The Intersil RS-485/RS-422 devices are BiCMOS 5V powered, single transceivers that meet both the RS-485 and RS-422 standards for balanced communication. Unlike competitive devices, this Intersil family is specified for 10\% tolerance supplies (4.5 V to 5.5 V).

The ISL8483, ISL8488, and ISL8489 utilize slew rate limited drivers which reduce EMI, and minimize reflections from improperly terminated transmission lines, or unterminated stubs in multidrop and multipoint applications.

Data rates up to 5 Mbps are achievable by using the ISL8485, ISL8490, or ISL8491, which feature higher slew rates.

All devices present a "single unit load" to the RS-485 bus, which allows up to 32 transceivers on the network.

Receiver ($R x$) inputs feature a "fail-safe if open" design, which ensures a logic high $R x$ output if $R x$ inputs are floating.

Driver (Tx) outputs are short circuit protected, even for voltages exceeding the power supply voltage. Additionally, on-chip thermal shutdown circuitry disables the Tx outputs to prevent damage if power dissipation becomes excessive.

The ISL8488-91 are configured for full duplex (separate Rx input and Tx output pins) applications. The ISL8488 and ISL8490 are offered in space saving 8 lead packages for applications not requiring $R x$ and Tx output disable functions (e.g., point-to-point). Half duplex configurations (ISL8483, ISL8485) multiplex the Rx inputs and Tx outputs to allow transceivers with Rx and Tx disable functions in 8 lead packages.

Features

- Specified for 10% Tolerance Supplies
- Class 3 ESD Protection (HBM) on all Pins. $>7 \mathrm{kV}$
- High Data Rates. up to 5 Mbps
- Slew Rate Limited Versions for Error Free Data Transmission at 250kbps (ISL8483, ISL8488, ISL8489)
- Single Unit Load Allows up to 32 Devices on the Bus
- 1nA Low Current Shutdown Mode (ISL8483)
- Low Quiescent Current:
- $160 \mu \mathrm{~A}$ (ISL8483, ISL8488, ISL8489)
- $500 \mu \mathrm{~A}$ (ISL8485, ISL8490, ISL8491)
- -7 V to +12 V Common Mode Input Voltage Range
- Three State Rx and Tx Outputs (Except ISL8488, ISL8490)
- 30ns Propagation Delays, 5ns Skew (ISL8485, ISL8490, ISL8491)
- Full Duplex and Half Duplex Pinouts
- Operate from a Single +5 V Supply (10% Tolerance)
- Current Limiting and Thermal Shutdown for driver Overload Protection
- Pb-Free Plus Anneal Available (RoHS Compliant)

Applications

- Factory Automation
- Security Networks
- Building Environmental Control Systems
- Industrial/Process Control Networks
- Level Translators (e.g., RS-232 to RS-422)
- RS-232 "Extension Cords"

TABLE 1. SUMMARY OF FEATURES

PART NUMBER	HALF/FULL DUPLEX	NO. OF DEVICES ALLOWED ON BUS	DATA RATE (Mbps)	SLEW-RATE LIMITED?	RECEIVER/ DRIVER ENABLE?	$\begin{gathered} \text { QUIESCENT } \\ \text { ICC }(\mu \mathbf{A}) \end{gathered}$	LOW POWER SHUTDOWN?	PIN COUNT
ISL8483 (No longer available or supported)	Half	32	0.25	Yes	Yes	160	Yes	8
ISL8485	Half	32	5	No	Yes	500	No	8
ISL8488 (No longer available or supported)	Full	32	0.25	Yes	No	160	No	8
ISL8489 (No longer available or supported	Full	32	0.25	Yes	Yes	160	No	14
ISL8490	Full	32	5	No	No	500	No	8
ISL8491	Full	32	5	No	Yes	500	No	14

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. DWG. \#
ISL8483IPZ (Note) (No Ionger available, recommended replacement ISL3152EIPZ)	ISL8483IPZ	-40 to 85	8 Ld PDIP* (Pb-free)	E8.3
ISL8485CBZ (Note)	8485CBZ	0 to 70	8 Ld SOIC(Pb-free)	M8.15
ISL8485CBZ-T (Note)	8485CBZ	8 Ld SOIC Tape and Reel (Pb-free)		M8.15
ISL8485CPZ (Note)	ISL8485CPZ	0 to 70	8 Ld PDIP* (Pb-free)	E8.3
ISL8485IBZ (Note)	8485IBZ	-40 to 85	8 Ld SOIC (Pb-free)	M8.15
ISL8485IB-T	8485IB	8 Ld SOIC Tape and Reel		M8.15
ISL8485IBZ-T (Note)	8485IBZ	8 Ld SOIC Tape and Reel (Pb-free)		M8.15
ISL8485IP	ISL8485IP	-40 to 85	8 Ld PDIP	E8.3
ISL8485IPZ (Note)	ISL8485IPZ	-40 to 85	8 Ld PDIP* (Pb-free)	E8.3
ISL8488IBZ (Note) (No Ionger available, recommended replacement ISL8488EIBZ)	8488IBZ	-40 to 85	8 Ld SOIC (Pb-free)	M8.15
ISL8488IPZ (Note) (No longer available, recommended replacement ISL3152EIPZ)	ISL8488IPZ	-40 to 85	8 Ld PDIP* (Pb-free)	E8.3
ISL8489IP (No longer available, no recommended replacement)	ISL8489IP	-40 to 85	14 Ld PDIP	E14.3
ISL8490IBZ (Note)	84901BZ	-40 to 85	8 Ld SOIC (Pb-free)	M8.15
ISL8490IBZ-T (Note)	8490IBZ	8 Ld SOIC Tape and Reel (Pb-free)		M8.15
ISL8491IBZ (Note)	8491IBZ	-40 to 85	14 Ld SOIC (Pb-free)	M14.15
ISL8491IBZ-T (Note)	8491IBZ	14 Ld SOIC Tape and Reel (Pb-free)		M14.15

*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100\% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Pinouts

Truth Tables

TRANSMITTING				
INPUTS			OUTPUTS	
$\overline{R E}$	$D E$	$D I$	Z	Y
X	1	1	0	1
X	1	0	1	0
0	0	X	High-Z	High-Z
1	0	X	High-Z *	High-Z *

*Shutdown Mode for ISL8483 (see Note 7)

RECEIVING				
INPUTS				
$\overline{R E}$	DE Half Duplex	DE Full Duplex	A-B	RO
0	0	X	$\geq+0.2 \mathrm{~V}$	1
0	0	X	$\leq-0.2 V$	0
0	0	X	Inputs Open	1
1	0	0	X	High-Z *
1	1	1	X	High-Z
*Shutdown Mode for ISL8483 (see Note 7)				

Pin Descriptions

PIN	FUNCTION
RO	Receiver output: If $A>B$ by at least $0.2 \mathrm{~V}, \mathrm{RO}$ is high; If $A<B$ by 0.2 V or more, RO is low; RO $=$ High if A and B are unconnected (floating).
$\overline{\mathrm{RE}}$	Receiver output enable. RO is enabled when $\overline{\mathrm{RE}}$ is low; RO is high impedance when $\overline{\mathrm{RE}}$ is high.
DE	Driver output enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low.
DI	Driver input. A low on DI forces output Y low and output Z high. Similarly, a high on DI forces output Y high and output Z low.
GND	Ground connection.
A/Y	Noninverting receiver input and noninverting driver output. Pin is an input (A) if $\mathrm{DE}=0$; pin is an output (Y) if $D E=1$.
B/Z	Inverting receiver input and inverting driver output. Pin is an input (B) if $D E=0$; pin is an output (Z) if $D E=1$.
A	Noninverting receiver input.
B	Inverting receiver input.
Y	Noninverting driver output.
Z	Inverting driver output.
V_{CC}	System power supply input (4.5V to 5.5 V).
NC	No Connection.

Typical Operating Circuits

ISL8483, ISL8485

ISL8488, ISL8490

ISL8489, ISL8491

Absolute Maximum Ratings	Thermal Information
$\mathrm{V}_{\text {CC }}$ to Ground. 7V	Thermal Resistance (Typical, Note 1) $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Input Voltages	8 Ld SOIC Package . 170
DI, DE, RE . - $0.5 \mathrm{5V}$ to ($\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$)	8 Ld PDIP Package* . 140
Input/Output Voltages	14 Ld SOIC Package . 120
A, B, Y, Z . 8 -8V to +12.5 V	14 Ld PDIP Package . 100
RO -0.5 V to ($\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$)	Moisture Sensitivity (see Technical Brief TB363)
Short Circuit Duration	All Packages Level 1
Y, Z. Continuous	Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
ESD Rating	Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
HBM (Per MIL-STD-883, Method 3015.7) >7kV	Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)
Operating Conditions	*Pb-free PDIPs can be used for through hole wave solder processing
Temperature Range ISL84XXCX $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	only. They are not intended for use in Reflow solder processing applications.
ISL84XXIX . $4.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified.
Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 2

PARAMETER	SYMBOL	TEST CONDITIONS		$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS								
Driver Differential V ${ }_{\text {OUT }}$ (no load)	$\mathrm{V}_{\text {OD1 }}$			Full	-	-	V_{CC}	V
Driver Differential V ${ }_{\text {OUT }}$ (with load)	$\mathrm{V}_{\mathrm{OD} 2}$	$R=50 \Omega$ (RS-422), Figure 1		Full	2	3	-	V
		$R=27 \Omega$ (RS-485), Figure 1		Full	1.5	2.3	5	V
Change in Magnitude of Driver Differential $\mathrm{V}_{\text {OUT }}$ for Complementary Output States	V_{OD}	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 1		Full	-	0.01	0.2	V
Driver Common-Mode $\mathrm{V}_{\text {OUT }}$	V_{OC}	$\mathrm{R}=27 \Omega$ or 50Ω, Figure 1		Full	-	-	3	V
Change in Magnitude of Driver Common-Mode V ${ }_{\text {OUT }}$ for Complementary Output States	${ }^{\text {V }}$ OC	R $=27 \Omega$ or 50Ω, Figure 1		Full	-	0.01	0.2	V
Logic Input High Voltage	V_{IH}	DE, DI, $\overline{\mathrm{RE}}$		Full	2	-	-	V
Logic Input Low Voltage	V_{IL}	DE, DI, $\overline{\mathrm{RE}}$		Full	-	-	0.8	V
Logic Input Current	IIN1	DE, DI, $\overline{\mathrm{RE}}$ (ISL8483)		Full	-2	-	2	$\mu \mathrm{A}$
	IIN1	DI (ISL8485- ISL8491)		Full	-2	-	2	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IN} 1}$	DE, $\overline{R E}$ (ISL8485, ISL8489, ISL8491)		Full	-25	-	25	$\mu \mathrm{A}$
Input Current (A, B), Note 10	$\mathrm{I}_{\mathrm{N} 2}$	$\begin{aligned} & \mathrm{DE}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \text { or } \\ & 4.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$	Full	-	-	1	mA
			$\mathrm{V}_{\text {IN }}=-7 \mathrm{~V}$	Full	-	-	-0.8	mA
Receiver Differential Threshold Voltage	V_{TH}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	-0.2	-	0.2	V
Receiver Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		25	-	70	-	mV
Receiver Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$		Full	3.5	-	-	V
Receiver Output Low Voltage	V_{OL}	I O $=-4 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=200 \mathrm{mV}$		Full	-	-	0.4	V
Three-State (high impedance) Receiver Output Current	lozr	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 2.4 \mathrm{~V}$		Full	-	-	± 1	$\mu \mathrm{A}$

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified.
 Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 2 (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		TEMP (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS	
Receiver Input Resistance	R_{IN}	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 12 \mathrm{~V}$		Full	12	-	-	$\mathrm{k} \Omega$	
No-Load Supply Current, Note 3	ICC	ISL8488, ISL8489, DE, DI, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}		Full	-	160	250	$\mu \mathrm{A}$	
		ISL8490, ISL8491, DE, DI, $\overline{\mathrm{RE}}=0 \mathrm{~V}$ or V_{CC}		Full	-	500	565	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { ISL8485, DI, } \overline{\mathrm{RE}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$D E=V_{C C}$	Full	-	700	900	$\mu \mathrm{A}$	
			$D E=0 \mathrm{~V}$	Full	-	500	565	$\mu \mathrm{A}$	
		$\begin{aligned} & \text { ISL8483, DI, } \overline{\mathrm{RE}}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\mathrm{DE}=\mathrm{V}_{\mathrm{CC}}$	Full	-	470	650	$\mu \mathrm{A}$	
			DE $=0 \mathrm{~V}$	Full	-	160	250	$\mu \mathrm{A}$	
Shutdown Supply Current	ISHDN	ISL8483, $\mathrm{DE}=0 \mathrm{~V}, \overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{DI}=0 \mathrm{~V}$ or V_{CC}		Full	-	1	50	nA	
Driver Short-Circuit Current, $\mathrm{V}_{\mathrm{O}}=$ High or Low	losD1	$\mathrm{DE}=\mathrm{V}_{\mathrm{CC}},-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Y}}$ or $\mathrm{V}_{\mathrm{Z}} \leq 12 \mathrm{~V}$, Note 4		Full	35	-	250	mA	
Receiver Short-Circuit Current	IOSR	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		Full	7	-	85	mA	
SWITCHING CHARACTERISTICS (ISL8485, ISL8490, ISL8491)									
Driver Input to Output Delay	$\mathrm{t}_{\text {PLH }}$, tPHL	$R_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$, Figure 2		Full	18	30	50	ns	
Driver Output Skew	tSKEW	$R_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$, Figure 2		Full	-	2	10	ns	
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, Figure 2		Full	3	11	25	ns	
Driver Enable to Output High	t_{ZH}	$C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 3		Full	-	17	70	ns	
Driver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}} \text {, Figure } 3$		Full	-	14	70	ns	
Driver Disable from Output High	t_{HZ}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 3		Full	-	19	70	ns	
Driver Disable from Output Low	tLZ	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$, Figure 3		Full	-	13	70	ns	
Receiver Input to Output Delay	$\mathrm{tPLH}^{\text {t }}$ t ${ }^{\text {chL }}$	Figure 4		Full	30	40	150	ns	
Receiver Skew \\| tpLH - tphL	${ }_{\text {t }}^{\text {SKD }}$	Figure 4		25	-	5	-	ns	
Receiver Enable to Output High	t_{ZH}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 5		Full	-	9	50	ns	
Receiver Enable to Output Low	t_{ZL}	$C_{L}=15 p F, S W=V_{C C} \text {, Figure } 5$		Full	-	9	50	ns	
Receiver Disable from Output High	t_{HZ}	$C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 5		Full	-	9	50	ns	
Receiver Disable from Output Low	$t_{\text {LZ }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$, Figure 5		Full	-	9	50	ns	
Maximum Data Rate	${ }^{\text {max }}$	Note 11		Full	5	-	-	Mbps	
SWITCHING CHARACTERISTICS (ISL8483, ISL8488, ISL8489)									
Driver Input to Output Delay	$\mathrm{tPLH}^{\text {t }}$ t ${ }^{\text {chL }}$	$\mathrm{R}_{\text {DIFF }}=54 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, Figure 2		Full	250	800	2000	ns	
Driver Output Skew	tSkEW	$R_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$, Figure 2		Full	-	160	800	ns	
Driver Differential Rise or Fall Time	t_{R}, t_{F}	$R_{\text {DIFF }}=54 \Omega, C_{L}=100 \mathrm{pF}$, Figure 2		Full	250	800	2000	ns	
Driver Enable to Output High	t_{ZH}	$C_{L}=100 \mathrm{pF}$, $\mathrm{SW}=\mathrm{GND}$, Figure 3, Note 5		Full	250	-	2000	ns	
Driver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$, Figure 3, Note 5		Full	250	-	2000	ns	
Driver Disable from Output High	$t_{\text {Hz }}$	$C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND} \text {, Figure } 3$		Full	300	-	3000	ns	
Driver Disable from Output Low	tLZ	$C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$, Figure 3		Full	300	-	3000	ns	
Receiver Input to Output Delay	tPLH, tPHL	Figure 4		Full	250	350	2000	ns	
Receiver Skew \| $\mathrm{t}_{\text {PLH }}$ - tPHL \|	${ }_{\text {t }}^{\text {SKD }}$	Figure 4		25	-	25	-	ns	
Receiver Enable to Output High	t_{ZH}	$C_{L}=15 p F, S W=G N D$, Figure 5, Note 6		Full	-	10	50	ns	
Receiver Enable to Output Low	t_{ZL}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{V}_{\mathrm{CC}}$, Figure 5, Note 6		Full	-	10	50	ns	
Receiver Disable from Output High	$t_{\text {HZ }}$	$C_{L}=15 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 5		Full	-	10	50	ns	

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; Unless Otherwise Specified.

Typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Note 2 (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	MIN	TYP	MAX	UNITS
Receiver Disable from Output Low	tLZ	$C_{L}=15 p F, S W=V_{C C}$, Figure 5	Full	-	10	50	ns
Maximum Data Rate	$\mathrm{f}_{\text {MAX }}$	Note 11	Full	250	-	-	kbps
Time to Shutdown (ISL8483 only)	${ }_{\text {tSHDN }}$	Note 7	Full	50	200	600	ns
Driver Enable from Shutdown to Output High (ISL8483 only)	t_{ZH} (SHDN)	$C_{L}=100 \mathrm{pF}, \mathrm{SW}=\mathrm{GND}$, Figure 3, Notes 7, 8	Full	-	-	2000	ns
Driver Enable from Shutdown to Output Low (ISL8483 only)	tzL(SHDN)	$C_{L}=100 p F, S W=V_{C C}$, Figure 3, Notes 7, 8	Full	-	-	2000	ns
Receiver Enable from Shutdown to Output High (ISL8483 only)	$\mathrm{t}_{\mathrm{ZH}}(\mathrm{SHDN})$	$C_{L}=15 p F, S W=G N D$, Figure 5, Notes 7, 9	Full	-	-	2500	ns
Receiver Enable from Shutdown to Output Low (ISL8483 only)	tzL(SHDN)	$C_{L}=15 p F, S W=V_{C C}$, Figure 5, Notes 7, 9	Full	-	-	2500	ns

NOTES:
2. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
3. Supply current specification is valid for loaded drivers when $D E=0 \mathrm{~V}$.
4. Applies to peak current. See "Typical Performance Curves" for more information.
5. When testing the ISL8483, keep $\overline{R E}=0$ to prevent the device from entering SHDN.
6. When testing the ISL8483, the $\overline{\mathrm{RE}}$ signal high time must be short enough (typically <200ns) to prevent the device from entering SHDN.
7. The ISL8483 is put into shutdown by bringing $\overline{\mathrm{RE}}$ high and DE low. If the inputs are in this state for less than 50 ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600 ns , the parts are guaranteed to have entered shutdown. See "Low-Power Shutdown Mode" section.
8. Keep $\overline{R E}=V_{C C}$, and set the $D E$ signal low time >600 ns to ensure that the device enters SHDN.
9. Set the $\overline{R E}$ signal high time >600 ns to ensure that the device enters SHDN.
10. Devices meeting these limits are denoted as "single unit load (1 UL)" transceivers. The RS-485 standard allows up to 32 Unit Loads on the bus.
11. Guaranteed by characterization, but not tested.

Test Circuits and Waveforms

FIGURE 1. DRIVER V_{OD} AND V_{OC}

FIGURE 2A. TEST CIRCUIT
FIGURE 2B. MEASUREMENT POINTS FIGURE 2. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES

Test Circuits and Waveforms (Continued)

(SHDN) for ISL8483 only

PARAMETER	OUTPUT	$\overline{\mathbf{R E}}$	$\mathbf{D I}$	$\mathbf{S W}$	$\mathbf{C}_{\mathrm{L}}(\mathbf{p F})$
t_{HZ}	Y / Z	X	$1 / 0$	GND	15
t_{LZ}	Y / Z	X	$0 / 1$	$\mathrm{~V}_{\mathrm{CC}}$	15
t_{ZH}	Y / Z	0 (Note 5)	$1 / 0$	GND	100
t_{ZL}	Y / Z	0 (Note 5)	$0 / 1$	$\mathrm{~V}_{\mathrm{CC}}$	100
$\mathrm{t}_{\mathrm{ZH}(\mathrm{SHDN})}$	Y / Z	1 (Note 8)	$1 / 0$	GND	100
$\mathrm{t}_{\mathrm{ZL}(\mathrm{SHDN})}$	Y / Z	1 (Note 8)	$0 / 1$	$\mathrm{~V}_{\mathrm{CC}}$	100

FIGURE 3A. TEST CIRCUIT

FIGURE 3B. MEASUREMENT POINTS

FIGURE 3. DRIVER ENABLE AND DISABLE TIMES (EXCLUDING ISL8488, ISL8490)

FIGURE 4A. TEST CIRCUIT

FIGURE 4. RECEIVER PROPAGATION DELAY

FIGURE 5A. TEST CIRCUIT

FIGURE 5B. MEASUREMENT POINTS

FIGURE 5. RECEIVER ENABLE AND DISABLE TIMES (EXCLUDING ISL8488, ISL8490)

Application Information

RS-485 and RS-422 are differential (balanced) data transmission standards for use in long haul or noisy environments. RS-422 is a subset of RS-485, so RS-485 transceivers are also RS-422 compliant. RS-422 is a point-to-multipoint (multidrop) standard, which allows only one driver and up to 10 (assuming one unit load devices) receivers on each bus. RS-485 is a true multipoint standard, which allows up to 32 one unit load devices (any combination of drivers and receivers) on each bus. To allow for multipoint operation, the RS-485 spec requires that drivers must handle bus contention without sustaining any damage.
Another important advantage of RS-485 is the extended common mode range (CMR), which specifies that the driver outputs and receiver inputs withstand signals that range from +12 V to -7 V . RS-422 and RS-485 are intended for runs as long as 4000', so the wide CMR is necessary to handle ground potential differences, as well as voltages induced in the cable by external fields.

Receiver Features

These devices utilize a differential input receiver for maximum noise immunity and common mode rejection. Input sensitivity is $\pm 200 \mathrm{mV}$, as required by the RS422 and RS-485 specifications.
Receiver input impedance surpasses the RS-422 spec of $4 \mathrm{k} \Omega$, and meets the RS-485 "Unit Load" requirement of $12 \mathrm{k} \Omega$ minimum.
Receiver inputs function with common mode voltages as great as $\pm 7 \mathrm{~V}$ outside the power supplies (i.e., +12 V and -7 V), making them ideal for long networks where induced voltages are a realistic concern.
All the receivers include a "fail-safe if open" function that guarantees a high level receiver output if the receiver inputs are unconnected (floating).
Receivers easily meet the data rates supported by the corresponding driver.
ISL8483/85/89/91 receiver outputs are three-statable via the active low $\overline{\mathrm{RE}}$ input.

Driver Features

The RS-485/422 driver is a differential output device that delivers at least 1.5 V across a 54Ω load (RS-485), and at least 2 V across a 100Ω load (RS-422). The drivers feature low propagation delay skew to maximize bit width, and to minimize EMI.

Drivers of the ISL8483/85/89/91 are three-statable via the active high DE input.
The ISL8483/88/89 driver outputs are slew rate limited to minimize EMI, and to minimize reflections in unterminated or improperly terminated networks. Data rate on these slew rate limited versions is a maximum of 250 kbps . Outputs of ISL8485/90/91 drivers are not limited, so faster output transition times allow data rates of at least 5 Mbps .

Data Rate, Cables, and Terminations

RS-485/422 are intended for network lengths up to 4000', but the maximum system data rate decreases as the transmission length increases. Devices operating at 5 Mbps are limited to lengths less than 100', while the 250 kbps versions can operate at full data rates with lengths in excess of 1000'.

Twisted pair is the cable of choice for RS-485/422 networks. Twisted pair cables tend to pick up noise and other electromagnetically induced voltages as common mode signals, which are effectively rejected by the differential receivers in these ICs.

Proper termination is imperative, when using the 5 Mbps devices, to minimize reflections. Short networks using the 250kbps versions need not be terminated, but, terminations are recommended unless power dissipation is an overriding concern.
In point-to-point, or point-to-multipoint (single driver on bus) networks, the main cable should be terminated in its characteristic impedance (typically 120Ω) at the end farthest from the driver. In multi-receiver applications, stubs connecting receivers to the main cable should be kept as short as possible. Multipoint (multi-driver) systems require that the main cable be terminated in its characteristic impedance at both ends. Stubs connecting a transceiver to the main cable should be kept as short as possible.

Built-In Driver Overload Protection

As stated previously, the RS-485 spec requires that drivers survive worst case bus contentions undamaged. The ISL84XX devices meet this requirement via driver output short circuit current limits, and on-chip thermal shutdown circuitry.
The driver output stages incorporate short circuit current limiting circuitry which ensures that the output current never exceeds the RS-485 spec, even at the common mode voltage range extremes. Additionally, these devices utilize a foldback circuit which reduces the short circuit current, and thus the power dissipation, whenever the contending voltage exceeds either supply.
In the event of a major short circuit condition, ISL84XX devices also include a thermal shutdown feature that disables the drivers whenever the die temperature becomes excessive. This eliminates the power dissipation, allowing the die to cool. The drivers automatically reenable after the die temperature drops about 15 degrees. If the contention persists, the thermal shutdown/reenable cycle repeats until the fault is cleared. Receivers stay operational during thermal shutdown.

Low Power Shutdown Mode (ISL8483 Only)

These CMOS transceivers all use a fraction of the power required by their bipolar counterparts, but the ISL8483 includes a shutdown feature that reduces the already low quiescent I IC to a 1 nA trickle. The ISL8483 enters shutdown whenever the receiver and driver are simultaneously disabled ($\overline{\mathrm{RE}}=\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{DE}=\mathrm{GND}$) for a period of at least 600ns. Disabling both the driver and the receiver for less
than 50ns guarantees that the ISL8483 will not enter shutdown.
the end of the Electrical Specification table, for more information.

Note that receiver and driver enable times increase when the ISL8483 enables from shutdown. Refer to Notes 5-8, at

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, ISL8483 thru ISL8491; Unless Otherwise Specified

FIGURE 6. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT VOLTAGE

FIGURE 8. DRIVER OUTPUT CURRENT vs SHORT CIRCUIT VOLTAGE

FIGURE 7. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 9. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, ISL8483 thru ISL8491; Unless Otherwise Specified (Continued)

FIGURE 10. DRIVER PROPAGATION DELAY vs
TEMPERATURE (ISL8483, ISL8488, ISL8489)

FIGURE 12. DRIVER PROPAGATION DELAY vs TEMPERATURE (ISL8485, ISL8490, ISL8491)

FIGURE 14. DRIVER AND RECEIVER WAVEFORMS, LOW TO HIGH (ISL8483, ISL8488, ISL8489)

FIGURE 11. DRIVER SKEW vs TEMPERATURE
(ISL8483, ISL8488, ISL8489)

FIGURE 13. DRIVER SKEW vs TEMPERATURE (ISL8485, ISL8490, ISL8491)

FIGURE 15. DRIVER AND RECEIVER WAVEFORMS, HIGH TO LOW (ISL8483, ISL8488, ISL8489)

Typical Performance Curves $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, ISL8483 thru ISL8491; Unless otherwise Specified (Continued)

FIGURE 16. DRIVER AND RECEIVER WAVEFORMS, LOW TO HIGH (ISL8485, ISL8490, ISL8491)

FIGURE 17. DRIVER AND RECEIVER WAVEFORMS, HIGH TO LOW (ISL8485, ISL8490, ISL8491)

Die Characteristics

SUBSTRATE POTENTIAL (POWERED UP):
GND
TRANSISTOR COUNT:
518

PROCESS:

Si Gate CMOS

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
February 16, 2016	FN6046.9	Added Rev History and About Intersil verbiage. Updated "Ordering Information" table on page 2. Updated following PODs to current revisions listing POD updates: POD M8.15: Updated to new POD format by removing table and moving dimensions onto drawing and adding land pattern Changed in Typical Recommended Land Pattern the following: $\begin{aligned} & 2.41(0.095) \text { to } 2.20(0.087) \\ & 0.76(0.030) \text { to } 0.60(0.023) \\ & 0.200 \text { to } 5.20(0.205) \end{aligned}$ Changed Note 1 "1982" to "1994 POD M14.15 Added land pattern and moved dimensions from table onto drawing

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support.
© Copyright Intersil Americas LLC 2003-2016. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing IS09001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C .
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D)

 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE| SYMBOL | INCHES | | MILLIMETERS | | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX | |
| A | - | 0.210 | - | 5.33 | 4 |
| A1 | 0.015 | - | 0.39 | - | 4 |
| A2 | 0.115 | 0.195 | 2.93 | 4.95 | - |
| B | 0.014 | 0.022 | 0.356 | 0.558 | - |
| B1 | 0.045 | 0.070 | 1.15 | 1.77 | 8, 10 |
| C | 0.008 | 0.014 | 0.204 | 0.355 | - |
| D | 0.355 | 0.400 | 9.01 | 10.16 | 5 |
| D1 | 0.005 | - | 0.13 | - | 5 |
| E | 0.300 | 0.325 | 7.62 | 8.25 | 6 |
| E1 | 0.240 | 0.280 | 6.10 | 7.11 | 5 |
| e | 0.10 | SC | 2.54 | BSC | - |
| e_{A} | 0.30 | SC | 7.6 | BSC | 6 |
| e_{B} | - | 0.430 | - | 10.92 | 7 |
| L | 0.115 | 0.150 | 2.93 | 3.81 | 4 |
| N | 8 | | 8 | | 9 |

Rev. 0 12/93

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76 1.14 mm).

E14.3 (JEDEC MS-001-AA ISSUE D) 14 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	$0.100 ~ B S C$		2.54	BSC	-
e_{A}	$0.300 ~ B S C$	$7.62 ~ B S C$	6		
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	14		14		9

Rev. 0 12/93

Package Outline Drawing

M8.15

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 4, 1/12

NOTES:

1. Dimensioning and tolerancing per ANSI Y14.5M-1994.
2. Package length does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
3. Package width does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ($\mathbf{0 . 0 1 0} \mathrm{inch}$) per side.
4. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
5. Terminal numbers are shown for reference only.
6. The lead width as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch).
7. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
8. This outline conforms to JEDEC publication MS-012-AA ISSUE C.

Package Outline Drawing

M14.15

14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 1, 10/09

[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-422/RS-485 Interface IC category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
WS3088EESA-GEC ADM2687EBRIZ-RL7 MAX489CPD+ MAX491EPD+ MAX488EEPA+ MAX3080CPD+ MXL1535EEWI+ SN65LBC173DR MAX490ESA+T LT1791CN\#PBF LTM2881CY-3\#PBF LTC2857IMS8-2\#PBF LT1791ACN\#PBF MAX1487CUA+T XR3074XID-F XR3082XID-F SP1481EEN-L SN75ALS173NSR ADM3491ARZ-REEL ADM485JN ADM1485ANZ ADM1485ARMZ ADM1485JNZ ADM2682EBRIZ ADM489ABRZ ADM3070EYRZ ADM4850ACPZ-REEL7 ADM4850ARMZ-REEL7 ADM485ANZ ADM485ARMZ ADM485JNZ ADM488ANZ ADM489ANZ ADM489ARUZ ADM3485ARZ-REEL7 ADM3486EARZ-REEL7 ADM3488EARZ-REEL7 ADM3490ARZ ADM3493ARZ ADM4856ARZ-REEL7 ADM487EARZ-REEL7 ADM488ABRZ ADM1486ARZ ADM1490EBRZ-REEL7 ADM3485ARZ ADM3490ARZ-REEL7 ADM3490EARZ-REEL7 ADM4850ARZ ADM3074EYRZ ADM3078EYRZ

[^0]: TYPICAL RECOMMENDED LAND PATTERN

