# **inter<sub>sil</sub>**"

## DATASHEET

### ISL71831SEH

Radiation Hardened 5V 32-Channel Analog Multiplexer

FN8759 Rev 4.00 Mar 14, 2018

The <u>ISL71831SEH</u> is a radiation tolerant, 32-channel multiplexer that is fabricated using the Renesas proprietary P6-S0I process technology to provide excellent latch-up performance. It operates with a single supply range from 3V to 5.5V and has a 5-bit address line plus an enable that can be driven with adjustable logic thresholds to conveniently select one of 32 available channels. An inactive channel is separated from the active channel by a high impedance, which inhibits any interaction between them.

The ISL71831SEH's low  $r_{DS(ON)}$  allows for improved signal integrity and reduced power losses. The ISL71831SEH is also designed for cold sparing, making it excellent for redundancy in high reliability applications. It is designed to provide a high impedance to the analog source in a powered off condition, making it easy to add additional backup devices without incurring extra power dissipation. The ISL71831SEH also has analog overvoltage protection on the input that disables the switch during an overvoltage event to protect upstream and downstream devices.

The ISL71831SEH is available in a 48 Ld CQFP and operates across the extended temperature range of -55  $^{\circ}$ C to +125  $^{\circ}$ C.

There is also a 16-channel version available offered in a 28 Ld CDFP. Refer to the <u>ISL71830SEH</u> datasheet for more information. For a list of differences, refer to <u>Table 1 on</u> page 2.

### **Related Literature**

For a full list of related documents, visit our website

• ISL71831SEH product page

### **Features**

- DLA SMD# <u>5962-15248</u>
- Fabricated using P6 SOI process technology
- Rail-to-rail operation
- No latch-up
- Low r<sub>DS(ON)</sub>.....<120Ω (maximum)
- Single supply operation ...... 3V to 5.5V
- Adjustable logic threshold control
- Cold sparing capable .....-0.4V to 7V
- Analog overvoltage range .....-0.4V to 7V
- Switch input off leakage ......120nA
- Internally grounded metal lid
- Break-before-make switching
- ESD protection ≥5kV (HBM)
- Operating temperature range......55°C to +125°C
- Radiation tolerance
- Low dose rate (0.01rad(Si)/s)  $\ldots\ldots..75krad(Si)$
- SEL/SEB LET<sub>TH</sub> (V<sup>+</sup> = 6.3V).....60MeV cm<sup>2</sup>/mg

NOTE: All lots are assurance tested to 75krad (0.01rad(Si)/s) wafer-by-wafer.

### **Applications**

- Telemetry signal processing
- Harsh environments
- Down-hole drilling

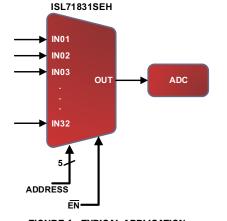
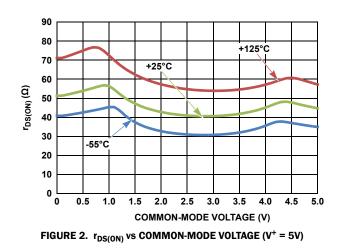




FIGURE 1. TYPICAL APPLICATION



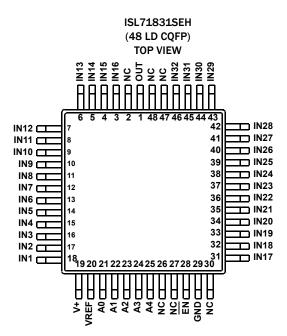
### **Ordering Information**

| ORDERING NUMBER<br>( <u>Note 2</u> ) | PART NUMBER<br>(Note 1)      | TEMP RANGE<br>(°C) | PACKAGE<br>(RoHS COMPLIANT) | PKG.<br>DWG. # |
|--------------------------------------|------------------------------|--------------------|-----------------------------|----------------|
| 5962L1524801VXC                      | ISL71831SEHVF                | -55 to +125        | 48 Ld CQFP                  | R48.A          |
| N/A                                  | ISL71831SEHF/PROTO (Note 3)  | -55 to +125        | 48 Ld CQFP                  | R48.A          |
| 5962L1524801V9A                      | ISL71831SEHVX                | -55 to +125        | DIE                         |                |
| N/A                                  | ISL71831SEHX/SAMPLE (Note 3) | -55 to +125        | DIE                         |                |
| N/A                                  | ISL71831SEHEV1Z (Note 4)     | Evaluation Board   | ·                           |                |

NOTES:

1. These Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.

2. Specifications for Rad Hard QML devices are controlled by the Defense Logistics Agency Land and Maritime (DLA). The SMD numbers listed must be used when ordering.


3. The /PROTO and /SAMPLE are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity. These parts are intended for engineering evaluation purposes only. The /PROTO parts meet the electrical limits and conditions across the temperature range specified in the DLA SMD and are in the same form and fit as the qualified device. The /SAMPLE die is capable of meeting the electrical limits and conditions specified in the DLA SMD at +25°C only. The /SAMPLE is a die and does not receive 100% screening across the temperature range to the DLA SMD electrical limits. These part types do not come with a certificate of conformance because there is no radiation assurance testing and they are not DLA qualified devices.

4. Evaluation board uses the /PROTO parts. The /PROTO parts are not rated or certified for Total Ionizing Dose (TID) or Single Event Effect (SEE) immunity.

#### TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS

| PART NUMBER NUMBER OF CHANNELS |               | OUTPUT LEAKAGE | PACKAGE    |
|--------------------------------|---------------|----------------|------------|
| ISL71830SEH                    | SL71830SEH 16 |                | 28 Ld CDFP |
| ISL71831SEH                    | 32            | 120nA          | 48 Ld CQFP |

### **Pin Configuration**



### **Pin Descriptions**

| PIN NAME | ESD CIRCUIT | PIN NUMBER                                                                                                                    | DESCRIPTION                                         |
|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| OUT      | 2           | 1                                                                                                                             | Output for multiplexer                              |
| V+       | 1           | 19                                                                                                                            | Positive power supply                               |
| INx      | 1           | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,<br>17, 18, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,<br>41, 42, 43, 44, 45, 46 | Inputs for multiplexer                              |
| Ax       | 1           | 21, 22, 23, 24, 25                                                                                                            | Address lines for multiplexer                       |
| EN       | 1           | 28                                                                                                                            | Enable control for multiplexer (active low)         |
| VREF     | 1           | 20                                                                                                                            | Reference voltage used to set logic thresholds      |
| GND      | -           | 29                                                                                                                            | Ground                                              |
| LID      | -           | -                                                                                                                             | Package lid is internally connected to GND (pin 29) |
| NC       | -           | 2, 26, 27, 30, 47, 48                                                                                                         | Not electrically connected                          |
|          |             | 9V CLAMP<br>GND<br>CIRCUIT 1                                                                                                  | PIN #                                               |

#### **Absolute Maximum Ratings**

| Maximum Supply Voltage (V <sup>+</sup> to GND)7V                      |
|-----------------------------------------------------------------------|
| Maximum Supply Voltage (V+ to GND) ( <u>Note 7</u> )6.3V              |
| Analog Input Voltage Range (INX)                                      |
| Digital Input Voltage Range (EN, Ax) (GND - 0.4V) to V <sub>REF</sub> |
| VREF to GND                                                           |
| ESD Tolerance                                                         |
| Human Body Model (Tested per MIL-STD-883 TM 3015) 5kV                 |
| Charged Device Model (Tested per JESD22-C101D)                        |
| Machine Model (Tested per JESD22-A115-A)                              |
|                                                                       |

#### **Thermal Information**

| Thermal Resistance (Typical)     | θ <sub>JA</sub> (°C/W) | θ <sub>JC</sub> (°C/W) |
|----------------------------------|------------------------|------------------------|
| 48 Ld CQFP ( <u>Notes 5, 6</u> ) | 59                     | 5                      |
| Storage Temperature Range        | 6                      | 5°C to +150°C          |

#### **Recommended Operating Conditions**

| Ambient Operating Temperature Range      | 55°C to +125°C |
|------------------------------------------|----------------|
| Maximum Operating Junction Temperature . | +150°C         |
| Supply Voltage                           |                |
| V <sub>REF</sub> to GND                  |                |

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

#### NOTES:

5.  $\theta_{JA}$  is measured with the component mounted on a high-effective thermal conductivity test board in free air. See <u>TB379</u> for details.

- 6. For  $\theta_{\text{JC}}$  the "case temp" location is the center of the package underside.
- 7. Tested in a heavy ion environment at LET = 60MeV  $\bullet$  cm²/mg at +125 °C.

### **Electrical Specifications (V<sup>+</sup> = 5V)** GND = 0V, $V_{REF}$ = 3.3V, $V_{IH}$ = 3.3V, $V_{IL}$ = 0V, $T_A$ = +25°C, unless otherwise noted.

Boldface limits apply across the operating temperature range, -55°C to +125°C.; over a total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.

| PARAMETER                                                        | SYMBOL                     | TEST CONDITIONS                                                                                                             | MIN<br>( <u>Note 8</u> ) | ТҮР | MAX<br>( <u>Note 8</u> ) | UNIT |
|------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|--------------------------|------|
| Analog Input Signal Range                                        | V <sub>IN</sub>            |                                                                                                                             | 0                        |     | V+                       | v    |
| Channel On-Resistance                                            | r <sub>DS(ON)</sub>        | $V^+ = 4.5V$ , $V_{IN} = 0V$ to $V^+$<br>$I_{OUT} = 1mA$                                                                    | -                        | 40  | 120                      | Ω    |
| $r_{DS(ON)}$ Match between Channels                              | $\Delta r_{DS(ON)}$        | $V^+ = 4.5V, V_{IN} = 0V, 2.25V, 4.5V$<br>$I_{OUT} = 1mA$                                                                   | -                        | -   | 5                        | Ω    |
| On-Resistance Flatness                                           | r <sub>FLAT(ON)</sub>      | $V^+ = 4.5V, V_{IN} = 0V \text{ to } V^+$                                                                                   | -                        | -   | 40                       | Ω    |
| Switch Input Off Leakage                                         | I <sub>IN(OFF)</sub>       | V <sup>+</sup> = 5.5V, V <sub>IN</sub> = 5V, Unused inputs and V <sub>OUT</sub> = 0.5V                                      | -30                      | -   | 30                       | nA   |
|                                                                  |                            | $V^+$ = 5.5V, $V_{IN}$ = 0.5V,<br>Unused inputs and $V_{OUT}$ = 5V                                                          | -30                      | -   | 30                       | nA   |
| Switch Input Off Overvoltage Leakage                             | I <sub>IN(OFF-OV)</sub>    | $V^+ = 5.5V, V_{IN} = 7V,$<br>Unused inputs and $V_{OUT} = 0V$<br>$T_A = +25^{\circ}C, -55^{\circ}C$                        | -30                      | -   | 30                       | nA   |
|                                                                  |                            | T <sub>A</sub> = +125°C                                                                                                     | -30                      | -   | 120                      | nA   |
|                                                                  |                            | Post radiation, +25°C                                                                                                       | -30                      | -   | 30                       | nA   |
| Switch Input Off Leakage<br>with Supply Voltage Grounded         | I <sub>IN(POWER-OFF)</sub> | $V_{IN} = 7V, V_{OUT} = 0V$<br>$V^+ = V_{EN} = V_{REF} = 0V$<br>$T_A = +25 °C, -55 °C$                                      | -20                      | -   | 20                       | nA   |
|                                                                  |                            | T <sub>A</sub> = +125°C                                                                                                     | -20                      | -   | 100                      | nA   |
|                                                                  |                            | Post radiation, +25°C                                                                                                       | -20                      | -   | 20                       | nA   |
| Switch Input Off Leakage<br>with Supply Voltage Open             | I <sub>IN(POWER-OFF)</sub> | $V_{IN} = 7V, V_{OUT} = 0V$<br>V <sup>+</sup> = V <sub>EN</sub> = V <sub>REF</sub> = Open,<br>T <sub>A</sub> = +25°C, -55°C | -20                      | -   | 20                       | nA   |
|                                                                  |                            | T <sub>A</sub> = +125°C                                                                                                     | -20                      | -   | 100                      | nA   |
|                                                                  |                            | Post radiation, +25°C                                                                                                       | -20                      | -   | 20                       | nA   |
| Switch On Input Leakage with<br>Overvoltage Applied to the Input | I <sub>IN(ON-OV)</sub>     | V <sup>+</sup> = 5.5V, V <sub>IN</sub> = 7V<br>V <sub>OUT</sub> = Open                                                      | 2.75                     | -   | 5.50                     | μA   |

**Electrical Specifications (V<sup>+</sup> = 5V)** GND = 0V,  $V_{REF}$  = 3.3V,  $V_{IH}$  = 3.3V,  $V_{IL}$  = 0V,  $T_A$  = +25°C, unless otherwise noted. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)

| PARAMETER                                            | SYMBOL                             | TEST CONDITIONS                                                                                                     | MIN<br>( <u>Note 8</u> ) | ТҮР | MAX<br>( <u>Note 8</u> ) | UNIT |
|------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|-----|--------------------------|------|
| Switch Output Off Leakage                            | I <sub>OUT(OFF)</sub>              | V <sup>+</sup> = 5.5V, V <sub>OUT</sub> = 5V<br>All inputs = 0.5V,<br>$T_A = +25$ °C, -55 °C                        | -30                      | -   | 30                       | nA   |
|                                                      |                                    | T <sub>A</sub> = +125°C                                                                                             | 0                        | -   | 200                      | nA   |
|                                                      |                                    | Post radiation, +25°C                                                                                               | -30                      | -   | 30                       | nA   |
|                                                      |                                    | V <sup>+</sup> = 5.5V, V <sub>OUT</sub> = 0.5V<br>All inputs = 5V,<br>$T_A = +25 \degree C$ , -55 °C                | -30                      | -   | 30                       | nA   |
|                                                      |                                    | T <sub>A</sub> = +125°C                                                                                             | -60                      | -   | 0                        | nA   |
|                                                      |                                    | Post radiation, +25°C                                                                                               | -30                      | -   | 30                       | nA   |
| Switch Output Leakage<br>with Switch Enabled         | I <sub>OUT(ON)</sub>               | V <sup>+</sup> = 5.5V, V <sub>IN</sub> = V <sub>OUT</sub> = 5V<br>All unused inputs at 0.5V<br>$T_A$ = +25°C, -55°C | -30                      | -   | 30                       | nA   |
|                                                      |                                    | T <sub>A</sub> = +125°C                                                                                             | 0                        | -   | 200                      | nA   |
|                                                      |                                    | Post radiation, +25°C                                                                                               | -30                      | -   | 30                       | nA   |
|                                                      |                                    | V <sup>+</sup> = 5.5V, V <sub>IN</sub> = V <sub>OUT</sub> = 0.5V<br>All unused inputs at 5V<br>$T_A$ = +25°C, -55°C | -30                      | -   | 30                       | nA   |
|                                                      |                                    | T <sub>A</sub> = +125°C                                                                                             | -60                      | -   | 0                        | nA   |
|                                                      |                                    | Post radiation, +25°C                                                                                               | -30                      | -   | 30                       | nA   |
| Logic Input Voltage High/Low                         | V <sub>IH/L</sub>                  | V <sup>+</sup> = 5.5V<br>V <sub>REF</sub> = 3.3V                                                                    | 1.3                      | -   | 1.6                      | v    |
| Input Current with V <sub>AH,</sub> V <sub>ENH</sub> | I <sub>AH</sub> , I <sub>ENH</sub> | $V^+ = 5.5V$<br>$V_{EN} = V_A = V_{REF}$                                                                            | -0.1                     | -   | 0.1                      | μA   |
| Input Current with V <sub>AL,</sub> V <sub>ENL</sub> | I <sub>AL</sub> , I <sub>ENL</sub> | $V^+ = 5.5V$<br>$V_{EN} = V_A = OV$                                                                                 | -0.1                     | -   | 0.1                      | μA   |
| Quiescent Supply Current                             | I <sub>SUPPLY</sub>                | $V^+ = V_{REF} = V_{EN} = 5.5V$<br>$V_A = 0V, T_A = +25 \circ C, -55 \circ C$                                       | -                        | -   | 100                      | nA   |
|                                                      |                                    | T <sub>A</sub> = +125°C                                                                                             | -                        | -   | 500                      | nA   |
|                                                      |                                    | Post radiation, +25°C                                                                                               | -                        | -   | 300                      | nA   |
| Reference Quiescent Supply Current                   | I <sub>REF</sub>                   | $V^+ = V_{REF} = V_{EN} = 5.5V$<br>$V_A = OV$                                                                       | -                        | -   | 200                      | nA   |
| DYNAMIC                                              |                                    |                                                                                                                     |                          |     |                          |      |
| Addressing Transition Time                           | t <sub>AHL</sub>                   | V <sup>+</sup> = 4.5V; <u>Figure 3</u>                                                                              | 10                       | -   | 70                       | ns   |
| Break-Before-Make Delay                              | t <sub>BBM</sub>                   | V <sup>+</sup> = 4.5V; <u>Figure 5</u>                                                                              | 5                        | 18  | 40                       | ns   |
| Enable Turn-On Time                                  | t <sub>EN(ON)</sub>                | V <sup>+</sup> = 4.5V; <u>Figure 4</u>                                                                              | -                        | -   | 40                       | ns   |
| Enable Turn-Off Time                                 | t <sub>EN(OFF)</sub>               | V <sup>+</sup> = 4.5V; <u>Figure 4</u>                                                                              | -                        | -   | 50                       | ns   |
| Charge Injection                                     | V <sub>CTE</sub>                   | C <sub>L</sub> = 100pF, V <sub>IN</sub> = 0V, <u>Figure 6</u>                                                       | -                        | 1.4 | 5.0                      | pC   |
| Off Isolation                                        | V <sub>ISO</sub>                   | $V_{EN} = V_{REF}$ , $R_L = open$ , $f = 1kHz$                                                                      | 60                       | -   | -                        | dB   |
| Crosstalk                                            | V <sub>CT</sub>                    | $V_{EN} = 0V, f = 1kHz, V_{P-P} = 1V$<br>$R_L = open$                                                               | 73                       | -   | -                        | dB   |
| Input Capacitance                                    | C <sub>IN(OFF)</sub>               | f = 1MHz                                                                                                            | -                        | -   | 5                        | pF   |
| Output Capacitance                                   | C <sub>OUT(OFF)</sub>              | f = 1MHz                                                                                                            | -                        | -   | 25                       | pF   |



**Electrical Specifications (V<sup>+</sup> = 3.3V)** V<sub>REF</sub> = 3.3V, V<sub>IH</sub> = 3.3V, V<sub>IL</sub> = 0V, T<sub>A</sub> = +25°C, unless otherwise noted. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(Si) with exposure at a low dose rate of <10mrad(Si)/s.

| PARAMETER                                                        | SYMBOL                  | CONDITIONS                                                                                                             | MIN<br>(Note 6) | ТҮР | MAX<br>(Note 6) | UNIT |
|------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----------------|------|
| Analog Input Signal Range                                        | V <sub>IN</sub>         |                                                                                                                        | 0               |     | V+              | V    |
| Channel On-Resistance                                            | r <sub>DS(ON)</sub>     | $V^+ = 3V$ , $V_{IN} = 0V$ to $V^+$<br>$I_{OUT} = 1mA$                                                                 | 25              | 70  | 200             | Ω    |
| r <sub>DS(ON)</sub> Match Between Channels                       | $\Delta r_{DS(ON)}$     | $V^+ = 3V, V_{IN} = 0.5V, 2.5V$<br>$I_{OUT} = 1mA$                                                                     | -               | -   | 5               | Ω    |
| On-Resistance Flatness                                           | r <sub>FLAT(ON)</sub>   | $V^+ = 3V$ , $V_{IN} = 0V$ to $V^+$                                                                                    | -               | -   | 50              | Ω    |
| Switch Input Off Leakage                                         | I <sub>IN(OFF)</sub>    | $V^+$ = 3.6V, $V_{IN}$ = 3.1V,<br>Unused inputs and $V_{OUT}$ = 0.5V                                                   | -30             | -   | 30              | nA   |
|                                                                  |                         | $V^+$ = 3.6V, $V_{IN}$ = 0.5V,<br>Unused inputs and $V_{OUT}$ = 3.1V                                                   | -30             | -   | 30              | nA   |
| Switch Input Off Overvoltage Leakage                             | I <sub>IN(OFF-OV)</sub> | $V^+$ = 3.6V, $V_{IN}$ = 7V,<br>Unused inputs and $V_{OUT}$ = 0V,<br>$T_A$ = +25 °C, -55 °C                            | -30             | -   | 30              | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | -30             | -   | 100             | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -30             | -   | 30              | nA   |
| Switch On Input Leakage with<br>Overvoltage Applied to the Input | I <sub>IN(ON-OV)</sub>  | V <sup>+</sup> = 3.6V, V <sub>IN</sub> = 7V<br>V <sub>OUT</sub> = OPEN                                                 | 1.8             | -   | 3.6             | μΑ   |
| Switch Output Off Leakage                                        | I <sub>OUT(OFF)</sub>   | $V^+ = 3.6V, V_{OUT} = 3.1V,$<br>All inputs = 0.5V,<br>$T_A = +25 \degree C, -55 \degree C$                            | -30             | -   | 30              | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | 0               | -   | 120             | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -30             | -   | 30              | nA   |
|                                                                  |                         | $V^+ = 3.6V, V_{OUT} = 0.5V,$<br>All inputs = 3.1V,<br>$T_A = +25 \degree C, -55 \degree C$                            | -30             | -   | 30              | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | 0               | -   | 30              | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -30             | -   | 30              | nA   |
| Switch Output Leakage with Switch<br>Enabled                     | I <sub>OUT(ON)</sub>    | V <sup>+</sup> = 3.6V, V <sub>IN</sub> = V <sub>OUT</sub> = 3.1V<br>All unused inputs at 0.5V,<br>$T_A$ = +25°C, -55°C | -30             | -   | 30              | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | 0               | -   | 120             | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -30             | -   | 30              | nA   |
|                                                                  |                         | V <sup>+</sup> = 3.6V, V <sub>IN</sub> = V <sub>OUT</sub> = 0.5V<br>All unused inputs at 3.1V,<br>$T_A$ = +25°C, -55°C | -30             | -   | 30              | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | 0               | -   | 30              | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -30             | -   | 30              | nA   |
| Quiescent Supply Current                                         | I <sub>SUPPLY</sub>     | $V^+ = V_{REF} = V_{EN} = 3.6V$<br>$V_A = 0V, T_A = +25 °C, -55 °C$                                                    | -               | -   | 100             | nA   |
|                                                                  |                         | T <sub>A</sub> = +125°C                                                                                                | -               | -   | 300             | nA   |
|                                                                  |                         | Post radiation, +25°C                                                                                                  | -               | -   | 300             | nA   |
| Reference Quiescent Supply Current                               | I <sub>REF</sub>        | $V^+ = V_{REF} = V_{EN} = 3.6V, V_A = 0V$                                                                              | -               | -   | 200             | nA   |

**Electrical Specifications (V<sup>+</sup> = 3.3V)** V<sub>REF</sub> = 3.3V, V<sub>IH</sub> = 3.3V, V<sub>IL</sub> = 0V, T<sub>A</sub> = +25°C, unless otherwise noted. Boldface limits apply across the operating temperature range, -55°C to +125°C; over a total ionizing dose of 75krad(SI) with exposure at a low dose rate of <10mrad(Si)/s. (Continued)

| PARAMETER                  | SYMBOL               | CONDITIONS                           | MIN<br>(Note 6) | ТҮР | MAX<br>(Note 6) | UNIT |
|----------------------------|----------------------|--------------------------------------|-----------------|-----|-----------------|------|
| DYNAMIC                    |                      |                                      |                 |     |                 |      |
| Addressing Transition Time | t <sub>AHL</sub>     | V <sup>+</sup> = 3V; <u>Figure 3</u> | 10              | -   | 100             | ns   |
| Break-Before-Make Delay    | t <sub>BBM</sub>     | V <sup>+</sup> = 3V; <u>Figure 5</u> | 5               | 15  | 50              | ns   |
| Enable Turn-On Time        | t <sub>EN(ON)</sub>  | V <sup>+</sup> = 3V; <u>Figure 4</u> | -               | -   | 60              | ns   |
| Enable Turn Off Time       | t <sub>EN(OFF)</sub> | V <sup>+</sup> = 3V; <u>Figure 4</u> | -               | -   | 80              | ns   |

NOTE:

8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

|    |    | 1  | TABLE 2. TRUTH TABL | E  |    |              |
|----|----|----|---------------------|----|----|--------------|
| A4 | A3 | A2 | A1                  | AO | EN | "ON"-CHANNEL |
| х  | x  | x  | x                   | x  | 1  | None         |
| 0  | 0  | 0  | 0                   | 0  | 0  | 1            |
| 0  | 0  | 0  | 0                   | 1  | 0  | 2            |
| 0  | 0  | 0  | 1                   | 0  | 0  | 3            |
| 0  | 0  | 0  | 1                   | 1  | 0  | 4            |
| 0  | 0  | 1  | 0                   | 0  | 0  | 5            |
| 0  | 0  | 1  | 0                   | 1  | 0  | 6            |
| 0  | 0  | 1  | 1                   | 0  | 0  | 7            |
| 0  | 0  | 1  | 1                   | 1  | 0  | 8            |
| 0  | 1  | 0  | 0                   | 0  | 0  | 9            |
| 0  | 1  | 0  | 0                   | 1  | 0  | 10           |
| 0  | 1  | 0  | 1                   | 0  | 0  | 11           |
| 0  | 1  | 0  | 1                   | 1  | 0  | 12           |
| 0  | 1  | 1  | 0                   | 0  | 0  | 13           |
| 0  | 1  | 1  | 0                   | 1  | 0  | 14           |
| 0  | 1  | 1  | 1                   | 0  | 0  | 15           |
| 0  | 1  | 1  | 1                   | 1  | 0  | 16           |
| 1  | 0  | 0  | 0                   | 0  | 0  | 17           |
| 1  | 0  | 0  | 0                   | 1  | 0  | 18           |
| 1  | 0  | 0  | 1                   | 0  | 0  | 19           |
| 1  | 0  | 0  | 1                   | 1  | 0  | 20           |
| 1  | 0  | 1  | 0                   | 0  | 0  | 21           |
| 1  | 0  | 1  | 0                   | 1  | 0  | 22           |
| 1  | 0  | 1  | 1                   | 0  | 0  | 23           |
| 1  | 0  | 1  | 1                   | 1  | 0  | 24           |
| 1  | 1  | 0  | 0                   | 0  | 0  | 25           |
| 1  | 1  | 0  | 0                   | 1  | 0  | 26           |
| 1  | 1  | 0  | 1                   | 0  | 0  | 27           |
| 1  | 1  | 0  | 1                   | 1  | 0  | 28           |
| 1  | 1  | 1  | 0                   | 0  | 0  | 29           |
| 1  | 1  | 1  | 0                   | 1  | 0  | 30           |
| 1  | 1  | 1  | 1                   | 0  | 0  | 31           |
| 1  | 1  | 1  | 1                   | 1  | 0  | 32           |

TABLE 2. TRUTH TABLE

NOTE: X = Don't care, "1" = Logic High, "0" = Logic Low

### **Timing Diagrams**

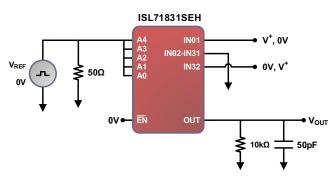



FIGURE 3. ADDRESS TIME TO OUTPUT TEST CIRCUIT

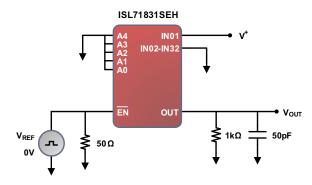



FIGURE 5. TIME TO ENABLE/DISABLE OUTPUT TEST CIRCUIT

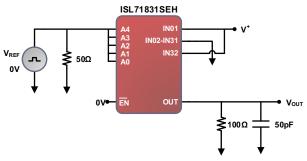
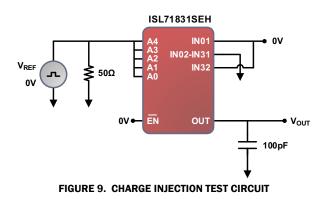




FIGURE 7. BREAK-BEFORE-MAKE TEST CIRCUIT



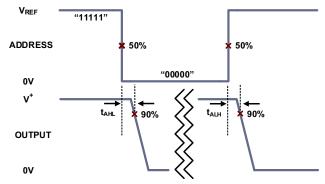



FIGURE 4. ADDRESS TIME TO OUTPUT DIAGRAM

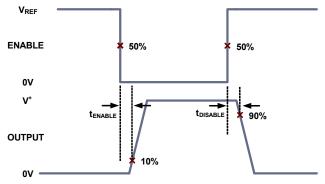



FIGURE 6. TIME TO ENABLE/DISABLE OUTPUT DIAGRAM

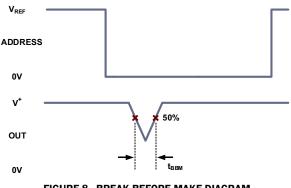



FIGURE 8. BREAK-BEFORE-MAKE DIAGRAM

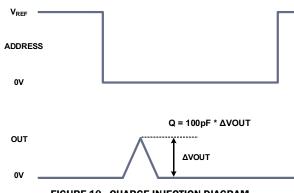



FIGURE 10. CHARGE INJECTION DIAGRAM

### **Typical Performance Curves** $v^+ = 5V$ , $v_{REF} = 3.3V$ , $v_{IN} = 0V$ , $R_L = Open$ , $T_A = +25^{\circ}C$ , unless otherwise



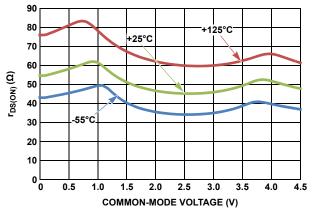



FIGURE 11.  $r_{DS(ON)}$  vs COMMON-MODE VOLTAGE (V<sup>+</sup> = 4.5V)

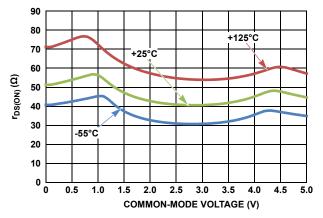



FIGURE 12. r<sub>DS(ON)</sub> vs COMMON-MODE VOLTAGE (V<sup>+</sup> = 5V)

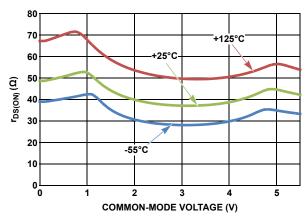



FIGURE 13.  $r_{DS(ON)}$  vs COMMON-MODE VOLTAGE (V<sup>+</sup> = 5.5V)

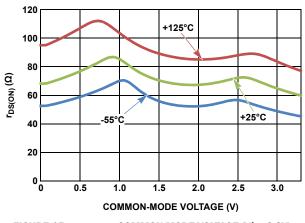



FIGURE 15. r<sub>DS(ON)</sub> vs COMMON-MODE VOLTAGE (V<sup>+</sup> = 3.3V)

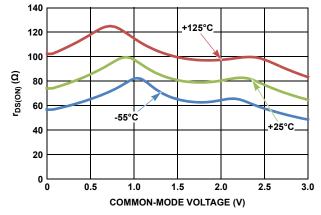
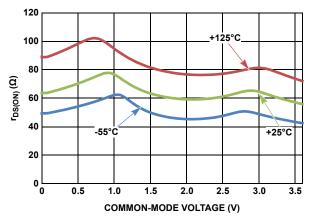




FIGURE 14. r<sub>DS(ON)</sub> vs COMMON-MODE VOLTAGE (V<sup>+</sup> = 3V)





### **Typical Performance Curves** $v^+ = 5V$ , $v_{REF} = 3.3V$ , $v_{IN} = 0V$ , $R_L = Open$ , $T_A = +25^{\circ}C$ , unless otherwise

specified. (Continued)

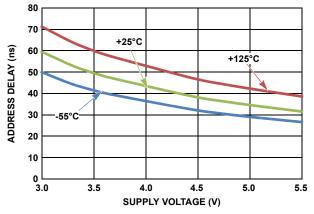



FIGURE 17. ADDRESS PROPAGATION DELAY (HIGH TO LOW)

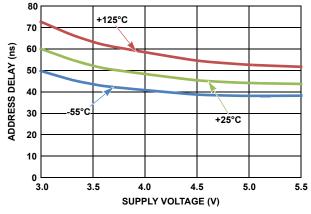
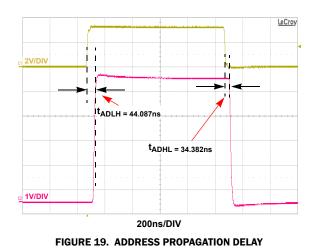




FIGURE 18. ADDRESS PROPAGATION DELAY (LOW TO HIGH)



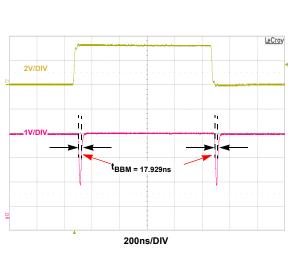
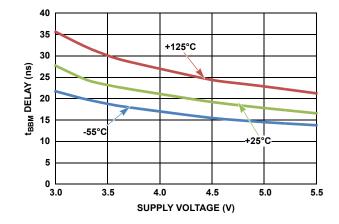
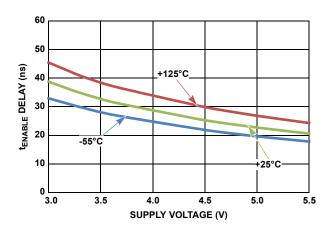





FIGURE 21. BREAK-BEFORE-MAKE DELAY









### **Typical Performance Curves** $v^+ = 5V$ , $v_{REF} = 3.3V$ , $v_{IN} = 0V$ , $R_L = Open$ , $T_A = +25$ °C, unless otherwise

specified. (Continued)

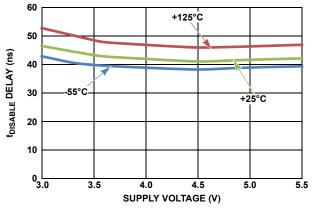



FIGURE 23. DISABLE TO OUTPUT PROPAGATION DELAY

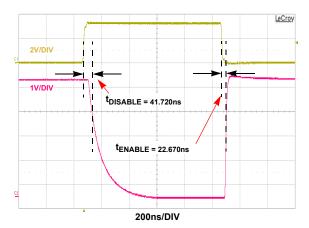



FIGURE 24. ENABLE/DISABLE PROPAGATION DELAY

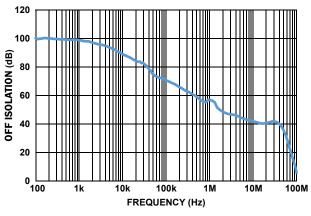



FIGURE 25. OFF ISOLATION (V<sup>+</sup> = 5V, +25 °C,  $R_L$  = 511 $\Omega$ )

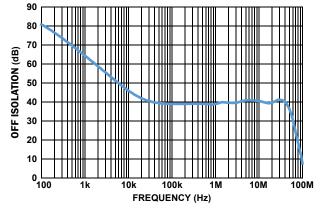
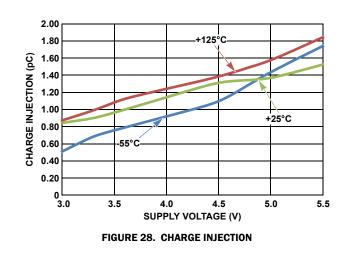
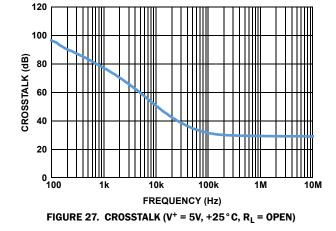
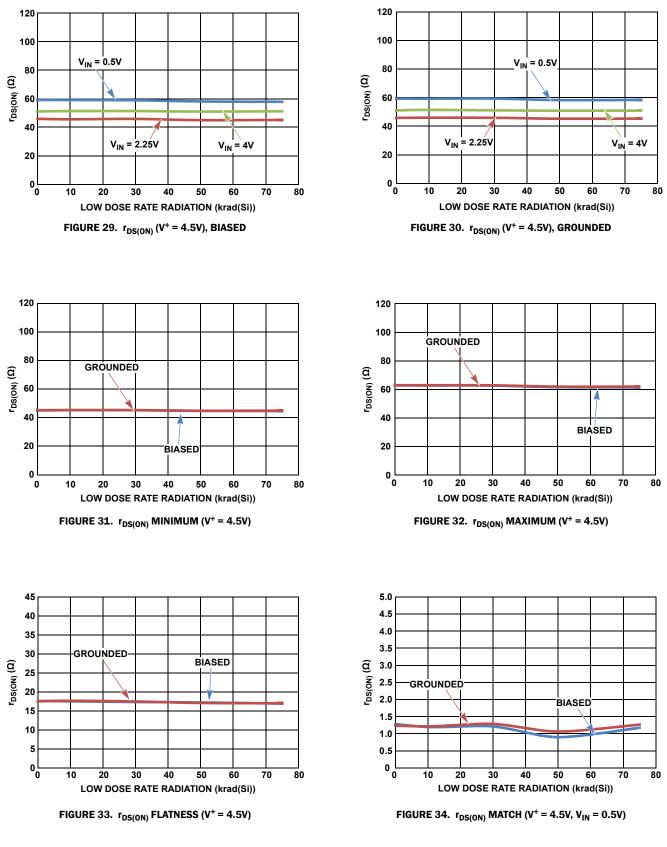
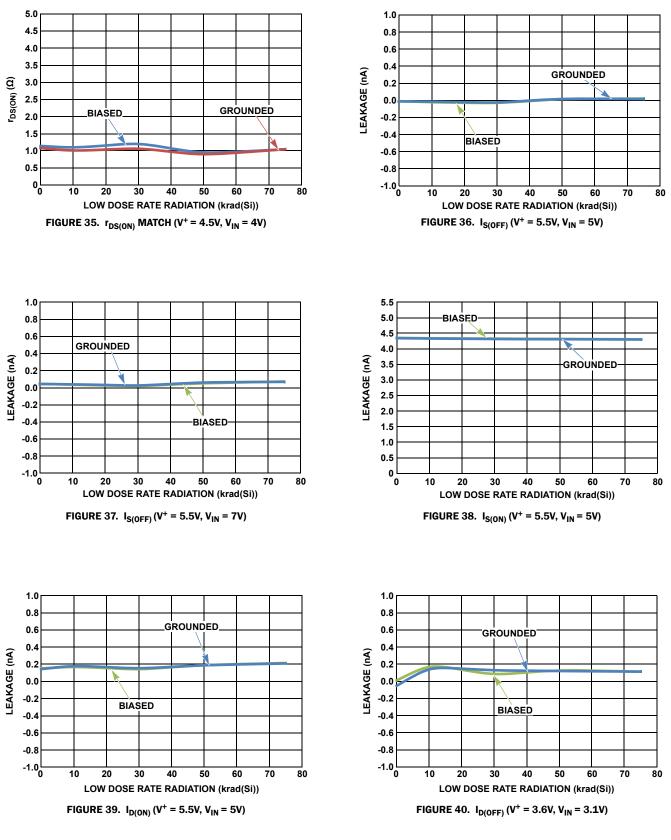





FIGURE 26. OFF ISOLATION (V<sup>+</sup> = 5V, +25°C, R<sub>L</sub>= OPEN)



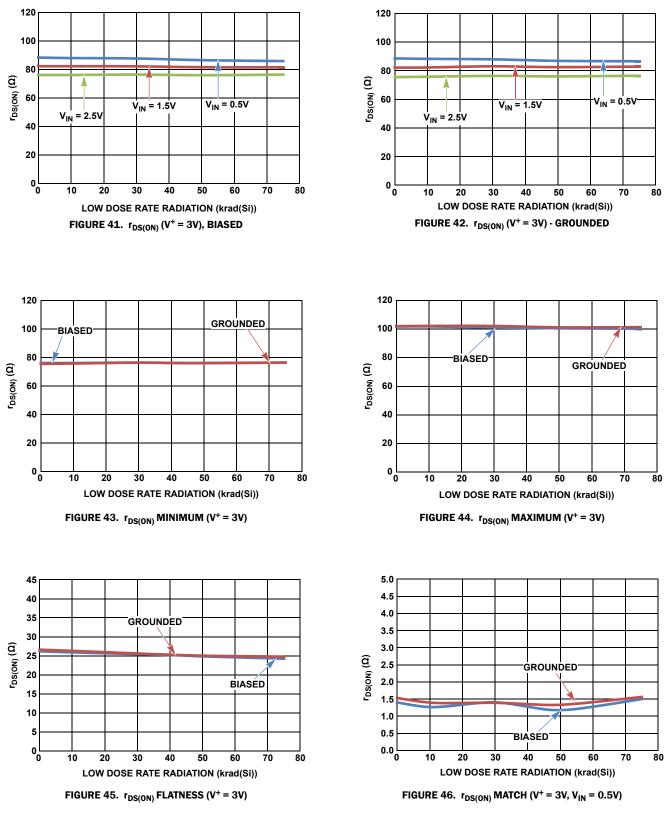



FN8759 Rev 4.00 Mar 14, 2018


### Post Low Dose Rate Radiation Characteristics (V<sup>+</sup> = 5V) Unless otherwise specified,

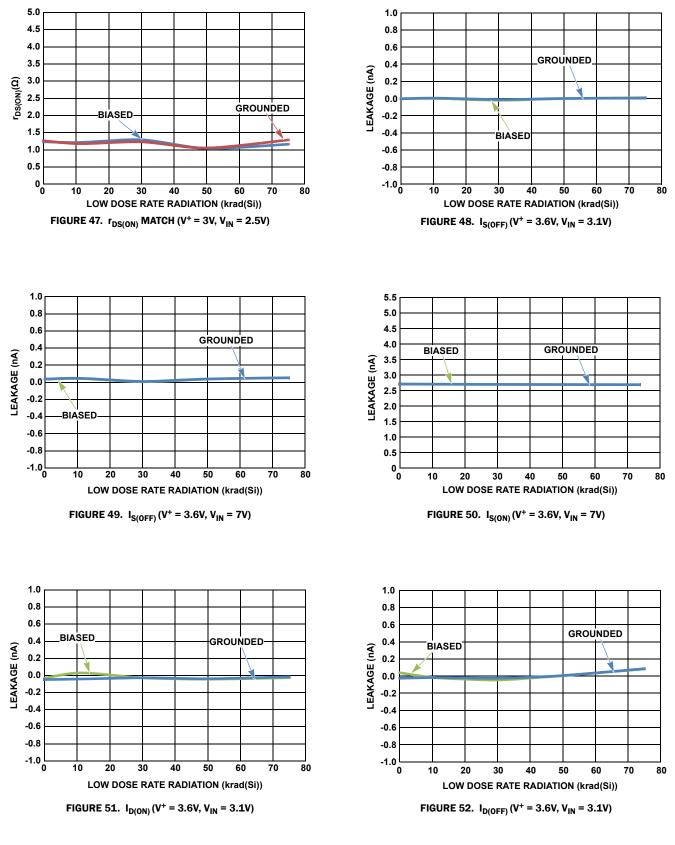
 $V^+ = 5V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $T_A = +25$  °C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed.




### Post Low Dose Rate Radiation Characteristics (V<sup>+</sup> = 5V) Unless otherwise specified,

 $V^+ = 5V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $T_A = +25$ °C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed. (Continued)




# **Post Low Dose Rate Radiation Characteristics (V<sup>+</sup> = 3.3V)** Unless otherwise specified, V<sup>+</sup> = 3.3V, $V_{CM}$ = 0, $V_0$ = 0V, $T_A$ = +25°C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This

data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed.



### Post Low Dose Rate Radiation Characteristics (V<sup>+</sup> = 3.3V) Unless otherwise

specified,  $V^+ = 3.3V$ ,  $V_{CM} = 0$ ,  $V_0 = 0V$ ,  $T_A = +25$ °C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed. (Continued)



### **Applications Information**

#### **Power-Up Considerations**

The circuit is designed to be insensitive to any given power-up sequence between V+ and VREF, however, it is recommended that all supplies power-up relatively close to each other.

#### **Overvoltage Protection**

The ISL71831SEH has overvoltage protection on both the input as well as the output. On the output, the voltage is limited to a diode past the rails. Each of the inputs has independent overvoltage protection that works regardless of the switch being selected. If a switch experiences an overvoltage condition, the switch is turned off. As soon as the voltage returns within the rails, the switch returns to normal operation.

### **VREF and Logic Functionality**

The VREF pin sets the logic threshold for the ISL71831SEH. The range for VREF is between 3V and 5.5V. The switching point is set to around 50% of the voltage presented to VREF. This switching point allows for both 5V and 3.3V logic control.

#### **Considerations for Redundant Applications**

When using the ISL71831SEH in a cold sparing application, it is recommended to keep the ground pin connected to system ground at all times. Both supply pins (V+ and VREF) should either be grounded or floating together.

If the supply pins are floating, it is recommended to place a high value bleed resistor (~1M $\Omega$ ) in parallel with the decoupling capacitors on each supply pin to ensure that the supply voltage is discharged in a predictable manner. Figures 53 and 54 illustrate the recommended cold sparing setup for both shorted or floating supplies.

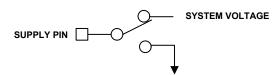
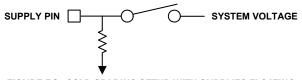




FIGURE 53. COLD SPARING SETUP WITH SUPPLIES SHORTED



#### FIGURE 54. COLD SPARING SETUP WITH SUPPLIES FLOATING

### ISL71830SEH vs ISL71831SEH

A 16-channel version of the ISL71831SEH is available in a 28 Ld CDFP. In terms of performance specs, the parts are very similar in behavior. Apart from the apparent increase in channel density, the ISL71831SEH does have slightly higher output leakage compared to the ISL71830SEH due to having more channels connected to the output. The supply current for the ISL71831SEH is also a bit higher compared to the ISL71830SEH.

### **Die Characteristics**

#### **Die Dimensions**

 $3102\mu m \times 2800\mu m$  (122.1260 mils x 110.2362 mils) Thickness:  $483\mu m \pm 25\mu m$  (19 mils  $\pm 1 mil$ )

#### **Interface Materials**

#### GLASSIVATION

Type: 12kÅ Silicon Nitride on 3kÅ Oxide

#### TOP METALLIZATION

Type: 300Å TiN on 2.8µm AlCu In Bondpads, TiN has been removed.

#### **BACKSIDE FINISH**

Silicon

#### PROCESS

P6SOI

### **Metalization Mask Layout**

### **Assembly Related Information**

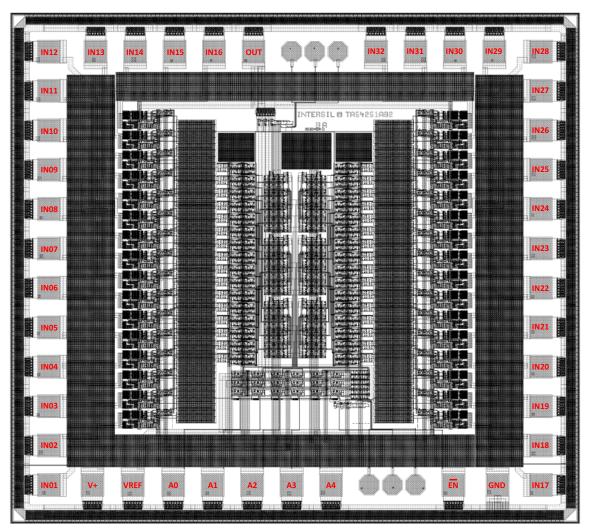
#### SUBSTRATE POTENTIAL

Floating

#### **Additional Information**

WORST CASE CURRENT DENSITY 1.6 x 10<sup>5</sup> A/cm<sup>2</sup>

#### TRANSISTOR COUNT


7734

#### Weight of Packaged Device

1.522 grams

#### **Lid Characteristics**

Finish: Gold Potential: Grounded, tied to package Pin 29

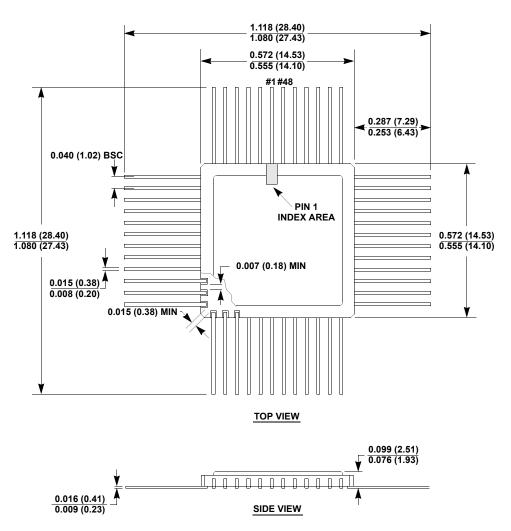


|               | 1           | TABLE 3. ISL71   | 831SEH DIE LAYOUT X | -Y COORDINATES | 1         |           |
|---------------|-------------|------------------|---------------------|----------------|-----------|-----------|
| PAD<br>NUMBER | PAD<br>NAME | PACKAGING<br>PIN | ΔX<br>(µm)          | ΔY<br>(µm)     | Χ<br>(μm) | Υ<br>(μm) |
| 1             | IN28        | P42              | 110                 | 110            | 2769.8    | 2467.8    |
| 2             | IN29        | P43              | 110                 | 110            | 2526.8    | 2467.8    |
| 3             | IN30        | P44              | 110                 | 110            | 2320.8    | 2467.8    |
| 4             | IN31        | P45              | 110                 | 110            | 2114.8    | 2467.8    |
| 5             | IN32        | P46              | 110                 | 110            | 1908.8    | 2467.8    |
| 9             | OUT         | P1               | 110                 | 110            | 1268.8    | 2467.8    |
| 10            | IN16        | P3               | 110                 | 110            | 1062.8    | 2467.8    |
| 11            | IN15        | P4               | 110                 | 110            | 856.8     | 2467.8    |
| 12            | IN14        | P5               | 110                 | 110            | 650.8     | 2467.8    |
| 13            | IN13        | P6               | 110                 | 110            | 444.8     | 2467.8    |
| 14            | IN12        | P7               | 110                 | 110            | 201.8     | 2467.8    |
| 15            | IN11        | P8               | 110                 | 110            | 201.8     | 2261.8    |
| 16            | IN10        | P9               | 110                 | 110            | 201.8     | 2055.8    |
| 17            | IN9         | P10              | 110                 | 110            | 201.8     | 1849.8    |
| 18            | IN8         | P11              | 110                 | 110            | 201.8     | 1643.8    |
| 19            | IN7         | P12              | 110                 | 110            | 201.8     | 1437.8    |
| 20            | IN6         | P13              | 110                 | 110            | 201.8     | 1231.8    |
| 21            | IN5         | P14              | 110                 | 110            | 201.8     | 1025.8    |
| 22            | IN4         | P15              | 110                 | 110            | 201.8     | 819.8     |
| 23            | IN3         | P16              | 110                 | 110            | 201.8     | 613.8     |
| 24            | IN2         | P17              | 110                 | 110            | 201.8     | 407.8     |
| 25            | IN1         | P18              | 110                 | 110            | 201.8     | 201.8     |
| 26            | ۷+          | P19              | 110                 | 110            | 427.8     | 201.8     |
| 27            | VREF        | P20              | 110                 | 110            | 638.8     | 201.8     |
| 28            | AO          | P21              | 110                 | 110            | 849.8     | 201.8     |
| 29            | A1          | P22              | 110                 | 110            | 1055.8    | 201.8     |
| 30            | A2          | P23              | 110                 | 110            | 1261.8    | 201.8     |
| 31            | A3          | P24              | 110                 | 110            | 1467.8    | 201.8     |
| 32            | Α4          | P25              | 110                 | 110            | 1673.8    | 201.8     |
| 36            | EN          | P28              | 110                 | 110            | 2313.8    | 201.8     |
| 37            | GND         | P29              | 110                 | 110            | 2543.8    | 201.8     |
| 38            | IN17        | P31              | 110                 | 110            | 2769.8    | 201.8     |
| 39            | IN18        | P32              | 110                 | 110            | 2769.8    | 407.8     |
| 40            | IN19        | P33              | 110                 | 110            | 2769.8    | 613.8     |
| 41            | IN20        | P34              | 110                 | 110            | 2769.8    | 819.8     |
| 42            | IN21        | P35              | 110                 | 110            | 2769.8    | 1025.8    |
| 43            | IN22        | P36              | 110                 | 110            | 2769.8    | 1231.8    |
| 44            | IN23        | P37              | 110                 | 110            | 2769.8    | 1437.8    |
| 45            | IN24        | P38              | 110                 | 110            | 2769.8    | 1643.8    |
| 46            | IN25        | P39              | 110                 | 110            | 2769.8    | 1849.8    |
| 47            | IN26        | P40              | 110                 | 110            | 2769.8    | 2055.8    |
| 48            | IN27        | P41              | 110                 | 110            | 2769.8    | 2261.8    |
| -             |             |                  | -                   | -              |           |           |

#### TABLE 3. ISL71831SEH DIE LAYOUT X-Y COORDINATES

NOTE: Origin of coordinates is the bottom left of the die, near Pad 25.

**Revision History** The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure you have the latest revision.


| Dec 10, 2015<br>FN8759.1 On page 1<br>Changed in Description, 2nd paragraph<br>Changed in Description and Features s<br>Updated Features "SEL/SEB LET <sub>TH</sub> " by<br>Removed High Dose rate feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.<br>e section<br>t 2 diagrams and ESD Circuit column in the pin description table.<br>h "r <sub>ON</sub> "to "r <sub>DS(ON)</sub> ".<br>supply voltage from "3.3V to 5V" to "3V to 5.5V".                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nov 18, 2016 FN8759.2 On page 1 - Updated Related Literature<br>On page 3 - Added Circuit 1 and Circuit   Dec 10, 2015 FN8759.1 On page 1<br>Changed in Description, 2nd paragraph<br>Changed in Description and Features s<br>Updated Features "SEL/SEB LET <sub>TH</sub> " by<br>Removed High Dose rate feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e section<br>t 2 diagrams and ESD Circuit column in the pin description table.<br>h "r <sub>ON</sub> "to "r <sub>DS(ON)</sub> ".<br>supply voltage from "3.3V to 5V" to "3V to 5.5V".                                                                                                                                                                                                                                                                                                                                                                   |
| On page 3 - Added Circuit 1 and Circuit     Dec 10, 2015   FN8759.1   On page 1     Changed in Description, 2nd paragraph   Changed in Description and Features s     Updated Features "SEL/SEB LET <sub>TH</sub> " by     Removed High Dose rate feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t 2 diagrams and ESD Circuit column in the pin description table.<br>h "r <sub>ON</sub> "to "r <sub>DS(ON)</sub> ".<br>supply voltage from "3.3V to 5V" to "3V to 5.5V".                                                                                                                                                                                                                                                                                                                                                                                |
| Changed in Description, 2nd paragraph<br>Changed in Description and Features s<br>Updated Features "SEL/SEB LET <sub>TH</sub> " by<br>Removed High Dose rate feature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | supply voltage from "3.3V to 5V" to "3V to 5.5V".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Made correction to package in last par-<br>Made correction to SMD from "5962-14On page 4- In the Abs Max Section, changed from<br>Voltage (V+ to GND) (Note 5) 6.3V<br>Updated Note 7 by changing value from<br>Electrical Spec changes- Updated heading on "Electrical Specific<br>- Changed Parameter names from $r_{ON}$<br>- Changed Parameter names from $60$ to 40<br>- Removed MIN "15" from $\Delta r_{DS(ON)}$<br>- Added Leakage to description of $I_{IN(OF)}$<br>On page 5<br>- Changed $r_{BBM}$ typical from "15" to "16<br>- Changed $r_{BBM}$ typical from "2" to "1.4"<br>- For $V_{ISO}$ ,<br>- Updated Test Conditions from "VEN<br>- Moved typical values to MIN column<br>- For $V_{CT}$ ,<br>- Updated Test Conditions from "VEN<br>- Moved typical values to MIN column<br>On page 6<br>- Changed $r_{DS(ON)}$ typical from 60 to 70<br>- Added Leakage to description of $I_{IN(OF)}$<br>On page 7 - Changed $r_{BBM}$ typical from 60 to 70<br>- Added Leakage to description of $I_{IN(OF)}$<br>On page 6- Changed Parameter names from $r_{ON}$<br>- Changed $r_{DS(ON)}$ typical from 60 to 70<br>- Added Leakage to description of $I_{IN(OF)}$<br>On page 7 - Changed $r_{BBM}$ typical from<br>On page 8 - Added Table 2.<br>On page 9 - Updated Figure 7 by chang<br>On page 11 through page 16.<br>- Updated y-axis label on Figures 20, 22 | 75krad(Si) on Feature bullet and Note.<br>agraph of description from "CQFP" to "CDFP".<br>548" to "5962-15248".<br>n "Maximum Supply Voltage (V+ to V-) (Note 5) 7V" to "Maximum Supply<br>y"<br>n 86.3 to 60MeV • cm <sup>2</sup> /mg.<br>fications (V <sup>+</sup> = 5V)" table.<br>to $r_{DS(0N)}$ .<br>FF-0V).<br>8".<br>".<br>= 0V" to "VEN = VREF".<br>h.<br>= VREF" to "VEN = 0V".<br>h.<br>to $r_{DS(0N)}$ .<br>FF-0V).<br>"T5" to "25".<br>ging 1kΩ to 100Ω.<br>2 and 23.<br>res 29 through 35 and Figures 41 through 47.<br>ask Layout image. |
| Sep 24, 2015 FN8759.0 Initial release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### **Package Outline Drawing**

For the most recent package outline drawing, see R48.A.

#### R48.A

48 CERAMIC QUAD FLATPACK PACKAGE (CQFP) Rev 3, 10/12



NOTE: 1. All dimensions are in inches (millimeters).

#### Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
  - "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics oroducts outside of such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Plea e contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)



#### SALES OFFICES

#### **Renesas Electronics Corporation**

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Miliboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tei: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germar Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amco Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tei: +822-558-3737, Fax: +822-558-5338

### **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multiplexer Switch ICs category:

Click to view products by Renesas manufacturer:

Other Similar products are found below :

ADG506ATE/883B DG406BDN-T1-E3 HEF4051BP NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G 016400E ADV3014KSTZ PI3V512QE FSA644UCX MAX7356ETG 7705201EC ISL71830SEHF/PROTO MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE MAX3997ETM+ PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX PI3DBS16213ZLEX PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZ-RL7 MAX14984ETG+ MAX14984ETG+T CBTU02044HEJ PS508LEX PS509LEX HV2818/R4X HV2918/R4X TC7W53FK,LF 74LVC1G3157GM,132 74LVC2G53DC,125 TC7PCI3215MT,LF ADG1407BCPZ-REEL7 ADG1407BRUZ ADG1409SRU-EP