intersil

700MHz Differential Twisted-Pair Drivers

EL5178, EL5378

The EL5178 and EL5378 are single and triple high bandwidth amplifiers with an output in differential form. They are primarily targeted for applications such as driving twisted-pair lines in component video applications. The inputs can be in either single-ended or differential form but the outputs are always in differential form.

On the EL5178 and EL5378, two feedback inputs provide the user with the ability to set the gain of each device (stable at minimum gain of 2).

The output common mode level for each channel is set by the associated REF pin, which has a -3dB bandwidth of over 110 MHz . Generally, these pins are grounded but can be tied to any voltage reference.

All outputs are short circuit protected to withstand temporary overload condition.

The EL5178 is available in 8 Ld MSOP and SOIC packages and EL5378 is available in a 28 Ld QSOP package. All are specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- Fully differential inputs, outputs, and feedback
- Differential input range $\pm 2.3 \mathrm{~V}$
- 700MHz 3dB bandwidth
- 1000V/ $\mu \mathrm{s}$ slew rate
- Low distortion at 5 MHz and 20 MHz
- Single 5 V or dual $\pm 5 \mathrm{~V}$ supplies
- 60 mA maximum output current
- Low power-12.5mA per channel
- Pb-free available (RoHS compliant)

Applications

- Twisted-pair driver
- Differential line driver
- VGA over twisted-pair
- ADSL/HDSL driver
- Single-ended to differential amplification
- Transmission of analog signals in a noisy environment

Pinouts

Pin Descriptions

EL5178	EL5378	PIN NAME	PIN FUNCTION
	17, 21, 27	FBP3, FBP2, FBP1	Feedback from non-inverting outputs
	2, 6, 10	INP1, INP2, INP3	Non-inverting inputs
	3, 7, 11	INN1, INN2, INN3	Inverting inputs, note that on EL5178, this pin is also the REF pin
	16, 20, 26	FBN3, FBN2, FBN1	Feedback from inverting outputs
	15, 19, 25	OUT3B, OUT2B, OUT1B	Inverting outputs
	24	VSP	Positive supply
	23	VSN	Negative supply
	18, 22, 28	OUT3, OUT2, OUT1	Non-inverting outputs
	1, 5, 9, 13	NC	No connect; grounded for best crosstalk performance
	4, 8, 12	REF1, REF2, REF3	Reference inputs, sets common-mode output voltage
	14	$\overline{\mathrm{EN}}$	ENABLE
1		FBP	Feedback from non-inverting output
2		IN+	Non-inverting input
3		REF	Inverting input, note that on EL5178, this pin is also the REF pin
4		FBN	Feedback from inverting output
5		OUT-	Inverting output
6		VS+	Positive supply
7		vS-	Negative supply
8		OUT+	Non-inverting output

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	PACKAGE (Pb-free)	PKG. DWG. \#
EL5178ISZ	5178 (SZ	BBHAA	8 Ld SOIC (150 mil)
EL5178IYZ	EL5378IUZ	28 Ld QSOP (150 mil)	M8.15E
EL5378IUZ		M8.118A	

NOTES:

1. Add "-T*" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for EL5178, EL5378. For more information on MSL please see tech brief TB363.

EL5178, EL5378

Absolute Maximum Ratings ($\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage ($\mathbf{V}_{\mathbf{S}^{+}}$to $\mathrm{V}_{\mathbf{S}^{-}}$)	2V
Supply Voltage Rate-of-rise (dV/dT)	1V/us
Input Voltage (IN^{+}, IN - to $\mathrm{V}_{\mathbf{S}^{+}, \mathrm{V}_{\mathrm{S}^{-}} \text {) }}$	$\mathrm{V}_{\mathrm{S}^{-}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{+}}+0.3 \mathrm{~V}$
Differential Input Voltage ($\mathrm{IN}+$ to IN -).	$\pm 4.8 \mathrm{~V}$
Maximum Output Current	. $\pm 60 \mathrm{~mA}$
Input Current (all inputs and references).	4mA
ESD Rating	
Human Body Model	3kV
Machine Model.	. 300V

Thermal Information

Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature . $+135^{\circ} \mathrm{C}$
Ambient Operating Temperature . $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power Dissipation. .. . See Curves
Pb-Free Reflow Profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF},\left[\mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{G}}=402 \Omega\right.$ (EL5178)], $\left[R_{F}=402 \Omega, R_{G}=274 \Omega\right.$ (EL5378)], unless otherwise specified.

| PARAMETER | DESCRIPTION | CONDITIONS | MIN
 (Note 4) | TYP | MAX | (Note 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | UNIT | C |
| :---: |

AC PERFORMANCE

BW	-3dB Bandwidth	$A_{V}=2, C_{L D}=2.7 \mathrm{pF}$		700		MHz
		$A_{V}=5, C_{L D}=2.7 \mathrm{pF}$		80		MHz
		$A_{V}=2, C_{L D}=2.7 \mathrm{pF}, \mathrm{R}_{\mathrm{LD}}=200 \Omega$		320		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth	$A_{V}=2, C_{L D}=2.7 \mathrm{pF}$		45		MHz
SR	Slew Rate, Differential (EL5178)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%	650	850		V/ $\mu \mathrm{s}$
	Slew Rate, Differential (EL5378)	$V_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%	650	1000		$\mathrm{V} / \mu \mathrm{s}$
${ }_{\text {tSTL }}$	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$		35		ns
$\mathrm{t}_{\text {OVR }}$	Output Overdrive Recovery Time	$A_{V}=2$		20		ns
GBWP	Gain Bandwidth Product			350		MHz
$\mathrm{V}_{\text {REF }} \mathrm{BW}$ (-3dB)	$\mathrm{V}_{\text {REF }}$-3dB Bandwidth (EL5378)	$C_{L D}=2.7 \mathrm{pF}$		110		MHz
$\mathrm{V}_{\text {REF }} \mathrm{SR}+$	$\mathrm{V}_{\text {REF }}$ Slew Rate - Rise (EL5378)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		134		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{V}_{\text {REF }}$ SR-	$\mathrm{V}_{\text {REF }}$ Slew Rate - Fall (EL5378)	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \%$ to 80%		70		$\mathrm{V} / \mu \mathrm{s}$
V_{N}	Input Voltage Noise	at 10 kHz		18		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
I_{N}	Input Current Noise	at 10 kHz		1.5		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
HD2	Second Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 5 \mathrm{MHz}$		-83		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \mathrm{MHz}$		-72		dBc
HD3	Third Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 5 \mathrm{MHz}$		-88		dBc
		$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}, 20 \mathrm{MHz}$		-70		dBc
dG	Differential Gain at 3.58MHz	$\mathrm{R}_{\mathrm{LD}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.06		\%
d θ	Differential Phase at 3.58 MHz	$\mathrm{R}_{\mathrm{LD}}=300 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		0.13		-
e_{S}	Channel Separation (EL5378)	at $\mathrm{F}=1 \mathrm{MHz}$		90		dB
INPUT CHARACTERISTICS						
V_{OS}	Input Referred Offset Voltage			± 1.9	± 30	mV
In	Input Bias Current ($\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$)		-20	-14	-7	$\mu \mathrm{A}$
$\mathrm{I}_{\text {REF }}$	Input Bias Current (VEF) (EL5378)	$\mathrm{V}_{\mathrm{REF}}= \pm 3.0 \mathrm{~V}$	0.05	2.3	4	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Differential Input Resistance			150		$\mathrm{k} \Omega$

Electrical Specifications $\mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{LD}}=2.7 \mathrm{pF},\left[\mathrm{R}_{\mathrm{F}}=604 \Omega, \mathrm{R}_{\mathrm{G}}=402 \Omega(\mathrm{EL5178})\right]$, $\left[R_{F}=402 \Omega, R_{G}=274 \Omega\right.$ (EL5378)], unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 4)	TYP	MAX (Note 4)	UNIT
$\mathrm{C}_{\text {IN }}$	Differential Input Capacitance			1		pF
DMIR	Differential Mode Input Range (EL5378)			± 2.3		V
CMIR+	Common Mode Positive Input Range at $\mathrm{V}_{1 \mathrm{~N}^{+}}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$(EL5378)		3.1	3.4		V
CMIR-	Common Mode Negative Input Range at $\mathrm{V}_{\mathrm{IN}}{ }^{+}, \mathrm{V}_{\mathrm{IN}}{ }^{-}$(EL5378)			-4.4	-4.1	V
$\mathrm{V}_{\text {REFIN }}+$	Positive Reference Input Voltage Range (EL5378)	$\mathrm{V}_{\mathrm{IN}}{ }^{+}=\mathrm{V}_{\mathrm{IN}}{ }^{-}=0 \mathrm{~V}$	3.2	3.7		V
$\mathrm{V}_{\text {REFIN }}{ }^{-}$	Negative Reference Input Voltage Range (EL5378)	$\mathrm{V}_{\mathrm{IN}}{ }^{+}=\mathrm{V}_{\mathrm{IN}}{ }^{-}=0 \mathrm{~V}$		-3.3	-3.2	V
$\mathrm{V}_{\text {REFOS }}$	Output Offset Relative to $\mathrm{V}_{\text {REF }}$ (EL5378)			± 50	± 100	mV
CMRR	Input Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}$	65	78		dB
OUTPUT CHARACTERISTICS						
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	± 3.4	± 3.7		V
$\mathrm{I}_{\text {OUT (Max) }}$	Maximum Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{~V}_{1 \mathrm{~N}^{+}}= \pm 3.2 \mathrm{~V}$	± 50	± 60	± 100	mA
$\mathrm{R}_{\text {OUT }}$	Output Impedance			130		$\mathrm{m} \Omega$
SUPPLY						
V SUPPLY	Supply Operating Range	$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$	4.75		11	V
$\mathrm{I}_{\mathbf{S}(\mathrm{ON})}$	Power Supply Current - Per Channel		10	12.5	14	mA
${ }^{\mathbf{I}}$ (OFF) ${ }^{+}$	Positive Power Supply Current - Disabled (EL5378)	$\overline{\mathrm{EN}}$ pin tied to 4.8V		1.7	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathbf{S}(\mathrm{OFF})^{-}}$	Negative Power Supply Current - Disabled (EL5378)		-200	-120		$\mu \mathrm{A}$
PSRR	Power Supply Rejection Ratio	V_{S} from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	60	75		dB
ENABLE (EL5378 ONLY)						
$\mathrm{t}_{\text {EN }}$	Enable Time			130		ns
${ }^{\text {t }}$ DS	Disable Time			1.2		$\mu \mathrm{s}$
V_{IH}	$\overline{\text { EN }}$ Pin Voltage for Power-Up				$\mathrm{V}_{\mathrm{S}^{+-1}}$ - 5	V
$\mathrm{V}_{\text {IL }}$	$\overline{\text { EN }}$ Pin Voltage for Shut-Down		$\mathrm{V}_{\mathrm{S}^{+}}-0.5$			V
IIH -EN	$\overline{\text { EN Pin Input Current High }}$	At $\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$		123	200	$\mu \mathrm{A}$
IIL-EN	$\overline{\mathrm{EN}}$ Pin Input Current Low	At $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-20	-8		$\mu \mathrm{A}$

NOTE:
4. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Typical Performance Curves

FIGURE 1. EL5178 FREQUENCY RESPONSE FOR VARIOUS $\mathbf{R}_{\mathbf{F}}$

FIGURE 3. EL5178 FREQUENCY RESPONSE FOR VARIOUS CLD

FIGURE 5. EL5178 FREQUENCY RESPONSE FOR VARIOUS $\mathrm{V}_{\text {OP-P }}$

FIGURE 2. EL5178 FREQUENCY RESPONSE FOR VARIOUS GAIN

FIGURE 4. EL5178 FREQUENCY RESPONSE FOR VARIOUS RLD

FIGURE 6. EL5378 FREQUENCY RESPONSE FOR VARIOUS $\mathbf{R}_{\mathbf{F}}$

Typical Performance Curves (continuod)

FIGURE 7. EL5378 FREQUENCY RESPONSE FOR VARIOUS GAIN

FIGURE 9. EL5378 FREQUENCY RESPONSE FOR VARIOUS R $_{\text {LD }}$

FIGURE 11. CMRR vs FREQUENCY

FIGURE 8. EL5378 FREQUENCY RESPONSE FOR VARIOUS CLD

FIGURE 10. VOLTAGE AND CURRENT NOISE vs FREQUENCY

FIGURE 12. DIFFERENTIAL PSRR vs FREQUENCY

Typical Performance Curves (continuad)

FIGURE 13. OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 15. CHANNEL SEPARATION vs FREQUENCY

FIGURE 17. TOTAL HARMONIC DISTORTION vs DIFFERENTIAL OUTPUT SWING

FIGURE 14. OUTPUT IMPEDANCE [DISABLED]

FIGURE 16. INPUT-TO-OUTPUT DELAY

FIGURE 18. TOTAL HARMONIC DISTORTION vs FREQUENCY

Typical Performance Curves (continuod)

FIGURE 19. SMALL SIGNAL TRANSIENT RESPONSE

100ns/DIV
FIGURE 21. EL5378 ENABLED RESPONSE

FIGURE 23. IP3 vs FREQUENCY

FIGURE 20. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 22. EL5378 DISABLED RESPONSE

FIGURE 24. THIRD ORDER INTERCEPT POINT

Typical Performance Curves (continuod)

FIGURE 25. OUTPUT SWING vs TEMPERATURE

FIGURE 27. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 29. SLEW RATE vs TEMPERATURE

FIGURE 26. \pm SUPPLY CURRENT vs TEMPERATURE

FIGURE 28. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 30. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

EL5178, EL5378

Typical Performance Curves (continuod)

FIGURE 31. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Connection Diagrams

FIGURE 32. EL5178

FIGURE 33. EL5378

Simplified Schematic

Description of Operation and Application Information

Product Description

The EL5178 and EL5378 are wide bandwidth, low power and single/differential ended to differential output amplifiers. The EL5178 is a single channel differential amplifier. Since the $I_{N^{-}}$pin and REF pin are tied together internally, the EL5178 can be used as a single ended to differential converter. The EL5378 is a triple channel differential amplifier. The EL5378 has a separate $I_{N^{-}}$pin and REF pin for each channel. It can be used as single/differential ended to differential converter. The EL5178 and EL5378 are internally compensated for closed loop gain of 1 or greater. Connected in gain of 2 and driving a $1 \mathrm{k} \Omega$ differential load, the EL5178 and EL5378 have a -3dB bandwidth of 700 MHz . Driving a 200Ω differential load at gain of 2 , the bandwidth is about 320 MHz . The EL5378 is available with a power down feature to reduce the power while the amplifier is disabled.

Input, Output, and Supply Voltage Range

The EL5178 and EL5378 have been designed to operate with a single supply voltage of 5 V to 10 V or split supplies with its total voltage from 5 V to 10 V . The amplifiers have an input common mode voltage range from -4.3 V to 3.4 V for $\pm 5 \mathrm{~V}$ supply. The differential mode input range (DMIR) between the two inputs is from -2.3 V to +2.3 V . The input voltage range at the REF pin is from -3.3 V to 3.7 V . If the input common mode or differential mode signal is outside the above-specified ranges, it will cause the output signal to become distorted.
The output of the EL5178 and EL5378 can swing from -3.8V to +3.8 V at $1 \mathrm{k} \Omega$ differential load at $\pm 5 \mathrm{~V}$ supply. As the load resistance becomes lower, the output swing is reduced.

Differential and Common Mode Gain Settings

For EL5178, since the $I_{N^{-}}$pin and REF pin are bounded together as the REF pin in an 8 Ld package, the signal at the REF pin is part of the common mode signal and also part of the differential mode signal. For the true balance differential outputs, the REF pin must be
tied to the same bias level as the $\mathrm{I}_{\mathrm{N}}+$ pin. For a $\pm 5 \mathrm{~V}$ supply, just tie the REF pin to GND if the $I_{N}+$ pin is biased at 0 V with a 50Ω or 75Ω termination resistor. For a single supply application, if the $I_{N^{+}}$is biased to half of the rail, the REF pin should be biased to half of the rail also.

The gain setting for EL5178 is expressed in Equation 1:
$\mathrm{V}_{\mathrm{ODM}}=\mathrm{V}_{\mathrm{IN}}+\times\left(1+\frac{\mathrm{R}_{\mathrm{F} 1}+\mathrm{R}_{\mathrm{F} 2}}{\mathrm{R}_{\mathrm{G}}}\right)$
$\mathrm{V}_{\mathrm{OCM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ODM}}=\mathrm{V}_{\mathrm{IN}^{+}} \times\left(1+\frac{2 \mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{G}}}\right)$

Where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V} \\
& \mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F}}
\end{aligned}
$$

EL5378 has a separate $I_{N^{-}}$pin and REF pin. It can be used as a single/differential ended to differential converter. The voltage applied at REF pin can set the output common mode voltage and the gain is one.

The gain setting for EL5378 is expressed in Equation 2:
$V_{O D M}=\left(V_{I N^{+}}-V_{I N^{-}}\right) \times\left(1+\frac{R_{F 1}+R_{F 2}}{R_{G}}\right)$
$V_{\mathrm{ODM}}=\left(\mathrm{V}_{\mathrm{IN}^{+}}-\mathrm{V}_{\mathrm{IN}^{-}}\right) \times\left(1+\frac{2 \mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{G}}}\right)$
$\mathrm{V}_{\mathrm{OCM}}=\mathrm{V}_{\mathrm{REF}}$
Where:

$$
\mathrm{R}_{\mathrm{F} 1}=\mathrm{R}_{\mathrm{F} 2}=\mathrm{R}_{\mathrm{F}}
$$

Choice of Feedback Resistor and Gain Bandwidth Product

For gains greater than 1, the feedback resistor forms a pole with the parasitic capacitance at the inverting input. As this pole becomes smaller, the amplifier's phase margin is reduced. This causes ringing in the time domain and peaking in the frequency domain. Therefore, R_{F} has some maximum value that should not be exceeded for optimum performance. If a large value of R_{F} must be used, a small capacitor in the few Pico farad range in parallel with R_{F} can help to reduce the ringing and peaking at the expense of reducing the bandwidth.

The bandwidth of the EL5178 and EL5378 depends on the load and the feedback network. R_{F} and R_{G} appear in parallel with the load for gains other than 1. As this combination gets smaller, the bandwidth falls off. Consequently, R_{F} also has a minimum value that should not be exceeded for optimum bandwidth performance. For the gains other than 1, optimum response is obtained with R_{F} between 500Ω to $1 \mathrm{k} \Omega$.
The EL5178 and EL5378 have a gain bandwidth product of 350 MHz for $\mathrm{R}_{\mathrm{LD}}=1 \mathrm{k} \Omega$. For gains ≥ 5, its bandwidth can be predicted by Equation 3:
Gain \times BW $=300 \mathrm{MHz}$

Driving Capacitive Loads and Cables

The EL5178 and EL5378 can drive a 23 pF differential capacitor in parallel with 200Ω differential load with less than 5 dB of peaking at gain of 2 . If less peaking is desired in applications, a small series resistor (usually between 5Ω to 50Ω) can be placed in series with each output to eliminate most peaking. However, this will reduce the gain slightly. If the gain setting is greater than 2, the gain resistor R_{G} can then be chosen to make up for any gain loss, which may be created by the additional series resistor at the output.

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, a back-termination series resistor at the amplifier's output will isolate the amplifier from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. Again, a small series resistor at the output can help to reduce peaking.

Disable/Power-Down (for EL5378 only)

The EL5378 can be disabled and its outputs placed in a high impedance state. The turn-off time is about $1.2 \mu \mathrm{~s}$ and the turn-
on time is about 130 ns . When disabled, the amplifier's supply current is reduced to $1.7 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{S}^{+}}$and $120 \mu \mathrm{~A}$ for $\mathrm{I}_{\mathrm{S}^{-}}$typically, thereby effectively eliminating the power consumption. The amplifier's power-down can be controlled by standard CMOS signal levels at the EN pin. The applied logic signal is relative to the $\mathrm{V}_{\mathrm{S}^{+}}$pin. Letting the $\overline{\mathrm{EN}}$ pin float or applying a signal that is less than 1.5 V below $\mathrm{V}_{\mathrm{S}^{+}}$will enable the amplifier. The amplifier will be disabled when the signal at the $\overline{\mathrm{EN}}$ pin is above $\mathrm{V}_{\mathrm{S}^{+}}-0.5 \mathrm{~V}$.

Output Drive Capability

The EL5178 and EL5378 have internal short circuit protection. Its typical short circuit current is $\pm 60 \mathrm{~mA}$. If the output is shorted indefinitely, the power dissipation could easily increase such that the part will be destroyed. Maximum reliability is maintained if the output current never exceeds $\pm 60 \mathrm{~mA}$. This limit is set by the design of the internal metal interconnections.

Power Dissipation

With the high output drive capability of the EL5178 and EL5378, it is possible to exceed the $+135^{\circ} \mathrm{C}$ absolute maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if the load conditions or package types need to be modified for the amplifier to remain in the safe operating area.

The maximum power dissipation allowed in a package is determined according to Equation 4:

$$
\begin{equation*}
P D_{M A X}=\frac{T_{J M A X}-T_{A M A X}}{\Theta_{J A}} \tag{EQ.4}
\end{equation*}
$$

Where:
$\mathrm{T}_{\mathrm{JMAX}}=$ Maximum junction temperature
$\mathrm{T}_{\text {AMAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or as expressed in Equation 5:

$$
\begin{equation*}
\mathrm{PD}=\mathrm{i} \times\left(\mathrm{V}_{\mathrm{STOT}} \times \mathrm{I}_{\mathrm{SMAX}}+\left(\mathrm{V}_{\mathrm{STOT}}-\Delta \mathrm{V}_{\mathrm{O}}\right) \times \frac{\Delta \mathrm{V}_{\mathrm{O}}}{\mathrm{R}_{\mathrm{LD}}}\right) \tag{EQ.5}
\end{equation*}
$$

Where:
$\mathrm{V}_{\mathrm{STOT}}=$ Total supply voltage $=\mathrm{V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{S}^{-}}$
ISMAX = Maximum quiescent supply current per channel
$\Delta V_{O}=$ Maximum differential output voltage of the application
$R_{L D}=$ Differential load resistance
ILOAD $=$ Load current
$\mathrm{i}=$ Number of channelsBy setting the two $\mathrm{PD}_{\text {MAX }}$ equations equal to each other, we can solve the output current and $R_{L D}$ to avoid the device overheat.

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, a good printed circuit board layout is necessary for optimum performance. Lead lengths should be as short as possible. The power supply pin must be well bypassed to reduce the risk of oscillation. For normal single supply operation, where the $\mathrm{V}_{\mathrm{S}^{-}}$pin is connected to the ground plane, a single $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.1 \mu \mathrm{~F}$ ceramic capacitor from $\mathrm{V}_{\mathrm{S}^{+}}$to GND will suffice. This same capacitor combination should be placed at each supply pin to ground if split supplies are to be used. In this case, the $\mathrm{V}_{\mathrm{S}^{-}}$pin becomes the negative supply rail.

For good AC performance, parasitic capacitance should be kept to a minimum. Use of wire-wound resistors should be avoided because of their additional series inductance. Use of sockets should also be avoided if possible. Sockets add parasitic inductance and capacitance that can result in compromised performance. Minimizing parasitic capacitance at the amplifier's inverting input pin is very important. The feedback resistor should be placed very close to the inverting input pin. Strip line design techniques are recommended for the signal traces.

As the signal is transmitted through a cable, the high frequency signal will be attenuated. One way to compensate this loss is to boost the high frequency gain at the receiver side.

Typical Applications

FIGURE 35. TWISTED PAIR CABLE RECEIVER

DC Gain $=1+\frac{2 R_{F}}{R_{G}}$
(HF)Gain $=1+\frac{2 R_{F}}{R_{G} \| R_{G C}}$

$\mathrm{f}_{\mathrm{L}} \cong \frac{1}{2 \pi \mathrm{R}_{\mathrm{G}} \mathrm{C}_{\mathrm{C}}}$
$\mathrm{f}_{\mathrm{H}} \cong \frac{1}{2 \pi \mathrm{R}_{\mathrm{GC}} \mathrm{C}_{\mathrm{C}}}$

FIGURE 36. TRANSMIT EQUALIZER

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

DETAIL "A"

TYPICAL RECOMMENDED LAND PATTERN

Package Outline Drawing

M8.118A
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP) Rev 0, 9/09

TOP VIEW

SIDE VIEW 1

TYPICAL RECOMMENDED LAND PATTERN

DETAIL "X"

NOTES:

1. Dimensions are in millimeters.
2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSE Y14.5m-1994.
3. Plastic or metal protrusions of $\mathbf{0 . 1 5 m m}$ max per side are not included.
4. Plastic interlead protrusions of 0.25 mm max per side are not included.
5. Dimensions "D" and "E1" are measured at Datum Plane "H".
6. This replaces existing drawing \# MDP0043 MSOP 8L.

Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension " B " does not include dambar protrusion. Allowable dambar protrusion shall be 0.10 mm (0.004 inch) total in excess of " B " dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact.

M28.15

28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150" WIDE BODY)

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.053	0.069	1.35	1.75	-
A1	0.004	0.010	0.10	0.25	-
A2	-	0.061	-	1.54	-
B	0.008	0.012	0.20	0.30	9
C	0.007	0.010	0.18	0.25	-
D	0.386	0.394	9.81	10.00	3
E	0.150	0.157	3.81	3.98	4
e	0.025	SSC	0.635	BSC	-
H	0.228	0.244	5.80	6.19	-
h	0.0099	0.0196	0.26	0.49	5
L	0.016	0.050	0.41	1.27	6
N	28			28	7
α	0°	8°	0°	8°	-

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Differential Amplifiers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
LTC6419IV\#PBF LT6600CS8-15\#PBF AD8479TRZ-EP INA149AMDREP INA146UA/2K5 MAX9626ATC+ INA105KU/2K5 ADM1272-
1ACPZ DC1538A LTC1992-10CMS8\#PBF LTC1992CMS8\#PBF LT6375HMS\#PBF LTC1992-2HMS8\#PBF LTC1992-5HMS8\#PBF LT6604IUFF-15\#PBF AD8270ACPZ-R7 LT6350IDD\#PBF AD8475ACPZ-R7 AD8476BRMZ-R7 MAX9626ATC+T AD8132ARZ-RL LTC1992IMS8\#PBF INA2132U/2K5 LT6600CS8-2.5\#PBF LTC1992-10IMS8\#PBF LTC1992-1HMS8\#PBF LTC6605CDJC-7\#PBF LTC1992-2CMS8\#PBF LT6604CUFF-5\#PBF LTC6403CUD-1\#PBF LT6350IMS8\#PBF THS4552IRTWT LTC1992-2IMS8\#PBF LTC1992HMS8\#PBF LT6350CMS8\#PBF THS4551IRGTT AD8138SRMZ-EP-R7 AD8138ARMZ-REEL AD8138ARZ-RL LT6350HMS8\#PBF LTC6363IMS8-0.5\#PBF THS4551IRGTR LT1990IS8\#PBF LTC6363IMS8\#PBF LT1995IDD\#PBF AD8277ARZ-R7 AD8147ACPZ-R7 AD628ARZ-RL AD8130AR-EBZ AD600JN

