+5V Powered RS-232
 Transmitters/Receivers with 0.1Microfarad External Capacitors

The HIN202, HIN206, HIN207, HIN208, HIN211, HIN213 family of RS-232 transmitters/receivers interface circuits meet all EIA RS-232E and V. 28 specifications, and are particularly suited for those applications where $\pm 12 \mathrm{~V}$ is not available. They require a single +5 V power supply and feature onboard charge pump voltage converters which generate +10 V and -10 V supplies from the 5 V supply. The family of devices offers a wide variety of RS-232 transmitter/receiver combinations to accommodate various applications (see Selection Table).

The HIN206, HIN211 and HIN213 feature a low power shutdown mode to conserve energy in battery powered applications. In addition, the HIN213 provides two active receivers in shutdown mode allowing for easy "wakeup" capability.

The drivers feature true TTL/CMOS input compatibility, slew rate-limited output, and 300Ω power-off source impedance. The receivers can handle up to $\pm 30 \mathrm{~V}$ input, and have a $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance. The receivers also feature hysteresis to greatly improve noise rejection.

Applications

- Any System Requiring RS-232 Communications Port
- Computer - Portable, Mainframe, Laptop
- Peripheral - Printers and Terminals
- Instrumentation
- Modems

Features

- Pb-Free Plus Anneal Available (RoHS Compliant) (See Ordering Info)
- Meets All RS-232E and V. 28 Specifications
- Requires Only $0.1 \mu \mathrm{~F}$ or Greater External Capacitors
- High Data Rate. .120kbit/s
- Two Receivers Active in Shutdown Mode (HIN213)
- Requires Only Single +5V Power Supply
- Onboard Voltage Doubler/Inverter
- Low Power Consumption (Typ) 5 mA
- Low Power Shutdown Function (Typ) $1 \mu \mathrm{~A}$
- Three-State TTL/CMOS Receiver Outputs
- Multiple Drivers
- $\pm 10 \mathrm{~V}$ Output Swing for +5 V Input
- 300Ω Power-Off Source Impedance
- Output Current Limiting
- TTL/CMOS Compatible
- 30V/us Maximum Slew Rate
- Multiple Receivers
- $\pm 30 \mathrm{~V}$ Input Voltage Range
- $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ Input Impedance
- 0.5V Hysteresis to Improve Noise Rejection

Selection Table

PART NUMBER	POWER SUPPLY VOLTAGE	NUMBER OF RS-232 DRIVERS	NUMBER OF RS-232 RECEIVERS	NUMBER OF $0.1 \mu \mathrm{~F}$ EXTERNAL CAPACITORS	LOW POWER SHUTDOWN/TTL THREE-STATE	NUMBER OF RECEIVERS ACTIVE IN SHUTDOWN
HIN202	+5V	2	2	4 Capacitors	No/No	0
HIN206	+5V	4	3	4 Capacitors	Yes/Yes	0
HIN207	$+5 \mathrm{~V}$	5	3	4 Capacitors	No/No	0
HIN208	$+5 \mathrm{~V}$	4	4	4 Capacitors	No/No	0
HIN211	$+5 \mathrm{~V}$	4	5	4 Capacitors	Yes/Yes	0
HIN213	$+5 \mathrm{~V}$	4	5	4 Capacitors	Yes/Yes	2

Ordering Information

PART NO.	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
HIN202CB	0 to 70	16 Ld SOIC (W)	M16.3
HIN202CB-T	0 to 70	16 Ld SOIC (W) Tape and Reel	M16.3
HIN202CBZ (See Note)	0 to 70	$\begin{aligned} & 16 \text { Ld SOIC (W) } \\ & \text { (Pb-free) } \end{aligned}$	M16.3
HIN202CBZ-T (See Note)	0 to 70	16 Ld SOIC (W) Tape and Reel (Pb-free)	M16.3
HIN202CBN	0 to 70	16 Ld SOIC (N)	M16.15
HIN202CBN-T	0 to 70	16 Ld SOIC (N) Tape and Reel	M16.15
HIN202CBNZ (See Note)	0 to 70	16 Ld SOIC (N) (Pb-free)	M16.15
HIN202CBNZ-T (See Note)	0 to 70	16 Ld SOIC (N) Tape and Reel (Pb-free)	M16.15
HIN202CP	0 to 70	16 Ld PDIP	E16.3
HIN202IB	-40 to 85	16 Ld SOIC (W)	M16.3
HIN202IBZ (See Note)	-40 to 85	$\begin{aligned} & 16 \text { Ld SOIC (W) } \\ & \text { (Pb-free) } \end{aligned}$	M16.3
HIN202IBN	-40 to 85	16 Ld SOIC (N)	M16.15
HIN202IBN-T	-40 to 85	16 Ld SOIC (N) Tape and Reel	M16.15
HIN202IBNZ (See Note)	-40 to 85	16 Ld SOIC (N) (Pb-free)	M16.15
HIN202IBNZ-T (See Note)	-40 to 85	16 Ld SOIC (N) Tape and Reel (Pb-free)	M16.15
HIN206CB	0 to 70	24 Ld SOIC	M24.3
HIN207CA	0 to 70	24 Ld SSOP	M24.209
HIN207CAZ (See Note)	0 to 70	24 Ld SSOP (Pb-free)	M24.209
HIN207CAZ-T (See Note)	0 to 70	24 Ld SSOP Tape and Reel (Pb-free)	M24.209
HIN207CB	0 to 70	24 Ld SOIC	M24.3
HIN207CB-T	0 to 70	24 Ld SOIC Tape and Reel	M24.3

Ordering Information (Continued)

PART NO.	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
HIN208CB	0 to 70	24 Ld SOIC	M24.3
HIN208CB-T	0 to 70	24 Ld SOIC Tape and Reel	M24.3
HIN208CBZ (See Note)	0 to 70	24 Ld SOIC (Pb-free)	M24.3
HIN208CBZ-T (See Note)	0 to 70	24 Ld SOIC Tape and Reel (Pb-free)	M24.3
HIN211CA	0 to 70	28 Ld SSOP	M28.209
HIN211CA-T	0 to 70	28 Ld SSOP Tape and Reel	M28.209
HIN211CAZ (See Note)	0 to 70	$\begin{aligned} & 28 \text { Ld SSOP } \\ & \text { (Pb-free) } \end{aligned}$	M28.209
HIN211CAZ-T (See Note)	0 to 70	28 Ld SSOP Tape and Reel (Pb-free)	M28.209
HIN211CB	0 to 70	28 Ld SOIC	M28.3
HIN211CB-T	0 to 70	28 Ld SOIC Tape and Reel	M28.3
HIN211CBZ (See Note)	0 to 70	$\begin{aligned} & 28 \text { Ld SOIC } \\ & \text { (Pb-free) } \end{aligned}$	M28.3
HIN211CBZ-T (See Note)	0 to 70	28 Ld SOIC Tape and Reel (Pb-free)	M28.3
HIN213CA	0 to 70	28 Ld SSOP	M28.209
HIN213CA-T	0 to 70	28 Ld SSOP Tape and Reel	M28.209
HIN213CAZ (See Note)	0 to 70	$\begin{aligned} & 28 \text { Ld SSOP } \\ & \text { (Pb-free) } \end{aligned}$	M28.209
HIN213CAZ-T (See Note)	0 to 70	28 Ld SSOP Tape and Reel (Pb-free)	M28.209

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Pin Descriptions

PIN	FUNCTION
V_{CC}	Power Supply Input 5V $\pm 10 \%$, ($5 \mathrm{~V} \pm 5 \%$ HIN207).
V+	Internally generated positive supply (+10V nominal).
V -	Internally generated negative supply (-10V nominal).
GND	Ground Lead. Connect to OV.
C1+	External capacitor (+ terminal) is connected to this lead.
C1-	External capacitor (- terminal) is connected to this lead.
C2+	External capacitor (+ terminal) is connected to this lead.
C2-	External capacitor (- terminal) is connected to this lead.
TIN	Transmitter Inputs. These leads accept TTL/CMOS levels. An internal $400 \mathrm{k} \Omega$ pull-up resistor to V_{CC} is connected to each lead.
TOUT	Transmitter Outputs. These are RS-232 levels (nominally $\pm 10 \mathrm{~V}$).
R_{IN}	Receiver Inputs. These inputs accept RS-232 input levels. An internal $5 \mathrm{k} \Omega$ pull-down resistor to GND is connected to each input.
ROUT	Receiver Outputs. These are TTL/CMOS levels.
$\overline{\mathrm{EN}}$, EN	Receiver enable Input. With $\overline{\mathrm{EN}}=5 \mathrm{~V}(\mathrm{HIN} 213 \mathrm{EN}=0 \mathrm{~V})$, the receiver outputs are placed in a high impedance state.
SD, $\overline{\mathrm{SD}}$	Shutdown Input. With $\mathrm{SD}=5 \mathrm{~V}(\mathrm{HIN} 213 \overline{\mathrm{SD}}=0 \mathrm{~V})$, the charge pump is disabled, the receiver outputs are in a high impedance state (except R4 and R5 of HIN213) and the transmitters are shut off.
NC	No Connect. No connections are made to these leads.

Pinouts

HIN206 (SOIC)
TOP VIEW

Pinouts (Continued) HIN207 (SOIC, SSOP) TOP VIEW

HIN208 (SOIC)
TOP VIEW

T2OUT 1	24 T3OUT
T1out 2	23 R3 ${ }^{\text {N }}$
R2IN 3	$22 \mathrm{R3}$ Out
R2out 4	$21{ }^{14}$
T1 1 IN 5	20 T4OUT
R1out 6	$19 \mathrm{T3}$
R1in 7	$18{ }^{\text {T }}$
GND 8	17 R4out
$\mathrm{V}_{\mathrm{cc}} 9$	$16 \mathrm{R} \mathrm{IN}^{1}$
C1+ 10	15 v
V+ 11	$14.82-$
C1- 12	13 C2+

Pinouts (Continued)

HIN211 (SOIC, SSOP)TOP VIEW	
T3out 1	${ }^{28}$ T40ut
T10ut 2	${ }^{27} \mathrm{R}_{3} \mathrm{~N}$
T2out ${ }^{3}$	26 R 3 Out
R210 4	25 SD
$\mathrm{R}^{\text {OUT }} 5$	${ }^{24} \mathrm{EN}$
T210 6	${ }^{23} \mathrm{R4} 4^{\mathrm{N}}$
$\mathrm{T}_{1 / \mathrm{IN}} 7$	22 R4out
R1out 8	${ }^{21} \mathrm{~T}_{4} \mathrm{~N}$
$8 \mathrm{R1M}_{1 / 9}$	20.131 N
GND 10	$19 \mathrm{R5}$ out
$\mathrm{v}_{\mathrm{cc}} 11$	$18 \mathrm{R5} \mathrm{~N}^{1}$
C1+ 12	17 v -
v+ 13	$16 \mathrm{C2}$
C1- 14	15 C2+

HIN213 (SSOP)
TOP VIEW

NOTE: R4 and R5 active in shutdown.

Absolute Maximum Ratings	
$V_{\text {CC }}$ to Ground.	(GND -0.3V) < $\mathrm{V}_{\text {CC }}<6 \mathrm{~V}$
V + to Ground	. $\left(V_{C C}-0.3 V\right)<V_{+}<12 \mathrm{~V}$
V- to Ground.	$-12 \mathrm{~V}<\mathrm{V}-<(\mathrm{GND}+0.3 \mathrm{~V})$
Input Voltages	
TIN	$-0.3 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<(\mathrm{V}++0.3 \mathrm{~V})$
RIN	$\pm 30 \mathrm{~V}$
Output Voltages	
Tout	. $\left.\mathrm{V}-\mathrm{-}^{-0.3 \mathrm{~V}}\right)<\mathrm{V}_{\text {TXOUT }}<(\mathrm{V}++0.3 \mathrm{~V})$
Rout	(GND -0.3V) < $\mathrm{V}_{\text {RXOUT }}<(\mathrm{V}++0.3 \mathrm{~V})$
Short Circuit Duration	
Tout	Continuous
ROUT	Continuous
ESD Classification. Class 1

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
16 Ld PDIP Package 90
16 Ld SOIC (N) Package 110
16 Ld SOIC (W) Package. 100
24 Ld SOIC Package 75
24 Ld SSOP Package 135
28 Ld SOIC Package 70
28 Ld SSOP Package 100
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$Maximum Storage Temperature Range. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$(SOIC and SSOP - Lead Tips Only)

Operating Conditions

Temperature Range
\qquad
HIN2XXIX . $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%,\left(\mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{HIN} 207\right)$; C1-C4 $=0.1 \mu \mathrm{~F}$;
 $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
SUPPLY CURRENTS						
Power Supply Current, ICC	No Load,$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	HIN202	-	8	15	mA
		HIN206, HIN207, HIN208, HIN211, HIN213	-	11	20	mA
Shutdown Supply Current, ICC(SD)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	HIN206, HIN211	-	1	10	$\mu \mathrm{A}$
		HIN213	-	15	50	$\mu \mathrm{A}$
LOGIC AND TRANSMITTER INPUTS, RECEIVER OUTPUTS						
Input Logic Low, $\mathrm{V}_{\text {IL }}$	$\mathrm{T}_{\text {IN }}, \overline{\mathrm{EN}}, \mathrm{SD}, \mathrm{EN}, \overline{\mathrm{SD}}$		-	-	0.8	V
Input Logic High, V_{IH}	$\mathrm{T}_{\text {IN }}$		2.0	-	-	V
	$\overline{\mathrm{EN}}, \mathrm{SD}, \mathrm{EN}, \overline{\text { SD }}$		2.4	-	-	V
Transmitter Input Pullup Current, IP	$\mathrm{T}_{\text {IN }}=0 \mathrm{~V}$		-	15	200	$\mu \mathrm{A}$
TTL/CMOS Receiver Output Voltage Low, $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{I} \text { OUT }=1.6 \mathrm{~mA} \\ & \text { (HIN202, } \mathrm{I} \text { OUT }=3.2 \mathrm{~mA} \text {) } \end{aligned}$		-	0.1	0.4	V
TTL/CMOS Receiver Output Voltage High, V_{OH}	IOUT $=-1 \mathrm{~mA}$		3.5	4.6	-	V
TTL/CMOS Receiver Output Leakage	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{EN}=0,0 \mathrm{~V}<\mathrm{R}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$		-	0.05	± 10	$\mu \mathrm{A}$
RECEIVER INPUTS						
RS-232 Input Voltage Range, V_{IN}			-30	-	+30	V
Receiver Input Impedance, RIN	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,	$\pm 3 \mathrm{~V}$	3.0	5.0	7.0	$\mathrm{k} \Omega$
Receiver Input Low Threshold, $\mathrm{V}_{\text {IN }}$ (H-L)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Active Mode	0.8	1.2	-	V
		Shutdown Mode HIN213 R4 and R5	0.6	1.5	-	V
Receiver Input High Threshold, $\mathrm{V}_{\text {IN }}(\mathrm{L}-\mathrm{H})$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	Active Mode	-	1.7	2.4	V
		Shutdown Mode HIN213 R4 and R5	-	1.5	2.4	V
Receiver Input Hysteresis, $\mathrm{V}_{\text {HYST }}$	$V_{C C}=5 \mathrm{~V}$ No Hysteresis in Shutdown Mode		0.2	0.5	1.0	V

Electrical Specifications	Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%,\left(\mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{HIN} 207\right)$; $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$; $\mathrm{T}_{\mathrm{A}}=$ Operating Temperature Range (Continued)					
PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS						
Baud Rate	1 Transmitter Switching	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$	120	-	-	kbps
Output Enable Time, teN	HIN206, HIN211, HIN213		-	400	-	ns
Output Disable Time, t DIS	HIN206, HIN211, HIN213		-	200	-	ns
Transmitter, Receiver Propagation Delay, tPD	HIN213 $\overline{\text { SD }}=0 \mathrm{~V}, \mathrm{R} 4, \mathrm{R} 5$		-	0.5	40	$\mu \mathrm{s}$
	HIN213 $\overline{\text { SD }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{R} 1-\mathrm{R} 5$		-	0.5	10	$\mu \mathrm{S}$
	HIN202, HIN206, HIN207, HIN208, HIN211		-	0.5	10	$\mu \mathrm{S}$
Transition Region Slew Rate, $\mathrm{SR}_{\boldsymbol{T}}$	$R_{L}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF}$ Measured from +3 V to -3 V or -3 V to +3 V , 1 Transmitter Switching (Note 2)		3	-	30	$\mathrm{V} / \mathrm{\mu s}$
TRANSMITTER OUTPUTS						
Output Voltage Swing, TOUT	Transmitter Outputs, $3 \mathrm{k} \Omega$ to Ground		± 5	± 9	± 10	V
Output Resistance, TOUT	$\mathrm{V}_{\text {CC }}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$		300	-	-	Ω
RS-232 Output Short Circuit Current, ISC	TOUT Shorted to GND		-	± 10	-	mA

NOTE:
2. Guaranteed by design.

FIGURE 1. CHARGE PUMP

Detailed Description

The HIN202, HIN206, HIN207, HIN208, HIN211, HIN213 family of RS-232 transmitters/receivers are powered by a single +5 V power supply feature low power consumption, and meet all EIA RS232C and V. 28 specifications. The circuit is divided into three sections: The charge pump, transmitter, and receiver.

Charge Pump

An equivalent circuit of the charge pump is illustrated in Figure 1. The charge pump contains two sections: the voltage doubler and the voltage inverter. Each section is driven by a two phase, internally generated clock to generate +10 V and -10 V . The nominal clock frequency is 125 kHz . During phase one of the clock, capacitor C 1 is charged to V_{CC}. During phase two, the voltage on C 1 is added to V_{CC}, producing a signal across C 3 equal to twice V_{CC}. During phase two, C 2 is also charged to $2 \mathrm{~V}_{\mathrm{CC}}$, and then during phase one, it is inverted with respect to ground to produce a signal across C 4 equal to $-2 \mathrm{~V}_{\mathrm{CC}}$. The charge pump accepts input voltages up to 5.5 V . The output impedance of the voltage doubler section (V_{+}) is approximately 200Ω, and the output impedance of the voltage inverter section (V-) is approximately 450Ω. A typical application uses $0.1 \mu \mathrm{~F}$ capacitors for $\mathrm{C} 1-\mathrm{C} 4$, however, the value is not critical. Increasing the values of C1 and C2 will lower the output impedance of the voltage doubler and inverter, increasing the values of the reservoir capacitors, C3 and C4, lowers the ripple on the $\mathrm{V}+$ and V - supplies.

During shutdown mode (HIN206 and HIN211, SD $=\mathrm{V}_{\mathrm{CC}}$, HIN213, SD $=0 \mathrm{~V}$) the charge pump is turned off, $\mathrm{V}+$ is pulled down to V_{CC}, V - is pulled up to GND, and the supply current is reduced to less than $10 \mu \mathrm{~A}$. The transmitter outputs are disabled and the receiver outputs (except for HIN213, R4 and R5) are placed in the high impedance state.

Transmitters

The transmitters are TTL/CMOS compatible inverters which translate the inputs to RS-232 outputs. The input logic threshold is about 26% of V_{CC}, or 1.3 V for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. A logic 1 at the input results in a voltage of between -5 V and V - at the output, and a logic 0 results in a voltage between +5 V and ($\mathrm{V}+-0.6 \mathrm{~V}$). Each transmitter input has an internal $400 \mathrm{k} \Omega$ pullup resistor so any unused input can be left unconnected and its output remains in its low state. The output voltage swing meets the RS-232C specifications of $\pm 5 \mathrm{~V}$ minimum with the worst case conditions of: all transmitters driving $3 \mathrm{k} \Omega$ minimum load impedance, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, and maximum allowable operating temperature. The transmitters have an internally limited output slew rate which is less than $30 \mathrm{~V} / \mu \mathrm{s}$. The outputs are short circuit protected and can be shorted to ground indefinitely. The powered down output impedance is a minimum of 300Ω with $\pm 2 \mathrm{~V}$ applied to the outputs and $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$.

Receivers

The receiver inputs accept up to $\pm 30 \mathrm{~V}$ while presenting the required $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance even if the power is off $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$. The receivers have a typical input threshold of 1.3 V which is within the $\pm 3 \mathrm{~V}$ limits, known as the transition region, of the RS-232 specifications. The receiver output is OV to V_{CC}. The output will be low whenever the input is greater than 2.4 V and high whenever the input is floating or driven between +0.8 V and -30 V . The receivers feature 0.5 V hysteresis (except during shutdown) to improve noise rejection. The receiver Enable line ($\overline{\mathrm{EN}}$ on HIN206 and HIN211, EN on HIN213) when unasserted, disables the receiver outputs, placing them in the high impedance mode. The receiver outputs are also placed in the high impedance state when in shutdown mode (except HIN213 R4 and R5).

FIGURE 2. TRANSMITTER

FIGURE 3. RECEIVER

AVERAGE PROPAGATION DELAY $=\frac{t_{\text {PHL }}+t_{\text {PLH }}}{2}$
FIGURE 4. PROPAGATION DELAY DEFINITION

HIN213 Operation in Shutdown

The HIN213 features two receivers, R4 and R5, which remain active in shutdown mode. During normal operation the receivers propagation delay is typically $0.5 \mu \mathrm{~s}$. This propagation delay may increase slightly during shutdown. When entering shut down mode, receivers R4 and R5 are not valid for $80 \mu \mathrm{~s}$ after $\overline{\mathrm{SD}}=\mathrm{V}_{\mathrm{IL}}$. When exiting shutdown mode, all receiver outputs will be invalid until the charge pump circuitry reaches normal operating voltage. This is typically less than 2 ms when using $0.1 \mu \mathrm{~F}$ capacitors.

Typical Performance Curves

FIGURE 5. V - SUPPLY VOLTAGE vs V_{CC}

Test Circuits (HIN202)

FIGURE 7. GENERAL TEST CIRCUIT

Application Information

The HIN2XX may be used for all RS-232 data terminal and communication links. It is particularly useful in applications where $\pm 12 \mathrm{~V}$ power supplies are not available for conventional RS-232 interface circuits. The applications presented represent typical interface configurations.

A simple duplex RS-232 port with CTS/RTS handshaking is illustrated in Figure 9. Fixed output signals such as DTR (data terminal ready) and DSRS (data signaling rate select) is generated by driving them through a 5 kW resistor connected to $\mathrm{V}+$.

FIGURE 6. V+, V- OUTPUT VOLTAGE vs LOAD

FIGURE 8. POWER-OFF SOURCE RESISTANCE CONFIGURATION

In applications requiring four RS-232 inputs and outputs (Figure 10), note that each circuit requires two charge pump capacitors (C1 and C2) but can share common reservoir capacitors (C3 and C4). The benefit of sharing common reservoir capacitors is the elimination of two capacitors and the reduction of the charge pump source impedance which effectively increases the output swing of the transmitters.

FIGURE 9. SIMPLE DUPLEX RS-232 PORT WITH CTS/RTS HANDSHAKING

FIGURE 10. COMBINING TWO HIN202s FOR 4 PAIRS OF RS-232 INPUTS AND OUTPUTS

Die Characteristics

DIE DIMENSIONS:
160 mils $\times 140$ mils
METALLIZATION:
Type: AI
Thickness: $10 k \AA \pm 1 k \AA$ SUBSTRATE POTENTIAL

V+

PASSIVATION:

Type: Nitride over Silox Nitride Thickness: 8kA Silox Thickness: 7kA

TRANSISTOR COUNT:

238
PROCESS:
CMOS Metal Gate

Metallization Mask Layout

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and $\widehat{\mathrm{e}_{\mathrm{A}}}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ($0.76-1.14 \mathrm{~mm}$).

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS							
	MIN	MAX	MIN	MAX						
A	0.0532	0.0688	1.35	1.75	-					
A1	0.0040	0.0098	0.10	0.25	-					
B	0.013	0.020	0.33	0.51	9					
C	0.0075	0.0098	0.19	0.25	-					
D	0.3859	0.3937	9.80	10.00	3					
E	0.1497	0.1574	3.80	4.00	4					
e	0.050 BSC		1.27		BSC					
H	0.2284	0.2440	5.80	6.20	-					
h	0.0099	0.0196	0.25	0.50	5					
L	0.016	0.050	0.40	1.27	6					
N	16							16		7
α	0°	8°	0°	8°	-					

Rev. 1 6/05

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of $0.61 \mathrm{~mm}(0.024$ inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.3 (JEDEC MS-013-AA ISSUE C) 16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.0200	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.3977	0.4133	10.10	10.50	3
E	0.2914	0.2992	7.40	7.60	4
e	0.050		BSC	1.27	
BSC	-				
H	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	16			16	
α	0°	8°	0°	8°	-

Rev. 1 6/05

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width "B", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M24.3 (JEDEC MS-013-AD ISSUE C) 24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.020	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.5985	0.6141	15.20	15.60	3
E	0.2914	0.2992	7.40	7.60	4
e	0.05 BSC		1.27 BSC		-
H	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	24			24	
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 0 12/93

Shrink Small Outline Plastic Packages (SSOP)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20 mm (0.0078 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.20 mm (0.0078 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.13 mm (0.005 inch) total in excess of " B " dimension at maximum material condition.
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M24.209 (JEDEC MO-150-AG ISSUE B)
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	-	0.078	-	2.00	-
A1	0.002	-	0.05	-	-
A2	0.065	0.072	1.65	1.85	-
B	0.009	0.014	0.22	0.38	9
C	0.004	0.009	0.09	0.25	-
D	0.312	0.334	7.90	8.50	3
E	0.197	0.220	5.00	5.60	4
e	0.026		BSC	0.65	
BSC	-				
H	0.292	0.322	7.40	8.20	-
L	0.022	0.037	0.55	0.95	6
N	24		24		7
α	0^{0}	8^{0}	0^{0}	8^{0}	-

Rev. 1 3/95

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.25 \mathrm{~mm}(0.010$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M28.3 (JEDEC MS-013-AE ISSUE C) 28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.0200	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.6969	0.7125	17.70	18.10	3
E	0.2914	0.2992	7.40	7.60	4
e	0.05 BSC		1.27 BSC		-
H	0.394	0.419	10.00	10.65	-
h	0.01	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	28		28		7
α	0°	8°	0°	8°	-

Shrink Small Outline Plastic Packages (SSOP)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20 mm (0.0078 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.20 \mathrm{~mm}(0.0078$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "B" does not include dambar protrusion. Allowable dambar protrusion shall be 0.13 mm (0.005 inch) total in excess of " B " dimension at maximum material condition.
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M28.209 (JEDEC MO-150-AH ISSUE B) 28 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS				
	MIN	MAX	MIN	MAX			
A	-	0.078	-	2.00	-		
A1	0.002	-	0.05	-	-		
A2	0.065	0.072	1.65	1.85	-		
B	0.009	0.014	0.22	0.38	9		
C	0.004	0.009	0.09	0.25	-		
D	0.390	0.413	9.90	10.50	3		
E	0.197	0.220	5.00	5.60	4		
e	0.026		BSC	0.65			
BSC	-						
H	0.292	0.322	7.40	8.20	-		
L	0.022	0.037	0.55	0.95	6		
N	28			28			7
α	0°	8°	0°	8°	-		

Rev. 2 6/05

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-232 Interface IC category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
062191EB CH438L LT1039CN LTC1327CNW LTC1327CSW MAX3386ECPWR TRS222IDWR MAX232INE4 MAX3232CPW MAX204CWE + TRS3243EIDWR TRS3232EIDWR TRS3222ECPWR SN65C3232EDWR ADM208ARZ-REEL LT1780CSW\#PBF LT1237CSW\#PBF LT1281AISW\#PBF LTC1337CSW\#PBF LT1180ACN\#PBF LT1237CNW\#PBF LT1039CN\#PBF LT1032CSW\#PBF LT1130ACSW\#PBF LT1032ISW\#PBF LTM2882IY-3\#PBF LT1140ACN\#PBF LTC1384IG\#PBF ADM211EARUZ-REEL7 LTC1383CS\#PBF LT1280AIN\#PBF LT1080ISW\#PBF LTC2845IG\#PBF LTC1383CN\#PBF LTC2845CG\#PBF LTC2846CG\#PBF LTC1384CG\#PBF LT1781IS\#PBF LT1081IN\#PBF LT1131ACNW LT1131ACSW SN75188DE4 LTC1350CNW MAX3209EEUU+T AD7306AR AD7306ARZ AD7306JNZ AD7306JRZ ADM3311EARSZ-REEL ADM3310EACPZ-REEL7

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

