The ICL761X/762X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents. They are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Lithium cell. The output swing ranges to within a few millivolts of the supply voltages.

The quiescent supply current of these amplifiers is set to $100 \mu \mathrm{~A}$ at the factory. This results in power consumption as low as $200 \mu \mathrm{~W}$ per amplifier.

Of particular significance is the extremely low (1pA) input current, input noise current of $0.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $10^{12} \Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
ICL7621DCPA	7621 DCPA	0 to +70	$\begin{array}{\|l\|} \hline 8 \text { Ld PDIP - } \\ \text { D Grade }-\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ \hline \end{array}$	E8.3
ICL7621DCPAZ* (Note 2)	7621 DCPAZ	0 to +70	$\begin{aligned} & 8 \text { Ld PDIP - } \\ & \text { D Grade }-\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \end{aligned}$	E8.3
ICL7621DCBA (Note 1)	7621 DCBA	0 to +70	$\begin{aligned} & 8 \text { Ld SOIC - } \\ & \text { D Grade }-\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \end{aligned}$	M8.15
$\begin{aligned} & \text { ICL7621DCBAZ } \\ & (\text { Notes 1, 2) } \end{aligned}$	7621 DCBAZ	0 to +70	$\begin{array}{\|l\|} \hline 8 \text { Ld SOIC - } \\ \text { D Grade }-\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \end{array}$	M8.15

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTES:

1. Add "-T" suffix for tape and reel. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pbfree material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Features

- Wide Operating Voltage Range $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- High Input Impedance . $10^{12} \Omega$
- Input Current Lower Than BIFETs 1pA (Typ)
- Output Voltage Swing . V+ and V-
- Available as Duals (Refer to ICL7611 for Singles)
- Low Power Replacement for Many Standard Op Amps

Applications

- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

Pinouts
ICL7621
(8 LD PDIP, SOIC) TOP VIEW

Absolute Maximum Ratings

Supply Voltage V+ to V- . 18 V
Input Voltage . V- -0.3 to V ++0.3 V
Differential Input Voltage (Note 3) [(V+ +0.3) - (V- -0.3)]V
Duration of Output Short Circuit (Note 4) Unlimited

Operating Conditions

Temperature Range \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ermal Information		
Thermal Resistance (Typical, Note 5)	J	
PDIP Package	120	N/A
SOIC Package	160	/A
Maximum Junction Temperature (Plastic Package)		
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Pb-Free Reflow Profile. see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp		
*Pb-free PDIPs can be used for processing only. They are not intended processing applications.	ough hole for use in	ave solder flow solder

Thermal Information

Maximum Junction Temperature (Plastic Package) $+150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ b-Free Reflow Profile. .
*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
3. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
4. The outputs may be shorted to ground or to either supply, for $V_{S U P P L Y} \leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded
5. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications	$V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}$, Unless Otherwise Specified.						
PARAMETER	SYMBOL	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	$\begin{array}{\|c} \text { MIN } \\ \text { (Note 6) } \end{array}$	TYP	$\begin{array}{\|c\|} \hline \text { MAX } \\ \text { (Note 6) } \end{array}$	UNITS
Input Offset Voltage	V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$	+25	-	-	15	mV
			Full	-	-	20	mV
Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$	-	-	25	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	Ios		+25	-	0.5	30	pA
			0 to +70	-	-	300	pA
			-55 to +125	-		800	pA
Input Bias Current	${ }^{\text {BIAS }}$		+25	-	1.0	50	pA
			0 to +70	-	-	400	pA
			-55 to +125	-	-	4000	pA
Common Mode Voltage Range	$\mathrm{V}_{\text {CMR }}$	$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	± 4.2	-	-	V
Output Voltage Swing	$\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	+25	± 4.9	-	-	V
			0 to +70	± 4.8	-	-	V
			-55 to +125	± 4.5	-	-	V
Large Signal Voltage Gain	Avol	$\mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	80	102	-	dB
			0 to +70	75	-	-	dB
			-55 to +125	68	-	-	dB
Unity Gain Bandwidth	GBW	$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	-	0.48	-	MHz
Input Resistance	$\mathrm{R}_{\text {IN }}$		+25	-	10^{12}	-	Ω
Common Mode Rejection Ratio	CMRR	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	70	91	-	dB
Power Supply Rejection Ratio ($\mathrm{V}_{\text {SUPPLY }}= \pm 8 \mathrm{~V}$ to $\pm 2 \mathrm{~V}$)	PSRR	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	80	86	-	dB
Input Referred Noise Voltage	e_{N}	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	+25	-	100	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Referred Noise Current	i_{N}	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$	+25	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Supply Current (Per Amplifier)	IsUPPLY	No Signal, No Load, $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	+25	-	0.1	0.25	mA
Channel Separation	$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	$A_{V}=100$	+25	-	120	-	dB

ICL7621

Electrical Specifications $\quad \mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}$, Unless Otherwise Specified. (Continued)							
PARAMETER	SYMBOL	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{\|c\|} \hline \text { MIN } \\ \text { (Note 6) } \end{array}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 6) } \end{gathered}$	UNITS
Slew Rate	SR	$\begin{aligned} & A_{V}=1, C_{L}=100 \mathrm{pF}, V_{I N}=8 V_{P-P}, \\ & I_{Q}=100 \mu A, R_{L}=100 \mathrm{k} \Omega \end{aligned}$	+25	-	0.16	-	V/hs
Rise Time	t_{R}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	+25	-	2	-	$\mu \mathrm{s}$
Overshoot Factor	OS	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \end{aligned}$	+25	-	10	-	\%

NOTE:
6. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

Schematic Diagram

Application Information

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

Choosing the Proper I_{Q}

Each device in the ICL76XX family has a similar I_{Q} setup scheme, which allows the amplifier to be set to nominal quiescent currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA . These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external I_{Q} control terminal, permitting user selection of each amplifiers' quiescent current. The ICL7621 has a fixed I_{Q} setting of $100 \mu \mathrm{~A}$.

FIGURE 1. SIMPLE FOLLOWER

NOTE: Low leakage currents allow integration times up to several hours.

FIGURE 3. PHOTOCURRENT INTEGRATOR

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the I_{Q} settings. This allows output swings to almost the supply rails for output loads of $1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$, using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents (see graphs in "Typical Performance Curves" beginning on page 6). During the transition from Class A to Class B operation, the output transfer characteristic is nonlinear and the voltage gain decreases.

Frequency Compensation

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF.

Typical Applications

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

FIGURE 2. LEVEL DETECTOR

NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR

FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117

FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT

NOTES:
7. Small capacitors (25 pF to 50 pF) may be needed for stability in some cases.
8. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. $\mathrm{f} \mathrm{C}=10 \mathrm{~Hz}, \mathrm{AV}$ CL $=4$, Passband ripple $=0.1 \mathrm{~dB}$.

FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER

Typical Performance Curves

FIGURE 8. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE

FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE

FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE

FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN vs FREE-AIR TEMPERATURE

FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE

FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY

FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 17. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE

FIGURE 18. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE $\left(l_{Q}=100 \mu A\right)$

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C- .
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N,N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ($0.76-1.14 \mathrm{~mm}$).

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension " E " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
© Copyright Intersil Americas LLC 2001-2010. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NCV33202DMR2G NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17T-E/MNY MCP6V19-E/ST MXD8011HF MCP6V16UT-E/OT MCP6V17T-E/MS MCP6V19T-E/ST SCY6358ADR2G ADA4523-1BCPZ ADA4523-1BCPZ-RL7 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 CA3140AN COS8052SR COS8552SR $\underline{\text { COS8554SR COS2177SR COS2353SR COS724TR LM2902M/TR ASOPD4580S-R }}$

