The ISL28136 is a low-power single operational amplifier optimized for single supply operation from 2.4 V to 5.5 V , allowing operation from one lithium cell or two Ni-Cd batteries. This device features a gain-bandwidth product of 5 MHz and is unity-gain stable with a -3 dB bandwidth of 13 MHz .
This device features an Input Range Enhancement Circuit (IREC), which enables it to maintain CMRR performance for input voltages greater than the positive supply. The input signal is capable of swinging 0.25 V above the positive supply and to the negative supply with only a slight degradation of the CMRR performance. The output operation is rail-to-rail.

The part typically draws less than 1 mA supply current while meeting excellent DC accuracy, AC performance, noise and output drive specifications. Operation is guaranteed over $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Ordering Information

PART NUMBER (Notes 2, 3)	PART MARKING	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28136FHZ-T7 (Note 1)	GABP (Note 4)	6 Ld SOT-23	P6.064A
ISL28136FHZ-T7A (Note 1)	GABP (Note 4)	6 Ld SOT-23	P6.064A
ISL28136FBZ	28136 FBZ	8 Ld SOIC	M8.15E
ISL28136FBZ-T7 (Note 1)	28136 FBZ	8 Ld SOIC	M8.15E
ISL28136EVAL1Z	Evaluation Board		

1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb -free plastic packaged products employ special Pb -free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28136. For more information on MSL please see techbrief TB363.
4. The part marking is located on the bottom of the parts.

Features

- 5 MHz Gain bandwidth product $@ A_{V}=100$
- $13 \mathrm{MHz}-3 \mathrm{~dB}$ unity gain bandwidth
- $900 \mu \mathrm{~A}$ typical supply current
- $150 \mu \mathrm{~V}$ maximum offset voltage (8 Ld SOIC)
- 5nA typical input bias current
- Down to 2.4 V single supply voltage range
- Rail-to-rail input and output
- Enable pin
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
- Pb-free (RoHS compliant)

Applications

- Low-end audio
- 4 mA to 20 mA current loops
- Medical devices
- Sensor amplifiers
- ADC buffers
- DAC output amplifiers

Pinouts

ISL28136
(6 LD SOT-23) TOP VIEW

ISL28136 (8 LD SOIC) TOP VIEW

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage	5.75 V
Supply Turn-on Voltage Slew Rate	1V/us
Differential Input Current	5 mA
Differential Input Voltage	0.5V
Input Voltage	$\mathrm{V}-\mathrm{-} 0.5 \mathrm{~V}$ to $\mathrm{V}++0.5 \mathrm{~V}$
ESD Rating	
Human Body Model	.3kV
Machine Model.	300 V

Thermal Information

Thermal Resistance (Typical)
6 Ld SOT-23 Package (Note 5)
8 Ld SOIC Package (Notes 5, 6)

$\theta \mathrm{JA}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta \mathrm{JC}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
230	N/A
125	71

Ambient Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Junction Temperature . $+125^{\circ} \mathrm{C}$ Pb-free reflow profile . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
5. $\theta \mathrm{JA}$ is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
6. For $\theta \mathrm{JC}$, the "case temp" location is taken at the package top center.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{Open}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 7) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 7) } \end{gathered}$	UNIT
DC SPECIFICATIONS						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	8 Ld SOIC	-150	± 10	150	$\mu \mathrm{V}$
			-270		270	
		6 Ld SOT-23	-400	± 10	400	$\mu \mathrm{V}$
			-450		450	
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage vs Temperature			0.4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-10	0	10	nA
			-15		15	
I_{B}	Input Bias Current	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	-35	5	35	nA
			-40		40	
V_{CM}	Common-Mode Voltage Range	Guaranteed by CMRR	0		5	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 5 V	90	114		dB
			85			
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{+}=2.4 \mathrm{~V}$ to 5.5 V	90	99		dB
			85			
Avol	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}	600	1770		V/mV
			500			
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}		140		V / mV
V OUT	Maximum Output Voltage Swing	Output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}		3	6	mV
					10	
		Output low, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}		70	90	mV
					110	
		Output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ to V_{CM}	4.99	4.994		V
			4.98			
		Output high, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to V_{CM}	4.92	4.94		V
			4.89			
$\mathrm{IS}_{\mathrm{S}, \mathrm{ON}}$	Supply Current, Enabled	Per Amp	0.8	0.9	1.1	mA
					1.4	

Electrical Specifications $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temperature data established by characterization. (Continued)

NOTE:

7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open

FIGURE 1. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES R_{f} / R_{g}

FIGURE 3. GAIN vs FREQUENCY vs $V_{\text {OUT }}, R_{L}=10 k$

FIGURE 5. GAIN vs FREQUENCY vs R_{L}

FIGURE 2. GAIN vs FREQUENCY vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$

FIGURE 4. GAIN vs FREQUENCY vs $\mathrm{V}_{\mathrm{OUT}}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$

FIGURE 6. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

Typical Performance Curves $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 7. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 9. CMRR vs FREQUENCY; $\mathbf{V}_{+}=\mathbf{2 . 4 V}$ AND 5V

FIGURE 11. PSRR vs FREQUENCY, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$

FIGURE 8. GAIN vs FREQUENCY vs C_{L}

FIGURE 10. PSRR vs FREQUENCY, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$

FIGURE 12. INPUT VOLTAGE NOISE DENSITY vs FREQUENCY

Typical Performance Curves $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 13. INPUT CURRENT NOISE DENSITY vs FREQUENCY

FIGURE 15. LARGE SIGNAL STEP RESPONSE

FIGURE 17. ENABLE TO OUTPUT RESPONSE

FIGURE 14. INPUT VOLTAGE NOISE 0.1 Hz TO 10 Hz

FIGURE 16. SMALL SIGNAL STEP RESPONSE

FIGURE 18. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 19. INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE

FIGURE 21. SUPPLY CURRENT DISABLED vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm \mathbf{2 . 5 V}$

FIGURE 23. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm \mathbf{2 . 5 V}$, SOIC PACKAGE

FIGURE 20. SUPPLY CURRENT ENABLED vs TEMPERATURE, $\mathbf{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}=\mathbf{\pm 2 . 5 V}$

FIGURE 22. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}} \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$, SOT PACKAGE

FIGURE 24. $\mathrm{V}_{\text {OS }}$ vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$, SOT PACKAGE

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 25. $\mathrm{V}_{\text {OS }}$ vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{VSOIC}$ PACKAGE

FIGURE 27. $\mathrm{I}_{\mathrm{BIAS}}{ }^{-}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$

FIGURE 29. $\mathrm{I}_{\mathrm{BI}}{ }^{-}-\mathrm{vs}$ TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 26. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}=\mathbf{\pm 2 . 5 V}$

FIGURE 28. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 30. IOS vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}=\mathbf{\pm} \mathbf{2 . 5 V}$

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 31. I_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 33. PSRR vs TEMPERATURE, $\mathbf{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$ TO $\pm 2.75 \mathrm{~V}$

FIGURE 35. AVOL vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2 \mathrm{~V}$ $\mathrm{TO}+\mathbf{2 V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$

FIGURE 32. CMRR vs TEMPERATURE, $\mathrm{V}_{\mathrm{CM}}=-2.5 \mathrm{~V}$ TO +2.5V, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$

FIGURE 34. AVOL vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2 \mathrm{~V}$ $T O+2 V, R_{L}=100 k$

FIGURE 36. $\mathrm{V}_{\text {OUT }}$ HIGH vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V}$, $\mathrm{R}_{\mathrm{L}}=\mathbf{1 k}$

Typical Performance Curves $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open (Continued)

FIGURE 37. $\mathrm{V}_{\text {OUT }}$ LOW vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm \mathbf{2 . 5 \mathrm { V } , \mathrm { R } _ { \mathrm { L } } = \mathbf { 1 k }}$

Pin Descriptions

$\begin{gathered} \text { ISL28136 } \\ \text { (} 6 \text { Ld SOT-23) } \end{gathered}$	$\begin{aligned} & \text { ISL28136 } \\ & \text { (8 Ld SOIC) } \end{aligned}$	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
	1,5	NC	Not connected	
4	2	IN-	inverting input	
3	3	$1 \mathrm{~N}+$	Non-inverting input	See Circuit 1
2	4	V-	Negative supply	
1	6	OUT	Output	
6	7	V+	Positive supply	See Circuit 2
5	8	$\overline{\mathrm{EN}}$	Chip enable	

Applications Information

Introduction

The ISL28136 is a single channel Bi-CMOS rail-to-rail input, output (RRIO) micropower precision operational amplifier. The part is designed to operate from a single supply 2.4 V to 5.5 V . The part has an input common mode range that extends 0.25 V above the positive rail and down to the negative supply rail. The output operation can swing within about 3 mV of the supply rails with a $100 \mathrm{k} \Omega$ load.

Rail-to-Rail Input

Many rail-to-rail input stages use two differential input pairs; a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an undesired change in magnitude and polarity of input offset current.
The ISL28136 achieves input rail-to-rail operation without sacrificing important precision specifications and degrading distortion performance. The device's input offset voltage exhibits a smooth behavior throughout the entire commonmode input range. The input bias current versus the commonmode voltage range gives an undistorted behavior from typically down to the negative rail to 0.25 V higher than the positive rail.

Rail-to-Rail Output

The output stage uses drain-connected N and P -channel MOSFETs to achieve rail-to-rail output swing. The P-channel device sources current to swing the output in the positive direction and the N -channel sinks current to swing the output in the negative direction. The ISL28136 with a $100 \mathrm{k} \Omega$ load will swing to within 3 mV of the positive supply rail and within 3 mV of the negative supply rail.

Results of Over-Driving the Output

Caution should be used when over-driving the output for long periods of time. Over-driving the output can occur in two ways. 1) The input voltage times the gain of the amplifier exceeds the supply voltage by a large value or, 2) the output current required is higher than the output stage can deliver. These conditions can result in a shift in the Input Offset Voltage (V_{OS}) as much as $1 \mu \mathrm{~V} / \mathrm{hr}$. of exposure under these conditions.

IN+ and IN- Input Protection

All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. They also contain back-to-back diodes across the input terminals (see "Pin Descriptions" on page 10-Circuit 1). For applications where the input differential voltage is expected to exceed 0.5 V , an external series resistor must be used to ensure the input currents never exceed 5 mA (Figure 38).

FIGURE 38. INPUT CURRENT LIMITING

Enable/Disable Feature

The ISL28136 offers an $\overline{\mathrm{EN}}$ pin that disables the device when pulled up to at least 2.0 V . In the disabled state (output in a high impedance state), the part consumes typically $10 \mu \mathrm{~A}$ at room temperature. By disabling the part, multiple ISL28136 parts can be connected together as a MUX. In this configuration, the outputs are tied together in parallel and a channel can be selected by the $\overline{\mathrm{EN}} \mathrm{pin}$. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. Note that feed through from the $\mathrm{IN}+$ to IN - pins occurs on any Mux Amp disabled channel where the input differential voltage exceeds 0.5 V (e.g., active channel $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$, while disabled channel $\mathrm{V}_{\text {IN }}=\mathrm{GND}$), so the mux implementation is best suited for small signal applications. If large signals are required, use series IN+ resistors, or a large value R_{F}, to keep the feed through current low enough to minimize the impact on the active channel. See"Limitations of the Differential Input Protection" on page 11 for more details.

To disable the part, the user needs to supply the $1.5 \mu \mathrm{~A}$ required to pull the $\overline{\mathrm{EN}}$ pin to the V_{+}rail. If left open, the $\overline{\mathrm{EN}}$ pin will pull to the negative rail and the device will be enabled by default. If the $\overline{\mathrm{EN}}$ function is not required (no need to turn the part off), as a precaution, it is recommended that the user tie the $\overline{\mathrm{EN}}$ pin to the V_{-}pin.

Limitations of the Differential Input Protection

If the input differential voltage is expected to exceed 0.5 V , an external current limiting resistor must be used to ensure the input current never exceeds 5 mA . For non-inverting unity gain applications, the current limiting can be via a series IN+ resistor, or via a feedback resistor of appropriate value. For other gain configurations, the series $\mathrm{IN}+$ resistor is the best choice, unless the feedback $\left(R_{F}\right)$ and gain setting $\left(R_{G}\right)$ resistors are both sufficiently large to limit the input current to 5 mA .

Large differential input voltages can arise from several sources:

1. During open loop (comparator) operation. Used this way, the $\mathrm{IN}+$ and IN - voltages don't track, so differentials arise.
2. When the amplifier is disabled but an input signal is still present. An R_{L} or R_{G} to GND keeps the IN- at GND, while the varying $\mathrm{IN}+$ signal creates a differential voltage. Mux Amp applications are similar, except that the active channel $\mathrm{V}_{\text {OUT }}$ determines the voltage on the IN - terminal.
3. When the slew rate of the input pulse is considerably faster than the op amp's slew rate. If the $\mathrm{V}_{\text {OUT }}$ can't keep up with the IN+ signal, a differential voltage results, and visible distortion occurs on the input and output signals. To avoid this issue, keep the input slew rate below $1.9 \mathrm{~V} / \mu \mathrm{s}$, or use appropriate current limiting resistors.
Large (>2V) differential input voltages can also cause an increase in disabled I_{CC}.

Current Limiting

These devices have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.

Power Dissipation

It is possible to exceed the $+125^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature ($T_{J M A X}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1:
$T_{\text {JMAX }}=T_{\text {MAX }}+\left(\theta_{J A} \times P D_{\text {MAXTOTAL }}\right)$
(EQ. 1)
where:

- PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$)
- $P D_{\text {MAX }}$ for each amplifier can be calculated using Equation 2:
$P D_{\text {MAX }}=2^{*} V_{S} \times I_{\text {SMAX }}+\left(V_{S}-V_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{L}}$
(EQ. 2)
where:
- $\mathrm{T}_{\mathrm{MAX}}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $P D_{\text {MAX }}=$ Maximum power dissipation of 1 amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage (Magnitude of V_{+}and V_{-})
- $I_{\text {MAX }}=$ Maximum supply current of 1 amplifier
- $\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage swing of the application
- $\mathrm{R}_{\mathrm{L}}=$ Load resistance
© Copyright Intersil Americas LLC 2007-2014. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

TYPICAL RECOMMENDED LAND PATTERN

Package Outline Drawing

P6.064A

6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE
Rev 0, 2/10

TYPICAL RECOMMENDED LAND PATTERN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Precision Amplifiers category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
561681F LT6005HGN\#PBF LT6238CGN\#PBF LT6238HGN\#PBF OP05CN8\#PBF OP227GN\#PBF LT6020IDD-1\#PBF LT1124CS8\#TR NCV20166SN2T1G NCS21802MUTBG LT1637MPS8 LT1498IS8 LT1492CS8 TLC27L7CP TLV2473CDR LMP2234AMA/NOPB LMP7707MA/NOPB 5962-8859301M2A LMP2231AMAE/NOPB LMP2234AMTE/NOPB LMC6022IM/NOPB LMC6024IM/NOPB LMC6081IMX/NOPB LMP2011MA/NOPB LMP2231AMFE/NOPB LMP2232BMA/NOPB LMP2234AMAE/NOPB LMP7717MAE/NOPB LMV2011MA/NOPB LT1013DDR TL034ACDR TLC2201AMDG4 TLE2024BMDWG4 TLV2474AQDRG4Q1 TLV2472QDRQ1 TLC4502IDR TLC27M2ACP TLC2652Q-8DG4 OPA2107APG4 TL054AIDR TLC272CD AD8539ARMZ LTC6084HDD\#PBF LT1638CMS8\#TRPBF LTC1050CN8\#PBF LT1112ACN8\#PBF LT1996AIDD\#PBF LT1112CN8\#PBF LTC6087CDD\#PBF

LT1078S8\#PBF

