Description

The ISL8120 integrates two voltage mode synchronous buck PWM controllers. It can be used either for dual independent outputs or a 2-phase single output regulator.

The ISL8120EVAL3Z evaluation board is for performance demo of the dual independent outputs and DDR applications.

The ISL8120EVAL4Z evaluation board is used for performance demo of $2 / \mathrm{n}$-phase single-output applications. Refer to application note AN1607 "ISL8120EVAL4Z Evaluation Board Setup Procedure" for details of the ISL8120EVAL4Z board.

Preset Specifications

VIN (V)	FREQUENCY (kHz)	$\mathbf{V}_{\text {OUT1 }}$	$\mathbf{V}_{\text {OUT2 }}$
12	500	$1.2 \mathrm{~V} / 25 \mathrm{~A}$	$1.2 \mathrm{~V} / 25 \mathrm{~A}$

Recommended Equipment

- 0 V to 22 V power supply with at least 20 A source current capability, battery, or notebook AC adapter.
- Two electronic loads capable of sinking current up to 30A
- Digital Multimeters (DMMs).
- 100MHz quad-trace oscilloscope.

References

- ISL8120 Datasheet
- AN1607, "ISL8120EVAL4Z Evaluation Board Setup Procedure"

Ordering Information

PART NUMBER	DESCRIPTION
ISL8120EVAL3Z	ISL8120 evaluation board for performance evaluation

FIGURE 1. ISL8120EVAL3Z EVALUATION BOARD

Circuits Description

J 1 and J 2 are the input power terminals.
Two input electrolytic capacitors are used to handle the input current ripples.

Two upper and two lower Renesas "speed" series LFPAK MOSFETs are used for each channel. Q_{1} and Q_{2} are footprint options for low current applications where a $\mathbf{S 0 8}$ package integrating dual MOSFET can be used.

320nH PULSE surface mount inductors are used for each channel. Under the 500 kHz setup, the inductor current peak-to-peak ripple is 7.5 A at 12 V input.

Two SANYO POSCAP 2R5TPF470M7L ($7 \mathrm{~m} \Omega$) are used as output E-caps for each channel. Also, through-hole electrolytic capacitor footprints $\mathrm{C}_{123} \sim \mathrm{C}_{126}$ are available for the user to evaluate different output capacitors.

J7, J8, J9 and J10 are output lugs for load connections.

TP19, TP26, TP28 and TP31 are remote sense posts. These pins can be used to monitor and evaluate the system voltage regulations. If the user wants to use these test posts for remote sense, the $\mathrm{R}_{109}, \mathrm{R}_{120}, \mathrm{R}_{155}$ and R_{161} need to be changed to higher values, such as 10Ω. Also, the related voltage sense divider needs to be increased to a higher resistance, such as 1 k .
$\mathrm{Q}_{26}, \mathrm{Q}_{27}, \mathrm{R}_{126}, \mathrm{R}_{156}, \mathrm{R}_{122}, \mathrm{R}_{131}, \mathrm{R}_{151}$ and R_{153} are circuit footprint options to add an on-board transient load to the regulator. Use a signal generator to apply a clock signal at TP22 (TP30) to generate step-up and step-down transient load. Make sure that the duty cycle of the clock is small enough to avoid burning load resistors R_{126} and R_{156}.
JP11 or JP12 are the jumpers used to disable the channels independently.

TP27 is a post that can be used to inject a clock signal for the controller to be synchronized with.

JP7 and JP8 are jumpers for $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ sensing configuring. Also, these jumpers can be used to monitor the DCR sensing capacitor voltage.
$\mathrm{R}_{94}, \mathrm{C}_{74}, \mathrm{R}_{163}$ and C_{108} are optional footprints for snubbers, which are used to filter the ringing at phase nodes.
$\mathbf{R}_{99}, \mathbf{R}_{100}, \mathbf{R}_{125}, \mathbf{R}_{130}, \mathbf{R}_{132}$, LED4 and Q_{32} are useless footprints. R_{121} and C_{86} are small added filters for the VIN pin. R_{145} is used to isolate the noise at PVCC caused by driving. In 3.3 V applications, R_{121} and R_{145} are recommended to short to 0 to prevent VCC from going below POR under low input voltage. Also, it is recommended to add a 2 k resistor from LGATE to GND to discharge the low gate at the state of LGATE OFF.

Quick Start

1. Ensure that the circuit is correctly connected to the supply and loads prior to applying any power.
2. Adjust the input supply to be 12 V . Turn on the input power supply.
3. Verify that the two output voltages are correct. If the PGOOD is set high, the LED3 will be green. If the PGOOD is set low, the LED3 will be red. TP24 is the test post to monitor PGOOD.

Evaluating the Other Output Voltage

The ISL8120EVAL3Z kit outputs are preset to $1.2 \mathrm{~V} / 25 \mathrm{~A}, \mathrm{~V}_{\text {OUT1 }}$ can also be adjusted between 0.6 V to 3 V by changing the value of R_{119} and R_{116} for $\mathrm{V}_{\text {OUT1 }}$ as given by Equation 1. The same rule applies for $\mathrm{V}_{\text {OUT2 }}$.
$R_{116}=\frac{R_{119}}{\left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\text {REF }}\right)-1} \quad$ Where $\mathrm{V}_{\text {REF }}=0.6 \mathrm{~V}$

$\mathbf{r}_{\mathrm{DS}(\mathrm{ON})}$ Sense Configuration

If the desired output voltage is higher than 3 V , the current sense has to be configured as $r_{D S(O N)}$ sensing because of the common-mode voltage limitation of the current sense differential amplifier. The default setup of ISL8120EVAL3Z is DCR sensing. The following steps show how to change to $r_{D S(O N)}$ sensing for Channel 2:

1. Remove R_{102} and R_{96} to be open.
2. Change R_{107} and R_{95} to be 0Ω.
3. Short jumper JP7.

Programming the Input Voltage UVLO and its Hysteresis

By programming the voltage divider at the EN/FF pin connected to the input rail, the input UVLO and its hysteresis can be programmed. The ISL8120EVAL3Z has $\mathrm{R}_{129}\left(\mathrm{R}_{136}\right)$ 13.7k and $\mathrm{R}_{135}\left(\mathrm{R}_{141}\right) 4.42 \mathrm{k}$; the IC will be disabled when input voltage drops below 3.38 V and will restart until $\mathrm{V}_{\text {IN }}$ recovers to be above 4.42V.

For 12 V applications, it is suggested to have $\mathrm{R}_{129}\left(\mathrm{R}_{136}\right) 33 \mathrm{k}$ and $R_{135}\left(R_{141}\right) 5.1 \mathrm{k}$, of which the IC is disabled when the input voltage drops below 6 V and will restart until V_{IN} recovers to be above 7V.

Refer to the ISL8120 datasheet to program the UVLO falling threshold and hysteresis. The equations are restated in Equations 2 and $\underline{3}$, where $\mathrm{R}_{U P}$ and $\mathrm{R}_{\text {DOWN }}$ are the upper and lower resistors of the voltage divider at EN/FF pin. $\mathrm{V}_{\text {HYS }}$ is the desired UVLO hysteresis and $\mathrm{V}_{\text {FTH }}$ is the desired UVLO falling threshold.
$R_{U P}=\frac{V_{H Y S}}{I_{H Y S}} \quad$ Where $I_{H Y S}=30 \mu \mathrm{~A}$
$R_{\text {DOWN }}=\frac{R_{U P} \cdot V_{E N _R E F}}{V_{\text {FTH }}-V_{E N _R E F}}$ Where $V_{\text {EN_REF }}=0.8 \mathrm{~V}$
Note that the ISL8120 EN/FF pin is a triple function pin and the voltages applied to the EN/FF pins are also fed to adjust the amplitude of each channel's individual sawtooth.

DDR Application

The ISL8120 can be used as a DDR controller. The Typical Application II schematic in the ISL8120 datasheet shows its configuration. Channel 1 is used for VDDQ. VDDQ output is fed to the REFIN pin of Channel 2, thus Channel 2 can track VDDQ at start-up and supplies as VTT.

Please note the configuration of EN/FF pins for start-up timing. The VDDQ channel (Channel 1) start-up should be delayed to VTT (Channel 2) by adding more filtering at EN/FF1 than EN/FF2. This is to start up the internal SS ramp of Channel 2 and make it invalid because EN/FF2 is still 0 coming from VDDQ (Channel 1).

Figure 2 shows the reference configurations and parameters of the EN/FF pins. RA is a resistor externally added as a filter resistor for EN/FF1.

With the configuration of Figure 2, VDDQ is 1.8 V and VTT is 0.9 V . The gain of the resistor divider from VDDQ (Channel 1) to REFIN pin should have the same value with the resistor divider of VTT (Channel 2). RB is an externally added resistor for the upper resistor of the divider from VDDQ output to REFIN.

FIGURE 2. DDR CONFIGURATION

FIGURE 3．ISL8120EVAL3Z SCHEMATIC

ISL8120EVAL3Z Bill of Materials

REFERENCE DESCRIPTION	PART NUMBER	QTY	MANUFACTURER	DESCRIPTION
C123-C126	DNP	0		
C96, $\mathrm{C97}$	GRM188R71H102KA	2	MURATA	CAP, SMD, 0603, 1000pF, 50V, 10\%, X7R, ROHS
C88, $\mathrm{C94}$	06032R103K8B20	2	PHILLIPS	CAP, SMD, 0603, 0.01~F, 25V, 10\%, X7R, ROHS
C76, C106, C107, C116	GRM39X7R104K025AD	4	MURATA	CAP, SMD, 0603, 0.1 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$, X7R, ROHS
C81, C101	ECJ-1VB1H153K	2	PANASONIC	CAP, SMD, 0603, 0.015 F , 50V, 10%, X7R, ROHS
C87, C100	C1608X7R1E224K	2	TDK	CAP, SMD, 0603, 0.22 F , 25V, 10\%, X7R, ROHS
C82, 998	GMC10CG681550NT	2	CAL-CHIP	CAP, SMD, 0603, 680pF, 50V, 5\%, NPO, ROHS
C85, 999	ECJ-1VB1H822K	2	PANASONIC	CAP, SMD, 0603, 8200pF, 50V, 10\%, X7R, ROHS
C74, C103, C108	DNP	0		CAP, SMD, 0603, DNP-PLACE HOLDER, ROHS
C95	C0805X5R160-106KNE	1	VENKEL	CAP, SMD, $0805,10 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \%$, X5R, ROHS
C86	GRM21BF51E155ZA01L	1	MURATA	CAP, SMD, 0805, 1.5 F , $25 \mathrm{~V},+80-20, Y 5 \mathrm{~V}$, ROHS
C104	ECJ-2FB1E225K	1	PANASONIC	CAP, SMD, 0805, 2.2 $\mu \mathrm{F}, 25 \mathrm{~V}, 10 \%$, X5R, ROHS
C112, C115	C1206X5R250-106KNE	2	VENKEL	CAP, SMD, 1206, $10 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, X5R, ROHS
C75, C109	C1206C475K3PACTU	2	KEMET	CAP, SMD, 1206, 4.7 ${ }^{\text {FF, } 25 V, 10 \%, ~ X 5 R, ~ R O H S ~}$
C79, C80, C113, C114	DNP	0		CAP, SMD, 1206, DNP-PLACE HOLDER, ROHS
c90, c91, C92, 993	ECJ-4YB1E106M	4	PANASONIC	CAP, SMD, 1210, 10رF, 25V, 20\%, X5R, ROHS
C102, C128	25ZL1500M12.5X25	2	RUBYCON	CAP, RADIAL, $12.5 \mathrm{X} 25,1500 \mu \mathrm{~F}, 25 \mathrm{~V}, 20 \%$, ALUM.ELEC., ROHS
C77, c78, C110, C111	2R5TPF470M7L	4	SANYO	CAP, POSCAP, SMD, 7.3X4.3, 470 1 F, 2.5V, 20\%, $7 \mathrm{~m} \Omega$, ROHS
L6, L7	PA1513.321NLT	2	PULSE	COIL-PWR INDUCTOR, SMD, 13mm, 320nH, 20\%, 45A, Pb-free
J2	111-0702-001	1	JOHNSON COMPONENTS	CONN-GEN, BIND.POST, INSUL-RED, THMBNUT-GND
J1	111-0703-001	1	JOHNSON COMPONENTS	CONN-GEN,BIND.POST, INSUL-BLK, THMBNUT-GND
TP20, TP32	131-4353-00	2	TEKTRONIX	CONN-SCOPE PROBE TEST PT, COMPACT, PCB MNT, ROHS
TP1, TP3, TP19, TP21, TP22, TP24, TP25, TP26, TP27, TP28, TP30, TP31	5002	12	KEYSTONE	CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
JP7, JP8, JP11, JP12	69190-202	4	BERG/FCI	CONN-HEADER, 1x2, RETENTIVE, $\mathbf{2 . 5 4 m m , ~ S T , ~ R O H S ~}$
LED4	DNP	0		
LED3	SSL-LXA3025IGC-TR	1	LUMEX	LED, SMD, 3mmx2.5mm, 4P, RED/GREEN, 12/20MCD, 2 V
U3	ISL8120IRZ	1	INTERSIL	IC-DUAL PHASE PWM CONTROLLER, 32P, QFN, 5x5, ROHS
Q25	2N7002-7-F	1	DIODES, INC.	TRANSISTOR, N-CHANNEL, 3LD, SOT-23, 60V, 115 mA , ROHS
Q1, Q2	DNP	0		DNP-PLACE HOLDER, TRANSIST-DUAL MOS, N-CHAN, 8P, SOIC, 30V, 6A, ROHS
Q26, Q27	DNP	0		DNP-PLACE HOLDER, TRANSIST-MOSFET, N-CHAN, 5P, LFPAK, 30V, $9.4 \mathrm{~m} \Omega$, ROHS
Q32	DNP	0		DNP-PLACE HOLDER

ISL8120EVAL3Z Bill of Materials (continuas)

REFERENCE DESCRIPTION	PART NUMBER	QTY	MANUFACTURER	DESCRIPTION
Q23, Q24, Q28, Q29	RJK0301DPB	4	RENESAS TECHNOLOGY	TRANSISTOR, N-CHANNEL, 5P, LFPAK, 30V, 60A, ROHS
Q21, Q22, Q30, Q31	RJK0305DPB	4	RENESAS TECHNOLOGY	TRANSISTOR, N-CHANNEL, 5P, LFPAK, 30V, 30A, ROHS
R145	CRCW06035R10FNEA	1	VISHAY/DALE	RES, SMD, 0603, 5.1ת, 1/10W, 1\%, TF, ROHS
R96, R102, R109, R120, R152, R155, R160, R161		8	Various	RESISTOR, SMD, 0603, 02, 1/10W, TF, ROHS
R116, R119, R154, R159	RK73H1JT1000F	4	KOA	RES, SMD, 0603, 100 ${ }^{\text {, 1/10W, 1\%, TF, ROHS }}$
R97, R98, R115, R147	RK73H1JTTD1001F	4	KOA	RES, SMD, 0603, 1k, 1/10W, 1\%, TF, ROHS
R123, R140, R143	RK73H1JT1002F	3	KOA	RES, SMD, 0603, 10k, 1/10W, 1\%, TF, ROHS
R129, R136	RC0603FR-0713K7L	2	YAGEO	RESISTOR, SMD, 0603, 13.7k, 1/10W, 1\%, TF, ROHS
R103, R157	CR0603-10W-2490FT	2	VENKEL	RES, SMD, 0603, 249Ω, 1/10W, 1\%, TF, ROHS
R111, R142	ERJ-3EKF4021V	2	PANASONIC	RES, SMD, 0603, 4.02k Ω, 1/10W, 1\%, TF, ROHS
R135, R141	RC0603FR-074K42L	2	YAGEO	RES, SMD, 0603, 4.42k, 1/10W, 1\%, TF, ROHS
R118, R146	CR0603-10W-45R3FT	2	VENKEL	RES, SMD, 0603, 45.3』, 1/10W, 1\%, TF, ROHS
R95, R158	ERJ-3EKF6491V	2	PANASONIC	RES, SMD, 0603, $6.49 \mathrm{k}, 1 / 10 \mathrm{~W}, 1 \%$, TF, ROHS
R133	CR0603-10W-7682FT	1	VENKEL	RES, SMD, 0603, $76.8 \mathrm{k}, 1 / 10 \mathrm{~W}, 1 \%$, TF, ROHS
```R99, R100, R107, R122, R124, R125, R128, R130 to R132, R149, R151, R153```	DNP	0		RES, SMD, 0603, DNP-PLACE HOLDER, ROHS
R94, R163	DNP	0		RES, SMD, 0805, DNP-PLACE HOLDER, ROHS
R121	CR1206-4W-02R0	1	VENKEL	RES, SMD, 1206, 2ת, 1/4W, 1\%, TF, ROHS
R126, R156	DNP	0		RES, SMD, 2512, PLACE HOLDER, TF, ROHS
J7, J8, J9, J10	KPA8CTP	4	BERG/FCI	HDWARE, MTG, CABLE TERMINAL, 6-14AWG, LUG\&SCREW, ROHS
TP23, TP29	DNP	0		DNP-PLACE HOLDER

ISL8120EVAL3Z Board Layout


FIGURE 4. TOP SILKSCREEN


FIGURE 6. SECOND LAYER


FIGURE 5. TOP LAYER


FIGURE 7. THIRD LAYER

ISL8120EVAL3Z Board Layout (continued)


FIGURE 8. BOTTOM LAYER


FIGURE 9. BOTTOM SILKSCREEN (MIRRORED)


FIGURE 10. BOTTOM SILKSCREEN

## Test Data for ISL8120EVAL3Z

## Efficiency



FIGURE 11. CHANNEL 1 EFFICIENCY ( $12 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}$ AND 1.2V $\mathrm{V}_{\text {OUT }}$ )

## Line Regulation



FIGURE 13. CHANNEL 1 LINE REGULATION
Start-Up


FIGURE 15. POWER-UP UNDER FULL LOAD (25A FOR EACH CHANNEL)


FIGURE 12. CHANNEL 2 EFFICIENCY ( $12 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}$ AND 1.2V $\mathrm{V}_{\text {OUT }}$ )


FIGURE 14. CHANNEL 1 LINE REGULATION
Load Transient


FIGURE 16. LOAD TRANSIENT (OA TO 25A STEP, SLEW_RATE = 1.6A/MS)

## Test Data for ISL8120EVAL3Z ${ }_{\text {(continuod) }}$

## Output Ripple



FIGURE 17. OUTPUT RIPPLES UNDER 25A LOAD FOR EACH CHANNEL

## DDR Application Waveforms



FIGURE 18. VDDQ AND VTT START-UP TRACKING (DDR3)


FIGURE 19. PHASE AND VOUTS (DDR3)

## Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries. (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

## Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel. +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
Tel + +1-905-237-2004 8309 Richmond Hill, Ontario Canada L4C 9T3
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: \(+44-1628-651-804\)
Renesas Electronics Europe \(\mathbf{G m b H}\)
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No. 27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301 , Tower A Central To
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel. +86-21-2226-0888, rax: +86-21-2226-099
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13 F , No. 363 Fu Shing North Road, Tai
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel. \(+65-6213-0200\), Fax: \(+65-6213-0300\)
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No. \(777 \mathrm{C}, 100\) Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
```


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Renesas manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

