The ISL1536 is a very low power dual channel differential amplifier designed for central office line driving for DMT ADSL2+. This device features a high drive capability of 400 mA while consuming only 4 mA of supply current per amplifier from $\pm 12 \mathrm{~V}$ supplies. It integrates gain and bias resistors while maintaining high slew rate and low distortion.

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL1536IRZ	1536 IRZ	-40 to +85	16 Ld QFN	L16.4x4E
ISL1536IRZ-T13*	1536 IRZ	-40 to +85	16 Ld QFN	L16.4x4E

NOTES:

1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL1536. For more information on MSL, please see tech brief TB363.

Features

- Internal Fixed Gain $A_{V}=12.85$
- Integrated Feedback Resistors
-43.4V $\mathrm{V}_{\mathrm{P}-\mathrm{P}}$ Differential Output Drive into 100Ω
-41.6V $\mathrm{V}_{\text {P-P }}$ Minimum Differential Output Drive into 60Ω
- -59dBc Typical Driver Output Distortion Driving 50Ω at 2 MHz
- Low Quiescent Current of 3mA per Amplifier
- Power-Down Disable Control
- Pb-Free (RoHS Compliant)

Applications

- ADSL, ADSL2, ADSL2+ Line Drivers
- G.SHDSL, HDSL2 Line Drivers
- Video Distribution Amplifiers
- Video Twisted-pair Line Drivers

Pinout

(16 LD 4X4 QFN)
TOP VIEW

*GND FOR BOTH SINGLE/DUAL SUPPLY

Block Diagram

Pin Descriptions

$\mathbf{1 6}$ LD QFN	PIN NAME	
1	INA	Amplifier A input
2	INB	Amplifier B input
3	GND	Ground connection
4	INC	Amplifier C input
5	IND	Amplifier D input
6	VBCD	Voltage bias for amplifier C, D
7	DISCD	Enable/disable amplifiers C, D (DSL Channel \#2)
8	VS-	Negative supply
9	OUTD	Amplifier D output
10	OUTC	Amplifier C output
11	NC	No internal connection. Connect to GND on PCB.
12	OUTB	Amplifier B output
13	OUTA	Amplifier A output
14	VS+	Positive supply
15	DISAB	Enable/disable amplifiers A, B (DSL Channel \#1).
16	VBAB	Voltage bias for amplifier A, B

Absolute Maximum Ratings ($\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$	
$\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$Supply Voltage.	30 V
$\mathrm{V}^{\text {S }}+$ Voltage to Ground	-0.3V to +30V
$\mathrm{V}_{\mathrm{S}^{-}}$Voltage to Ground	-30V to 0.3V
Input DISAB, DISCD to Ground.	. 7 V
$\mathrm{V}_{1 \mathrm{~N}^{+}}$Voltage	$\mathrm{V}_{\mathrm{S}^{-}}$to $\mathrm{V}^{+}{ }^{+}$
Current into any Input	8mA
Continuous Output Current	75 mA
ESD Rating	
Human Body Model	. 4 kV
Machine Model. .	250V

Thermal Information

Thermal Resistance (Typical, Note 4)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
16 Lead QFN	40
Ambient Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	- $60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature	$+150^{\circ} \mathrm{C}$
Power Dissipation	See curves
Pb-Free Reflow Profile. http://www.intersil.com/pbfree/Pb-Fr	see link below

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.
NOTE:
4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{S}= \pm 12 \mathrm{~V}, R_{L}=50 \Omega$ to $G N D, D I S A B=D I S C D=0, T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

| PARAMETER | DESCRIPTION | MIN | MAX | CONDITIONS | (Note 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | TYP | (Note 5) |
| :---: | UNIT | M |
| :---: |

AC PERFORMANCE

A_{V}	Gain		12.6	12.85	13.1	$\mathrm{~V} / \mathrm{V}$
BW	-3dB Bandwidth			50		MHz
THD	Total Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=10 \mathrm{Vo}_{\mathrm{P}-\mathrm{P}}-$ diff, $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to GND		-69		dBc
		$\mathrm{f}=2.2 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=10 \mathrm{Vo}_{P-P}-$ diff, $\mathrm{R}_{\mathrm{L}}=50 \Omega$ to GND		-59		dBc
SR	Slew Rate, Single-Ended Signal	$\mathrm{V}_{\text {OUT }}$ from -4.5 V to +4.5 V	200	400		$\mathrm{~V} / \mu \mathrm{s}$

DC PERFORMANCE

VOS-DM	Differential Mode Offset Voltage		-50		+50	mV
VOS-CM	Common Mode Offset Voltage		-125		125	mV

INPUT CHARACTERISTICS

${ }^{1}{ }^{+}$	Non-Inverting Input Bias Current		-5		+5	$\mu \mathrm{A}$
e_{N}	Input Noise Voltage	$\mathrm{f}=10 \mathrm{kHz}$		8.0		$\mathrm{nV} \sqrt{ } \mathrm{Hz}$
$\mathrm{i}^{+}{ }^{+}$	+Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$		1.0		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
RIN	Input Resistance		6	7.5	9	$\mathrm{k} \Omega$
V_{IH}	Input High Voltage	DIS inputs	2.2			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	DIS inputs			0.8	V
$\mathrm{IIH}^{\text {H }}$	Input High Current for DIS	DIS $=5 \mathrm{~V}$	20	58	100	$\mu \mathrm{A}$
IIL	Input Low Current for DIS	DIS $=0 \mathrm{~V}$	-25	-7	0	$\mu \mathrm{A}$

OUTPUT CHARACTERISTICS

$V_{\text {OUT-50 }}$	Loaded Output Swing Single-Ended	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to GND	± 10.4	± 10.85		V
$\mathrm{V}_{\text {OUT }}$-30	Loaded Output Swing Single-Ended	$\mathrm{R}_{\mathrm{L}}=30 \Omega$ to GND	± 9.8	± 10.4		V
$\mathrm{V}_{\text {OUT }}$-DIS	Disable Output Voltage				± 800	mV
IOUT	Output Current	$\mathrm{R}_{\mathrm{L}}=0 \Omega$		600		mA

ISL1536

Electrical Specifications						
PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	TYP	MAX (Note 5)	UNIT
SUPPLY CHARACTERISTICS						
$\mathrm{V}_{\mathrm{S} \text { (MAX) }}$	Maximum Operating Supply Voltage			± 13.2		V
$\mathrm{V}_{\mathrm{S} \text { (MIN) }}$	Minimum Operating Supply Voltage			± 7.5		V
I^{+}(Enable)	Positive Supply Current per Amplifier	All outputs at $0 \mathrm{~V}, \mathrm{DIS}=0 \mathrm{~V}$		4.0	5	mA
IS' (Enable)	Negative Supply Current per Amplifier	All outputs at $0 \mathrm{~V}, \mathrm{DIS}=0 \mathrm{~V}$	-4.85	-3.9		mA
I^{+}(Power Down)	Positive Supply Current per Amplifier	All outputs at $0 \mathrm{~V}, \mathrm{DIS}=5 \mathrm{~V}$		0.3	0.75	mA
IS- (Power Down)	Negative Supply Current per Amplifier	All outputs at $0 \mathrm{~V}, \mathrm{DIS}=5 \mathrm{~V}$	-0.75	0		mA
$\mathrm{I}_{\text {GND }}$	GND Supply Current per Amplifier	All outputs at 0 V		0.3		mA

NOTE:
5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves

FIGURE 1. DIFFERENTIAL FREQUENCY RESPONSE vs R_{L}

FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE vs C_{L}

FIGURE 2. DIFFERENTIAL FREQUENCY RESPONSE vs R_{L}

FIGURE 4. DIFFERENTIAL FREQUENCY RESPONSE vs C_{L}

Typical Performance Curves (Continued)

FIGURE 5. 200kHz 2ND AND 3RD HARMONICS vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 7. 2.2MHz 2ND AND 3RD HARMONICS vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 9. SUPPLY CURRENT vs SUPPLY VOLTAGE
(ALL AMPLIFIERS ENABLED)

FIGURE 6. 1 MHz 2ND AND 3RD HARMONICS vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 8. PSRR vs FREQUENCY

FIGURE 10. OUTPUT IMPEDANCE vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 11. DIFFERENTIAL 3dB BANDWIDTH vs SUPPLY VOLTAGE

JEDEC JESD51-3 LOW EFFECTIVE THERMAL CONDUCTIVITY TEST BOARD - THERMAL PAD NOT CONNECTED TO BOARD

FIGURE 13. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 12. CHANNEL SEPARATION vs FREQUENCY

FIGURE 14. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Applications Information

Product Description

The ISL1536 consists of two sets of high-power line driver amplifiers that can be connected for full duplex differential line transmission. The amplifiers are designed to be used with ADSL2+ signals up to 2.2 MHz . Each amplifier has identical positive gain connections resulting in optimum common-mode rejection. A typical interface circuit configuration is shown in Figure 15.

FIGURE 15. TYPICAL INTERFACE CIRCUIT CONFIGURATION

Integrated Components

ISL1536 integrates bias and feedback resistors, minimizing the number of external components. The gain is fixed at $+12.85 \mathrm{~V} / \mathrm{V}$.

The VBAB and VBCD pins also integrate a pair of $7.5 \mathrm{k} \Omega$ and $50 \mathrm{k} \Omega$ resistors on each port to bias the line driver for single and dual supply usage. When powering the line driver with a single supply, VBAB and VBCD pins are floated. When using dual supplies, VBAB and VBCD pins are grounded.
Integration of these components in the line driver minimizes assembly cost and board space.

Impedance Matching

R_{B} in Figure 15 depends on the line impedance and transformer's turns ratio. Line impedance is characterized to be 100Ω across tip and ring. If a $1: \mathrm{N}$ tranformer is used, R_{B} can be calculated according to Equation 1:

$$
\begin{equation*}
\left(\mathrm{RB}=\frac{100}{\mathrm{~N}^{2}} \times 0.5\right) \tag{EQ.1}
\end{equation*}
$$

Revision History

DATE	REVISION	CHANGE
November 20, 2012	FN6508.4	Added Note 3 to "Ordering Information" on page 1. Changed HBM from 3 kV to 4 kV in "Absolute Maximum Ratings" on page 3. Changed MM from 300V to 250 V in "Absolute Maximum Ratings" on page 3 Added Note 5 to "Electrical Specifications" table on page 4.
March 8, 2010	FN6508.3	On page 4, changed the "Maximum Operating Supply Voltage" TYP from $\pm 12.6 \mathrm{~V}$ to $\pm 13.2 \mathrm{~V}$
February 8, 2010		
May 29, 2009		Added Revision History beginning from rev 3. Changed the logic high level (VIH) on page 3 from Min 2.0 V to $\operatorname{Min} 2.2 \mathrm{~V}$, which is consistent with the intended applications (AFE output logic high levels are typically at 3.3 V with 2.4 V minimum) while providing added margin to internal threshold variation. On page 1 in the first paragraph, changed: "This device features a high drive capability of 400 mA while consuming only $3 \mathrm{~mA} . .$. " to "This device features a high drive capability of 400 mA while consuming only $4 \mathrm{~mA} . .$. ". Added Theta JA and applicable note to "Thermal Information" on page 3. Removed VS, Supply Voltage row in spec table. Added Maximum and Minimum Operating Supply Voltages $\left(\mathrm{V}_{\mathrm{S}(\mathrm{MAX})}\right.$ and $\left.\mathrm{V}_{\mathrm{S}(\mathrm{MIN})}\right)$ with typical specs of $\pm 12.6 \mathrm{~V}$ and $\pm 7.5 \mathrm{~V}$ to "SUPPLY CHARACTERISTICS" on page 4. Added "DISAB = DISCD = 0" to "Electrical Specifications" table common conditions.

© Copyright Intersil Americas LLC 2008-2013. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

L16.4x4E

16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
Rev 0, 4/08

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3. Unless otherwise specified, tolerance : Decimal ± 0.05
4. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
5. Tiebar shown (if present) is a non-functional feature.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
5962-9217601MSA 634810D HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG
NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7 74AUP2G3404FW3-7 MAX9972ACCS+D 74AUP1G34FW5-7

