intersil

+1.62V to +5.5V, 5』, Single SPST Analog Switches

ISL54501, ISL54502

The Intersil ISL54501 and ISL54502 devices are low ON-resistance, low voltage, bi-directional, single pole/single throw (SPST) analog switches designed to operate from a single +1.62 V to +5.5 V supply. Targeted applications include battery powered equipment that benefit from low ron resistance (5Ω), excellent ron flatness, and fast switching speeds ($\mathrm{t}_{\mathrm{ON}}=22 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=15 \mathrm{~ns}$). The digital logic input is 1.8 V CMOS compatible when using a single +3 V supply.

Cell phones, for example, often face ASIC functionality limitations. The number of analog input or GPIO pins may be limited and digital geometries are not well suited to analog switch performance. This family of parts may be used to switch in additional functionality while reducing ASIC design risk. The ISL54501, ISL54502 are offered in a 6 Ld $1.2 \mathrm{~mm} \times 1.0 \mathrm{~mm} \times 0.4 \mathrm{~mm}$ pitch μ TDFN package, alleviating board space limitations.

The ISL54501 has one normally open (NO) switch and ISL54502 has one normally closed (NC) switch.
table 1. features at a glance

	ISL54501	ISL54502
NUMBER OF SWITCHES	1	1
SW	NO	NC
1.8 Vr raN	12Ω	12Ω
$1.8 \mathrm{~V} \mathrm{t}_{\text {ON }} / \mathrm{t}_{\text {OFF }}$	70ns/52ns	70ns/52ns
3 Vron	6.0Ω	6.0Ω
$3 \mathrm{~V}_{\text {ON }} / \mathrm{t}_{\text {OFF }}$	30ns/20ns	$30 \mathrm{~ns} / 20 \mathrm{~ns}$
5 Vr	5.0Ω	5.0Ω
$5 \mathrm{~V}_{\text {ON }} / \mathrm{t}_{\text {OFF }}$	22ns/15ns	$22 \mathrm{~ns} / 15 \mathrm{~ns}$
Packages	6 Ld μ TDFN, 6 Ld SOT-23	

Features

- ON-resistance (ron)
- $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$... 5.0Ω
- $V_{C C}=+3.0 \mathrm{~V}$... 7.0Ω
- $\mathrm{V}_{\mathrm{CC}}=+1.8 \mathrm{~V}$.. 13Ω
- ron Flatness (+4.5V Supply) . 1.1Ω
- Single Supply Operation. +1.62 V to +5.5 V
- Fast Switching Action (+4.5V Supply)

- ESD HBM Rating . 6kV
- 1.8V CMOS Logic Compatible (+3V supply)
- Available in 6 Ld μ TDFN and 6 Ld SOT- 23 Packages
- Pb-free Available (RoHS compliant)

Applications

- Battery powered, handheld, and portable equipment
- Cellular/mobile phones
- Pagers
- Laptops, notebooks, palmtops
- Portable Test and Measurement
- Medical Equipment
- Audio and video switching

Related Literature

- Technical Brief TB363 "Guidelines for Handling and Processing Moisture Sensitive Surface Mount Devices (SMDs)"

Ordering Information

PART NUMBER (Notes 1, 4)	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE (Tape and Reel) (Pb-Free)	PKG. DWG. \#
ISL54501IRUZ-T (Note 2)	1	-40 to +85	6 Ld μ TDFN	L6.1.2×1.0A
ISL54501IHZ-T (Note 3)	4501	-40 to +85	6 Ld SOT-23	P6.064A
ISL54502IRUZ-T (Note 2)	2	-40 to +85	6 Ld μ TDFN	L6.1.2x1.0A
ISL54502IHZ-T (Note 3)	4502	-40 to +85	6 Ld SOT-23	P6.064A

NOTES:

1. Please refer to TB 347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL54501, ISL54502. For more information on MSL please see techbrief TB363.

Pin Configurations (Note 5)

ISL54501
(6 LD SOT-23) TOP VIEW

NOTE:
5. Switches Shown for Logic "0" Input.

Pin Descriptions

PIN	FUNCTION
V+	System Power Supply Input (+1.62V to +5.5V)
GND	Ground Connection
IN	Digital Control Input
COM	Analog Switch Common Pin
NO	Analog Switch Normally Open Pin
NC	Analog Switch Normally Closed Pin
N.C.	No Connect

Truth Table

LOGIC	ISL54501	ISL54502
0	Off	On
1	On	Off

NOTE: Logic " 0 " $\leq 0.5 \mathrm{~V}$. Logic " 1 " $\geq 1.4 \mathrm{~V}$ with a 3 V supply.

ISL54501, ISL54502

Absolute Maximum Ratings

V+ to GND .as
Input Voltages
NO, NC, IN (Note 6). -0.5V to ((V+) + 0.5V)
Output Voltages
COM (Note 6). -0.5V to ((V+) + 0.5V)
Continuous Current NO, NC, or COM . $\pm 300 \mathrm{~mA}$
Peak Current NO, NC, or COM
(Pulsed 1ms, 10\% Duty Cycle, Max) . $\pm 600 \mathrm{~mA}$
ESD Rating
Human Body Model . >6kV
Machine Model . >200V
Charged Device Model. >2.2kV

Thermal Information

Thermal Resistance (Typical)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right.$)	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
6 Ld μ TDFN Pkg. (Notes 7, 9) .	239.2	111.6
6 Ld SOT-23 Pkg. (Note 8, 9).	260	120
Maximum Junction Temperature (Plastic Package) $+150^{\circ} \mathrm{C}$		
Maximum Storage Temperature Range................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Pb-free Reflow Profile http://www.intersil.com/pb	eReflow	see link below

Operating Conditions

V+ (Positive DC Supply Voltage) $1.8 \mathrm{~V} \pm 10 \%$ to $5.0 \mathrm{~V} \pm 10 \%$
Analog Signal Range . OV to V+
$\mathrm{V}_{\text {IN }}$ (Digital Logic Input Voltage (IN) . OV to V+
Temperature Range . $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:
6. Signals on NC, NO, IN, or COM exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to maximum current ratings.
7. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features. See Tech Brief TB379.
8. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
9. For θ_{Jc}, the "case temp" location is the center of the exposed metal pad on the package underside.

Electrical Specifications - 5V Supply Test Conditions: $\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 10), Unless Otherwise Specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	MIN (Notes 11, 12)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 11, 12) } \end{gathered}$	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, V ${ }_{\text {ANALOG }}$		Full	0	-	V+	V
ON-Resistance, ron	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V}$ to $\mathrm{V}+$, (Note 14, see Figure 4)	25	-	4.2	5	Ω
		Full	-	-	6	Ω
$\mathrm{r}_{\text {ON }}$ Flatness, $\mathrm{r}_{\text {FLAT }}$ (ON)	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{OV} \text { to } \mathrm{V}+\text {, } \\ & (\text { Notes } 13,14) \end{aligned}$	25	-	1.1	1.3	Ω
		Full	-	-	1.5	Ω
NO or NC OFF Leakage Current, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=5 \mathrm{~V}, 0.3 \mathrm{~V}$	25	-25	1.2	25	nA
		Full	-150	-	150	nA
COM ON Leakage Current, ICOM(ON)	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 5 \mathrm{~V}$, or V_{NO} or $\mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V}, 5 \mathrm{~V}$, or Floating	25	-30	1.7	30	nA
		Full	-300	-	300	nA
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ${ }_{\text {ON }}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (see Figure 1, Note 14)	25	-	22	-	ns
		Full	-	23	-	ns
Turn-OFF Time, ${ }_{\text {OFF }}$	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (see Figure 1, Note 14)	25	-	15	-	ns
		Full	-	15	-	ns
Break-Before-Make Time Delay, t_{D}	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (see Figure 3, Note 14)	Full	-	18	-	ns
Charge Injection, Q	$\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ (see Figure 2)	25	-	16	-	pC
OFF-Isolation	$\begin{aligned} & \mathrm{L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \\ & \text { (see Figure 3) } \end{aligned}$	25	-	75	-	dB
Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\text {COM }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=32 \Omega$	25	-	0.12	-	\%
Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\text {COM }}=2 \mathrm{~V}_{\text {P-P }}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	25	-	0.01	-	\%
-3dB Bandwidth	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	25	-	350	-	MHz
NO or NC OFF Capacitance, C OFF	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V}$ (see Figure 5)	25	-	6	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM(ON) }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0 \mathrm{~V} \\ & \text { (see Figure 5) } \end{aligned}$	25	-	12	-	pF

ISL54501, ISL54502

Electrical Specifications - 5V Supply Test Conditions: $\mathrm{V}+=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$ (Note 10), Unless Otherwise Specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (Continued)

PARAMETER	TEST CONDITIONS	TEMP ($\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { MIN } \\ \text { (Notes 11, 12) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 11, 12) } \end{gathered}$	UNITS
POWER SUPPLY CHARACTERISTICS						
Power Supply Range		Full	1.62	-	5.5	V
Positive Supply Current, I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$	25	-	0.02	0.1	$\mu \mathrm{A}$
		Full	-	0.5	2.5	$\mu \mathrm{A}$
DIGITAL INPUT CHARACTERISTICS						
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	-	-	0.8	V
Input Voltage High, $\mathrm{V}_{\text {INH }}$		Full	2.4	-	-	V
Input Current, $\mathrm{I}_{\text {INH, }}$, $\mathrm{I}^{\text {NL }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.1	0.044	0.1	$\mu \mathrm{A}$

Electrical Specifications - 3V Supply Test Conditions: $\mathrm{V}+=+2.7 \mathrm{~V}$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.5 \mathrm{~V}$ (Note 10), Unless Otherwise Specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	MIN (Notes 11, 12)	TYP	MAX (Notes 11, 12)	UNITS

ANALOG SWITCH CHARACTERISTICS

Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON-Resistance, ron	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \text {, } \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{OV} \text { to } \mathrm{V}+\text {, } \\ & \text { (Note } 14 \text {, see Figure } 4 \text {) } \end{aligned}$	25	-	6.3	7	Ω
		Full	-	-	8	Ω
$\mathrm{r}_{\text {ON }}$ Flatness, $\mathrm{r}_{\text {FLAT }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=\mathrm{oV} \text { to } \mathrm{V}+\text {, } \\ & \text { (Notes } 13,14 \text {) } \end{aligned}$	25	-	1.8	2.3	Ω
		Full	-	-	2.5	Ω
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ${ }^{\text {O }}$ N	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{v}_{\mathrm{NO}} \text { or } \mathrm{v}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (see Figure 1, Note 8) } \end{aligned}$	25	-	28	-	ns
		Full	-	30	-	ns
Turn-OFF Time, $\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{v}_{\mathrm{NO}} \text { or } \mathrm{v}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (see Figure 1, Note 14) } \end{aligned}$	25	-	20	-	ns
		Full	-	30	-	ns
Charge Injection, Q	$\mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ (see Figure 2)	25	-	12	-	pC
OFF-Isolation	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P} \\ & (\text { see Figure 3) } \end{aligned}$	25	-	75	-	dB
Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\text {COM }}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=32 \Omega$	25	-	0.4	-	\%
Total Harmonic Distortion	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\text {COM }}=2 \mathrm{~V}_{\text {P-P, }}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	25	-	0.053	-	\%
-3dB Bandwidth	Signal $=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	25	-	350	-	MHz
NO or NC OFF Capacitance, CofF	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$ (see Figure 5)	25	-	6	-	pF
COM OFF Capacitance, $\mathrm{C}_{\text {COM(OFF) }}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\text {COM }}=0 \mathrm{~V}$ (see Figure 5)	25	-	10	-	pF
COM ON Capacitance, $\mathrm{C}_{\text {COM }}$ (ON)	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\text {com }}=0 \mathrm{~V}$ (see Figure 5)	25	-	12	-	pF
POWER SUPPLY CHARACTERISTICS						
Positive Supply Current, I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$	25	-	0.02	-	$\mu \mathrm{A}$
		Full	-	0.11	-	$\mu \mathrm{A}$
DIGITAL INPUT CHARACTERISTICS						
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	-	-	0.5	v
Input Voltage High, $\mathrm{V}_{\text {INH }}$		Full	1.4	-	-	v
Input Current, $\mathrm{l}_{\mathrm{INH}}, \mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$	Full	-0.1	0.049	0.1	$\mu \mathrm{A}$

Electrical Specifications-1.8V Supply Test Conditions: $\mathrm{V}+=+1.8 \mathrm{~V}, \mathrm{GND}=\mathrm{oV}, \mathrm{V}_{\mathrm{INH}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.4 \mathrm{~V}$ (Note 10),
Unless Otherwise Specified. Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PARAMETER	TEST CONDITIONS	TEMP ($\left.{ }^{\circ} \mathrm{C}\right)$	MIN (Notes 11, 12)	TYP	$\begin{gathered} \text { MAX } \\ \text { (Notes 11, 12) } \end{gathered}$	UNITS
ANALOG SWITCH CHARACTERISTICS						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	0	-	V+	V
ON-Resistance, ron	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \mathrm{~V} \text { to } \mathrm{V}+$ (Note 14, see Figure 4)	25	-	11.9	12.8	Ω
		Full	-	-	13.8	Ω
DYNAMIC CHARACTERISTICS						
Turn-ON Time, $\mathrm{t}_{\text {ON }}$	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (see Figure 1, Note 14)	25	-	70	-	ns
		Full	-	130	-	ns
Turn-OFF Time, ${ }^{\text {toFF }}$	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}$ or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (see Figure 1, Note 14)	25	-	52	-	ns
		Full	-	100	-	ns
Charge Injection, Q	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}+/ 2, \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}$ (see Figure 2)	25	-	5.8	-	pC
DIGITAL INPUT CHARACTERISTICS						
Input Voltage Low, $\mathrm{V}_{\text {INL }}$		Full	-	-	0.4	V
Input Voltage High, VINH		Full	1	-	-	V

NOTES:
10. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
11. The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
12. Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.
13. Flatness is defined as the difference between maximum and minimum value of on-resistance over the specified analog signal range.
14. Limits established by characterization and are not production tested.

Test Circuits and Waveforms

Logic input waveform is inverted for switches that have the opposite logic sense.

Repeat test for all switches. C_{L} includes fixture and stray capacitance.

$$
V_{\text {OUT }}=V_{(N O \text { or } N C)} \frac{R_{L}}{R_{L}+r_{(O N)}}
$$

FIGURE 1B. TEST CIRCUIT

FIGURE 1. SWITCHING TIMES

Test Circuits and Waveforms (continued)

FIGURE 2. CHARGE INJECTION

FIGURE 3. OFF ISOLATION TEST CIRCUIT
FIGURE 4. ron TEST CIRCUIT

FIGURE 5. CAPACITANCE TEST CIRCUIT

Detailed Description

The ISL54501 and ISL54502 are bi-directional, single pole/single throw (SPST) analog switches. They offer precise switching capability from a single 1.62 V to 5.5 V supply with low ON-resistance and high speed operation. With a single supply of 5 V the typical 0 N -resistance is only 5Ω, with a typical turn-on and turn-off time of: $\mathrm{t}_{\mathrm{ON}}=22 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=15 \mathrm{~ns}$. The devices are especially well suited for portable battery powered equipment due to their low operating supply voltage (1.62V), low power consumption $(0.11 \mu \mathrm{~W})$, low leakage currents (300nA max), and tiny μ TDFN package.

The ISL54501 is a single normally open (NO) SPST analog switch. The ISL54502 is a single normally closed (NC) SPST analog switch.

External V+ Series Resistor

For improved ESD and latch-up immunity, Intersil recommends adding a 100Ω resistor in series with the $V+$ power supply pin of the ISL54501, ISL54502 IC (see Figure 6).

During an overvoltage transient event (such as occurs during system level IEC 61000 ESD testing), substrate currents can be generated in the IC that can trigger parasitic SCR structures to turn ON, creating a low impedance path from the V+ power supply to ground. This will result in a significant amount of current flow in the IC, which can potentially create a latch-up state or permanently damage the IC. The external V+ resistor limits the current during this over-stress situation and has been found to prevent latch-up or destructive damage for many over voltage transient events.

Under normal operation the sub-microamp IDD current of the IC produces an insignificant voltage drop across the 100Ω series resistor resulting in no impact to switch operation or performance.

FIGURE 6. V+ SERIES RESISTOR FOR ENHANCED ESD AND LATCH-UP IMMUNITY

Supply Sequencing And Overvoltage Protection

With any CMOS device, proper power supply sequencing is required to protect the device from excessive input currents, which might permanently damage the IC. All I/O pins contain ESD protection diodes from the pin to $\mathrm{V}+$ and to GND (see

Figure 7). To prevent forward biasing these diodes, $\mathrm{V}+$ must be applied before any input signals, and the input signal voltages must remain between V+ and GND.

If these conditions cannot be guaranteed then precautions must be implemented to prohibit the current and voltage at the logic pin and signal pins from exceeding the maximum ratings of the switch. The following two methods can be used to provided additional protection to limit the current in the event that the voltage at a signal pin or logic pin goes below ground or above the V+ rail.

Logic inputs can easily be protected by adding a $1 \mathrm{k} \Omega$ resistor in series with the input (see Figure 7). The resistor limits the input current below the threshold that produces permanent damage, and the sub-microamp input current produces an insignificant voltage drop during normal operation.

This method is not acceptable for the signal path inputs. Adding a series resistor to the switch input defeats the purpose of using a low ron switch. Connecting Schottky diodes to the signal pins (as shown in Figure 9) will shunt the fault current to the supply or to ground, thereby protecting the switch. These Schottky diodes must be sized to handle the expected fault current.

FIGURE 7. OVERVOLTAGE PROTECTION

Power-Supply Considerations

The ISL54501, ISL54502 construction is typical of most single supply CMOS analog switches in that they have two supply pins: V+ and GND. V+ and GND drive the internal CMOS switches and set their analog voltage limits. Unlike switches with a 4 V maximum supply voltage, the ISL54501, ISL54502 5.5 V maximum supply voltage provides plenty of room for the 10% tolerance of 3.6 V supplies, as well as room for overshoot and noise spikes.

The minimum recommended supply voltage is $1.8 \mathrm{~V} \pm 10 \%$ but the part will operate with a supply below 1.62 V . It is important to note that the input signal range, switching times, and ON-resistance degrade at lower supply voltages. Refer to the "Electrical Specifications" tables starting on page 4 the and "Typical Performance Curves" starting on page 9 for details.

V+ and GND also power the internal logic and level shiftier. The level shiftier converts the input logic levels to switched V+ and GND signals to drive the analog switch gate terminals.
This family of switches cannot be operated with bipolar supplies, because the input switching point becomes negative in this configuration.

Logic-Level Thresholds

This switch family is 1.8 V CMOS compatible (0.5 V and 1.4 V) over a supply range of 2 V to 3.6 V (see Figure 14). At 3.6 V the V_{IH} level is about 0.98 V . This is still below the 1.8 V CMOS guaranteed high output minimum level of 1.4 V , but noise margin is reduced.
The digital input stages draw supply current whenever the digital input voltage is not at one of the supply rails. Driving the digital input signals from GND to $\mathrm{V}+$ with a fast transition time minimizes power dissipation.

High-Frequency Performance

In 50Ω systems, the ISL54501, ISL54502 has a -3dB bandwidth of 350 MHz (see Figure 15). The frequency response is very consistent over a wide $\mathrm{V}+$ range, and for varying analog signal levels.
An OFF switch behaves like a capacitor and passes higher frequencies with less attenuation, resulting in signal
feedthrough from a switch's input to output. Off isolation is the resistance of this signal feedthrough. Figure 16 details the high off isolation provided by the ISL54501, ISL54502. At 1 MHz , off isolation is about 75 dB in 50Ω systems, decreasing approximately 20 dB per decade as frequency increases. Higher load impedances decrease off isolation due to the voltage divider action of the switch OFF impedance and the load impedance.

Leakage Considerations

Reverse ESD protection diodes are internally connected between each analog-signal pin and both V+ and GND. One of these diodes conducts if any analog signal exceeds $\mathrm{V}+$ or GND.
Virtually all the analog leakage current comes from the ESD diodes to V+ or GND. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V+ or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity. There is no connection between the analog signal paths and $\mathrm{V}+$ or GND.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless otherwise Specfified

FIGURE 8. ON-RESISTANCE vs SUPPLY VOLTAGE vs SWITCH VOLTAGE

FIGURE 9. ON-RESISTANCE vs SWITCH VOLTAGE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 10. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 12. TURN-ON TIME vs SUPPLY VOLTAGE

FIGURE 14. DIGITAL SWITCHING POINT vs SUPPLY VOLTAGE

FIGURE 11. ON-RESISTANCE vs SWITCH VOLTAGE

FIGURE 13. TURN-OFF TIME vs SUPPLY VOLTAGE

FIGURE 15. FREQUENCY RESPONSE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 16. OFF ISOLATION

FIGURE 17. CHARGE INJECTION vs SWITCH VOLTAGE

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):

GND

TRANSISTOR COUNT:

57

PROCESS:

Submicron CMOS

Ultra Thin Dual Flat No-Lead Plastic Package (UTDFN)

L6.1.2x1.0A
6 LEAD ULTRA THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE

SYMBOL	MILLIMETERS			NOTES
	MIN	NOMINAL	MAX	
A	0.45	0.50	0.55	-
A1	-	-	0.05	-
A3	0.127 REF			-
b	0.15	0.20	0.25	5
D	0.95	1.00	1.05	-
E	1.15	1.20	1.25	-
e	0.40 BSC			-
L	0.30	0.35	0.40	-
L1	0.40	0.45	0.50	-
N	6			2
Ne	3			3
θ	0	-	12	4

Rev. 2 8/06
NOTES:

1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Ne refers to the number of terminals on E side.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip.
6. The configuration of the pin \#1 identifier is optional, but must be located within the zone indicated. The pin \#1 identifier may be either a mold or mark feature.
7. Maximum package warpage is 0.05 mm .
8. Maximum allowable burrs is 0.076 mm in all directions.
9. JEDEC Reference MO-255.
10. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389.

LAND PATTERN 10

Package Outline Drawing

P6.064A

6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 0, $2 / 10$

TYPICAL RECOMMENDED LAND PATTERN

END VIEW

NOTES:

1. Dimensions are in millimeters.

Dimensions in () for Reference Only.
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
3. Dimension is exclusive of mold flash, protrusions or gate burrs.
4. Foot length is measured at reference to guage plane.
5. This dimension is measured at Datum " H ".
6. Package conforms to JEDEC MO-178AA.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG
NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

