{V}_{\mathrm{S}^{-}}\right)$ | Supply Voltage Range |  | 4.5 |  | 19 | V |
| $I_{S}$ | Supply Current | $\mathrm{V}_{\mathrm{CM}}=9 \mathrm{~V}$, No load |  | 900 | 1100 | $\mu \mathrm{A}$ |
| PSRR | Power Supply Rejection Ratio | Supply is moved from 4.5 V to 19 V | 60 | 75 |  | dB |
| DYNAMIC PERFORMANCE |  |  |  |  |  |  |
| SR | Slew Rate (Note 7) | $1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 17 \mathrm{~V}, 20 \%$ to $80 \%$ |  | 12 |  | $\mathrm{V} / \mu \mathrm{s}$ |
| ${ }^{\text {ts }}$ | Settling to +0.1\% (Note 8) | $\begin{aligned} & A_{V}=+1, V_{\text {OUT }}=2 \mathrm{~V} \text { step, } \\ & R_{L}=10 \mathrm{k} \Omega, C_{L}=8 \mathrm{pF} \end{aligned}$ |  | 500 |  | ns |
| BW | -3dB Bandwidth | $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$ |  | 12 |  | MHz |
| GBWP | Gain-Bandwidth Product | $\begin{aligned} & A_{V}=-50, R_{F}=5 \mathrm{k} \Omega, R_{G}=100 \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega, C_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 8 |  | MHz |
| PM | Phase Margin | $\begin{aligned} & A_{\mathrm{V}}=-50, \mathrm{R}_{\mathrm{F}}=5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=8 \mathrm{pF} \end{aligned}$ |  | 50 |  | - |

## NOTES:

6. Measured over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ambient operating temperature range. See the typical $\mathrm{TCV}_{\text {OS }}$ production distribution shown in the "Typical Performance Curves" on page 6.
7. Typical slew rate is an average of the slew rates measured on the rising ( $20 \%$ to $80 \%$ ) and the falling ( $80 \%$ to $20 \%$ ) edges of the output signal.
8. Settling time measured as the time from when the output level crosses the final value on rising/falling edge to when the output level settles within a $\pm 0.1 \%$ error band. The range of the error band is determined by: Final Value $(\mathrm{V}) \pm[\mathrm{Full} \operatorname{Scale}(\mathrm{V})$ * $0.1 \%$ ]
9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves


FIGURE 3. INPUT OFFSET VOLTAGE DISTRIBUTION


FIGURE 5. INPUT OFFSET VOLTAGE vs TEMPERATURE


FIGURE 7. OUTPUT HIGH VOLTAGE vs TEMPERATURE


FIGURE 4. INPUT OFFSET VOLTAGE DRIFT (TSOT)


FIGURE 6. INPUT BIAS CURRENT vs TEMPERATURE


FIGURE 8. OUTPUT LOW VOLTAGE vs TEMPERATURE

## Typical Performance Curves (continued)



FIGURE 9. OPEN-LOOP GAIN vs TEMPERATURE


FIGURE 11. SUPPLY CURRENT vs TEMPERATURE


FIGURE 13. SLEW RATE vs SUPPLY VOLTAGE


FIGURE 10. SLEW RATE vs TEMPERATURE


FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 14. OPEN LOOP GAIN AND PHASE vs FREQUENCY

## Typical Performance Curves (continued)



FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS $\mathbf{R}_{\mathbf{L}}$


FIGURE 17. CLOSED LOOP OUTPUT IMPEDANCE vs FREQUENCY


FIGURE 19. CMRR vs FREQUENCY


FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS $\mathbf{C}_{\mathrm{L}}$


FIGURE 18. MAXIMUM OUTPUT SWING vs FREQUENCY


FIGURE 20. PSRR vs FREQUENCY

## Typical Performance Curves (continued)



FIGURE 21. INPUT VOLTAGE NOISE SPECTRAL DENSITY vs FREQUENCY


FIGURE 23. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE


FIGURE 25. LARGE SIGNAL TRANSIENT RESPONSE


FIGURE 22. TOTAL HARMONIC DISTORTION + NOISE vs FREQUENCY


FIGURE 24. STEP SIZE vs SETTLING TIME


FIGURE 26. SMALL SIGNAL TRANSIENT RESPONSE


FIGURE 27. BASIC TEST CIRCUIT

## Applications Information

## Product Description

The EL5120T is a high voltage rail-to-rail input-output amplifier with low power consumption. The EL5120T is a single amplifier which exhibits beyond the rail input capability, rail-to-rail output capability, and is unity gain stable.

The EL5120T features a slew rate of $12 \mathrm{~V} / \mathrm{\mu s}$. Also, the device provides common mode input capability beyond the supply rails, rail-to-rail output capability, and a bandwidth of $12 \mathrm{MHz}(-3 \mathrm{~dB})$. This enables the amplifier to offer maximum dynamic range at any supply voltage.

## Operating Voltage, Input and Output Capability

The EL5120T can operate on a single supply or dual supply configuration. The EL5120T operating voltage ranges from a minimum of 4.5 V to a maximum of 19 V . This range allows for a standard 5 V (or $\pm 2.5 \mathrm{~V}$ ) supply voltage to dip to $-10 \%$, or a standard 18 V (or $\pm 9 \mathrm{~V}$ ) to rise by $+5.5 \%$ without affecting performance or reliability.

The input common-mode voltage range of the EL5120T extends 500 mV beyond the supply rails. Also, the EL5120T is immune to phase reversal. However, if the common mode input voltage exceeds the supply voltage by more than 0.5 V , electrostatic protection diodes in the input stage of the device begin to conduct. Even though phase reversal will not occur, to maintain optimal reliability it is suggested to avoid input overvoltage conditions. Figure 28 shows the input voltage driven 500 mV beyond the supply rails and the device output swinging between the supply rails.

The EL5120T output typically swings to within 50 mV of positive and negative supply rails with load currents of $\pm 5 \mathrm{~mA}$. Decreasing load currents will extend the output voltage range even closer to the supply rails. Figure 29 shows the input and output waveforms for the device in a unity-gain configuration. Operation is from $\pm 5 \mathrm{~V}$ supply with a $10 \mathrm{k} \Omega$ load connected to GND. The input is a $10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ sinusoid and the output voltage is approximately $9.9 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$.

Refer to the "Electrical Specifications" table beginning on page 3 for specific device parameters. Parameter variations with operating voltage, loading and/or temperature are shown in the "Typical Performance Curves" beginning on page 6.


FIGURE 28. OPERATION WITH BEYOND-THE-RAILS INPUT


FIGURE 29. OPERATION WITH RAIL-TO-RAIL INPUT AND OUTPUT

## Output Current

The EL5120T is capable of output short circuit currents of 200 mA (source and sink), and the device has built-in protection circuitry, which limits the output current to $\pm 200 \mathrm{~mA}$ (typical).

To maintain maximum reliability, the continuous output current should never exceed $\pm 70 \mathrm{~mA}$. This $\pm 70 \mathrm{~mA}$ limit is determined by the characteristics of the internal metal interconnects. Also, see "Power Dissipation" on page 12 for detailed information on ensuring proper device operation and reliability for temperature and load conditions.

## Thermal Shutdown

The EL5120T has a built-in thermal protection, which ensures safe operation and prevents internal damage to the device due to overheating. When the die temperature reaches $+165^{\circ} \mathrm{C}$ (typical), the device automatically shuts OFF the outputs by putting them in a high impedance state. When the die cools by $+15^{\circ} \mathrm{C}$ (typical), the device automatically turns ON the outputs by putting them in a low impedance (normal) operating state.

## Driving Capacitive Loads

Purely capacitive loads on the EL5120T should not exceed 1nF without appropriate output load isolation or amplifier compensation techniques.

As load capacitance increases, the -3dB bandwidth will decrease and peaking can occur. Depending on the application, it may be necessary to reduce peaking and to improve device stability. To improve device stability, a snubber circuit (compensation) or a series resistor (isolation) may be added to the output of the EL5120T.

A snubber is a shunt load consisting of a resistor in series with a capacitor. An optimized snubber can improve the phase margin and the stability of the EL5120T. The advantage of a snubber circuit is that it does not draw any DC load current or reduce the gain.

Another method to reduce peaking is to add a series output resistor (typically between $1 \Omega$ to $10 \Omega$ ). Depending on the capacitive loading, a small value resistor may be the most appropriate choice to minimize any reduction in gain.

## Power Dissipation

With the high-output drive capability of the EL5120T amplifier, it is possible to exceed the $+150^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. It is important to calculate the maximum power dissipation of the EL5120T in the application. Proper load conditions will ensure that the EL5120T junction temperature stays within a safe operating region.

The maximum power dissipation allowed in a package is determined according to Equation 1:
$P_{\text {DMAX }}=\frac{T_{\text {JMAX }}-T_{\text {AMAX }}}{\theta_{\text {JA }}}$
where:

> - $\mathrm{T}_{\mathrm{JMAX}}=$ Maximum junction temperature
> - $\mathrm{T}_{\mathrm{AMAX}}=$ Maximum ambient temperature
> - $\Theta_{\mathrm{JA}}=$ Thermal resistance of the package
> - $\mathrm{P}_{\mathrm{DMAX}}=$ Maximum power dissipation allowed

The total power dissipation produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power dissipation in the IC due to the load, or:
$P_{\text {DMAX }}=\mathrm{V}_{\text {S }} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\text {LOAD }}$
when sourcing, and:
$P_{\text {DMAX }}=\mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}+\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{S}^{-}}\right) \times \mathrm{I}_{\text {LOAD }}$
when sinking,
where:

- $\mathrm{V}_{\mathrm{S}}=$ Total supply voltage $\left(\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{S}^{-}}\right)$
- $\mathrm{V}_{\mathrm{S}^{+}}=$Positive supply voltage
- $\mathrm{V}_{\mathrm{S}^{-}}=$Negative supply voltage
- ISMAX $=$ Maximum supply current (ISMAX = EL5120T quiescent current)
- $\mathrm{V}_{\text {OUT }}=$ Output voltage
- LLOAD = Load current

Device overheating can be avoided by calculating the minimum resistive load condition, R LOAD , resulting in the highest power dissipation. To find $R_{\text {LOAD }}$ set the two $\mathrm{P}_{\text {DMAX }}$ equations equal to each other and solve for $\mathrm{V}_{\text {OUT }} / \mathrm{I}_{\text {LOAD }}$. Reference the package power dissipation curves, Figures 30 and 31, for further information.


FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE


[^0]
## Power Supply Bypassing and Printed Circuit Board Layout

The EL5120T can provide gain at high frequency, so good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended, trace lengths should be as short as possible and the power supply pins must be well bypassed to reduce any risk of oscillation.

For normal single supply operation (the $\mathrm{V}_{\mathbf{S}^{-}}$pin is connected to ground) a $4.7 \mu \mathrm{~F}$ capacitor should be placed from $\mathrm{V}_{\mathrm{S}^{+}}$to ground, then a parallel $0.1 \mu \mathrm{~F}$ capacitor should be connected as close to the amplifier as possible. One $4.7 \mu \mathrm{~F}$ capacitor may be used for multiple devices. For dual supply operation the same capacitor combination should be placed at each supply pin to ground.

## Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest revision.

| DATE | REVISION | CHANGE |
| :--- | :--- | :--- |
| September 26, 2013 | FN6895.1 | Features on page 1: Updated operation temperature range from " $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} "$ "to "- $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} "$. <br> Thermal Information table on page 3 under Ambient operation temperature changed the temperature range <br> from " $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} "$ to " $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} "$. <br> Updated Figure $30, ~ " P A C K A G E ~ P O W E R ~ D I S S I P A T I O N ~ v s ~ A M B I E N T ~ T E M P E R A T U R E, " ~ o n ~ p a g e ~ 12 ~ a n d ~ F i g u r e ~ 31, ~$ <br> "PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE," on page 12. |
| September 27,2012 | FN6895.0 | Initial release. |

## About Intersil

Intersil Corporation is a leader in the design and manufacture of high-performance analog, mixed-signal and power management semiconductors. The company's products address some of the largest markets within the industrial and infrastructure, personal computing and high-end consumer markets. For more information about Intersil, visit our website at www.intersil.com.

For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com. You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/en/support/ask-an-expert.html. Reliability reports are also available from our website at http://www.intersil.com/en/support/qualandreliability.html\#reliability

[^1][^2]
## EL5120T

## TSOT Package Family



## MDP0049

TSOT PACKAGE FAMILY

| SYMBOL | MILLIMETERS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | TSOT5 | TSOT6 | TSOT8 |  |
| A | 1.00 | 1.00 | 1.00 | Max |
| A1 | 0.05 | 0.05 | 0.05 | $\pm 0.05$ |
| A2 | 0.87 | 0.87 | 0.87 | $\pm 0.03$ |
| b | 0.38 | 0.38 | 0.29 | $\pm 0.07$ |
| c | 0.127 | 0.127 | 0.127 | $+0.07 /-0.007$ |
| D | 2.90 | 2.90 | 2.90 | Basic |
| E | 2.80 | 2.80 | 2.80 | Basic |
| E1 | 1.60 | 1.60 | 1.60 | Basic |
| e | 0.95 | 0.95 | 0.65 | Basic |
| e1 | 1.90 | 1.90 | 1.95 | Basic |
| L | 0.40 | 0.40 | 0.40 | $\pm 0.10$ |
| L1 | 0.60 | 0.60 | 0.60 | Reference |
| ddd | 0.20 | 0.20 | 0.13 | - |
| N | 5 | 6 | 8 | Reference |

NOTES:

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.15 mm maximum per side are not included.
3. This dimension is measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin \#1 I.D. will be located within the indicated zone (TSOT6 AND TSOT8 only).
6. TSOT5 version has no center lead (shown as a dashed line).

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X 714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G M38510/13101BPA NTE925 SC2904DR2G SC358DR2G LM358EDR2G AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E LM324AWPT HA1630Q06TELL-E NJM4558CG-TE2 AZV358MMTR-G1 $\underline{\text { SCY33178DR2G NCS4325DR2G LM7301SN1T1G NJU77806F3-TE1 NCV833DR2G }}$


[^0]:    FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

[^1]:    Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

[^2]:    For information regarding Intersil Corporation and its products, see www.intersil.com

