Description

The F2911 is a high reliability, low insertion loss, 75Ω SPST RF switch designed for a multitude of wireless and RF applications. This device covers a broad frequency range from 1 MHz to 3500 MHz . In addition to providing low insertion loss, the F2911 also delivers excellent linearity and isolation performance while providing a 75Ω termination on one port in the isolation mode.
The F2911 uses a single positive supply voltage supporting either 3.3 V or 1.8 V control logic.

Competitive Advantage

The F2911 provides broadband RF performance to support the CATV market along with high power handling, and high isolation.

- Low insertion loss
- High isolation
- Excellent linearity
- Extended temperature range

Typical Applications

- CATV Infrastructure
- CATV Set-Top Boxes
- CATV Satellite Modems
- Data Network Equipment
- Fiber Networks

Features

- Low insertion loss: 0.33 dB at 1200 MHz
- High isolation: 53 dB at 1200 MHz
- Supply voltage: +2.7 V to +5.5 V
- 1.8 V and 3.3 V compatible control logic
- $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ operating temperature range
- $2 \mathrm{~mm} \times 2 \mathrm{~mm}, 8$-pin DFN package

Block Diagram

Figure 1. Block Diagram

Renesns

Pin Assignments

Figure 2. Pin Assignments for $2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.9 \mathrm{~mm}$ 8-DFN - Top View

Pin Descriptions

Table 1. Pin Descriptions

Pin	Name	Function
1,4	NC	No internal connection. This pin may be connected to the exposed paddle and can be grounded.
2,3	GND	Ground. This pin is internally connected to the ground paddle. Ground this pin as close to the device as possible.
5	RF1	RF1 port. This pin is matched to 75Ω in the insertion loss state only. If this pin is not 0 V DC, then an external coupling capacitor must be used.
6	$V_{D D}$	Power supply. Bypass to GND with capacitors as shown in the Figure 16 as close as possible to pin.
7	V1	Logic control pin. See Table 7 for proper logic setting.
8	RF2	RF2 port. Matched to 75 7 . If this pin is not $0 V$ DC, then an external coupling capacitor must be used.
	EP	Exposed pad. This pad is internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device and into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

Renesns

Absolute Maximum Ratings

Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter		Symbol	Minimum	Maximum	Units
$V_{D D}$ to GND		$V_{D D}$	-0.3	+6.0	V
V1 to GND		V LOGIC	-0.3	Lower of $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}, 3.6 \mathrm{~V}\right)$	V
RF1, RF2 to GND		$V_{\text {RF }}$	-0.3	+0.3	V
RF Input Power, CW$\begin{aligned} & Z_{S}=Z_{L}=75 \Omega \\ & \mathrm{~T}_{\mathrm{EP}}=25^{\circ} \mathrm{C}[\text { a] } \\ & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \end{aligned}$	RF1 or RF2 as input (Insertion loss state)	$\mathrm{P}_{\text {RFCW12 }}$		31	dBm
	RF1 as input (Isolation state)	PRF1CW_Iso		21	
	RF2 as input (Isolation state)	Prf2CW_ISO		28	
RF Input Power, Peak$\begin{aligned} & Z_{S}=Z_{L}=75 \Omega \\ & T_{E P}=25^{\circ} \mathrm{C}[\text { [a] [b] } \\ & V_{D D}=+3.3 \mathrm{~V} \end{aligned}$	RF1 or RF2 as input (Insertion loss state)	PRFPK12		34	dBm
	RF1 as input (Isolation state)	PRF1PK_ISO		24	
	RF2 as input (Isolation state)	PRF2PK_ISO		31	
Maximum Junction Temperature		TJMAX		+140	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		TSTOR	-65	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)		TLEAD		+260	${ }^{\circ} \mathrm{C}$
ElectroStatic Discharge - HBM (JEDEC/ESDA JS-001-2012)		$V_{\text {ESDHBM }}$		$\begin{gathered} 2000 \\ \text { (Class 2) } \end{gathered}$	V
ElectroStatic Discharge - CDM (JEDEC 22-C101F)		$V_{\text {ESDCDM }}$		$\begin{gathered} 1000 \\ \text { (Class C3) } \end{gathered}$	V

a. $\quad \mathrm{T}_{\mathrm{EP}}=$ Temperature at the exposed paddle (see Table 3).
b. 5% duty cycle of a 4.6 ms period.

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

a. Levels based on: $\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}$ to $+5.5 \mathrm{~V}, 1 \mathrm{MHz} \leq \mathrm{f}_{\mathrm{RF}} \leq 3500 \mathrm{MHz}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=75 \Omega$. See Figure 3 for power handling derating vs. RF frequency.
b. 5% duty cycle of a 4.6 ms period.

Figure 3. Maximum RF Input Operating Power vs. RF Frequency ($\mathbf{Z s}_{s}=\mathbf{Z}_{\mathrm{L}}=\mathbf{7 5 \Omega}$)

Electrical Characteristics

Table 4. Electrical Characteristics
See the F2911 Typical Application Circuit. Specifications apply when operated with $V_{D D}=+3.3 \mathrm{~V}, \mathrm{~T}_{E P}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=1000 \mathrm{MHz}$, driven port $=R F 2, P_{I N}=0 d B m, Z_{S}=Z_{L}=75 \Omega$. $P C B$ board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition	Min	Typical	Max	Units
Logic Input High	$\mathrm{V}_{\text {IH }}$	$+2.7 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq+5.5 \mathrm{~V}$	$1.1{ }^{\text {[a] }}$		Lower of $\left(V_{D D}, 3.6\right)$	V
Logic Input Low	V_{LL}		-0.3 [b]		0.6	V
Logic Current	$\mathrm{l}_{\mathrm{H}, \mathrm{l}} \mathrm{IL}_{\text {L }}$		-1		+1	$\mu \mathrm{A}$
DC Current	ldo	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		190	304	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		230		
Insertion Loss	IL	$1 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 50 \mathrm{MHz}$ [c]		0.24	0.44	dB
		$50 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 250 \mathrm{MHz}$		0.26		
		$250 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 750 \mathrm{MHz}$		0.29		
		$750 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1000 \mathrm{MHz}$		0.31		
		$1000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1200 \mathrm{MHz}$		0.33		
		$1200 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1800 \mathrm{MHz}$ [c]		0.39	0.55	
		$1800 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 2000 \mathrm{MHz}$		0.39		
		$2000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 3500 \mathrm{MHz}$		0.89		
Isolation	ISO	$1 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 50 \mathrm{MHz}$	75	84		dB
		$50 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 250 \mathrm{MHz}$		70		
		$250 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 750 \mathrm{MHz}$		59		
		$750 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1000 \mathrm{MHz}$		55		
		$1000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1200 \mathrm{MHz}$		53		
		$1200 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1800 \mathrm{MHz}$		46		
		$1800 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 2000 \mathrm{MHz}$		45		
		$2000 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 3500 \mathrm{MHz}$		35		
RF1, RF2 Return Loss ${ }^{[d]}$ (Insertion Loss State)	RFRL	$1 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 50 \mathrm{MHz}$		33		dB
		$50 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 250 \mathrm{MHz}$		32		
		$250 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 750 \mathrm{MHz}$		27		
		$750 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1000 \mathrm{MHz}$		25		
		$1000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1200 \mathrm{MHz}$		23		
		$1200 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1800 \mathrm{MHz}$		20		
		$1800 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 2000 \mathrm{MHz}$		20		
		$2000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 3500 \mathrm{MHz}$		10		
RF2 Return Loss ${ }^{[d]}$ (Isolation State)	RFrıliso	$1 \mathrm{MHz} \leq \mathrm{f}_{\text {RF }} \leq 50 \mathrm{MHz}$		27		dB
		$50 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 250 \mathrm{MHz}$		27		
		$250 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 750 \mathrm{MHz}$		25		
		$750 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1000 \mathrm{MHz}$		23		
		$1000 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 1200 \mathrm{MHz}$		22		
		$1200 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 1800 \mathrm{MHz}$		20		
		$1800 \mathrm{MHz}<\mathrm{f}_{\text {RF }} \leq 2000 \mathrm{MHz}$		20		
		$2000 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}} \leq 3500 \mathrm{MHz}$		11		

a. Items in $\mathrm{min} / \mathrm{max}$ columns in bold italics are guaranteed by test (GBT).
b. Items in min/max columns that are not bold italics are guaranteed by design characterization (GBDC).
c. Maximum specification limit is GBT at 50 MHz and 1.8 GHz , and it is GBDC over the whole frequency range.
d. Return loss includes mismatch effects of the Evaluation Kit PCB and RF connectors.

Renesas

Electrical Characteristics

Table 5. Electrical Characteristics
See the F2911 Typical Application Circuit. Specifications apply when operated with $V_{D D}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{EP}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=1000 \mathrm{MHz}$, driven port $=R F 2, P_{I N}=0 d B m, Z_{S}=Z_{L}=75 \Omega . P C B$ board trace and connector losses are de-embedded unless otherwise noted.

Parameter	Symbol	Condition		Min	Typ	Max	Units
Input 1dB Compression [c]	$I C P_{1 d B}$	$\mathrm{f}_{\mathrm{RF}}=1 \mathrm{MHz}$			33		dBm
		$\mathrm{f}_{\mathrm{RF}}=10 \mathrm{MHz}$			34		
		$\mathrm{f}_{\mathrm{RF}}=2000 \mathrm{MHz}$			34		
		$\mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}$			34		
Input 0.1dB Compression [c]	$I C P_{0.1 \mathrm{~dB}}$	$\mathrm{f}_{\mathrm{RF}}=1 \mathrm{MHz}$			30		dBm
		$\mathrm{f}_{\mathrm{RF}}=10 \mathrm{MHz}$			33		
		$\mathrm{f}_{\text {RF }}=2000 \mathrm{MHz}$			33		
		$\mathrm{f}_{\mathrm{RF}}=3500 \mathrm{MHz}$			33		
Input IP2 [d]	IIP2	$\mathrm{P}_{\text {IN }}=13 \mathrm{dBm} /$ tone $f_{1}+f_{2}$ frequency	$\begin{aligned} & f_{1}=5 \mathrm{MHz} \\ & f_{2}=6 \mathrm{MHz} \end{aligned}$		86		dBm
			$\begin{aligned} & f_{1}=185 \mathrm{MHz} \\ & f_{2}=190 \mathrm{MHz} \end{aligned}$		120		
			$\begin{aligned} & f_{1}=895 \mathrm{MHz} \\ & f_{2}=900 \mathrm{MHz} \end{aligned}$		121		
			$\begin{aligned} & \mathrm{f}_{1}=1745 \mathrm{MHz} \\ & \mathrm{f}_{2}=1750 \mathrm{MHz} \end{aligned}$		117		
Input IP3 [d]	IIP3	$\mathrm{P}_{\mathrm{IN}}=13 \mathrm{dBm} /$ /one	$\begin{aligned} & f_{1}=5 \mathrm{MHz} \\ & f_{2}=6 \mathrm{MHz} \end{aligned}$		52		dBm
			$\begin{aligned} & f_{1}=185 \mathrm{MHz} \\ & f_{2}=190 \mathrm{MHz} \end{aligned}$		64		
			$\begin{aligned} & \mathrm{f}_{1}=1790 \mathrm{MHz} \\ & \mathrm{f}_{2}=1795 \mathrm{MHz} \end{aligned}$		66		
			$\begin{aligned} & \mathrm{f}_{1}=3490 \mathrm{MHz} \\ & \mathrm{f}_{2}=3495 \mathrm{MHz} \end{aligned}$		64		
CTB / CSO		77 and 110 channe	OUT $=44 \mathrm{dBmV}$		-95		dBc
Non-RF Driven Spurious [e]	Spurmax	Out any RF port w terminated into 75	externally		-100		dBm
Switching Time ${ }^{[f]}$	Tsw	50\% control to 90\%			1.0		$\mu \mathrm{s}$
		50\% control to 10\%			1.0		
		50% control to RF settled to within $+/-0.1 \mathrm{~dB}$ of I.L. value			1.1		
Maximum Switching Rate	SWRATE				25		kHz
Maximum Video FeedThrough on RF Ports	VID $\mathrm{Ft}^{\text {f }}$		switching time		10		$\mathrm{m} \mathrm{V}_{\mathrm{pp}}$

a. Items in min/max columns in bold italics are guaranteed by test.
b. Items in min/max columns not in bold italics are guaranteed by design characterization.
c. The input 0.1 dB and 1 dB compression points are linearity figures of merit. Refer to the "Recommended Operating Conditions" section and Figure 3 for the maximum operating power levels.
d. RF1 or RF2 driven IIP2 and IIP3 results when in the insertion loss state.
e. Spurious due to on-chip negative voltage generator. Spurious fundamental = approximately 5.7 MHz .
f. $f_{R F}=1 G H z$.

Thermal Characteristics

Table 6. Package Thermal Characteristics

Parameter	Symbol	Value	Units
Junction to Ambient Thermal Resistance	θ_{JA}	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case Thermal Resistance (Case is defined as the exposed paddle)	$\theta_{\mathrm{Jc} \mathrm{_}}$вот	15.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Moisture Sensitivity Rating (Per J-STD-020)		MSL1	

Typical Operating Conditions (TOCs)

Unless otherwise noted:

- $V_{D D}=+3.3 \mathrm{~V}$
- $\mathrm{T}_{E P}=25^{\circ} \mathrm{C}$
- $Z_{S}=Z_{L}=75 \Omega$
- $f_{R F}=1 \mathrm{GHz}$
- Small signal tests done at 0dBm input power.
- RF2 is the driven port.
- All temperatures are referenced to the exposed paddle.
- Evaluation Kit (EVKit) traces and connector losses are de-embedded for the insertion loss and isolation plots. All other plots include the loss and effects of the PCB.

Typical Performance Characteristics [1]

Figure 4. RF2 to RF1 Insertion Loss vs. Frequency over Temp. and Voltage

Figure 6. RF1 Port On State Return Loss vs. Frequency over Temp. and Voltage

Figure 8. RF2 Port Off State Return Loss vs.

Frequency over Temp. and Voltage

Figure 5. RF2 to RF1 Isolation vs. Frequency over Temperature and Voltage

Figure 7. RF2 Port On State Return Loss vs. Frequency over Temp. and Voltage

Typical Performance Characteristics [2]

Figure 9. Switching Time Isolation to Insertion Loss State

Figure 11. EVKit PCB and Connector Thru Loss vs. Frequency over Temperature

Figure 10. Switching Time Insertion Loss to Isolation State

Figure 12. EVKit PCB and Connector Return Loss vs. Frequency over Temp.

Control Mode

Table 7. Switch Control Truth Table

V1	State	RFC to RF2
LOW	Isolation	RF1 port reflective, RF2 port matched to 75Ω
HIGH	Insertion Loss	RF1 and RF2 port matched to 75Ω

Application Information

Default Start-up

The V1 control pin includes no internal pull-down resistors to logic LOW or pull-up resistors to logic HIGH.

Power Supplies

A common $V_{D D}$ power supply should be used for all pins requiring $D C$ power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate slower than $1 \mathrm{~V} / 20 \mu \mathrm{~s}$. In addition, all control pins should remain at 0 V ($\pm 0.3 \mathrm{~V}$) while the supply voltage ramps up or while it returns to zero.

Control Pin Interface

If a clean control signal cannot be guaranteed due to overshoot, undershoot, or ringing, etc., the following circuit at the input of the control pin is recommended.

Figure 13. Control Pin Signal Integrity Improvement Circuit

Evaluation Kit Pictures

Figure 14. Top View

Figure 15. Bottom View

Evaluation Kit / Applications Circuit

Figure 16. Electrical Schematic

Renesns

Table 8. Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part \#	Manufacturer
C1	1	$0.1 \mu \mathrm{~F} \pm 10 \%, 16 \mathrm{~V}, \mathrm{X} 7 \mathrm{R}$, Ceramic Capacitor (0402)	GRM155R71C104K	Murata
C2-C5	4	Not Installed (0402)		
R1	1	$15 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1502X	Panasonic
R2	1	$18 \mathrm{k} \Omega \pm 1 \%, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2RKF1802X	Panasonic
R3, R4	2	$0 \Omega, 1 / 10 \mathrm{~W}$, Resistor (0402)	ERJ-2GE0R00X	Panasonic
J1 - J4	4	F-Type Edge Mount	$531-40039$	Amphenol
J5	1	CONN HEADER VERT 4x2 POS GOLD	$67997-108 \mathrm{HLF}$	Amphenol FCI
TP1	0	Not Installed (Red Test Point Loop)		
TP2, TP3	0	Not Installed (Black Test Point Loop)		
U1	1	SPST Switch 2mm x 2mm 8-pin DFN	F2911NBGP	IDT
	1	Printed Circuit Board	F2911EVBI	IDT

Evaluation Kit (EVKit) Operation

External Supply Setup

Set up a main power supply in the voltage range of 2.7 V to 5.5 V with the power supply output disabled.
Connect the disabled power supply to J 5 pin 1 (VCC) and ground to J 5 pin 8 (GND).

Logic Control Setup

Using the EVKIT to set the control logic:

On connector J5, connect a 2-pin shunt from pin 3 (VCC) to pin 4 (VLOGIC). This connection allows the main power supply to power the EVKit logic control network (R 1 and R 2). Resistors R 1 and R 2 form a voltage divider to set the $\mathrm{V}_{\mathbb{H}}$ level over the 2.7 V to 5.5 V supply range for manual logic control.

See Table 7 for Switch Control Truth Table states. With the logic control network enabled (as noted above), pin 5 can be left open to provide a logic HIGH through pull-up resistor R1. To set a logic LOW for V1, connect a 2-pin shunt on J 5 from pin 5 (V1) to pin 6 (GND).
Note that when using the on-board $\mathrm{R} 1 / \mathrm{R} 2$ voltage divider, the current draw from the power supply will be higher by approximately the main power supply voltage divided by $33 \mathrm{k} \Omega$.
Using external control logic:
Remove any jumpers from connector J5. Connect the disabled external logic control to V1 (pin 5) of connector J5. See Table 7 for the Switch Control Truth Table settings. Note that even with the R1/R2 divider network disabled, R2 will still be a load ($18 \mathrm{k} \Omega$ to GND) for an external control signal applied to V1.

Turn On Procedure / Operation

Setup the supplies and EVKit as noted in the External Supply Setup and Logic Control Setup sections above.
Enable the power supply.
If using the EVKIT to manually set the control logic: Set the logic setting to achieve the desired Table 7 configuration by placing a shunt between J 5 pins 5 and 6 for a logic LOW or leave pins 5 and 6 open for a logic HIGH.

If using the external control logic setup above: Enable the logic control signal. Set the logic signal level to achieve the desired Table 7 configuration. Note that external control logic should not be applied without the main power supply being present.

Turn Off Procedure

Set any external logic control to 0 V .
Disable the main power supply.

Package Drawings

Figure 17. Package Outline Drawing - NBG8P3 Package

Recommended Land Pattern

Figure 18. Recommended Land Pattern - NBG8P3 Package

Marking Diagram

Line 1 and 2 are the part number.
Line 3 - " Z " are for die version.
Line 3 - " 412 " is one digit for the year and week that the part was assembled. Line 3 - "AKG" denotes the production process.

Ordering Information

Orderable Part Number	Package	MSL Rating	Shipping Packaging	Temperature
F2911NBGP	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.9 \mathrm{~mm} 8$-VFQFP-N	MSL1	Cut Tape	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2911NBGP8	$2 \mathrm{~mm} \times 2 \mathrm{~mm} \times 0.9 \mathrm{~mm} 8$-VFQFP-N	MSL1	Reel	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
F2911EVBI	Evaluation Board			

Renesns

Revision History

Revision	Revision Date		Description of Change
Rev O	$2017-$ Sept-21	Initial release.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF

BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11

