Description

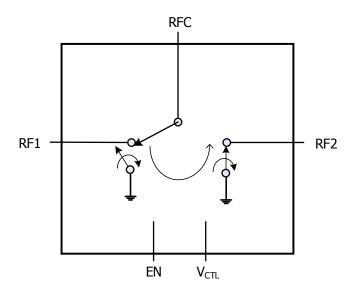
The F2977 is a 50Ω single-pole double-throw (SP2T) reflective RF switch featuring high linearity and wide bandwidth. This device is optimized from 30MHz to 6GHz to support a multitude of wireless RF applications. The F2977 uses a single positive supply voltage of either +3.3V or +5.0V and is compatible with either 1.8V or 3.3V control logic.

Competitive Advantage

The F2977 provides extremely low insertion loss across the entire bandwidth while providing superb distortion performance.

- Low insertion loss
- High isolation
- Low distortion
- Fast switching
- No external matching required

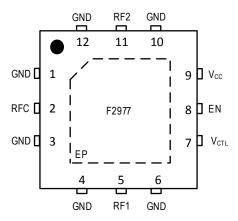
Typical Applications


- Cellular BTS
- Cellular BTS small cell
- Transmit / Receive switching
- Post PA switching
- General purpose

Features

- Low insertion loss:
 - 0.38dB at 2.4GHz
 - 0.45dB at 6GHz
- High Isolation:
 - 39dB at 2.4GHz
- High Linearity:
 - IIP2 +125dBm at 2.4GHz
 - IIP3 +77dBm at 2.4GHz
- P0.1dB compression of +40dBm at 2.4GHz
- Second Harmonic: -95dBc at 900MHz
- Third Harmonic: -90dBc at 900MHz
- Supply voltage: +2.7V to +5.25V
- 1.8V and 3.3V compatible control logic
- -40°C to +105°C operating temperature range
- 2mm x 2mm, 12-pin VFQFP-N package

Block Diagram


Figure 1. Block Diagram

Pin Assignments

Figure 2. Pin Assignments for 2mm x 2mm x 0.5mm 12-pin VFQFP-N, NEG12 – Top View

Pin Descriptions

Table 1. Pin Descriptions

able 1.	Pin Descrip	tions
Number	Name	Description
1	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
2	RFC	RF Common Port. If this pin is not 0V DC, then an external coupling capacitor must be used.
3	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
4	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
5	RF1	RF1 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.
6	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
7	V _{CTL}	Logic control pin.
8	EN	Active HIGH enable pin. If LOW, neither RF1 nor RF2 are connected to RFC. Pin is internally pulled up to $2.5V$ through a $500k\Omega$ resistor.
9	V _{CC}	Power supply. Bypass to GND with capacitors shown in the Typical Application Circuit as close as possible to pin.
10	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
11	RF2	RF2 Port. If this pin is not 0V DC, then an external coupling capacitor must be used.
12	GND	Internally grounded. Connect pin directly to paddle ground or as close as possible to pin with thru vias.
	EP	Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.

Absolute Maximum Ratings

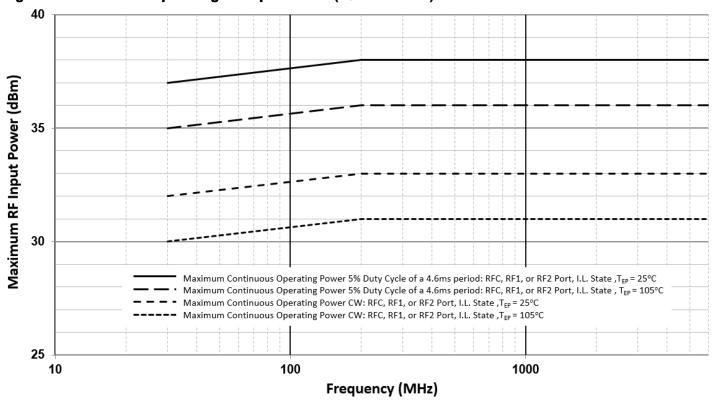
Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 2. Absolute Maximum Ratings

Par	ameter	Symbol	Minimum	Maximum	Units				
V _{CC} to GND		V _{CC}	-0.3	+5.5	V				
V _{CTL} , EN	' _{CTL} , EN		_{CTL} , EN		/ _{CTL} , EN		-0.3	Lower of (V _{CC} + 0.3, 3.9)	V
RF1, RF2, RFC		V_{RF}	-0.3	+0.3	V				
Maximum Input CW Power, 50Ω , $T_{EP} = 25^{\circ}C$,	$30MHz \le f_{RF} \le 200MHz$	P _{ABSCW1}		33	dBm				
V _{CC} = 5.25V (any port, insertion loss state) [a]	$200MHz < f_{RF} \le 6000MHz$	P _{ABSCW2}		34	GD.III				
Maximum Peak Power, $50Ω$, $T_{EP} = 25°C$,	$30MHz \le f_{RF} \le 200MHz$	P _{ABSPK1}		38	dBm				
V _{CC} = 5.25V (any port, insertion loss state) [a, b]	$200MHz < f_{RF} \le 6000MHz$	P _{ABSPK2}		39	dbiii				
Maximum Junction Temper	rature	T_{JMAX}		+140	°C				
Storage Temperature Rang	ge	T _{ST}	-65	+150	°C				
Lead Temperature (solderi	T _{LEAD}		+260	°C					
Electrostatic Discharge – F (JEDEC/ESDA JS-001-201	V _{ESDHBM}		2500 (Class 2)	V					
Electrostatic Discharge – C (JEDEC 22-C101F)	CDM	V _{ESDCDM}		1000 (Class C3)	V				

a. T_{EP} = Temperature of the exposed paddle.

b. 5% duty cycle of a 4.6ms period.



Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
Supply Voltage	Vcc		2.7	3.3	5.25	٧
Operating Temperature Range	T _{EP}	Exposed Paddle	-40		+105	°C
RF Frequency Range	f_{RF}		0.030		6	GHz
Maximum Operating Input Power	P _{MAX}	Insertion Loss State $Z_S = Z_L = 50\Omega$			See Figure 3	dBm
Port Impedance (RFC, RF1, RF2)	Z_{RF}	Insertion Loss State		50		Ω

Figure 3. Maximum Operating RF Input Power ($Z_s = Z_L = 50\Omega$)

General Specifications

Table 4. General Specifications

See F2977 Typical Application Circuit. Specifications apply when operated with V_{CC} = +3.3V, T_{EP} = +25°C, EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, unless otherwise noted.

Parameter	Symbol	Condition		Minimum	Typical	Maximum	Units
Logic Input HIGH Threshold	V _{IH}	V _{CTL} , EN pins	V _{CTL} , EN pins			Lower of (V _{CC} , 3.6)	V
Logic Input LOW Threshold	V_{IL}	V _{CTL} , EN pins		-0.3		0.6	V
Logic Current	I _{IH} , I _{IL}	V _{CTL} , EN pins (e	ach pin)	-10 ^[a]		+10	μΑ
DC Current (//)		Normal Operation	n		80	150	
DC Current (V _{CC})	I _{CC}	Standby (EN = LOW)			20	35	μA
Switching Rate	SW _{RATE}					25	kHz
	T _{STRTUP} State, 50%	From Standby	No Change in RF Path		1.0		
Startup Time		to 90% RF		Change in RF Path		1.6	
Maximum Video Feed-Through, RFC Port	VID _{FT}	Peak transient during switching. $Z_S = Z_L = 50\Omega$. Measured with 20ns rise time, 0V to 3.3V (3.3V to 0V) control pulse applied to V_{CTL} .			12		mVp-p
Switching Time [0]	SW _{TIME}	50% V _{CTL} to 90%	6 or 10% RF		1.5	3	μs

a. Items in min/max columns in **bold italics** are guaranteed by test.

b. Items in min/max columns that are not bold italics are guaranteed by design characterization.

c. Measured at $f_{RF} = 1GHz$.

Electrical Characteristics

Table 5. Electrical Characteristics

See F2977 Typical Application Circuit. Specifications apply when operated with V_{CC} = +3.3V, T_{EP} = +25°C, Z_S = Z_L = 50 Ω , EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units
		30MHz < f _{RF} ≤ 1GHz		0.33	0.53 ^[b]	dB
Insertion Loss		1GHz < f _{RF} ≤ 2GHz [0]		0.36	0.56 ^[a]	
(RFC to RF1, RF2)	IL	2GHz < f _{RF} ≤ 3GHz		0.40		uв
		3GHz < f _{RF} ≤ 6GHz		0.45		
		30MHz < f _{RF} ≤ 1GHz	43	48		
Isolation	ISO1	1GHz < f _{RF} ≤ 2GHz	36	42		dB
(RFC to RF1, RF2)		2GHz < f _{RF} ≤ 3GHz	31	37		
		3GHz < f _{RF} ≤ 6GHz		27		
		30MHz < f _{RF} ≤ 1GHz	40	45		
Isolation	ISO2	1GHz < f _{RF} ≤ 2GHz	33	38		dB
(RF1 to RF2, RF2 to RF1)		2GHz < f _{RF} ≤ 3GHz	29	34		
		3GHz < f _{RF} ≤ 6GHz		26		1
		$30MHz < f_{RF} \le 1GHz$		28		
Return Loss (RFC, RF1, RF2)	DI	1GHz < f _{RF} ≤ 2GHz		26		dB dB
(Insertion loss states)	RL	2GHz < f _{RF} ≤ 3GHz		26		
		3GHz < f _{RF} ≤ 6GHz		25		

- a. Items in min/max columns in **bold italics** are guaranteed by test.
- b. Items in min/max columns that are not bold italics are guaranteed by design characterization.
- c. Minimum or maximum specification guaranteed by test at 2GHz and by design characterization over the whole frequency range.

Electrical Characteristics

Table 6. Electrical Characteristics

See F2977 Application Circuit. Specifications apply when operated with V_{CC} = +3.3V, T_{EP} = +25°C, Z_S = Z_L = 50 Ω , EN = HIGH, single tone signal applied at RF1 or RF2 and measured at RFC, EVKit trace and connector losses are de-embedded, unless otherwise noted.

Parameter	Symbol	Condition	Minimum	Typical	Maximum	Units	
		f _{RF} = 30MHz		40		dBm	
Input 0.1dB Compression [c]	P0.1dB	f _{RF} = 2.4GHz		40			
		f _{RF} = 6.0GHz		40		1	
Input IP3 (RF1, RF2 to RFC)	IIP3	f _{RF} = 2.4GHz P _{IN} = +24dBm/tone 100MHz spacing		77		dBm	
Input IP2	IIDO	f_1 = 700MHz f_2 = 1.7GHz P_{IN} = +24dBm/tone Measure 2.4GHz product		125		- dBm	
(RF1, RF2 to RFC)	IIP2	f_1 = 2.4GHz f_2 = 3.5GHz P_{IN} = +24dBm/tone Measure 5.9GHz product		120		UDIII	
Second Harmonic	H2	$f_{IN} = 900MHz, P_{IN} = +35dBm$		-95	-85 [b]	dBc	
(RF1, RF2 to RFC)	П	$f_{IN} = 1.8GHz, P_{IN} = +33dBm$		-86	-76	UBC	
Third Harmonic	Н3	$f_{IN} = 900MHz, P_{IN} = +35dBm$		-90	-75	ID.	
(RF1, RF2 to RFC)	ПЭ	f _{IN} = 1.8GHz, P _{IN} = +33dBm		-89	-74	dBc	
Spurious Output	P _{SPUR1}	f _{OUT} ≥ 5MHz All unused ports terminated		-133		- dBm	
(No RF Applied)	P _{SPUR2}	f _{OUT} < 5MHz All unused ports terminated		-120		UDIII	

- a. Items in min/max columns in **bold italics** are guaranteed by test.
- b. Items in min/max columns that are not bold italics are guaranteed by design characterization.
- c. The input 0.1dB compression point is a linearity figure of merit. Refer to Figure 3 for the maximum RF operating input power levels.

Thermal Characteristics

Table 7. Package Thermal Characteristics

Parameter	Symbol	Value	Units
Junction to Ambient Thermal Resistance	θ_{JA}	102	°C/W
Junction to Case Thermal Resistance (Case is defined as the exposed paddle)	$ heta_{ extsf{JC_BOT}}$	56	°C/W
Moisture Sensitivity Rating (Per J-STD-020)		MSL 1	

Typical Operating Conditions (TOCs)

Unless otherwise noted:

- V_{CC} = +3.3V
- T_{EP} = 25°C
- EN = HIGH
- $Z_S = Z_L = 50\Omega$
- All temperatures are referenced to the exposed paddle
- Evaluation Kit traces and connector losses are de-embedded

Typical Performance Characteristics [1]

Figure 4. RF1 to RFC Insertion Loss

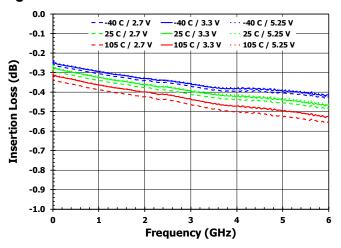


Figure 5. RF2 to RFC Insertion Loss

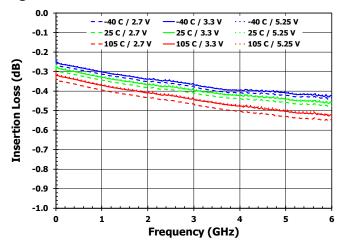


Figure 6. RF1 to RFC Isolation [RF2 On State]

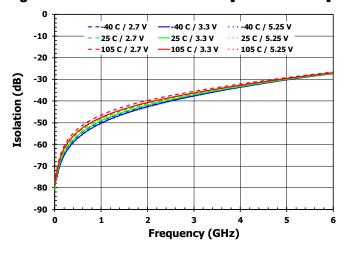


Figure 7. RF2 to RFC Isolation [RF1 On State]

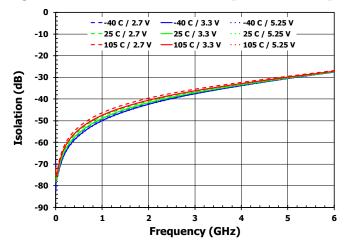


Figure 8. RF1 to RF2 Isolation [RF1 On State]

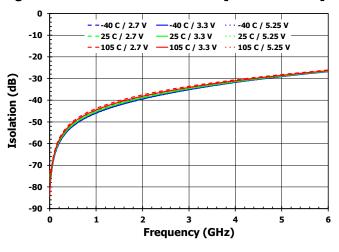
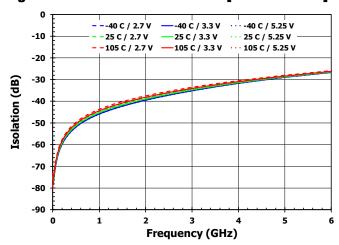



Figure 9. RF2 to RF1 Isolation [RF2 On State]

Typical Performance Characteristics [2]

Figure 10. RFC Return Loss [RF1 On State]

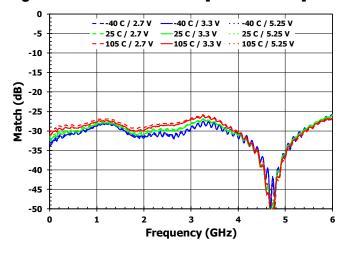


Figure 12. RF1 Return Loss [RF1 On State]

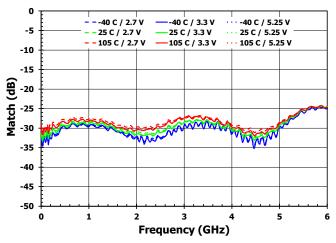


Figure 14. Switching Time [Isolation to Insertion Loss State]

Figure 11. RFC Return Loss [RF2 On State]

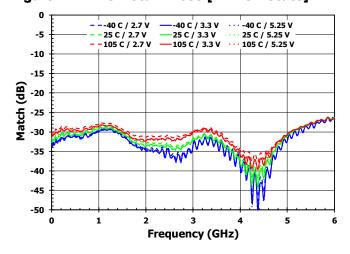


Figure 13. RF2 Return Loss [RF2 On State]

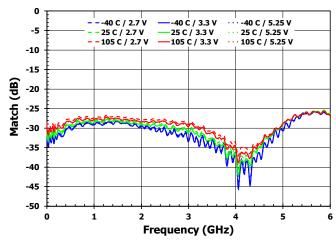
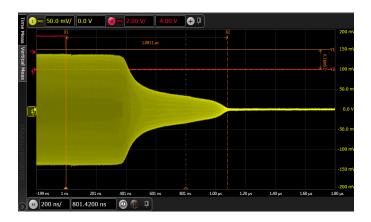



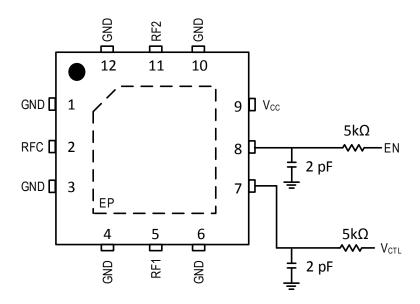
Figure 15. Switching Time [Insertion Loss to Isolation State]

Control Mode

Table 8. Switch Control Truth Table

V _{CTL} (pin 7)	EN (pin 8)	Switch State
LOW	HIGH	RFC to RF1 Insertion Loss State
HIGH	HIGH	RFC to RF2 Insertion Loss State
Don't Care	LOW	Standby

Application Information


Power Supplies

A common V_{CC} power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V / 20 μ s. In addition, all control pins should remain at 0V (+/- 0.3V) while the supply voltage ramps up or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of each control pin is recommended. This applies to control pins 7 and 8 as shown below.

Figure 16. Control Pin Interface Schematic

Evaluation Kit Picture

Figure 17. Top View

Figure 18. Bottom View

Evaluation Kit / Applications Circuit

Figure 19. Electrical Schematic

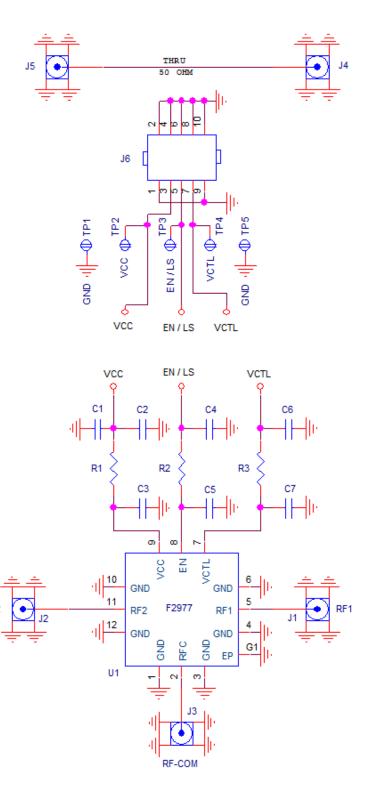


Table 9. Bill of Material (BOM)

Part Reference	QTY	Description	Manufacturer Part #	Manufacturer
C1 – C7	0	Not Installed (0402)		
R1 – R3	3	0Ω 1/10W, Resistor (0402)	ERJ-2GE0R00X	Panasonic
J1 – J5	5	SMA Edge Mount	142-0761-881	Cinch Connectivity
J6	1	Conn Header 10 Pos 0.100" Str 15 Au	68602-210HLF	Amphenol FCI
TP1, TP2, TP3, TP4, TP5	0	Not Installed Test Point Loop		
U1	1	SP2T Switch 2mm x 2mm 12-pin TQFN	F2977NEGK	IDT
	1	Printed Circuit Board	F2972 50Ω PCB	IDT

Evaluation Kit (EVKit) Operation

External Supply Setup

Set up a V_{CC} power supply in the voltage range of +2.7V to +5.25V with the power supply output disabled.

Connect the disabled V_{CC} supply connection to J6 pin 3 and GND to J6 pin 1, 2, 4, 6, 8, 9, or 10.

Logic Control Setup

With the logic control lines disabled, set the HIGH and LOW logic levels to satisfy the levels stated in the electrical specifications table.

Connect the disabled logic control lines to J6 EN / LS (pin 5) and V_{CTL} (pin 7).

See Table 8 for the logic truth table.

Turn On Procedure

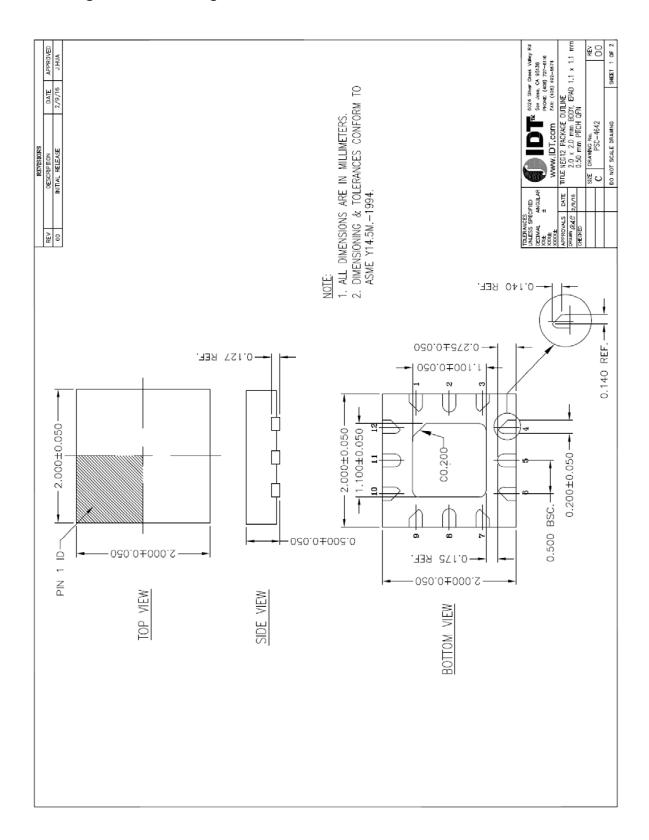
Setup the supplies and EVKit as noted in the External Supply Setup and Logic Control Setup sections above.

Enable the V_{CC} supply.

Enable the logic control signals.

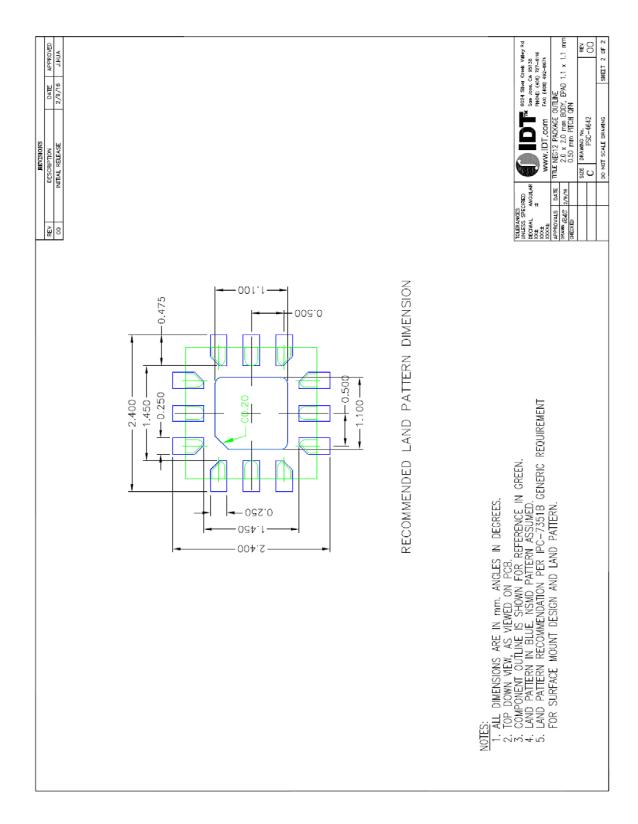
Set the logic setting to achieve the desired Table 8 configuration. Note that external control logic should not be applied without V_{CC} being present.

Turn Off Procedure


Set the logic control pins to a logic LOW.

Disable the V_{CC} supply.

Package Drawings


Figure 20. Package Outline Drawing NEG12 PSC-4642

Recommended Land Pattern

Figure 21. Recommended Land Pattern NEG12 PSC-4642

Marking Diagram

2977 YW** Line 1 - 2977 = Abbreviated part number.

Line 2 - Y = Year code.

Line 2 - W = Work week code.

Line 2 - ** = Sequential alpha for lot traceability.

Ordering Information

Orderable Part Number	Package	MSL Rating	Shipping Packaging	Temperature
F2977NEGK	2mm x 2mm x 0.5mm 12-VFQFP-N	MSL1	Cut Reel	-40°C to +105°C
F2977NEGK8	2mm x 2mm x 0.5mm 12-VFQFP-N	MSL1	Tape and Reel	-40°C to +105°C
F2977EVBI	Evaluation Board			

Revision History

Revision	Revision Date	Description of Change
Rev O	2017-May-19	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below:

MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSX210MA18E6327XTSA1 SKY13446-374LF SW-227-PIN CG2185X2 CG2415M6
MA4SW410B-1 MASW-002102-13580G MASW-008543-001SMB MASW-008955-TR3000 TGS4307 BGS 12PL6 E6327
BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8
SKY13374-397LF SKY13453-385LF CG2415M6-C2 HMC986A-SX SW-314-PIN UPG2162T5N-E2-A SKY13416-485LF
MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588-TR3000 MASW-004103-13655P MASW-00310213590G MASWSS0202TR-3000 MA4SW310B-1 MA4SW110 SW-313-PIN CG2430X1 SKY13321-360LF SKY13405-490LF
SKYA21001 BGSF 18DM20 E6327 SKY13415-485LF MMS008PP3 BGS13PN10E6327XTSA1 SKY13319-374LF
BGS14PN10E6327XTSA1 SKY12213-478LF SKY13404-466LF MASW-011060-TR0500 SKYA21024 SKY85601-11