600MHz Current Feedback Amplifiers with Enable

The EL5164, EL5165, and EL5364 are current feedback amplifiers with a very high bandwidth of 600 MHz . This makes these amplifiers ideal for today's high speed video and monitor applications.

With a supply current of just 5 mA and the ability to run from a single supply voltage from 5 V to 12 V , the amplifiers are also ideal for hand held, portable or battery-powered equipment.

The EL5164 also incorporates an enable and disable function to reduce the supply current to $100 \mu \mathrm{~A}$ typical per amplifier. Allowing the $\overline{\mathrm{CE}}$ pin to float or applying a low logic level will enable the amplifier.

The EL5165 is offered in the 5 Ld SOT-23 and 5 Ld SC-70 packages, EL5164 is available in the 6 Ld SOT-23 and the industry-standard 8 Ld SOIC packages, and the EL5364 in a 16 Ld SOIC and 16 Ld QSOP packages. All operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Pinouts

Features

- $600 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth
- $4700 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- 5 mA supply current
- Single and dual supply operation, from 5 V to 12 V supply span
- Fast enable/disable (EL5164 and EL5364 only)
- Available in SOT-23 packages
- Dual (EL5264 and EL5265) and triple (EL5362 and EL5363) also available
- High speed, 1 GHz product available (EL5166 and EL5167)
- 300MHz product available (EL5162 family)
- Pb-Free available (RoHS compliant)

Applications

- Video amplifiers
- Cable drivers
- RGB amplifiers
- Test equipment
- Instrumentation
- Current to voltage converters

Ordering Information

PART NUMBER	PART MARKING	PACKAGE	PKG. DWG. \#
EL5164IS	5164IS	8 Ld SOIC (150 mil)	MDP0027
EL5164IS-T7*	5164IS	8 Ld SOIC (150 mil)	MDP0027
EL5164IS-T13*	5164IS	8 Ld SOIC (150 mil)	MDP0027
EL5164ISZ (Note)	5164ISZ	8 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5164ISZ-T7* (Note)	5164ISZ	8 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5164ISZ-T13* (Note)	5164ISZ	8 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5164IW-T7*	i	6 Ld SOT-23	MDP0038
EL5164IW-T7A*	i	6 Ld SOT-23	MDP0038
EL5164IWZ-T7* (Note)	BAMA	6 Ld SOT-23 (Pb-free)	MDP0038
EL5164IWZ-T7A* (Note)	BAMA	6 Ld SOT-23 (Pb-free)	MDP0038
EL5165IC-T7*	F	5 Ld SC-70 (1.25mm)	P5.049
EL5165IC-T7A*	F	5 Ld SC-70 (1.25mm)	P5.049
EL5165IW-T7*	b	5 Ld SOT-23	MDP0038
EL5165IW-T7A*	b	5 Ld SOT-23	MDP0038
EL5165IWZ-T7* (Note)	BANA	5 Ld SOT-23 (Pb-free)	MDP0038
EL5165IWZ-T7A* (Note)	BANA	5 Ld SOT-23 (Pb-free)	MDP0038
EL5364IS	EL5364IS	16 Ld SOIC (150 mil)	MDP0027
EL5364IS-T7*	EL5364IS	16 Ld SOIC (150 mil)	MDP0027
EL5364IS-T13*	EL5364IS	16 Ld SOIC (150 mil)	MDP0027
EL5364ISZ (Note)	EL5364ISZ	16 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5364ISZ-T7* (Note)	EL5364ISZ	16 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5364ISZ-T13* (Note)	EL5364ISZ	16 Ld SOIC (150 mil) (Pb-free)	MDP0027
EL5364IU	5364IU	16 Ld QSOP (150 mil)	MDP0040
EL5364IU-T7*	5364IU	16 Ld QSOP (150 mil)	MDP0040
EL5364IU-T13*	5364IU	16 Ld QSOP (150 mil)	MDP0040
EL5364IUZ (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040
EL5364IUZ-T7* (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040
EL5364IUZ-T13* (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040
EL5364IUZA (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040
EL5364IUZA-T7* (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040
EL5364IUZA-T13* (Note)	5364IUZ	16 Ld QSOP (150 mil) (Pb-free)	MDP0040

*Please refer to TB347 for details on reel specifications.
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)\)
Supply Voltage between \(\mathrm{V}_{\mathrm{S}^{+}}\)and \(\mathrm{V}_{\mathrm{S}^{-}}\). . . . . . . . . . . . . . . . . . . . 13.2 V
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{S}^{+}}+0.5 \mathrm{~V}\)
Supply Slewrate between \(\mathrm{V}_{\mathrm{S}^{+}}\)and \(\mathrm{V}_{\mathrm{S}^{-}} \ldots . . . . . . . . . .1 \mathrm{~V} / \mu \mathrm{s}\) (Max)
\(\mathrm{V}_{\text {IN-DIFF }}\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right)(\)When Disabled) . . . . . . . . . . . . . . \(\pm 2 \mathrm{~V}\) (Max)
```


Thermal Information

Power Dissipation . See Curves Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Junction Temperature . $+125^{\circ} \mathrm{C}$ Pb-free reflow profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{S^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{S^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=750 \Omega$ for $\mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{F}}=375 \Omega$ for $\mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {ENABLE }=} \mathrm{V}_{\mathrm{S}^{+}}-1 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 2)	TYP	MAX (Note 2)	UNIT
AC PERFORMANCE						
BW	-3dB Bandwidth	$A_{V}=+1, R_{L}=500 \Omega, \mathrm{R}_{\mathrm{F}}=510 \Omega$		600		MHz
		$A_{V}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{R}_{\mathrm{F}}=412 \Omega$		450		MHz
BW1	0.1dB Bandwidth	$A_{V}=+2, R_{L}=150 \Omega, \mathrm{R}_{\mathrm{F}}=412 \Omega$		50		MHz
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}=-3 \mathrm{~V}$ to $+3 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$, $R_{L}=100 \Omega$ (EL5164, EL5165)	3500	4700	7000	V/ $\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=-3 \mathrm{~V} \text { to }+3 \mathrm{~V}, A_{\mathrm{V}}=+2, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega(\mathrm{EL} 5364) \end{aligned}$	3000	4200	6000	$\mathrm{V} / \mathrm{\mu s}$
ts	0.1\% Settling Time	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=-2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2, \\ & \mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{G}}=1 \mathrm{k} \Omega \end{aligned}$		15		ns
e_{N}	Input Voltage Noise	$\mathrm{f}=1 \mathrm{MHz}$		2.1		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
${ }^{i} \mathrm{~N}^{-}$	IN- Input Current Noise	$\mathrm{f}=1 \mathrm{MHz}$		13		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
$\mathrm{i}^{+}{ }^{+}$	IN+ Input Current Noise	$\mathrm{f}=1 \mathrm{MHz}$		13		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
HD2		$5 \mathrm{MHz}, 2.5 \mathrm{~V}_{\text {P-P }}$		-81		dBc
HD3		$5 \mathrm{MHz}, 2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$		-74		dBc
dG	Differential Gain Error (Note 1)	$A_{V}=+2$		0.01		\%
dP	Differential Phase Error (Note 1)	$A_{V}=+2$		0.01		-
DC PERFORMANCE						
$\mathrm{V}_{\text {OS }}$	Offset Voltage		-5	1.5	+5	mV
$\mathrm{T}_{\mathrm{C}} \mathrm{V}_{\text {OS }}$	Input Offset Voltage Temperature Coefficient	Measured from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		6		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
R_{OL}	Transimpedance		1.1	3		$\mathrm{M} \Omega$
INPUT CHARACTERISTICS						
CMIR	Common Mode Input Range	Guaranteed by CMRR test	± 3	± 3.3		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {IN }}= \pm 3 \mathrm{~V}$	50	62	75	dB
-ICMR	- Input Current Common Mode Rejection		-1	0.1	+1	$\mu \mathrm{A} / \mathrm{V}$
$+\mathrm{I}^{\mathrm{IN}}$	+ Input Current		-10	2	+10	$\mu \mathrm{A}$
${ }^{-1} \mathrm{IN}$	- Input Current		-10	2	+10	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	+ Input	300	650	1200	$\mathrm{k} \Omega$
$\mathrm{Cl}_{\text {IN }}$	Input Capacitance			1		pF

Electrical Specifications $\quad V_{S^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{S^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=750 \Omega$ for $\mathrm{A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{F}}=375 \Omega$ for $\mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~V}_{\text {ENABLE }}=\mathrm{V}_{\mathrm{S}^{+}}-1 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 2) } \end{gathered}$	TYP	MAX (Note 2)	UNIT
OUTPUT CHARACTERISTICS						
V_{O}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND	± 3.6	± 3.8	± 4.0	V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	± 3.9	± 4.1	± 4.2	V
Iout	Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ to GND	100	140	190	mA
SUPPLY						
ISON	Supply Current - Enabled	No load, $\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$	3.2	3.5	4.2	mA
ISOFF+	Supply Current - Disabled, per Amplifier		0		+25	$\mu \mathrm{A}$
ISOFF-	Supply Current - Disabled, per Amplifier	No load, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-25	-14	0	$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	DC, $\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}$ to $\pm 5.25 \mathrm{~V}$	65	79		dB
-IPSR	- Input Current Power Supply Rejection	DC, $\mathrm{V}_{\mathrm{S}}= \pm 4.75 \mathrm{~V}$ to $\pm 5.25 \mathrm{~V}$	-1	0.1	+1	$\mu \mathrm{A} / \mathrm{V}$
ENABLE (EL5164 ONLY)						
$\mathrm{t}_{\text {EN }}$	Enable Time			200		ns
tos	Disable Time			800		ns
IIHCE	$\overline{\mathrm{CE}}$ Pin Input High Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{S}^{+}}$	1	10	+25	$\mu \mathrm{A}$
IILCE	$\overline{\mathrm{CE}}$ Pin Input Low Current	$\overline{\mathrm{CE}}=\left(\mathrm{V}_{\mathrm{S}^{+}}\right)-5 \mathrm{~V}$	-1	0	+1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IHCE }}$	$\overline{\mathrm{CE}}$ Input High Voltage for Power-down		$\mathrm{V}_{\mathrm{S}^{+-1}}$			V
$\mathrm{V}_{\text {ILCE }}$	$\overline{\mathrm{CE}}$ Input Low Voltage for Power-down				$\mathrm{V}_{\mathrm{S}^{+}-3}$	V

NOTE:

1. Standard NTSC test, AC signal amplitude $=286 \mathrm{mV} \mathrm{P}_{\text {P-p }} \mathrm{f}=3.58 \mathrm{MHz}$
2. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over-temperature limits established by characterization and are not production tested.

Typical Performance Curves

FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS R_{F} AND C_{L}

FIGURE 3. FREQUENCY RESPONSE FOR VARIOUS RF

FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS POWER SUPPLY VOLTAGES

FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS R \mathbf{F}

FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS R_{F}

FIGURE 6. RISE TIME (ns)

Typical Performance Curves (Continued)

FIGURE 7. PSRR

FIGURE 9. DISTORTION vs FREQUENCY $\left(A_{V}=+2\right)$

FIGURE 11. R OL FOR VARIOUS $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$

FIGURE 8. DISTORTION vs FREQUENCY $\left(A_{V}=+1\right)$

FIGURE 10. OUTPUT IMPEDANCE

FIGURE 12. VOLTAGE NOISE

Typical Performance Curves (Continued)

FIGURE 13. CURRENT NOISE

FIGURE 15. TURN-OFF DELAY, $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$

FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS CHANNELS

FIGURE 14. TURN-ON DELAY, $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$

FIGURE 16. DIFFERENTIAL GAIN/PHASE vs DC INPUT VOLTAGE AT 3.58 MHz

FIGURE 18. CHANNEL CROSSTALK BETWEEN CHANNELS

Typical Performance Curves (Continued)

FIGURE 19. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 20. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Pin Descriptions

$\begin{gathered} \text { EL5164 } \\ \text { (8 LD SOIC) } \end{gathered}$	$\begin{gathered} \text { EL5164 } \\ \text { (6 LD SOT-23) } \end{gathered}$	$\begin{gathered} \text { EL5165 } \\ \text { (5 LD SOT-23) } \end{gathered}$	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
1, 5			NC	Not connected	
2	4	4	IN-	Inverting input	
3	3	3	IN+	Non-inverting input	(See circuit 1)
4	2	2	VS-	Negative supply	
6	1	1	OUT	Output	CIRCUIT 2
7	6	5	VS+	Positive supply	
8	5		$\overline{C E}$	Chip enable, allowing the pin to float or applying a low logic level will enable the amplifier.	

Applications Information

Product Description

The EL5164, EL5165, and EL5364 are current-feedback operational amplifiers that offers a wide -3dB bandwidth of 600 MHz and a low supply current of 5 mA per amplifier. The EL5164, EL5165, and EL5364 work with supply voltages ranging from a single 5 V to 10 V and they are also capable of swinging to within 1 V of either supply on the output. Because of their current-feedback topology, the EL5164, EL5165, and EL5364 do not have the normal gain-bandwidth product associated with voltage-feedback operational amplifiers. Instead, its -3dB bandwidth to remain relatively constant as closed-loop gain is increased. This combination of high bandwidth and low power, together with aggressive pricing make the EL5164, EL5165, and EL5364 ideal choices for many low-power/high-bandwidth applications such as portable, handheld, or battery-powered equipment.

For varying bandwidth needs, consider the EL5166 and EL5167 with 1 GHz on a 8.5 mA supply current or the EL5162 and EL5163 with 300 MHz on a 1.5 mA supply current. Versions include single, dual, and triple amp packages with

5 Ld SOT-23, 16 Ld QSOP, and 8 Ld SOIC or 16 Ld SOIC outlines.

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Low impedance ground plane construction is essential. Surface mount components are recommended, but if leaded components are used, lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.01 \mu \mathrm{~F}$ capacitor has been shown to work well when placed at each supply pin.

For good AC performance, parasitic capacitance should be kept to a minimum, especially at the inverting input. (See the "Capacitance at the Inverting Input" on page 10). Even when ground plane construction is used, it should be removed from the area near the inverting input to minimize any stray capacitance at that node. Carbon or Metal-Film resistors are acceptable with the Metal-Film resistors giving slightly less peaking and bandwidth because of additional series
inductance. Use of sockets, particularly for the SO package, should be avoided if possible. Sockets add parasitic inductance and capacitance which will result in additional peaking and overshoot.

Disable/Power-Down

The EL5164 amplifier can be disabled placing its output in a high impedance state. When disabled, the amplifier supply current is reduced to $<150 \mu \mathrm{~A}$. The EL5164 is disabled when its $\overline{\mathrm{CE}}$ pin is pulled up to within 1V of the positive supply. Similarly, the amplifier is enabled by floating or pulling its $\overline{\mathrm{CE}}$ pin to at least 3 V below the positive supply. For $\pm 5 \mathrm{~V}$ supply, this means that an EL5164 amplifier will be enabled when $\overline{\mathrm{CE}}$ is 2 V or less, and disabled when $\overline{\mathrm{CE}}$ is above 4 V . Although the logic levels are not standard TTL, this choice of logic voltages allows the EL5164 to be enabled by tying $\overline{\mathrm{CE}}$ to ground, even in 5 V single supply applications. The $\overline{\mathrm{CE}}$ pin can be driven from CMOS outputs.

When the amplifier is disabled, if the positive input is driven beyond $\pm 2 \mathrm{~V}$ with respect to the negative input, the device can become active and output the signal. An input diode clamp network D_{1} and D_{2}, as shown in Figure 23, can be used to keep the device disabled while a large input signal is present.

FIGURE 23. DISABLED AMPLIFIER

Capacitance at the Inverting Input

Any manufacturer's high-speed voltage- or current-feedback amplifier can be affected by stray capacitance at the inverting input. For inverting gains, this parasitic capacitance has little effect because the inverting input is a virtual ground, but for non-inverting gains, this capacitance (in conjunction with the feedback and gain resistors) creates a pole in the feedback path of the amplifier. This pole, if low enough in frequency, has the same destabilizing effect as a zero in the forward open-loop response. The use of largevalue feedback and gain resistors exacerbates the problem by further lowering the pole frequency (increasing the possibility of oscillation.)

The EL5164, EL5165, and EL5364 have been optimized with a 510Ω feedback resistor. With the high bandwidth of these amplifiers, these resistor values might cause stability problems when combined with parasitic capacitance, thus ground plane is not recommended around the inverting input pin of the amplifier.

Feedback Resistor Values

The EL5164, EL5165, and EL5364 have been designed and specified at a gain of +2 with R_{F} approximately 412Ω. This value of feedback resistor gives 300 MHz of -3 dB bandwidth at $A_{V}=2$ with $2 d B$ of peaking. With $A_{V}=-2$, an R_{F} of 300Ω gives 275 MHz of bandwidth with 1 dB of peaking. Since the EL5164, EL5165, and EL5364 are current-feedback amplifiers, it is also possible to change the value of R_{F} to get more bandwidth. As seen in the curve of Frequency Response for Various R_{F} and R_{G}, bandwidth and peaking can be easily modified by varying the value of the feedback resistor.

Because the EL5164, EL5165, and EL5364 are current-feedback amplifiers, their gain-bandwidth product is not a constant for different closed-loop gains. This feature actually allows the EL5164, EL5165, and EL5364 to maintain about the same -3dB bandwidth. As gain is increased, bandwidth decreases slightly while stability increases. Since the loop stability is improving with higher closed-loop gains, it becomes possible to reduce the value of R_{F} below the specified 160Ω and still retain stability, resulting in only a slight loss of bandwidth with increased closed-loop gain.

Supply Voltage Range and Single-Supply Operation

The EL5164, EL5165, and EL5364 have been designed to operate with supply voltages having a span of greater than 5 V and less than 10 V . In practical terms, this means that they will operate on dual supplies ranging from $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$. With single-supply, the EL5164, EL5165, and EL5364 will operate from 5 V to 10 V .

As supply voltages continue to decrease, it becomes necessary to provide input and output voltage ranges that can get as close as possible to the supply voltages. The EL5164, EL5165, and EL5364 have an input range which extends to within 2 V of either supply. So, for example, on $\pm 5 \mathrm{~V}$ supplies, the EL5164, EL5165, and EL5364 have an input range which spans $\pm 3 \mathrm{~V}$. The output range of the EL5164, EL5165, and EL5364 is also quite large, extending to within 1 V of the supply rail. On a $\pm 5 \mathrm{~V}$ supply, the output is therefore capable of swinging from -4 V to +4 V . Single-supply output range is larger because of the increased negative swing due to the external pull-down resistor to ground.

Video Performance

For good video performance, an amplifier is required to maintain the same output impedance and the same frequency response as DC levels are changed at the output. This is especially difficult when driving a standard video load of 150Ω, because of the change in output current with DC level.
Previously, good differential gain could only be achieved by running high idle currents through the output transistors (to reduce variations in output impedance.) These currents were typically comparable to the entire 5.5 mA supply current of
each EL5164, EL5165, and EL5364 amplifiers. Special circuitry has been incorporated in the EL5164, EL5165, and EL5364 to reduce the variation of output impedance with current output. This results in dG and dP specifications of 0.01% and 0.01°, while driving 150Ω at a gain of 2 .

Video performance has also been measured with a 500Ω load at a gain of +1 . Under these conditions, the EL5164, EL5165, and EL5364 have dG and dP specifications of 0.01% and 0.01°, respectively.

Output Drive Capability

In spite of their low 5.5 mA of supply current, the EL5164, EL5165, and EL5364 are capable of providing a minimum of $\pm 75 \mathrm{~mA}$ of output current. With a minimum of $\pm 75 \mathrm{~mA}$ of output drive, the EL5164, EL5165, and EL5364 are capable of driving 50Ω loads to both rails, making it an excellent choice for driving isolation transformers in telecommunications applications.

Driving Cables and Capacitive Loads

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, the back-termination series resistor will decouple the EL5164, EL5165, and EL5364 from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. In these applications, a small series resistor (usually between 5Ω and 50Ω) can be placed in series with the output to eliminate most peaking. The gain resistor $\left(\mathrm{R}_{\mathrm{G}}\right)$ can then be chosen to make up for any gain loss which may be created by this additional resistor at the output. In many cases it is also possible to simply increase the value of the feedback resistor $\left(R_{F}\right)$ to reduce the peaking.

Current Limiting

The EL5164, EL5165, and EL5364 have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.

Power Dissipation

With the high output drive capability of the EL5164, EL5165, and EL5364, it is possible to exceed the $+125^{\circ} \mathrm{C}$ Absolute Maximum junction temperature under certain very high load current conditions. Generally speaking when R_{L} falls below about 25Ω, it is important to calculate the maximum junction temperature ($\mathrm{T}_{\text {JMAX }}$) for the application to determine if power supply voltages, load conditions, or package type need to be modified for the EL5164, EL5165, and EL5364 to remain in the safe operating area. These parameters are calculated in Equation 1:
$T_{J M A X}=T_{M A X}+\left(\theta_{J A} \times n \times P D_{M A X}\right)$
where:

- $\mathrm{T}_{\mathrm{MAX}}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $\mathrm{n}=$ Number of amplifiers in the package
- $P D_{\text {MAX }}=$ Maximum power dissipation of each amplifier in the package

PD ${ }_{\text {MAX }}$ for each amplifier can be calculated in Equation 2:

$$
\begin{equation*}
\mathrm{PD}_{\text {MAX }}=\left(2 \times \mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}\right)+\left[\left(\mathrm{V}_{\text {S }}-\mathrm{V}_{\text {OUTMAX }}\right) \times \frac{\mathrm{V}_{\text {OUTMAX }}}{R_{\mathrm{L}}}\right] \tag{EQ.2}
\end{equation*}
$$

where:

- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage
- ISMAX $=$ Maximum supply current of 1 A
- $\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage (required)
- $\mathrm{R}_{\mathrm{L}}=$ Load resistance

Typical Application Circuits

FIGURE 24. INVERTING 200mA OUTPUT CURRENT DISTRIBUTION AMPLIFIER

FIGURE 25. FAST-SETTLING PRECISION AMPLIFIER

FIGURE 26. DIFFERENTIAL LINE DRIVER/RECEIVER

Small Outline Package Family (SO)

MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	INCHES							TOLERANCE	NOTES
	SO-8	SO-14	$\begin{gathered} \text { SO16 } \\ (0.150 ") \end{gathered}$	$\begin{gathered} \text { SO16 (0.300") } \\ \text { (SOL-16) } \end{gathered}$	$\begin{gathered} \text { SO20 } \\ \text { (SOL-20) } \end{gathered}$	$\begin{gathered} \text { SO24 } \\ (\mathrm{SOL}-24) \end{gathered}$	$\begin{gathered} \text { SO28 } \\ \text { (SOL-28) } \end{gathered}$		
A	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	± 0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	± 0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	± 0.003	-
c	0.009	0.009	0.009	0.011	0.011	0.011	0.011	± 0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	± 0.004	1,3
E	0.236	0.236	0.236	0.406	0.406	0.406	0.406	± 0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	± 0.004	2, 3
e	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	± 0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
N	8	14	16	16	20	24	28	Reference	-

NOTES:
Rev. M 2/07

1. Plastic or metal protrusions of 0.006 " maximum per side are not included.
2. Plastic interlead protrusions of 0.010 " maximum per side are not included.
3. Dimensions "D" and "E1" are measured at Datum Plane "H".
4. Dimensioning and tolerancing per ASME Y14.5M-1994

SOT-23 Package Family

MDP0038

SOT-23 PACKAGE FAMILY

SYMBOL	MILLIMETERS		TOLERANCE
	SOT23-5	SOT23-6	
A	1.45	1.45	± 0.05
A1	0.10	0.10	± 0.15
A2	1.14	1.14	± 0.05
b	0.40	0.40	± 0.06
c	0.14	0.14	Basic
D	2.90	2.90	Basic
E	2.80	2.80	Basic
E1	1.60	1.60	Basic
e	0.95	0.95	Basic
e1	1.90	1.90	± 0.10
L	0.45	0.45	Reference
L1	0.60	0.60	Reference
N	5	6	Re.

NOTES:

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
3. This dimension is measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
5. Index area - Pin \#1 I.D. will be located within the indicated zone (SOT23-6 only).
6. SOT23-5 version has no center lead (shown as a dashed line).

Small Outline Transistor Plastic Packages (SC70-5)

| $0.20(0.008)(1)\|c\|$ |
| :---: | :---: | :---: |

P5.049
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.031	0.043	0.80	1.10	-
A1	0.000	0.004	0.00	0.10	-
A2	0.031	0.039	0.80	1.00	-
b	0.006	0.012	0.15	0.30	-
b1	0.006	0.010	0.15	0.25	
C	0.003	0.009	0.08	0.22	6
c1	0.003	0.009	0.08	0.20	6
D	0.073	0.085	1.85	2.15	3
E	0.071	0.094	1.80	2.40	-
E1	0.045	0.053	1.15	1.35	3
e	0.02	Ref			-
e1	0.05	Ref			-
L	0.010	0.018	0.26	0.46	4
L1	0.0	Ref.		Ref.	-
L2	0.00	BSC			
α	0^{0}	8^{0}	0^{0}	8^{0}	-
N	5		5		5
R	0.004	-	0.10	-	
R1	0.004	0.010	0.15	0.25	

Rev. 2 9/03
NOTES:

1. Dimensioning and tolerances per ASME Y14.5M-1994.
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.
3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs.
4. Footlength L measured at reference to gauge plane.
5. " N " is the number of terminal positions.
6. These Dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.
7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.

Quarter Size Outline Plastic Packages Family (QSOP)

MDP0040
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY

SYMBOL	INCHES				
	QSOP16	QSOP24	QSOP28	TOLERANCE	NOTES
A	0.068	0.068	0.068	Max.	-
A1	0.006	0.006	0.006	± 0.002	-
A2	0.056	0.056	0.056	± 0.004	-
b	0.010	0.010	0.010	± 0.002	-
c	0.008	0.008	0.008	± 0.001	-
D	0.193	0.341	0.390	± 0.004	1,3
E	0.236	0.236	0.236	± 0.008	-
E1	0.154	0.154	0.154	± 0.004	2,3
e	0.025	0.025	0.025	Basic	-
L	0.025	0.025	0.025	± 0.009	-
L1	0.041	0.041	0.041	Basic	-
N	16	24	28	Reference	-

Rev. F 2/07
NOTES:

1. Plastic or metal protrusions of 0.006 " maximum per side are not included.
2. Plastic interlead protrusions of 0.010 " maximum per side are not included.
3. Dimensions "D" and "E1" are measured at Datum Plane "H".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
OPA2991IDSGR OPA607IDCKT 007614D 633773R 635798C 635801A 702115D 709228FB 741528D NCV33072ADR2G
SC2902DTBR2G SC2903VDR2G LM258AYDT LM358SNG 430227FB 430228DB 460932C AZV831KTR-G1 409256CB 430232AB
LM2904DR2GH LM358YDT LT1678IS8 042225DB 058184EB 070530X SC224DR2G SC239DR2G SC2902DG SCYA5230DR2G
714228XB 714846BB 873836HB MIC918YC5-TR TS912BIYDT NCS2004MUTAG NCV33202DMR2G M38510/13101BPA NTE925
SC2904DR2G SC358DR2G LM358EDR2G AP4310AUMTR-AG1 HA1630D02MMEL-E NJM358CG-TE2 HA1630S01LPEL-E
LM324AWPT HA1630Q06TELL-E NJM4558CG-TE2 AZV358MMTR-G1

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

