The HA-5147 operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Intersil D. I. technology and advanced processing techniques, this unique design unites low noise ($3.2 \mathrm{nV} / \sqrt{\mathrm{Hz}})$ precision instrumentation performance with high speed ($35 \mathrm{~V} / \mu \mathrm{s}$) wideband capability.
This amplifier's impressive list of features include low $\mathrm{V}_{\text {OS }}$ $(30 \mathrm{mV})$, wide gain bandwidth $(120 \mathrm{MHz})$, high open loop gain $(1500 \mathrm{~V} / \mathrm{mV})$ and high CMRR (120dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.

Using the HA-5147 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than ten.
This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5147's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers and signal conditioning circuits.

This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37 where gains are greater than ten.

Features

- Slew rate . 35V/ .
- Wide gain bandwidth $\left(A_{V} \geq 10\right) \ldots \ldots$. 120MHz
- Low noise . 3.2nV/ $\sqrt{\mathrm{Hz}}$ at 1 kHz
-Low V_{OS}. 30رV
- High CMRR . 120dB
- High gain. 1500V/mV

Applications

- High speed signal conditioners
- Wide bandwidth instrumentation amplifiers
- Low level transducer amplifiers
- Fast, low level voltage comparators
- Highest quality audio preamplifiers
- Pulse/RF amplifiers
- For further design ideas see application note AN553

Pin Configuration

HA-5147 (CERDIP) TOP VIEW

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
HA7-5147-2	HA7- 5147-2	-55 to +125	8 Ld CerDIP	F8.3A
HA7-5147R5254 (Note 1)	HA7-5147R5254	-55 to +125	8 Ld CerDIP with Pb-free Hot Solder DIP Lead Finish (SnAgCu)	F8.3A

NOTE:

1. Intersil Pb-free hermetic packaged products employ SnAgCu or Au termination finish, which are RoHS compliant termination finishes and compatible with both SnPb and Pb -free soldering operations. Ceramic dual in-line packaged products (CerDIPs) do contain lead (Pb) in the seal glass and die attach glass materials. However, lead in the glass materials of electronic components are currently exempted per the RoHS directive. Therefore, ceramic dual inline packages with Pb-free termination finish are considered to be RoHS compliant.

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Voltage Between V+ and V- Terminals . 44V
Differential Input Voltage (Note 2) . 0.7 V
Output Current Full Short-circuit Protection

Operating Conditions

Temperature Range

HA-5147-2 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)$ CERDIP Package (Note 3) 135
Maximum Junction Temperature (Hermetic Package). $+175^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
2. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\mathrm{v}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{PF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$.

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS						
Offset Voltage		25	-	30	100	$\mu \mathrm{V}$
		Full	-	70	300	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.4	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	15	80	nA
		Full	-	35	150	nA
Offset Current		25	-	12	75	nA
		Full	-	30	135	nA
Common Mode Range		Full	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 4)		25	0.8	4	-	$\mathrm{M} \Omega$
Input Noise Voltage (Note 5)	0.1 Hz to 10 Hz	25	-	0.09	0.25	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Voltage Density (Note 6)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	3.8	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	3.3	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1000 \mathrm{~Hz}$		-	3.2	3.8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 6)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	1.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	1.0	-	pA/ $\sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1000 \mathrm{~Hz}$		-	0.4	0.6	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS						
Minimum Stable Gain		25	10	-	-	V/V
Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	700	1500	-	V / mV
		Full	300	800	-	V / mV
Common Mode Rejection Ratio	$V_{C M}= \pm 10 \mathrm{~V}$	Full	100	120	-	dB
Gain-bandwidth Product	$\mathrm{f}=10 \mathrm{kHz}$	25	120	140	-	MHz
	$\mathrm{f}=1 \mathrm{MHz}$		-	120	-	MHz

Electrical Specifications $\mathrm{v}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{PF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
OUTPUT CHARACTERISTICS						
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	25	± 10.0	± 11.5	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 11.4	± 13.5	-	V
Full Power Bandwidth (Note 7)		25	445	500	-	kHz
Output Resistance	Open Loop	25	-	70	-	Ω
Output Current		25	16.5	25	-	mA
TRANSIENT RESPONSE (Note 8)						
Rise Time		25	-	22	50	ns
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}$	25	28	35	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time	Note 9	25	-	400	-	ns
Overshoot		25	-	20	40	\%
POWER SUPPLY CHARACTERISTICS						
Supply Current		25	-	3.5	-	mA
		Full	-	-	4.0	mA
Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	Full	-	16	51	$\mu \mathrm{V} / \mathrm{V}$

NOTES:
4. This parameter value is based upon design calculations.
5. Refer to Typical Performance section starting on page 6.
6. The limits for this parameter are established based on lab characterization, and reflect lot-to-lot variation.
7. Full power bandwidth established based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
8. Refer to Test Circuits section on page 4 .
8. Refer to Test Circuits section on page 4.
9. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-10$.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

FIGURE 4. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Application Information

NOTE: Tested offset adjustment range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{P}}=10 \mathrm{k} \Omega$.

FIGURE 5. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

NOTE: Low resistances are preferred for low noise applications as a $1 \mathrm{k} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{k} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

FIGURE 6. SUGGESTED STABILITY CIRCUITS
Typical Performance Curves $T_{A}=+25^{\circ}$,, , Suppely $= \pm 15 v$, , uness othemise specfified.

FIGURE 7. TYPICAL OFFSET VOLTAGE vs TEMPERATURE

FIGURE 8. NOISE CHARACTERISTICS

Typical Performance Curves

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, unless otherwise specified. (Continued)

FIGURE 9. NOISE vs SUPPLY VOLTAGE

FIGURE 11. PSRR vs FREQUENCY

FIGURE 13. Avol $_{\text {VOL }}$ AND $V_{\text {OUt }}$ vs LOAD RESISTANCE

FIGURE 10. CMRR vs FREQUENCY

FIGURE 12. OPEN LOOP GAIN AND PHASE vs FREQUENCY

FIGURE 14. NORMALIZED SLEW RATE vs TEMPERATURE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}+25^{\circ}, V_{\text {Supperiv }}=+15 \mathrm{~V}$, unless othemisis spectifed. (Continued)

FIGURE 15. SUPPLY CURRENT vs TEMPERATURE

FIGURE 17. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

FIGURE 16. $\mathrm{V}_{\text {OUT }}$ MAX (UNDISTORTED SINEWAVE OUTPUT) vs FREQUENCY

$A_{C L}=25,000 \mathrm{~V} / \mathrm{V} ; \mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{RTI}$
Horizontal Scale $=1 \mathrm{~s} /$ DIV; Vertical Scale $=0.02 \mu \mathrm{~V} /$ DIV

FIGURE 18. PEAK-TO-PEAK NOISE VOLTAGE (0.1Hz TO 10Hz)

Die Characteristics

DIE DIMENSIONS:

104 mils $\times 65$ mils $\times 19$ mils
$2650 \mu \mathrm{~m} \times 1650 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: 16kÅ $\pm 2 k \AA ̊$

SUBSTRATE POTENTIAL (POWERED UP):

V-

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

TRANSISTOR COUNT:

PROCESS:

Bipolar Dielectric Isolation

Metallization Mask Layout

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
November 6, 2015	FN2910.10	Updated to newest standards and layout. Figure 18 page 8. Changed Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div to: Vertical Scale $=0.02 \mu \mathrm{~V} / \mathrm{DIV}$ Added Revision History and About Intersil sections to page 10

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.

You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support

Ceramic Dual-In-Line Frit Seal Packages (CERDIP)

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
e	0.1				-
eA	0.3	SC		BSC	-
eA/2	0.1	SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
α	90°	105°	90°	105°	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	8		8		8

Rev. 0 4/94
© Copyright Intersil Americas LLC 2003-2015. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB

LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB
LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7715MFE/NOPB
LMP7717MAE/NOPB LMV2011MA/NOPB TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1
TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR TLC272CD AD8539ARMZ LTC6084HDD\#PBF
LT1638CMS8\#TRPBF LTC1050CN8\#PBF LT1112ACN8\#PBF LT1996AIDD\#PBF LT1112CN8\#PBF LTC6087CDD\#PBF
LT1078S8\#PBF LT1079ACN\#PBF

