PS9506,PS9506L1,PS9506L2,PS9506L3

R08DS0018EJ0100
Rev.1.00
0.6 A OUTPUT CURRENT, HIGH CMR, IGBT GATE DRIVE, 8-PIN DIP PHOTOCOUPLER

DESCRIPTION

The PS9506, PS9506L1, PS9506L2 and PS9506L3 are optically coupled isolators containing a GaA1As LED on the input side and a photo diode, a signal processing circuit and a power output transistor on the output side on one chip. The PS9506 Series is designed specifically for high common mode transient immunity (CMR) and high switching speed.
The PS9506 Series is suitable for driving IGBTs and MOS FETs.
The PS9506 Series is in a plastic DIP (Dual In-line Package).
The PS9506L1 is lead bending type for long creepage distance.
The PS9506L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.
The PS9506L3 is lead bending type (Gull-wing) for surface mounting.

FEATURES

- Long creepage distance (8 mm MIN.: PS9506L1, PS9506L2)
- Peak output current (0.6 A MAX., 0.4 A MIN.)
- High speed switching ($\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}=0.4 \mu \mathrm{~s}$ MAX.)
- High common mode transient immunity (CMH, $\mathrm{CML}_{\mathrm{L}}= \pm 25 \mathrm{kV} / \mu \mathrm{s}$ MIN.)
- Embossed tape product : PS9506L2-E3, PS9506L3-E3: $1000 \mathrm{pcs} /$ reel
- Pb-Free product
- Safety standards
- UL approved: No. E72422
- CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
- SEMKO approved: No. 1115598

- DIN EN60747-5-2 (VDE0884 Part2) approved: No. 40024069 (Option)

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- IH (Induction Heating)

PACKAGE DIMENSIONS (UNIT: mm)

DIP Type

Lead Bending Type (Gull-wing) For Surface Mount

Lead Bending Type For Long Creepage Distance

Lead Bending Type (Gull-wing) For Long Creepage Distance (Surface Mount)

PHOTOCOUPLER CONSTRUCTION

Parameter	PS9506 ,PS9506L3	PS9506L1, PS9506L2
Air Distance (MIN.)	7 mm	8 mm
Outer Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

FUNCTIONAL DIAGRAM

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number ${ }^{*}$
PS9506	PS9506-AX	Pb-Free (Ni/Pd/Au)	50 Magazine Cases	Standard products (UL, CSA, SEMKO approved)	PS9506
PS9506L1	PS9506L1-AX				PS9506L1
PS9506L2	PS9506L2-AX				PS9506L2
PS9506L3	PS9506L3-AX				PS9506L3
PS9506L2-E3	PS9506L2-E3-AX		Embossed Tape 1000 pcs/reel		PS9506L2
PS9506L3-E3	PS9506L3-E3-AX				PS9506L3
PS9506-V	PS9506-V-AX		50 Magazine Cases	DIN EN60747-5-2 (VDE0884 Part2) approved (Option)	PS9506
PS9506L1-V	PS9506L1-V-AX				PS9506L1
PS9506L2-V	PS9506L2-V-AX				PS9506L2
PS9506L3-V	PS9506L3-V-AX				PS9506L3
PS9506L2-V-E3	PS9506L2-V-E3-AX		Embossed Tape 1000 pcs/reel		PS9506L2
PS9506L3-V-E3	PS9506L3-V-E3-AX				PS9506L3

Note: *1. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	I_{F}	25	mA
	Peak Transient Forward Current (Pulse Width < $1 \mu \mathrm{~s}$)	$\mathrm{I}_{\mathrm{F} \text { (TRAN) }}$	1.0	A
	Reverse Voltage	V_{R}	5	V
	Power Dissipation *1	P_{D}	45	mW
Detector	High Level Peak Output Current ${ }^{* 2}$	$\mathrm{I}_{\text {OH (PEAK) }}$	0.6	A
	Low Level Peak Output Current ${ }^{*}{ }^{2}$	lol (PEAK)	0.6	A
	Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0 to 35	V
	Output Voltage	V_{0}	0 to $\mathrm{V}_{\text {cc }}$	V
	Power Dissipation ${ }^{*}$	P_{C}	250	mW
Isolation Voltage ${ }^{* 4}$		BV	5000	Vr.m.s.
Operating Frequency ${ }^{* 5}$		f	50	kHz
Operating Ambient Temperature		$\mathrm{T}_{\text {A }}$	-40 to +110	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Notes: *1. Reduced to $1.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ or more.
*2. Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
*3. Reduced to $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ or more.
*4. AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output.
Pins 1-4 shorted together, 5-8 shorted together.
*5. $\mathrm{I}_{\text {OH (PEAK) }} \leq 0.4 \mathrm{~A}(\leq 2.0 \mu \mathrm{~s})$, $\mathrm{l}_{\mathrm{oL}}^{\text {(PEAK) }} \leq 0.4 \mathrm{~A}(\leq 2.0 \mu \mathrm{~s})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	10		30	V
Forward Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	8		12	mA
Forward Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-2		0.8	V
Operating Ambient Temperature	T_{A}	-40		110	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=8$ to $12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-2$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter		Symbol	Conditions	MIN.	TYP. ${ }^{11}$	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.2	1.56	1.8	V
	Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30		pF
Detector	High Level Output Current	Іон	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-4 \mathrm{~V}\right)^{*}{ }^{\text {c }}$	0.2			A
			$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-10 \mathrm{~V}\right)^{* 3}$	0.4	0.5		
	Low Level Output Current	loL	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\text {EE }}+2.5 \mathrm{~V}\right)^{*}{ }^{2}$	0.2	0.4		A
			$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+10 \mathrm{~V}\right)^{* 3}$	0.4	0.5		
	High Level Output Voltage	V_{OH}	$\mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}^{*}$	$\mathrm{V}_{\mathrm{cc}}-4.0$	$\mathrm{V}_{\mathrm{cc}}-1.8$		V
	Low Level Output Voltage	V OL	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		0.4	1.0	V
	High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$		0.7	3.0	mA
	Low Level Supply Current	$\mathrm{I}_{\mathrm{CLL}}$	$\mathrm{l}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}$		1.2	3.0	mA
Coupled	Threshold Input Current $(\mathrm{L} \rightarrow \mathrm{H})$	IfLH	$\mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$			7.0	mA
	Threshold Input Voltage $(\mathrm{H} \rightarrow \mathrm{~L})$	$\mathrm{V}_{\text {FHL }}$	$\mathrm{l}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V
	Isolation Capacitance	$\mathrm{Cl}_{\text {- }}$	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.7		pF

Notes: *1. Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$.
*2. Maximum pulse width $=50 \mu \mathrm{~s}$, Maximum duty cycle $=0.5 \%$.
*3. Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$.
*4. V_{OH} is measured with the DC load current in this testing.

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+110^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=8$ to $12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=\mathbf{- 2}$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP. ${ }^{11}$	MAX.	Unit	
Propagation Delay Time ($\mathrm{L} \rightarrow \mathrm{H}$)	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=47 \Omega, \mathrm{C}_{\mathrm{g}}=3 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%^{* 2}, \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	0.05	0.18	0.4	$\mu \mathrm{s}$	
Propagation Delay Time ($\mathrm{H} \rightarrow \mathrm{L}$)	$\mathrm{t}_{\text {PHL }}$		0.05	0.18	0.4	$\mu \mathrm{s}$	
Pulse Width Distortion (PWD)	\|tphL-tPLH					0.25	$\mu \mathrm{s}$
Propagation Delay Time (Difference Between Any Two Products)	$\mathrm{t}_{\text {PHL- }}$ - ${ }_{\text {PLH }}$		-0.3		0.3	$\mu \mathrm{s}$	
Rise Time	tr_{r}			50		ns	
Fall Time	t_{f}			50		ns	
Common Mode Transient Immunity at High Level Output	\|CM ${ }_{\text {H }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{O} \text { (MIN.) }}=26 \mathrm{~V} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$	
Common Mode Transient Immunity at Low Level Output	\|CM ${ }^{\text {L }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{O} \text { (MAX.) }}=1 \mathrm{~V} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$	

Notes: *1. Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$.
*2. This load condition is equivalent to the IGBT load at $1200 \mathrm{~V} / 25 \mathrm{~A}$.
Fig. 1 lou Test Circuit

Fig. 7 tplh, tphl, tr, tf Test Circuit and Wave Forms

Fig. 8 CMR Test Circuit and Wave Forms

Remarks 1. Common Mode Transient Immunity at High Level Output is the maximum value of $d V_{C M} / d t$ at which the output remains High Level (e.g. $\mathrm{V}_{\mathrm{O}}>26 \mathrm{~V}$).
2. Common Mode Transient Immunity at Low Level Output is the maximum value of $d V_{\mathrm{cm}} / \mathrm{dt}$ at which the output remains Low Level (e.g. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

DIODE POWER DISSIPATION vs. AMBIENT TEMPERATURE

FORWARD CURRENT vs. FORWARD VOLTAGE

OUTPUT VOLTAGE vs. FORWARD CURRENT

DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY VOLTAGE vs. AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.

HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT

LOW LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT

Remark The graphs indicate nominal characteristics.

SUPPLY CURRENT vs.
SUPPLY VOLTAGE

PROPAGATION DELAY TIME vs. FORWARD CURRENT

PROPAGATION DELAY TIME vs. LOAD CAPACITANCE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

PROPAGATION DELAY TIME vs. SUPPLY VOLTAGE

PROPAGATION DELAY TIME vs. LOAD RESISTANCE

Remark The graphs indicate nominal characteristics.

TAPING SPECIFICATIONS (UNIT: mm)

Outline and Dimensions (Tape)

Tape Direction

Outline and Dimensions (Reel)

Packing: 1000 pcs/reel

Outline and Dimensions (Tape)

Tape Direction
PS9506L3-E3

Outline and Dimensions (Reel)

Packing: 1000 pcs/reel

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Part Number	Lead Bending	A	B	C	D
PS9506L2	lead bending type (Gull-wing) for long creepage distance (surface mount)	10.2	2.54	1.7	2.2
PS9506L3	lead bending type (Gull-wing) for surface mount	9.0	2.54	1.7	2.0

NOTES ON HANDLING

1. Recommended soldering conditions
(1) Infrared reflow soldering

- Peak reflow temperature
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C}$
- Number of reflows
- Flux
$260^{\circ} \mathrm{C}$ or below (package surface temperature)
10 seconds or less
60 seconds or less
$120 \pm 30 \mathrm{~s}$
Three
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

- Temperature
- Time
- Preheating conditions
- Number of times
- Flux
$260^{\circ} \mathrm{C}$ or below (molten solder temperature)
10 seconds or less
$120^{\circ} \mathrm{C}$ or below (package surface temperature)
One (Allowed to be dipped in solder including plastic mold portion.)
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(3) Soldering by Soldering Iron
- Peak Temperature (lead part temperature) $350^{\circ} \mathrm{C}$ or below
- Time (each pins) 3 seconds or less
- Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(4) Cautions
- Fluxes Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

<R>

USAGE CAUTIONS

1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
2. Board designing
(1) By-pass capacitor of more than $0.1 \mu \mathrm{~F}$ is used between V_{CC} and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm .
(2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close to the input block pattern of the photocoupler.
If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT output side might affect the photocoupler's LED input, leading to malfunction or degradation of characteristics. (If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to the abovementioned coupling, design the input-side circuit so that the bias of the LED is reversed, within the range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)
(3) Pins 1, 4 (which is an $\mathrm{NC}^{* 1} \mathrm{pin}$) can either be connected directly to the GND pin on the LED side or left open. Also, Pin 7 (which is an $\mathrm{NC}^{* 1} \mathrm{pin}$) can either be connected directly to the GND pin on the detector side or left open.
Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device. Note: *1. NC: Non-Connection (No Connection).
3. Make sure the rise/fall time of the forward current is $0.5 \mu \mathrm{~s}$ or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of the supply voltage is $3 \mathrm{~V} / \mu \mathrm{s}$ or less.
5. Avoid storage at a high temperature and high humidity.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/110/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $\mathrm{U}_{\mathrm{pr}}=1.6 \times \mathrm{U}_{\text {IORM. }}, \mathrm{P}_{\mathrm{d}}<5 \mathrm{pC}$	$\begin{aligned} & \mathrm{U}_{\text {IORM }} \\ & \mathrm{U}_{\mathrm{pr}} \end{aligned}$	$\begin{aligned} & 1130 \\ & 1808 \end{aligned}$	$\begin{aligned} & V_{\text {peak }} \\ & V_{\text {peak }} \end{aligned}$
Test voltage (partial discharge test, procedure b for all devices) $\mathrm{U}_{\mathrm{pr}}=1.875 \times \mathrm{U}_{\text {IORM. }}$. $\mathrm{P}_{\mathrm{d}}<5 \mathrm{pC}$	U_{pr}	2119	$\mathrm{V}_{\text {peak }}$
Highest permissible overvoltage	$U_{\text {TR }}$	8000	$\mathrm{V}_{\text {peak }}$
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating temperature range	$\mathrm{T}_{\text {A }}$	-40 to +110	${ }^{\circ} \mathrm{C}$
Isolation resistance, minimum value $\mathrm{V}_{10}=500 \mathrm{~V} \text { dc at } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $V_{10}=500 \mathrm{~V}$ dc at T_{A} MAX. at least $100^{\circ} \mathrm{C}$	Ris MIN. Ris MIN.	$\begin{aligned} & 10^{12} \\ & 10^{11} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current $\mathrm{I}_{\mathrm{F}}, \mathrm{Psi}=0$) Power (output or total power dissipation) Isolation resistance $\mathrm{V}_{10}=500 \mathrm{~V} \text { dc at } \mathrm{T}_{\mathrm{A}}=\mathrm{Tsi}$	Tsi Isi Psi Ris MIN.	$\begin{aligned} & 175 \\ & 400 \\ & 700 \\ & \\ & 10^{9} \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW Ω

| Caution GaAs Products | This product uses gallium arsenide (GaAs).
 GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe
 the following points.
 - Follow related laws and ordinances when disposing of the product. If there are no applicable laws
 and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of
 materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the
 product is controlled (as industrial waste subject to special control) up until final disposal.
 - Do not burn, destroy, cut, crush, or chemically dissolve the product.
 - Do not lick the product or in any way allow it to enter the mouth. |
| :--- | :--- | :--- |

Rev.	Date	Description	
		Page	Summary
0.01	Aug 19, 2010	-	First edition issued
1.00	Nov 10, 2011	Throughout	Preliminary Data Sheet \rightarrow Data Sheet
		Throughout	Safety standards approved
		p. 4	Modification of MARKING EXAMPLE
		p. 5	Addition of ORDERING INFORMATION
		p. 7	Modification of ELECTRICAL CHARACTERISTICS
		pp.9, 10	Addition of TEST CIRCUIT
		pp. 11 to 13	Addition of TYPICAL CHARACTERISTICS
		p. 16	Modification of RECOMMENDED MOUNT PAD DIMENSIONS
		p. 17	Modification of NOTES ON HANDLING
		p. 18	Modification of USAGE CAUTIONS
		p. 19	Addition of SPECIFICATION OF VDE MARKS LICENSE DOCU

Notice

4. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
5. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
6. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
7. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
8. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
9. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
10. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
11. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
12. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer sofftware alone is very difificult, please evaluate the safety of the final products or system manufactured by you.
13. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
14. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
15. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES
Renesas Electronics Corporation
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc.
280 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-21-65030, rax. +49-211-6503-1
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.Chin
Renesas Electronics (Shanghai) Co, Ltd
M,
Renesas Electronics Hong Kong Limited
M
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Te:+886-2-8175-9600, Fax:+886 2-8175-9670
1 harbourFront Avenue, #06-10, keppel Bay
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Renesas Electronics Korea Co., Ltd.
M1F.,Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
```


X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for IGBT Modules category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
F3L100R07W2E3_B11 F3L15R12W2H3_B27 F3L400R07ME4_B22 F3L400R12PT4_B26 F4-100R12KS4 F4-50R07W2H3_B51 F475R12KS4_B11 FB15R06W1E3 FB20R06W1E3_B11 FD1000R33HE3-K FD200R12KE3 FD300R06KE3 FD300R12KE3 FD300R12KS4_B5 FD400R12KE3 FD400R33KF2C-K FD401R17KF6C_B2 FD-DF80R12W1H3_B52 FF100R12KS4 FF1200R17KE3_B2

FF150R12KE3G FF200R06KE3 FF200R06YE3 FF200R12KT3 FF200R12KT3_E FF200R12KT4 FF200R17KE3 FF300R06KE3_B2
FF300R12KE4_E FF300R12KS4HOSA1 FF300R12ME4_B11 FF300R12MS4 FF300R17ME4 FF450R12ME4P FF450R17IE4 FF600R12IE4V FF600R12IP4V FF800R17KE3 FF800R17KP4_B2 FF900R12IE4V MIXA30W1200TED MIXA450PF1200TSF FP06R12W1T4_B3 FP100R07N3E4 FP100R07N3E4_B11 FP10R06W1E3_B11 FP10R12W1T4_B11 FP10R12YT3 FP10R12YT3_B4 FP150R07N3E4

