Introduction

The HIP2103_4MBEVAL1Z is an evaluation tool for the HIP2103 and HIP2104 half bridge MOSFET drivers. This tool consists of a mother board and HIP2103DBEVAL1Z and HIP2104DBEVAL1Z evaluation daughter cards. The mother board platform provides an on-board microcontroller that is used to generate appropriate control inputs to the HIP2103 or HIP2104. The frequency, the PWM duty cycle, and the dead-time provided by the microcontroller are user adjustable.

For customers who desire to provide their own external signals, the on-board controller can be configured to allow the daughter cards to be controlled by externally provided inputs.

The daughter cards can also be used as stand-alone units mounted on a customer designed main board that incorporates customer selected bridge FETs and any other external circuits desired. The daughter cards have optional circuits so that the HIP2103 or HIP2104 can be configured as required by the customer's application.

Specifications

Bridge Bias Voltage $\left(\mathrm{V}_{\mathrm{BAT}}\right)$	5 V minimum, 50V maximum operating including transients
External Bias for Microcontroller	$3.3 \mathrm{~V}-5.0 \mathrm{~V}, \sim 30 \mathrm{~mA}$
Maximum Bridge Current	20 A
PWM Switching Frequency	5 kHz to 40 kHz in 5 kHz increments
PWM Duty Cycle	adjustable from 0% to $\sim 98 \%$
Dead-time	$0.0 \mu \mathrm{~s}$ to $2.8 \mu \mathrm{~s}$ in 400 ns increments
Large Terminal Blocks	15 A each connection
Small Terminal Blocks	6 A each connection

Scope

This application note covers the use of the HIP2103_4 mother board and the HIP2103_4 daughter cards. Details for setting up and using the microcontroller are covered. Assembly options on the motherboard are also reviewed. Sample waveforms are also provided.

The microcontroller firmware is provided on request but the only support offered by Intersil will be for bug corrections. Please refer to Microchip for details on the use of the PIC18F2431.

Physical Layout

The HIP2103_4MBEVAL1Z board is 84 mm by 94 mm . The tallest component is the RJ 25 connector. The total height is 38mm. Multiple inputs have miniature terminal blocks and the high current battery inputs and load outputs have larger terminal blocks rated for 15A each connection. Three push-buttons are used for RESET, START/STOP, and SLEEP functions. An on-board potentiometer is used to adjust the duty cycle.

The 6 position DIP switch is used to setup the PWM switching frequency (positions 1, 2, and 3) and the dead-time (positions 4,5 , and 6). One specific combination of DIP switch settings (all positions set to on) disables the signals from the microcontroller and enables all of the external inputs.

For those customers who would like to modify the firmware of the PIC18F2431 microcontroller, an RJ25 connector is provided for easy connection with Microchip firmware development tools (not provided or supported by Intersil).

FIGURE 1. HIP2103_4MBEVAL1Z, FRONT AND BACK VIEWS

Block Diagram

FIGURE 2. HIP2103_4MBEVAL1Z, BLOCK DIAGRAM
The HIP2103_4 evaluation board is a fully self contained test platform to evaluation the HIP2103 or the HIP2104 which are provided on daughter cards.

Evaluation Board Application

The HIP2103_4MBEVAL1Z mother board and associated daughter cards are the same test boards as used by the Intersil application engineers and I.C. designers to evaluate the performance of the HIP2103 and HIP2104 MOSFET drivers.

Bias Supplies

The HIP2103_4MBEVAL1Z mother board requires a current limited lab supply (0 V to 50 V) for the VBAT and GND inputs on TB1. The current capacity is dependant on the users desired load if any.

An external 3.3 V to 5 V bias supply ($\sim 25 \mathrm{~mA}$) is required for the microcontroller and associated circuits. Alternatively, the VCC output of the HIP2104 daughter card can be used to provide the 3.3V bias for the microcontroller as intended in a real
application. The jumper strap option, $\mathbf{J} 2$, is used to select the appropriate bias source labeled VCC from the HIP2104 or 5V from an external bias connected to 5 V and GND on TB8.

The 12V bias for the HIP2103 daughter card must be supplied by an external source connected to VDD and GND of TB6.

An external 12V bias is not required for the HIP2104 daughter card because VDD is provided internally by the HIP2104 driver.

MicroController and Associated Circuits

The PWM frequency and the dead-time options of the microcontroller are configured by the SW5 DIP switch. Refer to the chart on the mother board schematic (page 9) for the DIP switch settings or to Table 1. The DIP switch settings are read only once after the Start/Stop button is pressed to start the PWM. Any changes to the frequency or dead-time settings are not recognized until the PWM is stopped then re-started.
Turning the potentiometer, R1, fully counter clockwise (CCW) reduces the duty cycle of the output of the bridge to a minimum. Turning fully clockwise results with a maximum duty cycle. The duty cycle is proportional to the tap voltage of the potentiometer independent of the PWM frequency. The dead-time subtracts from the duty cycle period on the leading edge of the HI and LI inputs to the daughter cards altering the actual duty cycle.
To emulate controllers that may to be used by customers that do not have the ability to generate dead-time, the dead-time of the microcontroller can be set to zero. On the daughter cards, an optional RCD circuit is provided for the LI and HI inputs of the HIP2103, HIP2104 to generate dead-time.
Be cautious if the zero dead-time option is selected when the HIP2103, HIP2104 daughter cards are not configured for delays with the RCD circuit as this will result with shoot-thru currents in the bridge.
Four LEDs are used to indicate the operating status of the microcontroller. Refer to the Setup and Operating Instructions section for complete details.

Half Bridge

The bridge is composed of two (SiR662DP) 60A, 60V, MOSFETs. Each FET has an optional gate to source and drain to gate capacitors to allow the emulation of FETs with larger capacitances if desired. An optional series gate resistor is also provided for each bridge FET that can also be used the emulate the internal gate resistance. The current rating of these SiR662DP MOSFETs was chosen primarily to eliminate the need of a heat sink when operating with heavy current loads. The maximum output load current is constrained by the current rating of the VBAT (TB1) and the Vout (TB7) terminal blocks. If a load current higher than 15A is desired, it is recommended that the battery and load wires are soldered directly to the solder pads of the TB1 and TB2 terminal blocks on the bottom of the PCB.
The bridge bias source is connected to the GND_VBAT terminal block (TB1). The voltage source can be either a current limited power supply (recommended for initial setup) or a battery (a fuse is highly recommended).
An external load can be connected to the GND_VOUT (TB7) terminal block. The load can be of any configuration (for example
a DC motor or an LCR load) as desired by the user within the constraints of the bridge FETs and the terminal blocks.

Even though the FETs have a voltage rating of 60 V , the maximum operating voltage is limited to 50 V by the rating of the HS and VBAT pins on the HIP2103, HIP2104 drivers.

Daughter Cards

Two different daughter cards are provided for evaluation. These cards are mounted on the back side of the mother board to facilitate temperature testing using a temperature forcing system.

The HIP2103DBEVAL1Z and HIP2104DBEVAL1Z daughter cards are identical except for the differences between the HIP2103 and the HIP2104.

The HIP2104 has integrated LDOs for the VDD bias of the driver and VCC for the bias of the controller. VDD and VCC outputs of the HIP2104 are available on the GND_VDD_VCC terminal block (TB6). External loads on the LDOs can be connected here.

When using the HIP2103 daughter card, both VDD and VCC must come from external sources. The same terminal block used for the LDO outputs of the HIP2104 can be used as external inputs when using the HIP2103.

As mentioned previously, the J2 strap option is used to select the bias source for the microcontroller. If the 5 V strap option is selected, the bias to the microcontroller will always be present (if the external source is on) even when the LDO outputs of the HIP2104 are not enabled. This is desirable during the initial setup of the evaluation board or when testing the HIP2103.

Switches and Push Buttons

The VCEN and VDEN inputs of the HIP2104, are used to enable the LDO outputs of the HIP2104. These two signals are provided by two mechanical switches, SW2 and SW3. Mechanical switches are used to demonstrate the intended use of the VCEN and VCEN inputs of the HIP2104 although digital logic signals can also be used when external inputs are optionally chosen. The debouncing feature of the VDCEN and VDEN inputs can also be observed when using the mechanical switches. Note that either of these two switches can be turned on or off randomly to demonstrate the performance of the HIP2104 when either of the LDO outputs are turned off during operation of the bridge.

Three push buttons provide control signals to the microcontroller. As usual, the reset button restarts the firmware. The Start/Stop button starts and stops the PWM signals to the LI and HI inputs of the HIP2103, HIP2104. The Sleep button turns on and off the sleep mode.

User Assembly Options

The following user optional assembly features are provided on the evaluation mother board:

- Series connected diode (D1) on the VBAT input to the HIP2104 daughter card for holding up VBAT when there is severe ripple voltage from a LI-ON battery. A zero ohm resistor (R23) shorts out this diode when not required (installed)

FIGURE 3. DIODE TO SUPPRESS LI-ON BATTERY RIPPLE

- Gate to source resistors on the bridge FETs. (R19 and R21 are omitted)
- Series connected gate resistors on each bridge FETs (R34 and R35 are installed with zero ohms)
- Gate to source, and gate to drain capacitor on the bridge FETs (C11, C12, C9, and C10 omitted). The capacitors can be added to emulate larger FETs.

FIGURE 4. OPTIONAL RESISTORS AND CAPACITORS FOR BRIDGE FETs

The following user optional assembly features are provided on the HIP2103, HIP2104 daughter cards.

- The HO and LO outputs have options for a bypass diode across a series connected gate resistor for slower turn-on and faster turn-off of the driven bridge FET. The default configuration includes the bypass diode in parallel with a 24.9Ω resistor.

FIGURE 5. BYPASS DIODES (D3, D4) FOR SLOW TURN-ON AND FAST TURN-OFF

- The LI and HI inputs have optional RCD circuits for the purpose of generating dead-time if a controller is used that does not have built-in dead-time capability. As previously mentioned, the on-board microcontroller can be configured for no dead-time delays. The default configuration includes Schottky diodes in parallel with a zero ohm resistor.

FIGURE 6. BYPASS DIODES (D1, D2) USED FOR DEAD TIME GENERATION

- The HS pin has an RC filter (R7/C7 on the HIP2103 daughter card and R7/C9 on the HIP2104 daughter card) that was required for early engineering samples (rev. A) of the HIP2103/4. This filter is not necessary for the production grade parts. The default value for R7 is zero ohms and the capacitor between HS and VSS is omitted.

FIGURE 7. RC FILTER ON HS PIN (NOT REQUIRED)

Switching Transients

The recommended maximum operating voltage on the HS, VBAT, VCEN, and VDEN pins is 50 V . This includes the switching transients resulting from parasitic inductance in the bridge circuit.

In the case of the VCEN and VDEN inputs, the parasitic inductance resulting from the leads to and from the mechanical switches will resonate with the input capacitance of these pins and with the paralleled external parasitic capacitance on the PCB. When operating at higher voltage levels, it is necessary to have series connected resistor, R30 and R33 (on the mother board), to dampen the ringing spike. By default, R30 and R33 are 100Ω.

FIGURE 8. VCEN AND VDEN DAMPENING RESISTORS
A similar transient situation may occur with the HS pin. In this situation, a ringing spike can be more severe because of high speed switching from the bridge FETs, the large amplitude of switching currents, and because of parasitic inductance associated with the bridge high current PCB traces. Because the amplitude of the ringing spike also increases with the switching load current amplitude, evaluation should be over the full operating load range including fault currents. Good bridge circuit PCB design will minimize but cannot totally eliminate ringing on the HS node.

These switching transients are relatively fast. When evaluating the spikes on these pins, it is necessary to use a time base on the scope of about $100 \mathrm{~ns} /$ division. Slower sweep speeds may mask the switching spike depending on the sample rate of the digital scope.

Other methods can also be used to reduce ringing on the HS node. Sufficiently large value gate resistors on the bridge FETs will reduce the switching speed and consequently the amplitude of the ringing. The above mentioned RC filter on the HS pin can also be used to attenuate the spike directly on the HS pin. By default, the gate resistors on the HIP2103/4 daughter cards, R5 and $R 6$, is 24.9Ω. With this evaluation PCB layout, 24.9Ω is sufficient to prevent excessive switching transient but a customer's PCB layout may require more or less gate resistance or another method to attenuate the switching transients.
Another source of switching transients that must be dealt with is from the bridge voltage source, especially with LI-ON batteries. When the LI_ON battery load current is interrupted when the bridge turns off, the voltage from the battery can rise dramatically because of the internal inductance of the battery. The usual solution is to have sufficiently large capacitance across the bridge. This bridge bypass capacitor is effectively an LC filter working with the internal inductance of the LI-ON battery (typically a few hundred nH). If the capacitor value is large enough, the battery voltage will be close to the nominal unloaded value with minimal ripple. Another approach to reduce the amplitude of the voltage transient from the battery without increasing the size or value of the bridge capacitor is to increase the PWM switching frequency.

If it is not desirable to use relatively large value capacitors across the bridge, a clamping method must be used to limit the peak voltage ripple from the battery. In any case, a relatively small capacitor across the bridge should be used to limit the rate of change of the ripple voltage and to minimize the effects of the PCB parasitic trace inductance on the HS pin.
Another consequence of allowing a relatively large ripple voltage on the battery is that under heavy load conditions, the voltage ripple valley will drop to very low levels. Because most motor loads respond to the average voltage applied, this ripple voltage is of minimal concern. The problem is that if the valley voltage drops too low, the 12V LDO (VDD) of the HIP2104 will sag resulting with a lower gate drive voltage. The UVLO of the HIP2103/4 is 4.5 V (or optionally 7.5 V). If the bridge FETs are selected appropriately, this low gate drive voltage will have not significant effect except for the usual consequence of higher ${ }^{r_{D S(O N)}}$ of the bridge FETs.

To mitigate this problem of excessively low ripple voltage from the battery, a diode in series with the VBAT input of the HIP2104 daughter card with a capacitor to ground will hold up the voltage on VBAT (and consequently the VCC and VDD outputs) when the valley voltage is low (Figure 3). This series connected diode is an assembly option on the HIP2103_4MBEVAL1Z mother board. The default configuration has a zero ohm resistor in parallel with the diode.

Setup and Operating Instructions

The follow procedure ensures a correct setup of the evaluation board and illustrates various operating methods.

Required Lab Equipment

- Power supply (or battery), 13 V minimum to 50 V maximum operating for the bridge bias. The current rating of the power supply must have sufficient capacity for the external load used
for testing (if any). If no load is applied, 200 mA is sufficient. If a battery is the power source, it is highly recommended that an appropriate fuse be used. With a LI-ON battery, it is necessary to add sufficient capacitance ($100 \mu \mathrm{~F}$ or greater) across the VBAT terminal block to prevent excessive ringing.
- Bias supply, 12 V at $\sim 50 \mathrm{~mA}$, require for testing the HIP2103
- Bias supply, 3.3V to 5.0 V at $\sim 50 \mathrm{~mA}$, for testing the HIP2103
- Bench fan (only necessary when testing with large loads at elevated ambient temperatures)
- Four channel oscilloscope, $\sim 500 \mathrm{MHz}$ recommended
- Current Probe (optional) when testing with external loads.
- Multimeter

Initial Configuration for the Microcontroller

The following procedure illustrates how to configure the microcontroller without applying power to the bridge.

1. Connect a 5.0 V bias supply to the +5 V _GND terminal block (TB8). This voltage powers the microcontroller.
2. Ensure that the jumper strap on J 2 is on the 5 V option. This will connect the microcontroller to the external lab supply.
3. Setup the DIP switch on the mother board with the desired PWM frequency and dead-time. For the initial setup, start with 20 kHz and 400ns dead-time (in bold type).

TABLE 1. DIP SWITCH OPTIONS

SWITCH POSITION	6	5	4	3	2	1	
PWM Frequency	x	x	x	0	0	0	5kHz
	x	x	x	0	0	1	10kHz
	x	x	x	0	1	0	15kHz
	X	x	x	0	1	1	20kHz
	X	x	x	1	0	0	25kHz
	x	x	x	1	0	1	30kHz
	x	x	x	1	1	0	35kHz
	X	X	X	1	1	1	40kHz
External inputs	1	1	1	1	1	1	
Dead-Time	0	0	0	x	x	X	0.000 $\mu \mathrm{s}$
	0	0	1	X	X	X	0.400 ${ }^{\text {s }}$
	0	1	0	x	X	X	0.800 $\mu \mathrm{s}$
	0	1	1	x	X	X	$1.200 \mu \mathrm{~s}$
	1	0	0	x	X	X	$1.600 \mu \mathrm{~s}$
	1	0	1	x	x	X	$2.000 \mu \mathrm{~s}$
	1	1	0	x	x	X	$2.400 \mu \mathrm{~s}$
	1	1	1	x	x	X	$2.800 \mu \mathrm{~s}$

4. Connect scope probes on the HI and LI test points on the mother board. Set the time base to $200 \mathrm{~ns} /$ Div. Set the vertical gain to $2 \mathrm{~V} / \mathrm{Div}$. Set the trigger on the LI input at the 2.5 V level with a negative edge trigger. Set the trigger position at the 400 ns division (on the left side of the screen) and use the auto trigger mode.
5. Turn the duty cycle potentiometer, R1, fully counter clockwise until it clicks.
6. Turn on the lab supply. Observe that the four LEDs turn on and off, one after another. This flashing sequence indicates that power has been applied. After the initial flash, all LEDs will be off.

7. Observe that the LI and HI inputs are low.
8. Press the Start/Stop push button once. The RUN LED (led0) will blink indicating that PWM signals from the controller have been enabled.

The DIP switch options are read only when the Start/Stop button is pressed to start the PWM signals. Changing the settings while the RUN LED is flashing will have no effect. To update the DIP switch setting, change the setting, stop the PWM signals, then start again.
9. Slowly rotate the potentiometer, R1, to the right (CW) until the following waveforms appear.

10. Confirm that a 400 ns dead-time is present.
11. Rotate the potentiometer CCW to zero the PWM period.
12. Press the Start/Stop push button to disable the PWM outputs. The blinking led0 will turn off.
13. Press the Sleep button. led1 will turn on to indicate that the sleep mode is active.
14. Press the Start/Stop button. led0 will flash indicating that the PWM outputs are active. Simultaneously, led1 will turn off indicating that the sleep mode is no longer active.
15. Press the Sleep button. led0 will turn off and led1 will turn on indicating that the sleep mode is active.

Initial Setup to Evaluate the HIP2104 Daughter Card

The following procedure illustrates how to setup the daughter cards and applying power to the bridge.

1. Install a HIP2104 daughter card on the mother board. Be careful with the polarity. Incorrect installation may damage the daughter card and the mother board.
2. Connect an additional scope probe to the HS test point on the mother board. Set the vertical gain to 10V/Div and the time base to $10 \mu \mathrm{~s} / \mathrm{Div}$.
3. Ensure that the VDEN and VCEN switches are off.
4. Connect the bridge power supply to the VBAT_GND terminal block (TB1).
5. Starting with an initial output of 20 V , and a current limit of 200 mA , turn on the bridge supply. Caution: If a Li-on battery is used instead of a regulated supply, it is recommended to add a 100 uF or larger capacitor across the VBAT input terminal. This is necessary because the relatively large inductance of an Li-on battery may resonate with the bridge bypass capacitor resulting with excessive voltage.
6. Turn on the VDEN switch.
7. Measure $12 \mathrm{~V}+/ 5 \%$ on the VDD pin of TB6 relative to the GND pin.
8. Turn on the VCEN switch.
9. Measure $3.3 \mathrm{~V} \pm 3 \%$ on the VCC pin of TB6 relative to the GND pin.
10. Press the Start/Stop button. led0 is flashing.
11. Turn the potentiometer CW until the following waveform appears:

12. Confirm that the PWM frequency is 20 kHz .
13. Turn off VCEN and VDEN switches. The HS output will stop switching.
14. Turn off the bridge supply
15. Move the J2 jumper from the 5V strap to the VCC strap. This configures the microcontroller to be powered from the VCC output of the HIP2104.
16. Turn on the bridge supply (still at 20V).
17. Turn on the VCEN switch. All 4 LEDs will flash one after another indicating power has been applied to the controller.
18. Press the Start/Stop button. The LI and HI inputs will start switching. (The HS output is not switching because VDD is off)
19. Turn on the VDen switch. HS is again switching.

Initial Setup to Evaluate the HIP2103 Daughter Card

The method to evaluate the HIP2103 is similar to the HIP2104 except that the VCC and VDD bias must be supplied from external bias supplies. TB6 is an output terminal for VCC and VDD when testing the HIP2104 but it is also an input terminal for VDD bias for the HIP2103. VCC on TB6 can also be used as a bias input for the microcontroller (or alternatively TB8).

DIP Switch Configuration for Testing with

 External SignalsIt may be desirable to provide control signals from an off-board controller or logic generator.

1. Configure the DIP switch for external signals (all switches on). See Table 1.
2. Press the START/STOP button. Observe that led3 (EXTERNAL) is on.

3. The U3 buffer on the mother board is now in the tri-state mode. All inputs, VCEN, VDEN, HI, LI must now come from an external controller. Terminal blocks GND_VDEN_VCEN (TB5), and HI LI (TB4) are used for these inputs.

Related Literature

- FN8276 HIP2103, HIP2103 datasheet, "60V, 1A/2A MOSFET Driver"
- AN1899, "HIP2103_4DEM01Z 3-phase BLDC Motor Drive"

Board Layouts - PCB, HIP2103DBEVAL1Z

FIGURE 9. TOP SILKSCREEN

FIGURE 10. TOP LAYER

Board Layouts - PCB, HIP2103DBEVAL1Z (continuad)

FIGURE 11. BOTTOM LAYER

BOM, HIP2103DBEVAL1Z

PART NUMBER	QTY	REF DES	MFR	DESCRIPTION
BAT54W-V	2	D1, D2	VISHAY	SMALL SIGNAL SCHOTTKY DIODE
BBL-109-G-E	2	J1, J2	SAMTEC	1 x 9 @ 0.1 SINGLE ROW
ES1A	2	D3, D4	FAIRCHILD	1A, 150V Fast Rectifier Diode
GRM21BR71C475KA73L	1	C3	MURATA	CERAMIC CAP
H1045-00104-25V10	1	C5	GENERIC	Multilayer Cap
H1045-OPEN	5	C1, C2, C4, C6, C7	GENERIC	Multilayer Cap
H2511-00R00-1/16W1	2	R1, R2	GENERIC	Thick Film Chip Resistor
H2511-ROPEN-OPEN	1	R3	GENERIC	Thick Film Chip Resistor
H2512-24R90-1/10W	2	R7	GENERIC	Thick Film Chip Resistor
H2512-00R00-1/8W1	1	1	GENERIC	Thick Film Chip Resistor
HIP2103FRTAAZ	G1	HB, HI, H0, HS, LI, LO, VDD,	GENERIC	Test Point 0.060 Pad 0.041 Thole (Do Not Populate)
TP_41C60P-DNP				

Board Layouts - PCB, HIP2104DBEVAL1Z

FIGURE 12. TOP SILKSCREEN

FIGURE 13. TOP LAYER

Board Layouts - PCB, HIP2104DBEVAL1Z (continuad)

FIGURE 14. BOTTOM LAYER

B0M, HIP2104DBEVAL1Z

PART NUMBER	QTY	REF DES	MFR	DESCRIPTION
BAT54W-V	2	D1, D2	VISHAY	SMALL SIGNAL SCHOTTKY DIODE
BBL-109-G-E	2	J1, J2	SAMTEC	1×9 @ 0.1 SINGLE ROW
C1608X7R1C105K	1	C4	TDK	MULTILAYER CAP
ES1A	2	D3, D4	FAIRCHILD	1A, 150V Fast Rectifier Diode
GRM21BR71C475KA73L	1	C3	MURATA	CERAMIC CAP
H1045-00104-25V10	1	C5	GENERIC	Multilayer Cap
H1045-OPEN	5	C1, C2, C7, c8, c9	GENERIC	Multilayer Cap
H1082-00225-100V10	1	C6	GENERIC	Ceramic Chip Cap
H2511-00R00-1/16W1	2	R1, R2	GENERIC	Thick Film Chip Resistor
H2511-ROPEN-OPEN	1	R3	GENERIC	Thick Film Chip Resistor
H2512-24R90-1/10W	2	R5, R6	GENERIC	Thick Film Chip Resistor
H2512-00R00-1/8W1	1	R7	GENERIC	Thick Film Chip Resistor
HIP2104FRAANZ	1	U1	INTERSIL	60V Half Bridge Driver with 4V UVLO
TP_41C60P-DNP	10	HB, HI, HO, HS, LI, LO, VCC, VDD, GND1, GND2	GENERIC	Test Point 0.060 Pad 0.041 Thole (Do Not Populate)

PCB, HIP2103_4MBEVAL1Z

FIGURE 15. TOP SILKSCREEN

FIGURE 16. TOP LAYER

PCB, HIP2103_4MBEVAL1Z (continuod)

FIGURE 18. BOTTOM SILKSCREEN

BOM, HIP2103_4MBEVAL1Z

PART NUMBER	QTY	REF DES	MANUFACTURER	DESCRIPTION
1514-2	2	GND1, GND2	KEYSTONE	Test Point Turret 0.150 Pad 0.100 Thole
1725656	4	TB4, TB8-TB10	PHOENIX-CONTACT	100 Mil Micro-Pitch Terminal Block
1725669	2	TB5, TB6	PHOENIX-CONTACT	100 Mil Micro-Pitch Terminal Block
1729018	2	TB1, TB7	PHOENIX-CONTACT	200 Mil PCB Connector Terminal Block
3299W-1-103-LF	1	R1	BOURNS	TRIMMER POTENTIOMETER (RoHS COMPLIANT)
5000	11	HB, VCC, VDD, G-HO, G-LO, VBAT, VCEN, VDEN, HI-IN, LI-IN, PHASE	KEYSTONE	Miniature Red Test Point 0.100 Pad 0.040 Thole
555165-1	1	J1	TYCO	Phone Jack Connector
597-3111-402	4	LED0-LED3	Dialight	Surface Mount Red LED
B3S-1002	3	RESET, SLEEP, START/STOP	OMRON	Momentary Pushbutton Tactile SMT Switch
BAS70T-7-F	2	D2, D3	DIODES	70V, 150mW SCHOTTKY BARRIER DIODE
BAW56	4	S1-S4	RECTRON-SEMI	Dual 1N4148 Common Anode Diode
C3225X7S1H106K	2	C13, C14	TDK	Ceramic Chip Cap
CD74HC125M	1	U3	Texas Instruments	Quad Tri-State Buffer
CONN-1X9	2	SK1, SK2	Generic	Inline 9 pins x 0.1 inch Connector Strip
CSTCE10M5G55	1	U1	MURATA	Piezoelectric Resonator
GRM21BR71C475KA73L	4	C3-C6	MURATA	CERAMIC CAP
GT11MSCBETR	2	SW3, SW4	C\&K	SPDT On-None-On SM Ultraminiature Toggle Switch
H1045-00103-50V10	2	C2, C7	GENERIC	Multilayer Cap
H1045-00473-25V10	1	C1	GENERIC	Multilayer Cap
H1045-OPEN	4	C9-C12	GENERIC	Multilayer Cap
H1046-00104-50V10	1	C15	GENERIC	Multilayer Cap
H1082-00225-100V10	1	C8	GENERIC	Ceramic Chip Cap
H2511-00R00-1/16W	3	R23, R34, R35	GENERIC	Thick Film Chip Resistor
H2511-01000-1/16W1	2	R30, R33	GENERIC	Thick Film Chip Resistor
H2511-01001-1/16W1	9	$\begin{gathered} \text { R6, R10, R12, R14, R16, R18, } \\ \text { R20, R22, R24 } \end{gathered}$	GENERIC	Thick Film Chip Resistor
H2511-01002-1/10W1	4	R25, R27-R29	GENERIC	Thick Film Chip Resistor
H2511-01002-1/16W1	8	R2, R3, R5, R8, R11, R13, R15, R17	GENERIC	Thick Film Chip Resistor
H2511-02001-1/16W1	1	R9	GENERIC	Thick Film Chip Resistor
H2511-04700-1/16W1	1	R7	GENERIC	Thick Film Chip Resistor
H2511-ROPEN-OPEN	3	R4, R19, R21	GENERIC	Thick Film Chip Resistor
JUMPER-3-100	1	J2	GENERIC	Three Pin Jumper
PIC18F2431S0	1	U2	Microchip	Flash Microcontroller
S1B	1	D1	VISHAY	1A, 100V Generic Rectifier Diode
SD06H0SK	1	SW5	C\&K	SD Series Low Profile DIP Switch 6 Pos SPST
SI7430DP	2	Q1, Q2	VISHAY	N-Channel 150V, 26A WFET

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel. +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
Tel + +1-905-237-2004 8309 Richmond Hill, Ontario Canada L4C 9T3
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: \(+44-1628-651-804\)
Renesas Electronics Europe \(\mathbf{G m b H}\)
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No. 27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel. +86-21-2226-0888, rax: +86-21-2226-099
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13 F , No. 363 Fu Shing North Road, Tai
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel. \(+65-6213-0200\), Fax: \(+65-6213-0300\)
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No. \(777 \mathrm{C}, 100\) Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
```


X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

