The ISL89410, ISL89411, ISL89412 ICs are similar to the EL7202, EL7212, EL7222 series but with greater VDD ratings. These are very high speed matched dual drivers capable of delivering peak currents of 2.0A into highly capacitive loads. The high speed performance is achieved by means of a proprietary "Turbo-Driver" circuit that speeds up input stages by tapping the wider voltage swing at the output. Improved speed and drive capability are enhanced by matched rise and fall delay times. These matched delays maintain the integrity of input-to-output pulse-widths to reduce timing errors and clock skew problems. This improved performance is accompanied by a 10 -fold reduction in supply currents over bipolar drivers, yet without the delay time problems commonly associated with CMOS devices. Dynamic switching losses are minimized with non-overlapped drive techniques.

Pinouts

ISL89412
(8 LD PDIP, SOIC) TOP VIEW

COMPLEMENTARY DRIVERS

Manufactured under U.S. Patent Nos. 5,334,883, \#5,341,047

Features

- Industry Standard Driver Replacement
- Improved Response Times
- Matched Rise and Fall Times
- Reduced Clock Skew
- Low Output Impedance
- Low Input Capacitance
- High Noise Immunity
- Improved Clocking Rate
- Low Supply Current
- Wide Operating Voltage Range
- Pb-Free Available (RoHS compliant)

Applications

- Clock/line Drivers
- CCD Drivers
- Ultra-Sound Transducer Drivers
- Power MOSFET Drivers
- Switch Mode Power Supplies
- Class D Switching Amplifiers
- Ultrasonic and RF Generators
- Pulsed Circuits

Pin Descriptions

SYMBOL	PIN DESCRIPTIONS		
V $_{+}$	Power voltage from 4.5V to 18V.		
GND	Power voltage return		
INA, INB	Logic inputs.		
$\overline{\text { OUTA }}$	Non-inverted ouput for ISL89410. Inverted output for ISL89411 and ISL89412.		
$\overline{\text { OUTB }}$			
OUTB			Non-inverted output for ISL89410 and ISL89412.
:---			
Inverted output for ISL89411.	.		

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PKG. DWG. \#	
ISL89410IPZ (Note) (No longer available, recommended replacement: ISL89410IBZ)	89410 IPZ	-40 to +85	8 Ld PDIP** (Pb-free)	E8.3

Ordering Information

PART NUMBER	PART MARKING	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. DWG. \#
ISL89410IBZ (Note)	89410 IBZ	-40 to +85	8 Ld SOIC (Pb-free)	M8.15E
ISL89410IBZ-T13* (Note)	89410 IBZ	-40 to +85	8 Ld SOIC (Tape and Reel) (Pb-free)	M8.15E
ISL89411IPZ (Note)	ISL 89411IPZ	-40 to +85	8 Ld PDIP** (Pb-free)	E8.3
ISL89411IBZ (Note)	89411 IBZ	-40 to +85	8 Ld SOIC (Pb-free)	M8.15E
ISL89411IBZ-T13* (Note)	89411 IBZ	-40 to +85	8 Ld SOIC (Tape and Reel) (Pb-free)	M8.15E
ISL89412IPZ (No longer available, recommended replacement: ISL89412IBZ)	89412 IPZ	-40 to +85	8 Ld PDIP** (Pb-free)	E8.3
ISL89412IBZ (Note)	89412 IBZ	-40 to +85	8 Ld SOIC (Pb-free)	M8.15E
ISL89412IBZ-T13* (Note)	89412 IBZ	-40 to +85	8 Ld SOIC (Tape and Reel) (Pb-free)	M8.15E

*Please refer to TB347 for details on reel specifications.
**Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder processing applications NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100\% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb -free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings

Supply (V+ to GND) . 19.0V Input Pins . -0.3V to +0.3V above V+
Combined Peak Output Current. 4A

Maximum Recommended Operating Conditions

Recommended Operating V+ Range. 4.5V to 18.0 V
Input Pins . 0 V to $\mathrm{V}+$ Input Pins.

Thermal Information

Operating Junction Temperature . $+125^{\circ} \mathrm{C}$
Power Dissipation
\qquad
8 Ld PDIP* . 1050 mW

Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Pb-Free Reflow Profile. see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
*Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder processing applications.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

DC Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}=18 \mathrm{~V}$ unless otherwise specified; Parameters with MIN and/or MAX limits are 100% tested at $+25^{\circ} \mathrm{C}$, unless otherwise specified. Temperature limits established by characterization and are not production tested.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
INPUT						
V_{IH}	Logic "1" Input Voltage		2.4			V
$\mathrm{IIH}^{\text {H }}$	Logic "1" Input Current	@V+		0.1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logic "0" Input Voltage				0.8	V
IIL	Logic "0" Input Current	@0V		0.1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HVS }}$	Input Hysteresis			0.3		V
OUTPUT						
R_{OH}	Pull-Up Resistance	IOUT $=-100 \mathrm{~mA}$		3	6	Ω
R_{OL}	Pull-Down Resistance	$\mathrm{I}_{\text {OUT }}=+100 \mathrm{~mA}$		4	6	Ω
IPK	Peak Output Current	Source		2		A
		Sink		2		A
${ }^{\text {l }}$ C	Continuous Output Current	Source/Sink	100			mA
POWER SUPPLY						
Is	Power Supply Current	Inputs High/ISL89410		4.5	7.5	mA
		Inputs High/ISL89411		1	2.5	mA
		Inputs High/ISL89412		2.5	5.0	mA
V_{S}	Operating Voltage		4.5		18	V

AC Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}=18 \mathrm{~V}$ unless otherwise specified.

PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SWITCHING CHARACTERISTICS						
t_{R}	Rise Time (Note 1)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		7.5		ns
		$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		10	20	ns
t_{F}	Fall Time (Note 1)	$\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		10		ns
		$C_{L}=1000 \mathrm{pF}$		13	20	ns
$\mathrm{t}_{\mathrm{D} 1}$	Turn-On Delay Time (Note 1)	See "Timing Table" on page 4		18	25	ns
$\mathrm{t}_{\mathrm{D} 2}$	Turn-Off Delay Time (Note 1)	See"Timing Table" on page 4		20	25	ns

NOTE:

1. Limits established by characterization and are not production tested.

Timing Table

Standard Test Configuration

Simplified Schematic

Typical Performance Curves

FIGURE 1. MAX POWER/DERATING CURVES

FIGURE 3. INPUT CURRENT vs VOLTAGE

FIGURE 2. SWITCH THRESHOLD vs SUPPLY VOLTAGE

FIGURE 4. PEAK DRIVE vs SUPPLY VOLTAGE

FIGURE 5. QUIESCENT SUPPLY CURRENT

Typical Performance Curves (Continued)

FIGURE 6. "ON" RESISTANCE vs SUPPLY VOLTAGE

FIGURE 8. AVERAGE SUPPLY CURRENT vs CAPACITIVE LOAD

FIGURE 10. RISE/FALL TIME vs SUPPLY VOLTAGE

FIGURE 7. AVERAGE SUPPLY CURRENT vs VOLTAGE AND FREQUENCY

FIGURE 9. RISE/FALL TIME vs LOAD

FIGURE 11. PROPAGATION DELAY vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 12. RISE/FALL TIME vs TEMPERATURE

FIGURE 13. DELAY vs TEMPERATURE

ISL89411 Macro Model

**** ISL89411 Model ****

*

input

* | gnd
*
- Vsupply
.subckt M894112 $3 \quad 6 \quad 7$
V1 1231.6
R1 1315 1k
R2 1415 5k
R5 1112100
C1 15343.3 pF
D1 1413 dmod
X1 131123 comp1
X2 1612153 comp1
sp 67163 spmod
sn 73163 snmod
g1 110130938μ
.model dmod d
.model spmod vswitch ron3 roff2meg von1 voff1.5
.model snmod vswitch ron4 roff2meg von3 voff2
.ends M89411
.subckt comp1 out inp inm vss
e1 out vss table $\left\{(\mathrm{v}(\mathrm{inp}) \mathrm{v} \text { (inm) })^{*} 5000\right\} \quad(0,0)(3.2,3.2)$
Rout out vss 10 meg
Rinp inp vss 10 meg
Rinm inm vss 10 meg
.ends comp1

Application Guidelines

It is important to minimize inductance to the power FET by keeping the output drive current loop as short as possible. Also, the decoupling capacitor, Cq , should be a high quality ceramic capacitor with a Q that should be a least 10x the gate Q of the power FET. A ground plane under this circuit is also recommended.

FIGURE 14. RECOMMENDED LAYOUT METHODS
In applications where it is difficult to place the driver very close to the power FET (which may result with excessive parasitic inductance), it then may be necessary to add an external gate resistor to dampen the inductive ring. If this resistor must be too large in value to be effective, then as an alternative, Schottky diodes can be added to clamp the ring voltage to $\mathrm{V}+$ or GND.

FIGURE 15. SUGGESTED CONFIGURATION FOR DRIVING INDUCTIVE LOADS

Where high supply voltage operation is required (15 V to 18 V), input signals with a minimum of 3.3 V input drive is suggested and a minimum rise/fall time of 100 ns . This is recommended to minimize the internal bias current power dissipation.
Excessive power dissipation in the driver can result when driving highly capacitive FET gates at high frequencies. These gate power losses are defined by Equation 1:

$$
\begin{equation*}
P=2 \bullet Q_{C} \bullet V_{g s} \bullet f_{S W} \tag{EQ.1}
\end{equation*}
$$

where:
$\mathrm{P}=$ Power
$\mathrm{Q}_{\mathrm{C}}=$ Charge of the Power FET at V_{gs}
$\mathrm{V}_{\mathrm{gs}}=$ Gate drive voltage $(\mathrm{V}+)$
$\mathrm{f}_{\mathrm{SW}}=$ switching Frequency

Adding a gate resistor to the output of the driver will transfer some of the driver dissipation to the resistor. Another possible solution is to lower the gate driver voltage which also lowers Q_{C}.

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that you have the latest revision.

DATE	REVISION	CHANGE
October 16, 2015	FN6798.2	Updated Ordering Information Table on page 1. Added Revision History and About Intersil sections. Updated POD MDP0027 to M8.15E.

About Intersil

Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

TYPICAL RECOMMENDED LAND PATTERN

Dual-In-Line Plastic Packages (PDIP)

-B-

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum -C .
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).
© Copyright Intersil Americas LLC 2008-2015. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.htm modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
$\underline{00053 \mathrm{P} 0231} 5695657.404 .7355 .5$ LT4936 57.904 .0755 .05882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 020740000060100564 $\underline{01312} \underline{0134220000} \underline{60713816} \underline{\mathrm{M} 15730061} \underline{61161-90} \underline{61278-0020}$ 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P

