The EL5177 is a high bandwidth amplifier with an output in differential form. It is primarily targeted for applications such as driving twisted-pair lines or any application where common mode injection is likely to occur. The input signal can be in either single-ended or differential form but the output is always in differential form.

On the EL5177, two feedback inputs provide the user with the ability to set the device gain (stable at a minimum gain of 1).

The output common mode level is set by the reference pin (REF), which has a -3 dB bandwidth of 110MHz. Generally, this pin is grounded but it can be tied to any voltage reference.

Both outputs (OUT+, OUT-) are short circuit protected to withstand temporary overload condition.

The EL5177 is available in the 10 Ld MSOP package and is specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

See also EL5174 (EL5177 in 8 Ld MSOP).

Features

- Fully differential inputs, outputs, and feedback
- Differential input range $\pm 2.3 \mathrm{~V}$
- 550MHz 3dB bandwidth
- $1100 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Low distortion at 20 MHz
- Single 5 V or dual $\pm 5 \mathrm{~V}$ supplies
- 40mA maximum output current
- Low power, 12.5 mA typical supply current
- Pb-free (RoHS compliant)

Applications

- Twisted-pair drivers
- Differential line drivers
- VGA over twisted-pair
- ADSL/HDSL drivers
- Single-ended to differential amplification
- Transmission of analog signals in a noisy environment

Pinout

EL5177
(10 LD MSOP)
TOP VIEW

Pin Descriptions

PIN NUMBER	PIN NAME	
1	FBP	PIN DESCRIPTION
2	IN+	Non-inverting input
3	REF	Output common-mode control; the common-mode voltage of $V_{\text {OUT }}$ will follow the voltage on this pin
4	IN-	Inverting input
5	FBN	Inverting feedback input; resistor $R_{\text {F2 }}$ must be connected from this pin to $V_{\text {OUT }}$
6	OUT- resistor $R_{\text {F1 }}$ must be connected from this pin to $V_{\text {OUT }}$	
7	$\overline{\text { EN }}$	Inverting output
8	VS +	Positive supply
9	VS-	Negative supply
10	OUT+	Non-inverting output

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	PACKAGE (Pb-free)	PKG. DWG. \#
EL5177IYZ	BAAKA	10 Ld MSOP (3.0mm)	M10.118A

NOTES:

1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5177. For more information on MSL please see tech brief TB363.

Absolute Maximum Ratings ($\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage ($\mathrm{V}_{\mathbf{S}^{+}}$to $\mathrm{V}_{\mathbf{S}^{-}}$)	2 V
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {INB }}, \mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{S}^{-}}+0.8 \mathrm{~V}(\mathrm{~min})$ to $\mathrm{V}^{+}+0.8 \mathrm{~V}$ (max)
$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {INB }}$	
Supply Voltage Rate-of-rise (dV/dT)	1V/us
Input Voltage ($\mathrm{IN}+$, IN - to $\mathrm{V}_{\mathbf{S}^{+}}$, $\mathrm{V}_{\mathbf{S}^{-}}$)	$\mathrm{V}_{\mathrm{S}^{-}} 0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}$
Differential Input Voltage ($\mathrm{IN}+$ to IN -)	$\pm 4.8 \mathrm{~V}$
Maximum Output Current	± 6

Thermal Information

Recommended Operating Temperature $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Junction Temperature . $+135^{\circ} \mathrm{C}$
Storage Temperature Range . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation. See Curves
Pb-Free Reflow Profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{VV}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{G}}=\mathrm{OPEN}, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 4)	TYP	MAX (Note 4)	UNIT
AC PERFORMANCE						
BW	-3dB Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		550		MHz
		$A_{V}=2, R_{F}=500, C_{L D}=2.7 \mathrm{pF}$		130		MHz
		$A_{V}=10, \mathrm{R}_{\mathrm{F}}=500, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$		20		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		120		MHz
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P, }}$ 20\% to 80%	800	1100		$\mathrm{V} / \mathrm{\mu s}$
${ }_{\text {t STL }}$	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$		10		ns
$\mathrm{t}_{\text {OVR }}$	Output Overdrive Recovery Time			20		ns
GBWP	Gain Bandwidth Product			200		MHz
$\mathrm{V}_{\text {REF }} \mathrm{BW}(-3 d B)$	VREF-3dB Bandwidth	$A_{V}=1, C_{L D}=2.7 \mathrm{pF}$		110		MHz
$\mathrm{V}_{\text {REF }} \mathrm{SR}+$	$\mathrm{V}_{\text {REF }}$ Slew Rate - Rise	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		134		V/ $\mu \mathrm{s}$
$\mathrm{V}_{\text {REF }}$ SR-	$\mathrm{V}_{\text {REF }}$ Slew Rate - Fall	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		70		$\mathrm{V} / \mu \mathrm{s}$
V_{N}	Input Voltage Noise	at 10 kHz		21		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Current Noise	at 10 kHz		2.7		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
HD2	Second Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 5 \mathrm{MHz}$		-95		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 20 \mathrm{MHz}$		-94		dBc
HD3	Third Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 5 \mathrm{MHz}$		-88		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P, }}, 20 \mathrm{MHz}$		-87		dBc
dG	Differential Gain at 3.58MHz	$\mathrm{R}_{\mathrm{LD}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.06		\%
d θ	Differential Phase at 3.58MHz	$\mathrm{R}_{\mathrm{LD}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.13		-
INPUT CHARACTERISTICS						
V_{OS}	Input Referred Offset Voltage			± 1.4	± 25	mV
I_{IN}	Input Bias Current ($\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathbf{I N}}{ }^{-}$)		-30	-14	-7	$\mu \mathrm{A}$
$\mathrm{I}_{\text {REF }}$	Input Bias Current (VREF)		0.5	2.3	4	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance			150		$k \Omega$
CIN	Differential Input Capacitance			1		pF
DMIR	Differential Mode Input Range		± 2.1	± 2.3	± 2.5	V
CMIR+	Common Mode Positive Input Range at $\mathrm{V}_{\mathbf{I N}}{ }^{+}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$			3.4		V

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{G}}=\mathrm{OPEN}, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF}$, Unless Otherwise Specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 4)	TYP	MAX (Note 4)	UNIT
CMIR-	Common Mode Negative Input Range at $\mathrm{V}_{\mathbf{I N}}+\mathrm{V}_{\mathrm{IN}}{ }^{-}$			-4.3		V
$\mathrm{V}_{\text {REFIN }}{ }^{+}$	Positive Reference Input Voltage Range	$\mathrm{V}_{\mathrm{IN}}{ }^{+}=\mathrm{V}_{\mathrm{IN}}{ }^{-}=0 \mathrm{~V}$	3.4	3.7		V
$\mathrm{V}_{\text {REFIN }}{ }^{-}$	Negative Reference Input Voltage Range	$\mathrm{V}_{\mathrm{IN}}{ }^{+}=\mathrm{V}_{\mathrm{IN}}{ }^{-}=0 \mathrm{~V}$		-3.3	-3	V
$\mathrm{V}_{\text {REFOS }}$	Output Offset Relative to $\mathrm{V}_{\text {REF }}$			± 50	± 100	mV
CMRR	Input Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$	65	78		dB
Gain	Gain Accuracy	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}$	0.980	0.995	1.010	V
OUTPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=500 \Omega$ to GND	± 3.6	± 3.8		V
$\mathrm{I}_{\text {OUT }}$ +(Max)	Maximum Source Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$	35	50		mA
IOUT-(Max)	Maximum Sink Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=1.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=-1.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{REF}}=0 \end{aligned}$		-40	-30	mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance			130		$\mathrm{m} \Omega$
SUPPLY						
V SUPPLY	Supply Operating Range	$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$	4.75		11	V
$\mathrm{I}_{\mathbf{S}(\mathrm{ON})}$	Power Supply Current - Per Channel		10	12.5	14	mA
$\mathrm{I}_{\mathbf{S}(\mathrm{OFF})^{+}}$	Positive Power Supply Current - Disabled	$\overline{\mathrm{EN}}$ pin tied to 4.8V		76	120	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{S} \text { (OFF) }}{ }^{-}$	Negative Power Supply Current - Disabled		-200	-120		$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	V_{S} from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	60	75		dB
ENABLE						
$t_{\text {EN }}$	Enable Time			130		ns
${ }^{\text {t }}$ D	Disable Time			1.2		$\mu \mathrm{s}$
V_{IH}	$\overline{\text { EN }}$ Pin Voltage for Power-Up				$\mathrm{V}_{\mathrm{S}^{+-1.5}}$	V
V_{IL}	$\overline{\text { EN }}$ Pin Voltage for Shutdown		$\mathrm{V}_{\mathrm{S}}+\mathbf{- 0 . 5}$			V
IIH-EN	EN Pin Input Current High	At $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$		40	50	$\mu \mathrm{A}$
IIL-EN	$\overline{\mathrm{EN}}$ Pin Input Current Low	At $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-6	-2.5		$\mu \mathrm{A}$

NOTE:
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Connection Diagram

Typical Performance Curves

FIGURE 1. FREQUENCY RESPONSE

FIGURE 3. FREQUENCY RESPONSE vs CLD $^{\text {LD }}$

FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS GAIN

FIGURE 4. FREQUENCY RESPONSE vs RLD

Typical Performance Curves (continuad)

FIGURE 5. FREQUENCY RESPONSE

FIGURE 7. FREQUENCY RESPONSE - VREF

FIGURE 9. CMRR vs FREQUENCY

FIGURE 6. FREQUENCY RESPONSE vs RLD

FIGURE 8. PSRR vs FREQUENCY

FIGURE 10. VOLTAGE AND CURRENT NOISE vs FREQUENCY

Typical Performance Curves (continuod)

FIGURE 11. OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 13. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT voltage

FIGURE 15. HARMONIC DISTORTION vs RLD

FIGURE 12. HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 14. HARMONIC DISTORTION vs R LD

FIGURE 16. HARMONIC DISTORTION vs FREQUENCY

Typical Performance Curves (continuod)

FIGURE 17. SMALL SIGNAL TRANSIENT RESPONSE

FIGURE 19. ENABLED RESPONSE

FIGURE 21. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 18. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 20. DISABLED RESPONSE

FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Simplified Schematic

Description of Operation and Application Information

Product Description

The EL5177 is a wide bandwidth, low power and single/differential ended to differential output amplifier. It can be used as single/differential ended to differential converter. The EL5177 is internally compensated for closed loop gain of +1 or greater. Connected in gain of 1 and driving a $1 \mathrm{k} \Omega$ differential load, the EL5177 has a -3dB bandwidth of 550 MHz . Driving a 200Ω differential load at gain of 2 , the bandwidth is about 130 MHz . The EL5177 is available with a power-down feature to reduce the power while the amplifier is disabled.

Input, Output, and Supply Voltage Range

The EL5177 has been designed to operate with a single supply voltage of 5 V to 10 V or a split supplies with its total voltage from 5V to 10V. The amplifiers have an input common mode voltage range from -4.3 V to 3.4 V for $\pm 5 \mathrm{~V}$ supply. The differential mode input range (DMIR) between the two inputs is from -2.3 V to +2.3 V . The input voltage range at the REF pin is from -3.3 V to 3.7 V . If the input common mode or differential mode signal is outside the above-specified ranges, it will cause the output signal to become distorted.

The output of the EL5177 can swing from -3.8 V to +3.8 V at a $1 \mathrm{k} \Omega$ differential load at $\pm 5 \mathrm{~V}$ supply. As the load resistance becomes lower, the output swing is reduced.

Differential and Common Mode Gain Settings

The voltage applied at REF pin can set the output common mode voltage and the gain is one. The differential gain is set by the R_{F} and R_{G} network.

The gain setting for EL5177 is expressed in Equation 1:
$\mathrm{V}_{\mathrm{ODM}}=\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}}-\right) \times\left(1+\frac{\mathrm{R}_{\mathrm{F} 1}+\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{\mathrm{G}}}\right)$
$\mathrm{V}_{\mathrm{ODM}}=\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right) \times\left(1+\frac{2 \mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{G}}}\right)$
$\mathrm{V}_{\text {OCM }}=\mathrm{V}_{\text {REF }}$
Where:

$$
\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F}}
$$

FIGURE 23.

Choice of Feedback Resistor and Gain Bandwidth Product

For applications that require a gain of +1 , no feedback resistor is required. Just short the OUT+ pin to FBP pin and OUT- pin to FBN pin. For gains greater than +1 , the feedback resistor forms a pole with the parasitic capacitance at the inverting input. As this pole becomes smaller, the amplifier's phase margin is reduced. This causes ringing in the time domain and peaking in the frequency domain. Therefore, R_{F} has some maximum value that should not be exceeded for optimum performance. If a large value of R_{F} must be used, a small capacitor in the few Pico farad range in parallel with R_{F} can help to reduce the ringing and peaking at the expense of reducing the bandwidth.

The bandwidth of the EL5177 depends on the load and the feedback network. R_{F} and R_{G} appear in parallel with the load for gains other than +1. As this combination gets smaller, the bandwidth falls off. Consequently, R_{F} also has a minimum value that should not be exceeded for optimum bandwidth performance. For gain of $+1, \mathrm{R}_{\mathrm{F}}=0$ is optimum. For the gains other than +1 , optimum response is obtained with R_{F} between 500Ω to $1 \mathrm{k} \Omega$.

The EL5177 has a gain bandwidth product of 200 MHz for $\mathrm{R}_{\mathrm{LD}}=$ $1 k \Omega$. For gains ≥ 5, its bandwidth can be predicted by Equation 2 :

Gain $\times \mathrm{BW}=200 \mathrm{MHz}$

Driving Capacitive Loads and Cables

The EL5177 can drive a 23pF differential capacitor in parallel with a $1 \mathrm{k} \Omega$ differential load with less than 5 dB of peaking at gain of +1 . If less peaking is desired in applications, a small series resistor (usually between 5Ω to 50Ω) can be placed in series with each output to eliminate most peaking. However, this will reduce the gain slightly. If the gain setting is greater than 1, the gain resistor R_{G} can then be chosen to make up for any gain loss which may be created by the additional series resistor at the output.

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, a back-termination series resistor at the amplifier's output will isolate the amplifier from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. Again, a small series resistor at the output can help to reduce peaking.

Disable/Power-Down

The EL5177 can be disabled and its outputs placed in a high impedance state. The turn-off time is about $1.2 \mu \mathrm{~s}$ and the turnon time is about 130 ns . When disabled, the amplifier's supply current is reduced to $1.7 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{S}^{+}}$and $120 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{S}^{-}}$typically, thereby effectively eliminating the power consumption. The amplifier's power-down can be controlled by standard CMOS signal levels at the EN pin. The applied logic signal is relative to $\mathrm{V}_{\mathrm{S}^{+}}$pin. Letting the $\overline{\mathrm{EN}}$ pin float or applying a signal that is less than 1.5 V below $\mathrm{V}_{\mathrm{S}^{+}}$will enable the amplifier. The amplifier will be disabled when the signal at the $\overline{\mathrm{EN}}$ pin is above $\mathrm{V}_{\mathrm{S}^{+}}-0.5 \mathrm{~V}$.

Output Drive Capability

The EL5177 has internal short circuit protection. Its typical short circuit current is $\pm 40 \mathrm{~mA}$. If the output is shorted indefinitely, the power dissipation could easily increase such that the part will be destroyed. Maximum reliability is maintained if the output current never exceeds $\pm 40 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnect.

Power Dissipation

With the high output drive capability of the EL5177, it is possible to exceed the $+135^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if the load conditions or package types
need to be modified for the amplifier to remain in the safe operating area.

The maximum power dissipation allowed in a package is determined according to Equation 3 :
$P D_{M A X}=\frac{T_{J M A X}-T_{A M A X}}{\Theta_{J A}}$
Where:
$\mathrm{T}_{\mathrm{JMAX}}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or:
$\mathrm{PD}=\mathrm{i} \times\left(\mathrm{V}_{\mathrm{STOT}} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{STOT}}-\Delta \mathrm{V}_{\mathrm{O}}\right) \times \frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{LD}}}\right)$
Where:
$\mathrm{V}_{\mathrm{STOT}}=$ Total supply voltage $=\mathrm{V}_{\mathbf{S}^{+}}-\mathrm{V}_{\mathbf{S}^{-}}$
ISMAX = Maximum quiescent supply current per channel
$\Delta \mathrm{V}_{\mathrm{O}}=$ Maximum differential output voltage of the application
$R_{\text {LD }}=$ Differential load resistance
lLOAD $=$ Load current
$i=$ Number of channels
By setting the two $\mathrm{PD}_{\text {MAX }}$ equations equal to each other, we can solve the output current and $R_{\text {LD }}$ to avoid the device overheat.

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the $\mathrm{V}_{\mathrm{S}^{-}}$pin is connected to the ground plane, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathbf{S}}{ }^{+}$to GND will suffice. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used. In this case, the $\mathrm{V}_{\mathrm{S}^{-}}$pin becomes the negative supply rail.

For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire-wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance. Minimizing parasitic capacitance at the amplifier's inverting input pin is very important. The feedback resistor should be placed very close to the inverting input pin. Strip line design techniques are recommended for the signal traces.

As the signal is transmitted through a cable, the high frequency signal will be attenuated. One way to compensate this loss is to boost the high frequency gain at the receiver side.

Typical Applications

FIGURE 24. TWISTED PAIR CABLE RECEIVER

FIGURE 25. TRANSMIT EQUALIZER

© Copyright Intersil Americas LLC 2003-2012 All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M10.118A (JEDEC мо-187-вA)
10 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)
Rev 0, 9/09

SIDE VIEW 1

TYPICAL RECOMMENDED LAND PATTERN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Differential Amplifiers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
LT6604IUFF-2.5\#PBF LT6600CS8-15\#PBF LT6604IUFF-15\#PBF LT6604CUFF-5\#PBF THS4552IRTWT LTC1992-2IMS8\#PBF AD8138SRMZ-EP-R7 LT6376IMS\#PBF AD626ANZ AD626BNZ AD629ANZ AD629BNZ AD8129ARMZ AD8131ARMZ-REEL7 AD8137WYCPZ-R7 AD8138AARZ AD8138ARMZ AD8139ACPZ-REEL7 AD8139ARDZ AD8139ARDZ-REEL7 AD8202WYRMZ AD8203YRMZ AD8208WBRMZ AD8209AWBRMZ AD8209WBRMZ AD8209WHRMZ AD8274ARMZ AD8278ARMZ AD8278ARMZ-R7 AD8278BRMZ-R7 AD830ANZ AD8350ARMZ15 AD8350ARMZ20 AD8366ACPZ-R7 AD8475BRMZ AD8476ACPZ-R7 AD8476ARMZ-R7 AD8476BCPZ-R7 AD8476BCPZ-WP AD8147ACPZ-R2 ADA4930-2YCPZ-R2 ADA4938-2ACPZR7 ADA4939-2YCPZ-R7 AD8133ACPZ-R2 AD8133ACPZ-REEL7 AD8148ACPZ-R7 ADA4930-2YCPZ-R7 ADA4932-2YCPZ-R2 ADA4937-2YCPZ-R7 AD8147ACPZ-R7

