Renesns

HIGH-SPEED CMOS QUICKSWITCH
 DUAL 4:1 MUX/DEMUX

FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Pin compatible with the 74F253, 74FCT253, and 74FCT253T
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- TTL-compatible control inputs
- Available in QSOP and S1 packages

DESCRIPTION:

The QS3253 is a high-speed CMOS TTL-compatible dual 4:1 multiplexer/demultiplexer with 3-state outputs. The QS3253 is function and pinout compatible version of the 74F253, 74FCT253, and the 74ALS/AS/ LS253 dual 4:1 multiplexers. The low ON resistance of the QS3253 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise.

Mux/Demux devices provide an order of magnitude faster speed than equivalent logic devices.

The QS3253 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS:

- Logic replacement
- Video, audio, graphics switching, muxing
- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Power conservation
- Bus funneling

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

QSOP/ S1 TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
IOUT	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathbb{N}}=\mathrm{OV}, \mathrm{V}_{\mathrm{L}} \mathrm{T}=\mathrm{OV}\right)$

Pins		Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs		4	5	pF
Quickswitch Channels (Switch OFF)	Demux	5	7	pF
	Mux	14	16	

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	
Ixx	I	Datalnputs
$\mathrm{S} 0-\mathrm{S} 2$	I	Select Inputs
$\overline{\mathrm{EA}}, \overline{\mathrm{EB}}$	I	Enable Input
YA, YB	0	Data Output

FUNCTION TABLE(1)

Enable		Select		Outputs		Function
$\overline{\mathrm{E}} \mathrm{A}$	$\bar{E} \bar{B}$	S1	So	YA	YB	
H	X	X	X	Hi-Z	X	Disconnected
X	H	X	X	X	Hi-Z	Disconnected
L	L	L	L	IOA	lob	S1-0 $=0$
L	L	L	H	11 A	118	S $1-0=1$
L	L	H	L	12A	12 B	S $1-0=2$
L	L	H	H	I3A	13 B	S $1-0=3$

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{11}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
In	Input LeakageCurrent (Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Output Current (Hi-Z)	OV \leq Vout \leq Vcc	-	-	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, Ion $=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{VcC}=$ Min., $\mathrm{VIN}=2.4 \mathrm{~V}$, Ion $=15 \mathrm{~mA}$	-	10	15	
VP	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, lout $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. Pass Voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	VCC $=$ Max., VIN $=$ GND or Vcc, $\mathrm{f}=0$	3	$\mu \mathrm{~A}$
$\Delta I C C$	Power Supply Current per Control Input $\mathrm{HIGH}{ }^{(2)}$	VCC $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	1.5	mA
ICCD	Dynamic Power Supply Current per MHZ ${ }^{(3)}$	VCC $=$ Max., I and Y pins open Control Inputs Toggling at 50% Duty Cycle	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TLL driven input ($\mathrm{V}_{\mathrm{I}}=3.4 \mathrm{~V}$, control inputs only). I and Y pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The I and Y inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 5 \%$;
Cload $=50 \mathrm{pF}$, RLoad $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	Data Propagation Delay (2,3) Ix Y	-	-	0.25	ns
tPZL tPZH	Switch Turn-on Delay Sx to Y	0.5	-	6.6	ns
tPZL tPZH	Switch Turn-on Delay Ex to Y	0.5	-	6	ns
tPLZ tPHZ	Switch Turn-offDelay (2) Ex to Y, Sx to Y	0.5	-	6	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $\mathrm{CL}^{2}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

QS

Tube or Tray Tape and Reel

Quarter Size Outline Package - Green
Small Outline IC - Green

High Speed CMOS Quickswitch Dual 4:1
Mux/Demux

Datasheet Document History

02/14/2011 Pg. 5 Updated the ordering information by removing the "IDT" notation, non RoHS part and by adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by Renesas manufacturer:
Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 NTE74LS247 SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX157FT(AJ) NL7SZ18MUR2G SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652 74HCT153D.652 74HC253D.652 74HC139D.652 74HCT139D.652 HEF4543BT. 652 TC74HC4052AFT(EL) 74HC139PW-Q100J SN74LVC257AMPWREP 74HC138DB. 112

