The HI-201HS is a monolithic CMOS Analog Switch featuring very fast switching speeds and low ON resistance. The integrated circuit consists of four independently selectable SPST switches and is pin compatible with the industry standard HI -201 switch.

Fabricated using silicon-gate technology and the Intersil Dielectric Isolation process, this TTL compatible device offers improved performance over previously available CMOS analog switches. Featuring maximum switching times of 50 ns , low ON resistance of 50Ω maximum, and a wide analog signal range, the $\mathrm{HI}-201 \mathrm{HS}$ is designed for any application where improved switching performance, particularly switching speed, is required. (A more detailed discussion on the design and application of the $\mathrm{HI}-201 \mathrm{HS}$ can be found in Application Note AN543.)

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HI1-0201HS-2	-55 to 125	16 Ld CERDIP	F16.3
HI1-0201HS-4	-25 to 85	16 Ld CERDIP	F16.3
HI1-0201HS-5	0 to 75	16 Ld CERDIP	F16.3
HI3-0201HS-5	0 to 75	16 Ld PDIP	E16.3
HI9P0201HS-5	0 to 75	16 Ld SOIC	M16.3
HI9P0201HS-9	-40 to 85	16 Ld SOIC	M16.3

Features

- Fast Switching Times
- ton 30 ns
- toff . 40 ns
- Low "ON" Resistance . 30Ω
- Pin Compatible with Standard HI-201
- Wide Analog Voltage Range ($\pm 15 \mathrm{~V}$ Supplies) $\pm 15 \mathrm{~V}$
- Low Charge Injection ($\pm 15 \mathrm{~V}$ Supplies) 10pC
- TTL Compatible
- Symmetrical Switching Analog Current Range 80mA

Applications

- High Speed Multiplexing
- High Frequency Analog Switching
- Sample and Hold Circuits
- Digital Filters
- Operational Amplifier Gain Switching Networks
- Integrator Reset Circuits

Pinout (Switches Shown For Logic "1" Input)
HI-201HS (CERDIP, PDIP, SOIC)
TOP VIEW

Functional Diagram

Schematic Diagrams

SWITCH CELL

Schematic Diagrams (Continued)

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings

Supply Voltage (V+ to V-). 36V
Digital Input Voltage . (V+) +4 V to (V-) -4 V
Analog Input Voltage (One Switch) (V+) +2.0 V to (V-) -2.0 V
Peak Current, S or D (Pulse 1ms, 10\% Duty Cycle Max) 50mA
Continuous Current Any Terminal (Except S or D) 25mA

Operating Conditions

Temperature Ranges
HI-201HS-2 . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HI-201HS-4 . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
HI-201HS-5 . $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HI-201HS-9 . $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package.	80	20
PDIP Package	90	N/A
SOIC Package	100	N/A
Maximum Junction Temperature		
Ceramic Package . $1755^{\circ} \mathrm{C}$		
Plastic Package . 150°		
Maximum Storage Temperature.		${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only)		$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	-2			-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
DYNAMIC CHARACTERISTICS									
Switch ON Time, ${ }^{\text {toN }}$	(Note 3)	25	-	30	50	-	30	50	ns
Switch OFF Time, toff1	(Note 3)	25	-	40	50	-	40	50	ns
Switch OFF Time, toff2	(Note 3)	25	-	150	-	-	150	-	ns
Output Settling Time	To 0.1\%	25	-	180	-	-	180	-	ns
Charge Injection, Q	(Note 6)	25	-	10	-	-	10	-	pC
OFF Isolation	(Note 4)	25	-	72	-	-	72	-	dB
Crosstalk	(Note 5)	25	-	86	-	-	86	-	dB
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		25	-	10	-	-	10	-	pF
Output Switch Capacitance		25	-	10	-	-	10	-	pF
		25	-	30	-	-	30	-	pF
Digital Input Capacitance, C_{A}		25	-	18	-	-	18	-	pF
Drain-To-Source Capacitance, $\mathrm{C}_{\text {DS(OFF) }}$		25	-	0.5	-	-	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, V_{AH}		25	2.0	-	-	2.0	-	-	V
		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (Low), I_{AL}		25	-	200	-	-	200	-	$\mu \mathrm{A}$
		Full	-	-	500	-	-	500	$\mu \mathrm{A}$
Input Leakage Current (High), ${ }_{\text {I }}$ AH	$\mathrm{V}_{\mathrm{AH}}=4.0 \mathrm{~V}$	25	-	20	-	-	20	-	$\mu \mathrm{A}$
		Full	-	-	40	-	-	40	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS									
Analog Signal Range, V_{S}		Full	-15	-	+15	-15	-	+15	V
ON Resistance, ron	(Note 2)	25	-	30	50	-	30	50	Ω
		Full	-	-	75	-	-	75	Ω

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	-2			-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
ron Match		25	-	3	-	-	3	-	\%
OFF Input Leakage Current, IS(OFF)		25	-	0.3	10	-	0.3	10	nA
		Full	-	-	100	-	-	50	nA
OFF Output Leakage Current, ${ }^{\text {D (OFF) }}$		25	-	0.3	10	-	0.3	10	nA
		Full	-	-	100	-	-	50	nA
ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$		25	-	0.1	10	-	0.1	10	nA
		Full	-	-	100	-	-	50	nA
POWER SUPPLY CHARACTERISTICS (Note 7)									
Power Dissipation, P_{D}		25	-	120	-	-	120	-	mW
		Full	-	-	240	-	-	240	mW
Current, I+ (Pin 13)		25	-	4.5	-	-	4.5	-	mA
		Full	-	-	10.0	-	-	10.0	mA
Current, I- (Pin 4)		25	-	3.5	-	-	3.5	-	mA
		Full	-	-	6	-	-	6	mA

NOTES:
2. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$, I $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$.
3. $R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=+3 \mathrm{~V}$. (See Figure 1).
4. $\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}$.
5. $\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}_{\mathrm{RMS}}, f=100 \mathrm{kHz}$.
6. $C_{L}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$.
7. $\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{A}}=0$ for all switches.

Test Circuits and Waveforms

FIGURE 1A. MEASUREMENT POINTS

TOP: Logic Input (2V/Div.) BOTTOM: Output (5V/Div.) HORIZONTAL: 100ns/Div.

FIGURE 1B. WAVEFORMS

Test Circuits and Waveforms (Continued)

FIGURE 1C. TEST CIRCUIT
FIGURE 1. SWITCH ton AND $t_{\text {OFF }}$

FIGURE 2A. LOGIC INPUT WAVEFORM

FIGURE 2C. $\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$

FIGURE 2B. $\mathrm{V}_{\mathrm{IN}}=+\mathbf{1 0 V}$

FIGURE 2D. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Test Circuits and Waveforms (Continued)

FIGURE 2. SWITCHING WAVEFORMS FOR VARIOUS ANALOG INPUT VOLTAGES

Application Information

Logic Compatibility

The $\mathrm{HI}-201 \mathrm{HS}$ is TTL compatible. Its logic inputs (pins 1, 8, 9, and 16) are designed to react to digital inputs which exceed a fixed, internally generated TTL switching threshold. The $\mathrm{HI}-201 \mathrm{HS}$ can also be driven with CMOS logic ($0 \mathrm{~V}-15 \mathrm{~V}$), although the switch performance with CMOS logic will be inferior to that with TTL logic (0V-5V).

The logic input design of the HI-201HS is largely responsible for its fast switching speed. It is a design which features a unique input stage consisting of complementary vertical PNP and NPN bipolar transistors. This design differs from that of the standard $\mathrm{HI}-201$ product where the logic inputs are MOS transistors.

Although the new logic design enhances the switching speed performance, it also increases the logic input leakage currents. Therefore, the HI-201HS will exhibit larger digital input leakage currents in comparison to the standard $\mathrm{HI}-201$ product.

Charge Injection

Charge injection is the charge transferred, through the internal gate-to-channel capacitances, from the digital logic input to the analog output. To optimize charge injection performance for the HI-201HS, it is advisable to provide a TTL logic input with fast rise and fall times.

If the power supplies are reduced from $\pm 15 \mathrm{~V}$, charge injection will become increasingly dependent upon the digital input frequency. Increased logic input frequency will result in larger output error due to charge injection.

Power Supply Considerations

The electrical characteristics specified in this data sheet are guaranteed for power supplies $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Power supply voltages less than $\pm 15 \mathrm{~V}$ will result in reduced switch performance. The following information is intended as a design aid only.

POWER SUPPLY VOLTAGES	SWITCH PERFORMANCE
$\pm 12 \leq \mathrm{V}_{\mathrm{S}} \leq \pm 15 \mathrm{~V}$	Minimal Variation
$\mathrm{V}_{\mathrm{S}}< \pm 12 \mathrm{~V}$	Parametric variation becomes increasingly large (increased ON resistance, longer switching times).
$\mathrm{V}_{\mathrm{S}}< \pm 10 \mathrm{~V}$	Not Recommended.
$\mathrm{V}_{\mathrm{S}}> \pm 16 \mathrm{~V}$	Not Recommended.

Single Supply

The switch operation of the HI-201HS is dependent upon an internally generated switching threshold voltage optimized for $\pm 15 \mathrm{~V}$ power supplies. The HI-201HS does not provide the necessary internal switching threshold in a single supply system. Therefore, if single supply operation is required, the $\mathrm{HI}-300$ series of switches is recommended. The $\mathrm{HI}-300$ series will remain operational to a minimum +5 V single supply.

Switch performance will degrade as power supply voltage is reduced from optimum levels ($\pm 15 \mathrm{~V}$). So it is recommended that a single supply design be thoroughly evaluated to ensure that the switch will meet the requirements of the application.

For further information see Application Notes AN520, AN521, AN531, AN532, AN543 and AN557.

Typical Performance Curves

FIGURE 3. ON RESISTANCE vs ANALOG SIGNAL LEVEL

FIGURE 5. $\mathbf{I}_{\mathrm{S}(\mathrm{OFF})}$ OR $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ vs TEMPERATURE \dagger

FIGURE 4. ON RESISTANCE vs ANALOG SIGNAL LEVEL

FIGURE 6. $I_{D(O N)}$ vs TEMPERATURE \dagger
\dagger Theoretically, leakage current will continue to decrease below $25^{\circ} \mathrm{C}$. But due to environmental conditions, leakage measurements below this temperature are not representative of actual switch performance.

FIGURE 7. SUPPLY CURRENT vs TEMPERATURE

FIGURE 8. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 9. DIGITAL INPUT LEAKAGE CURRENT vs TEMPERATURE \dagger

FIGURE 10. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE
\dagger Theoretically, leakage current will continue to decrease below $25^{\circ} \mathrm{C}$. But due to environmental conditions, leakage measurements below this temperature are not representative of actual switch performance.

FIGURE 11. SWITCHING TIME vs TEMPERATURE

FIGURE 13. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE

FIGURE 12. SWITCHING TIME vs SUPPLY VOLTAGE

FIGURE 14. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 15. SWITCHING TIME vs INPUT LOGIC VOLTAGE

FIGURE 17. CHARGE INJECTION vs ANALOG VOLTAGE

FIGURE 19. OFF ISOLATION vs FREQUENCY

FIGURE 16. INPUT SWITCHING THRESHOLD vs SUPPLY VOLTAGE

FIGURE 18. CAPACITANCE vs ANALOG VOLTAGE

FIGURE 20. CROSSTALK vs FREQUENCY

Die Characteristics

DIE DIMENSIONS

$2440 \mu \mathrm{~m} \times 2860 \mu \mathrm{~m} \times 485 \mu \mathrm{~m}$

METALLIZATION

Type: CuAl
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION

Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY
$9.5 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Metallization Mask Layout
HI-201HS

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE + BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLAS3158MNR2G NLASB3157MTR2G TS3A4751PWR NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 DG2502DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 LTC201ACN\#PBF

